WorldWideScience

Sample records for bmp-2 independent mechanism

  1. BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway.

    Science.gov (United States)

    Kopf, Jessica; Petersen, Ansgar; Duda, Georg N; Knaus, Petra

    2012-04-30

    Efficient osteogenic differentiation is highly dependent on coordinated signals arising from growth factor signalling and mechanical forces. Bone morphogenetic proteins (BMPs) are secreted proteins that trigger Smad and non-Smad pathways and thereby influence transcriptional and non-transcriptional differentiation cues. Crosstalk at multiple levels allows for promotion or attenuation of signalling intensity and specificity. Similar to BMPs, mechanical stimulation enhances bone formation. However, the molecular mechanism by which mechanical forces crosstalk to biochemical signals is still unclear. Here, we use a three-dimensional bioreactor system to describe how mechanical forces are integrated into the BMP pathway. Time-dependent phosphorylation of Smad, mitogen-activated protein kinases and Akt in human fetal osteoblasts was investigated under loading and/or BMP2 stimulation conditions. The phosphorylation of R-Smads is increased both in intensity and duration under BMP2 stimulation with concurrent mechanical loading. Interestingly, the synergistic effect of both stimuli on immediate early Smad phosphorylation is reflected in the transcription of only a subset of BMP target genes, while others are differently affected. Together this results in a cooperative regulation of osteogenesis that is guided by both signalling pathways. Mechanical signals are integrated into the BMP signalling pathway by enhancing immediate early steps within the Smad pathway, independent of autocrine ligand secretion. This suggests a direct crosstalk of both mechanotransduction and BMP signalling, most likely at the level of the cell surface receptors. Furthermore, the crosstalk of both pathways over longer time periods might occur on several signalling levels.

  2. BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway

    Directory of Open Access Journals (Sweden)

    Kopf Jessica

    2012-04-01

    Full Text Available Abstract Background Efficient osteogenic differentiation is highly dependent on coordinated signals arising from growth factor signalling and mechanical forces. Bone morphogenetic proteins (BMPs are secreted proteins that trigger Smad and non-Smad pathways and thereby influence transcriptional and non-transcriptional differentiation cues. Crosstalk at multiple levels allows for promotion or attenuation of signalling intensity and specificity. Similar to BMPs, mechanical stimulation enhances bone formation. However, the molecular mechanism by which mechanical forces crosstalk to biochemical signals is still unclear. Results Here, we use a three-dimensional bioreactor system to describe how mechanical forces are integrated into the BMP pathway. Time-dependent phosphorylation of Smad, mitogen-activated protein kinases and Akt in human fetal osteoblasts was investigated under loading and/or BMP2 stimulation conditions. The phosphorylation of R-Smads is increased both in intensity and duration under BMP2 stimulation with concurrent mechanical loading. Interestingly, the synergistic effect of both stimuli on immediate early Smad phosphorylation is reflected in the transcription of only a subset of BMP target genes, while others are differently affected. Together this results in a cooperative regulation of osteogenesis that is guided by both signalling pathways. Conclusions Mechanical signals are integrated into the BMP signalling pathway by enhancing immediate early steps within the Smad pathway, independent of autocrine ligand secretion. This suggests a direct crosstalk of both mechanotransduction and BMP signalling, most likely at the level of the cell surface receptors. Furthermore, the crosstalk of both pathways over longer time periods might occur on several signalling levels.

  3. Humoral BMP-2 is Sufficient for Inducing Breast Cancer Microcalcification

    Science.gov (United States)

    Liu, Fangbing; Bloch, Nathalie; Bhushan, Kumar R.; De Grand, Alec M.; Tanaka, Eiichi; Solazzo, Stephanie; Mertyna, Pawel M.; Goldberg, Nahum; Frangioni, John V.; Lenkinski, Robert E.

    2009-01-01

    Microcalcifications are an important diagnostic marker for breast cancer on mammograms, yet the mechanism of their formation is poorly understood. Indeed, there is presently no short-latency, high-yield, syngeneic rodent model of the process. Bone morphogenetic protein-2 (BMP-2) is a key mediator of physiological bone formation and pathological vasculature calcification, but its role in breast cancer microcalcification is unknown. In this study, R3230 rat breast tumors were adapted to cell culture, transduced with adenoviral BMP-2, and inoculated into a syngeneic host. Tumor growth and calcium salt deposition were quantified in living animals over time using micro-computed tomography, and probed chemically using near-infrared fluorescence. Plasma BMP-2 levels were quantified over time by ELISA. Within three weeks, 100% of breast tumors developed microcalcifications, which were absent from all normal tissues. Importantly, when two tumors were initiated in a single host, the ipsilateral tumor expressing BMP-2 was able to induce microcalcification in the contralateral tumor that was not expressing BMP-2, suggesting that BMP-2 can act humorally. Taken together, we describe the first reproducible rodent model of breast cancer microcalcification, prove that BMP-2 expression is sufficient for initiating the process, and lay the foundation for a new generation of targeted diagnostic agents. PMID:19123988

  4. BMP-2 induces EMT and breast cancer stemness through Rb and CD44

    DEFF Research Database (Denmark)

    Huang, Peide; Chen, Anan; He, Weiyi

    2017-01-01

    Bone morphogenetic protein 2 (BMP-2) has been reported to facilitate epithelial-to-mesenchymal transition (EMT) and bone metastasis in breast cancer xenograft models. To investigate the role of BMP-2 in the development of breast cancer stem cells (BCSCs), and to further elucidate the mechanisms u...

  5. BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression is Essential During Fracture Repair.

    Science.gov (United States)

    Myers, Timothy J; Longobardi, Lara; Willcockson, Helen; Temple, Joseph D; Tagliafierro, Lidia; Ye, Ping; Li, Tieshi; Esposito, Alessandra; Moats-Staats, Billie M; Spagnoli, Anna

    2015-11-01

    -reaching implications for understanding mechanisms regulating the selective recruitment of distinct cells into the repairing niches and the development of novel pharmacological (by targeting BMP2/CXCL12) and cellular (MSCs, endosteal cells) interventions to promote fracture healing. © 2015 American Society for Bone and Mineral Research.

  6. Immobilization of Murine Anti-BMP-2 Monoclonal Antibody on Various Biomaterials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sahar Ansari

    2014-01-01

    Full Text Available Biomaterials are widely used as scaffolds for tissue engineering. We have developed a strategy for bone tissue engineering that entails application of immobilized anti-BMP-2 monoclonal antibodies (mAbs to capture endogenous BMPs in vivo and promote antibody-mediated osseous regeneration (AMOR. The purpose of the current study was to compare the efficacy of immobilization of a specific murine anti-BMP-2 mAb on three different types of biomaterials and to evaluate their suitability as scaffolds for AMOR. Anti-BMP-2 mAb or isotype control mAb was immobilized on titanium (Ti microbeads, alginate hydrogel, and ACS. The treated biomaterials were surgically implanted in rat critical-sized calvarial defects. After 8 weeks, de novo bone formation was assessed using micro-CT and histomorphometric analyses. Results showed de novo bone regeneration with all three scaffolds with immobilized anti-BMP-2 mAb, but not isotype control mAb. Ti microbeads showed the highest volume of bone regeneration, followed by ACS. Alginate showed the lowest volume of bone. Localization of BMP-2, -4, and -7 antigens was detected on all 3 scaffolds with immobilized anti-BMP-2 mAb implanted in calvarial defects. Altogether, these data suggested a potential mechanism for bone regeneration through entrapment of endogenous BMP-2, -4, and -7 proteins leading to bone formation using different types of scaffolds via AMOR.

  7. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  8. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  9. BMP2 expression in the endocardial lineage is required for AV endocardial cushion maturation and remodeling.

    Science.gov (United States)

    Saxon, Jacob G; Baer, Daniel R; Barton, Julie A; Hawkins, Travis; Wu, Bingruo; Trusk, Thomas C; Harris, Stephen E; Zhou, Bin; Mishina, Yuji; Sugi, Yukiko

    2017-10-01

    Distal outgrowth, maturation and remodeling of the endocardial cushion mesenchyme in the atrioventricular (AV) canal are the essential morphogenetic events during four-chambered heart formation. Mesenchymalized AV endocardial cushions give rise to the AV valves and the membranous ventricular septum (VS). Failure of these processes results in several human congenital heart defects. Despite this clinical relevance, the mechanisms governing how mesenchymalized AV endocardial cushions mature and remodel into the membranous VS and AV valves have only begun to be elucidated. The role of BMP signaling in the myocardial and secondary heart forming lineage has been well studied; however, little is known about the role of BMP2 expression in the endocardial lineage. To fill this knowledge gap, we generated Bmp2 endocardial lineage-specific conditional knockouts (referred to as Bmp2 cKO Endo ) by crossing conditionally-targeted Bmp2 flox/flox mice with a Cre-driver line, Nfatc1 Cre , wherein Cre-mediated recombination was restricted to the endocardial cells and their mesenchymal progeny. Bmp2 cKO Endo mouse embryos did not exhibit failure or delay in the initial AV endocardial cushion formation at embryonic day (ED) 9.5-11.5; however, significant reductions in AV cushion size were detected in Bmp2 cKO Endo mouse embryos when compared to control embryos at ED13.5 and ED16.5. Moreover, deletion of Bmp2 from the endocardial lineage consistently resulted in membranous ventricular septal defects (VSDs), and mitral valve deficiencies, as evidenced by the absence of stratification of mitral valves at birth. Muscular VSDs were not found in Bmp2 cKO Endo mouse hearts. To understand the underlying morphogenetic mechanisms leading to a decrease in cushion size, cell proliferation and cell death were examined for AV endocardial cushions. Phospho-histone H3 analyses for cell proliferation and TUNEL assays for apoptotic cell death did not reveal significant differences between control and

  10. Sequential Treatment with SDF-1 and BMP-2 Potentiates Bone Formation in Calvarial Defects.

    Science.gov (United States)

    Hwang, Hee-Don; Lee, Jung-Tae; Koh, Jeong-Tae; Jung, Hong-Moon; Lee, Heon-Jin; Kwon, Tae-Geon

    2015-07-01

    Stromal cell-derived factor-1 (SDF-1) protein and its receptor, CXCR-4, play an important role in tissue repair and regeneration in various organs, including the bone. SDF-1 is indispensable for bone morphogenetic protein-2 (BMP-2)-induced osteogenic differentiation. However, SDF-1 is not needed after the osteogenic induction has been activated. Since the precise condition for the additive effects of combined DF-1 and BMP-2 in bone healing had not been fully investigated, we aimed to determine the optimal conditions for SDF-1- and BMP-2-mediated bone regeneration. We examined the in vitro osteoblastic differentiation and cell migration after sequential treatments with SDF-1 and BMP-2. Based on the in vitro additive effects of SDF-1 and BMP-2, the critical size defects of mice calvaria were treated with these cytokines in various sequences. Phosphate buffered saline (PBS)-, SDF-1-, or BMP-2-soaked collagen scaffolds were implanted into the calvarial defects (n=36). Periodic percutaneous injections of PBS or the cytokine SDF-1 and BMP-2 into the implanted scaffolds were performed on days 3 and 6, postoperatively. Six experimental groups were used according to the types and sequences of the cytokine treatments. After 28 days, the mice were euthanized and bone formation was evaluated with microcomputed tomography and histology. The molecular mechanism of the additive effect of SDF-1 and BMP-2 was evaluated by analyzing intracellular signal transduction through Smad and Erk phosphorylation. The in vitro experiments revealed that, among all the treatments, the treatment with BMP-2 after SDF-1 showed the strongest osteoblastic differentiation and enhanced cell migration. Similarly, in the animal model, the treatment with SDF-1 followed by BMP-2 treatment showed the highest degree of new bone regeneration than any other groups, including the one with continuous BMP-2 treatment. This new bone formation can be partially explained by the activation of Smad and Erk pathways

  11. [Combined use of rhBMP2/BCB and free periosteum in repairing segmental defects in radii of rabbits].

    Science.gov (United States)

    Yuan, Z; Ma, P; Hu, Y; Luo, Z; Han, Y; Shi, K; Lu, R; Wang, J

    1999-11-01

    To study the efficacy of combined use of rhBMP2/BCBand free periosteal graft in repairing segmental bony defects. A new grafting material (rhBMP2/BCB) was made by combining recombinant human BMP2 (rhBMP2) and an antigen-free bovine cancellous bone (BCB) as a carrier. rhBMP2/BCB was used alone in conjunction with free periosteal graft to repair a 1.5 cm defect in the radius of the rabbit. The defect-repairing capability for each of the treatment modalities was assessed radiographically, biomechanically, and by densitometry and histological studies. rhBMP2/BCB used alone was capable of healing the defect in large by 16 weeks, with a similar repair process and mechanism seen with RBX. Combined use of rhBMP2/BCB and free periosteal graft was superior in terms of increased amount and quality of the new bone formed at the early stage of the repair process (within 12 weeks) to rhBMP2/BCB used in isolation, with the defect basically healed by 12 weeks. Both methods are effective in repairing segmental bony defects, with rhBMP2/BCB used in conjunction with free periosteal graft being most preferred, considering the satisfactory osteogenesis, osteoconduction and osteoinduction.

  12. Actin cytoskeleton mediates BMP2-Smad signaling via calponin 1 in preosteoblast under simulated microgravity.

    Science.gov (United States)

    Xu, Hongjie; Wu, Feng; Zhang, Hongyu; Yang, Chao; Li, Kai; Wang, Hailong; Yang, Honghui; Liu, Yue; Ding, Bai; Tan, Yingjun; Yuan, Ming; Li, Yinghui; Dai, Zhongquan

    2017-07-01

    Microgravity influences the activity of osteoblast, induces actin microfilament disruption and leads to bone loss during spaceflight. Mechanical stress such as gravity, regulates cell function, response and differentiation through dynamic cytoskeleton changes, but the mechanotransduction mechanism remains to be fully elucidated. Previous, we demonstrated actin microfilament mediated osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity (SMG). Here, we explored a potential molecular and its detailed mechanism of actin cytoskeleton functioning on BMP2-Smad signaling in MC3T3-E1 under SMG. Results showed that the actin microfilament-disrupting agent, cytochalasin B (CB), reduced BMP2-induced activation, translocation of Smad1/5/8 and Runx2 expression. SMG also inhibited BMP2-Smad signaling, which was rescued by actin cytoskeleton stabilizing agent, Jasplakinolide (JAS). Furthermore, we found that siRNA mediated knockdown of calponin 1 (CNN1), an actin binding protein, markedly promoted BMP2-Smad signaling and abolished both inhibition of CB, SMG on BMP2-Smad signaling and the rescue action of JAS. Overexpression of CNN1 inhibited the p-Smad induced by BMP2. Bidirectional Co-IP experiments demonstrated CNN1 could interacted with Smad or p-Smad protein. Furthermore, CB or SMG decreased the phosphorylated CNN1 and increased its interaction with Smad or p-Smad. Combined with the phosphorylation of CNN1 inhibites its actin binding activity, these results indicate that actin cytoskeleton depolymerization inhibites BMP2 signaling via blocking of Smad by dephosphorylated CNN1 in osteoblast cells. Thus, we provide new important insights into the mechanism of mechanotransduction under SMG condition, which probably contribute to bone formation decrease induced by SMG. Copyright © 2017. Published by Elsevier B.V.

  13. Fibrin Hydrogel Based Bone Substitute Tethered with BMP-2 and BMP-2/7 Heterodimers

    Directory of Open Access Journals (Sweden)

    Lindsay S. Karfeld-Sulzer

    2015-03-01

    Full Text Available Current clinically used delivery methods for bone morphogenetic proteins (BMPs are collagen based and require large concentrations that can lead to dangerous side effects. Fibrin hydrogels can serve as osteoinductive bone substitute materials in non-load bearing bone defects in combination with BMPs. Two strategies to even further optimize such a fibrin based system include employing more potent BMP heterodimers and engineering growth factors that can be covalently tethered to and slowly released from a fibrin matrix. Here we present an engineered BMP-2/BMP-7 heterodimer where an N-terminal transglutaminase substrate domain in the BMP-2 portion provides covalent attachment to fibrin together with a central plasmin substrate domain, a cleavage site for local release of the attached BMP-2/BMP-7 heterodimer under the influence of cell-activated plasmin. In vitro and in vivo results revealed that the engineered BMP-2/BMP-7 heterodimer induces significantly more alkaline phosphatase activity in pluripotent cells and bone formation in a rat calvarial model than the engineered BMP-2 homodimer. Therefore, the engineered BMP-2/BMP-7 heterodimer could be used to reduce the amount of BMP needed for clinical effect.

  14. Transcriptional regulation of BMP2 expression by the PTH-CREB signaling pathway in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Rongrong Zhang

    Full Text Available Intermittent application of parathyroid hormone (PTH has well established anabolic effects on bone mass in rodents and humans. Although transcriptional mechanisms responsible for these effects are not fully understood, it is recognized that transcriptional factor cAMP response element binding protein (CREB mediates PTH signaling in osteoblasts, and that there is a communication between the PTH-CREB pathway and the BMP2 signaling pathway, which is important for osteoblast differentiation and bone formations. These findings, in conjunction with putative cAMP response elements (CREs in the BMP2 promoter, led us to hypothesize that the PTH-CREB pathway could be a positive regulator of BMP2 transcription in osteoblasts. To test this hypothesis, we first demonstrated that PTH signaling activated CREB by phosphorylation in osteoblasts, and that both PTH and CREB were capable of promoting osteoblastic differentiation of primary mouse osteoblast cells and multiple rodent osteoblast cell lines. Importantly, we found that the PTH-CREB signaling pathway functioned as an effective activator of BMP2 expression, as pharmacologic and genetic modulation of PTH-CREB activity significantly affected BMP2 expression levels in these cells. Lastly, through multiple promoter assays, including promoter reporter deletion, mutation, chromatin immunoprecipitation (ChIP, and electrophoretic mobility shift assay (EMSA, we identified a specific CRE in the BMP2 promoter which is responsible for CREB transactivation of the BMP2 gene in osteoblasts. Together, these results demonstrate that the anabolic function of PTH signaling in bone is mediated, at least in part, by CREB transactivation of BMP2 expression in osteoblasts.

  15. Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling

    Science.gov (United States)

    Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas

    2017-01-01

    In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro.

  16. Strontium doping promotes bioactivity of rhBMP-2 upon calcium phosphate cement via elevated recognition and expression of BMPR-IA.

    Science.gov (United States)

    Huang, Baolin; Tian, Yu; Zhang, Wenjing; Ma, Yifan; Yuan, Yuan; Liu, Changsheng

    2017-11-01

    Preserving and improving osteogenic activity of bone morphogenetic protein-2 (BMP-2) upon implants remains one of the key limitations in bone regeneration. With calcium phosphate cement (CPC) as model, we have developed a series of strontium (Sr)-doped CPC (SCPC) to address this issue. The effects of fixed Sr on the bioactivity of recombinant human BMP-2 (rhBMP-2) as well as the underlying mechanism were investigated. The results suggested that the rhBMP-2-induced osteogenic activity was significantly promoted upon SCPCs, especially with a low amount of fixed Sr (SrCO 3 content IA (BMPR-IA) to rhBMP-2 and an increased expression of BMPR-IA in C2C12 model cells. As a result, the activations of BMP-induced signaling pathways were different in C2C12 cells incubated upon CPC/rhBMP-2 and SCPCs/rhBMP-2. These findings explicitly decipher the mechanism of SCPCs promoting osteogenic bioactivity of rhBMP-2 and signify the promising application of the SCPCs/rhBMP-2 matrix in bone regeneration implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. BMP-2 and titanium particles synergistically activate osteoclast formation

    Science.gov (United States)

    Sun, S.X.; Guo, H.H.; Zhang, J.; Yu, B.; Sun, K.N.; Jin, Q.H.

    2014-01-01

    A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation. PMID:24820069

  18. Actin microfilament mediates osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity.

    Directory of Open Access Journals (Sweden)

    Zhongquan Dai

    Full Text Available Microgravity decreases osteoblastic activity, induces actin microfilament disruption and inhibits the responsiveness of osteoblast to cytokines, but the mechanisms remains enigmatic. The F-actin cytoskeleton has previously been implicated in manifold changes of cell shape, function and signaling observed under microgravity. Here we investigate the involvement of microfilament in mediating the effects of microgravity and BMP2 induction on Cbfa1 activity. For this purpose we constructed a fluorescent reporter cell line (OSE-MG63 of Cbfa1 activity by stably transfecting MG63 cells with a reporter consisting of six tandem copies of OSE2 and a minimal mOG2 promoter upstream of enhanced green fluorescent protein (EGFP. The fluorescence intensity of OSE-MG63 showed responsiveness to bone-related cytokines (IGF-I, vitamin D3 and BMP2 and presented an accordant tendency with alkaline phosphatase (ALP activity. Using OSE-MG63 reporter fluorescence, we performed a semi-quantitative analysis of Cbfa1 activity after treatment with simulated microgravity, microfilament-disrupting agent (cytochalasin B, CB, microfilament-stabilizing agent (Jasplakinolide, JAS or any combination thereof. In parallel, ALP activity, DNA binding activity of Cbfa1 to OSE2 (ChIP, F-actin structure (immunofluorescence and EGFP mRNA expression (RT-qPCR were analyzed. Simulated microgravity inhibited Cbfa1 activity, affected the responsiveness of Cbfa1 to cytokine BMP2, and caused a thinning and dispersed distribution of microfilament. Under normal gravity, CB significantly attenuated BMP2 induction to Cbfa1 activity as well as DNA binding activity of Cbfa1 to OSE2. The addition of JAS reversed the inhibitory effects of microgravity on the responsiveness of Cbfa1 to BMP2. Our study demonstrates that disrupting the microfilament organization by CB or simulated microgravity attenuates the responsiveness of Cbfa1 to BMP2. A stabilization of the microfilament organization by JAS reverses

  19. Stiffness-dependent cellular internalization of matrix-bound BMP-2 and its relation to Smad and non-Smad signaling.

    Science.gov (United States)

    Gilde, Flora; Fourel, Laure; Guillot, Raphael; Pignot-Paintrand, Isabelle; Okada, Takaharu; Fitzpatrick, Vincent; Boudou, Thomas; Albiges-Rizo, Corinne; Picart, Catherine

    2016-12-01

    Surface coatings delivering BMP are a promising approach to render biomaterials osteoinductive. In contrast to soluble BMPs which can interact with their receptors at the dorsal side of the cell, BMPs presented as an insoluble cue physically bound to a biomimetic matrix, called here matrix-bound (bBMP-2), are presented to cells by their ventral side. To date, BMP-2 internalization and signaling studies in cell biology have always been performed by adding soluble (sBMP-2) to cells adhered on cell culture plates or glass slides, which will be considered here as a "reference" condition. However, whether and how matrix-bound BMP-2 can be internalized by cells and its relation to canonical (SMAD) and non-canonical signaling (ALP) remain open questions. In this study, we investigated the uptake and processing of BMP-2 by C2C12 myoblasts. This BMP-2 was presented either embedded in polyelectrolyte multilayer films (matrix-bound presentation) or as soluble form. Using fluorescently labeled BMP-2, we showed that the amount of matrix-bound BMP-2 internalized is dependent on the level of crosslinking of the polyelectrolyte films. Cav-1-mediated internalization is related to both SMAD and ALP signaling, while clathrin-mediated is only related to ALP signaling. BMP-2 internalization was independent of the presentation mode (sBMP-2 versus bBMP-2) for low crosslinked films (soft, EDC10) in striking contrast with high crosslinked (stiff, EDC70) films where internalization was much lower and slower for bBMP-2. As anticipated, internalization of sBMP-2 barely depended on the underlying matrix. Taken together, these results indicate that BMP-2 internalization can be tuned by the underlying matrix and activates downstream BMP-2 signaling, which is key for the effective formation of bone tissue. The presentation of growth factors from material surfaces currently presents significant challenges in academic research, clinics and industry. Being able to deliver efficiently these growth

  20. Sustained-release rhBMP-2 increased bone mass and bone strength in an ovine model of postmenopausal osteoporosis.

    Science.gov (United States)

    Wu, Zi Xiang; Liu, Da; Wan, Shi Yong; Cui, Geng; Zhang, Yang; Lei, Wei

    2011-01-01

    The purpose of this study was to analyze the local treatment effects of rhBMP-2 combined with fibrin sealant (FS) on bone mineral density, microarchitectural and mechanical properties in osteoporotic ovine spine. Postmenopausal osteoporosis was induced in eight sheep through ovariectomy (OVX) and a low-calcium diet for a period of 12 months. According to the Latin square design, L3-L6 vertebrae were randomly assigned to four treatment groups: A (rhBMP-2/FS), B (rhBMP-2), C (FS) and D (blank control). All materials were injected into the assigned vertebra transpedicularly. All animals were euthanized 3 months after treatment. Bone mineral density (BMD), microarchitectural and mechanical properties were assessed. ANOVA analysis of variance was used to determine effects of rhBMP-2/FS (α = 0.05). The BMD in group A (rhBMP-2/FS) was 18.8, 30.4 and 27.9% higher than that in group B, C and D, respectively. Analysis of bone structure by micro-CT revealed higher trabecular bone volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N) in the rhBMP-2/FS group (P osteoporosis in the spine can increase bone strength and reduce fracture risk quickly.

  1. Pulsed Electromagnetic Field (PEMF) plus BMP-2 upregulates intervertebral disc-cell matrix synthesis more than either BMP-2 alone or PEMF alone.

    Science.gov (United States)

    Okada, Motohiro; Kim, Jin Hwan; Yoon, Sangwook Tim; Hutton, William C

    2013-08-01

    An in vitro study using human intervertebral disc (IVD) cells. To determine if pulsed electromagnetic field (PEMF) plus bone morphogenetic protein (BMP)-2 could upregulate IVD-cell matrix synthesis more than either BMP-2 alone or PEMF alone. BMP-7 and BMP-2 can both upregulate IVD-cell matrix synthesis. There are problems associated with using either BMP-2 or BMP-7. They can diffuse away rather quickly after injection into the IVD space, they cost a lot, and they have side effects such as soft-tissue inflammation and swelling. PEMF has been reported to stimulate various types of cells. PEMF is safe, inexpensive, and noninvasive, thus multiple use is possible. However, PEMF alone has a rather weak effect on disc cells. We decided to carry out an experiment whereby we combined PEMF with BMP-2. Our thoughts were that BMP-2 plus PEMF could be better than either alone. The PEMF signal used was similar to that used in the clinical treatment of fracture nonunions or delayed fracture healing. Human disc cells were treated with BMP-2 alone or PEMF alone or PEMF plus BMP-2. Quantitative real-time PCR was performed to determine mRNA expression levels of aggrecan, collagen-2, transforming growth factor (TGF)-β, BMP-2, and BMP-7. Sulfated glycosaminoglycansynthesis was analyzed using the dimethylmethylene blue method. Western blot analysis was performed to determine the protein levels of TGF-β, BMP-2, and BMP-7. PEMF plus BMP-2 upregulates IVD-cell matrix synthesis more than BMP-2 alone or PEMF alone, and the effect seems to be synergistic. Also, PEMF plus BMP-2 induces more endogenous BMP-7 and BMP-2 mRNA levels as well as protein levels, as compared with either PEMF alone or BMP-2 alone. PEMF plus BMP-2 acts in synergy to upregulate intervertebral disc-cell matrix synthesis more than either BMP-2 alone or PEMF alone.

  2. Inhibition of osteoblast differentiation by aluminum trichloride exposure is associated with inhibition of BMP-2/Smad pathway component expression.

    Science.gov (United States)

    Yang, Xu; Huo, Hui; Xiu, Chunyu; Song, Miao; Han, Yanfei; Li, Yanfei; Zhu, Yanzhu

    2016-11-01

    Bone morphogenetic protein-2 (BMP-2)/Smad signaling pathway plays an important role in regulating osteoblast (OB) differentiation. OB differentiation is a key process of bone formation. Aluminum (Al) exposure inhibits bone formation and causes Al-induced bone disease. However, the mechanism is not fully understood. To investigate whether BMP-2/Smad signaling pathway is associated with OB differentiation in aluminum trichloride (AlCl 3 )-treated OBs, the primary rat OBs were cultured and exposed to 0 (control group, CG), 1/40 IC 50 (low-dose group, LG), 1/20 IC 50 (mid-dose group, MG), and 1/10 IC 50 (high-dose group, HG) of AlCl 3 for 24 h, respectively. We found that the expressions of OB differentiation markers (Runx-2, Osterix and ALP) and BMP-2/Smad signaling pathway components (BMP-2, BMPR-IA, p-BMPR-IA, BMPR-II, p-Smad1/5/8 and p-Smad1/5/8/4) were all decreased in AlCl 3 -treated OBs compared with the CG. These results indicated that inhibition of OB differentiation by AlCl 3 was associated with inhibition of BMP-2/Smad pathway component expression. Our findings provide a novel insight into the mechanism of AlCl 3 -induced bone disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [miRNA profile of the human dental pulp cells during odontoblast differentiation induced by BMP-2].

    Science.gov (United States)

    Bao, Li-Rong; Zhao, Wen-Qing; Lin, Tian; Lu, Yan-Ling; Wu, Yu

    2017-10-01

    To screen and verify the differentially expressed microRNAs (miRNAs) during the differentiation of human dental pulp cells (hDPCs) to odontoblasts induced by BMP-2. The isolated hDPCs were cultured in vitro and induced by BMP-2. The levels of ALP, DMP-1 and DSPP were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). The potential characteristics of hDPCs were investigated by miRNA microarray and highly expressed miRNAs were selected with bio-information software for predicting target genes and their biological functions. Then the results were validated using qRT-PCR analysis for the selected miRNAs. Statistical analysis was performed using SPSS 18.0 software package. The expression of ALP, DSPP, and DMP-1 showed significantly higher levels in BMP-2 induced groups compared to the control group(Pfunction(33%), while the function of other 0.2% genes remained unknown. This study identified differential expression of miRNAs in BMP-2-induced odontoblastic differentiation of hDPCs, thus contributing to further investigations of regulatory mechanisms and biological effect of target genes in BMP-2-induced odontoblastic differentiation of hDPCs.

  4. The local cytokine and growth factor response to rhBMP-2 after spinal fusion.

    Science.gov (United States)

    Koerner, John D; Markova, Dessislava Z; Schroeder, Greg D; Calio, Brian P; Shah, Anuj; Brooks, Corbin W; Vaccaro, Alexander R; Anderson, D Greg; Kepler, Chris K

    2018-03-14

    , TGF-β) that are known to be involved in the fusion/fracture healing process. Fusion was evaluated on the rats sacrificed at 28 days by manual palpation and microCT by two independent observers. The expression of cytokines and growth factors varied throughout the fusion process at each time point. In the groups treated with rh-BMP-2, IL-6 and IL-1RA had higher expression in the early time points (1 hour, 6 hours). TNF-α demonstrated significantly lower expression in the groups treated with rhBMP-2 at days 1, 2 and 4. At the early time points (1 hour, 6 hours), in the groups treated with rhBMP-2, all of the growth factors IGF-1, VEGF, PDGF-AB, TGF-B had equal or lower expression compared to controls. At 24 hours there was a peak in IGF-1, VEGF, and PDGF-AB. These growth factors then declined, with IGF-1 and PDGF-AB having a second peak at day 7. At 4 weeks, all of the rhBMP-2 treated animals fused based on manual palpation and microCT. The control group had 4/5 fused based on manual palpation and 2/5 based on microCT. There is significant variability in the expression of cytokines throughout the fusion process after treatment with rhBMP-2. The inflammatory response appears to peak early (1 and 6 hours) followed by a significant decrease with rhBMP-2 treatment. However, the growth factor expression appears to be suppressed early (1 and 6 hours), followed by a peak at 24 hours, and a second peak at day 7. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Calcium phosphate implants coatings as carriers for BMP-2

    NARCIS (Netherlands)

    Liu, Y.; He, J.F.; Hunziker, E.B.

    2009-01-01

    The osteoconductivity of dental implants can be improved by coating them with a layer of calcium phosphate (CaP), which can be rendered osteoinductive by functionalizing it with an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2). In the present study, we wished to compare the

  6. Osseointegration: the slow delivery of BMP-2 enhances osteoinductivity

    NARCIS (Netherlands)

    Hunziker, E.B.; Enggist, L.; Küffer, A.; Buser, D.; Liu, Y.

    2012-01-01

    Although the placement of dental and orthopedic implants is now generally a safe, reliable and successful undertaking, the functional outcome is less assured in patients whose bone-healing capacity is compromised. To enhance peri-implant osteogenesis in these individuals, BMP-2 could be locally

  7. The Effects of rhBMP-2 Released from Biodegradable Polyurethane/Microsphere Composite Scaffolds on New Bone Formation in Rat Femora

    Science.gov (United States)

    2009-09-17

    microencapsulated in PLGA-L microspheres, and (C) BSA– FITC microencapsulated in PLGA-S microspheres. Table 3 Physical and mechanical properties of PUR...release of 36% was observed on day 1, followed by a period of sustained release until day 21. As anticipated, microencapsulation of rhBMP-2 in PLGA-L...bioactivity of unprotected growth factors (e.g., by microencapsulation ) [32]. However, the bioactivity of the rhBMP-2 powder was preserved, as

  8. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu [College of Science, Sichuan Agricultural University, Ya' an 625014 (China); He, Hua [Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Sichuan 611130 (China); Rao, Hanbing, E-mail: rhbscu@gmail.com [College of Science, Sichuan Agricultural University, Ya' an 625014 (China)

    2015-07-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g{sup −1}, respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the

  9. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    International Nuclear Information System (INIS)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g −1 , respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the BMP-2

  10. Alphavbeta integrins play an essential role in BMP-2 induction of osteoblast differentiation.

    Science.gov (United States)

    Lai, Chung-Fang; Cheng, Su-Li

    2005-02-01

    Both integrins and BMP-2 exert similar effects on osteoblasts. We examined the relationship between the alphav-containing integrins (alphavbeta) and BMP-2 in osteoblast function. BMP-2 stimulates alphavbeta expression. BMP-2 receptors co-localize/overlap with alphavbeta integrins, and the intact function of alphavbeta is essential in BMP-2 activity. Bone morphogenetic protein (BMP)-2 not only induces osteoblast differentiation and bone matrix mineralization, but also stimulates osteoblast migration on and adhesion to bone matrix proteins. The alphavbeta- and beta1- (alphabeta1) containing integrins mediate osteoblast interaction with many bone matrix proteins and play important roles in osteoblast adhesion, migration, and differentiation. Because alphavbeta integrins and BMP-2 share common effects on osteoblasts, we analyzed their relationship in osteoblast function. The effects of BMP-2 on integrin expression were determined by surface labeling/immunoprecipitation and cell adhesion to matrix proteins. Confocal analysis of the immunostained cells and co-immunoprecipitation of cell extracts were used to study the spatial relationship between integrins and BMP-2 receptors. A function-blocking anti-alphavbeta integrin antibody (L230) was employed to investigate the roles of alphavbeta integrins in BMP-2 function. Human osteoblasts (HOBs) express alphabeta1, alphavbeta3, alphavbeta5, alphavbeta6, and alphavbeta8 integrins at focal adhesion sites. BMP-2 increases the levels of these integrins on osteoblast surface and enhances HOB adhesion to osteopontin and vitronectin. Immunoprecipitation and immunostaining analyses show that BMP-2 receptors co-localize or overlap with alphavbeta and alphabeta1 integrins. Incubation of HOBs with L230 abolishes the antiproliferative effect of BMP-2 and reduces the capacity of BMP-2 to stimulate alkaline phosphatase activity and the expression of osteocalcin, osteopontin, and bone sialoprotein. Furthermore, L230 prevents BMP-2 induction

  11. Biological activity of a genetically modified BMP-2 variant with inhibitory activity

    Directory of Open Access Journals (Sweden)

    Kübler Alexander C

    2009-02-01

    Full Text Available Abstract Background Alterations of the binding epitopes of bone morphogenetic protein-2 (BMP-2 lead to a modified interaction with the ectodomains of BMP receptors. In the present study the biological effect of a BMP-2 double mutant with antagonistic activity was evaluated in vivo. Methods Equine-derived collagenous carriers were loaded with recombinant human BMP-2 (rhBMP-2 in a well-known dose to provide an osteoinductive stimulus. The study was performed in a split animal design: carriers only coupled with rhBMP-2 (control were implanted into prepared cavities of lower limb muscle of rats, specimens coupled with rhBMP-2 as well as BMP-2 double mutant were placed into the opposite limb in the same way. After 28 days the carriers were explanted, measured radiographically and characterized histologically. Results As expected, the BMP-2 loaded implants showed a typical heterotopic bone formation. The specimens coupled with both proteins showed a significant decreased bone formation in a dose dependent manner. Conclusion The antagonistic effect of a specific BMP-2 double mutant could be demonstrated in vivo. The dose dependent influence on heterotopic bone formation by preventing rhBMP-2 induced osteoinduction suggests a competitive receptor antagonism.

  12. BMP-2 promotes oral squamous carcinoma cell invasion by inducing CCL5 release.

    Directory of Open Access Journals (Sweden)

    Mi-joo Kim

    Full Text Available Bone morphogenetic protein-2 (BMP-2-containing bone grafts are useful regenerative materials for oral and maxillofacial surgery; however, several in vitro and in vivo studies previously reported cancer progression-related adverse effects caused by BMP-2. In this study, by quantifying the rhBMP-2 content released from bone grafts, the rhBMP-2 concentration that did not show cytotoxicity in each cell line was determined and applied to the in vitro monoculture or coculture model in the invasion assay. Our results showed that 1 ng/ml rhBMP-2, while not affecting cancer cell viability, significantly increased the invasion ability of the cancer cells cocultured with fibroblasts. Cocultured medium with rhBMP-2 also contained increased levels of matrix metalloproteinases. rhBMP-2-treated cocultured fibroblasts did not show a prominent difference in mRNA expression profile. Some cytokines, however, were detected in the conditioned medium by a human cytokine antibody array. Among them, the cancer invasion-related factor CCL5 was quantified by ELISA. Interestingly, CCL5 neutralizing antibodies significantly reduced the invasion of oral cancer cells. In conclusion, our results suggest that 1 ng/ml rhBMP-2 may induce invasion of oral squamous cell carcinoma (OSCC cells by CCL5 release in coculture models. Therefore, we propose that a careful clinical examination before the use of rhBMP-2-containing biomaterials is indispensable for using rhBMP-2 treatment to prevent cancer progression.

  13. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2

    International Nuclear Information System (INIS)

    Li Huiwu; Dai Kerong; Tang Tingting; Zhang Xiaoling; Yan Mengning; Lou Jueren

    2007-01-01

    In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a β-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified by BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals

  14. Osteoinduction by combining bone morphogenetic protein (BMP)-2 with a bioactive novel nanocomposite.

    Science.gov (United States)

    Sharma, A; Meyer, F; Hyvonen, M; Best, S M; Cameron, R E; Rushton, N

    2012-07-01

    There is increasing application of bone morphogenetic proteins (BMPs) owing to their role in promoting fracture healing and bone fusion. However, an optimal delivery system has yet to be identified. The aims of this study were to synthesise bioactive BMP-2, combine it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide) (α-TCP/PLGA) nanocomposite and study its release from the composite. BMP-2 was synthesised using an Escherichia coli expression system and purified. In vitro bioactivity was confirmed using C2C12 cells and an alkaline phosphatase assay. The modified solution-evaporation method was used to fabricate α-TCP/PLGA nanocomposite and this was characterised using X-ray diffraction and scanning electron microscopy. Functionalisation of α-TCP/PLGA nanocomposite by adsorption of BMP-2 was performed and release of BMP-2 was characterised using an enzyme-linked immunosorbent assay (ELISA). Alkaline phosphatase activity of C2C12 cells was increased by the presence of all BMP-2/nanocomposite discs compared with the presence of a blank disc (p = 0.0022), and increased with increasing incubation concentrations of BMP-2, showing successful adsorption and bioactivity of BMP-2. A burst release profile was observed for BMP-2 from the nanocomposite. Functionalisation of α-TCP/PLGA with BMP-2 produced osteoinduction and was dose-dependent. This material therefore has potential application as an osteoinductive agent in regenerative medicine.

  15. BMP-2 induces versican and hyaluronan that contribute to post-EMT AV cushion cell migration.

    Science.gov (United States)

    Inai, Kei; Burnside, Jessica L; Hoffman, Stanley; Toole, Bryan P; Sugi, Yukiko

    2013-01-01

    Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV) valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM) components, versican and hyaluronan (HA), and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH) stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC) aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions.

  16. Cell saver filtering of extravasated rhBMP-2 after degenerative scoliosis reconstruction

    Directory of Open Access Journals (Sweden)

    Gabriel Liu, MBBCh, MSc, FRCS, FAMS (Orth

    2015-06-01

    Full Text Available RhBMP-2 is a bone fusion enhancer commonly used in scoliosis reconstruction surgery. It is delivered via an absorbable collagen sponge but has been known to migrate away from its delivery site. RhBMP-2 extravasation in surgical drainage has been noted during first two days post-surgery. Cell savers are widely used in scoliosis reconstruction to limit transfusion requirements and are commonly deployed in cases where rhBMP-2 is used for fusion augmentation. It is not known whether rhBMP-2 is present in salvaged blood or filtered away during cell saver recycling. Through this case series of four patients who underwent scoliosis reconstruction, we assess cell saver efficacy in filtering rhBMP-2 molecules by quantifying the amount of rhBMP-2 present in salvaged blood obtained after postoperative drainage recycling by OrthoPAT® cell saver and comparing it to rhBMP-2 leakage in postoperative drainage without cell saver recycling. We report an almost 10-fold reduction of rhBMP-2 concentration in salvaged blood obtained after cell saver recycling of postoperative drainage, suggesting cell saver effectiveness in filtering rhBMP-2 molecules.

  17. BMP-2 induces versican and hyaluronan that contribute to post-EMT AV cushion cell migration.

    Directory of Open Access Journals (Sweden)

    Kei Inai

    Full Text Available Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM components, versican and hyaluronan (HA, and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions.

  18. L51P - A BMP2 variant with osteoinductive activity via inhibition of Noggin.

    Science.gov (United States)

    Albers, Christoph E; Hofstetter, Wilhelm; Sebald, Hans-Jörg; Sebald, Walter; Siebenrock, Klaus A; Klenke, Frank M

    2012-09-01

    Bone morphogenetic proteins (BMP) have to be applied at high concentrations to stimulate bone healing. The limited therapeutic efficacy may be due to the local presence of BMP antagonists such as Noggin. Thus, inhibiting BMP antagonists is an attractive therapeutic option. We hypothesized that the engineered BMP2 variant L51P stimulates osteoinduction by antagonizing Noggin-mediated inhibition of BMP2. Primary murine osteoblasts (OB) were treated with L51P, BMP2, and Noggin. OB proliferation and differentiation were quantified with XTT and alkaline phosphatase (ALP) assays. BMP receptor dependent intracellular signaling in OB was evaluated with Smad and p38 MAPK phosphorylation assays. BMP2, Noggin, BMP receptor Ia/Ib/II, osteocalcin, and ALP mRNA expressions were analyzed with real-time PCR. L51P stimulated OB differentiation by blocking Noggin mediated inhibition of BMP2. L51P did not induce OB differentiation directly and did not activate BMP receptor dependent intracellular signaling via the Smad pathway. Treatment of OB cultures with BMP2 but not with L51P resulted in an increased expression of ALP, BMP2, and Noggin mRNA. By inhibiting the BMP antagonist Noggin, L51P enhances BMP2 activity and stimulates osteoinduction without exhibiting direct osteoinductive function. Indirect osteoinduction with L51P seems to be advantageous to osteoinduction with BMP2 as BMP2 stimulates the expression of Noggin thereby self-limiting its own osteoinductive activity. Treatment with L51P is the first protein-based approach available to augment BMP2 induced bone regeneration through inhibition of BMP antagonists. The described strategy may help to decrease the amounts of exogenous BMPs currently required to stimulate bone healing. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. BMP-2 signaling in ovarian cancer and its association with poor prognosis

    Directory of Open Access Journals (Sweden)

    Le Page Cécile

    2009-04-01

    Full Text Available Abstract Background We previously observed the over-expression of BMP-2 in primary cultures of epithelial ovarian cancer (EOC cells as compared to normal epithelial cells based on Affymetrix microarray profiling 1. Here we investigate the effect of BMP-2 on several parameters of ovarian cancer tumorigenesis using the TOV-2223, TOV-1946 and TOV-112D EOC cell lines. Methods We treated each EOC cell line with recombinant BMP-2 and assayed various parameters associated with tumorigenesis. More specifically, cell signaling events induced by BMP-2 treatment were investigated by western-blot using anti-phosphospecific antibodies. Induction of Id1, Snail and Smad6 mRNA expression was investigated by real time RT-PCR. The ability of cells to migrate was tested using the scratch assay. Cell-cell adhesion was analyzed by the ability of cells to form spheroids. We also investigated BMP-2 expression in tissue samples from a series of EOC patients. Results Treatment of these cell lines with recombinant BMP-2 induced a rapid phosphorylation of Smad1/5/8 and Erk MAPKs. Increased expression of Id1, Smad6 and Snail mRNAs was also observed. Only in the TOV-2223 cell line were these signaling events accompanied by an alteration in cell proliferation. We also observed that BMP-2 efficiently increased the motility of all three cell lines. In contrast, BMP-2 treatment decreased the ability of TOV-1946 and TOV-112D cell lines to form spheroids indicating an inhibition of cell-cell adhesion. The expression of BMP-2 in tumor tissues from patients was inversely correlated with survival. Conclusion These results suggest that EOC cell secretion of BMP-2 in the tumor environment contributes to a modification of tumor cell behavior through a change in motility and adherence. We also show that BMP-2 expression in tumor tissues is associated with a poorer prognosis for ovarian cancer patients.

  20. Canine investigation of rhBMP-2, autogenous bone graft, and rhBMP-2 with autogenous bone graft for the healing of a large segmental tibial defect.

    Science.gov (United States)

    Boyce, Andrew S; Reveal, Greg; Scheid, D Kevin; Kaehr, David M; Maar, Dean; Watts, Melanie; Stone, Marcus B

    2009-01-01

    The purpose of this study was to compare the effects of bone morphogenetic protein, bone morphogenetic protein with autogenous bone graft (ABG), and ABG alone on the healing of a large bone defect in the canine tibia. Fifteen 45- to 55-lb canines were randomly assigned to 1 of 5 treatment groups, 3 per group. The groups included (1) recombinant human bone morphogenetic protein (rhBMP-2, 0.43 mg/mL)/absorbable collagen sponge (ACS) + collagen/ceramic matrix (CCM), (2) rhBMP-2 (0.22 mg/mL) ACS + CCM, (3) rhBMP-2 (0.43 mg/mL) ACS + ABG, (4) rhBMP-2 (0.22 mg/mL) ACS + ABG, and (5) ABG alone. A 5-mL defect was created in the right tibia and fixed with a 4.5 mm locking plate and 1 of the grafts described above implanted. X-rays were taken biweekly for 12 weeks and evaluated for radiographic union. Representative histology was also examined. All defects treated with rhBMP-2 (any combination) healed at 6.0 +/- 0.9 weeks. None of the ABG alone-treated defects were healed at 12 weeks. Dogs receiving rhBMP-2/ACS + CCM healed at 5.7 +/- 0.8 weeks, whereas rhBMP-2/ACS + ABG defects healed at 6.3 +/- 0.8 weeks. Histology showed healing consistent with 12-week radiologic results. Large segmental defects in canine tibiae can be effectively healed with stable fixation and rhBMP-2/ACS + ABG or CCM. These conclusions may offer insight into the clinical treatment of segmental defect nonunions in the human.

  1. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2

    DEFF Research Database (Denmark)

    Dathe, Katarina; Kjaer, Klaus W; Brehm, Anja

    2009-01-01

    Autosomal-dominant brachydactyly type A2 (BDA2), a limb malformation characterized by hypoplastic middle phalanges of the second and fifth fingers, has been shown to be due to mutations in the Bone morphogenetic protein receptor 1B (BMPR1B) or in its ligand Growth and differentiation factor 5 (GD...... within the identified duplication. Our results reveal an additional functional mechanism for the pathogenesis of BDA2, which is duplication of a regulatory element that affects the expression of BMP2 in the developing limb.......Autosomal-dominant brachydactyly type A2 (BDA2), a limb malformation characterized by hypoplastic middle phalanges of the second and fifth fingers, has been shown to be due to mutations in the Bone morphogenetic protein receptor 1B (BMPR1B) or in its ligand Growth and differentiation factor 5 (GDF5...... sequences suggestive of a long-range regulator. By using a transgenic mouse model we can show that this sequence is able to drive expression of a X-Gal reporter construct in the limbs. The almost complete overlap with endogenous Bmp2 expression indicates that a limb-specific enhancer of Bmp2 is located...

  2. Clathrin-independent endocytosis: mechanisms and function

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Pust, Sascha; Skotland, Tore

    2011-01-01

    having several functions of their own. This article aims at providing a brief update on the importance of clathrin-independent endocytic mechanisms, how the processes are regulated differentially, for instance on the poles of polarized cells, and the challenges in studying them.......It is now about 20 years since we first wrote reviews about clathrin-independent endocytosis. The challenge at the time was to convince the reader about its existence. Then the suggestion came up that caveolae might be responsible for the uptake. However, clearly this could not be the case since...... a large fraction of the clathrin-independent uptake is dynamin-independent. Today, two decades later, the field has developed considerably. New techniques have enabled a detailed analysis of several clathrin-independent endocytic mechanisms, and caveolae have been found to be mostly stable structures...

  3. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Li-An [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an (China); Yuan, Guohua; Yang, Guobin [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Key Laboratory of Oral Biomedical Engineering Ministry of Education, Wuhan (China); Ortiz-Gonzalez, Iris [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Yang, Wuchen; Cui, Yong [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); MacDougall, Mary [Department of Oral/Maxillofacial Surgery, University of Alabama, Birmingham, AL (United States); Donly, Kevin J. [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Harris, Stephen [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); Chen, Shuo, E-mail: chens0@uthscsa.edu [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States)

    2009-08-14

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  4. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    International Nuclear Information System (INIS)

    Wu, Li-An; Yuan, Guohua; Yang, Guobin; Ortiz-Gonzalez, Iris; Yang, Wuchen; Cui, Yong; MacDougall, Mary; Donly, Kevin J.; Harris, Stephen; Chen, Shuo

    2009-01-01

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  5. Construction of doxycycline-mediated BMP-2 transgene combining with APA microcapsules for bone repair.

    Science.gov (United States)

    Qian, Dongyang; Bai, Bo; Yan, Guangbin; Zhang, Shujiang; Liu, Qi; Chen, Yi; Tan, Xiaobo; Zeng, Yanjun

    2016-01-01

    The repairing of large segmental bone defects is difficult for clinical orthopedists at present. Gene therapy is regarded as a promising method for bone defects repair. The present study aimed to construct an effective and controllable Tet-On expression system for transferring hBMP-2 gene into bone marrow mesenchymal progenitor cells (BMSCs). Meanwhile, with combination of alginate-poly-L-lysine-alginate (APA) microencapsulation technology, we attempted to reduce the influence of immunologic rejection and examine the effect of the Tet-On expression system on osteogenesis of BMSCs. The adenovirus encoding hBMP-2 (ADV-hBMP2) was constructed using the means of molecular cloning. The ADV-hBMP2 and Adeno-X Tet-On virus was respectively transfected to the HEK293 for amplification and afterward BMSCs were co-infected with the virus of ADV-hBMP2 and the Adeno-X Tet-On. The expression of hBMP-2 was measured with induction by doxycycline (DOX) at different concentration by means of RT-PCR and ELISA. Combining Tet-On expression system and APA microcapsules with the use of the pulsed high-voltage electrostatic microcapsule instrument, we examined the expression level of hBMP-2 in APA microcapsules by ELISA as well as the osteogenesis by alizarin red S staining. An effective Tet-On expression system for transferring hBMP-2 gene into BMSCs was constructed successfully. Also, the expression of hBMP-2 could be regulated by concentration of DOX. The data exhibited that BMSCs in APA microcapsules maintained the capability of proliferation and differentiation. The combination of Tet-On expression system and APA microcapsules could promote the osteogenesis of BMSCs. According to the results, microencapsulated Tet-On expression system showed the effective characteristics of secreting hBMP-2 and enhancing osteogenesis, which would provide a promising way for bone repair.

  6. BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth.

    Science.gov (United States)

    Zhao, Xingyu; Han, Yu; Li, Jiawei; Cai, Bo; Gao, Hang; Feng, Wei; Li, Shuqiang; Liu, Jianguo; Li, Dongsong

    2017-09-01

    Combining biomaterials scaffolds with bone morphogenetic protein-2 (BMP-2) is currently used to promote the regeneration of bone tissue. However, the traditional strategies used to add BMP-2 into the polymer scaffolds directly suffer from limitations that can result in lower growth factor loading and damage the bioactivity of growth factors. In this study, we report the fabrication of poly(lactide-co-glycolide)/hydroxyapatite (PLGA/HA) composite fibrous scaffolds via melt-spinning method to mimic native extracellular matrix (ECM). In order to effectively immobilize BMP-2 on PLGA/HA composite fibrous scaffolds, the surface of the scaffold was modified with polydopamine (PDA) (PDA-PLGA/HA). PDA was chosen as an adhesive polymeric bridge-layer between PLGA/HA fibrous scaffolds and BMP-2. Analysis of the scaffold using scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscope revealed that the PDA coating was attached to the scaffold surface. Moreover, analysis of the scaffold using water contact angle demonstrated an increased hydrophilicity via PDA modification. Furthermore, the PDA coating effectively immobilized BMP-2 on the PDA-PLGA/HA fibrous scaffold and a sustained release profile of BMP-2 was achieved in the BMP-2-immobilized PLGA/HA fibrous scaffold. In vitro experiments showed that BMP-2-immobilized PLGA/HA fibrous scaffold significantly promoted the attachment and proliferation of MC3T3-E1 cells. More importantly, the ALP activity, mRNA expression of osteosis-related genes and calcium deposition in MC3T3-E1 cells cultured on BMP-2-immobilized PLGA/HA fibrous scaffold were significantly increased. These results collectively demonstrate that the BMP-2-immobilized PLGA/HA fibrous scaffold is a promising candidate for bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [Study on RhBMP-2 induced osteoporosis rat BMSCs in vitro osteogenesis and VEGF expression].

    Science.gov (United States)

    Li, Jun; Wang, Yun; Bao, Xiao-ming; Wei, Peng-bin; Zhang, Min

    2015-05-01

    To observe the impact of bone morphogenetic protein-2 (rhBMP-2) on bone marrow stromal cells (BMSCs) osteogenesis in vitro and vascular endothelial growth factors (VEGF) expression in bone osteoporotic to prevent and treat the osteoporosis. Twenty 6-month-old female SD rats weighted (300±20) g underwent bilateral ovariectomized. At 3 months after operation, dual-energy X-ray absorptiometry was used to measure bone mineral density of rats,the values were compared with preoperative to ensure the model successfully, and the osteoporosis rats' BMSCs were cultured by bone marrow adherent cultured and the BMSCs morphology was observed under a phase contrast microscope upside down. The osteoporosis rats' BMSCs at the 2nd generation (p2) were randomly divided into experimental and control groups and were added complete medium (containing rhBMP-2) and osteogenic induced liquid, respectively. Two weeks later, the formation of cell calcium nodules were detected by Alizarin red staining method,alkaline phosphatase activity was measured by enzyme standard instrument and the expression of VEGF was detected by RT-PCT method. (1)Whole body bone mineral density of rats before and after operation were (0.179±0.007), (0.158±0.006) g/cm2,there was statistically significant (t=4.180,Pinduced by BMSCs (P2) in the experimental group had more strong dyeing effect than the control group obviously. (3)Alkaline phosphatase activity at 2 weeks after osteogenesis induced by BMSCs (P2) of the experimental group (15.62±1.27) ug/gprot was significantly higher than that of the control group (8.62±0.93) ug/gprot,there was statistically significant (t=7.709, Pinduced by BMSCs (P2) of the experimental group 3.723±0.143 was significantly higher than that of the control group 0.950±0.072, there was statistically significant (t=29.462, Posteoporosis rat BMSCs, promote the VEGF expression of osteogenesis factor. Regulating the VEGF expression may be one of the mechanisms of BMP-2 to participate in

  8. Comparison of the osteogenesis and fusion rates between activin A/BMP-2 chimera (AB204) and rhBMP-2 in a beagle's posterolateral lumbar spine model.

    Science.gov (United States)

    Zheng, Guang Bin; Yoon, Byung-Hak; Lee, Jae Hyup

    2017-10-01

    Activin A/BMP-2 chimera (AB204) could promote bone healing more effectively than recombinant bone morphogenetic protein 2 (rhBMP-2) with much lower dose in a rodent model, but there is no report about the effectiveness of AB204 in a large animal model. The purpose of this study was to compare the osteogenesis and fusion rate between AB204 and rhBMP-2 using biphasic calcium phosphate (BCP) as a carrier in a beagle's posterolateral lumbar fusion model. This is a randomized control animal study. Seventeen male beagle dogs were included. Bilateral posterolateral fusion was performed at the L1-L2 and L4-L5 levels. Biphasic calcium phosphate (2 cc), rhBMP-2 (50 µg)+BCP (2 cc), or AB204 (50 µg)+BCP (2 cc) were implanted into the intertransverse space randomly. X-ray was performed at 4 and 8 weeks. After 8 weeks, the animals were sacrificed, and new bone formation and fusion rate were evaluated by manual palpation, computed tomography (CT), and undecalcified histology. The AB204 group showed significantly higher fusion rate (90%) than the rhBMP-2 group (15%) or the Osteon group (6.3%) by manual palpation. On x-ray and CT assessment, fusion rate and the volume of newly formed bone were also significantly higher in AB204 group than other groups. In contrast, more osteolysis was found in rhBMP-2 group (40%) than in AB204 group (10%) on CT study. In histologic results, new bone formation was sufficient between transverse processes in AB204 group, and obvious trabeculation and bone remodeling were observed. But in rhBMP-2 group, new bone formation was less than AB204 group and osteolysis was observed between the intertransverse spaces. A low dose of AB204 with BCP as a carrier significantly promotes the fusion rate in a large animal model when compared with the rhBMP-2. These findings demonstrate that AB204 could be an alternative to rhBMP-2 to improve fusion rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Hyaluronic Acid Promotes the Osteogenesis of BMP-2 in an Absorbable Collagen Sponge

    Directory of Open Access Journals (Sweden)

    Hairong Huang

    2017-08-01

    Full Text Available (1 Background: We tested the hypothesis that hyaluronic acid (HA can significantly promote the osteogenic potential of BMP-2/ACS (absorbable collagen sponge, an efficacious product to heal large oral bone defects, thereby allowing its use at lower dosages and, thus, reducing its side-effects due to the unphysiologically-high doses of BMP-2; (2 Methods: In a subcutaneous bone induction model in rats, we first sorted out the optimal HA-polymer size and concentration with micro CT. Thereafter, we histomorphometrically quantified the effect of HA on new bone formation, total construct volume, and densities of blood vessels and macrophages in ACS with 5, 10, and 20 μg of BMP-2; (3 Results: The screening experiments revealed that the 100 µg/mL HA polymer of 48 kDa molecular weight could yield the highest new bone formation. Eighteen days post-surgery, HA could significantly enhance the total volume of newly-formed bone by approximately 100%, and also the total construct volume in the 10 μg BMP-2 group. HA could also significantly enhance the numerical area density of blood vessels in 5 μg BMP-2 and 10 μg BMP-2 groups. HA did not influence the numerical density of macrophages; and (4 Conclusions: An optimal combined administration of HA could significantly promote osteogenic and angiogenic activity of BMP-2/ACS, thus potentially minimizing its potential side-effects.

  10. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects.

    Science.gov (United States)

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.

  11. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects

    Science.gov (United States)

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m2/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration. PMID:25609957

  12. Effect of Dual Treatment with SDF-1 and BMP-2 on Ectopic and Orthotopic Bone Formation

    Science.gov (United States)

    Jung, Hong-Moon; Lee, Jung-Tae; Kwon, Tae-Geon

    2015-01-01

    Purposes The potent stem cell homing factor stromal cell-derived factor-1 (SDF-1) actively recruits mesenchymal stem cells from circulation and from local bone marrow. It is well established that bone morphogenetic protein-2 (BMP-2) induces ectopic and orthotopic bone formation. However, the exact synergistic effects of BMP-2 and SDF-1 in ectopic and orthotopic bone regeneration models have not been fully investigated. The purpose of this study was to evaluate the potential effects of simultaneous SDF-1 and BMP-2 treatment on bone formation. Materials and Methods Various doses of SDF-1 were loaded onto collagen sponges with or without BMP-2.These sponges were implanted into subcutaneous pockets and critical-size calvarial defects in C57BL/6 mice. The specimens were harvested 4 weeks post-surgery and the degree of bone formation in specimens was evaluated by histomorphometric and radiographic density analyses. Osteogenic potential and migration capacity of mesenchymal cells and capillary tube formation of endothelial cells following dual treatment with SDF-1 and BMP-2 were evaluated with in vitro assays. Results SDF-1-only-treated implants did not yield significant in vivo bone formation and SDF-1 treatment did not enhance BMP-2-induced ectopic and orthotopic bone regeneration. In vitro experiments showed that concomitant use of BMP-2 and SDF-1 had no additive effect on osteoblastic differentiation, cell migration or angiogenesis compared to BMP-2 or SDF-1 treatment alone. Conclusions These findings imply that sequence-controlled application of SDF-1 and BMP-2 must be further investigated for the enhancement of robust osteogenesis in bone defects. PMID:25781922

  13. Heterotopic ossification related to the use of recombinant human BMP-2 in osteonecrosis of femoral head.

    Science.gov (United States)

    Shi, Lijun; Sun, Wei; Gao, Fuqiang; Cheng, Liming; Li, Zirong

    2017-07-01

    Despite the wide use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in bone defect, its application in treating osteonecrosis of femoral head (ONFH) is yet to be elucidated. The heterotopic ossification (HO) after rhBMP-2 usage in some orthopedic surgeries has been reported previously; however, only a few studies describe this complication in the treatment of ONFH.The present study investigated whether the rhBMP-2 application would increase the risk of HO formation in selected ONFH patients with nonvascularized bone grafting surgery and enhance the surgical results of nonvascularized bone grafting as compared to patients who did not receive intraoperative rhBMP-2.A retrospective analysis was performed on 94 patients (141 hips) who, with Association Research Circulation Osseous (ARCO) stages IIb, IIc, and IIIa ONFH, underwent nonvascularized bone grafting surgery. The first 46 patients (66 hips) received intraoperative rhBMP-2. The postoperative radiographic results (X-ray and CT scan) and Harris hip score (HHS) were reviewed in each patient to record the incidence of HO formation and evaluate the clinical efficacy of rhBMP-2, respectively.HO formation frequently occurred in patients receiving intraoperative rhBMP-2 (8/66 hips) than those not receiving the protein (1/75 hips) (P = .02). HHS improved from preoperatively at the final follow-up (P < .01) in the BMP-positive group, with a survival rate of 83.3%. In the BMP-negative group, the HHS improved from preoperatively at the end of the follow-up (P < .01), and the survival rate was 72.0%.rhBMP-2 has osteoinductive property and might serve as an adjuvant therapy in the surgical treatment of ONFH. However, the incidence of HO formation might increase when used in high doses.

  14. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats.

    Directory of Open Access Journals (Sweden)

    Michelle T Poldervaart

    Full Text Available The design of bioactive three-dimensional (3D scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2 influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo.

  15. Off-label use of rhBMP-2 as bone regeneration strategies in mandibular ameloblastoma unicystic.

    Science.gov (United States)

    Silva, Henrique Celestino Lima E; Cheim, Adonai Peixoto; Moreno, Roberto; Miranda, Sérgio Luis de

    2017-01-01

    Jawbone reconstruction after tumor resection is one of the most challenging clinical tasks for maxillofacial surgeons. Osteogenic, osteoinductive, osteoconductive and non-antigenic properties of autogenous bone place this bone as the gold standard for solving problems of bone availability. However, the need for a second surgical site to harvest the bone graft increases significantly both the cost and the morbidity associated with the reconstructive procedures. Bone grafting gained an important tool with the discovery of bone morphogenetic proteins in 1960. Benefit of obtaining functional and real bone matrix without need of second surgical site seems to be the great advantage of use bone morphogenetic proteins. This study analyzed the use of rhBMP-2 in unicystic ameloblastoma of the mandible, detailing its structure, mechanisms of cell signaling and biological efficacy, in addition to present possible advantages and disadvantages of clinical use of rhBMP-2 as bone regeneration strategy. RESUMO A reconstrução óssea dos maxilares após ressecções tumorais é uma das tarefas mais difíceis para o cirurgião maxilofacial. As propriedades osteogênicas, osteoindutoras, osteocondutoras e não antigênicas do osso autógeno o colocam como o padrão-ouro para a solução de problemas de disponibilidade óssea. Entretanto a coleta do enxerto ósseo necessita de um segundo sítio cirúrgico, aumentando significativamente o custo e a morbidade associados ao procedimento reconstrutivo. A enxertia óssea ganhou uma excelente ferramenta com a descoberta das proteínas ósseas morfogenéticas na década de 1960. O benefício da obtenção de matriz óssea verdadeira e funcional, sem a necessidade de um segundo sítio cirúrgico, parece ser a grande vantagem do uso das proteínas ósseas morfogenéticas. Neste contexto, o objetivo deste estudo foi analisar a utilização da rhBMP-2 na regeneração óssea de ameloblastoma mandibular unicístico, detalhando sua estrutura, seus

  16. Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network.

    Directory of Open Access Journals (Sweden)

    Anca Chiriac

    Full Text Available BACKGROUND: Pluripotent stem cells produce tissue-specific lineages through programmed acquisition of sequential gene expression patterns that function as a blueprint for organ formation. As embryonic stem cells respond concomitantly to diverse signaling pathways during differentiation, extraction of a pro-cardiogenic network would offer a roadmap to streamline cardiac progenitor output. METHODS AND RESULTS: To resolve gene ontology priorities within precursor transcriptomes, cardiogenic subpopulations were here generated according to either growth factor guidance or stage-specific biomarker sorting. Innate expression profiles were independently delineated through unbiased systems biology mapping, and cross-referenced to filter transcriptional noise unmasking a conserved progenitor motif (55 up- and 233 down-regulated genes. The streamlined pool of 288 genes organized into a core biological network that prioritized the "Cardiovascular Development" function. Recursive in silico deconvolution of the cardiogenic neighborhood and associated canonical signaling pathways identified a combination of integrated axes, CXCR4/SDF-1, Flk-1/VEGF and BMP2r/BMP2, predicted to synchronize cardiac specification. In vitro targeting of the resolved triad in embryoid bodies accelerated expression of Nkx2.5, Mef2C and cardiac-MHC, enhanced beating activity, and augmented cardiogenic yield. CONCLUSIONS: Transcriptome-wide dissection of a conserved progenitor profile thus revealed functional highways that coordinate cardiogenic maturation from a pluripotent ground state. Validating the bioinformatics algorithm established a strategy to rationally modulate cell fate, and optimize stem cell-derived cardiogenesis.

  17. Binding Interactions of Keratin-Based Hair Fiber Extract to Gold, Keratin, and BMP-2.

    Directory of Open Access Journals (Sweden)

    Roche C de Guzman

    Full Text Available Hair-derived keratin biomaterials composed mostly of reduced keratin proteins (kerateines have demonstrated their utility as carriers of biologics and drugs for tissue engineering. Electrostatic forces between negatively-charged keratins and biologic macromolecules allow for effective drug retention; attraction to positively-charged growth factors like bone morphogenetic protein 2 (BMP-2 has been used as a strategy for osteoinduction. In this study, the intermolecular surface and bulk interaction properties of kerateines were investigated. Thiol-rich kerateines were chemisorbed onto gold substrates to form an irreversible 2-nm rigid layer for surface plasmon resonance analysis. Kerateine-to-kerateine cohesion was observed in pH-neutral water with an equilibrium dissociation constant (KD of 1.8 × 10(-4 M, indicating that non-coulombic attractive forces (i.e. hydrophobic and van der Waals were at work. The association of BMP-2 to kerateine was found to be greater (KD = 1.1 × 10(-7 M, within the range of specific binding. Addition of salts (phosphate-buffered saline; PBS shortened the Debye length or the electrostatic field influence which weakened the kerateine-BMP-2 binding (KD = 3.2 × 10(-5 M. BMP-2 in bulk kerateine gels provided a limited release in PBS (~ 10% dissociation in 4 weeks, suggesting that electrostatic intermolecular attraction was significant to retain BMP-2 within the keratin matrix. Complete dissociation between kerateine and BMP-2 occurred when the PBS pH was lowered (to 4.5, below the keratin isoelectric point of 5.3. This phenomenon can be attributed to the protonation of keratin at a lower pH, leading to positive-positive repulsion. Therefore, the dynamics of kerateine-BMP-2 binding is highly dependent on pH and salt concentration, as well as on BMP-2 solubility at different pH and molarity. The study findings may contribute to our understanding of the release kinetics of drugs from keratin biomaterials and allow for the

  18. The Acute Inflammatory Response to Absorbed Collagen Sponge Is Not Enhanced by BMP-2

    Directory of Open Access Journals (Sweden)

    Hairong Huang

    2017-02-01

    Full Text Available Absorbed collagen sponge (ACS/bone morphogenetic protein-2 (BMP-2 are widely used in clinical practise for bone regeneration. However, the application of this product was found to be associated with a significant pro-inflammatory response, particularly in the early phase after implantation. This study aimed to clarify if the pro-inflammatory activities, associated with BMP-2 added to ACS, were related to the physical state of the carrier itself, i.e., a wet or a highly dehydrated state of the ACS, to the local degree of vascularisation and/or to local biomechanical factors. ACS (0.8 cm diameter/BMP-2 were implanted subcutaneously in the back of 12 eight-week-old Sprague Dawley rats. Two days after surgery, the implanted materials were retrieved and analysed histologically and histomorphometrically. The acute inflammatory response following implantation of ACS was dependent of neither the presence or absence of BMP-2 nor the degree of vascularization in the surrounding tissue nor the hydration state (wet versus dry of the ACS material at the time of implantation. Differential micro biomechanical factors operating at the implantation site appeared to have an influence on the thickness of inflammation. We conclude that the degree of the early inflammatory response of the ACS/BMP-2 may be associated with the physical and chemical properties of the carrier material itself.

  19. Preconditioning Human Mesenchymal Stem Cells with a Low Concentration of BMP2 Stimulates Proliferation and Osteogenic Differentiation In Vitro

    DEFF Research Database (Denmark)

    Lysdahl, Helle; Baatrup, Anette; Foldager, Casper Bindzus

    2014-01-01

    treatment strategy in which human bone marrow-derived mesenchymal stem cells (hMSCs) are preconditioned with low concentrations of BMP2 for a short time in vitro. hMSCs in suspension were stimulated for 15 min with 10 and 20 ng/mL of BMP2. After the BMP2 was removed, the cells were seeded and cultured......MSCs. This implies that preconditioning with BMP2 might be more effective at inducing proliferation and osteogenic differentiation of hMSCs than continuous stimulation. Preconditioning with BMP2 could benefit the clinical application of BMP2 since side effects from high-dose treatments could be avoided....

  20. Platelet-released supernatant induces osteoblastic differentiation of human mesenchymal stem cells: potential role of BMP-2

    Directory of Open Access Journals (Sweden)

    M Alini

    2010-12-01

    Full Text Available Platelet-rich preparations have recently gained popularity in maxillofacial and dental surgery, but their beneficial effect is still under debate. Furthermore, very little is known about the effect of platelet preparations at the cellular level, and the underlying mechanisms. In this study, we tested the effect of platelet-released supernatant (PRS on human mesenchymal stem cell (MSC differentiation towards an osteoblastic phenotype in vitro. Cultures of MSC were supplemented with PRS and typical osteoblastic markers were assessed at up to 28 days post-confluence. PRS showed an osteoinductive effect on MSC, as shown by an increased expression of typical osteoblastic marker genes such as collagen Ialpha1, bone sialoprotein II, BMP-2 and MMP-13, as well as by increased 45Ca2+ incorporation. Our results suggest that the effect of PRS on human MSC could be at least partially mediated by BMP-2.Activated autologous PRS could therefore provide an alternative to agents like recombinant bone growth factors by increasing osteoblastic differentiation of bone precursor cells at bone repair sites, although further studies are needed to fully support our observations.

  1. Bone formation around zirconia implants combined with rhBMP-2 gel in the canine mandible.

    Science.gov (United States)

    Lee, Byung-Chul; Yeo, In-Sung; Kim, Dae-Joon; Lee, Jai-Bong; Kim, Sung-Hun; Han, Jung-Suk

    2013-12-01

    The aim of this study was to estimate the effects of zirconia implants and recombinant human bone morphogenetic protein-2 (rhBMP-2) gel on the acceleration of local bone formation and osseointegration in the canine mandible. Four groups of 48 implants with identical geometry were installed in the mandibles of beagle dogs: alumina-blasted zirconia implants applied with rhBMP-2, alumina-blasted zirconia implants applied with demineralized bone matrix (DBM), alumina-blasted zirconia implants, and resorbable blast media-treated titanium (Ti) implants. For the first two groups, zirconia implants were inserted after the surgical sites were filled with rhBMP-2 or DBM gel. For the other two groups, zirconia or Ti implants were installed with no adjunctive treatment. Fluorescent bone markers were administered to monitor bone remodeling at weeks 2, 4, and 5 postimplantation. After healing periods of 3 weeks and 6 weeks, the animals were sacrificed, and fluorescent microscopy, histology, and histomorphometric analyses were performed. Fluorescent microscopy showed that bone formation around the zirconia implants installed with rhBMP-2 gel was the most prominent at 2 weeks postimplantation, while the Ti implants acquired bone apposition mainly at week 5. No significant differences were found in bone area among the groups (P > 0.05). The zirconia implants showed similar bone-to-implant contact to the Ti implants. There were no significant differences in bone-to-implant contact between the zirconia implants with rhBMP-2 gel and those with DBM (P > 0.05). The zirconia implants with alumina-blasted surfaces may achieve osseointegration in much the same manner as the well-established Ti implants. The area influenced by rhBMP-2 gel, including the alveolar crest, may cause active remodeling and early bone formation. © 2012 John Wiley & Sons A/S.

  2. In vitro study on the osteogenesis enhancement effect of BMP-2 incorporated biomimetic apatite coating on titanium surfaces.

    Science.gov (United States)

    Zhu, Xiaojing; Zhang, Hui; Zhang, Xinchun; Ning, Chengyun; Wang, Yan

    2017-09-26

    To fabricate a sustained-release delivery system of bone morphogenetic protein (BMP-2) on titanium surface, explore the effect of BMP-2 concentration on the loading/release behavior of BMP-2 and evaluate the cell compatibility of the system in vitro, pure titanium specimens were immersed into supersaturated calcium phosphate solutions (SCP) containing 4 different concentrations of BMP-2: 0, 50, 100, 200 and 400 ng/mL. Biomimetic calcium phosphate coating was formed on titanium surface and BMP-2 was incorporated into the coating through co-deposition. The release profile of BMP-2 suggested that BMP-2 were delivered sustainably up to 20 days. CCK-8 and ALP assay showed that 200 group and 400 ng/mL BMP-2 group have significant effect on promoting MC3T3-E1 cell proliferation and differentiation. The BMP-2 incorporated into the hybrid coating released in a sustained manner and significantly promoted the proliferation and differentiation of MC3T3-E1 on the titanium surface.

  3. Expression of BMP-2 in Vascular Endothelial Cells of Recipient May Predict Delayed Graft Function After Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Nikolina Basic-Jukic

    2016-11-01

    Full Text Available Background/Aims: Delayed graft function (DGF is associated with adverse outcomes after renal transplantation. Bone morphogenetic protein-2 (BMP-2 is involved in both endothelial function and immunological events. We compared expression of BMP-2 in epigastric artery of renal transplant recipients with immediate graft function (IGF and DGF. Methods: 79 patients were included in this prospective study. Patients were divided in IGF group (64 patients and DGF group (15 patients. BMP-2 expression in intima media (BMP2m and endothelium (BMP2e of epigastric artery was assessed by immunohistochemistry. Results: Lower intensity of BMP2e staining was recorded in DGF compared to IGF. In DGF patients, 93% had no expression of BMP2e and 7% had 1st grade expression, compared to 45% and 41% in IGF group, respectively (P=0.001 (Pst grade expression. Patients who had BMP2e staining positive had lower odds for DGF (OR 0.059 [0.007, 0.477] and this remained significant even after adjustment for donor and recipient variables, cold ischemia time, and immunological matching (OR 0.038 [0.003, 0.492]. Conclusions: Our results demonstrate that BMP-2 expression in endothelial cells of epigastric arteries may predict development of DGF.

  4. Expression of BMP-2 in Vascular Endothelial Cells of Recipient May Predict Delayed Graft Function After Renal Transplantation.

    Science.gov (United States)

    Basic-Jukic, Nikolina; Gulin, Marijana; Hudolin, Tvrtko; Kastelan, Zeljko; Katalinic, Lea; Coric, Marijana; Veda, Marija Varnai; Ivkovic, Vanja; Kes, Petar; Jelakovic, Bojan

    2016-01-01

    Delayed graft function (DGF) is associated with adverse outcomes after renal transplantation. Bone morphogenetic protein-2 (BMP-2) is involved in both endothelial function and immunological events. We compared expression of BMP-2 in epigastric artery of renal transplant recipients with immediate graft function (IGF) and DGF. 79 patients were included in this prospective study. Patients were divided in IGF group (64 patients) and DGF group (15 patients). BMP-2 expression in intima media (BMP2m) and endothelium (BMP2e) of epigastric artery was assessed by immunohistochemistry. Lower intensity of BMP2e staining was recorded in DGF compared to IGF. In DGF patients, 93% had no expression of BMP2e and 7% had 1st grade expression, compared to 45% and 41% in IGF group, respectively (P=0.001) (P<0.001 for no expression and P = 0.015 for 1st grade expression). Patients who had BMP2e staining positive had lower odds for DGF (OR 0.059 [0.007, 0.477]) and this remained significant even after adjustment for donor and recipient variables, cold ischemia time, and immunological matching (OR 0.038 [0.003, 0.492]). Our results demonstrate that BMP-2 expression in endothelial cells of epigastric arteries may predict development of DGF. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis

    Directory of Open Access Journals (Sweden)

    DeCarlo Arthur A

    2012-09-01

    Full Text Available Abstract Background Many growth factors, such as bone morphogenetic protein (BMP-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS glycosaminoglycans (GAGs, which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS, regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1 expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™. Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid

  6. Unveiling novel genes upregulated by both rhBMP2 and rhBMP7 during early osteoblastic transdifferentiation of C2C12 cells

    Directory of Open Access Journals (Sweden)

    Sogayar Mari C

    2011-09-01

    Full Text Available Abstract Findings We set out to analyse the gene expression profile of pre-osteoblastic C2C12 cells during osteodifferentiation induced by both rhBMP2 and rhBMP7 using DNA microarrays. Induced and repressed genes were intercepted, resulting in 1,318 induced genes and 704 repressed genes by both rhBMP2 and rhBMP7. We selected and validated, by RT-qPCR, 24 genes which were upregulated by rhBMP2 and rhBMP7; of these, 13 are related to transcription (Runx2, Dlx1, Dlx2, Dlx5, Id1, Id2, Id3, Fkhr1, Osx, Hoxc8, Glis1, Glis3 and Cfdp1, four are associated with cell signalling pathways (Lrp6, Dvl1, Ecsit and PKCδ and seven are associated with the extracellular matrix (Ltbp2, Grn, Postn, Plod1, BMP1, Htra1 and IGFBP-rP10. The novel identified genes include: Hoxc8, Glis1, Glis3, Ecsit, PKCδ, LrP6, Dvl1, Grn, BMP1, Ltbp2, Plod1, Htra1 and IGFBP-rP10. Background BMPs (bone morphogenetic proteins are members of the TGFβ (transforming growth factor-β super-family of proteins, which regulate growth and differentiation of different cell types in various tissues, and play a critical role in the differentiation of mesenchymal cells into osteoblasts. In particular, rhBMP2 and rhBMP7 promote osteoinduction in vitro and in vivo, and both proteins are therapeutically applied in orthopaedics and dentistry. Conclusion Using DNA microarrays and RT-qPCR, we identified both previously known and novel genes which are upregulated by rhBMP2 and rhBMP7 during the onset of osteoblastic transdifferentiation of pre-myoblastic C2C12 cells. Subsequent studies of these genes in C2C12 and mesenchymal or pre-osteoblastic cells should reveal more details about their role during this type of cellular differentiation induced by BMP2 or BMP7. These studies are relevant to better understanding the molecular mechanisms underlying osteoblastic differentiation and bone repair.

  7. Addition of a Synthetically Fabricated Osteoinductive Biphasic Calcium Phosphate Bone Graft to BMP2 Improves New Bone Formation.

    Science.gov (United States)

    Zhang, Yufeng; Yang, Shuang; Zhou, Wei; Fu, Hang; Qian, Li; Miron, Richard J

    2016-12-01

    Bone morphogenetic protein-2 (BMP2) has been successfully utilized in dentistry to promote new bone formation because of its osteoinductive ability to recruit mesenchymal progenitor cells and induce their differentiation to bone-forming osteoblasts. Recently, novel biphasic calcium phosphate scaffolds have been developed with similar osteoinductive properties capable of forming ectopic bone formation. The aim of the present study was to assess whether the combination of BMP2 with this novel Biphasic Calcium Phosphate (BCP) scaffold may additionally promote new bone regeneration. Cylindrical bone defects measuring 2.5 mm were created bilaterally in the femurs of 18 Wistar rats. After 4 weeks, the following six groups were assessed for new bone formation by micro-computed tomography (CT) as well as histological assessment: 1) collagen scaffolds + 20 μg of BMP2; 2) collagen scaffolds + 50 μg of BMP2; 3) collagen scaffolds + 100 μg of BMP2; 4) BCP scaffolds + 20 μg of BMP2; 5) BCP scaffolds + 50 μg of BMP2; and 6) BCP scaffolds + 100 μg of BMP2. Furthermore, tartrate-resistant acid phosphatase (TRAP) staining was utilized to assess osteoclast activity and osteoclast number. The release kinetics of BMP2 from both BCP and collagen scaffolds was investigated over a 14-day period. The results from present study demonstrate that BMP2 is able to promote new bone formation in a concentration dependant manner when loaded with either a collagen scaffolds or BCP scaffolds. Micro-CT analysis demonstrated significantly higher levels of new bone formation in groups containing BCP + BMP2 when compared with collagen scaffolds + BMP2. BMP2 had little effect on osteoclast activity; however, less TRAP staining and osteoclast number was observed in the defects receiving collagen scaffolds when compared with BCP scaffolds. The release of BMP2 over time was rapidly released after 1 day on BCP scaffolds whereas a gradually release over

  8. In vitro characterization of bioactive titanium dioxide/hydroxyapatite surfaces functionalized with BMP-2.

    Science.gov (United States)

    Piskounova, Sonya; Forsgren, Johan; Brohede, Ulrika; Engqvist, Håkan; Strømme, Maria

    2009-11-01

    Poor implant fixation and bone resorption are two of the major challenges in modern orthopedics and are caused by poor bone/implant integration. In this work, bioactive crystalline titanium dioxide (TiO(2))/hydroxyapatite (HA) surfaces, functionalized with bone morphogenetic protein 2 (BMP-2), were evaluated as potential implant coatings for improved osseointegration. The outer layer consisted of HA, which is known to be osteoconductive, and may promote improved initial bone attachment when functionalized with active molecules such as BMP-2 in a soaking process. The inner layer of crystalline TiO(2) is bioactive and ensures long-term fixation of the implant, once the hydroxyapatite has been resorbed. The in vitro response of mesenchymal stem cells on bioactive crystalline TiO(2)/HA surfaces functionalized with BMP-2 was examined and compared with the cell behavior on nonfunctionalized HA layers, crystalline TiO(2) surfaces, and native titanium oxide surfaces. The crystalline TiO(2) and the HA surfaces showed to be more favorable than the native titanium oxide surface in terms of cell viability and cell morphology as well as initial cell differentiation. Furthermore, cell differentiation on BMP-2-functionalized HA surfaces was found to be significantly higher than on the other surfaces indicating that the simple soaking process can be used for incorporating active molecules, promoting fast bone osseointegration to HA layers.

  9. Osteoinduction in the palatal submucosa by injecting BMP-2 on 2 different carriers.

    Science.gov (United States)

    Martínez-Sanz, Elena; Alkhraisat, Mohammad H; Paradas, Irene; López, Yamila; Maldonado, Estela; González-Meli, Beatriz; Berenguer, Beatriz; López-Cabarcos, Enrique; Martínez, Ma Luisa; Martínez-Álvarez, Concepción

    2012-03-01

    In this work, we investigated the ability of injected recombinant human bone morphogenetic protein 2 (rhBMP-2) on brushite cement (a β-tricalcium phosphate-based biomaterial) and collagen gel as carriers to induce osteogenic differentiation in the palatal submucosa of 10-day-old rats. This was part of a broader study aiming to create bone in the palatal submucosa at cleft palate edges in the search for a minimally invasive treatment. Thirteen treated animals, 7 with rhBMP-2/brushite cement and 6 with rhBMP-2/collagen gel, were injected with 5 to 10 μL of each biomaterial in the right palatal submucosa at the level between the second and third rugae. The contralateral site was uninjected and served as the control. Six weeks after injection, both brushite cement and collagen gel were histologically unrecognizable in all treated animals. New bone structures such as ossicles of woven bone were not detected. However, an augmentation in the thickness of the palatal fibromucosa was observed at the injection site of all palates. In addition, immunolabeling for osteopontin, proliferating cell nuclear antigen, and TUNEL revealed intense osteogenic induction at the injection site with both constructs, which was negative in the control site from the same specimens; no differences regarding cell proliferation and death were observed. The present study confirms the feasibility of generating osteogenic cells in the palatal submucosa by injecting low doses of rhBMP-2 in these 2 biomaterials, together with their inability to form bone.

  10. Biodegradable Chitosan Nanoparticle Coatings on Titanium for the Delivery of BMP-2

    Directory of Open Access Journals (Sweden)

    Nils Poth

    2015-01-01

    Full Text Available A simple method for the functionalization of a common implant material (Ti6Al4V with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2, using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.

  11. Rh-BMP-2 in distraction osteogenesis: dose effect and premature consolidation.

    Science.gov (United States)

    Sailhan, Frédéric; Gleyzolle, Baptiste; Parot, Roger; Guerini, Henri; Viguier, Eric

    2010-07-01

    We asked whether locally applied recombinant-bone morphogenic protein-2 (rh-BMP-2) with a type I collagen carrier could enhance the consolidation phase in distraction osteogenesis and whether a dose effect could be reported. We performed unilateral transverse osteotomy of the tibia in 15 immature male rabbits. In Group I (five rabbits), 750 microg of rh-BMP-2 on the type I collagen sponge (Inductos, Medtronic) was locally applied on the day of osteotomy; the Group II animals (five rabbits) received 375 microg of the drug and the Group III (control group, five rabbits) had no local application. After 7 days, 3 weeks of distraction was begun at a rate of 0.5 mm/12 h. Starting week 2 of distraction, we assessed radiographic, ultrasonographic, and densitometric parameters once per week. Animals were sacrificed after a 3-week consolidation period. Radiographic evaluation revealed increased regenerate ossification in the rh-BMP-2 groups compared with the control group. The bone mineral content was significantly higher in the rh-BMP-2 treated groups at each time point. A dose effect is shown as densitometric parameters were significantly higher between Groups I and II. 3/5 of the Group I treated animals developed a premature bony union in the regenerate resulting in premature fusion and incomplete distraction. 2009 Elsevier Ltd. All rights reserved.

  12. [Preparation of rhBMP-2/BCB reconstituted bone xenograft and assay of its osteoinductivity].

    Science.gov (United States)

    Yuan, Zhi; Ma, Ping; Hu, Yun-Yu; Zhao, Guang-yue; Lu, Rong; Sun, Liang; Li, Dan

    2002-03-01

    To investigate a new grafting material of bone xenograft with strong bone inductive and conductive capacity. Based on successful clinical application of the reconstituted bone xenograft (RBX), a new xenograft was made by combining recombinant human bone morphogenetic protein-2 (rhBMP-2) with antigen-free bovine cancellous bone (BCB). Sixty male BALB/C mice aged 4 weeks were divided into study group of 30 and control group of 30 randomly. rhBMP-2/BCB was implanted in the left thigh muscle pouch in the study group and BCB in the control group. The mice were sacrificed at 7 d, 14 d and 21 d after implantation. Inductivity of rhBMP-2/BCB was detected by histological observation and biochemical determination of the samples. Histological examination showed that rhBMP-2/BCB induced chondrogenesis on the 7th day, with woven bone formed on the 14th day, and lamellar bone and marrow on the 21st day, while BCB failed to induce chondrogenesis or osteogenesis on the 7th, 14th and 21st days. The alkaline phosphatase activities and calcium content in study group were higher than those in control group with significant difference (P BCB is an ideal grafting material with strong bone inductive and conductive capacity without evoking immune reaction.

  13. Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Egashira

    Full Text Available Bone marrow concentrate (BMC, which is enriched in mononuclear cells (MNCs and platelets, has recently attracted the attention of clinicians as a new optional means for bone engineering. We previously reported that the osteoinductive effect of bone morphogenetic protein-2 (BMP-2 could be enhanced synergistically by co-transplantation of peripheral blood (PB-derived platelet-rich plasma (PRP. This study aims to investigate whether BMC can effectively promote bone formation induced by low-dose BMP-2, thereby reducing the undesirable side-effects of BMP-2, compared to PRP. Human BMC was obtained from bone marrow aspirates using an automated blood separator. The BMC was then seeded onto β-TCP granules pre-adsorbed with a suboptimal-dose (minimum concentration to induce bone formation at 2 weeks in mice of recombinant human (rh BMP-2. These specimens were transplanted subcutaneously to the dorsal skin of immunodeficient-mice and the induction of ectopic bone formation was assessed 2 and 4 weeks post-transplantation. Transplantations of five other groups [PB, PRP, platelet-poor plasma (PPP, bone marrow aspirate (BM, and BM-PPP] were employed as experimental controls. Then, to clarify the effects on vertical bone augmentation, specimens from the six groups were transplanted for on-lay placement on the craniums of mice. The results indicated that BMC, which contained an approximately 2.5-fold increase in the number of MNCs compared to PRP, could accelerate ectopic bone formation until 2 weeks post-transplantation. On the cranium, the BMC group promoted bone augmentation with a suboptimal-dose of rhBMP-2 compared to other groups. Particularly in the BMC specimens harvested at 4 weeks, we observed newly formed bone surrounding the TCP granules at sites far from the calvarial bone. In conclusion, the addition of BMC could reduce the amount of rhBMP-2 by one-half via its synergistic effect on early-phase osteoinduction. We propose here that BMC

  14. Mesenchymal stem cells expressing baculovirus-engineered BMP-2 and VEGF enhance posterolateral spine fusion in a rabbit model.

    Science.gov (United States)

    Fu, Tsai-Sheng; Chang, Yu-Han; Wong, Chak-Bor; Wang, I-Chun; Tsai, Tsung-Ting; Lai, Po-Liang; Chen, Lih-Huei; Chen, Wen-Jer

    2015-09-01

    Mesenchymal stem cell (MSC)-based cell therapy and gene transfer have converged and show great potential for accelerating bone healing. Gene therapy can provide more sustained expression of osteogenic factors such as bone morphogenetic protein-2 (BMP-2). We previously demonstrated that low-dose BMP-2 enhanced spinal posterolateral fusion by MSCs in a rabbit model. Herein, we genetically modified rabbit MSCs with a recombinant baculovirus encoding BMP-2 (Bac-CB) and vascular endothelial growth factor (Bac-VEGF) seeded into porous scaffolds to enhance spinal fusion. This study evaluates the success rate of the MSC-based cell therapy and gene transfer approach for single-level posterolateral spine fusion. We hypothesize that combining three-dimensional tricalcium phosphate (TCP) scaffolds and genetically modified allogeneic MSCs with baculovirus-mediated growth factor expression would increase the success rate of spinal fusion. The study design was based on an animal model (approved by the Institutional Animal Care and Use Committee) using 18 adult male New Zealand rabbits. This study included 18 male New Zealand rabbits, weighing 3.5 to 4 kg. Allogeneic bone marrow-derived MSCs were isolated and genetically modified with Bac-CB and Bac-CV seeded onto TCP scaffolds (MSC/Bac/TCP). The animals were divided into three groups according to the material implanted into the bilateral L4-L5 intertransverse space: TCP scaffold (n=6), MSC/TCP (n=6), and MSC/Bac/TCP (n=6). After 12 weeks, the rabbits were euthanized for radiographic examination, manual palpation, and histologic study. Bilateral fusion areas in each animal were evaluated independently. The radiographic fusion rates at 12 sites were 0 of 12 in the TCP scaffold group, 4 of 12 in the MSC/TCP group, and 10 of 12 in the MSC/Bac/TCP group. By manual palpation, there were zero solid fusions in the TCP scaffold group, two solid fusions in the MSC/TCP group, and five solid fusions in the MSC/Bac/TCP group. Fusion rates

  15. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.

    Science.gov (United States)

    Murphy, Meghan K; Huey, Daniel J; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-03-01

    Replacement of degenerated cartilage with cell-based cartilage products may offer a long-term solution to halt arthritis' degenerative progression. Chondrocytes are frequently used in cell-based FDA-approved cartilage products; yet human marrow-derived stromal cells (hMSCs) show significant translational potential, reducing donor site morbidity and maintaining their undifferentiated phenotype with expansion. This study sought to investigate the effects of transforming growth factor β1 (TGF-β1), growth/differentiation factor 5 (GDF-5), and bone morphogenetic protein 2 (BMP-2) during postexpansion chondrogenesis in human articular chondrocytes (hACs) and to compare chondrogenesis in passaged hACs with that of passaged hMSCs. Through serial expansion, chondrocytes dedifferentiated, decreasing expression of chondrogenic genes while increasing expression of fibroblastic genes. However, following expansion, 10 ng/mL TGF-β1, 100 ng/mL GDF-5, or 100 ng/mL BMP-2 supplementation during three-dimensional aggregate culture each upregulated one or more markers of chondrogenic gene expression in both hACs and hMSCs. Additionally, in both cell types, the combination of TGF-β1, GDF-5, and BMP-2 induced the greatest upregulation of chondrogenic genes, that is, Col2A1, Col2A1/Col1A1 ratio, SOX9, and ACAN, and synthesis of cartilage-specific matrix, that is, glycosaminoglycans (GAGs) and ratio of collagen II/I. Finally, TGF-β1, GDF-5, and BMP-2 stimulation yielded mechanically robust cartilage rich in collagen II and GAGs in both cell types, following 4 weeks maturation. This study illustrates notable success in using the self-assembling method to generate robust, scaffold-free neocartilage constructs using expanded hACs and hMSCs. © 2014 AlphaMed Press.

  16. Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion.

    Science.gov (United States)

    Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia

    2017-07-01

    Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaschte, K

    2007-01-01

    OBJECTIVES: This article addresses the interaction of transforming growth factor beta1 (TGF-beta1) and bone morphogenic protein 2 (BMP-2) during osteo-chondrogenic differentiation of adipose-derived adult stem cells (ASC). TGF-beta1 was expected to modulate the BMP-2-induced effects through...

  18. Microstructured Titanium Regulates Interleukin Production by Osteoblasts, an Effect Modulated by Exogenous BMP-2

    Science.gov (United States)

    Hyzy, Sharon; Olivares-Navarrete, Rene; Hutton, Daphne L.; Tan, Christian; Boyan, Barbara D.; Schwartz, Zvi

    2013-01-01

    Microtextured implant surfaces increase osteoblast differentiation in vitro and enhance bone-to-implant contact in vivo and clinically. These implants may be used in combination with recombinant human bone morphogenetic protein 2 (rhBMP-2) to enhance peri-implant bone formation. However, the effect of surface modifications alone or in combination with rhBMP-2 on osteoblast-produced inflammatory microenvironment is unknown. MG63 cells were cultured on tissue culture polystyrene or titanium substrates: smooth pretreated (PT, Ra=0.2μm), sandblasted/acid-etched (SLA, Ra=3.2μm), or hydrophilic-SLA (modSLA). Expression and protein production of pro-inflammatory interleukins (IL1b, IL6, IL8, IL17) and anti-inflammatory interleukins (IL10) were measured in cells with or without rhBMP-2. To determine which BMP signaling pathways were involved, cultures were incubated with BMP pathway inhibitors to blocking Smad (dorsomorphin), TAB/TAK1 ((5Z)-7-oxozeaenol), or PKA (H-8) signaling. Culture on rough SLA and modSLA surfaces decreased pro-inflammatory interleukins and increased anti-inflammatory IL10. This effect was negated in cells treated with rhBMP-2, which caused an increase in pro-inflammatory interleukins and a decrease in anti-inflammatory interleukins through TAB/TAK signaling. The results suggest that surface microtexture modulates the inflammatory process during osseointegration, an effect that may enhance healing. However, rhBMP-2 in combination with microtextured titanium implants can influence the effect of cells on these surfaces, and may adversely affect cells involved in osseointegration. PMID:23123301

  19. Repair of large segmental bone defects: BMP-2 gene activated muscle grafts vs. autologous bone grafting.

    Science.gov (United States)

    Betz, Oliver B; Betz, Volker M; Schröder, Christian; Penzkofer, Rainer; Göttlinger, Michael; Mayer-Wagner, Susanne; Augat, Peter; Jansson, Volkmar; Müller, Peter E

    2013-08-08

    Common cell based strategies for the treatment of osseous defects require the isolation and expansion of autologous cells. Since this makes such approaches time-consuming and expensive, we developed a novel expedited technology creating gene activated muscle grafts. We have previously shown that large segmental bone defects in rats can be regenerated by implantation of muscle tissue fragments activated by BMP-2 gene transfer. In the present study, we compared the bone healing capacities of such gene activated muscle grafts with bone isografts, mimicking autologous bone grafting, the clinical gold standard for treatment of bone defects in patients. Two of 14 male, syngeneic Fischer 344 rats used for this experiment served as donors for muscle and bone. Muscle tissue was harvested from both hind limbs and incubated with an adenoviral vector carrying the cDNA encoding BMP-2. Bone was harvested from the iliac crest and long bone epiphyses. Bone defects (5 mm) were created in the right femora of 12 rats and were filled with either BMP-2 activated muscle tissue or bone grafts. After eight weeks, femora were evaluated by radiographs, micro-computed tomography (μCT), and biomechanical testing. In the group receiving BMP-2 activated muscle grafts as well as in the bone-grafting group, 100% of the bone defects were healed, as documented by radiographs and μCT-imaging. Bone volume was similar in both groups and biomechanical stability of the two groups was statistically indistinguishable. This study demonstrates that treatment of large bone defects by implantation of BMP-2 gene activated muscle tissue leads to similar bone volume and stability as bone isografts, mimicking autologous bone grafting.

  20. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells.

    Science.gov (United States)

    Son, Hyo-Eun; Kim, Eun-Jung; Jang, Won-Gu

    2018-01-15

    Curcumin (diferuloylmethane or [1E,6E]-1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6heptadiene-3,5-dione) is a phenolic natural product derived from the rhizomes of the turmeric plant, Curcuma longa. It is reported to have various biological actions such as anti-oxidative, anti-inflammatory, and anti-cancer effects. However, the molecular mechanism of osteoblast differentiation by curcumin has not yet been reported. The cytotoxicity of curcumin was identified using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of osteogenic markers and endoplasmic reticulum (ER) stress markers in C3H1-T1/2 cells were measured using reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity in C3H10T1/2 cells. Transcriptional activity was detected using a luciferase reporter assay. Curcumin increased the expression of genes such as distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OC), which subsequently induced osteoblast differentiation in C3H10T1/2 cells. In addition, ALP activity and mineralization was found to be increased by curcumin treatment. Curcumin also induced mild ER stress similar to bone morphogenetic protein 2 (BMP2) function in osteoblast cells. Next, we confirmed that curcumin increased mild ER stress and osteoblast differentiation similar to BMP2 in C3H10T1/2 mesenchymal stem cells. Transient transfection studies also showed that curcumin increased ATF6-Luc activity, while decreasing the activities of CREBH-Luc and SMILE-Luc. In addition, similar to BMP2, curcumin induced the phosphorylation of Smad 1/5/9. Overall, these results demonstrate that curcumin-induced mild ER stress increases osteoblast differentiation via ATF6 expression in C3H10T1/2 cells. Copyright © 2017. Published by Elsevier Inc.

  1. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  2. Injectable rhBMP-2-loaded chitosan hydrogel composite: osteoinduction at ectopic site and in segmental long bone defect.

    Science.gov (United States)

    Luca, Ludmila; Rougemont, Anne-Laure; Walpoth, Beat H; Boure, Ludovic; Tami, Andrea; Anderson, James M; Jordan, Olivier; Gurny, Robert

    2011-01-01

    Carriers for bone morphogenetic protein-2 (BMP-2) used in clinical practice still suffer from limitations such as insufficient protein retention. In addition, there is a clinical need for injectable carriers. The main objective of this study was to assess bone forming ability of rhBMP-2 combined either with chitosan hydrogel (rhBMP-2/CH) or chitosan hydrogel containing β-tricalcium phosphate (β-TCP) (rhBMP-2/CH/TCP). Formulations were first compared in a rat ectopic intramuscular bone formation model, and the optimal formulation was further evaluated in healing of 15-mm critical size defect in the radius of a rabbit. Three weeks after injection ectopically formed bone was analyzed by microcomputerized tomography (micro-CT) and histology. Significantly higher (4.7-fold) mineralized bone formation was observed in the rhBMP-2/CH/TCP group compared to rhBMP-2/CH group. In a pilot study, defect in a rabbit radius treated with rhBMP-2/CH/TCP showed incomplete regeneration at 8 weeks with composite leakage from the defect, indicating the need for formulation refinement when segmental defect repair is foreseen. Copyright © 2010 Wiley Periodicals, Inc.

  3. rhBMP-2 (ACS and CRM formulations) overcomes pseudarthrosis in a New Zealand white rabbit posterolateral fusion model.

    Science.gov (United States)

    Lawrence, James P; Waked, Walid; Gillon, Thomas J; White, Andrew P; Spock, Christopher R; Biswas, Debdut; Rosenberger, Patricia; Troiano, Nancy; Albert, Todd J; Grauer, Jonathan N

    2007-05-15

    The study design consisted of a New Zealand white rabbit model of pseudarthrosis repair. Study groups consisting of no graft, autograft, or recombinant human bone morphogenetic protein-2 (rhBMP-2) with absorbable collagen sponge (ACS) or compression resistant matrix (CRM) were evaluated. To evaluate the relative efficacy of bone graft materials (autograft, ACS, and CRM). rhBMP-2 has been shown to have a 100% fusion rate in a primary rabbit fusion model, even in the presence of nicotine, which is known to inhibit fusion. Seventy-two New Zealand white rabbits underwent posterolateral lumbar fusion with iliac crest autograft. To establish pseudarthroses, nicotine was administered to all animals. At 5 weeks, the spines were explored and all pseudarthroses were redecorticated and implanted with no graft, autograft, rhBMP-2/ACS, or rhBMP-2/CRM. At 10 weeks, fusions were assessed by manual palpation and histology. Eight rabbits (11%) were lost to complications. At 5 weeks, 66 (97%) had pseudarthroses. At 10 weeks, attempted pseudarthrosis repairs were fused in 1 of 16 of no graft rabbits (6%), 5 of 17 autograft rabbits (29%), and 31 of 31 rhBMP-2 rabbits (with ACS or CRM) (100%). Histologic analysis demonstrated more mature bone formation in the rhBMP-2 groups. The 2 rhBMP-2 formulations led to significantly higher fusion rates and histologic bone formation than no graft and autograft controls in this pseudarthrosis repair model.

  4. Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression.

    Science.gov (United States)

    Selvamurugan, Nagarajan; Kwok, Sukyee; Vasilov, Anatoliy; Jefcoat, Stephen C; Partridge, Nicola C

    2007-09-01

    Bone morphogenetic proteins (BMPs) strongly promote osteoblast differentiation. Pulsed electromagnetic fields (PEMFs) promote fracture healing in non-union fractures. In this study, we hypothesized that a combined BMP-2 and PEMF stimulation would augment bone formation to a greater degree than treatment with either single stimulus. BMP-2 maximally increased the proliferative activity of rat primary osteoblastic cells at 25 ng/ml concentration. Real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that BMP-2 stimulated mRNA levels of alkaline phosphatase (ALP), alpha(1) (I) procollagen, and osteocalcin (OC) in the differentiation phase and only OC mRNA expression in the mineralization phase after 24-h treatment. Both BMP-2 and PEMF (Spinal-Stim) increased cell proliferation, which was additive when both agents were combined. PEMF alone or together with BMP-2 increased only ALP mRNA expression and only during the differentiation phase 24 h after one 4-h treatment. This effect was additive when both agents were combined. Continuous daily 4-h treatment with PEMF alone or together with BMP-2 increased expression of all three osteoblast marker genes during the differentiation phase and increased the mineralized matrix. This effect was additive when both agents were combined, suggesting that the two interventions may be working on different cellular pathways. Thus, a combined effect of BMP-2 and PEMF in vitro could be considered as groundwork for in vivo bone development that may support skeletal therapy.

  5. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Sørensen, O H

    2004-01-01

    In vitro models of bone cells are important for the study of bone biology, including the regulation of bone formation and resorption. In this study, we have validated an in vitro model of human osteoblastic cells obtained from bone marrow biopsies from healthy, young volunteers, aged 20-31 years....... Osteoblast phenotypes were induced by either dexamethasone (Dex) or bone morphogenetic protein-2 (BMP-2). Bone marrow was obtained from biopsies at the posterior iliac spine. Cells were isolated by gradient centrifugation and grown to confluence. Cells were treated with 1 nM 1,25-dihydroxyvitamin D (vitamin...... D), 100 nM Dex, and/or 100 ng/ml BMP-2. The osteoblast phenotype was assessed as alkaline phosphatase (AP) activity/staining, production of osteocalcin and procollagen type 1 (P1NP), parathyroid hormone (PTH)-induced cyclic adenosine mono-phosphate (cAMP) production, and in vitro mineralization. AP...

  6. Mesenchymal stem cells from osteoporotic patients feature impaired signal transduction but sustained osteoinduction in response to BMP-2 stimulation.

    Science.gov (United States)

    Prall, Wolf Christian; Haasters, Florian; Heggebö, Jostein; Polzer, Hans; Schwarz, Christina; Gassner, Christoph; Grote, Stefan; Anz, David; Jäger, Marcus; Mutschler, Wolf; Schieker, Matthias

    2013-11-01

    Osteoporotic fractures show reduced callus formation and delayed bone healing. Cellular sources of fracture healing are mesenchymal stem cells (MSC) that differentiate into osteoblasts by stimulation with osteoinductive cytokines, such as BMP-2. We hypothesized that impaired signal transduction and reduced osteogenic differentiation capacity in response to BMP-2 may underlie the delayed fracture healing. Therefore, MSC were isolated from femoral heads of healthy and osteoporotic patients. Grouping was carried out by bone mineral densitometry in an age-matched manner. MSC were stimulated with BMP-2. Signal transduction was assessed by western blotting of pSMAD1/5/8 and pERK1/2 as well as by quantitative RT-PCR of Runx-2, Dlx5, and Osteocalcin. Osteogenic differentiation was assessed by quantifying Alizarin Red staining. Osteoporotic MSC featured an accurate phosphorylation pattern of SMAD1/5/8 but a significantly reduced activation of ERK1/2 by BMP-2 stimulation. Furthermore, osteoporotic MSC showed significantly reduced basal expression levels of Runx-2 and Dlx5. However, Runx-2, Dlx5, and Osteocalcin expression showed adequate up-regulation due to BMP-2 stimulation. The global osteogenic differentiation in standard osteogenic differentiation media was reduced in osteoporotic MSC. Nevertheless, osteoporotic MSC were shown to feature an adequate induction of osteogenic differentiation due to BMP-2 stimulation. Taken together, we here demonstrate osteoporosis associated alterations in BMP-2 signaling but sustained specific osteogenic differentiation capacity in response to BMP-2. Therefore, BMP-2 may represent a promising therapeutic agent for the treatment of fractures in osteoporotic patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects.

    Science.gov (United States)

    Schofer, Markus D; Roessler, Philip P; Schaefer, Jan; Theisen, Christina; Schlimme, Sonja; Heverhagen, Johannes T; Voelker, Maximilian; Dersch, Roland; Agarwal, Seema; Fuchs-Winkelmann, Susanne; Paletta, Jürgen R J

    2011-01-01

    Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in

  8. Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects.

    Directory of Open Access Journals (Sweden)

    Markus D Schofer

    Full Text Available Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM.The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2 into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1 left unfilled, or treated with (2 bovine spongiosa, (3 PLLA scaffolds alone or (4 PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5.PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups.Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone

  9. An assessment of the overexpression of BMP-2 in transfected human osteoblast cells stimulated by mineral trioxide aggregate and Biodentine.

    Science.gov (United States)

    Rodrigues, E M; Gomes-Cornélio, A L; Soares-Costa, A; Salles, L P; Velayutham, M; Rossa-Junior, C; Guerreiro-Tanomaru, J M; Tanomaru-Filho, M

    2017-12-01

    To evaluate the effect of MTA and Biodentine on viability, osteogenic differentiation and BMP-2 expression in osteogenic cells. Saos-2 cells were used as a model of osteoblastic cells. Overexpression of BMP-2 was induced by transfection of a CMV-driven plasmid construct including the human BMP-2 coding sequence, and stably transfected cells were selected. Cell viability was assessed by the mitochondrial dehydrogenase enzymatic (MTT) assay. The bioactivity of the materials was evaluated by the alkaline phosphatase (ALP) assay and detection of calcium deposits with alizarin red staining (ARS). The gene expression of BMP-2 and ALP was quantified with real-time PCR. Statistical analysis was performed with analysis of variance and Bonferroni or Tukey post-test (α = 0.05). Viability tests revealed that MTA and Biodentine were not cytotoxic at the higher dilution (1 : 8) to BMP-2-transfected cells. MTA and Biodentine exhibited the highest ALP activity when compared to the Saos-BMP-2-unexposed control group (P Biodentine and MTA had a significant stimulatory effect on the formation of mineralized nodules (P Biodentine in non-osteogenic medium in relation to Saos-BMP-2-unexposed control cells (P Biodentine showed biocompatibility and bioactivity in Saos-BMP-2 overexpressing cells. Biodentine had a significantly greater effect on mineralization than MTA. Both MTA and Biodentine enhanced BMP-2 mRNA expression in the transfected system. Both MTA and Biodentine are suitable materials to improve osteoblastic cell mineralization. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. Histone deacetylases control neurogenesis in embryonic brain by inhibition of BMP2/4 signaling.

    Directory of Open Access Journals (Sweden)

    Maya Shakèd

    Full Text Available BACKGROUND: Histone-modifying enzymes are essential for a wide variety of cellular processes dependent upon changes in gene expression. Histone deacetylases (HDACs lead to the compaction of chromatin and subsequent silencing of gene transcription, and they have recently been implicated in a diversity of functions and dysfunctions in the postnatal and adult brain including ocular dominance plasticity, memory consolidation, drug addiction, and depression. Here we investigate the role of HDACs in the generation of neurons and astrocytes in the embryonic brain. PRINCIPAL FINDINGS: As a variety of HDACs are expressed in differentiating neural progenitor cells, we have taken a pharmacological approach to inhibit multiple family members. Inhibition of class I and II HDACs in developing mouse embryos with trichostatin A resulted in a dramatic reduction in neurogenesis in the ganglionic eminences and a modest increase in neurogenesis in the cortex. An identical effect was observed upon pharmacological inhibition of HDACs in in vitro-differentiating neural precursors derived from the same brain regions. A reduction in neurogenesis in ganglionic eminence-derived neural precursors was accompanied by an increase in the production of immature astrocytes. We show that HDACs control neurogenesis by inhibition of the bone morphogenetic protein BMP2/4 signaling pathway in radial glial cells. HDACs function at the transcriptional level by inhibiting and promoting, respectively, the expression of Bmp2 and Smad7, an intracellular inhibitor of BMP signaling. Inhibition of the BMP2/4 signaling pathway restored normal levels of neurogenesis and astrogliogenesis to both ganglionic eminence- and cortex-derived cultures in which HDACs were inhibited. CONCLUSIONS: Our results demonstrate a transcriptionally-based regulation of BMP2/4 signaling by HDACs both in vivo and in vitro that is critical for neurogenesis in the ganglionic eminences and that modulates cortical

  11. Bone regeneration in osteoporosis by delivery BMP-2 and PRGF from tetronic-alginate composite thermogel.

    Science.gov (United States)

    Segredo-Morales, Elisabet; García-García, Patricia; Reyes, Ricardo; Pérez-Herrero, Edgar; Delgado, Araceli; Évora, Carmen

    2018-03-19

    As the life expectancy of the world population increases, osteoporotic (OP) fracture risk increase. Therefore in the present study a novel injectable thermo-responsive hydrogel loaded with microspheres of 17β-estradiol, microspheres of bone morphogenetic protein-2 (BMP-2) and plasma rich in growth factors (PRGF) was applied locally to regenerate a calvaria critical bone defect in OP female rats. Three systems were characterized: Tetronic® 1307 (T-1307) reinforced with alginate (T-A), T-A with PRGF and T-A-PRGF with microspheres. The addition of the microspheres increased the viscosity but the temperature for the maximum viscosity did not change (22-24 °C). The drugs were released during 6 weeks in one fast phase (three days) followed by a long slow phase. In vivo evaluation was made in non-OP and OP rats treated with T-A, T-A with microspheres of 17β-estradiol (T-A-βE), T-A-βE prepared with PRGF (T-A-PRGF-βE), T-A-βE with microspheres of BMP-2 (T-A-βE-BMP-2) and the combination of the three (T-A-PRGF-βE-BMP). After 12 weeks, histological and histomorphometric analyzes showed a synergic effect due to the addition of BMP-2 to the T-A-βE formulation. The PRGF did not increased the bone repair. The new bone filling the OP defect was less mineralized than in the non-OP groups. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Bone morphogenetic protein 2 (BMP2) induces growth suppression and enhances chemosensitivity of human colon cancer cells

    DEFF Research Database (Denmark)

    Vishnubalaji, Radhakrishnan; Yue, Shijun; Alfayez, Musaad

    2016-01-01

    BACKGROUND: Molecular profiling of colorectal cancer (CRC) based on global gene expression has revealed multiple dysregulated signalling pathways associated with drug resistance and poor prognosis. However, the role of BMP2 signaling in CRC is not fully characterised. METHODS: Bioinformatics data...... datasets revealed significant downregulation of BMP2 in metastatic recurrent compared to non-metastatic cancer (p = 0.02). Global gene expression analysis in CRC cells over-expressing BMP2 revealed multiple dysregulated pathways mostly affecting cell cycle and DNA damage response. Concordantly, lentiviral...

  13. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway.

    Science.gov (United States)

    Nepal, Manoj; Li, Liang; Cho, Hyoung Kwon; Park, Jong Kun; Soh, Yunjo

    2013-12-01

    Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Kaempferol-treated ATDC5 cells stained more intensely with alcian blue staining than control cells, suggesting greater synthesis of matrix proteoglycans in the kaempferol-treated cells. Similarly, kaempferol induced greater activation of alkaline phosphatase activity than control cells, and it enhanced the expression of chondrogenic marker genes, such as collagen type I, collagen type X, OCN, Runx2, and Sox9. Kaempferol induced an acute activation of extracellular signal-regulated kinase (ERK) but not c-jun N-terminal kinase or p38 MAP kinase. PD98059, an inhibitor of MAPK/ERK, decreased in stained cells treated with kaempferol. Furthermore, kaempferol greatly expressed the protein and mRNA levels of BMP-2, suggesting chondrogenesis was stimulated via a BMP-2 pathway. Taken together, our results suggest that kaempferol has chondromodulating effects via an ERK/BMP-2 signaling pathway and could potentially be used as a therapeutic agent for bone growth disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. BMP2 gene delivery to bone mesenchymal stem cell by chitosan-g-PEI nonviral vector

    Science.gov (United States)

    Yue, Jianhui; Wu, Jun; Liu, Di; Zhao, Xiaoli; Lu, William W.

    2015-04-01

    Nanotechnology has made a significant impact on the development of nanomedicine. Nonviral vectors have been attracting more attention for the advantage of biosafety in gene delivery. Polyethylenimine (PEI)-conjugated chitosan (chitosan-g-PEI) emerged as a promising nonviral vector and has been demonstrated in many tumor cells. However, there is a lack of study focused on the behavior of this vector in stem cells which hold great potential in regenerative medicine. Therefore, in this study, in vitro gene delivering effect of chitosan-g-PEI was investigated in bone marrow stem cells. pIRES2-ZsGreen1-hBMP2 dual expression plasmid containing both the ZsGreen1 GFP reporter gene and the BMP2 functional gene was constructed for monitoring the transgene expression level. Chitosan-g-PEI-mediated gene transfer showed 17.2% of transfection efficiency and more than 80% of cell viability in stem cells. These values were higher than that of PEI. The expression of the delivered BMP2 gene in stem cells enhanced the osteogenic differentiation. These results demonstrated that chitosan-g-PEI is capable of applying in delivering gene to stem cells and providing potential applications in stem cell-based gene therapy.

  15. Delivery of RANKL-Binding Peptide OP3-4 Promotes BMP-2-Induced Maxillary Bone Regeneration.

    Science.gov (United States)

    Uehara, T; Mise-Omata, S; Matsui, M; Tabata, Y; Murali, R; Miyashin, M; Aoki, K

    2016-06-01

    Although bone morphogenetic protein 2 (BMP-2) is known to stimulate osteogenesis, there is evidence that high doses of BMP-2 can lead to side effects, including inflammation and carcinogenesis. The supplementation of other bone-augmenting agents is considered helpful in preventing such side effects by reducing the amount of BMP-2 required to obtain a sufficient amount of bone. We recently showed that a receptor activator of nuclear factor κB ligand (RANKL)-binding peptide promotes osteoblast differentiation. In the present study, we aimed to investigate whether OP3-4, a RANKL-binding peptide, promotes BMP-2-induced bone formation in the murine maxilla using an injectable gelatin hydrogel (GH) carrier. A GH carrier containing OP3-4 with BMP-2 was subperiosteally injected into the murine maxillary right diastema between the incisor and the first molar. The mice were sacrificed 28 d after the injections. The local bone formation in the OP3-4-BMP-2-injected group was analyzed in comparison to the carrier-injected, BMP-2-injected, and control-peptide-BMP-2-injected groups. The GH carrier containing OP3-4 with BMP-2 enlarged the radio-opaque area and increased the bone mineral content and density in the radiological analyses in comparison to the other experimental groups. Interestingly, fluorescence-based histological analyses revealed that the mineralization had started from the outside, then proceeded inward, suggesting that the size of the newly formed bone had already been set before calcification started and that the effects of OP3-4 might be involved in accelerating the early steps of osteogenesis. Actually, OP3-4 enhanced the BMP-2-induced 5-bromo-2'-deoxyuridine (BrdU)-positive cell numbers at the injected site on day 7 and the expression of Runx2 and Col1a1, which are early osteogenic cell markers, on day 10 after the subperiosteal injections. In summary, we demonstrated, for the first time, that the application of OP3-4 by subperiosteal injection promoted BMP

  16. Expression characteristics of BMP2, BMPR-IA and Noggin in different stages of hair follicle in yak skin.

    Science.gov (United States)

    Song, Liang-Li; Cui, Yan; Yu, Si-Jiu; Liu, Peng-Gang; Liu, Jun; Yang, Xue; He, Jun-Feng; Zhang, Qian

    2018-05-01

    Bone morphogenetic protein 2 (BMP2), BMP receptor-IA (BMPR-IA), and the BMP2 antagonist Noggin are important proteins involved in regulating the hair follicle (HF) cycle in skin. In order to explore the expression profiles of BMP2, BMPR-IA, and Noggin in the HF cycle of yak skin, we collected adult yak skin in the telogen, proanagen, and midanagen phases of HFs and evaluated gene and protein expression by real-time quantitative polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. qRT-PCR and western blotting results showed that BMP2 and BMPR-IA expression levels were highest in the telogen of HFs and higher than that of Noggin in the same phase. The expression of Noggin was significantly higher in proanagen and midanagen phases of HFs than in the telogen phase, with the highest expression observed in the proanagen phase. Moreover, the expression of Noggin in the proanagen phase was significantly higher than those of BMP2 and BMPR-IA during the same phase. Immunohistochemistry results showed that BMP2, BMPR-IA, and Noggin were expressed in the skin epidermis, sweat glands, sebaceous glands, HF outer root sheath, and hair matrix. In summary, the characteristic expression profiles of BMP2, BMPR-IA, and Noggin suggested that BMP2 and BMPR-IA had inhibitory effects on the growth of HFs in yaks, whereas Noggin promoted the growth of yak HFs, mainly by affecting skin epithelial cell activity. These results provide a basis for further studies of HF development and cycle transition in yak skin. Copyright © 2017. Published by Elsevier Inc.

  17. rhBMP-2 with a demineralized bone matrix scaffold versus autologous iliac crest bone graft for alveolar cleft reconstruction.

    Science.gov (United States)

    Francis, Cameron S; Mobin, Sheila S Nazarian; Lypka, Michael A; Rommer, Elizabeth; Yen, Stephen; Urata, Mark M; Hammoudeh, Jeffrey A

    2013-05-01

    Secondary alveolar cleft reconstruction using autologous iliac crest bone graft is currently the standard treatment for alveolar clefts. Although effective, harvesting autologous bone may result in considerable donor-site morbidity, most commonly pain and the potential for long-term sensory disturbances. In an effort to decrease patient morbidity, a novel technique using recombinant human bone morphogenetic protein (rhBMP)-2 encased in a demineralized bone matrix scaffold was developed as an alternative to autografting for secondary alveolar cleft reconstruction. A chart review was conducted for the 55 patients who underwent secondary alveolar cleft reconstruction over a 2-year period with a mean follow-up of 21 months. Of these, 36 patients received rhBMP-2/demineralized bone matrix scaffold (including 10 patients with previously failed repairs using iliac crest bone grafting) and 19 patients underwent iliac crest bone grafting. Postoperatively, bone stock was evaluated using occlusal radiographs rated according to the Bergland and Chelsea scales. Alveolar clefts repaired using rhBMP-2/demineralized bone matrix scaffold were 97.2 percent successful compared with 84.2 percent with iliac crest bone grafting. Radiographically, initial repairs with rhBMP-2/demineralized bone matrix scaffold were superior to iliac crest bone grafting according to both Bergland and Chelsea scales, and significantly more patients in the rhBMP-2/demineralized bone matrix scaffold group had coronal bridging. The postoperative intraoral infection rate following iliac crest bone grafting was significantly greater than for rhBMP-2/demineralized bone matrix scaffold. The cost of rhBMP-2/demineralized bone matrix scaffold products was offset by cost savings associated with a reduction in operative time averaging 102 minutes. rhBMP-2 encased in a demineralized bone matrix scaffold appears to be a viable alternative for secondary alveolar cleft repair. Patients are spared donor-site morbidity and

  18. An experimental study on application of implant to irradiated bone. Effect of combination with rhBMP-2

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiang; Matsui, Yoshiro; Shionoya, Yuji; Ohno, Kohsuke; Michi, Ken-ichi; Tachikawa, Tetsuhiko [Showa Univ., Tokyo (Japan). School of Dentistry

    2002-03-01

    The purpose of this study was to investigate the effects of rhBMP-2 on wound healing around implants placed in irradiated bone. Fifty-four male Wistar rats were used. A single dose of 30 Gy irradiation from a Linac source was delivered to the right lower leg of all rats. The left leg was kept as a non-irradiated site. A pure titanium screw with a block of Poly D, L-lactic-co-glycolic acid and gelatin sponge (PGS) containing 100 ng rhBMP-2 was installed to the bilateral tibial proximal metaphysis three months after irradiation. The rats in which the screw and PGS without rhBMP-2 were implanted and those in which only the screw was implanted served as controls. The rats were sacrificed one, two, and eight weeks after the placement. Non-decalcified specimens stained with toluidine blue were used for histological analyses. The bone volume in the medullary cavity and bone-implant contact ratio was also quantified with a contact microradiogram. Administration of rhBMP-2 promoted bone formation around the implant of the irradiated group. Administration of rhBMP-2 improved the bone-implant contact of the irradiated group in the early time period. The results indicate that simultaneous administration of rhBMP-2 is effective in implant placement into irradiated bone. (author)

  19. Plasma Treated High-Density Polyethylene (HDPE Medpor Implant Immobilized with rhBMP-2 for Improving the Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jin-Su Lim

    2014-01-01

    Full Text Available We investigate the bone generation capacity of recombinant human bone morphogenetic protein-2 (rhBMP-2 immobilized Medpor surface through acrylic acid plasma-polymerization. Plasma-polymerization was carried out at a 20 W at an acrylic acid flow rate of 7 sccm for 5 min. The plasma-polymerized Medpor surface showed hydrophilic properties and possessed a high density of carboxyl groups. The rhBMP-2 was immobilized with covalently attached carboxyl groups using 1-ethyl-3-(3-dimethylaminopropyl carbodiimide and N-hydroxysuccinimide. Carboxyl groups and rhBMP-2 immobilization on the Medpor surface were identified by Fourier transform infrared spectroscopy. The activity of Medpor with rhBMP-2 immobilized was examined using an alkaline phosphatase assay on MC3T3-E1 cultured Medpor. These results showed that the rhBMP-2 immobilized Medpor increased the level of MC3T3-E1 cell differentiation. These results demonstrated that plasma surface modification has the potential to immobilize rhBMP-2 on polymer implant such as Medpor and can be used for the binding of bioactive nanomolecules in bone tissue engineering.

  20. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads.

    Science.gov (United States)

    Gründer, Tatiana; Gaissmaier, Christoph; Fritz, Jürgen; Stoop, Reinout; Hortschansky, Peter; Mollenhauer, Jürgen; Aicher, Wilhelm K

    2004-07-01

    For autologous chondrocyte transplantation (ACT) chondrocytes are expanded in vitro. During expansion these cells may dedifferentiate. This change in phenotype is characterized by a raised expression of type I collagen and a decrease in type II collagen expression. Since high expression of type II collagen is of central importance for the properties of hyaline cartilage, we investigated if the growth factor bone morphogenetic protein-2 (BMP-2) may modulate the chondrogenic phenotype in monolayer cell cultures and in three-dimensional culture systems. Chondrocytes from articular knee cartilage of 11 individuals (average age: 39.8 years) with no history of joint disease were isolated and seeded either in monolayer cultures or embedded in alginate beads in presence or absence of human recombinant BMP-2 (hr-BMP-2). Then, cells were harvested and analysis of the chondrogenic phenotype was performed using quantitative RT-PCR, immunocytochemistry and ELISA. Addition of BMP-2 to chondrocytes expanded in two-dimensional (2D) cultures during the first subculture (P1) had no effect on mRNA amounts encoding type II collagen and interleukin-1beta (IL-1beta). In contrast, seeding chondrocytes in three-dimensional (3D) alginate cultures raised type II collagen expression significantly and addition of BMP-2 enhanced this effect. We conclude that chondrocytes during expansion for ACT may benefit from BMP-2 activation only when seeded in an appropriate 3D culture system. Copyright 2004 OsteoArthritis Research Society International

  1. Experimental Comparison of Cranial Particulate Bone Graft, rhBMP-2, and Split Cranial Bone Graft for Inlay Cranioplasty.

    Science.gov (United States)

    Hassanein, Aladdin H; Couto, Rafael A; Kurek, Kyle C; Rogers, Gary F; Mulliken, John B; Greene, Arin K

    2013-05-01

    Background :  Particulate bone graft and recombinant human bone morphogenetic protein-2 (rhBMP-2) are options for inlay cranioplasty in children who have not developed a diploic space. The purpose of this study was to determine whether particulate bone graft or rhBMP-2 has superior efficacy for inlay cranioplasty and to compare these substances to split cranial bone. Methods :  A 17 mm × 17 mm critical-sized defect was made in the parietal bones of 22 rabbits and managed in four ways: Group I (no implant; n=5), Group II (particulate bone graft; n=5), Group III (rhBMP-2; n=7), and Group IV (split cranial bone graft; n=5). Animals underwent microcomputed tomography and histologic analysis 16 weeks after cranioplasty. Results :  Defects without an implant (Group I) demonstrated inferior ossification (41.4%; interquartile range [IQR], 28.9% to 42.5%) compared to those treated with particulate bone graft (Group II: 99.5%; IQR, 97.8% to 100%), rhBMP-2 (Group III: 99.6%; IQR, 99.5% to 100%), or split cranial bone (Group IV: 100%) (P inlay calvarial defect areas equally, although the thickness of bone healed with rhBMP-2 is inferior. Clinically, particulate bone graft or split cranial bone graft may be superior to rhBMP-2 for inlay cranioplasty.

  2. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    Science.gov (United States)

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Ectopic osteogenesis of hBMP-2 gene-transduced human bone mesenchymal stem cells/BCB.

    Science.gov (United States)

    Han, Dong; Li, Jianjun; Guan, Xiaoyi

    2010-08-01

    We determined the feasibility of using scaffolds of adenoviral human BMP2 gene (AdBMP2)-modified human bone marrow mesenchymal stem cells (hBMSCs) and antigen-free bovine cancellous bone (BCB) to construct bone tissue. hMSCs were infected with AdBMP-2. Expression of BMP-2 and alkaline phosphatase confirmed successful secretion of active BMP-2. The osteogenic capability of a composite of AdBMP2-modified hMSCs with BCB was evaluated in athymic mice (group A). BCB (group B), hMSCs/BCB (group C), adenoviral beta-galactosidase genes (Adbetagal)-transfected hMSCs/BCB (group D) were controls. Formation of bone tissue was assessed by histological methods 4 weeks and 8 weeks after implantation. Implanted cells were identified by human Y-chromosome-specific fluorescence in-situ hybridization (FISH). hMSCs differentiated into osteogenic cells, and bone formation was observed. Obvious bone formation was not noted at any time point in control groups. We hypothesize that the described method is a promising method for bone regeneration.

  4. Osteoinductivity Assessment of BMP-2 Loaded Composite Chitosan-Nano-Hydroxyapatite Scaffolds in a Rat Muscle Pouch

    Directory of Open Access Journals (Sweden)

    Warren O. Haggard

    2011-08-01

    Full Text Available The objective of this study was to evaluate the osteoinductivity of composite chitosan-nano-hydroxyapatite scaffolds in a rat muscle pouch model. Previous in vitro characterization demonstrated the ability of the scaffolds to promote bone regeneration and as a carrier for local delivery of BMP-2. Composite microspheres were prepared using a co-precipitation method, and scaffolds were fabricated using an acid wash to adhere beads together. To determine the in vivo osteoinductivity of the scaffolds, the following groups (n = 6 were implanted into muscle pouches created in the latissimus dorsi of Sprague Dawley rats: (A lyophilized scaffolds without rhBMP-2, (B lyophilized scaffolds with rhBMP-2, (C non-lyophilized scaffolds with rhBMP-2, and (D absorbable collagen sponge with rhBMP-2 (control. Groups B, C, and D were loaded with 4 mL of a 9.0 μg/mL solution of rhBMP-2 for 48 h. The rats were sacrificed after one month and samples were analyzed for amount of residual implant material, new bone, and osteoid. Although the experimental groups displayed minimal degradation after one month, all of the scaffolds contained small amounts of woven bone and considerable amounts of osteoid. Approximately thirty percent of the open space available for tissue ingrowth in the scaffolds contained new bone or osteoid in the process of mineralization. The ability of the composite scaffolds (with and without BMP-2 to promote ectopic bone growth in vivo was demonstrated.

  5. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2015-04-01

    Full Text Available Background/Aims: Joint cartilage defects are difficult to treat due to the limited self-repair capacities of cartilage. Cartilage tissue engineering based on stem cells and gene enhancement is a potential alternative for cartilage repair. Bone morphogenetic protein 2 (BMP2 has been shown to induce chondrogenic differentiation in mesenchymal stem cells (MSCs; however, maintaining the phenotypes of MSCs during cartilage repair since differentiation occurs along the endochondral ossification pathway. In this study, hypoxia inducible factor, or (HIF-1α, was determined to be a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral bone formation. Methods: BMP2 was used to induce chondrogenic and osteogenic differentiation in stem cells and fetal limb development. After HIF-1α was added to the inducing system, any changes in the differentiation markers were assessed. Results: HIF-1α was found to potentiate BMP2-induced Sox9 and the expression of chondrogenesis by downstream markers, and inhibit Runx2 and the expression of osteogenesis by downstream markers in vitro. In subcutaneous stem cell implantation studies, HIF-1α was shown to potentiate BMP2-induced cartilage formation and inhibit endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited chondrocyte hypertrophy and endochondral ossification. Conclusion: The results of this study indicated that, when combined with BMP2, HIF-1α induced MSC differentiation could become a new method of maintaining cartilage phenotypes during cartilage tissue engineering.

  6. Regenerating Mandibular Bone Using rhBMP-2: Part 1-Immediate Reconstruction of Segmental Mandibulectomies.

    Science.gov (United States)

    Arzi, Boaz; Verstraete, Frank J M; Huey, Daniel J; Cissell, Derek D; Athanasiou, Kyriacos A

    2015-05-01

    To describe a surgical technique using a regenerative approach and internal fixation for immediate reconstruction of critical size bone defects after segmental mandibulectomy in dogs. Prospective case series. Dogs (n = 4) that had reconstruction after segmental mandibulectomy for treatment of malignant or benign tumors. Using a combination of extraoral and intraoral approaches, a locking titanium plate was contoured to match the native mandible. After segmental mandibulectomy, the plate was secured and a compression resistant matrix (CRM) infused with rhBMP-2, implanted in the defect. The implant was then covered with a soft tissue envelope followed by intraoral and extraoral closure. All dogs that had mandibular reconstruction healed with intact gingival covering over the mandibular defect and had immediate return to normal function and occlusion. Mineralized tissue formation was observed clinically within 2 weeks and solid cortical bone formation within 3 months. CT findings at 3 months showed that the newly regenerated mandibular bone had ∼50% of the bone density and porosity compared to the contralateral side. No significant complications occurred. Mandibular reconstruction using internal fixation and CRM infused with rhBMP-2 is an excellent solution for immediate reconstruction of segmental mandibulectomy defects in dogs. © Copyright 2014 by The American College of Veterinary Surgeons.

  7. 2-N, 6-O-sulfated chitosan-assisted BMP-2 immobilization of PCL scaffolds for enhanced osteoinduction.

    Science.gov (United States)

    Cao, Lingyan; Yu, Yuanman; Wang, Jing; Werkmeister, Jerome A; McLean, Keith M; Liu, Changsheng

    2017-05-01

    The aim of this study was to develop a 2-N, 6-O-sulfated chitosan (26SCS) modified electrospun fibrous PCL scaffold for bone morphogenetic protein-2 (BMP-2) delivery to improve osteoinduction. The PCL scaffold was modified by an aminolysis reaction using ethylenediamine (ED) and 26SCS was immobilized via electrostatic interactions (PCL-N-S). Scaffolds were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. In vitro BMP-2 adsorption and release kinetics indicated that modified PCL-N-S scaffolds showed higher levels of binding of BMP-2 (about 30-100 times), moderative burst release (about one third), and prolonged releasing time compared to the unmodified PCL scaffold. The bioactivity of released BMP-2 determined by alkaline phosphatase (ALP) activity assay was maintained and improved 8-12 times with increasing concentration of immobilized 26SCS on the scaffolds. In vitro studies demonstrated that bone marrow mesenchymal stem cells (BMSCs) attached more readily to the PCL-N-S scaffolds with increased spreading. In conclusion, 26SCS modified PCL scaffolds can be a potent system for the sustained and bioactive delivery of BMP-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Contribution of Implanted, Genetically Modified Muscle Progenitor Cells Expressing BMP-2 to New Bone Formation in a Rat Osseous Defect.

    Science.gov (United States)

    De La Vega, Rodolfo E; De Padilla, Consuelo Lopez; Trujillo, Miguel; Quirk, Nicholas; Porter, Ryan M; Evans, Christopher H; Ferreira, Elisabeth

    2018-01-03

    Because muscle contains osteoprogenitor cells and has a propensity to form bone, we have explored its utility in healing large osseous defects. Healing is achieved by the insertion of muscle fragments transduced with adenovirus encoding BMP-2 (Ad.BMP-2). However, it is not known whether the genetically modified muscle contributes osteoprogenitor cells to healing defects or merely serves as a local source of BMP-2. This question is part of the larger debate on the fate of progenitor cells introduced into sites of tissue damage to promote regeneration. To address this issue, we harvested fragments of muscle from rats constitutively expressing GFP, transduced them with Ad.BMP-2, and implanted them into femoral defects in wild-type rats under various conditions. GFP + cells persisted within defects for the entire 8 weeks of the experiments. In the absence of bone formation, these cells presented as fibroblasts. When bone was formed, GFP + cells were present as osteoblasts and osteocytes and also among the lining cells of new blood vessels. The genetically modified muscle thus contributed progenitor cells as well as BMP-2 to the healing defect, a property of great significance in light of the extensive damage to soft tissue and consequent loss of endogenous progenitors in problematic fractures. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  9. Low-power GaAlAs laser irradiation promotes the proliferation and osteogenic differentiation of stem cells via IGF1 and BMP2.

    Directory of Open Access Journals (Sweden)

    Jyun-Yi Wu

    Full Text Available Low-power laser irradiation (LPLI has been found to induce various biological effects and cellular processes. Also, LPLI has been shown to promote fracture repair. Until now, it has been unclear how LPLI promotes bone formation and fracture healing. The aim of this study was to investigate the potential mechanism of LPLI-mediated enhancement of bone formation using mouse bone marrow mesenchymal stem cells (D1 cells. D1 cells were irradiated daily with a gallium-aluminum-arsenide (GaAlAs laser at dose of 0, 1, 2, or 4 J/cm(2. The lactate dehydrogenase (LDH assay showed no cytotoxic effects of LPLI on D1 cells, and instead, LPLI at 4 J/cm(2 significantly promoted D1 cell proliferation. LPLI also enhanced osteogenic differentiation in a dose-dependent manner and moderately increased expression of osteogenic markers. The neutralization experiments indicated that LPLI regulated insulin-like growth factor 1 (IGF1 and bone morphogenetic protein 2 (BMP2 signaling to promote cell proliferation and/or osteogenic differentiation. In conclusion, our study suggests that LPLI may induce IGF1 expression to promote both the proliferation and osteogenic differentiation of D1 cells, whereas it may induce BMP2 expression primarily to enhance osteogenic differentiation.

  10. BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects.

    Directory of Open Access Journals (Sweden)

    Xiaoning He

    Full Text Available Current clinical therapies for critical-sized bone defects (CSBDs remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2 gene-modified MSCs and endothelial progenitor cells (EPCs could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs.

  11. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation

    Science.gov (United States)

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo. PMID:26808122

  12. Mesenchymal stem cell expression of SDF-1β synergizes with BMP-2 to augment cell-mediated healing of critical-sized mouse calvarial defects.

    Science.gov (United States)

    Herberg, Samuel; Aguilar-Perez, Alexandra; Howie, R Nicole; Kondrikova, Galina; Periyasamy-Thandavan, Sudharsan; Elsalanty, Mohammed E; Shi, Xingming; Hill, William D; Cray, James J

    2017-06-01

    Bone has the potential for spontaneous healing. This process, however, often fails in patients with comorbidities. Tissue engineering combining functional cells, biomaterials and osteoinductive cues may provide alternative treatment strategies. We have recently demonstrated that stromal cell-derived factor-1β (SDF-1β) works in concert with bone morphogenetic protein-2 (BMP-2) to potentiate osteogenic differentiation of bone marrow-derived mesenchymal stem/stromal cells (BMSCs). Here, we test the hypothesis that SDF-1β overexpressed in Tet-Off-SDF-1β BMSCs, delivered on acellular dermal matrix (ADM), synergistically augments BMP-2-induced healing of critical-sized mouse calvarial defects. BMSC therapies alone showed limited bone healing, which was increased with co-delivery of BMP-2. This was further enhanced in Tet-Off-SDF-1β BMSCs + BMP-2. Only limited BMSC retention on ADM constructs was observed after 4 weeks in vivo, which was increased with BMP-2 co-delivery. In vitro cell proliferation studies showed that supplementing BMP-2 to Tet-Off BMSCs significantly increased the cell number during the first 24 h. Consequently, the increased cell numbers decreased the detectable BMP-2 levels in the medium, but increased cell-associated BMP-2. The data suggest that SDF-1β provides synergistic effects supporting BMP-2-induced, BMSC-mediated bone formation and appears suitable for optimization of bone augmentation in combination therapy protocols. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Bicomponent fibrous scaffolds made through dual-source dual-power electrospinning: Dual delivery of rhBMP-2 and Ca-P nanoparticles and enhanced biological performances.

    Science.gov (United States)

    Wang, Chong; Lu, William Weijia; Wang, Min

    2017-08-01

    Electrospun scaffolds incorporated with both calcium phosphates (Ca-P) and bone morphogenetic protein-2 (BMP-2) have been used for bone tissue regeneration. However, in most cases BMP-2 and Ca-P were simply mixed and loaded in a monolithic structure, risking low BMP-2 loading level, reduced BMP-2 biological activity, uncontrolled BMP-2 release and inhomogeneous Ca-P distribution. In this investigation, novel bicomponent scaffolds having evenly distributed rhBMP-2-containing fibers and Ca-P nanoparticle-containing fibers were made using an established dual-source dual-power electrospinning technique with the assistance of emulsion electrospinning and blend electrospinning. The release behavior of rhBMP-2 and Ca 2+ ions could be separately tuned and the released rhBMP-2 retained a 68% level for biological activity. MC3T3-E1 cells showed high viability and normal morphology on scaffolds. Compared to monocomponent scaffolds, enhanced cell proliferation, alkaline phosphatase activity, cell mineralization, and gene expression of osteogenic markers were achieved for bicomponent scaffolds due to the synergistic effect of rhBMP-2 and Ca-P nanoparticles. Bicomponent scaffolds with a double mass elicited further enhanced cell adhesion, spreading, proliferation, and osteogenic differentiation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2199-2209, 2017. © 2017 Wiley Periodicals, Inc.

  14. Sandwich-type PLLA-nanosheets loaded with BMP-2 induce bone regeneration in critical-sized mouse calvarial defects.

    Science.gov (United States)

    Huang, Kuo-Chin; Yano, Fumiko; Murahashi, Yasutaka; Takano, Shuta; Kitaura, Yoshiaki; Chang, Song Ho; Soma, Kazuhito; Ueng, Steve W N; Tanaka, Sakae; Ishihara, Kazuhiko; Okamura, Yosuke; Moro, Toru; Saito, Taku

    2017-09-01

    To overcome serious clinical problems caused by large bone defects, various approaches to bone regeneration have been researched, including tissue engineering, biomaterials, stem cells and drug screening. Previously, we developed a free-standing biodegradable polymer nanosheet composed of poly(L-lactic acid) (PLLA) using a simple fabrication process consisting of spin-coating and peeling techniques. Here, we loaded recombinant human bone morphogenetic protein-2 (rhBMP-2) between two 60-nm-thick PLLA nanosheets, and investigated these sandwich-type nanosheets in bone regeneration applications. The PLLA nanosheets displayed constant and sustained release of the loaded rhBMP-2 for over 2months in vitro. Moreover, we implanted the sandwich-type nanosheets with or without rhBMP-2 into critical-sized defects in mouse calvariae. Bone regeneration was evident 4weeks after implantation, and the size and robustness of the regenerated bone had increased by 8weeks after implantation in mice implanted with the rhBMP-2-loaded nanosheets, whereas no significant bone formation occurred over a period of 20weeks in mice implanted with blank nanosheets. The PLLA nanosheets loaded with rhBMP-2 may be useful in bone regenerative medicine; furthermore, the sandwich-type PLLA nanosheet structure may potentially be applied as a potent prolonged sustained-release carrier of other molecules or drugs. Here we describe sandwich-type poly(L-lactic acid) (PLLA) nanosheets loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a novel method for bone regeneration. Biodegradable 60-nm-thick PLLA nanosheets display strong adhesion without any adhesive agent. The sandwich-type PLLA nanosheets displayed constant and sustained release of the loaded rhBMP-2 for over 2months in vitro. The nanosheets with rhBMP-2 markedly enhanced bone regeneration when they were implanted into critical-sized defects in mouse calvariae. In addition to their application for bone regeneration, PLLA

  15. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Ian P M Tomlinson

    2011-06-01

    Full Text Available Genome-wide association studies (GWAS have identified 14 tagging single nucleotide polymorphisms (tagSNPs that are associated with the risk of colorectal cancer (CRC, and several of these tagSNPs are near bone morphogenetic protein (BMP pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3, BMP4 (14q22.2, and BMP2 (20p12.3 using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10 and BMP2 (rs4813802, P = 4.65×10(-11. Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8 and rs11632715 (P = 2.30×10(-10. As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.

  16. Reduction of Adipose Tissue Formation by the Controlled Release of BMP-2 Using a Hydroxyapatite-Coated Collagen Carrier System for Sinus-Augmentation/Extraction-Socket Grafting

    Directory of Open Access Journals (Sweden)

    Jung-Seok Lee

    2015-11-01

    Full Text Available The effects of hydroxyapatite (HA-coating onto collagen carriers for application of recombinant human bone morphogenetic protein 2 (rhBMP-2 on cell differentiation in vitro, and on in vivo healing patterns after sinus-augmentation and alveolar socket-grafting were evaluated. In vitro induction of osteogenic/adipogenic differentiation was compared between the culture media with rhBMP-2 solution and with the released rhBMP-2 from the control collagen and from the HA-coated collagen. Demineralized bovine bone and collagen/HA-coated collagen were grafted with/without rhBMP-2 in sinus-augmentation and tooth-extraction-socket models. Adipogenic induction by rhBMP-2 released from HA-coated collagen was significantly reduced compared to collagen. In the sinus-augmentation model, sites that received rhBMP-2 exhibited large amounts of vascular tissue formation at two weeks and increased adipose tissue formation at eight weeks; this could be significantly reduced by using HA-coated collagen as a carrier for rhBMP-2. In extraction-socket grafting, dimensional reduction of alveolar ridge was significantly decreased at sites received rhBMP-2 compared to control sites, but adipose tissue was increased within the regenerated socket area. In conclusion, HA-coated collagen carrier for Escherichia coli-derived rhBMP-2 (ErhBMP-2 may reduce in vitro induction of adipogenic differentiation and in vivo adipose bone marrow tissue formation in bone tissue engineering by ErhBMP-2.

  17. Immunohistological localization of BMP-2, BMP-7, and their receptors in knee joints with focal cartilage lesions

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Pilz, Ingo H

    2012-01-01

    undergoing autologous chondrocyte implantation. Expression of BMP-2, BMP-7, and their receptors BMPR-1A, BMPR-1B and BMPR-2 were semiquantitatively evaluated by immunohistological staining. RESULTS: BMP-7 was equally highly expressed in all cartilage and synovial biopsies. Increased levels of BMPR-1A...

  18. Scaffold-based rhBMP-2 therapy in a rat alveolar defect model: implications for human gingivoperiosteoplasty.

    Science.gov (United States)

    Nguyen, Phuong D; Lin, Clarence D; Allori, Alexander C; Schachar, Jeffrey S; Ricci, John L; Saadeh, Pierre B; Warren, Stephen M

    2009-12-01

    Primary alveolar cleft repair has a 41 to 73 percent success rate. Patients with persistent alveolar defects require secondary bone grafting. The authors investigated scaffold-based therapies designed to augment the success of alveolar repair. Critical-size, 7 x 4 x 3-mm alveolar defects were created surgically in 60 Sprague-Dawley rats. Four scaffold treatment arms were tested: absorbable collagen sponge, absorbable collagen sponge plus recombinant human bone morphogenetic protein-2 (rhBMP-2), hydroxyapatite-tricalcium phosphate, hydroxyapatite-tricalcium phosphate plus rhBMP-2, and no scaffold. New bone formation was assessed radiomorphometrically and histomorphometrically at 4, 8, and 12 weeks. Radiomorphometrically, untreated animals formed 43 +/- 6 percent, 53 +/- 8 percent, and 48 +/- 3 percent new bone at 4, 8, and 12 weeks, respectively. Animals treated with absorbable collagen sponge formed 50 +/- 6 percent, 79 +/- 9 percent, and 69 +/- 7 percent new bone, respectively. Absorbable collagen sponge plus rhBMP-2-treated animals formed 49 +/- 2 percent, 71 +/- 6 percent, and 66 +/- 7 percent new bone, respectively. Hydroxyapatite-tricalcium phosphate treatment stimulated 69 +/- 12 percent, 86 +/- 3 percent (p scaffold. Radiomorphometrically, absorbable collagen sponge and hydroxyapatite-tricalcium phosphate scaffolds induced more bone formation than untreated controls. The rhBMP-2 added a small but significant histomorphometric osteogenic advantage to the hydroxyapatite-tricalcium phosphate scaffold.

  19. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.

    Science.gov (United States)

    Du, Mingchun; Chen, Bing; Meng, Qingyuan; Liu, Sumei; Zheng, Xiongfei; Zhang, Cheng; Wang, Heran; Li, Hongyi; Wang, Nuo; Dai, Jianwu

    2015-12-18

    Three-dimensional (3D) bioprinting combines biomaterials, cells and functional components into complex living tissues. Herein, we assembled function-control modules into cell-laden scaffolds using 3D bioprinting. A customized 3D printer was able to tune the microstructure of printed bone mesenchymal stem cell (BMSC)-laden methacrylamide gelatin scaffolds at the micrometer scale. For example, the pore size was adjusted to 282 ± 32 μm and 363 ± 60 μm. To match the requirements of the printing nozzle, collagen microfibers with a length of 22 ± 13 μm were prepared with a high-speed crusher. Collagen microfibers bound bone morphogenetic protein 2 (BMP2) with a collagen binding domain (CBD) as differentiation-control module, from which BMP2 was able to be controllably released. The differentiation behaviors of BMSCs in the printed scaffolds were compared in three microenvironments: samples without CBD-BMP2-collagen microfibers in the growth medium, samples without microfibers in the osteogenic medium and samples with microfibers in the growth medium. The results indicated that BMSCs showed high cell viability (>90%) during printing; CBD-BMP2-collagen microfibers induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. Our studies suggest that these function-control modules are attractive biomaterials and have potential applications in 3D bioprinting.

  20. Chitosan-hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2.

    Science.gov (United States)

    Nath, Subrata Deb; Abueva, Celine; Kim, Boram; Lee, Byong Taek

    2015-01-22

    Polyelectrolyte complex (PEC) is formed when polymers with opposite charges are combined in solution. PECs are recently gaining attention as carriers for controlled release of drugs and proteins. Herein, bone morphogenetic protein-2 (BMP-2) was immobilized in a PEC of natural polymers, chitosan and hyaluronic acid. Charge-to-charge stoichiometry of the formed PEC was estimated based on turbidity of combined chitosan and hyaluronic acid solutions. Free amino groups in chitosan were crosslinked with different amounts of genipin. The degree of crosslinking, consequently its effects in vitro in terms of swelling, degradation and cytocompatibility were analyzed. Immobilization of three different amount of BMP-2 in chitosan-hyaluronic acid PEC scaffold resulted sustained release of the growth factor for more than 30 days. Immobilization efficacies varied from 61% to 76% depending on the amount of BMP-2. Finally effects in osteogenic differentiation of the PEC with BMP-2 to MC3T3-E1 cells were determined by reverse transcriptase PCR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The effect of combined application of TGFbeta-1, BMP-2, and COLLOSS E on the development of bone marrow derived osteoblast-like cells in vitro.

    NARCIS (Netherlands)

    Zande, M. van der; Walboomers, X.F.; Briest, A.; Springer, M.; Alava, J.I.; Jansen, J.A.

    2008-01-01

    This study investigated the combined application of Transforming Growth Factor beta-1 (TGFbeta-1) and Bone Morphogenetic Protein-2 (BMP-2) to stimulate osteogenic expression in vitro. TGFbeta-1 and BMP-2 fulfill specific roles in the formation of new bone. COLLOSS E, a bone-derived collagen product

  2. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2.

    Directory of Open Access Journals (Sweden)

    Frederico O Ribeiro

    Full Text Available The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2 has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies.

  3. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2.

    Science.gov (United States)

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M; Cai, Chen-Leng

    2011-12-15

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair

    Science.gov (United States)

    Kadyrov, Farid A.; Genschel, Jochen; Fang, Yanan; Penland, Elisabeth; Edelmann, Winfried; Modrich, Paul

    2009-01-01

    Mismatch repair contributes to genetic stability, and inactivation of the mammalian pathway leads to tumor development. Mismatch correction occurs by an excision-repair mechanism and has been shown to depend on the 5′ to 3′ hydrolytic activity exonuclease 1 (Exo1) in eukaryotic cells. However, genetic and biochemical studies have indicated that one or more Exo1-independent modes of mismatch repair also exist. We have analyzed repair of nicked circular heteroduplex DNA in extracts of Exo1-deficient mouse embryo fibroblast cells. Exo1-independent repair under these conditions is MutLα-dependent and requires functional integrity of the MutLα endonuclease metal-binding motif. In contrast to the Exo1-dependent reaction, we have been unable to detect a gapped excision intermediate in Exo1-deficient extracts when repair DNA synthesis is blocked. A possible explanation for this finding has been provided by analysis of a purified system comprised of MutSα, MutLα, replication factor C, proliferating cell nuclear antigen, replication protein A, and DNA polymerase δ that supports Exo1-independent repair in vitro. Repair in this system depends on MutLα incision of the nicked heteroduplex strand and dNTP-dependent synthesis-driven displacement of a DNA segment spanning the mismatch. Such a mechanism may account, at least in part, for the Exo1-independent repair that occurs in eukaryotic cells, and hence the modest cancer predisposition of Exo1-deficient mammalian cells. PMID:19420220

  5. The extracellular calcium-sensing receptor reciprocally regulates the secretion of BMP-2 and the BMP antagonist Noggin in colonic myofibroblasts.

    Science.gov (United States)

    Peiris, Dinithi; Pacheco, Ivan; Spencer, Craig; MacLeod, R John

    2007-03-01

    To understand whether postprandial extracellular Ca(2+) (Ca(o)(2+)) changes were related to intestinal epithelial homeostasis, we performed array analysis on extracellular calcium-sensing receptor (CaSR)-expressing colonic myofibroblasts (18Co cells) and observed increases in bone morphogenetic protein (BMP)-2 transcripts. The present experiments demonstrated that regulated secretion of BMP-2 occurs in response to CaSR activation of these cells and revealed a new property of BMP-2 on the intestinal barrier. Activation by Ca(o)(2+), spermine, GdCl(3), or neomycin sulfate of 18Co cells or primary isolates of myofibroblasts from the normal human colon stimulated both the synthesis (RT-PCR) and secretion (ELISA) of BMP-2. Transient transfection with short interfering RNA against CaSR completely inhibited BMP-2 secretion. Transient transfection with dominant negative CaSR (R185Q) increased the EC(50) of Ca(o)(2+) (5.7 vs. 2.3 mM). Upregulation of BMP-2 transcript and secretion occurring within 3 h of CaSR activation was prevented by actinomycin D. CaSR-mediated BMP-2 synthesis and secretion required phosphatidylinositol 3-kinase activation (as assessed by phospho-Akt generation). Exogenous BMP-2 and conditioned medium from CaSR-stimulated 18Co cells accelerated restitution in wounded postconfluent Caco-2 cells. Exogenous BMP-2 and conditioned medium from CaSR-stimulated 18Co cells increased the transepithelial resistance of low- and high-resistance T-84 epithelial monolayers. CaSR stimulation of T-84 epithelia and colonic myofibroblasts downregulated the BMP family antagonist Noggin, as assessed by RT-PCR and Western blot analysis. Together, our data suggest that the CaSR mediates the effective concentration of BMP-2 in the intestine, which leads to enhanced repair and barrier development.

  6. Repair of Cranial Bone Defects Using rhBMP2 and Submicron Particle of Biphasic Calcium Phosphate Ceramics with Through-Hole

    Directory of Open Access Journals (Sweden)

    Byung-Chul Jeong

    2015-01-01

    Full Text Available Recently a submicron particle of biphasic calcium phosphate ceramic (BCP with through-hole (donut-shaped BCP (d-BCP was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing.

  7. Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle

    Science.gov (United States)

    Guillot, R.; Pignot-Paintrand, I.; Lavaud, J.; Decambron, A.; Bourgeois, E.; Josserand, V.; Logeart-Avramoglou, D.; Viguier, E.; Picart, C.

    2016-01-01

    The aim of this study was to evaluate the osseointegration of titanium implants (Ti-6Al-4V, noted here TA6V) and poly(etheretherketone) PEEK implants induced by a BMP-2-delivering surface coating made of polyelectrolyte multilayer films. The in vitro bioactivity of the polyelectrolyte film-coated implants was assessed using the alkaline phosphatase assay. BMP-2-coated TA6V and PEEK implants with a total dose of 9.3 µg of BMP-2 were inserted into the femoral condyles of New Zealand white rabbits and compared to uncoated implants. Rabbits were sacrificed 4 and 8 weeks after implantation. Histomorphometric analyses on TA6V and PEEK implants and microcomputed tomography on PEEK implants revealed that the bone-to-implant contact and bone area around the implants were significantly lower for the BMP-2-coated implants than for the bare implants. This was confirmed by scanning electron microscopy imaging. This difference was more pronounced at 4 weeks in comparison to the 8-week time point. However, bone growth inside the hexagonal upper hollow cavity of the screws was higher in the case of the BMP-2 coated implants. Overall, this study shows that a high dose of BMP-2 leads to localized and temporary bone impairment, and that the dose of BMP-2 delivered at the surface of an implant needs to be carefully optimized. PMID:26965394

  8. E. coli-Produced BMP-2 as a Chemopreventive Strategy for Colon Cancer: A Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Saravanan Yuvaraj

    2012-01-01

    Full Text Available Colon cancer is a serious health problem, and novel preventive and therapeutical avenues are urgently called for. Delivery of proteins with anticancer activity through genetically modified bacteria provides an interesting, potentially specific, economic and effective approach here. Interestingly, bone morphogenetic protein 2 (BMP-2 is an important and powerful tumour suppressor in the colon and is thus an attractive candidate protein for delivery through genetically modified bacteria. It has not been shown, however, that BMP production in the bacterial context is effective on colon cancer cells. Here we demonstrate that transforming E. coli with a cDNA encoding an ileal-derived mature human BMP-2 induces effective apoptosis in an in vitro model system for colorectal cancer, whereas the maternal organism was not effective in this respect. Furthermore, these effects were sensitive to cotreatment with the BMP inhibitor Noggin. We propose that prevention and treatment of colorectal cancer using transgenic bacteria is feasible.

  9. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yue, E-mail: 373073766@qq.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Ren, Ling, E-mail: lren@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Liu, Chang, E-mail: meixifan1971@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Yuan, Yajiang, E-mail: yuan925@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Lin, Xiao, E-mail: linx@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Tan, Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Chen, Shurui, E-mail: 272146792@qq.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Mei, Xifan, E-mail: meixifan1971@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China)

    2013-10-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis.

  10. Induction of osteoconductivity by BMP-2 gene modification of mesenchymal stem cells combined with plasma-sprayed hydroxyapatite coating

    Science.gov (United States)

    Wu, Jiang; Guo, Ying-qiang; Yin, Guang-fu; Chen, Huai-qing; Kang, Yunqing

    2008-11-01

    Success in bone implant depends greatly on the composition and surface features of the implant. The surface-modification measures not only favor the implant's osteoconductivity, but also promote both bone anchoring and biomechanical stability. This paper reports an approach to combine a hydroxyapatite (HA) coated substrate with a cellular vehicle for the delivery of bone morphogenetic protein-2 (BMP-2) synergistically enhancing the osteoconductivity of implant surfaces. We examined the attachment, growth and osteoinductive activity of transfected BMP-producing bone marrow mesenchymal stem cells (BMSCs) on a plasma-sprayed HA coated substrate. It was found that the HA coated substrate could allow the attachment and growth of BMP-2 gene modified BMSCs, and this combined application synergistically enhanced osteconductivity of the substrate surface. This synergistic method may be of osseointegration value in orthopedic and dental implant surgery.

  11. Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis

    International Nuclear Information System (INIS)

    Srinivasan, Padma P; McCoy, Sarah Y; Yang Weidong; Farach-Carson, Mary C; Kirn-Safran, Catherine B; Jha, Amit K; Jia Xinqiao

    2012-01-01

    The goal of this study was to use bioengineered injectable microgels to enhance the action of bone morphogenetic protein 2 (BMP2) and stimulate cartilage matrix repair in a reversible animal model of osteoarthritis (OA). A module of perlecan (PlnD1) bearing heparan sulfate (HS) chains was covalently immobilized to hyaluronic acid (HA) microgels for the controlled release of BMP2 in vivo. Articular cartilage damage was induced in mice using a reversible model of experimental OA and was treated by intra-articular injection of PlnD1-HA particles with BMP2 bound to HS. Control injections consisted of BMP2-free PlnD1-HA particles, HA particles, free BMP2 or saline. Knees dissected following these injections were analyzed using histological, immunostaining and gene expression approaches. Our results show that knees treated with PlnD1-HA/BMP2 had lesser OA-like damage compared to control knees. In addition, the PlnD1-HA/BMP2-treated knees had higher mRNA levels encoding for type II collagen, proteoglycans and xylosyltransferase 1, a rate-limiting anabolic enzyme involved in the biosynthesis of glycosaminoglycan chains, relative to control knees (PlnD1-HA). This finding was paralleled by enhanced levels of aggrecan in the articular cartilage of PlnD1-HA/BMP2-treated knees. Additionally, decreases in the mRNA levels encoding for cartilage-degrading enzymes and type X collagen were seen relative to controls. In conclusion, PlnD1-HA microgels constitute a formulation improvement compared to HA for efficient in vivo delivery and stimulation of proteoglycan and cartilage matrix synthesis in mouse articular cartilage. Ultimately, PlnD1-HA/BMP2 may serve as an injectable therapeutic agent for slowing or inhibiting the onset of OA after knee injury.

  12. Evaluation of rhBMP-2/collagen/TCP-HA bone graft with and without bone marrow cells in the canine femoral multi defect model.

    Science.gov (United States)

    Luangphakdy, V; Shinohara, K; Pan, H; Boehm, C; Samaranska, A; Muschler, G F

    2015-01-12

    Recombinant human bone morphogenetic protein-2, when applied to an absorbable type 1 bovine collagen sponge (rhBMP-2/ACS) is an effective therapy in many bone grafting settings. Bone marrow aspirate (BMA) has also been used as a source of transplantable osteogenic connective tissue progenitors. This study was designed to characterize the performance of a scaffold comprising rhBMP-2/ACS in which the sponge wraps around tri-calcium phosphate hydroxyapatite granules (rhBMP-2/ACS/TCP-HA) and to test the hypothesis that addition of BMA will improve the performance of this construct in the Canine Femoral Multi Defect Model. In each subject, two sites were grafted with rhBMP-2/ACS/TCP-HA scaffold loaded with BMA clot and two other sites with rhBMP-2/ACS/TCP-HA scaffold loaded with wound blood (WB). After correction for unresorbed TCP-HA granules, sites grafted with rhBMP-2/ACS/TCP-HA+BMA and rhBMP-2/ACS/TCP-HA+WB were similar, with mean percent bone volumes of 10.9 %±1.2 and 11.2 %±1.2, respectively. No differences were seen in quantitative histomorphometry. While bone formation using both constructs was robust, this study did not support the hypothesis that the addition of unprocessed bone marrow aspirate clot improved bone regeneration in a site engrafted with rhBMP-2/ACS/TCP-HA+BMA. In contrast to prior studies using this model, new bone formation was greater at the center of the defect where TCP-HA was distributed. This finding suggests a potential synergy between rhBMP-2 and the centrally placed ceramic and cellular components of the graft construct. Further optimization may also require more uniform distribution of TCP-HA, alternative cell delivery strategies, and a more rigorous large animal segmental defect model.

  13. In Vitro Evaluation of an Injectable Chitosan Gel for Sustained Local Delivery of BMP-2 for Osteoblastic Differentiation

    Science.gov (United States)

    2011-11-01

    Yunqing Kang,1 Daniel A. Young,1 Milan Sen,2 Joseph C. Wenke,3 Yunzhi Yang1 1Department of Restorative Dentistry and Biomaterials, University of Texas...pH value of the chitosan solution was 6.3. The dialyzed chitosan solution was autoclaved at 121C for 20 min, cooled down to room temperature, and...gel formulation. Two different concentrations of BMP-2 were loaded into the dialyzed chitosan solutions and agitated at room tem- perature and cooled

  14. The Effects of rhBMP-2 Used for Spinal Fusion on Spinal Cord Pathology After Traumatic Injury

    Science.gov (United States)

    2009-07-29

    Oudega, 2006). Secondary injury contributes to further cellular loss through hemorrhage, ischemia , excitotoxicity, inflammatory response and...following the accident (Fehlings and Perrin, 2005). Surgical management of spinal column instability requires internal fixation, together with biologic...despite comparable BBB scores observed on the 1st post- operative day between the groups. Thus, treatment with rhBMP-2 led to a transient 73 worsening

  15. Dual Delivery of rhPDGF-BB and Bone Marrow Mesenchymal Stromal Cells Expressing the BMP2 Gene Enhance Bone Formation in a Critical-Sized Defect Model

    Science.gov (United States)

    Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo

    2013-01-01

    Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis. PMID:23901900

  16. Sonoporation Increases Therapeutic Efficacy of Inducible and Constitutive BMP2/7 In Vivo Gene Delivery

    Science.gov (United States)

    Hofmann, Anna T.; Slezak, Paul; Schuetzenberger, Sebastian; Kaipel, Martin; Schwartz, Ernst; Neef, Anne; Nomikou, Nikolitsa; Nau, Thomas; van Griensven, Martijn; McHale, Anthony P.; Redl, Heinz

    2014-01-01

    Abstract An ideal novel treatment for bone defects should provide regeneration without autologous or allogenous grafting, exogenous cells, growth factors, or biomaterials while ensuring spatial and temporal control as well as safety. Therefore, a novel osteoinductive nonviral in vivo gene therapy approach using sonoporation was investigated in ectopic and orthotopic models. Constitutive or regulated, doxycycline-inducible, bone morphogenetic protein 2 and 7 coexpression plasmids were repeatedly applied for 5 days. Ectopic and orthotopic gene transfer efficacy was monitored by coapplication of a luciferase plasmid and bioluminescence imaging. Orthotopic plasmid DNA distribution was investigated using a novel plasmid-labeling method. Luciferase imaging demonstrated an increased trend (61% vs. 100%) of gene transfer efficacy, and micro-computed tomography evaluation showed significantly enhanced frequency of ectopic bone formation for sonoporation compared with passive gene delivery (46% vs. 100%) dependent on applied ultrasound power. Bone formation by the inducible system (83%) was stringently controlled by doxycycline in vivo, and no ectopic bone formation was observed without induction or with passive gene transfer without sonoporation. Orthotopic evaluation in a rat femur segmental defect model demonstrated an increased trend of gene transfer efficacy using sonoporation. Investigation of DNA distribution demonstrated extensive binding of plasmid DNA to bone tissue. Sonoporated animals displayed a potentially increased union rate (33%) without extensive callus formation or heterotopic ossification. We conclude that sonoporation of BMP2/7 coexpression plasmids is a feasible, minimally invasive method for osteoinduction and that improvement of bone regeneration by sonoporative gene delivery is superior to passive gene delivery. PMID:24164605

  17. Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation

    Science.gov (United States)

    Kim, Sungwoo; Kang, Yunqing; Krueger, Chad A.; Sen, Milan; Holcomb, John B.; Chen, Di; Wenke, Joseph C.; Yang, Yunzhi

    2012-01-01

    The purpose of this study was to develop and characterize a chitosan gel/gelatin microspheres (MSs) dual delivery system for sequential release of bone morphogenetic protein-2 (BMP-2) and insulin-like growth factor-1 (IGF-1) to enhance osteoblast differentiation in vitro. We made and characterized the delivery system based on its degree of cross-linking, degradation, and release kinetics. We also evaluated the cytotoxicity of the delivery system and the effect of growth factors on cell response using pre-osteoblast W-20-17 mouse bone marrow stromal cells. IGF-1 was first loaded into MSs, and then the IGF-1 containing MSs were encapsulated into the chitosan gel which contained BMP-2. Cross-linking of gelatin with glyoxal via Schiff bases significantly increased thermal stability and decreased the solubility of the MSs, leading to a significant decrease in the initial release of IGF-1. Encapsulation of the MSs into the chitosan gel generated polyelectrolyte complexes by intermolecular interactions, which further affected the release kinetics of IGF-1. This combinational delivery system provided an initial release of BMP-2 followed by a slow and sustained release of IGF-1. Significantly greater alkaline phosphatase activity was found in W-20-17 cells treated with the sequential delivery system than other treatments (p<0.05) after a week of culture. PMID:22293583

  18. BMP2 induced osteogenic differentiation of human umbilical cord stem cells in a peptide-based hydrogel scaffold

    Science.gov (United States)

    Lakshmana, Shruthi M.

    Craniofacial tissue loss due to traumatic injuries and congenital defects is a major clinical problem around the world. Cleft palate is the second most common congenital malformation in the United States occurring with an incidence of 1 in 700. Some of the problems associated with this defect are feeding difficulties, speech abnormalities and dentofacial anomalies. Current treatment protocol offers repeated surgeries with extended healing time. Our long-term goal is to regenerate bone in the palatal region using tissue-engineering approaches. Bone tissue engineering utilizes osteogenic cells, osteoconductive scaffolds and osteoinductive signals. Mesenchymal stem cells derived from human umbilical cord (HUMSCs) are highly proliferative with the ability to differentiate into osteogenic precursor cells. The primary objective of the study was to characterize HUMSCs and culture them in a 3D hydrogel scaffold and investigate their osteogenic potential. PuraMatrix(TM) is an injectable 3D nanofiber scaffold capable of self-assembly when exposed to physiologic conditions. Our second objective was to investigate the effect of Bone Morphogenic Protein 2 (BMP2) in enhancing the osteogenic differentiation of HUMSCs encapsulated in PuraMatrix(TM). We isolated cells isolated from Wharton's Jelly region of the umbilical cord obtained from NDRI (New York, NY). Isolated cells satisfied the minimal criteria for mesenchymal stem cells (MSCs) as defined by International Society of Cell Therapy in terms of plastic adherence, fibroblastic phenotype, surface marker expression and osteogenic differentiation. Flow Cytometry analysis showed that cells were positive for CD73, CD90 and CD105 while negative for hematopoietic marker CD34. Alkaline phosphatase activity (ALP) of HUMSCs showed peak activity at 2 weeks (p<0.05). Cells were encapsulated in 0.2% PuraMatrix(TM) at cell densities of 10x104, 20x104, 40x10 4 and 80x104. Cell viability with WST and proliferation with Live-Dead cell assays

  19. An economic analysis of using rhBMP-2 for lumbar fusion in Germany, France and UK from a societal perspective.

    Science.gov (United States)

    Alt, Volker; Chhabra, Amit; Franke, Jörg; Cuche, Matthieu; Schnettler, Reinhard; Le Huec, Jean-Charles

    2009-06-01

    Recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) can replace autogenous bone grafting in single-level lumbar interbody fusion. Its use is associated with a higher initial price for the intervention; 2,970 euros in Germany, 2,950 euros in France and 2,266 euros (1,790 pounds sterling) in UK. The aim of this study was to calculate the financial impact of rhBMP-2 treatment in Germany, UK and France from a societal perspective with a two-year time horizon. Based on clinical findings of a previously published study with a pooled data analysis, a health economic model was developed to estimate potential cost savings derived from reduced surgery time and secondary treatment costs, and faster return-to-work time associated with rhBMP-2 use compared with autogenous bone grafting. Country-specific costs are reported in 2008 Euros. From a societal perspective, overall savings from the use of rhBMP-2 in ALIF surgery compared with autograft are 8,483 euros, 9,191 euros and 8,783 euros per case for Germany, France and UK, respectively. In all the three countries savings offset the upfront price for rhBMP-2. The savings are mainly achieved by reduced productivity loss due to faster return-to-work time for patients treated with rhBMP-2. Use of rhBMP-2 in anterior lumbar fusion is a net cost-saving treatment from a societal perspective for Germany, France and UK. Improved clinical outcome for the patient combined with better health-economic outcome for the society support rhBMP-2 as a valuable alternative compared with autograft.

  20. Co-delivery of platelet-derived growth factor (PDGF-BB) and bone morphogenic protein (BMP-2) coated onto heparinized titanium for improving osteoblast function and osteointegration.

    Science.gov (United States)

    Kim, Sung Eun; Yun, Young-Pil; Lee, Jae Yong; Shim, June-Sung; Park, Kyeongsoon; Huh, Jung-Bo

    2015-12-01

    The aim of this study was to improve osteoblast function by delivering two growth factors, PDGF-BB and BMP-2, incorporated onto heparinized titanium (Hep-Ti) substrate. To achieve co-delivery of PDGF-BB and BMP-2, the surface of anodized Ti was immobilized with heparin, and then the two growth factors were coated onto the Hep-Ti surface. Incorporation of the two growth factors onto Hep-Ti was evaluated by SEM and XPS. Incorporated PDGF-BB and BMP-2 were released from the Hep-Ti substrate in a sustained manner. In vitro studies revealed that osteoblasts grown on PDGF-BB- and BMP-2-immobilized Hep-Ti increased ALP activity, calcium deposition, osteocalcin and osteopontin levels as compared to those grown on PDGF-BB alone- or BMP-2 alone-immobilized Hep-Ti. These results suggested that co-delivery of PDGF-BB and BMP-2 using Hep-Ti substrate will be a promising material for the enhancement of osteoblast function and osteointegration. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation

    Directory of Open Access Journals (Sweden)

    Mira Moussa

    2015-04-01

    Full Text Available Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8. Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3% and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%. These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.

  2. Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2.

    Directory of Open Access Journals (Sweden)

    Alexander J Neumann

    Full Text Available Articular cartilage progenitor cells (ACPCs represent a new and potentially powerful alternative cell source to commonly used cell sources for cartilage repair, such as chondrocytes and bone-marrow derived mesenchymal stem cells (MSCs. This is particularly due to the apparent resistance of ACPCs to hypertrophy. The current study opted to investigate whether human ACPCs (hACPCs are responsive towards mechanical stimulation and/or adenoviral-mediated overexpression of bone morphogenetic protein 2 (BMP-2. hACPCs were cultured in fibrin-polyurethane composite scaffolds. Cells were cultured in a defined chondro-permissive medium, lacking exogenous growth factors. Constructs were cultured, for 7 or 28 days, under free-swelling conditions or with the application of complex mechanical stimulation, using a custom built bioreactor that is able to generate joint-like movements. Outcome parameters were quantification of BMP-2 and transforming growth factor beta 1 (TGF-β1 concentration within the cell culture medium, biochemical and gene expression analyses, histology and immunohistochemistry. The application of mechanical stimulation alone resulted in the initiation of chondrogenesis, demonstrating the cells are mechanoresponsive. This was evidenced by increased GAG production, lack of expression of hypertrophic markers and a promising gene expression profile (significant up-regulation of cartilaginous marker genes, specifically collagen type II, accompanied by no increase in the hypertrophic marker collagen type X or the osteogenic marker alkaline phosphatase. To further investigate the resistance of ACPCs to hypertrophy, overexpression of a factor associated with hypertrophic differentiation, BMP-2, was investigated. A novel, three-dimensional, transduction protocol was used to transduce cells with an adenovirus coding for BMP-2. Over-expression of BMP-2, independent of load, led to an increase in markers associated with hypertropy. Taken together ACPCs

  3. Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism.

    Science.gov (United States)

    Greaney, Allison J; Maier, Nolan K; Leppla, Stephen H; Moayeri, Mahtab

    2016-01-01

    The inflammasomes are intracellular complexes that have an important role in cytosolic innate immune sensing and pathogen defense. Inflammasome sensors detect a diversity of intracellular microbial ligands and endogenous danger signals and activate caspase-1, thus initiating maturation and release of the proinflammatory cytokines interleukin-1β and interleukin-18. These events, although crucial to the innate immune response, have also been linked to the pathology of several inflammatory and autoimmune disorders. The natural isothiocyanate sulforaphane, present in broccoli sprouts and available as a dietary supplement, has gained attention for its antioxidant, anti-inflammatory, and chemopreventive properties. We discovered that sulforaphane inhibits caspase-1 autoproteolytic activation and interleukin-1β maturation and secretion downstream of the nucleotide-binding oligomerization domain-like receptor leucine-rich repeat proteins NLRP1 and NLRP3, NLR family apoptosis inhibitory protein 5/NLR family caspase-1 recruitment domain-containing protein 4 (NAIP5/NLRC4), and absent in melanoma 2 (AIM2) inflammasome receptors. Sulforaphane does not inhibit the inflammasome by direct modification of active caspase-1 and its mechanism is not dependent on protein degradation by the proteasome or de novo protein synthesis. Furthermore, sulforaphane-mediated inhibition of the inflammasomes is independent of the transcription factor nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and the antioxidant response-element pathway, to which many of the antioxidant and anti-inflammatory effects of sulforaphane have been attributed. Sulforaphane was also found to inhibit cell recruitment to the peritoneum and interleukin-1β secretion in an in vivo peritonitis model of acute gout and to reverse NLRP1-mediated murine resistance to Bacillus anthracis spore infection. These findings demonstrate that sulforaphane inhibits the inflammasomes through a novel mechanism and contributes to

  4. Genetic Variants of BMP2 and Their Association with the Risk of Non-Syndromic Tooth Agenesis

    Science.gov (United States)

    Wang, Yuting; Gu, Ning; Ma, Lan; Xu, Min; Ma, Junqing; Zhang, Weibing; Pan, Yongchu; Wang, Lin

    2016-01-01

    Non-syndromic tooth agenesis (or non-syndromic congenitally missing tooth) is one of the most common congenital defects in humans affecting the craniofacial function and appearance. Single nucleotide polymorphisms (SNPs) have been associated with an individual’s susceptibility to these anomalies. The aim of the present study was therefore to investigate the roles of the potentially functional SNPs of BMP2 in the occurrence of tooth agenesis. Overall, four potentially functional SNPs of BMP2 (rs15705, rs235768, rs235769 and rs3178250) were selected, and their associations with the susceptibility of tooth agenesis were evaluated in a case-control study of 335 non-syndromic tooth agenesis cases and 444 healthy controls. The SNPs rs15705 and rs3178250 were found to be associated with an individual’s risk of tooth agenesis (P = 0.046 and P = 0.039, respectively). Both SNPs showed an increased risk of mandibular incisor agenesis (rs15705, AA/AC vs. CC = 1.58, 95% CI = [1.06–2.34], P = 0.024; rs3178250, TT/TC vs. CC = 1.60, 95% CI = [1.08–2.37], P = 0.020). Bioinformatics analysis indicated that these two SNPs located at the 3’-untranslated region (3’-UTR) of BMP2 might alter the binding ability of miR-1273d and miR-4639-5p, respectively, which was confirmed by luciferase activity assays in the 293A and COS7 cell lines (P agenesis by possibly affecting miRNAs and mRNA interaction. PMID:27362534

  5. Bone marrow-derived mesenchymal stem cells assembled with low-dose BMP-2 in a three-dimensional hybrid construct enhances posterolateral spinal fusion in syngeneic rats.

    Science.gov (United States)

    Hu, Tao; Abbah, Sunny Akogwu; Toh, Soo Yein; Wang, Ming; Lam, Raymond Wing Moon; Naidu, Mathanapriya; Bhakta, Gajadhar; Cool, Simon M; Bhakoo, Kishore; Li, Jun; Goh, James Cho-Hong; Wong, Hee-Kit

    2015-12-01

    The combination of potent osteoinductive growth factor, functional osteoblastic cells, and osteoconductive materials to induce bone formation is a well-established concept in bone tissue engineering. However, supraphysiological dose of growth factor, such as recombinant human bone morphogenetic protein 2 (rhBMP-2), which is necessary in contemporary clinical application, have been reported to result in severe side effects. We hypothesize that the synergistic osteoinductive capacity of low-dose bone morphogenetic protein 2 (BMP-2) combined with undifferentiated bone marrow-derived stromal cells (BMSCs) is comparable to that of osteogenically differentiated BMSCs when used in a rodent model of posterolateral spinal fusion. A prospective study using a rodent model of posterolateral spinal fusion was carried out. Thirty-six syngeneic Fischer rats comprised the patient sample. Six groups of implants were evaluated as follows (n=6): (1) 10 µg BMP-2 with undifferentiated BMSCs; (2) 10 µg BMP-2 with osteogenic-differentiated BMSCs; (3) 2.5 µg BMP-2 with undifferentiated BMSCs; (4) 2.5 µg BMP-2 with osteogenic-differentiated BMSCs; (5) 0.5 µg BMP-2 with undifferentiated BMSCs; and (6) 0.5 µg BMP-2 with osteogenic-differentiated BMSCs. Optimal in vitro osteogenic differentiation of BMSCs was determined by quantitative real-time polymerase chain reaction (qRT-PCR) gene analysis whereas in vivo bone formation capacity was evaluated by manual palpation, micro-computed tomography, and histology. Rat BMSCs cultured in fibrin matrix that was loaded into the pores of medical-grade poly epsilon caprolactone tricalcium phosphate scaffolds differentiated toward osteogenic lineage by expressing osterix, runt-related transcription factor 2, and osteocalcium mRNA when supplemented with dexamethasone, ascorbic acid, and β-glycerophosphate. Whereas qRT-PCR revealed optimal increase in osteogenic genes expression after 7 days of in vitro culture, in vivo transplantation study showed

  6. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Calcium phosphate (Ca-P scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2 loaded calcium-deficient hydroxyapatite (CDHA scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR and enzyme-linked immunosorbent assay (ELISA demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2 promoted osteogenic differentiation of bone marrow stromal cells (bMSCs significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ± 5.32% and area (40.71% ± 7.14% as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ± 0.44%, calcein: 6.08% ± 1.37% and mineral apposition rate (4.13 ± 0.62 µm/day in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17 ± 15.02 Mpa and

  7. Matrix-immobilized BMP-2 on microcontact printed fibronectin as in vitro tool to study BMP-mediated signaling and cell migration

    Directory of Open Access Journals (Sweden)

    Kristin eHauff

    2015-05-01

    Full Text Available During development, bone morphogenetic proteins (BMPs exert important functions in several tissues by regulating signaling for cell differentiation and migration. In vivo the extracellular matrix (ECM not only provides a support for adherent cells, but also presents a reservoir of growth factors (GFs. Several constituents of the ECM provide adhesive cues, which serve as binding sites for cell transmembrane receptors, such as integrins, which convey adhesion-mediated signaling to the intracellular compartment. Integrins do not function alone but rather crosstalk and cooperate with other receptors, such as GF receptors, in regulating cell responses to extracellular signals. To this, we present here the immobilization of BMP-2 onto cellular fibronectin (cFN, a key protein of the ECM, to investigate their impact on GF-mediated signaling and migration.Following biotinylation, BMP-2 was linked to biotinylated cFN using NeutrAvidin (NA as cross-linker. Characterization with QCM-D and ELISA confirmed the efficient immobilization of BMP-2 on cFN over a period of 24 h.To validate the bioactivity of matrix-immobilized BMP-2 (iBMP-2 we investigated short- and long-term responses of C2C12 myoblasts in comparison to soluble BMP-2 (sBMP-2 or in absence of GFs. Similarly to sBMP-2, iBMP-2 triggered Smad 1/5 phosphorylation and translocation into the nucleus corresponding to the activation of BMP-mediated Smad-dependent pathway. Additionally, successful suppression of myotube formation was observed after six days.We next implemented this approach to fabricate cFN micro patterned stripes by soft lithography. These stripes only allowed cell-surface interaction on the pattern due to passivation of the surface in between, thus serving as platform for studies on directed cell migration. During a 10 h-period, cells showed an increased migratory activity upon BMP-2 exposure.Thus, this versatile tool retains the GF's bioactivity and allows the presentation of ECM

  8. Enhancement of Tendon–Bone Healing for Anterior Cruciate Ligament (ACL Reconstruction Using Bone Marrow-Derived Mesenchymal Stem Cells Infected with BMP-2

    Directory of Open Access Journals (Sweden)

    Shiyi Chen

    2012-10-01

    Full Text Available At present, due to the growing attention focused on the issue of tendon–bone healing, we carried out an animal study of the use of genetic intervention combined with cell transplantation for the promotion of this process. Here, the efficacy of bone marrow stromal cells infected with bone morphogenetic protein-2 (BMP-2 on tendon–bone healing was determined. A eukaryotic expression vector containing the BMP-2 gene was constructed and bone marrow-derived mesenchymal stem cells (bMSCs were infected with a lentivirus. Next, we examined the viability of the infected cells and the mRNA and protein levels of BMP-2-infected bMSCs. Gastrocnemius tendons, gastrocnemius tendons wrapped by bMSCs infected with the control virus (bMSCs+Lv-Control, and gastrocnemius tendons wrapped by bMSCs infected with the recombinant BMP-2 virus (bMSCs+Lv-BMP-2 were used to reconstruct the anterior cruciate ligament (ACL in New Zealand white rabbits. Specimens from each group were harvested four and eight weeks postoperatively and evaluated using biomechanical and histological methods. The bMSCs were infected with the lentivirus at an efficiency close to 100%. The BMP-2 mRNA and protein levels in bMSCs were significantly increased after lentiviral infection. The bMSCs and BMP-2-infected bMSCs on the gastrocnemius tendon improved the biomechanical properties of the graft in the bone tunnel; specifically, bMSCs infected with BMP-2 had a positive effect on tendon–bone healing. In the four-week and eight-week groups, bMSCs+Lv-BMP-2 group exhibited significantly higher maximum loads of 29.3 ± 7.4 N and 45.5 ± 11.9 N, respectively, compared with the control group (19.9 ± 6.4 N and 21.9 ± 4.9 N (P = 0.041 and P = 0.001, respectively. In the eight-week groups, the stiffness of the bMSCs+Lv-BMP-2 group (32.5 ± 7.3 was significantly higher than that of the bMSCs+Lv-Control group (22.8 ± 7.4 or control groups (12.4 ± 6.0 (p = 0.036 and 0.001, respectively. Based on the

  9. Simultaneous gene transfer of bone morphogenetic protein (BMP -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    Directory of Open Access Journals (Sweden)

    Miyazaki Jun-ichi

    2006-08-01

    Full Text Available Abstract Background Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS. Methods First, an in vitro study was carried out to confirm the expression of BMP-2 and BMP-7 following the double-gene transfer. Next, the individual BMP-2 and BMP-7 plasmids or both together were injected into rat calf muscles, and transcutaneous electroporation was applied 8 times at 100 V, 50 msec. Results In the culture system, the simultaneous transfer of the BMP-2 and BMP-7 genes led to a much higher ALP activity in C2C12 cells than did the transfer of either gene alone. In vivo, ten days after the treatment, soft X-ray analysis showed that muscles that received both pCAGGS-BMP-2 and pCAGGS-BMP-7 had better-defined opacities than those receiving a single gene. Histological examination showed advanced ossification in calf muscles that received the double-gene transfer. BMP-4 mRNA was also expressed, and RT-PCR showed that its level increased for 3 days in a time-dependent manner in the double-gene transfer group. Immunohistochemistry confirmed that BMP-4-expressing cells resided in the matrix between muscle fibers. Conclusion The simultaneous transfer of BMP-2 and BMP-7 genes using in vivo electroporation induces more rapid bone formation than the transfer of either gene alone, and the increased expression of endogenous BMP-4 suggests that the rapid ossification is related to the induction of BMP-4.

  10. Influence of Mussel-Derived Bioactive BMP-2-Decorated PLA on MSC Behavior in Vitro and Verification with Osteogenicity at Ectopic Sites in Vivo.

    Science.gov (United States)

    Chen, Zhuoyue; Zhang, Zhen; Feng, Juantao; Guo, Yayuan; Yu, Yuan; Cui, Jihong; Li, Hongmin; Shang, Lijun

    2018-03-30

    Osteoinductive activity of the implant in bone healing and regeneration is still a challenging research topic. Therapeutic application of recombinant human bone morphogenetic protein-2 (BMP-2) is a promising approach to enhance osteogenesis. However, high dose and uncontrolled burst release of BMP-2 may introduce edema, bone overgrowth, cystlike bone formation, and inflammation. In this study, low-dose BMP-2 of 1 μg was used to design PLA-PD-BMP for functionalization of polylactic acid (PLA) implants via mussel-inspired polydopamine (PD) assist. For the first time, the binding property and efficiency of the PD coating with BMP-2 were directly demonstrated and analyzed using an antigen-antibody reaction. The obtained PLA-PD-BMP surface immobilized with this low BMP-2 dose can endow the implants with abilities of introducing strong stem cell adhesion and enhanced osteogenicity. Furthermore, in vivo osteoinduction of the PLA-PD-BMP-2 scaffolds was confirmed by a rat ectopic bone model, which is marked as the "gold standard" for the evidence of osteoinductive activity. The microcomputed tomography, Young's modulus, and histology analyses were also employed to demonstrate that PLA-PD-BMP grafted with 1 μg of BMP-2 can induce bone formation. Therefore, the method in this study can be used as a model system to immobilize other growth factors onto various different types of polymer substrates. The highly biomimetic mussel-derived strategy can therefore improve the clinical outcome of polymer-based medical implants in a facile, safe, and effective way.

  11. TNF-alpha upregulates expression of BMP-2 and BMP-3 genes in the rat dental follicle--implications for tooth eruption.

    Science.gov (United States)

    Yao, Shaomian; Prpic, Veronica; Pan, Fenghui; Wise, Gary E

    2010-01-01

    The dental follicle appears to regulate both the alveolar bone resorption and bone formation needed for tooth eruption. Tumor necrosis factor-alpha (TNF-alpha) gene expression is maximally upregulated at postnatal day 9 in the rat dental follicle of the first mandibular molar, a time that correlates with rapid bone growth at the base of the tooth crypt, as well as a minor burst of osteoclastogenesis. TNF-alpha expression is correlated with the expression of bone morphogenetic protein-2 (BMP-2), a molecule expressed in the dental follicle that can promote bone formation. Because BMP-2 signaling may be augmented by bone morphogenetic protein-3 (BMP-3), our objective in this study was to determine if the dental follicle expresses BMP-3 and if TNF-alpha stimulates the dental follicle cells to express BMP-2 and BMP-3. Dental follicles were collected from different postnatal ages of rat pups. Dental follicle cells were incubated with TNF-alpha to study its dosage and time-course effects on gene expression of BMP-2 and BMP-3, as determined by real-time RT-PCR. Next, immunostaining was conducted to confirm if the protein was synthesized and ELISA of the conditioned medium was conducted to determine if BMP-2 was secreted. We found that BMP-3 expression is correlated with the expression of TNF-alpha in the dental follicle and TNF-alpha significantly increased BMP-2 and BMP-3 expression in vitro. Immunostaining and ELISA showed that BMP-2 and BMP-3 were synthesized and secreted. This study suggests that TNF-alpha can upregulate the expression of bone formation genes that may be needed for tooth eruption.

  12. TNF-α Upregulates Expression of BMP-2 and BMP-3 Genes in the Rat Dental Follicle – Implications for Tooth Eruption

    Science.gov (United States)

    Yao, Shaomian; Prpic, Veronica; Pan, Fenghui; Wise, Gary E.

    2011-01-01

    The dental follicle appears to regulate both the alveolar bone resorption and bone formation needed for tooth eruption. Tumor necrosis factor-alpha ( TNF-α) gene expression is maximally upregulated at postnatal day 9 in the rat dental follicle of the 1st mandibular molar, a time that correlates with rapid bone growth at the base of the tooth crypt, as well as a minor burst of osteoclastogenesis. TNF-α expression is correlated with the expression of bone morphogenetic protein-2 (BMP-2), a molecule expressed in the dental follicle that can promote bone formation. Because BMP-2 signaling may be augmented by bone morphogenetic protein-3 (BMP-3), it was the objective of this study to determine 1) if the dental follicle expresses BMP-3 and 2) if TNF-α stimulates the dental follicle cells to express BMP-2 and BMP-3. Dental follicles were collected from different postnatal ages of rat pups. Dental follicle cells were incubated with TNF-α to study its dosage and time-course effects on gene expression of BMP-2 and BMP-3, as determined by real-time RT-PCR. Next, immunostaining was conducted to confirm if the protein was synthesized and ELISA of the conditioned medium was conducted to determine if BMP-2 was secreted. We found that BMP-3 expression is correlated with the expression of TNF-α in the dental follicle and TNF-α significantly increased BMP-2 and BMP-3 expression in vitro. Immunostaining and ELISA showed that BMP-2 and BMP-3 were synthesized and secreted. This study suggests that TNF-α can upregulate the expression of bone formation genes that may be needed for tooth eruption. PMID:20067418

  13. Breast cancer cells obtain an osteomimetic feature via epithelial-mesenchymal transition that have undergone BMP2/RUNX2 signaling pathway induction

    Science.gov (United States)

    Tan, Li-Duan; Du, Xin; Li, Xiao-Qing; He, Rui; Wang, Qing-Shan; Feng, Yu-Mei

    2016-01-01

    Bone is one of the most common organs of breast cancer metastasis. Cancer cells that mimic osteoblasts by expressing bone matrix proteins and factors have a higher likelihood of metastasizing to bone. However, the molecular mechanisms of osteomimicry formation of cancer cells remain undefined. Herein, we identified a set of bone-related genes (BRGs) that are ectopically co-expressed in primary breast cancer tissues and determined that osteomimetic feature is obtained due to the osteoblast-like transformation of epithelial breast cancer cells that have undergone epithelial-mesenchymal transition (EMT) followed by bone morphogenetic protein-2 (BMP2) stimulation. Furthermore, we demonstrated that breast cancer cells that transformed into osteoblast-like cells with high expression of BRGs showed enhanced chemotaxis, adhesion, proliferation and multidrug resistance in an osteoblast-mimic bone microenvironment in vitro. During these processes, runt-related transcription factor 2 (RUNX2) functioned as a master mediator by suppressing or activating the transcription of BRGs that underlie the dynamic antagonism between the TGF-β/SMAD and BMP/SMAD signaling pathways in breast cancer cells. Our findings suggest a novel mechanism of osteomimicry formation that arises in primary breast tumors, which may explain the propensity of breast cancer to metastasize to the skeleton and contribute to potential strategies for predicting and targeting breast cancer bone metastasis and multidrug resistance. PMID:27806311

  14. The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model.

    Science.gov (United States)

    Zwingenberger, Stefan; Langanke, Robert; Vater, Corina; Lee, Geoffrey; Niederlohmann, Eik; Sensenschmidt, Markus; Jacobi, Angela; Bernhardt, Ricardo; Muders, Michael; Rammelt, Stefan; Knaack, Sven; Gelinsky, Michael; Günther, Klaus-Peter; Goodman, Stuart B; Stiehler, Maik

    2016-09-01

    The treatment of critical size bone defects represents a challenge. The growth factor bone morphogenetic protein 2 (BMP-2) is clinically established but has potentially adverse effects when used at high doses. The aim of this study was to evaluate if stromal derived factor-1 alpha (SDF-1α) and BMP-2 released from heparinized mineralized collagen type I matrix (MCM) scaffolds have a cumulative effect on bone regeneration. MCM scaffolds were functionalized with heparin, loaded with BMP-2 and/or SDF-1α and implanted into a murine critical size femoral bone defect (control group, low dose BMP-2 group, low dose BMP-2 + SDF-1α group, and high dose BMP-2 group). After 6 weeks, both the low dose BMP-2 + SDF-1α group (5.8 ± 0.6 mm³, p = 0.0479) and the high dose BMP-2 group (6.5 ± 0.7 mm³, p = 0.008) had a significantly increased regenerated bone volume compared to the control group (4.2 ± 0.5 mm³). There was a higher healing score in the low dose BMP-2 + SDF-1α group (median grade 8; Q1-Q3 7-9; p = 0.0357) than in the low dose BMP-2 group (7; Q1-Q3 5-9) histologically. This study showed that release of BMP-2 and SDF-1α from heparinized MCM scaffolds allows for the reduction of the applied BMP-2 concentration since SDF-1α seems to enhance the osteoinductive potential of BMP-2. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2126-2134, 2016. © 2016 Wiley Periodicals, Inc.

  15. Essential roles of zebrafish bmp2a, fgf10, and fgf24 in the specification of the ventral pancreas.

    Science.gov (United States)

    Naye, François; Voz, Marianne L; Detry, Nathalie; Hammerschmidt, Matthias; Peers, Bernard; Manfroid, Isabelle

    2012-03-01

    In vertebrates, pancreas and liver arise from bipotential progenitors located in the embryonic gut endoderm. Bone morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling pathways have been shown to induce hepatic specification while repressing pancreatic fate. Here we show that BMP and FGF factors also play crucial function, at slightly later stages, in the specification of the ventral pancreas. By analyzing the pancreatic markers pdx1, ptf1a, and hlxb9la in different zebrafish models of BMP loss of function, we demonstrate that the BMP pathway is required between 20 and 24 h postfertilization to specify the ventral pancreatic bud. Knockdown experiments show that bmp2a, expressed in the lateral plate mesoderm at these stages, is essential for ventral pancreas specification. Bmp2a action is not restricted to the pancreatic domain and is also required for the proper expression of hepatic markers. By contrast, through the analysis of fgf10(-/-); fgf24(-/-) embryos, we reveal the specific role of these two FGF ligands in the induction of the ventral pancreas and in the repression of the hepatic fate. These mutants display ventral pancreas agenesis and ectopic masses of hepatocytes. Overall, these data highlight the dynamic role of BMP and FGF in the patterning of the hepatopancreatic region.

  16. Effects of rhBMP-2 Loaded Titanium Reinforced Collagen Membranes on Horizontal Bone Augmentation in Dogs

    Directory of Open Access Journals (Sweden)

    Ki-Sun Lee

    2017-01-01

    Full Text Available The aim of this study was to evaluate the efficacy of growth factor loaded collagen membranes on new bone formation during horizontal bone augmentation. Mandibular defects (4 × 4 × 4 mm were surgically prepared in six male beagle dogs, which were then protected with one of three types of membranes: (1 titanium mesh, (2 titanium reinforced collagen, or (3 rhBMP-2 loaded titanium reinforced collagen. Animals were euthanized 8 and 16 weeks after surgery, and nondecalcified specimens were prepared and histomorphologically investigated to determine the degree of osteogenesis. Data were analyzed with Friedman test. With respect to the degree of osteogenesis at earlier stage (8 weeks after surgery, there was significantly higher new bone ratio in rhBMP-2 loaded membrane group (p>0.05. However, with respect to the long-term results (16 weeks after surgery, there were no significant differences among the three membranes (p>0.05. Based on histomorphometric analysis, there were no significant differences in horizontal bone gaining ratio (p>0.05.

  17. Bone induction through controlled release of novel BMP-2-related peptide from PTMC11-F127-PTMC11 hydrogels

    International Nuclear Information System (INIS)

    Tang Shuo; Li Jingfeng; Teng Yu; Guo Xiaodong; Zhao Jingjing; Xu Shuyun; Quan Daping

    2012-01-01

    Bone morphogenetic protein 2 (BMP-2) is the most powerful osteogenic factor; its effectiveness in enhancing osteoblastic activation has been confirmed both in vitro and in vivo. We developed a novel peptide (designated P24) derived from the ‘knuckle’ epitope of BMP-2 and found it also had osteogenic bioactivity to some extent. The main objective of this study was to develop a controlled release system based on poly(trimethylene carbonate)–F127–poly(trimethylene carbonate) (PTMC 11 -F127-PTMC 11 ) hydrogels for the P24 peptide, to promote bone formation. By varying the copolymer concentrations, we demonstrated that P24/PTMC 11 -F127-PTMC 11 hydrogels were an efficient system for the sustained release of P24 over 21–35 days. The P24-loaded hydrogels elevated alkaline phosphatase activity and promoted the expression of osteocalcin mRNA in bone marrow stromal cells (BMSCs) in vitro. Radiographic and histological examination showed that P24-loaded hydrogels could induce more effective ectopic bone formation in vivo than P24-free hydrogels. These results indicate that the PTMC 11 -F127-PTMC 11 hydrogel is a suitable carrier for the controlled release of P24, and is a promising injectable biomaterial for the induction of bone regeneration. (paper)

  18. Immediate mandibular reconstruction of a 5 cm defect using rhBMP-2 after partial mandibulectomy in a dog.

    Science.gov (United States)

    Spector, Daniel I; Keating, John H; Boudrieau, Randy J

    2007-12-01

    To report treatment of a complex odontoma of the mandible by partial mandibulectomy and immediate surgical reconstruction using bridging plate fixation with a synthetic graft. Clinical case report. A 4-year-old male castrated cocker spaniel. Immediate reconstruction of the left mandible (5 cm gap) was performed after complete excision of a complex odontoma. Locking plate fixation was applied immediately before complete excision of the mass. Fixation was removed, then after partial mandibulectomy, including all abnormal tissue, restored to achieve occlusion. The resulting mandibular defect was filled with recombinant human bone morphogenetic protein-2 (rhBMP-2) delivered in an absorbable collagen sponge containing hydroxyapatite/tricalcium phosphate granules (compression resistant matrix [CRM]). New bone growth was evident radiographically and on palpation at 3 months. Bony remodeling was evident during follow-up examinations up to 26 months. Bone collected by biopsy at the graft site at 7 months had robust new bone formation and evidence of continued remodeling. Only minor complications (repeated intraoral plate exposure) were encountered postoperatively and were easily resolved. An osteoinductive factor (rhBMP-2/CRM) was successfully used as a graft substitute in immediate reconstruction of a large mandibular defect. Immediate reconstruction of large mandibular defects with osteoinductive materials as a graft substitute may be a viable alternative to partial mandibular resection or radiation therapy for benign odontogenic tumors in dogs.

  19. Inkjet-based biopatterning of SDF-1β augments BMP-2-induced repair of critical size calvarial bone defects in mice.

    Science.gov (United States)

    Herberg, Samuel; Kondrikova, Galina; Periyasamy-Thandavan, Sudharsan; Howie, R Nicole; Elsalanty, Mohammed E; Weiss, Lee; Campbell, Phil; Hill, William D; Cray, James J

    2014-10-01

    A major problem in craniofacial surgery is non-healing bone defects. Autologous reconstruction remains the standard of care for these cases. Bone morphogenetic protein-2 (BMP-2) therapy has proven its clinical utility, although non-targeted adverse events occur due to the high milligram-level doses used. Ongoing efforts explore the use of different growth factors, cytokines, or chemokines, as well as co-therapy to augment healing. Here we utilize inkjet-based biopatterning to load acellular DermaMatrix delivery matrices with nanogram-level doses of BMP-2, stromal cell-derived factor-1β (SDF-1β), transforming growth factor-β1 (TGF-β1), or co-therapies thereof. We tested the hypothesis that bioprinted SDF-1β co-delivery enhances BMP-2 and TGF-β1-driven osteogenesis both in-vitro and in-vivo using a mouse calvarial critical size defect (CSD) model. Our data showed that BMP-2 bioprinted in low-doses induced significant new bone formation by four weeks post-operation. TGF-β1 was less effective compared to BMP-2, and SDF-1β therapy did not enhance osteogenesis above control levels. However, co-delivery of BMP-2+SDF-1β was shown to augment BMP-2-induced bone formation compared to BMP-2 alone. In contrast, co-delivery of TGF-β1+SDF-1β decreased bone healing compared to TGF-β1 alone. This was further confirmed in vitro by osteogenic differentiation studies using MC3T3-E1 pre-osteoblasts. Our data indicates that sustained release delivery of a low-dose growth factor therapy using biopatterning technology can aid in healing CSD injuries. SDF-1β augments the ability for BMP-2 to drive healing, a result confirmed in vivo and in vitro; however, because SDF-1β is detrimental to TGF-β1-driven osteogenesis, its effect on osteogenesis is not universal. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Recombinant human bone morphogenetic protein-type 2 (rhBMP-2) enhances local bone formation in the lumbar spine of osteoporotic sheep.

    Science.gov (United States)

    Zarrinkalam, Mohammad Reza; Schultz, Christopher G; Ardern, David W; Vernon-Roberts, Barrie; Moore, Robert J

    2013-09-01

    The failure of orthopedic implants in osteoporotic patients is attributed to the lack of sufficient bone stock and regenerative capacity but most treatments for osteoporosis fail to address this issue. rhBMP-2 is known to promote bone formation under normal conditions but has not been used clinically in the osteoporotic condition. Osteoporosis was induced in 19 ewes using ovariectomy, low calcium diet, and steroid injection. After induction, the steroid was withdrawn and pellets containing inert carrier with rhBMP-2 in either slow or fast-release formulation were implanted into the lumbar vertebrae of each animal. After 2, 3, and 6 months the spines were harvested and assessed for changes in BMD and histomorphometric indices. BMD did not change after cessation of steroid treatment. After 2 months BV/TV increased in the vicinity of the pellets containing the fast-release rhBMP-2 and was sustained for the duration of the study. Focal voids surrounding all implants, particularly the slow-release formulation, were observed initially but resolved with time. Increased BV/TV adjacent to rhBMP-2 pellets suggests it could be used for localized treatment of osteoporosis. Refinement of the delivery system and supplementary treatments may be necessary to overcome the initial catabolic effects of rhBMP-2. Copyright © 2013 Orthopaedic Research Society.

  1. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.

    Science.gov (United States)

    Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko

    2015-07-01

    The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Analysis of the roles of microporosity and BMP-2 on multiple measures of bone regeneration and healing in calcium phosphate scaffolds.

    Science.gov (United States)

    Polak, Samantha J; Levengood, Sheeny K Lan; Wheeler, Matthew B; Maki, Aaron J; Clark, Sherrie G; Johnson, Amy J Wagoner

    2011-04-01

    Osteoinductive agents, such as BMP-2, are known to improve bone formation when combined with scaffolds. Microporosity (bone regeneration in calcium phosphate (CaP) scaffolds. However, many studies use only the term "osteoconductive" to describe the effects of BMP-2 and microporosity on bone formation, and do not assess the degree of healing that occurred. The objective of this study was to quantify the influence of BMP-2 and microporosity on bone regeneration and healing in biphasic calcium phosphate scaffolds using multiple measures including bone volume fraction, radial distribution, and specific surface area. These measures were quantitatively compared by analyzing microcomputed tomography data and used to formally define and assess healing. A custom image segmentation program was used to segment >100 samples, with 900 images each, that were implanted in porcine mandibular defects for 3, 6, 12 and 24 weeks. The assessment of healing presented in this work demonstrates the level of detail possible in evaluating scaffold-guided bone regeneration. The analysis shows that BMP-2 and microporosity accelerate healing up to 4-fold. BMP-2 and microporosity were shown to have different and complementary roles in bone formation that effect the time needed for a defect to heal. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Sequential VEGF and BMP-2 releasing PLA-PEG-PLA scaffolds for bone tissue engineering: I. Design and in vitro tests.

    Science.gov (United States)

    Eğri, Sinan; Eczacıoğlu, Numan

    2017-03-01

    Biodegradable PLA-PEG-PLA block copolymers were synthesized with desired backbone structures and molecular weights using PEG20000. Rectangular scaffolds were prepared by freeze drying with or without using NaCl particles. Bone morphogenetic protein (BMP)-2 was loaded to the matrix after the scaffold formation for sustained release while vascular endothelial growth factor (VEGF) was loaded within the pores with gelatin solution. VEGF release was quite fast and almost 60% of it was released in 2 d. However, sequential - sustained released was observed for BMP-2 in the following few months. Corporation of VEGF/BMP-2 couple into the scaffolds increased the cell adhesion and proliferation. Neither significant cytotoxicity nor apoptosis/necrosis were observed.

  4. [Preparation and ectopic osteoinduction study of macroporous bone substitute with calcium phosphate cements and rhBMP-2 loaded gelatin microspheres].

    Science.gov (United States)

    Li, Meng; Liu, Xu-dong; Liu, Xing-yan; Ge, Bao-feng

    2011-05-01

    To prepare macroporous bone substitute composed of calcium phosphate cements and rhBMP-2 loaded gelatin microspheres, and to investigate ectopic osteoinduction of the composite. After being prepared by improved emulsified cold-condensation method and crosslinked by 5% genipin solution,gelatin microspheres (GMs) were observed by scanning electron microscope (SEM) and loaded with rhBMP-2 by adsorption. Macroporous bone substitute was developed by mixing calcium phosphate cement (CPC) with 2.5% GMs, being as the experimental group,and CPC with rhBMP-2 was the control group. After the both composites had been soaked in the sodium chloride for 1 week or 3 weeks, compressive strength of the composites were tested, and the cross-sections were observed by SEM. Concentrations of rhBMP-2 in the solutions at different time by ELISA method and the cumulative drug release amount was calculated. The composites had been implanted in the muscle bags of the mouses for 3 weeks. Then the tissues around the materials were collected, stained by hematoxylin and eosin, and Ca and ALP in the tissues were also measured. Gelatin microspheres were spherical with diameters of (62 +/- 18) microm. Macropores appeared in the experimental materials 1 week and 3 weeks after being soaked,and total porosity, macroporosity, cumulative release amount of rhBMP-2 in the experimental group were higher than that in the control. But compressive strength of the experimental group was lower than that of the control group 3 weeks after being soaked. Results of HE stain showed chondral formation in both groups, but there were more chondral tissues in the experiment group, and so were the concentrations of Ca and ALP. Macroporous calcium phosphate cement can be prepared by using rhBMP-2 loaded gelatin microspheres, and it is an excellent bone substitute due to it's proterty of promoting rhBMP release and powerful ectopic osteoinduction.

  5. Effects of BMP-2 and dexamethasone on osteogenic differentiation of rat dental follicle progenitor cells seeded on three-dimensional beta-TCP

    Energy Technology Data Exchange (ETDEWEB)

    Xu Lulu; Jin Zuolin; Duan Yinzhong [Department of Orthodontics, Stomatological College, Fourth Military Medical University, Xi' an 710032 (China); Liu Hongchen; Wang Dongsheng; E Lingling [Department of Stomatology, China PLA General Hospital, Beijing 100853 (China); Xu Lin, E-mail: jinzuolin88@yahoo.com.c, E-mail: duanyinzhong@yahoo.com.c [Department of Stomatology, the First Hospital of PLA, Lanzhou 730000 (China)

    2009-12-15

    The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional beta-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial beta-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration. The third passage RDFCs could be seen adhered, extended and proliferated on the beta-TCP by scanning electron microscopy. The ALP activity, the calcium and phosphoniums and the osteocalcin content of dexamethasone (10{sup -8} M) or/and BMP-2 (100 ng ml{sup -1}) were significantly higher than their existence in the control group. They were the significantly highest among four groups after joint application of BMP-2 and dexamethasone. After 8 weeks of implantation, the percentage of the new bones formed area in the RDFCs+beta-TCP+BMP-2+Dex group was significantly higher than that in the RDFCs+beta-TCP+BMP-2 group. In contrast, beta-TCP, RDFCs+beta-TCP+Dex and control constructs lacked new bone formation by histological staining and histomorphometric analysis. The BMP-2+Dex could significantly promote osteogenic differentiation of RDFCs on beta-TCP. beta-TCP supported fast cellular adhesion, proliferation and differentiation of RDFCs. The feasibility of its application in periodontal tissue engineering was also proved.

  6. [Stimulation of primary osteoblast cultures with rh-TGF-beta, rh-bFGF, rh-BMP 2 and rx-BMP 4 in an in vitro model].

    Science.gov (United States)

    Kessler, S; Kastler, S; Mayr-Wohlfart, U; Puhl, W; Günther, K P

    2000-02-01

    Bone metabolism is influenced by systemic and local acting hormons. Bone morphogenetic proteins (BMPs) as representatives of the latter substances are known to have the ability for ectopic bone formation. Within this study, we investigated the influence of different growth factors on the proliferation- and differentiation rate of osteoblast-like cells. For that purpose, human osteoblast-like cells (HPOC) were incubated in the presence of either recombinant BMP-4 of the genome of xenopus laevis (rxBMP-4), recombinant human BMP 2 (rhBMP-2), transforming growth factor-beta (TGF-beta) or basic fibroblast growth factor (rh-bFGF) in two different concentrations each (10 ng/ml and 50 ng/ml). Cell proliferation was measured within a MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromid] assay, the amount of cell differentiation by the activity of alcaline phosphatase. Rx-BMP-4 induced a differentiation of HPOC to almost the same extent as rhBMP-2, whereas the addition of rh-bFGF, applied at the same concentration, failed to have any influence on cell differentiation. However, rh-bFGF provoked an increase in cell proliferation when compared with unstimulated HPOC, while rhBMP-2 and rxBMP-4 showed no effect on proliferation. TGF-beta influenced bone proliferation as well as differentiation significantly. The equipotent effect of recombinant human BMP-2 and recombinant BMP-4 obtained from Xenopus laevis with regard to differentiation and proliferation of human primary osteoblast-like cells originates either in the fact that target cells have receptors for BMP 2 as well as BMP 4, or that both BMP's link to the same receptor with almost the same affinity.

  7. Effects of BMP-2 and dexamethasone on osteogenic differentiation of rat dental follicle progenitor cells seeded on three-dimensional β-TCP

    International Nuclear Information System (INIS)

    Xu Lulu; Jin Zuolin; Duan Yinzhong; Liu Hongchen; Wang Dongsheng; E Lingling; Xu Lin

    2009-01-01

    The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional β-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial β-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration. The third passage RDFCs could be seen adhered, extended and proliferated on the β-TCP by scanning electron microscopy. The ALP activity, the calcium and phosphoniums and the osteocalcin content of dexamethasone (10 -8 M) or/and BMP-2 (100 ng ml -1 ) were significantly higher than their existence in the control group. They were the significantly highest among four groups after joint application of BMP-2 and dexamethasone. After 8 weeks of implantation, the percentage of the new bones formed area in the RDFCs+β-TCP+BMP-2+Dex group was significantly higher than that in the RDFCs+β-TCP+BMP-2 group. In contrast, β-TCP, RDFCs+β-TCP+Dex and control constructs lacked new bone formation by histological staining and histomorphometric analysis. The BMP-2+Dex could significantly promote osteogenic differentiation of RDFCs on β-TCP. β-TCP supported fast cellular adhesion, proliferation and differentiation of RDFCs. The feasibility of its application in periodontal tissue engineering was also proved.

  8. Three-Dimensional Cone Beam Computed Tomography Volumetric Outcomes of rhBMP-2/Demineralized Bone Matrix versus Iliac Crest Bone Graft for Alveolar Cleft Reconstruction.

    Science.gov (United States)

    Liang, Fan; Yen, Stephen L-K; Imahiyerobo, Thomas; Sanborn, Luke; Yen, Leia; Yen, Daniel; Nazarian, Sheila; Jedrzejewski, Breanna; Urata, Mark; Hammoudeh, Jeffrey

    2017-10-01

    Recent studies indicate that recombinant human bone morphogenetic protein-2 (rhBMP-2) in a demineralized bone matrix scaffold is a comparable alternative to iliac bone autograft in the setting of secondary alveolar cleft repair. Postreconstruction occlusal radiographs demonstrate improved bone stock when rhBMP-2/demineralized bone matrix (DBM) scaffold is used but lack the capacity to evaluate bone growth in three dimensions. This study uses cone beam computed tomography to provide the first clinical evaluation of volumetric and density comparisons between these two treatment modalities. A prospective study was conducted with 31 patients and 36 repairs of the alveolar cleft over a 2-year period. Twenty-one repairs used rhBMP-2/DBM scaffold and 14 repairs used iliac bone grafting. Postoperatively, occlusal radiographs were obtained at 3 months to evaluate bone fill; cone beam computed tomographic images were obtained at 6 to 9 months to compare volumetric and density data. At 3 months, postoperative occlusal radiographs demonstrated that 67 percent of patients receiving rhBMP-2/DBM scaffold had complete bone fill of the alveolus, versus 56 percent of patients in the autologous group. In contrast, cone beam computed tomographic data showed 31.6 percent (95 percent CI, 24.2 to 38.5 percent) fill in the rhBMP-2 group compared with 32.5 percent (95 percent CI, 22.1 to 42.9 percent) in the autologous population. Density analysis demonstrated identical average values between the groups (1.38 g/cc). These data demonstrate comparable bone regrowth and density values following secondary alveolar cleft repair using rhBMP-2/DBM scaffold versus autologous iliac bone graft. Cone beam computed tomography provides a more nuanced understanding of true bone regeneration within the alveolar cleft that may contribute to the information provided by occlusal radiographs alone. Therapeutic, II.

  9. Tamoxifen-dependent, inducible Bmp2CreER drives selective recombinase activity in early interdigital mesenchyme and digit collateral ligaments.

    Science.gov (United States)

    Huang, Bau-Lin; Mackem, Susan

    2015-01-01

    During limb development, the interdigital mesenchyme has been proposed to play a signaling role instructing morphogenesis of different digit types, as well as undergoing programmed cell death necessary to free digits in animals not adapted for swimming or flying. We have generated a conditional, tamoxifen-dependent Cre line, Bmp2CreER, which drives highly selective recombination restricted to the distal limb mesoderm, largely restricted to the interdigits, and selectively active in digit ligament but not tendon progenitors at later stages. The Bmp2CreER provides a valuable new tool to dissect roles of interdigital mesenchyme and potentially investigate divergence of ligament and tendon lineages.

  10. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    International Nuclear Information System (INIS)

    Kawano, Michinao; Ariyoshi, Wataru; Iwanaga, Kenjiro; Okinaga, Toshinori; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2011-01-01

    Research highlights: → In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. → MG63 cells were incubated with BMP-2 and HA for various time periods. → Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. → HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and nuclear translocation

  11. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  12. Density-dependence as a size-independent regulatory mechanism

    NARCIS (Netherlands)

    De Vladar, H.P.

    2006-01-01

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which

  13. Vitamin C-linker-conjugated tripeptide AHK stimulates BMP-2-induced osteogenic differentiation of mouse myoblast C2C12 cells.

    Science.gov (United States)

    Jung, Jung-Il; Park, Kyeong-Yong; Lee, Yura; Park, Mira; Kim, Jiyeon

    2018-03-15

    Vitamin C-linker-conjugated Ala-His-Lys tripeptide (Vit C-AHK) is a derivative of Vitamin C-conjugated tripeptides, which were originally developed as a component of a product for collagen synthesis enhancement or human dermal fibroblast growth. Here, we investigated the effect of Vit C-AHK on bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Vit C-AHK enhanced proliferation of C2C12 cells and induction of BMP-2-induced alkaline phosphatase, a typical marker of osteoblast differentiation. Vit C-AHK also stimulated the phosphorylation and translocation of Smad1/5/8 to the nucleus and phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2 and p38. In addition, Vit C-AHK enhanced the BMP-2-induced mRNA expression of osteoblast differentiation-related genes such as ALP, BMP-2, Osteocalcin, and Runx2. Our results suggest that Vit C-AHK exerts an enhancing effect on osteoblast proliferation and differentiation through activation of Smad1/5/8 and MAPK ERK1/2 and p38 signaling and without significant cytotoxicity. These results provide important data for the development of peptide-based bone-regenerative agents and treatment of bone-related disorders. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  14. Collagen Sponge Functionalized with Chimeric Anti-BMP-2 Monoclonal Antibody Mediates Repair of Critical-Size Mandibular Continuity Defects in a Nonhuman Primate Model

    Directory of Open Access Journals (Sweden)

    Yilin Xie

    2017-01-01

    Full Text Available Antibody-mediated osseous regeneration (AMOR has been introduced by our research group as a tissue engineering approach to capture of endogenous growth factors through the application of specific monoclonal antibodies (mAbs immobilized on a scaffold. Specifically, anti-Bone Morphogenetic Protein- (BMP- 2 mAbs have been demonstrated to be efficacious in mediating bone repair in a number of bone defects. The present study sought to investigate the application of AMOR for repair of mandibular continuity defect in nonhuman primates. Critical-sized mandibular continuity defects were created in Macaca fascicularis locally implanted with absorbable collagen sponges (ACS functionalized with chimeric anti-BMP-2 mAb or isotype control mAb. 2D and 3D analysis of cone beam computed tomography (CBCT imaging demonstrated increased bone density and volume observed within mandibular continuity defects implanted with collagen scaffolds functionalized with anti-BMP-2 mAb, compared with isotype-matched control mAb. Both CBCT imaging and histologic examination demonstrated de novo bone formation that was in direct apposition to the margins of the resected bone. It is hypothesized that bone injury may be necessary for AMOR. This is evidenced by de novo bone formation adjacent to resected bone margins, which may be the source of endogenous BMPs captured by anti-BMP-2 mAb, in turn mediating bone repair.

  15. Effects of rhBMP-2 on Sandblasted and Acid Etched Titanium Implant Surfaces on Bone Regeneration and Osseointegration: Spilt-Mouth Designed Pilot Study

    Directory of Open Access Journals (Sweden)

    Nam-Ho Kim

    2015-01-01

    Full Text Available This study was conducted to evaluate effects of rhBMP-2 applied at different concentrations to sandblasted and acid etched (SLA implants on osseointegration and bone regeneration in a bone defect of beagle dogs as pilot study using split-mouth design. Methods. For experimental groups, SLA implants were coated with different concentrations of rhBMP-2 (0.1, 0.5, and 1 mg/mL. After assessment of surface characteristics and rhBMP-2 releasing profile, the experimental groups and untreated control groups (n = 6 in each group, two animals in each group were placed in split-mouth designed animal models with buccal open defect. At 8 weeks after implant placement, implant stability quotients (ISQ values were recorded and vertical bone height (VBH, mm, bone-to-implant contact ratio (BIC, %, and bone volume (BV, % in the upper 3 mm defect areas were measured. Results. The ISQ values were highest in the 1.0 group. Mean values of VBH (mm, BIC (%, and BV (% were greater in the 0.5 mg/mL and 1.0 mg/mL groups than those in 0.1 and control groups in buccal defect areas. Conclusion. In the open defect area surrounding the SLA implant, coating with 0.5 and 1.0 mg/mL concentrations of rhBMP-2 was more effective, compared with untreated group, in promoting bone regeneration and osseointegration.

  16. A health economic analysis of the use of rhBMP-2 in Gustilo-Anderson grade III open tibial fractures for the UK, Germany, and France.

    Science.gov (United States)

    Alt, Volker; Donell, Simon T; Chhabra, Amit; Bentley, Anthony; Eicher, Alexander; Schnettler, Reinhard

    2009-12-01

    The purpose of this study was to determine the cost savings from a societal perspective for recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) in grade III A and B open tibial fractures treated with a locked intramedullary nail and soft-tissue management in the UK, Germany, and France. Health care system costs (direct health care costs) and costs for productivity losses (indirect health care costs) were calculated using the raw data from the Bone Morphogenetic Protein Evaluation Group in Surgery for Tibial Trauma "BESTT study". Return-to-work time for estimation of productivity losses was assumed to correspond with the time of fracture healing. For calculation of secondary interventions costs and productivity losses the respective 2007/2008 national tariffs for surgical procedures and average national wages for the UK, Germany, and France were used. For a 1 year perspective, overall treatment costs per patient after the initial surgery of the control vs. the rhBMP-2 group were 44,757 euros vs. 36,847 euros for the UK, 50,197 euros vs. 40,927 euros for Germany and 48,766 euros vs. 39,474 euros for France in favour of rhBMP-2 with overall savings overall savings per case of rhBMP-2 treatment of 7911 euros for the UK, 9270 euros for Germany, and 9291 euros for France which was mainly due to reduced productivity losses by significant faster fracture healing in the rhBMP-2 group (p=0.01). These savings largely offset the upfront price of rhBMP-2 of 2266 euros (1790 pounds) in the UK, euros 2970 in Germany, and 2950 euros in France. Total net savings can be estimated to be 9.6 million euros for the UK, 14.5 million euros for Germany, and 11.4 million euros for France. The results depend on the methodology used particularly for calculation of productivity losses and return-to-work time which was assumed to correspond with fracture healing time. In summary, despite the apparent high direct cost of rhBMP-2 in grade III A and B open tibial fractures, at a national

  17. Three-Dimension-Printed Porous Poly(Propylene Fumarate) Scaffolds with Delayed rhBMP-2 Release for Anterior Cruciate Ligament Graft Fixation.

    Science.gov (United States)

    Parry, Joshua Alan; Olthof, Maurits G L; Shogren, Kristen L; Dadsetan, Mahrokh; Van Wijnen, Andre; Yaszemski, Michael; Kakar, Sanjeev

    2017-04-01

    Anterior cruciate ligament (ACL) ruptures reconstructed with tendon grafts are commonly fixed with bioabsorbable implants, which are frequently complicated by incomplete bone filling upon degradation. Bone regeneration after ACL reconstruction could be enhanced by utilizing tissue engineering techniques and three-dimensional (3D) printing to create a porous bioabsorbable scaffold with delayed delivery of recombinant-human bone morphogenetic protein 2 (rhBMP-2). The first aim of this study was to design a 3D poly(propylene fumarate) (PPF) porous scaffold that maintained suitable pullout strength for future testing in a rabbit ACL reconstruction model. Our second aim was to determine the release kinetics of rhBMP-2 from PPF scaffolds that utilized both calcium-phosphate coatings and growth factor delivery on microspheres, both of which have been shown to decrease the initial burst release of rhBMP-2 and increase bone regeneration. To determine the degree of scaffold porosity that maintained suitable pullout strength, tapered scaffolds were fabricated with increasing porosity (0%, 20%, 35%, and 44%) and pullout testing was performed in a cadaveric rabbit ACL reconstruction model. Scaffolds were coated with carbonate hydroxyapatite (synthetic bone mineral [SBM]), and radiolabeled rhBMP-2 was delivered in four different experimental groups as follows: Poly(lactic-co-glycolic acid) microspheres only, microspheres and collagen (50:50), collagen only, and saline solution only. rhBMP-2 release was measured at day 1, 2, 4, 8, 16, and 32. The microsphere delivery groups had a smaller burst release and released a smaller percentage of rhBMP-2 over the 32 days than the collagen and saline only groups. In conclusion, a porous bioabsorbable scaffold with suitable strength for a rabbit ACL reconstruction was developed. Combining a synthetic bone mineral coating with microspheres had an additive effect, decreasing the initial burst release and cumulative release of rhBMP-2. Future

  18. Foot mechanics during the first six years of independent walking.

    Science.gov (United States)

    Samson, William; Dohin, Bruno; Desroches, Guillaume; Chaverot, Jean-Luc; Dumas, Raphaël; Cheze, Laurence

    2011-04-29

    Recognition of the changes during gait that occur normally as a part of growth is essential to prevent mislabeling those changes from adult gait as evidence of gait pathology. Currently, in the literature, the definition of a mature age for ankle joint dynamics is controversial (i.e., between 5 and 10 years). Moreover, the mature age of the metatarsophalangeal (MP) joint, which is essential for the functioning of the foot, has not been defined in the literature. Thus, the objective of the present study explored foot mechanics (ankle and MP joints) in young children to define a mature age of foot function. Forty-two healthy children between 1 and 6 years of age and eight adults were measured during gait. The ground reaction force (GRF), the MP and ankle joint angles, moments, powers, and 3D angles between the joint moment and the joint angular velocity vectors (3D angle α(M.ω)) were processed and compared between four age groups (2, 3.5, 5 and adults). Based on statistical analysis, the MP joint biomechanical parameters were similar between children (older than 2 years) and adults, hinting at a quick maturation of this joint mechanics. The ankle joint parameters and the GRFs (except for the frontal plane) showed an adult-like pattern in 5-year-old children. Some ankle joint parameters, such as the joint power and the 3D angle α(M.ω) still evolved significantly until 3.5 years. Based on these results, it would appear that foot maturation during gait is fully achieved at 5 years. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Effects of rhBMP-2 in wound healing of bone where late effects of irradiation had developed. An experimental study with rat tibia

    Energy Technology Data Exchange (ETDEWEB)

    Shionoya, Yuji; Matsui, Yoshiro; Tamura, Sayaka; Liu, Weixian; Ohno, Kohsuke; Michi, Ken-ichi; Tachikawa, Tetsuhiko [Showa Univ., Tokyo (Japan). School of Dentistry

    2001-06-01

    The aim of this study was to investigate the effects of rhBMP-2 on wound healing of the bone where long-term effects of irradiation had developed. Forty male Wistar rats were used. A single dose of 15 or 30 Gy irradiation from a Linac source was delivered to the right lower leg of all rats. The left leg was remained as non-irradiated site. A block of Poly D, L-lactic-co-glycolic acid (PLGA) and gelatin sponge with 100 ng, 1, or 2, {mu}g rhBMP-2 was installed to the bilateral tibial proximal metaphysis three months after irradiation. The rats implanted the carrier without rhBMP-2 were served as control. Two weeks after placement, the bone healing was examined histologically. The newly formed bone mineral content (BMC) was also quantified with pQCT. The results obtained were as follows. Administration of rhBMP-2 promoted bone formation in both the 15 and 30 Gy irradiated groups. However, BMC did not increase dose-dependently in either irradiated group, but did in the non-irradiated control. Bone formation in the central and outer parts of the carrier was less in the 30-Gy group than the control and the 15 Gy group. These results indicate that rhBMP-2 improves bone formation to some degree in bone where long-term effects of irradiation had developed, but the level was not so high as on the non-irradiated bone. (author)

  20. Efficacy of rhBMP-2 Loaded PCL/β-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Eun-Bin Bae

    2018-01-01

    Full Text Available This study was undertaken to evaluate the effect of 3D printed polycaprolactone (PCL/β-tricalcium phosphate (β-TCP scaffold containing bone demineralized and decellularized extracellular matrix (bdECM and human recombinant bone morphogenetic protein-2 (rhBMP-2 on bone regeneration. Scaffolds were divided into PCL/β-TCP, PCL/β-TCP/bdECM, and PCL/β-TCP/bdECM/BMP groups. In vitro release kinetics of rhBMP-2 were determined with respect to cell proliferation and osteogenic differentiation. These three reconstructive materials were implanted into 8 mm diameter calvarial bone defect in male Sprague-Dawley rats. Animals were sacrificed four weeks after implantation for micro-CT, histologic, and histomorphometric analyses. The findings obtained were used to calculate new bone volumes (mm3 and new bone areas (%. Excellent cell bioactivity was observed in the PCL/β-TCP/bdECM and PCL/β-TCP/bdECM/BMP groups, and new bone volume and area were significantly higher in the PCL/β-TCP/bdECM/BMP group than in the other groups (p<.05. Within the limitations of this study, bdECM printed PCL/β-TCP scaffolds can reproduce microenvironment for cells and promote adhering and proliferating the cells onto scaffolds. Furthermore, in the rat calvarial defect model, the scaffold which printed rhBMP-2 loaded bdECM stably carries rhBMP-2 and enhances bone regeneration confirming the possibility of bdECM as rhBMP-2 carrier.

  1. Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells.

    Science.gov (United States)

    Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian

    2014-07-01

    The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    International Nuclear Information System (INIS)

    Si, Lina; Shi, Jin; Gao, Wenqun; Zheng, Min; Liu, Lingjuan; Zhu, Jing; Tian, Jie

    2014-01-01

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  3. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Si, Lina; Shi, Jin; Gao, Wenqun [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Zheng, Min [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Liu, Lingjuan; Zhu, Jing [Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Tian, Jie, E-mail: jietian@cqmu.edu.cn [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China)

    2014-07-18

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  4. Expression of BMP2, TLR3, TLR4 and COX2 in colorectal polyps, adenoma and adenocarcinoma.

    Science.gov (United States)

    Xiang, Li; Wang, Shiqi; Jin, Xianqing; Duan, Wenjuan; Ding, Xionghui; Zheng, Chang

    2012-11-01

    The initiation and development of colorectal cancer is closely associated with the malignant transformation of colorectal polyps. The aim of this study was to analyze the expression of the bone morphogenetic protein-2 (BMP2), toll-like receptor 3 (TLR3), TLR4 and cyclooxygenase-2 (COX2) proteins in colorectal polyps, adenoma and adenocarcinoma. An immunohistochemical streptavidin-peroxidase (SP) method was used to examine the expression of MBP2, TLR4, TLR3 and COX2 in 20 colorectal juvenile polyps and 15 colorectal polyps of hamartomatous polyposis obtained from children, and 20 colorectal adenomas and 20 colorectal adenocarcinomas obtained from adults. A comparison of the expression levels of TLR3 among the groups revealed a gradual downward trend from the colorectal juvenile polyp group to the colorectal hamartomatous polyposis, adenoma and adenocarcinoma groups, respectively. The expression level of TLR3 was significantly lower in the colorectal adenocarcinoma group (ppolyp, hamartomatous polyposis, adenoma and adenocarcinoma groups. These three protein molecules may be significant in the development and malignant transformation of colorectal polyps.

  5. Retinal and choroidal expression of BMP-2 in lens-induced myopia and recovery from myopia in guinea pigs.

    Science.gov (United States)

    Li, Honghui; Wu, Juan; Cui, Dongmei; Zeng, Junwen

    2016-03-01

    The present study investigated the retinal and choroidal expression of bone morphogenetic protein-2 (BMP-2) in myopia and in myopia recovery in a guinea pig model. For this investigation, two groups of guinea pigs, lens‑induced myopia and recovery from myopia, were used, and defocused myopia was induced the guinea pigs wearing ‑4.00 D lenses on the right eyes for 3 weeks, with the left eyes serving as the contralateral. In the following week, the lenses of the guinea pigs in the recovery group were removed, and the refractive power and axial length were measured. The expression of BMP‑2 in the eyeballs was observed using immunohistochemistry and analyzed using Western blot analysis. After 3 weeks, the eyes acquired relative myopia and longer axial lengths in the two groups of guinea pigs. After 1 week without lenses in the recovery group, the myopia and axial lengths regressed. Immunofluorescence staining showed that BMP‑2 was expressed in the posterior retina, RPE, choroid and sclera. The expression of BMP‑2 decreased in the myopic retina of the guinea pigs. Following the regression of myopia in the recovery group, no difference in the expression of BMP‑2 was observed between the recovered treated eyes and the contralateral eyes. The choroidal expression level of BMP‑2 in the treated eyes showed no significant changes in either group. Therefore, BMP‑2 may be involved in the development of myopia, however, it does not have a primary role in the retinal and choroidal signals regulating scleral remodeling.

  6. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy.

    Directory of Open Access Journals (Sweden)

    Nahoko Shintani

    Full Text Available Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2 induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2 and transforming growth factor beta 1 (TGF-ß1 were investigated.Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml for 4 (or 6 weeks. FGF-2 (10 ng/ml or TGF-ß1 (10 ng/ml was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2, but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume.TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the

  7. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy.

    Science.gov (United States)

    Shintani, Nahoko; Siebenrock, Klaus A; Hunziker, Ernst B

    2013-01-01

    Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated. Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the

  8. The VEGF and BMP-2 levels in patients with ankylosing spondylitis and the relationship to treatment with tumour necrosis factor alpha inhibitors.

    Science.gov (United States)

    Tošovský, Marian; Bradna, Petr; Andrýs, Ctirad; Andrýsová, Kateřina; Cermáková, Eva; Soukup, Tomáš

    2014-01-01

    Ankylosing spondylitis (AS) is an inflammatory rheumatic disease characterized by the development of osteoproductive changes in the spine which could possibly result in ankylosis. Treatment with tumour necrosis factor alpha (TNFα) inhibitors has proved to be an important step forward in the treatment of this disease, but for the time being it is not clear whether it favourably influences radiographic progression of the disease. Vascular endothelial growth factor most probably plays a role in the development of osteoproductive changes and recently its predictive influence on radiographic progression has been demonstrated. Bone morphogenic protein 2 (BMP-2) participates in the regulation of bone proliferation and its increased serum level has been demonstrated in patients with advanced AS and correlated with the degree of radiographic changes. The study aims to evaluate the VEGF and BMP-2 levels in patients with ankylosing spondylitis and how these levels relate to the concurrent treatment with TNFα inhibitors. Sera were evaluated from patients at the Rheumatologic Clinic of the Hradec Králové Faculty Hospital who fulfilled the modified New York Criteria for AS (n = 55). In these patients, the parameters of the activity of the disease (BASDAI = Bath Ankylosing Spondylitis Disease Activity Index, CRP = C-reactive protein) and the concurrent therapy (TNFα inhibitors, n = 21, vs. non-anti TNFα, n = 34) were recorded. The levels of VEGF and BMP-2 were analyzed using the ELISA method. In patients treated with TNFα inhibitors, a significantly lower VEGF level was found when compared to untreated patients (140.3 (109.4; 262.2) vs. 261 (172.4; 396.6) pg/ml; p = 0.02). No difference was found between BMP-2 levels in both groups (treated vs. untreated patients) (254.8 (2301; 267.3) vs. 261.1 (248.6; 273.5) pg/ml; p = 0.24). A correlation analysis did not reveal any relationship between VEG F and BMP-2 (r = 0.057; p = 0.68). Serum levels of VEGF correlated with serum

  9. Evaluation of a Novel HA/ZrO2-Based Porous Bioceramic Artificial Vertebral Body Combined with a rhBMP-2/Chitosan Slow-Release Hydrogel.

    Directory of Open Access Journals (Sweden)

    Yihui Shi

    Full Text Available A new HA/ZrO2-based porous bioceramic artificial vertebral body (AVB, carried a recombinant human bone morphogenetic protein-2 (rhBMP-2/chitosan slow-release hydrogel was prepared to repair vertebral bone defect in beagles. An ionic cross-linking was used to prepare the chitosan hydrogel (CS gel as the rhBMP-2 slow-release carrier. The vertebral body defects were implanted with the rhBMP-2-loaded AVB in group A, or a non-drug-loaded AVB in group B, or autologous iliac in group C. The encapsulation rate of rhBMP-2 in rhBMP-2-loaded CS gel was 91.88±1.53%, with a drug load of 39.84±2.34 ng/mg. At 6, 12, 24 weeks postoperatively, radiography showed that the bone calluses gradually increased with time in group A, where the artificial vertebral body had completely fused with host-bone at 24 weeks after surgery. In group C, an apparent bone remodeling was occurred in the early stages, and the graft-bone and host-bone had also fused completely at 24 weeks postoperatively. In group B, fusion occurred less than in groups A and C. At 24 weeks after surgery, micro-computed tomography (Micro-CT revealed that the volume of newly-formed bone in group A was significantly more than in group B (p<0.05. At 24 weeks after surgery, ultra-compressive strengths of the operated segments were 14.03±1.66 MPa in group A, 8.62±1.24 MPa in group B, and 13.78±1.43 MPa in group C. Groups A and C were both significantly higher than group B (p < 0.05. At 24 weeks postoperatively, the hard tissue sections showed that the AVB of group A had tightly fused with host bone, and that pores of the AVB had been filled with abundant nearly mature bone, and that the new bone structured similarly to a trabecular framework, which was similar to that in group C. In contrast, implant fusion of the AVB in group B was not as apparent as group A. In conclusion, the novel HA/ZrO2-based porous bioceramic AVB carried the rhBMP-2-loaded CS gel can promote the repair of bony defect, and induce

  10. Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit.

    Science.gov (United States)

    Shim, Jin-Hyung; Yoon, Min-Chul; Jeong, Chang-Mo; Jang, Jinah; Jeong, Sung-In; Cho, Dong-Woo; Huh, Jung-Bo

    2014-11-10

    We successfully fabricated a three-dimensional (3D) printing-based PCL/PLGA/β-TCP guided bone regeneration (GBR) membrane that slowly released rhBMP-2. To impregnate the GBR membrane with intact rhBMP-2, collagen solution encapsulating rhBMP-2 (5 µg ml(-1)) was infused into pores of a PCL/PLGA/β-TCP membrane constructed using a 3D printing system with four dispensing heads. In a release profile test, sustained release of rhBMP-2 was observed for up to 28 d. To investigate the efficacy of the GBR membrane on bone regeneration, PCL/PLGA/β-TCP membranes with or without rhBMP-2 were implanted in an 8 mm calvaria defect of rabbits. Bone formation was evaluated at weeks 4 and 8 histologically and histomorphometrically. A space making ability of the GBR membrane was successfully maintained in both groups, and significantly more new bone was formed at post-implantation weeks 4 and 8 by rhBMP-2 loaded GBR membranes. Interestingly, implantation with rhBMP-2 loaded GBR membranes led to almost entire healing of calvaria defects within 8 weeks.

  11. Effect of Coadministration of Vancomycin and BMP-2 on Cocultured Staphylococcus aureus and W-20-17 Mouse Bone Marrow Stromal Cells in Vitro

    Science.gov (United States)

    2012-07-01

    lactic -glycolic acid (PLGA) capsules for antibiotics and rhBMP-2 delivery. Int. J. Pharm. 330:45–53. 28. Liu Y, Huse RO, de Groot K, Buser D...assay (ELISA) kit was used to test the bone cell inflammation response in the presence of bacteria . Our results suggest that, when delivered together in... bacteria are able to reach high confluence and form biofilms (38). Moreover, combined treatment with bone growth factors such as bone morphogenetic

  12. Guided osteoporotic bone regeneration with composite scaffolds of mineralized ECM/heparin membrane loaded with BMP2-related peptide

    Science.gov (United States)

    Yao, Sheng; Ji, Yanhui; Shi, Lei; Tang, Kai; Xiong, Zekang; Yang, Fan; Chen, Kaifang

    2018-01-01

    Introduction At present, the treatment of osteoporotic defects poses a great challenge to clinicians, owing to the lower regeneration capacity of the osteoporotic bone as compared with the normal bone. The guided bone regeneration (GBR) technology provides a promising strategy to cure osteoporotic defects using bioactive membranes. The decellularized matrix from the small intestinal submucosa (SIS) has gained popularity for its natural microenvironment, which induces cell response. Materials and methods In this study, we developed heparinized mineralized SIS loaded with bone morphogenetic protein 2 (BMP2)-related peptide P28 (mSIS/P28) as a novel GBR membrane for guided osteoporotic bone regeneration. These mSIS/P28 membranes were obtained through the mineralization of SIS (mSIS), followed by P28 loading onto heparinized mSIS. The heparinized mSIS membrane was designed to improve the immobilization efficacy and facilitate controlled release of P28. P28 release from mSIS-heparin-P28 and its effects on the proliferation, viability, and osteogenic differentiation of bone marrow stromal stem cells from ovariectomized rats (rBMSCs-OVX) were investigated in vitro. Furthermore, a critical-sized OVX calvarial defect model was used to assess the bone regeneration capability of mSIS-heparin-P28 in vivo. Results In vitro results showed that P28 release from mSIS-heparin-P28 occurred in a controlled manner, with a long-term release time of 40 days. Moreover, mSIS-heparin-P28 promoted cell proliferation and viability, alkaline phosphatase activity, and mRNA expression of osteogenesis-related genes in rBMSCs-OVX without the addition of extra osteogenic components. In vivo experiments revealed that mSIS-heparin-P28 dramatically stimulated osteoporotic bone regeneration. Conclusion The heparinized mSIS loaded with P28 may serve as a potential GBR membrane for repairing osteoporotic defects. PMID:29440901

  13. Guided osteoporotic bone regeneration with composite scaffolds of mineralized ECM/heparin membrane loaded with BMP2-related peptide.

    Science.gov (United States)

    Sun, Tingfang; Liu, Man; Yao, Sheng; Ji, Yanhui; Shi, Lei; Tang, Kai; Xiong, Zekang; Yang, Fan; Chen, Kaifang; Guo, Xiaodong

    2018-01-01

    At present, the treatment of osteoporotic defects poses a great challenge to clinicians, owing to the lower regeneration capacity of the osteoporotic bone as compared with the normal bone. The guided bone regeneration (GBR) technology provides a promising strategy to cure osteoporotic defects using bioactive membranes. The decellularized matrix from the small intestinal submucosa (SIS) has gained popularity for its natural microenvironment, which induces cell response. In this study, we developed heparinized mineralized SIS loaded with bone morphogenetic protein 2 (BMP2)-related peptide P28 (mSIS/P28) as a novel GBR membrane for guided osteoporotic bone regeneration. These mSIS/P28 membranes were obtained through the mineralization of SIS (mSIS), followed by P28 loading onto heparinized mSIS. The heparinized mSIS membrane was designed to improve the immobilization efficacy and facilitate controlled release of P28. P28 release from mSIS-heparin-P28 and its effects on the proliferation, viability, and osteogenic differentiation of bone marrow stromal stem cells from ovariectomized rats (rBMSCs-OVX) were investigated in vitro. Furthermore, a critical-sized OVX calvarial defect model was used to assess the bone regeneration capability of mSIS-heparin-P28 in vivo. In vitro results showed that P28 release from mSIS-heparin-P28 occurred in a controlled manner, with a long-term release time of 40 days. Moreover, mSIS-heparin-P28 promoted cell proliferation and viability, alkaline phosphatase activity, and mRNA expression of osteogenesis-related genes in rBMSCs-OVX without the addition of extra osteogenic components. In vivo experiments revealed that mSIS-heparin-P28 dramatically stimulated osteoporotic bone regeneration. The heparinized mSIS loaded with P28 may serve as a potential GBR membrane for repairing osteoporotic defects.

  14. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2.

    Science.gov (United States)

    Niu, Xufeng; Feng, Qingling; Wang, Mingbo; Guo, Xiaodong; Zheng, Qixin

    2009-03-04

    It is advantageous to incorporate controlled growth factor delivery into tissue engineering strategies. The purpose of the present study was to develop a novel tissue engineering scaffold with the capability of controlled releasing BMP-2-derived synthetic peptide. Porous nano-hydroxyapatite/collagen/poly(L-lactic acid)/chitosan microspheres (nHAC/PLLA/CMs) composite scaffolds containing different quantities of chitosan microspheres (CMs) were prepared by a thermally induced phase separation method. Dioxane was used as the solvent for PLLA. Introduction of less than 30% of CMs (on PLLA weight basis) did not remarkably affect the morphology and porosity of the nHAC/PLLA/CMs scaffolds. However, as the microspheres contents increased to 50%, the porosity of the composite decreased rapidly. The compressive modulus of the composite scaffolds increased from 15.4 to 25.5 MPa, while the compressive strength increased from 1.42 to 1.63 MPa as the microspheres contents increased from 0% to 50%. The hydrolytic degradation and synthetic peptide release kinetics in vitro were investigated by incubation in phosphate buffered saline solution (pH 7.4). The results indicated that the degradation rate of the scaffolds was increased with the enhancement of CMs dosage. The synthetic peptide was released in a temporally controlled manner, depending on the degradation of both incorporated chitosan microspheres and PLLA matrix. In vitro bioactivity assay revealed that the encapsulated synthetic peptide was biologically active as evidenced by stimulation of rabbit marrow mesenchymal stem cells (MSCs) alkaline phosphatase (ALP) activity. The successful microspheres-scaffold system offers a new delivery method of growth factors and a novel scaffold design for bone regeneration.

  15. A Study of BMP-2-Loaded Bipotential Electrolytic Complex around a Biphasic Calcium Phosphate-Derived (BCP Scaffold for Repair of Large Segmental Bone Defect.

    Directory of Open Access Journals (Sweden)

    Kallyanashis Paul

    Full Text Available A bipotential polyelectrolyte complex with biphasic calcium phosphate (BCP powder dispersion provides an excellent option for protein adsorption and cell attachment and can facilitate enhanced bone regeneration. Application of the bipotential polyelectrolyte complex embedded in a spongy scaffold for faster healing of large segmental bone defects (LSBD can be a promising endeavor in tissue engineering application. In the present study, a hollow scaffold suitable for segmental long bone replacement was fabricated by the sponge replica method applying the microwave sintering process. The fabricated scaffold was coated with calcium alginate at the shell surface, and genipin-crosslinked chitosan with biphasic calcium phosphate (BCP dispersion was loaded at the central hollow core. The chitosan core was subsequently loaded with BMP-2. The electrolytic complex was characterized using SEM, porosity measurement, FTIR spectroscopy and BMP-2 release for 30 days. In vitro studies such as MTT, live/dead, cell proliferation and cell differentiation were performed. The scaffold was implanted into a 12 mm critical size defect of a rabbit radius. The efficacy of this complex is evaluated through an in vivo study, one and two month post implantation. BV/TV ratio for BMP-2 loaded sample was (42±1.76 higher compared with hollow BCP scaffold (32±0.225.

  16. Expression of the bone morphogenetic protein-2 (BMP2 in the human cumulus cells as a biomarker of oocytes and embryo quality

    Directory of Open Access Journals (Sweden)

    Sirin B Demiray

    2017-01-01

    Full Text Available Background: The members of the transforming growth factor-B superfamily, as the bone morphogenetic proteins (BMPs subfamily and anti-Müllerian hormone (AMH, play a role during follicular development, and the bone morphogenetic protein-2 (BMP2, AMH, and THY1 are expressed in ovaries. Aim: This study was designed to define whether or not the expressions of these proteins in human cumulus cells (CCs can be used as predictors of the oocyte and embryo competence. Settings and Design: The study included nine female patients who were diagnosed as idiopathic infertility, aged 25–33 years (median 30 years and underwent Assisted Reproductive Technologies. Materials and Methods: The CCs from 60 oocyte–cumulus complexes obtained from the nine patients were evaluated with immunofluorescence staining in respect of BMPs, AMH and THY1 markers. The CCs surrounding the same oocytes were evaluated separately according to the oocyte and embryo quality. Statistical Analysis: Quantitative data were statistically analyzed for differences using the two-sided Mann–Whitney U test (P < 0.05. Results and Conclusions: Significant differences in immunofluorescence staining were observed in oocyte quality and embryo quality for the BMP2 only (P < 0.05. No significant differences were observed for AMH or CD90/THY1. Conclusion: These results demonstrated that there is a significant difference in the expression of BMP2 in the CCs of good quality oocytes and subsequently a good embryo.

  17. Background Independent Quantum Mechanics, Classical Geometric Forms and Geometric Quantum Mechanics-I

    OpenAIRE

    Pandya, Aalok

    2008-01-01

    The geometry of the symplectic structures and Fubini-Study metric is discussed. Discussion in the paper addresses geometry of Quantum Mechanics in the classical phase space. Also, geometry of Quantum Mechanics in the projective Hilbert space has been discussed for the chosen Quantum states. Since the theory of classical gravity is basically geometric in nature and Quantum Mechanics is in no way devoid of geometry, the explorations pertaining to more and more geometry in Quantum Mechanics coul...

  18. Influence of rhBMP-2 on bone formation and osseointegration in different implant systems after sinus-floor elevation. An in vivo study on sheep.

    Science.gov (United States)

    Gutwald, Ralf; Haberstroh, Jörg; Stricker, Andres; Rüther, Eva; Otto, Florian; Xavier, Samuel Porfirio; Oshima, Toshiyuki; Marukawa, E; Seto, I; Enomoto, S; Hoogendijk, Christiaan F; Schmelzeisen, Rainer; Sauerbier, Sebastian

    2010-12-01

    Several studies have reported certain bone morphogenic proteins (BMPs) to have positive effects on bone generation. Although some investigators have studied the effects of human recombinant BMP (rhBMP-2) in sinus augmentation in sheep, none of these studies looked at the placement of implants at the time of sinus augmentation. Furthermore, no literature could be found to report on the impact that different implant systems, as well as the positioning of the implants had on bone formation if rhBMP-2 was utilized in sinus-lift procedures. The aim of this study was to compare sinus augmentation with rhBMP-2 on a poly-d, l-lactic-co-glycolic acid gelatine (PLPG) sponge with sinus augmentation with autologous pelvic cancellous bone in the maxillary sinus during the placement of different dental implants. Nine adult female sheep were submitted to bilateral sinus-floor elevation. In one side (test group) the sinus lift was performed with rhBMP-2 on a PLPG-sponge, while the contralateral side served as the control by using cancellous bone from the iliac crest. Three different implants (Bränemark(®), 3i(®) and Straumann(®)) were inserted either simultaneously with the sinus augmentation or as a two staged procedure 6 weeks later. The animals were sacrificed at 6 and 12 weeks for histological and histomorphometrical evaluations during which bone-to-implant contact (BIC) and bone density (BD) were evaluated. BD and BIC were significantly higher at 12 weeks in the test group if the implants were placed at the time of the sinus lift (p<0.05). No difference was observed between the different implant systems or positions. The use of rhBMP-2 with PLPG-sponge increased BIC as well as BD in the augmented sinuses if compared to autologous bone. Different implant systems and positions of the implants had no effect on BIC or BD. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  19. The effect of core decompression on local expression of BMP-2, PPAR-γ and bone regeneration in the steroid-induced femoral head osteonecrosis

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-08-01

    Full Text Available Abstract Background To investigate the efficacy of the sole core decompression surgery for the treatment of steroid-induced femoral head osteonecrosis. Methods The model was established by administration of steroids in combination with horse serum. The rabbits with bilateral femoral head osteonecrosis were randomly selected to do the one side of core decompression. The other side was used as the sham. Quantitative RT-PCR and western blot techniques were used to measure the local expression of BMP-2 and PPAR-γ. Bone tissues from control and operation groups were histologically analyzed by H&E staining. The comparisons of the local expression of BMP-2 and PPAR-γ and the bone regeneration were further analyzed between different groups at each time point. Results The expression of BMP-2 in the osteonecrosis femoral head with or without decompression was significantly lower than that in normal animals. BMP-2 expression both showed the decreasing trend with the increased post-operation time. No significant difference of BMP-2 expression occurred between femoral head osteonecrosis with and without decompression. The PPAR-γ expression in the femoral head osteonecrosis with and without core decompression both was significantly higher than that in control. Its expression pattern showed a significantly increased trend with increased the post-operation time. However, there was no significant difference of PPAR-γ expression between the femoral head osteonecrosis with and without decompression at each time point. Histopathological analysis revealed that new trabecular bone and a large number of osteoblasts were observed in the steroid-induced femoral head osteonecrosis with lateral decompression at 8 weeks after surgery, but there still existed trabecular bone fractures and bone necrosis. Conclusions Although decompression takes partial effect in promoting bone regeneration in the early treatment of femoral head osteonecrosis, such an effect does not

  20. The effect of core decompression on local expression of BMP-2, PPAR-γ and bone regeneration in the steroid-induced femoral head osteonecrosis.

    Science.gov (United States)

    Wang, Wei; Liu, Liying; Dang, Xiaoqian; Ma, Shuqiang; Zhang, Mingyu; Wang, Kunzheng

    2012-08-09

    To investigate the efficacy of the sole core decompression surgery for the treatment of steroid-induced femoral head osteonecrosis. The model was established by administration of steroids in combination with horse serum. The rabbits with bilateral femoral head osteonecrosis were randomly selected to do the one side of core decompression. The other side was used as the sham. Quantitative RT-PCR and western blot techniques were used to measure the local expression of BMP-2 and PPAR-γ. Bone tissues from control and operation groups were histologically analyzed by H&E staining. The comparisons of the local expression of BMP-2 and PPAR-γ and the bone regeneration were further analyzed between different groups at each time point. The expression of BMP-2 in the osteonecrosis femoral head with or without decompression was significantly lower than that in normal animals. BMP-2 expression both showed the decreasing trend with the increased post-operation time. No significant difference of BMP-2 expression occurred between femoral head osteonecrosis with and without decompression. The PPAR-γ expression in the femoral head osteonecrosis with and without core decompression both was significantly higher than that in control. Its expression pattern showed a significantly increased trend with increased the post-operation time. However, there was no significant difference of PPAR-γ expression between the femoral head osteonecrosis with and without decompression at each time point. Histopathological analysis revealed that new trabecular bone and a large number of osteoblasts were observed in the steroid-induced femoral head osteonecrosis with lateral decompression at 8 weeks after surgery, but there still existed trabecular bone fractures and bone necrosis. Although decompression takes partial effect in promoting bone regeneration in the early treatment of femoral head osteonecrosis, such an effect does not significantly improve or reverse the pathological changes of femoral

  1. Multifunctional Thin Film Biomatrice Biosensor in a Degradable Scaffold Containing Bone Morphogenetic Protein-2 (BMP-2) for Controlled Release in Skeletal Tissue Engineering

    Science.gov (United States)

    McDaniel, Harvey; Lomax, Linda

    2001-03-01

    Bone morphonogenetic proteins (BMP-2) have been under investigation for three decades. Deminerialized bone and extracts of deminerialized bone are o steoinductive with a temporal sequence of bone induction. Native and recombi nant BMP's have shown the ability, thru growth and differentiative factors t o induce de novo bone formation both invitro and invivo. Their principle fun ction is to induce transformation of undifferentiated mesenchymal cells into osteoblasts. Native and recombinant BMP's, when purified and used without carrier disp erse after implantation and exert no effect on bone induction. The delivery system provides the missing component to successsfully applying osteogenic p roteins for clinical need. Biological and physio-chemical properties are str ictly adhered tofor a successful delivery system. The BMP delivery system ca rrier for osteo inductive payload provided; 1)non tumorgenic genecity, 2) no n immunogenecity, 3) water insoluble, 4) biosorbability with predictable enz ymatic degradation, and 5) an optimized surface for compatibility, cell migr ation and attachment with a negative surface change that encouraged target c ell attachment. Being a controlled Release System, it binded the proteins wi th predictible BMP released kinetics. Porosity with interconnecting voids pr otected the BMP from noon specific proteolysis and promoted rapid vascular a nd mesenchymal invasion. Far wide ranging clinical applications of mechanica l and biofunctional requirements were met with the BMP delivery system. Cohe sion and malleability were reqiured forcontour augmentation, and reconstruct ion of the discontinuity defects, prevented dislocation and retained the sha pe and bone replaced the system. Biological systems have elastic activity associated with them. The activi ty was current associated with a time dependant biological/biochemical react ion (enzymic activity). Bioelectric phoenomena associated with charged molec ules in a biologic structure caused

  2. Pigment patterns in adult fish result from superimposition of two largely independent pigmentation mechanisms.

    Science.gov (United States)

    Ceinos, Rosa M; Guillot, Raúl; Kelsh, Robert N; Cerdá-Reverter, José M; Rotllant, Josep

    2015-03-01

    Dorso-ventral pigment pattern differences are the most widespread pigmentary adaptations in vertebrates. In mammals, this pattern is controlled by regulating melanin chemistry in melanocytes using a protein, agouti-signalling peptide (ASIP). In fish, studies of pigment patterning have focused on stripe formation, identifying a core striping mechanism dependent upon interactions between different pigment cell types. In contrast, mechanisms driving the dorso-ventral countershading pattern have been overlooked. Here, we demonstrate that, in fact, zebrafish utilize two distinct adult pigment patterning mechanisms - an ancient dorso-ventral patterning mechanism, and a more recent striping mechanism based on cell-cell interactions; remarkably, the dorso-ventral patterning mechanism also utilizes ASIP. These two mechanisms function largely independently, with resultant patterns superimposed to give the full pattern. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. S100A4 and BMP-2 Co-Dependently Induce Vascular Smooth Muscle Cell Migration via pERK and Chloride Intracellular Channel 4 (CLIC4)

    Science.gov (United States)

    Spiekerkoetter, Edda; Guignabert, Christophe; de Jesus Perez, Vinicio; Alastalo, Tero-Pekka; Powers, Janine M; Wang, Lingli; Lawrie, Allan; Ambartsumian, Noona; Schmidt, Ann-Marie; Berryman, Mark; Ashley, Richard H; Rabinovitch, Marlene

    2009-01-01

    Rationale S100A4/Mts1 is implicated in motility of human pulmonary artery smooth muscle cells (hPASMC), through an interaction with the receptor for advanced glycation end products (RAGE). Objective We hypothesized that S100A4/Mts1-mediated hPASMC motility might be enhanced by loss of function of bone morphogenetic protein (BMP) receptor (R) II, observed in pulmonary arterial hypertension (PAH). Methods and Results Both S100A4/Mts1 (500ng/ml) and BMP-2 (10ng/ml) induce migration of hPASMCS in a novel co-dependent manner, in that the response to either ligand is lost with anti-RAGE or BMPRII siRNA. Phosphorylation of ERK is induced by both ligands and is required for motility by inducing MMP2 activity, but phosphoERK1/2 is blocked by anti-RAGE and not by BMPRII siRNA. In contrast, BMPRII siRNA, but not anti-RAGE, reduces expression of intracellular chloride channel 4 (CLIC4), a scaffolding molecule necessary for motility in response to S100A4/Mts1 or BMP-2. Reduced CLIC4 expression does not interfere with S100A4/Mts1 internalization or its interaction with myosin heavy chain IIA (MHCIIA), but does alter alignment of MHCIIA and actin filaments creating the appearance of vacuoles. This abnormality is associated with reduced peripheral distribution and/or delayed activation of RhoA and Rac1, small GTPases required for retraction and extension of lamellipodiae in motile cells. Conclusions Our studies demonstrate how a single ligand (BMP-2 or S100A4/Mts1) can recruit multiple cell surface receptors to relay signals that coordinate events culminating in a functional response, i.e., cell motility. We speculate that this carefully controlled process limits signals from multiple ligands, but could be subverted in disease. PMID:19713532

  4. Generation of an rhBMP-2-loaded beta-tricalcium phosphate/hydrogel composite and evaluation of its efficacy on peri-implant bone formation

    International Nuclear Information System (INIS)

    Lee, Jae Hyup; Baek, Hae-Ri; Lee, Ji-Ho; Ryu, Mi Young; Seo, Jun-Hyuk; Lee, Kyung-Mee

    2014-01-01

    Dental implant insertion on a site with low bone quality or bone defect should be preceded by a bone graft or artificial bone graft insertion to heal the defect. We generated a beta-tricalcium phosphate (β-TCP) and poloxamer 407-based hydrogel composite and penetration of the β-TCP/hydrogel composite into the peri-implant area of bone was evaluated by porous bone block experiments. The maximum penetration depth for porous bone blocks and dense bone blocks were 524 μm and 464 μm, respectively. We report the in-vivo performance of a composite of β-TCP/hydrogel composite as a carrier of recombinant human bone morphogenetic protein (rhBMP-2), implanted into a rabbit tibial defect model. Three holes drilled into each tibia of eight male rabbits were (1) grafted with dental implant fixtures; (2) filled with β-TCP/hydrogel composite (containing 5 μg of rhBMP-2), followed by grafting of the dental implant fixtures. Four weeks later, bone-implant contact ratio and peri-implant bone formation were analyzed by radiography, micro-CT and histology of undecalcified specimens. The micro-CT results showed a significantly higher level of trabecular thickness and new bone and peri-implant new bone formation in the experimental treatment compared to the control treatment. Histomorphometry revealed a significantly higher bone-implant contact ratio and peri-implant bone formation with the experimental treatment. The use of β-TCP/poloxamer 407 hydrogel composite as a carrier of rhBMP-2 significantly promoted new bone formation around the dental implant fixture and it also improved the quality of the new bone formed in the tibial marrow space. (paper)

  5. Low-level laser therapy enhances the stability of orthodontic mini-implants via bone formation related to BMP-2 expression in a rat model.

    Science.gov (United States)

    Omasa, Saori; Motoyoshi, Mitsuru; Arai, Yoshinori; Ejima, Ken-Ichiro; Shimizu, Noriyoshi

    2012-05-01

    The aim of this study was to investigate the stimulatory effects of low-level laser therapy (LLLT) on the stability of mini-implants in rat tibiae. In adolescent patients, loosening is a notable complication of mini-implants used to provide anchorage in orthodontic treatments. Previously, the stimulatory effects of LLLT on bone formation were reported; here, it was examined whether LLLT enhanced the stability of mini-implants via peri-implant bone formation. Seventy-eight titanium mini-implants were placed into both tibiae of 6-week-old male rats. The mini-implants in the right tibia were subjected to LLLT of gallium-aluminium-arsenide laser (830 nm) once a day during 7 days, and the mini-implants in the left tibia served as nonirradiated controls. At 7 and 35 days after implantation, the stability of the mini-implants was investigated using the diagnostic tool (Periotest). New bone volume around the mini-implants was measured on days 3, 5, and 7 by in vivo microfocus CT. The gene expression of bone morphogenetic protein (BMP)-2 in bone around the mini-implants was also analyzed using real-time reverse-transcription polymerase chain reaction assays. The data were statistically analyzed using Student's t test. Periotest values were significantly lower (0.79- to 0.65-fold) and the volume of newly formed bone was significantly higher (1.53-fold) in the LLLT group. LLLT also stimulated significant BMP-2 gene expression in peri-implant bone (1.92-fold). LLLT enhanced the stability of mini-implants placed in rat tibiae and accelerated peri-implant bone formation by increasing the gene expression of BMP-2 in surrounding cells.

  6. Adenovirus-Mediated Expression of BMP-2 and BFGF in Bone Marrow Mesenchymal Stem Cells Combined with Demineralized Bone Matrix For Repair of Femoral Head Osteonecrosis in Beagle Dogs

    Directory of Open Access Journals (Sweden)

    Wu-Xun Peng

    2017-10-01

    Full Text Available Background: This study investigated the effect of using adenovirus-mediated expression of bone morphogenetic protein 2 (Ad-BMP-2 and basic fibroblast growth factor (bFGF in bone marrow mesenchymal stem cells (BMSCs in combination with a demineralized bone matrix (DBM to repair osteonecrosis of the femoral head (ONFH in Beagle dogs. Methods: A total of 30 Beagle dogs were selected for the isolation of BMSCs, which were cultured and transfected with the recombinant adenovirus vector Ad-BMP2-bFGF-GFP (carrying BMP-2 and bFGF or a control adenovirus plasmid (encoding green fluorescent protein (Ad-GFP. The expression of the transfected BMP-2 and bFGF proteins was detected by Western blotting. After transfection, the BMSCs were induced to undergo osteoblastic differentiation. The DBM was prepared to construct a DBM/BMSC complex. Beagle models of canine femoral head defects and necrosis were established and divided into control, DBM, DBM/BMSC, vector Ad-BMP2-bFGF-GFP and Ad-GFP groups. The composite graft was then implanted, and new bone morphology was visualized via X-ray at 3, 6 and 12 weeks after the operation. Hematoxylin and eosin (HE staining and Masson’s trichrome staining were used to identify new bone formation. Immunohistochemistry was performed to calculate the density of new blood vessels. The compressive and bending strength of the BMSCs was evaluated at 12 weeks after the operation. Results: BMSCs were successfully isolated. The protein expression of BMP-2 and bFGF was significantly higher in the Ad-BMP-2/bFGF group than the normal and Ad-GFP groups. Compared with the control group, at 12 weeks after the operation, the DBM, DBM/BMSC, vector Ad-BMP2-bFGF-GFP and Ad-GFP groups showed a larger area of new bone, higher X-ray scores, greater neovascularization density, and increased compressive and bending strength. The most significant modifications occurred in thevector Ad-BMP2-bFGF-GFP group. Conclusion: The results indicate that the use

  7. Adenovirus-Mediated Expression of BMP-2 and BFGF in Bone Marrow Mesenchymal Stem Cells Combined with Demineralized Bone Matrix For Repair of Femoral Head Osteonecrosis in Beagle Dogs.

    Science.gov (United States)

    Peng, Wu-Xun; Wang, Lei

    2017-01-01

    This study investigated the effect of using adenovirus-mediated expression of bone morphogenetic protein 2 (Ad-BMP-2) and basic fibroblast growth factor (bFGF) in bone marrow mesenchymal stem cells (BMSCs) in combination with a demineralized bone matrix (DBM) to repair osteonecrosis of the femoral head (ONFH) in Beagle dogs. A total of 30 Beagle dogs were selected for the isolation of BMSCs, which were cultured and transfected with the recombinant adenovirus vector Ad-BMP2-bFGF-GFP (carrying BMP-2 and bFGF) or a control adenovirus plasmid (encoding green fluorescent protein (Ad-GFP)). The expression of the transfected BMP-2 and bFGF proteins was detected by Western blotting. After transfection, the BMSCs were induced to undergo osteoblastic differentiation. The DBM was prepared to construct a DBM/BMSC complex. Beagle models of canine femoral head defects and necrosis were established and divided into control, DBM, DBM/BMSC, vector Ad-BMP2-bFGF-GFP and Ad-GFP groups. The composite graft was then implanted, and new bone morphology was visualized via X-ray at 3, 6 and 12 weeks after the operation. Hematoxylin and eosin (HE) staining and Masson's trichrome staining were used to identify new bone formation. Immunohistochemistry was performed to calculate the density of new blood vessels. The compressive and bending strength of the BMSCs was evaluated at 12 weeks after the operation. BMSCs were successfully isolated. The protein expression of BMP-2 and bFGF was significantly higher in the Ad-BMP-2/bFGF group than the normal and Ad-GFP groups. Compared with the control group, at 12 weeks after the operation, the DBM, DBM/BMSC, vector Ad-BMP2-bFGF-GFP and Ad-GFP groups showed a larger area of new bone, higher X-ray scores, greater neovascularization density, and increased compressive and bending strength. The most significant modifications occurred in thevector Ad-BMP2-bFGF-GFP group. The results indicate that the use of Ad-BMP-2/bFGF-modified BMSCs in conjunction with DBM

  8. Axonal wiring in neural development: Target-independent mechanisms help to establish precision and complexity.

    Science.gov (United States)

    Petrovic, Milan; Schmucker, Dietmar

    2015-09-01

    The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent precision. The chemotropic guidance of the growing axon by target-derived cues represents a central paradigm for how neurons get connected with the correct target cells. However, many studies reveal a remarkable variety of important target-independent wiring mechanisms. These mechanisms include axonal sorting, axonal tiling, growth cone polarization, as well as cell-intrinsic mechanisms underlying growth cone sprouting, and neurite branching. Our review focuses on target independent wiring mechanisms and in particular on recent progress emerging from studies on three different sensory systems: olfactory, visual, and somatosensory. We discuss molecular mechanisms that operate during axon-axon interactions or constitute axon-intrinsic functions and outline how they complement the well-known target-dependent wiring mechanisms. © 2015 WILEY Periodicals, Inc.

  9. Anticoagulant independent mechanical heart valves: viable now or still a distant holy grail.

    Science.gov (United States)

    Chaux, Aurelio; Gray, Richard J; Stupka, Jonathan C; Emken, Michael R; Scotten, Lawrence N; Siegel, Rolland

    2016-12-01

    Valvular heart disease remains a large public health problem for all societies; it attracts the attention of public health organizations, researchers and governments. Valve substitution is an integral part of the treatment for this condition. At present, the choice of valve prosthesis is either tissue or mechanical. Tissue valves have become increasingly popular in spite of unresolved problems with durability, hemodynamics, cost and need for anticoagulation therapy. As a consequence, mechanical valve innovation has virtually ceased; the last successful mechanical design is 25 years old. We postulate that with improved technology, knowledge and experience gained over the last quarter century, the best possible solution to the problem of valve substitution can be achieved with a mechanical valve that is anticoagulant independent, durable, hemodynamically and cost efficient. At present, it is possible to design, test and produce a valve that can accomplish these goals.

  10. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    Science.gov (United States)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  11. New Insights on the Mechanism of the K+-Independent Activity of Crenarchaeota Pyruvate Kinases

    Science.gov (United States)

    De la Vega-Ruíz, Gustavo; Domínguez-Ramírez, Lenin; Riveros-Rosas, Héctor; Guerrero-Mendiola, Carlos; Torres-Larios, Alfredo; Hernández-Alcántara, Gloria; García-Trejo, José J.; Ramírez-Silva, Leticia

    2015-01-01

    Eukarya pyruvate kinases have glutamate at position 117 (numbered according to the rabbit muscle enzyme), whereas in Bacteria have either glutamate or lysine and in Archaea have other residues. Glutamate at this position makes pyruvate kinases K+-dependent, whereas lysine confers K+-independence because the positively charged residue substitutes for the monovalent cation charge. Interestingly, pyruvate kinases from two characterized Crenarchaeota exhibit K+-independent activity, despite having serine at the equivalent position. To better understand pyruvate kinase catalytic activity in the absence of K+ or an internal positive charge, the Thermofilum pendens pyruvate kinase (valine at the equivalent position) was characterized. The enzyme activity was K+-independent. The kinetic mechanism was random order with a rapid equilibrium, which is equal to the mechanism of the rabbit muscle enzyme in the presence of K+ or the mutant E117K in the absence of K+. Thus, the substrate binding order of the T. pendens enzyme was independent despite lacking an internal positive charge. Thermal stability studies of this enzyme showed two calorimetric transitions, one attributable to the A and C domains (Tm of 99.2°C), and the other (Tm of 105.2°C) associated with the B domain. In contrast, the rabbit muscle enzyme exhibits a single calorimetric transition (Tm of 65.2°C). The calorimetric and kinetic data indicate that the B domain of this hyperthermophilic enzyme is more stable than the rest of the protein with a conformation that induces the catalytic readiness of the enzyme. B domain interactions of pyruvate kinases that have been determined in Pyrobaculum aerophilum and modeled in T. pendens were compared with those of the rabbit muscle enzyme. The results show that intra- and interdomain interactions of the Crenarchaeota enzymes may account for their higher B domain stability. Thus the structural arrangement of the T. pendens pyruvate kinase could allow charge-independent

  12. Beyond buckling: humidity-independent measurement of the mechanical properties of green nanobiocomposite films.

    Science.gov (United States)

    Gill, Urooj; Sutherland, Travis; Himbert, Sebastian; Zhu, Yujie; Rheinstädter, Maikel C; Cranston, Emily D; Moran-Mirabal, Jose M

    2017-06-14

    Precise knowledge of the mechanical properties of emerging nanomaterials and nanocomposites is crucial to match their performance with suitable applications. While methods to characterize mechanical properties exist, they are limited by instrument sensitivity and sample requirements. For bio-based nanomaterials this challenge is exacerbated by the extreme dependence of mechanical properties on humidity. This work presents an alternative approach, based on polymer shrinking-induced wrinkling mechanics, to determine the elastic modulus of nanobiocomposite films in a humidity-independent manner. Layer-by-layer (LbL) films containing cellulose nanocrystals (CNCs) and water-soluble polymers were deposited onto pre-stressed polystyrene substrates followed by thermal shrinking, which wrinkled the films to give them characteristic topographies. Three deposition parameters were varied during LbL assembly: (1) polymer type (xyloglucan - XG, or polyethyleneimine - PEI); (2) polymer concentration (0.1 or 1 wt%); and (3) number of deposition cycles, resulting in 10-600 nm thick nanobiocomposite films with tuneable compositions. Fast Fourier transform analysis on electron microscopy images of the wrinkled films was used to calculate humidity-independent moduli of 70 ± 2 GPa for CNC-XG 0.1 , 72 ± 2 GPa for CNC-PEI 0.1 , and 32.2 ± 0.8 GPa for CNC-PEI 1.0 films. This structuring method is straightforward and amenable to a wide range of supported thin films.

  13. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties.

    Science.gov (United States)

    Tong, Xinming; Yang, Fan

    2014-02-01

    Hydrogels have been widely used as artificial cell niche to mimic extracellular matrix with tunable properties. However, changing biochemical cues in hydrogels developed-to-date would often induce simultaneous changes in mechanical properties, which do not support mechanistic studies on stem cell-niche interactions. Here we report the development of a PEG-based interpenetrating network (IPN), which is composed of two polymer networks that can independently and simultaneously crosslink to form hydrogels in a cell-friendly manner. The resulting IPN hydrogel allows independently tunable biochemical and mechanical properties, as well as stable and more homogeneous presentation of biochemical ligands in 3D than currently available methods. We demonstrate the potential of our IPN platform for elucidating stem cell-niche interactions by modulating osteogenic differentiation of human adipose-derived stem cells. The versatility of such IPN hydrogels is further demonstrated using three distinct and widely used polymers to form the mechanical network while keeping the biochemical network constant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Affirming independence: Exploring mechanisms underlying a values affirmation intervention for first-generation students.

    Science.gov (United States)

    Tibbetts, Yoi; Harackiewicz, Judith M; Canning, Elizabeth A; Boston, Jilana S; Priniski, Stacy J; Hyde, Janet S

    2016-05-01

    First-generation college students (students for whom neither parent has a 4-year college degree) earn lower grades and worry more about whether they belong in college, compared with continuing-generation students (who have at least 1 parent with a 4-year college degree). We conducted a longitudinal follow-up of participants from a study in which a values-affirmation intervention improved performance in a biology course for first-generation college students, and found that the treatment effect on grades persisted 3 years later. First-generation students in the treatment condition obtained a GPA that was, on average, .18 points higher than first-generation students in the control condition, 3 years after values affirmation was implemented (Study 1A). We explored mechanisms by testing whether the values-affirmation effects were predicated on first-generation students reflecting on interdependent values (thus affirming their values that are consistent with working-class culture) or independent values (thus affirming their values that are consistent with the culture of higher education). We found that when first-generation students wrote about their independence, they obtained higher grades (both in the semester in which values affirmation was implemented and in subsequent semesters) and felt less concerned about their background. In a separate laboratory experiment (Study 2) we manipulated the extent to which participants wrote about independence and found that encouraging first-generation students to write more about their independence improved their performance on a math test. These studies highlight the potential of having FG students focus on their own independence. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm.

    Directory of Open Access Journals (Sweden)

    Alexandra Saudemont

    2010-12-01

    Full Text Available Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic ("ciliary band" region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of "ciliary band" genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we

  16. Characteristics and stimulation potential with BMP-2 and BMP-7 of tenocyte-like cells isolated from the rotator cuff of female donors.

    Directory of Open Access Journals (Sweden)

    Franka Klatte-Schulz

    Full Text Available Tendon bone healing of the rotator cuff is often associated with non-healing or recurrent defects, which seems to be influenced by the patient's age and sex. The present study aims to examine cellular biological characteristics of tenocyte-like cells that may contribute to this impaired rotator cuff healing. Moreover, a therapeutic approach using growth factors could possibly stimulate tendon bone healing. Therefore, our second aim was to identify patient groups who would particularly benefit from growth factor stimulation. Tenocyte-like cells isolated from supraspinatus tendons of female donors younger and older than 65 years of age were characterized with respect to different cellular biological parameters, such as cell density, cell count, marker expression, collagen-I protein synthesis, and stem cell potential. Furthermore, cells of the donor groups were stimulated with BMP-2 and BMP-7 (200 and 1000 ng/ml in 3D-culture and analyzed for cell count, marker expression and collagen-I protein synthesis. Female donors older than 65 years of age showed significantly decreased cell count and collagen-I protein synthesis compared to cells from donors younger than 65 years. Cellular biological parameters including cell count, collagen-I and -III expression, and collagen-I protein synthesis of cells from both donor groups were stimulated with BMP-2 and BMP-7. The cells from donors older than 65 years revealed a decreased stimulation potential for cell count compared to the younger group. Cells from female donors older than 65 years of age showed inferior cellular biological characteristics. This may be one reason for a weaker healing potential observed in older female patients and should be taken into consideration for tendon bone healing of the rotator cuff.

  17. Transcriptional regulation in adipogenesis through PPARγ-dependent and -independent mechanisms by prostaglandins.

    Science.gov (United States)

    Fujimori, Ko; Urade, Yoshihiro

    2014-01-01

    Adipogenesis is controlled by complex mechanisms, and transcription factors are involved in its regulation. PPARγ is a ligand-dependent transcription factor and the most important one for adipogenesis. Although prostaglandin (PG) D2 metabolites have been reported as being the ligands of PPARγ, the endogenous PPARγ ligand in adipocytes remains unclear. Here, we show the methods for the general analysis of adipocyte differentiation and the protocols for promoter analysis, fluorescence EMSA, and chromatin immunoprecipitation assay for the transcriptional regulation of the SREBP-1c-activated lipocalin-type PGD synthase gene in adipocytes. Moreover, we describe that PGD2 and its metabolites are involved in the regulation of adipogenesis through PPARγ-dependent and -independent mechanisms.

  18. The Nigeria Independent Accountability Mechanism for maternal, newborn, and child health.

    Science.gov (United States)

    Garba, Aminu Magashi; Bandali, Sarah

    2014-10-01

    Since the 2010 launch of the UN Secretary-General's Global Strategy for Women's and Children's Health, worldwide political energy coalesced around improving the health of women and children. Nigeria acted on a key recommendation emerging from the Global Strategy and became one of the first countries to establish an independent group known as the Nigeria Independent Accountability Mechanism (NIAM). NIAM aims to track efforts on progress related to Nigeria's roadmap for the health of women and children. It includes eminent people from outside government to ensure independence, and is recognized within government to analyze and report on progress. The concept of NIAM received approval at various national and international forums, as well as from the Nigeria Federal Ministry of Health. This experience provides an example of connecting expertise and groups with the government to influence and accelerate progress in maternal, newborn, and child health. Engagement between government and civil society should become the norm rather than the exception to achieve national goals. Copyright © 2014. Published by Elsevier Ireland Ltd.

  19. Mechanism for leptin’s acute insulin-independent effect to reverse diabetic ketoacidosis

    Science.gov (United States)

    Perry, Rachel J.; Peng, Liang; Abulizi, Abudukadier; Kennedy, Lynn; Cline, Gary W.

    2017-01-01

    The mechanism by which leptin reverses diabetic ketoacidosis (DKA) is unknown. We examined the acute insulin-independent effects of leptin replacement therapy in a streptozotocin-induced rat model of DKA. Leptin infusion reduced rates of lipolysis, hepatic glucose production (HGP), and hepatic ketogenesis by 50% within 6 hours and were independent of any changes in plasma glucagon concentrations; these effects were abrogated by coinfusion of corticosterone. Treating leptin- and corticosterone-infused rats with an adipose triglyceride lipase inhibitor blocked corticosterone-induced increases in plasma glucose concentrations and rates of HGP and ketogenesis. Similarly, adrenalectomized type 1 diabetic (T1D) rats exhibited decreased rates of lipolysis, HGP, and ketogenesis; these effects were reversed by corticosterone infusion. Leptin-induced decreases in lipolysis, HGP, and ketogenesis in DKA were also nullified by relatively small increases (15 to 70 pM) in plasma insulin concentrations. In contrast, the chronic glucose-lowering effect of leptin in a STZ-induced mouse model of poorly controlled T1D was associated with decreased food intake, reduced plasma glucagon and corticosterone concentrations, and decreased ectopic lipid (triacylglycerol/diacylglycerol) content in liver and muscle. Collectively, these studies demonstrate marked differences in the acute insulin-independent effects by which leptin reverses fasting hyperglycemia and ketoacidosis in a rodent model of DKA versus the chronic pleotropic effects by which leptin reverses hyperglycemia in a non-DKA rodent model of T1D. PMID:28112679

  20. A Trunk Support System to Identify Posture Control Mechanisms in Populations Lacking Independent Sitting.

    Science.gov (United States)

    Goodworth, Adam D; Wu, Yen-Hsun; Felmlee, Duffy; Dunklebarger, Ellis; Saavedra, Sandra

    2017-01-01

    Populations with moderate-to-severe motor control impairments often exhibit degraded trunk control and/or lack the ability to sit unassisted. These populations need more research, yet their underdeveloped trunk control complicates identification of neural mechanisms behind their movements. The purpose of this study was to overcome this barrier by developing the first multi-articulated trunk support system to identify visual, vestibular, and proprioception contributions to posture in populations lacking independent sitting. The system provided external stability at a user-specific level on the trunk, so that body segments above the level of support required active posture control. The system included a tilting surface (controlled via servomotor) as a stimulus to investigate sensory contributions to postural responses. Frequency response and coherence functions between the surface tilt and trunk support were used to characterize system dynamics and indicated that surface tilts were accurately transmitted up to 5 Hz. Feasibility of collecting kinematic data in participants lacking independent sitting was demonstrated in two populations: two typically developing infants, [Formula: see text] months, in a longitudinal study (eight sessions each) and four children with moderate-to-severe cerebral palsy (GMFCS III-V). Adaptability in the system was assessed by testing 16 adults (ages 18-63). Kinematic responses to continuous pseudorandom surface tilts were evaluated across 0.046-2 Hz and qualitative feedback indicated that the trunk support and stimulus were comfortable for all subjects. Concepts underlying the system enable both research for, and rehabilitation in, populations lacking independent sitting.

  1. Mechanism for leptin's acute insulin-independent effect to reverse diabetic ketoacidosis.

    Science.gov (United States)

    Perry, Rachel J; Peng, Liang; Abulizi, Abudukadier; Kennedy, Lynn; Cline, Gary W; Shulman, Gerald I

    2017-02-01

    The mechanism by which leptin reverses diabetic ketoacidosis (DKA) is unknown. We examined the acute insulin-independent effects of leptin replacement therapy in a streptozotocin-induced rat model of DKA. Leptin infusion reduced rates of lipolysis, hepatic glucose production (HGP), and hepatic ketogenesis by 50% within 6 hours and were independent of any changes in plasma glucagon concentrations; these effects were abrogated by coinfusion of corticosterone. Treating leptin- and corticosterone-infused rats with an adipose triglyceride lipase inhibitor blocked corticosterone-induced increases in plasma glucose concentrations and rates of HGP and ketogenesis. Similarly, adrenalectomized type 1 diabetic (T1D) rats exhibited decreased rates of lipolysis, HGP, and ketogenesis; these effects were reversed by corticosterone infusion. Leptin-induced decreases in lipolysis, HGP, and ketogenesis in DKA were also nullified by relatively small increases (15 to 70 pM) in plasma insulin concentrations. In contrast, the chronic glucose-lowering effect of leptin in a STZ-induced mouse model of poorly controlled T1D was associated with decreased food intake, reduced plasma glucagon and corticosterone concentrations, and decreased ectopic lipid (triacylglycerol/diacylglycerol) content in liver and muscle. Collectively, these studies demonstrate marked differences in the acute insulin-independent effects by which leptin reverses fasting hyperglycemia and ketoacidosis in a rodent model of DKA versus the chronic pleotropic effects by which leptin reverses hyperglycemia in a non-DKA rodent model of T1D.

  2. Ret-dependent and Ret-independent mechanisms of Gfl-induced sensitization

    Directory of Open Access Journals (Sweden)

    Meadows Rena M

    2011-03-01

    Full Text Available Abstract Background The GDNF family ligands (GFLs are regulators of neurogenic inflammation and pain. We have previously shown that GFLs increase the release of the sensory neuron neuropeptide, calcitonin gene-related peptide (CGRP from isolated mouse DRG. Results Inhibitors of the mitogen-activated protein kinase (MAPK pathway abolished the enhancement of CGRP release by GDNF. Neurturin-induced enhancement in the stimulated release of CGRP, used as an indication of sensory neuronal sensitization, was abolished by inhibition of the phosphatidylinositol-3 kinase (PI-3K pathway. Reduction in Ret expression abolished the GDNF-induced sensitization, but did not fully inhibit the increase in stimulus-evoked release of CGRP caused by neurturin or artemin, indicating the presence of Ret-independent GFL-induced signaling in sensory neurons. Integrin β-1 and NCAM are involved in a component of Ret-independent GFL signaling in sensory neurons. Conclusions These data demonstrate the distinct and variable Ret-dependent and Ret-independent signaling mechanisms by which GFLs induce sensitization of sensory neurons. Additionally, there is a clear disconnect between intracellular signaling pathway activation and changes in sensory neuronal function.

  3. The Independent and Shared Mechanisms of Intrinsic Brain Dynamics: Insights From Bistable Perception

    Directory of Open Access Journals (Sweden)

    Teng Cao

    2018-04-01

    Full Text Available In bistable perception, constant input leads to alternating perception. The dynamics of the changing perception reflects the intrinsic dynamic properties of the “unconscious inferential” process in the brain. Under the same condition, individuals differ in how fast they experience the perceptual alternation. In this study, testing many forms of bistable perception in a large number of observers, we investigated the key question of whether there is a general and common mechanism or multiple and independent mechanisms that control the dynamics of the inferential brain. Bistable phenomena tested include binocular rivalry, vase-face, Necker cube, moving plaid, motion induced blindness, biological motion, spinning dancer, rotating cylinder, Lissajous-figure, rolling wheel, and translating diamond. Switching dynamics for each bistable percept was measured in 100 observers. Results show that the switching rates of subsets of bistable percept are highly correlated. The clustering of dynamic properties of some bistable phenomena but not an overall general control of switching dynamics implies that the brain’s inferential processes are both shared and independent – faster in constructing 3D structure from motion does not mean faster in integrating components into an objects.

  4. Independent Attention Mechanisms Control the Activation of Tactile and Visual Working Memory Representations.

    Science.gov (United States)

    Katus, Tobias; Eimer, Martin

    2018-05-01

    Working memory (WM) is limited in capacity, but it is controversial whether these capacity limitations are domain-general or are generated independently within separate modality-specific memory systems. These alternative accounts were tested in bimodal visual/tactile WM tasks. In Experiment 1, participants memorized the locations of simultaneously presented task-relevant visual and tactile stimuli. Visual and tactile WM load was manipulated independently (one, two, or three items per modality), and one modality was unpredictably tested after each trial. To track the activation of visual and tactile WM representations during the retention interval, the visual contralateral delay activity (CDA) and tactile CDA (tCDA) were measured over visual and somatosensory cortex, respectively. CDA and tCDA amplitudes were selectively affected by WM load in the corresponding (tactile or visual) modality. The CDA parametrically increased when visual load increased from one to two and to three items. The tCDA was enhanced when tactile load increased from one to two items and showed no further enhancement for three tactile items. Critically, these load effects were strictly modality-specific, as substantiated by Bayesian statistics. Increasing tactile load did not affect the visual CDA, and increasing visual load did not modulate the tCDA. Task performance at memory test was also unaffected by WM load in the other (untested) modality. This was confirmed in a second behavioral experiment where tactile and visual loads were either two or four items, unimodal baseline conditions were included, and participants performed a color change detection task in the visual modality. These results show that WM capacity is not limited by a domain-general mechanism that operates across sensory modalities. They suggest instead that WM storage is mediated by distributed modality-specific control mechanisms that are activated independently and in parallel during multisensory WM.

  5. Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism.

    Science.gov (United States)

    Qi, Jian Hua; Anand-Apte, Bela

    2015-04-01

    Tissue inhibitor of metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in ECs in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in ECs expressing KDR (PAE/KDR), but not in ECs expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway.

  6. MEK-1 Activates C-Raf Through a Ras-Independent Mechanism

    Science.gov (United States)

    Leicht, Deborah T.; Balan, Vitaly; Zhu, Jun; Kaplun, Alexander; Bronisz, Agnieszka; Rana, Ajay; Tzivion, Guri

    2013-01-01

    C-Raf is a member of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) signaling pathway that plays key roles in diverse physiological processes and is upregulated in many human cancers. C-Raf activation involves binding to Ras, increased phosphorylation and interactions with co-factors. Here, we describe a Ras-independent in vivo pathway for C-Raf activation by its downstream target MEK. Using 32P-metabolic labeling and 2D-phosphopeptide mapping experiments, we show that MEK increases C-Raf phosphorylation by up-to 10-fold. This increase was associated with C-Raf kinase activation, matching the activity seen with growth factor stimulation. Consequently, coexpression of wildtype C-Raf and MEK was sufficient for full and constitutive activation of ERK. Notably, the ability of MEK to activate C-Raf was completely Ras independent, since mutants impaired in Ras binding that are irresponsive to growth factors or Ras were fully activated by MEK. The ability of MEK to activate C-Raf was only partially dependent on MEK kinase activity but required MEK binding to C-Raf, suggesting that the binding results in a conformational change that increases C-Raf susceptibility to phosphorylation and activation or in the stabilization of the phosphorylated-active form. These findings propose a novel Ras-independent mechanism for activating C-Raf and the MAPK pathway without the need for mutations in the pathway. This mechanism could be of significance in pathological conditions or cancers overexpressing C-Raf and MEK or in conditions where C-Raf-MEK interaction is enhanced due to the downregulation of RKIP and MST2. PMID:23360980

  7. Use of the Functional Independence Measure in people for whom weaning from mechanical ventilation is difficult.

    Science.gov (United States)

    Montagnani, Giulia; Vagheggini, Guido; Panait Vlad, Eugenia; Berrighi, Daniele; Pantani, Luca; Ambrosino, Nicolino

    2011-07-01

    The Functional Independence Measure (FIM) has been proposed as an outcome measure for people receiving pulmonary rehabilitation after an acute exacerbation of chronic obstructive pulmonary disease. Objective The purpose of this study was to examine the clinical utility of the FIM after a weaning program in people for whom weaning from mechanical ventilation is difficult. Design This was a retrospective observational study. People who had had a tracheostomy, for whom weaning from mechanical ventilation was difficult, and who were participating in a weaning program (WP group) were retrospectively evaluated. People receiving pulmonary rehabilitation after an acute exacerbation of chronic obstructive pulmonary disease (PR group) were included as a validated control group. The scores on the FIM questionnaire and the Medical Research Council dyspnea scores were assessed at admission to and at discharge from the programs. Admission and discharge data from 56 participants in the WP group and 63 participants in the PR group were compared. At admission, according to the FIM, 5 participants in the WP group (7.7%) were defined as functionally independent, 34 (52.3%) were defined as partially dependent, and 26 (40.0%) were defined as completely dependent. At discharge, the mean FIM global score was significantly improved, from 47.9 (SD=22.8) to 62.6 (SD=30.0). For participants in the WP group, changes in the FIM score were significantly inversely related to the admission Acute Physiology and Chronic Health Evaluation (R=-.286) and Simplified Acute Physiology (R=-.293) scores and directly related to the admission FIM score (R=.355). At admission, 46 participants in the PR group (67.7%) were defined as functionally independent, 19 (27.9%) were defined as partially dependent, and 3 (4.4%) were defined as completely dependent. After pulmonary rehabilitation, the mean FIM global score was significantly improved, from 97.4 (SD=27.5) to 102.5 (SD=25.7). Limitations The study was not

  8. Development and Assessment of a 3D-Printed Scaffold with rhBMP-2 for an Implant Surgical Guide Stent and Bone Graft Material: A Pilot Animal Study

    Directory of Open Access Journals (Sweden)

    Ji Cheol Bae

    2017-12-01

    Full Text Available In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL/β-tricalcium phosphate (β-TCP/bone decellularized extracellular matrix (bdECM scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, % but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %. Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results.

  9. Development and Assessment of a 3D-Printed Scaffold with rhBMP-2 for an Implant Surgical Guide Stent and Bone Graft Material: A Pilot Animal Study

    Science.gov (United States)

    Bae, Ji Cheol; Lee, Jin-Ju; Shim, Jin-Hyung; Park, Keun-Ho; Lee, Jeong-Seok; Bae, Eun-Bin; Choi, Jae-Won; Huh, Jung-Bo

    2017-01-01

    In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP)/bone decellularized extracellular matrix (bdECM) scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT) to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, %) but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %). Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results. PMID:29258172

  10. Dynamic MR imaging: Follow-up study after femoral head core decompression and rhBMP-2 instillation in patients with avascular necrosis of the femoral head; Dynamische Magnetresonanztomographie (MRT): Verlaufsbeobachtung nach Femurkerndekompression und Auffuellung mit rekombinantem, humanem Bone morphogenetic Protein-2 (rhBMP-2) bei avaskulaerer Femurkopfnekrose

    Energy Technology Data Exchange (ETDEWEB)

    Schedel, H. [Klinik Prof. Schedel, Kellberg (Germany); Schneller, A. [Humboldt-Universitaet, Berlin (Germany). Klinik fuer Allgemein- und Transplantationschirurgie; Vogl, T.; Mueller, H.F.; Maeurer, J.; Felix, R. [Humboldt-Universitaet, Berlin (Germany). Strahlenklinik und Poliklinik; Suedkamp, N. [Humboldt-Universitaet, Berlin (Germany). Unfall- und Wiederherstellungschirurgie; Eisenschenk, A. [Freie Univ. Berlin (Germany). Orthopaedische Klinik und Poliklinik

    2000-07-01

    Material and Methods: Six patients with avascular necrosis of the femoral head ARCO-stage I- or II-lesions were treated surgically by femoral head core decompression. Three of these patients were additionally treated with rhBMP-2-instillation. The progression or regression could be confirmed by T1- and T2-weighted spinecho-sequences (zero, four, ten, sixteen weeks and 24 months follow up). Results: Corresponding ARCO-classification with partly more sensitive measurement of vitality signs in comparison to the optical X-ray classification. The objective, quantitative measurement of signalintensity post contrast medium reduces the influence of experience and level of education. The dynamic sequences results are reproducable. (orig.) [German] Material und Methoden: Sechs Patienten mit avaskulaerer Nekrose des Femurkopfes des Stadiums I oder II nach ARCO wurden einer Femurkerndekompression unterzogen. Drei dieser Patienten erhielten zusaetzlich eine rhBMP-2-Auffuellung. Zum Zeitpunkt null, vier, zehn, sechszehn Wochen und 24 Monaten post OP erfolgte die kernspintomographische Untersuchung mit T1- und T2-gewichteten Sequenzen unter besonderer Beruecksichtigung der dynamischen Untersuchungssequenz nach Gabe von Gd-DTPA (Gadopentetsaeure, Dimegluminsalz; Magnevist {sup trademark}) zur Dokumentation der Signalintensitaetssteigerung pro Zeiteinheit in der Nekroseregion. Ergebnisse: Uebereinstimmende Stadienklassifikation nach ARCO mit zum Teil empfindlicherer Messung von Vitalitaetszeichen im Vergleich zu rein visuellen roentgenologischen Einteilung. Die objektive, quantitative Messung des Signalintensitaetssteigerungsverhaltens nach Kontrastmittelgabe im Bereich der Femurkopfnekrose kann den Einfluss von subjektiven Eigenschaften des Untersuchers (Erfahrung, Ausbildungsstand) reduzieren, wobei die Ergebnisse der Dynamiksequenzen objektiv reproduzierbar sind. (orig.)

  11. Validation of a Grid Independent Spray Model and Fuel Chemistry Mechanism for Low Temperature Diesel Combustion

    Directory of Open Access Journals (Sweden)

    Takeshi Yoshikawa

    2009-09-01

    Full Text Available Spray and combustion submodels used in a Computational Fluid Dynamics (CFD code, KIVACHEMKIN, were validated for Low Temperature Combustion (LTC in a diesel engine by comparing measured and model predicted fuel spray penetrations, and in-cylinder distributions of OH and soot. The conditions considered were long ignition delay, early and late fuel injection cases. It was found that use of a grid independent spray model, called the GASJET model, with an improved n-heptane chemistry mechanism can well predict the heat release rate, not only of the main combustion stage, but also of the cool flame stage. Additionally, the GASJET model appropriately predicts the distributions of OH and soot in the cylinder even when the resolution of the computational mesh is decreased by half, which significantly reduces the required computational time.

  12. Lysine-52 stabilizes the MYC oncoprotein through an SCFFbxw7-independent mechanism.

    Science.gov (United States)

    De Melo, J; Kim, S S; Lourenco, C; Penn, L Z

    2017-12-07

    The oncogenic transcription factor c-MYC (MYC) is deregulated and often overexpressed in more than 50% of cancers. MYC deregulation is associated with poor prognosis and aggressive disease, suggesting that the development of therapeutic inhibitors targeting MYC would markedly impact patient outcome. MYC is highly regulated, with a protein and mRNA half-life of ~30 min. The most extensively studied pathway regulating MYC protein stability involves ubiquitylation and proteasomal degradation mediated by the E3-ligase, SCF Fbxw7 . Here we provide evidence for an SCF Fbxw7 -independent regulatory mechanism centred on the highly conserved lysine-52 (K52) within MYC Box I. This residue has been shown to be post-translationally modified by both ubiquitylation and SUMOylation, hinting at the interplay of post-translational modifications at this site and the importance of this residue. We demonstrate that mutation of K52 to arginine (R) renders the MYC protein more labile. Mechanistically, we show that the degradation pathway regulated by K52 is independent of the Cullin-RING ligase family of E3-ligases, which includes not only the canonical SCF Fbxw7 but also other known MYC-targeting E3-ligases, such as SCF Skp2 , SCF βTCRP , SCF Fbxo28 and DCX TRUSS . Taken together, our data identify a novel regulatory pathway centred on K52 that may be exploited for the development of anti-MYC therapeutics.

  13. A new experiment-independent mechanism to persistify and serve the detector geometry of ATLAS

    Science.gov (United States)

    Bianchi, Riccardo Maria; Boudreau, Joseph; Vukotic, Ilija

    2017-10-01

    The complex geometry of the whole detector of the ATLAS experiment at LHC is currently stored only in custom online databases, from which it is built on-the-fly on request. Accessing the online geometry guarantees accessing the latest version of the detector description, but requires the setup of the full ATLAS software framework “Athena”, which provides the online services and the tools to retrieve the data from the database. This operation is cumbersome and slows down the applications that need to access the geometry. Moreover, all applications that need to access the detector geometry need to be built and run on the same platform as the ATLAS framework, preventing the usage of the actual detector geometry in stand-alone applications. Here we propose a new mechanism to persistify (in software development in general, and in HEP computing in particular, persistifying means taking an object which lives in memory only - for example because it was built on-the-fly while processing the experimental data, - serializing it and storing it on disk as a persistent object) and serve the geometry of HEP experiments. The new mechanism is composed by a new file format and the modules to make use of it. The new file format allows to store the whole detector description locally in a file, and it is especially optimized to describe large complex detectors with the minimum file size, making use of shared instances and storing compressed representations of geometry transformations. Then, the detector description can be read back in, to fully restore the in-memory geometry tree. Moreover, a dedicated REST API is being designed and developed to serve the geometry in standard exchange formats like JSON, to let users and applications download specific partial geometry information. With this new geometry persistification a new generation of applications could be developed, which can use the actual detector geometry while being platform-independent and experiment-independent.

  14. Voriconazole Enhances the Osteogenic Activity of Human Osteoblasts In Vitro through a Fluoride-Independent Mechanism.

    Science.gov (United States)

    Allen, Kahtonna C; Sanchez, Carlos J; Niece, Krista L; Wenke, Joseph C; Akers, Kevin S

    2015-12-01

    Periostitis, which is characterized by bony pain and diffuse periosteal ossification, has been increasingly reported with prolonged clinical use of voriconazole. While resolution of clinical symptoms following discontinuation of therapy suggests a causative role for voriconazole, the biological mechanisms contributing to voriconazole-induced periostitis are unknown. To elucidate potential mechanisms, we exposed human osteoblasts in vitro to voriconazole or fluconazole at 15 or 200 μg/ml (reflecting systemic or local administration, respectively), under nonosteogenic or osteogenic conditions, for 1, 3, or 7 days and evaluated the effects on cell proliferation (reflected by total cellular DNA) and osteogenic differentiation (reflected by alkaline phosphatase activity, calcium accumulation, and expression of genes involved in osteogenic differentiation). Release of free fluoride, vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) was also measured in cell supernatants of osteoblasts exposed to triazoles, with an ion-selective electrode (for free fluoride) and enzyme-linked immunosorbent assays (ELISAs) (for VEGF and PDGF). Voriconazole but not fluconazole significantly enhanced the proliferation and differentiation of osteoblasts. In contrast to clinical observations, no increases in free fluoride levels were detected following exposure to either voriconazole or fluconazole; however, significant increases in the expression of VEGF and PDGF by osteoblasts were observed following exposure to voriconazole. Our results demonstrate that voriconazole can induce osteoblast proliferation and enhance osteogenic activity in vitro. Importantly, and in contrast to the previously proposed mechanism of fluoride-stimulated osteogenesis, our findings suggest that voriconazole-induced periostitis may also occur through fluoride-independent mechanisms that enhance the expression of cytokines that can augment osteoblastic activity. Copyright © 2015

  15. Retinol Promotes In Vitro Growth of Proximal Colon Organoids through a Retinoic Acid-Independent Mechanism.

    Directory of Open Access Journals (Sweden)

    Taichi Matsumoto

    Full Text Available Retinol (ROL, the alcohol form of vitamin A, is known to control cell fate decision of various types of stem cells in the form of its active metabolite, retinoic acid (RA. However, little is known about whether ROL has regulatory effects on colonic stem cells. We examined in this study the effect of ROL on the growth of murine normal colonic cells cultured as organoids. As genes involved in RA synthesis from ROL were differentially expressed along the length of the colon, we tested the effect of ROL on proximal and distal colon organoids separately. We found that organoid forming efficiency and the expression level of Lgr5, a marker gene for colonic stem cells were significantly enhanced by ROL in the proximal colon organoids, but not in the distal ones. Interestingly, neither retinaldehyde (RAL, an intermediate product of the ROL-RA pathway, nor RA exhibited growth promoting effects on the proximal colon organoids, suggesting that ROL-dependent growth enhancement in organoids involves an RA-independent mechanism. This was confirmed by the observation that an inhibitor for RA-mediated gene transcription did not abrogate the effect of ROL on organoids. This novel role of ROL in stem cell maintenance in the proximal colon provides insights into the mechanism of region-specific regulation for colonic stem cell maintenance.

  16. A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Silvia Claros

    2014-06-01

    Full Text Available Transforming growth factor-beta (TGF-β is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS for 10 days in the presence of rhTGF (recombinant human TGF-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.

  17. Combined with Bone Marrow-Derived Cells and rhBMP-2 for Osteonecrosis after Femoral Neck Fractures in Children and Adolescents: A case series

    Science.gov (United States)

    Gao, Fuqiang; Sun, Wei; Guo, Wanshou; Wang, Bailiang; Cheng, Liming; Li, Zirong

    2016-01-01

    Osteonecrosis of the femoral head (ONFH) following femoral neck fractures is a rare, yet severe, disorder in children and adolescents. This study evaluated the effectiveness of core decompression (CD) combined with implantation of bone marrow–derived cells (BMDC) and rhBMP-2 for osteonecrosis of femoral head (ONFH) after femoral neck fractures in children and adolescents. This study included 51 patients, aged 11.4–18.1 years, with ARCO stages I–III ONFH after femoral neck fractures between 2004 and 2010. The hips were divided into two groups based on whether the lateral pillar of the femoral head (LPFH) was preserved: LPFH and non-LPFH groups. All patients were followed up clinically and radiographically for a minimum of 5 years. 44 patients (86.3%) had improved clinical outcome. Radiologically, 9 of the 51 hips (17.6%) exhibited collapse onset or progression of the femoral head or narrowing of the hip joint space, and one patient in the non-LPFH group required hip arthroplasty due to the worsened syndrome. The technique provided an effective therapeutic option for children and adolescents with ONFH following femoral neck fractures. It relieves hip pain and prevents the progression of osteonecrosis in young patients lasting more than 5 years after surgery. PMID:27477836

  18. Leukemia inhibitory factor protects axons in experimental autoimmune encephalomyelitis via an oligodendrocyte-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Melissa M Gresle

    Full Text Available Leukemia inhibitory factor (LIF and Ciliary Neurotrophic factor (CNTF are members of the interleukin-6 family of cytokines, defined by use of the gp130 molecule as an obligate receptor. In the murine experimental autoimmune encephalomyelitis (EAE model, antagonism of LIF and genetic deletion of CNTF worsen disease. The potential mechanism of action of these cytokines in EAE is complex, as gp130 is expressed by all neural cells, and could involve immuno-modulation, reduction of oligodendrocyte injury, neuronal protection, or a combination of these actions. In this study we aim to investigate whether the beneficial effects of CNTF/LIF signalling in EAE are associated with axonal protection; and whether this requires signalling through oligodendrocytes. We induced MOG₃₅₋₅₅ EAE in CNTF, LIF and double knockout mice. On a CNTF null background, LIF knockout was associated with increased EAE severity (EAE grade 2.1±0.14 vs 2.6±0.19; P<0.05. These mice also showed increased axonal damage relative to LIF heterozygous mice, as indicated by decreased optic nerve parallel diffusivity on MRI (1540±207 µm²-/s vs 1310±175 µm²-/s; P<0.05, and optic nerve (-12.5% and spinal cord (-16% axon densities; and increased serum neurofilament-H levels (2.5 fold increase. No differences in inflammatory cell numbers or peripheral auto-immune T-cell priming were evident. Oligodendrocyte-targeted gp130 knockout mice showed that disruption of CNTF/LIF signalling in these cells has no effect on acute EAE severity. These studies demonstrate that endogenous CNTF and LIF act centrally to protect axons from acute inflammatory destruction via an oligodendrocyte-independent mechanism.

  19. Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection

    Science.gov (United States)

    Lin, Jingwen; Cunningham, Deirdre; Tumwine, Irene; Kushinga, Garikai; McLaughlin, Sarah; Spence, Philip; Böhme, Ulrike; Sanders, Mandy; Conteh, Solomon; Bushell, Ellen; Metcalf, Tom; Billker, Oliver; Duffy, Patrick E.; Newbold, Chris; Berriman, Matthew; Langhorne, Jean

    2017-01-01

    Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections1–5, creating an infectious reservoir to sustain transmission1,6. It is widely accepted that maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation7. However, genes involved in this process have been identified in only two of five human-infecting species: P. falciparum and P. knowlesi. Furthermore, little is understood about the early events in establishment of chronic infection in these species. Using a rodent model we demonstrate that only a minority of parasites from among the infecting population, expressing one of several clusters of virulence-associated pir genes, establishes a chronic infection. This process occurs in different species of parasite and in different hosts. Establishment of chronicity is independent of adaptive immunity and therefore different from the mechanism proposed for maintainance of chronic P. falciparum infections7–9. Furthermore, we show that the proportions of parasites expressing different types of pir genes regulate the time taken to establish a chronic infection. Since pir genes are common to most, if not all, species of Plasmodium10, this process may be a common way of regulating the establishment of chronic infections. PMID:28165471

  20. Corelease of acetylcholine and GABA by an amacrine cell: Evidence for independent mechanisms

    International Nuclear Information System (INIS)

    O'Mally, D.M.

    1989-01-01

    The spatial resolution of the cholinergic cells was measured by illuminating the retina with moving gratings composed of light and dark bars. Retinas that were labelled with 3 H-choline released acetylcholine in response to moving gratings composed of bars as small as 50 μm; 300 to 800 μm wide bars yielded maximal responses. Responses were obtained to gratings moving at speeds from 50 to 6000 μm/sec. Three groups recently reported that the cholinergic cells also contain GABA. To confirm these findings, retinas were double-labeled with 3 H-GABA and DAPI, and processed for autoradiography. The cells that accumulate DAPI were heavily labelled with silver grains due to uptake of 3 H-GABA. Incubation of retinas in the presence of elevated concentrations of K + caused them to release both acetylcholine and GABA, and autoradiography showed depletion of radioactive GABA, and autoradiography showed depletion of radioactive GABA from the cholinergic amacrine cells. Retinas were double-labeled with 14 C-GABA and 3 H-acetylcholine, allowing simultaneous measurement of their release. The release of 14 C-GABA was independent of extracellular Ca ++ . Radioactive GABA synthesized endogenously from 14 C-glutamate behave the same as radioactive GABA accumulated from the medium. In the same experiments, the simultaneously measured release of 3 H-acetylcholine was strongly Ca ++ -dependent, indicating that acetylcholine and GABA are released by different mechanisms

  1. A vacuolar sorting receptor-independent sorting mechanism for storage vacuoles in soybean seeds.

    Science.gov (United States)

    Maruyama, Nobuyuki; Matsuoka, Yuki; Yokoyama, Kazunori; Takagi, Kyoko; Yamada, Tetsuya; Hasegawa, Hisakazu; Terakawa, Teruhiko; Ishimoto, Masao

    2018-01-18

    The seed storage proteins of soybean (Glycine max) are composed mainly of glycinin (11S globulin) and β-conglycinin (7S globulin). The subunits of glycinin (A1aB1b, A1bB2, A2B1a, A3B4, and A5A4B3) are synthesized as a single polypeptide precursor. These precursors are assembled into trimers with a random combination of subunits in the endoplasmic reticulum, and are sorted to the protein storage vacuoles. Proteins destined for transport to protein storage vacuoles possess a vacuolar sorting determinant, and in this regard, the A1aB1b subunit contains a C-terminal peptide that is sufficient for its sorting to protein storage vacuoles. The A3B4 subunit, however, lacks a corresponding C-terminal sorting determinant. In this study, we found that, unlike the A1aB1b subunit, the A3B4 subunit does not bind to previously reported vacuolar sorting receptors. Despite this difference, we observed that the A3B4 subunit is sorted to protein storage vacuoles in a transgenic soybean line expressing the A3B4 subunit of glycinin. These results indicate that a protein storage vacuolar sorting mechanism that functions independently of the known vacuolar sorting receptors in seeds might be present in soybean seeds.

  2. Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum

    Directory of Open Access Journals (Sweden)

    Katharine L. Dobson

    2015-01-01

    Full Text Available In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic “ectopic” sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca2+-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia.

  3. Oxidative Stress Induces Mitochondrial DNA Damage and Cytotoxicity through Independent Mechanisms in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yue Han

    2013-01-01

    Full Text Available Intrinsic oxidative stress through increased production of reactive oxygen species (ROS is associated with carcinogenic transformation, cell toxicity, and DNA damage. Mitochondrial DNA (mtDNA is a natural surrogate to oxidative DNA damage. MtDNA damage results in the loss of its supercoiled structure and is readily detectable using a novel, supercoiling-sensitive real-time PCR method. Our studies have demonstrated that mtDNA damage, as measured by DNA strand breaks and copy number depletion, is very sensitive to exogenous H2O2 but independent of endogenous ROS production in both prostate cancer and normal cells. In contrast, aggressive prostate cancer cells exhibit a more than 10-fold sensitivity to H2O2-induced cell toxicity than normal cells, and a cascade of secondary ROS production is a critical determinant to the differential response. We propose a new paradigm to account for different mechanisms governing cellular oxidative stress, cell toxicity, and DNA damage with important ramifications in devising new techniques and strategies in prostate cancer prevention and treatment.

  4. Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism

    Science.gov (United States)

    Hubbard, Basil P; Loh, Christine; Gomes, Ana P; Li, Jun; Lu, Quinn; Doyle, Taylor LG; Disch, Jeremy S; Armour, Sean M; Ellis, James L; Vlasuk, George P; Sinclair, David A

    2013-01-01

    SIRT1 is an NAD+-dependent deacetylase that counteracts multiple disease states associated with aging and may underlie some of the health benefits of calorie restriction. Understanding how SIRT1 is regulated in vivo could therefore lead to new strategies to treat age-related diseases. SIRT1 forms a stable complex with DBC1, an endogenous inhibitor. Little is known regarding the biochemical nature of SIRT1-DBC1 complex formation, how it is regulated and whether or not it is possible to block this interaction pharmacologically. In this study, we show that critical residues within the catalytic core of SIRT1 mediate binding to DBC1 via its N-terminal region, and that several carboxamide SIRT1 inhibitors, including EX-527, can completely block this interaction. We identify two acetylation sites on DBC1 that regulate its ability to bind SIRT1 and suppress its activity. Furthermore, we show that DBC1 itself is a substrate for SIRT1. Surprisingly, the effect of EX-527 on SIRT1-DBC1 binding is independent of DBC1 acetylation. Together, these data show that protein acetylation serves as an endogenous regulatory mechanism for SIRT1-DBC1 binding and illuminate a new path to developing small-molecule modulators of SIRT1. PMID:23892437

  5. WRN loss induces switching of telomerase-independent mechanisms of telomere elongation.

    Directory of Open Access Journals (Sweden)

    April Renee Sandy Gocha

    Full Text Available Telomere maintenance can occur in the presence of telomerase or in its absence, termed alternative lengthening of telomeres (ALT. ALT adds telomere repeats using recombination-based processes and DNA repair proteins that function in homologous recombination. Our previous work reported that the RecQ-like BLM helicase is required for ALT and that it unwinds telomeric substrates in vitro. WRN is also a RecQ-like helicase that shares many biochemical functions with BLM. WRN interacts with BLM, unwinds telomeric substrates, and co-localizes to ALT-associated PML bodies (APBs, suggesting that it may also be required for ALT processes. Using long-term siRNA knockdown of WRN in three ALT cell lines, we show that some, but not all, cell lines require WRN for telomere maintenance. VA-13 cells require WRN to prevent telomere loss and for the formation of APBs; Saos-2 cells do not. A third ALT cell line, U-2 OS, requires WRN for APB formation, however WRN loss results in p53-mediated apoptosis. In the absence of WRN and p53, U-2 OS cells undergo telomere loss for an intermediate number of population doublings (50-70, at which point they maintain telomere length even with the continued loss of WRN. WRN and the tumor suppressor BRCA1 co-localize to APBs in VA-13 and U-2 OS, but not in Saos-2 cells. WRN loss in U-2 OS is associated with a loss of BRCA1 from APBs. While the loss of WRN significantly increases telomere sister chromatid exchanges (T-SCE in these three ALT cell lines, loss of both BRCA1 and WRN does not significantly alter T-SCE. This work demonstrates that ALT cell lines use different telomerase-independent maintenance mechanisms that variably require the WRN helicase and that some cells can switch from one mechanism to another that permits telomere elongation in the absence of WRN. Our data suggest that BRCA1 localization may define these mechanisms.

  6. S 47445 Produces Antidepressant- and Anxiolytic-Like Effects through Neurogenesis Dependent and Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Indira Mendez-David

    2017-07-01

    rat model, S 47445 (from 1 mg/kg demonstrated a rapid onset of effect on anhedonia compared to venlafaxine and imipramine. In the CORT model, S 47445 demonstrated significant neurogenic effects on proliferation, survival and maturation of hippocampal newborn neurons at doses inducing an antidepressant-like effect. It also corrected CORT-induced deficits of growth and arborization of dendrites. Finally, the antidepressant/anxiolytic-like activities of S 47445 required adult hippocampal neurogenesis in the novelty suppressed feeding test contrary to OF, EPM and ST. The observed increase in hippocampal BDNF levels could be one of the mechanisms of S 47445 responsible for the adult hippocampal neurogenesis increase. Altogether, S 47445 displays robust antidepressant-anxiolytic-like properties after chronic administration through neurogenesis dependent/independent mechanisms and neuroplastic activities. The AMPA-PAM S 47445 could have promising therapeutic potential for the treatment of major depressive disorders or generalized anxiety disorders.

  7. Red wine polyphenol compounds favor neovascularisation through estrogen receptor α-independent mechanism in mice.

    Directory of Open Access Journals (Sweden)

    Matthieu Chalopin

    Full Text Available Red wine polyphenol compounds (RWPC exert paradoxical effects depending on the dose on post-ischemic neovascularisation. Low dose RWPC (0.2 mg/kg/day is pro-angiogenic, whereas high dose (20 mg/kg/day is anti-angiogenic. We recently reported that the endothelial effect of RWPC is mediated through the activation of a redox-sensitive pathway, mitochondrial biogenesis and the activation of α isoform of the estrogen receptor (ERα. Here, we investigated the implication of ERα on angiogenic properties of RWPC. Using ovariectomized mice lacking ERα treated with high dose of RWPC after hindlimb ischemia, we examined blood flow reperfusion, vascular density, nitric oxide (NO production, expression and activation of proteins involved in angiogenic process and muscle energy sensing network. As expected, high dose of RWPC treatment reduced both blood flow and vascular density in muscles of mice expressing ERα. These effects were associated with reduced NO production resulting from diminished activity of eNOS. In the absence of RWPC, ERα deficient mice showed a reduced neo-vascularisation associated with a decreased NO production. Surprisingly in mice lacking ERα, high dose of RWPC increased blood flow and capillary density in conjunction with increased NO pathway and production as well as VEGF expression. Of particular interest is the activation of Sirt-1, AMPKα and PGC-1α/β axis in ischemic hindlimb from both strains. Altogether, the results highlight a pro-angiogenic property of RWPC via an ERα-independent mechanism that is associated with an up-regulation of energy sensing network. This study brings a corner stone of a novel pathway for RWPC to correct cardiovascular diseases associated with failed neovascularisation.

  8. Mouse Oocytes Acquire Mechanisms That Permit Independent Cell Volume Regulation at the End of Oogenesis.

    Science.gov (United States)

    Richard, Samantha; Tartia, Alina P; Boison, Detlev; Baltz, Jay M

    2017-09-01

    Mouse embryos employ a unique mechanism of cell volume regulation in which glycine is imported via the GLYT1 transporter to regulate intracellular osmotic pressure. Independent cell volume regulation normally becomes active in the oocyte after ovulation is triggered. This involves two steps: the first is the release of the strong adhesion between the oocyte and zona pellucida (ZP) while the second is the activation of GLYT1. In fully-grown oocytes, release of adhesion and GLYT1 activation also occur spontaneously in oocytes removed from the follicle. It is unknown, however, whether the capacity to release oocyte-ZP adhesion or activate GLYT1 first arises in the oocyte after ovulation is triggered or instead growing oocytes already possess these capabilities but they are suppressed in the follicle. Here, we assessed when during oogenesis oocyte-ZP adhesion can be released and when GLYT1 can be activated, with adhesion assessed by an osmotic assay and GLYT1 activity determined by [ 3 H]-glycine uptake. Oocyte-ZP adhesion could not be released by growing oocytes until they were nearly fully grown. Similarly, the amount of GLYT1 activity that can be elicited in oocytes increased sharply at the end of oogenesis. The SLC6A9 protein that is responsible for GLYT1 activity and Slc6a9 transcripts are present in growing oocytes and increased over the course of oogenesis. Furthermore, SLC6A9 becomes localized to the oocyte plasma membrane as the oocyte grows. Thus, oocytes acquire the ability to regulate their cell volume by releasing adhesion to the ZP and activating GLYT1 as they approach the end of oogenesis. J. Cell. Physiol. 232: 2436-2446, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Cyclin D1 represses p300 transactivation through a cyclin-dependent kinase-independent mechanism.

    Science.gov (United States)

    Fu, Maofu; Wang, Chenguang; Rao, Mahadev; Wu, Xiaofang; Bouras, Toula; Zhang, Xueping; Li, Zhiping; Jiao, Xuanmao; Yang, Jianguo; Li, Anping; Perkins, Neil D; Thimmapaya, Bayar; Kung, Andrew L; Munoz, Alberto; Giordano, Antonio; Lisanti, Michael P; Pestell, Richard G

    2005-08-19

    Cyclin D1 encodes a regulatory subunit, which with its cyclin-dependent kinase (Cdk)-binding partner forms a holoenzyme that phosphorylates and inactivates the retinoblastoma protein. In addition to its Cdk binding-dependent functions, cyclin D1 regulates cellular differentiation in part by modifying several transcription factors and nuclear receptors. The molecular mechanism through which cyclin D1 regulates the function of transcription factors involved in cellular differentiation remains to be clarified. The histone acetyltransferase protein p300 is a co-integrator required for regulation of multiple transcription factors. Here we show that cyclin D1 physically interacts with p300 and represses p300 transactivation. We demonstrated further that the interaction of the two proteins occurs at the peroxisome proliferator-activated receptor gamma-responsive element of the lipoprotein lipase promoter in the context of the local chromatin structure. We have mapped the domains in p300 and cyclin D1 involved in this interaction. The bromo domain and cysteine- and histidine-rich domains of p300 were required for repression by cyclin D1. Cyclin D1 repression of p300 was independent of the Cdk- and retinoblastoma protein-binding domains of cyclin D1. Cyclin D1 inhibits histone acetyltransferase activity of p300 in vitro. Microarray analysis identified a signature of genes repressed by cyclin D1 and induced by p300 that promotes cellular differentiation and induces cell cycle arrest. Together, our results suggest that cyclin D1 plays an important role in cellular proliferation and differentiation through regulation of p300.

  10. Effect of Gu Tong Xian capsule on expression level of type I, II collagen and BMP-2 mRNA in rabbits with fracture during long-distance running

    Directory of Open Access Journals (Sweden)

    Liang Li

    2017-05-01

    Full Text Available The study aims to analyze and investigate the effects of Gu Tong Xian Capsule on the expression level of type I, II collagen and BMP-2 mRNA in rabbits with fracture during long-distance running. 60 adult healthy rabbits were selected as research objects, and then randomly divided into three groups including model group, positive control group and treatment group, each containing 20 rabbits. The three groups were treated with saline gastric lavage, powder for fracture and trauma, and Gu Tong Xian capsule, respectively. The rabbits of the three groups were respectively sacrificed at 1st week, 2nd weeks and 4th week after operation for sample collection. After that, the expression levels of bone collagen type I, II and BMP-2 of three groups were measured and compared with each other. At all stages, the transcriptional level of type I collagen mRNA in the treatment group were significantly higher than that in the positive control group and model group (p < 0.05; Transcriptional level of type II collagen mRNA in the treatment group increased significantly in the first week, then gradually declined in the 2nd and 4th week, with significantly difference to the model group and the positive control group (p < 0.05. In addition, the transcriptional level of bone morphogenetic protein BMP-2 mRNA at fracture site of the treatment group was higher than that of model group and positive control group (p < 0.05. Gu Tong Xian Capsule can significantly promote fracture healing of experiment rabbits and reduce fracture healing time. Moreover, it can well regulate the expression levels of type I, II collagen and transcriptional level ofBMP-2 mRNA in experiment rabbits with fracture.

  11. The influence of Aloe vera and xenograft XCB toward of bone morpho protein 2 BMP2 expression and amount of osteoblast of alveolar bone induced into tooth extraction sockets Cavia cobaya

    Directory of Open Access Journals (Sweden)

    Utari Kresnoadi

    2014-12-01

    Full Text Available Tooth extraction can cause inflammation leading to alveolar ridge resorption. In addition, prominent ridge has crucial role for making denture su-ccessfully. Thus, socket preservation is needed to prevent greater alveolar ridge resorption. An innovative material, a combination of Aloe vera and xe-nograft (XCB, is then considered as a biogenic stimulator that can reduce inflammation, as a result, the growth of alveolar bone is expected to be impro-ved. This research is aimed to prove whether the mixture of Aloe vera and xenograft can stimulate BMP2 and increase osteoblasts. Forty-eight Cavia co-baya animals were divided into eight groups each of which consisted of six animals. The mandibular incisors of those Cavia cobaya animals were then extracted and filled with PEG as Group Control, XCB as Group XCB, Aloe vera as Group Aloe vera, and a combination of Aloe vera +XCB as Group Aloe vera +XCB. Next, the first four groups were sacrificed seven days after extraction, and the second four groups were sacrificed 30 days after extrac-tion. And then, immunohistochemical and histopathology examinations were conducted to examine BMP2 expression and osteoblasts. Based on the re-sult known that the mixture of Aloe vera and xenograft can increase BMP2 expression and amount of osteoblasts. It can be concluded that the mixture of Aloe vera and xenograft can increase BMP2 expression and amount of osteoblast cel . It can be used as an alternative material to increase the growth of alveolar bone after extraction.

  12. Histological and radiographic evaluation of the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a scaffold of inorganic bone and after stimulation with low-power laser light

    Directory of Open Access Journals (Sweden)

    Bengtson Antonio

    2010-01-01

    Full Text Available Objective: The present study histologically and radiologically evaluates the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a natural inorganic bone mineral scaffold from a bull calf femur and irradiation with low-power light laser. Materials and Methods: The right and left hind limbs of 16 rats were shaved and an incision was made in the muscle on the face corresponding to the median portion of the tibia, into which rhBMP-2 in a scaffold of inorganic bone was implanted. Two groups of limbs were formed: control (G1 and laser irradiation (G2. G2 received diode laser light applied in the direction of the implant, at a dose of 8 J/cm2 for three minutes. On the 7th, 21st, 40th and 112th days after implantation, hind limbs of 4 animals were radiographed and their implants removed together with the surrounding tissue for study under the microscope. The histological results were graded as 0=absence, 1=slight presence, 2=representative and 3=very representative, with regard to the following events: formation of osteoid structure, acute inflammation, chronic inflammation, fibrin deposition, neovascularization, foreign-body granuloma and fibrosis. Results: There were no statistically significant differences in these events at each evaluation times, between the two groups (P > 0.05; Mann-Whitney test. Nevertheless, it could be concluded that the natural inorganic bone matrix with rhBMP-2, from the femur of a bull calf, is a biocompatible combination. Conclusions: Under these conditions, the inductive capacity of rhBMP-2 for cell differentiation was inhibited. There was a slight acceleration in tissue healing in the group that received irradiation with low-power laser light.

  13. A pilot study of conically graded chitosan-gelatin hydrogel/PLGA scaffold with dual-delivery of TGF-β1 and BMP-2 for regeneration of cartilage-bone interface.

    Science.gov (United States)

    Han, Fengxuan; Zhou, Fang; Yang, Xiaoling; Zhao, Jin; Zhao, Yunhui; Yuan, Xiaoyan

    2015-10-01

    Repair of cartilage-bone interface tissue remains challenging, because it combines different cell types and gradients of composition and properties. To enable simultaneous regeneration of bone, cartilage, and especially their interface, a conically graded scaffold of chitosan-gelatin hydrogel/poly(l-lactide-co-glycolide) (PLGA) was facilely prepared in the study. The chitosan-gelatin hydrogel containing transforming growth factor β1 (TGF-β1) was used for chondrogenesis, while the PLGA scaffold loading bone morphogenetic protein-2 (BMP-2) for osteogenesis. The conically graded transition from the hydrogel to PLGA scaffold and graded variation in amount of growth factors from TGF-β1 to BMP-2 benefited the cartilage-bone interface reconstruction. The graded scaffold exhibited spatio-temporal delivery of TGF-β1 and BMP-2. Preliminary results of in vitro cell culture demonstrated that the hydrogel and PLGA phases could promote bone marrow mesenchymal stem cells toward chondrogenic and osteogenic differentiation, respectively. From the result of the pilot in vivo experiment, it showed that the regenerated hyaline-like cartilage surface and subchondral bone excellently integrated with the native tissues were found by using the TGF-β1 and BMP-2 double-loaded hydrogel/PLGA graded scaffold via H&E and immunohistochemical stainings of collagen I, collagen II, and osteocalcin at 2 months. The obtained preliminary experiment results showed that the hydrogel/PLGA graded scaffold combining multiphasic composition and spatial dual growth-factor delivery would be useful for cartilage-bone interface tissue defect repair. © 2014 Wiley Periodicals, Inc.

  14. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

    Science.gov (United States)

    Bayse, Craig A; Merz, Kenneth M

    2014-08-05

    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  15. The effects of a single intravenous injection of novel activin A/BMP-2 (AB204) on toxicity and the respiratory and central nervous systems.

    Science.gov (United States)

    Yoon, Byung-Hak; Lee, Jae Hyup; Na, Kyuheum; Ahn, Chihoon; Cho, Jongho; Ahn, Hyun Chan; Choi, Jungyoun; Oh, Hyosun; Kim, Byong Moon; Choe, Senyon

    2016-01-01

    The purpose of this study was to determine the effects of a single intravenous injection of a novel osteoinductive material, activin A/BMP-2 (AB204), to rodents on toxicity and their respiratory functions and central nervous system (CNS). A single intravenous injection of AB204 was given to Sprague-Dawley (SD) rats in doses of 0, 0.625, 2.5 and 10 mg/kg to observe the mortality rate, the general symptoms for 14 days. The experimental groups were also given 0.2, 0.4 and 0.8 mg/kg of AB204, respectively, and the respiration rate, the tidal volume and the minute volume were measured for 240 min. The experimental groups of imprinting control region (ICR) mice were given a single intravenous injection of 0.2, 0.4 and 0.8 mg/kg of AB204, respectively. Their body temperature was taken and general behaviors were observed to evaluate the effect of AB204 on the CNS for 240 min. The study on toxicity of a single intravenous injection found no death or abnormal symptoms, abnormal findings from autopsy, or abnormal body weight gain or loss in all the experimental groups. No abnormal variation associated with the test substance was observed in the respiration rate, the tidal volume, the minute volume, body temperature or the general behaviors. On the basis of these results, the approximate lethal dose of AB204 for a single intravenous injection exceeds 10 mg/kg for SD rats and a single intravenous injection of ≤0.8 mg/kg AB204 has no effect on their respiratory system for SD rat and no effect on their CNS for ICR mice.

  16. Enhanced chondrogenesis of bone marrow-derived stem cells by using a combinatory cell therapy strategy with BMP-2/TGF-β1, hypoxia, and COL1A1/HtrA1 siRNAs.

    Science.gov (United States)

    Legendre, Florence; Ollitrault, David; Gomez-Leduc, Tangni; Bouyoucef, Mouloud; Hervieu, Magalie; Gruchy, Nicolas; Mallein-Gerin, Frédéric; Leclercq, Sylvain; Demoor, Magali; Galéra, Philippe

    2017-06-13

    Mesenchymal stem cells (MSCs) hold promise for cartilage engineering. Here, we aimed to determine the best culture conditions to induce chondrogenesis of MSCs isolated from bone marrow (BM) of aged osteoarthritis (OA) patients. We showed that these BM-MSCs proliferate slowly, are not uniformly positive for stem cell markers, and maintain their multilineage potential throughout multiple passages. The chondrogenic lineage of BM-MSCs was induced in collagen scaffolds, under normoxia or hypoxia, by BMP-2 and/or TGF-β1. The best chondrogenic induction, with the least hypertrophic induction, was obtained with the combination of BMP-2 and TGF-β1 under hypoxia. Differentiated BM-MSCs were then transfected with siRNAs targeting two markers overexpressed in OA chondrocytes, type I collagen and/or HtrA1 protease. siRNAs significantly decreased mRNA and protein levels of type I collagen and HtrA1, resulting in a more typical chondrocyte phenotype, but with frequent calcification of the subcutaneously implanted constructs in a nude mouse model. Our 3D culture model with BMP-2/TGF-β1 and COL1A1/HtrA1 siRNAs was not effective in producing a cartilage-like matrix in vivo. Further optimization is needed to stabilize the chondrocyte phenotype of differentiated BM-MSCs. Nevertheless, this study offers the opportunity to develop a combinatory cellular therapy strategy for cartilage tissue engineering.

  17. The mechanism of kaolin clay flocculation by a cation-independent bioflocculant produced by Chryseobacterium daeguense W6

    Directory of Open Access Journals (Sweden)

    Weijie Liu

    2015-03-01

    Full Text Available In recent years, several novel cation-independent bioflocculants have been reported, which can avoid the secondary contamination caused by addition of cations. However, compared with cation-dependent bioflocculants, the flocculating mechanism of cation-independent bioflocculants is largely unknown. In this study, a cation-independent bioflocculant MBF-W6 produced by Chryseobacterium daeguense W6 was used as a model to investigate the flocculating mechanism. The results showed that the major flocculating component of MBF-W6 is a complex of proteins and polysaccharides. The zeta potential results indicated that kaolin clay particles were not precipitated due to charge neutralization and the bridging mediated by cations did not play a major role in the flocculating process. These results are consistent with the fact that MBF-W6 is a cation-independent bioflocculant. Further scanning electron microscopic observation showed that MBF-W6 induced flocs formed tight packed structure, suggesting that the kaolin clay particles maybe directly attached and bridged by bioflocculant MBF-W6. In addition, we also found out that Fe3+ ions inhibit the flocculating activity of MBF-W6 by affecting –COO− and –NH groups. Therefore this study can improve our understanding on flocculating mechanism of cation-independent bioflocculants.

  18. Importance of Bacterial Replication and Alveolar Macrophage-Independent Clearance Mechanisms during Early Lung Infection with Streptococcus pneumoniae

    Science.gov (United States)

    Camberlein, Emilie; Cohen, Jonathan M.; José, Ricardo; Hyams, Catherine J.; Callard, Robin; Chimalapati, Suneeta; Yuste, Jose; Edwards, Lindsey A.; Marshall, Helina; van Rooijen, Nico; Noursadeghi, Mahdad

    2015-01-01

    Although the importance of alveolar macrophages for host immunity during early Streptococcus pneumoniae lung infection is well established, the contribution and relative importance of other innate immunity mechanisms and of bacterial factors are less clear. We have used a murine model of S. pneumoniae early lung infection with wild-type, unencapsulated, and para-amino benzoic acid auxotroph mutant TIGR4 strains to assess the effects of inoculum size, bacterial replication, capsule, and alveolar macrophage-dependent and -independent clearance mechanisms on bacterial persistence within the lungs. Alveolar macrophage-dependent and -independent (calculated indirectly) clearance half-lives and bacterial replication doubling times were estimated using a mathematical model. In this model, after infection with a high-dose inoculum of encapsulated S. pneumoniae, alveolar macrophage-independent clearance mechanisms were dominant, with a clearance half-life of 24 min compared to 135 min for alveolar macrophage-dependent clearance. In addition, after a high-dose inoculum, successful lung infection required rapid bacterial replication, with an estimated S. pneumoniae doubling time of 16 min. The capsule had wide effects on early lung clearance mechanisms, with reduced half-lives of 14 min for alveolar macrophage-independent and 31 min for alveolar macrophage-dependent clearance of unencapsulated bacteria. In contrast, with a lower-dose inoculum, the bacterial doubling time increased to 56 min and the S. pneumoniae alveolar macrophage-dependent clearance half-life improved to 42 min and was largely unaffected by the capsule. These data demonstrate the large effects of bacterial factors (inoculum size, the capsule, and rapid replication) and alveolar macrophage-independent clearance mechanisms during early lung infection with S. pneumoniae. PMID:25583525

  19. Female sex as an independent risk factor for stroke in atrial fibrillation : Possible mechanisms

    NARCIS (Netherlands)

    Covel, Christina L.; Albert, Christine M.; Andreotti, Felicita; Badimon, Lina; Van Gelder, Isabelle C.; Hylek, Elaine M.

    Atrial fibrillation (AF) is an independent risk factor for thromboembolism and stroke. Women with AF are at a higher overall risk for thromboembolic stroke when compared to men with AF. Recent evidence suggests that female sex, after adjusting for stroke risk profile and sex differences in

  20. Two independent mechanisms for motion-in-depth perception: evidence from individual differences

    Directory of Open Access Journals (Sweden)

    Harold T Nefs

    2010-10-01

    Full Text Available Our forward-facing eyes allow us the advantage of binocular visual information: using the tiny differences between right and left eye views to learn about depth and location in three dimensions. Our visual systems also contain specialized mechanisms to detect motion-in-depth from binocular vision, but the nature of these mechanisms remains controversial. Binocular motion-in-depth perception could theoretically be based on first detecting binocular disparity and then monitoring how it changes over time. The alternative is to monitor the motion in the right and left eye separately and then compare these motion signals. Here we used an individual differences approach to test whether the two sources of information are processed via dissociated mechanisms, and to measure the relative importance of those mechanisms. Our results suggest the existence of two distinct mechanisms, each contributing to the perception of motion in depth in most observers. Additionally, for the first time, we demonstrate the relative prevalence of the two mechanisms within a normal population. In general, visual systems appear to rely mostly on the mechanism sensitive to changing binocular disparity, but perception of motion in depth is augmented by the presence of a less sensitive mechanism that uses interocular velocity differences. Occasionally, we find observers with the opposite pattern of sensitivity. More generally this work showcases the power of the individual differences approach in studying the functional organisation of cognitive systems.

  1. The use of a path independent integral in non-linear fracture mechanics

    International Nuclear Information System (INIS)

    Hellen, T.K.

    1977-01-01

    The use of the Rice J-intergral to assess conditions at a crack tip in an elastic or non-linear elastic body is well known. The integral equals the energy release rate and is path independent for any contour surrounding the crack tip provided no other singularities are encompassed. The path independence propertiy breaks down, however, in more general situations such as in three dimensional stress systems, plasticity unloading, thermal or creep states. Hence the required crack tip characteristics represented by the value of the integral round a contour whose radius about the tip tends to zero, is not reproduced along contours away from the tip. Consequently, an alternative integral, designated J*, has been proposed which equals J for elastic cases and in the other cases cited above remains path independent. A computer program for calculating the J and J* integrals has been developed as an extension to the BERSAFE finite element system. A full analysis of the cracked structure including plasticity, creep and thermal strains is conducted and the results are stored on a permanent data set. The integral values may then be calculated using the post-processor program for any number of contours and load or time steps, without recourse to further expensive computations. (Auth. )

  2. Fusobacterium nucleatum induces cytokine production through Toll-like-receptor-independent mechanism.

    Science.gov (United States)

    Quah, S Y; Bergenholtz, G; Tan, K S

    2014-06-01

    To determine whether Fusobacterium nucleatum's ability to invade cells allows the bacteria to activate pro-inflammatory response through cytosolic pattern recognition receptors, independent of surface Toll-like receptors (TLRs). HEK293T cells, which lack endogenous TLRs, and overexpressing dominant negative myeloid differentiation primary response gene 88 (MyD88DN) protein, were infected with F. nucleatum and the production of interleukin-8 (IL-8) was determined. The necessity for intracellular invasion of the bacteria for cytokine production was also investigated by blocking bacterial invasion with cytochalasin D. The roles of NFĸB and p38 mitogen-activated protein kinase (MAPK) and nucleotide-binding oligomerization domain-1 (NOD-1) signalling pathways in F. nucleatum-induced IL-8 secretion were determined. Fusobacterium nucleatum-infected HEK293T cells produced IL-8 independent of the MYD88 signalling. This response was inhibited by preventing F. nucleatum invasion into HEK293T cells. p38 MAPK but not the NFĸB signalling pathway was required for F. nucleatum-mediated IL-8 production. HEK293T cells expressed NOD-1 but not NOD-2. Yet, inhibition of NOD-1 signalling did not affect F. nucleatum-induced IL-8 secretion. Fusobacterium nucleatum invasion led to cytokine production, which is mediated by the p38 MAPK signalling but independent of TLRs, NOD-1, NOD-2 and NFĸB signalling. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms.

    Science.gov (United States)

    Schweikhard, Volker; Meng, Cong; Murakami, Kenji; Kaplan, Craig D; Kornberg, Roger D; Block, Steven M

    2014-05-06

    Recent evidence suggests that transcript elongation by RNA polymerase II (RNAPII) is regulated by mechanical cues affecting the entry into, and exit from, transcriptionally inactive states, including pausing and arrest. We present a single-molecule optical-trapping study of the interactions of RNAPII with transcription elongation factors TFIIS and TFIIF, which affect these processes. By monitoring the response of elongation complexes containing RNAPII and combinations of TFIIF and TFIIS to controlled mechanical loads, we find that both transcription factors are independently capable of restoring arrested RNAPII to productive elongation. TFIIS, in addition to its established role in promoting transcript cleavage, is found to relieve arrest by a second, cleavage-independent mechanism. TFIIF synergistically enhances some, but not all, of the activities of TFIIS. These studies also uncovered unexpected insights into the mechanisms underlying transient pauses. The direct visualization of pauses at near-base-pair resolution, together with the load dependence of the pause-entry phase, suggests that two distinct mechanisms may be at play: backtracking under forces that hinder transcription and a backtrack-independent activity under assisting loads. The measured pause lifetime distributions are inconsistent with prevailing views of backtracking as a purely diffusive process, suggesting instead that the extent of backtracking may be modulated by mechanisms intrinsic to RNAPII. Pauses triggered by inosine triphosphate misincorporation led to backtracking, even under assisting loads, and their lifetimes were reduced by TFIIS, particularly when aided by TFIIF. Overall, these experiments provide additional insights into how obstacles to transcription may be overcome by the concerted actions of multiple accessory factors.

  4. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms

    DEFF Research Database (Denmark)

    Srinivasan, Supriya; Sadegh, Leila; Elle, Ida C

    2008-01-01

    We investigated serotonin signaling in C. elegans as a paradigm for neural regulation of energy balance and found that serotonergic regulation of fat is molecularly distinct from feeding regulation. Serotonergic feeding regulation is mediated by receptors whose functions are not required for fat...... feeding behavior. These findings suggest that, as in mammals, C. elegans feeding behavior is regulated by extrinsic and intrinsic cues. Moreover, obesity and thinness are not solely determined by feeding behavior. Rather, feeding behavior and fat metabolism are coordinated but independent responses...

  5. The use of a path independent integral in non-linear fracture mechanics

    International Nuclear Information System (INIS)

    Hellen, T.K.

    1977-01-01

    A computer program for calculating the J and J* integrals has been developed as an extension to the BERSAFE finite element system. A full analysis of the cracked structure including plasticity, creep and thermal strains is conducted and the results are stored on a permanent data set. The integral values may then be calculated using the post-processor program for any number of contours and load or time steps, without recourse to further expensive computations. Numerical examples are presented comparing the J and J* integrals for a number of cracked plates under thermal, plastic and creep environments. To demonstrate the accuracy for a simple thermo-elastic case, a centre cracked plate subject to a symmetric quadratic gradient is included. Here, the J integral is shown to be path dependent whereas good independence is seen for the J* integral. The case of an elastic-plastic plate is invetigated to demonstrate path independence for both integrals in non-linear elasticity, and the effects of unloading are discussed. An alternative method for obtaining the change of potential energy over a small crack extension is briefly mentioned and compared to the J and J* results in this case. An axisymmetric bar with an internal penny-shaped crack subjected to tension is discussed under elastic-plastic materials behavior

  6. Utilizing a reference material for assessing absolute tumor mechanical properties in modality independent elastography

    Science.gov (United States)

    Kim, Dong Kyu; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    There is currently no reliable method for early characterization of breast cancer response to neoadjuvant chemotherapy (NAC) [1,2]. Given that disruption of normal structural architecture occurs in cancer-bearing tissue, we hypothesize that further structural changes occur in response to NAC. Consequently, we are investigating the use of modalityindependent elastography (MIE) [3-8] as a method for monitoring mechanical integrity to predict long term outcomes in NAC. Recently, we have utilized a Demons non-rigid image registration method that allows 3D elasticity reconstruction in abnormal tissue geometries, making it particularly amenable to the evaluation of breast cancer mechanical properties. While past work has reflected relative elasticity contrast ratios [3], this study improves upon that work by utilizing a known stiffness reference material within the reconstruction framework such that a stiffness map becomes an absolute measure. To test, a polyvinyl alcohol (PVA) cryogel phantom and a silicone rubber mock mouse tumor phantom were constructed with varying mechanical stiffness. Results showed that an absolute measure of stiffness could be obtained based on a reference value. This reference technique demonstrates the ability to generate accurate measurements of absolute stiffness to characterize response to NAC. These results support that `referenced MIE' has the potential to reliably differentiate absolute tumor stiffness with significant contrast from that of surrounding tissue. The use of referenced MIE to obtain absolute quantification of biomarkers is also translatable across length scales such that the characterization method is mechanics-consistent at the small animal and human application.

  7. Rational design of soft mechanical metamaterials : Independent tailoring of elastic properties with randomness

    NARCIS (Netherlands)

    Mirzaali Mazandarani, M.J.; Hedayati, R.; Vena, P; Vergani, L.; Strano, M.; Zadpoor, A.A.

    2017-01-01

    The elastic properties of mechanical metamaterials are direct functions of their topological designs. Rational design approaches based on computational models could, therefore, be used to devise topological designs that result in the desired properties. It is of particular importance to

  8. A spatial mechanism for pilot laser alignment with four independently controlled degrees of freedom

    NARCIS (Netherlands)

    Kreutz, Ernst-Wolfgang; Meijer, J.; Quenzer, A.; Schuöcker, Dieter

    1987-01-01

    Alignment mechanism for optical components, such as mirrors for manipulating laser beams, frequently require four degrees of freedom: two translations and two rotations, i.e. a four axis system. When the adjustment of one axis influences the others, as often will be the case, alignment procedures

  9. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2).

    Science.gov (United States)

    Tamai, Noriyuki; Myoui, Akira; Hirao, Makoto; Kaito, Takashi; Ochi, Takahiro; Tanaka, Junzo; Takaoka, Kunio; Yoshikawa, Hideki

    2005-05-01

    Articular cartilage repair remains a major obstacle in tissue engineering. We recently developed a novel tool for articular cartilage repair, consisting of a triple composite of an interconnected porous hydroxyapatite (IP-CHA), recombinant human bone morphogenetic protein-2 (rhBMP-2), and a synthetic biodegradable polymer [poly-d,l-lactic acid/polyethylene glycol (PLA-PEG)] as a carrier for rhBMP-2. In the present study, we evaluated the capacity of the triple composite to induce the regeneration of articular cartilage. Full-thickness cartilage defects were created in the trochlear groove of 52 New Zealand White rabbits. Sixteen defects were filled with the bone morphogenetic protein (BMP)/PLA-PEG/IP-CHA composite (group I), 12 with PLA-PEG/IP-CHA (group II), 12 with IP-CHA alone (group III), and 12 were left empty (group IV). The animals were killed 1, 3, and 6 weeks after surgery, and the gross appearance of the defect sites was assessed. The harvested tissues were examined radiographically and histologically. One week after implantation with the BMP/PLA-PEG/IP-CHA composite (group I), vigorous repair had occurred in the subchondral defect. It contained an agglomeration of mesenchymal cells which had migrated from the surrounding bone marrow either directly, or indirectly via the interconnecting pores of the IP-CHA scaffold. At 6 weeks, these defects were completely repaired. The regenerated cartilage manifested a hyaline-like appearance, with a mature matrix and a columnar organization of chondrocytes. The triple composite of rhBMP-2, PLA-PEG, and IP-CHA promotes the repair of full-thickness articular cartilage defects within as short a period as 3 weeks in the rabbit model. Hence, this novel cell-free implant biotechnology could mark a new development in the field of articular cartilage repair.

  10. Bone Regeneration in Critical Bone Defects Using Three-Dimensionally Printed β-Tricalcium Phosphate/Hydroxyapatite Scaffolds Is Enhanced by Coating Scaffolds with Either Dipyridamole or BMP-2

    Science.gov (United States)

    Ishack, Stephanie; Mediero, Aranzazu; Wilder, Tuere; Ricci, John L.; Cronstein, Bruce N.

    2017-01-01

    Bone defects resulting from trauma or infection need timely and effective treatments to restore damaged bone. Using specialized three-dimensional (3-D) printing technology we have created custom 3-D scaffolds of hydroxyapatite (HA)/Beta-Tri-Calcium Phosphate (β-TCP) to promote bone repair. To further enhance bone regeneration we have coated the scaffolds with dipyridamole, an agent that increases local adenosine levels by blocking cellular uptake of adenosine. 15% HA:85% β-TCP scaffolds were designed using Robocad software, fabricated using a 3-D Robocasting system, and sintered at 1100°C for 4h. Scaffolds were coated with BMP-2 (200ng/ml), Dypiridamole 100µM or saline and implanted in C57B6 and adenosine A2A receptor knockout (A2AKO) mice with 3mm cranial critical bone defects for 2-8 weeks. Dipyridamole release from scaffold was assayed spectrophotometrically. MicroCT and histological analysis were performed. micro-computed tomography (microCT) showed significant bone formation and remodeling in HA/β-TCP- dipyridamole and HA/β-TCP -BMP-2 scaffolds when compared to scaffolds immersed in vehicle at 2, 4 and 8 weeks (n=5 per group; p≤ 0.05, p≤ 0.05 and p≤ 0.01, respectively). Histological analysis showed increased bone formation and a trend toward increased remodeling in HA/β-TCP- dipyridamole and HA/β-TCP-BMP-2 scaffolds. coating scaffolds with dipyridamole did not enhance bone regeneration in A2AKO mice. In conclusion, scaffolds printed with HA/β-TCP promote bone regeneration in critical bone defects and coating these scaffolds with agents that stimulate A2A receptors and growth factors can further enhance bone regeneration. These coated scaffolds may be very useful for treating critical bone defects due to trauma, infection or other causes. PMID:26513656

  11. Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation.

    Science.gov (United States)

    Osborne, Lisa C; Monticelli, Laurel A; Nice, Timothy J; Sutherland, Tara E; Siracusa, Mark C; Hepworth, Matthew R; Tomov, Vesselin T; Kobuley, Dmytro; Tran, Sara V; Bittinger, Kyle; Bailey, Aubrey G; Laughlin, Alice L; Boucher, Jean-Luc; Wherry, E John; Bushman, Frederic D; Allen, Judith E; Virgin, Herbert W; Artis, David

    2014-08-01

    The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immunomodulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth coinfection. Helminth coinfection resulted in impaired antiviral immunity and was associated with changes in the microbiota and STAT6-dependent helminth-induced alternative activation of macrophages. Notably, helminth-induced impairment of antiviral immunity was evident in germ-free mice, but neutralization of Ym1, a chitinase-like molecule that is associated with alternatively activated macrophages, could partially restore antiviral immunity. These data indicate that helminth-induced immunomodulation occurs independently of changes in the microbiota but is dependent on Ym1. Copyright © 2014, American Association for the Advancement of Science.

  12. Virus-helminth co-infection reveals a microbiota-independent mechanism of immuno-modulation

    Science.gov (United States)

    Osborne, Lisa C.; Monticelli, Laurel A.; Nice, Timothy J.; Sutherland, Tara E.; Siracusa, Mark C.; Hepworth, Matthew R.; Tomov, Vesselin T.; Kobuley, Dmytro; Tran, Sara V.; Bittinger, Kyle; Bailey, Aubrey G.; Laughlin, Alice L.; Boucher, Jean-Luc; Wherry, E. John; Bushman, Frederic D.; Allen, Judith E.; Virgin, Herbert W.; Artis, David

    2015-01-01

    The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immuno-modulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth co-infection. Helminth co-infection resulted in impaired antiviral immunity and was associated with changes in the microbiota and STAT6-dependent helminth-induced alternative activation of macrophages. Notably, helminth-induced impairment of antiviral immunity was evident in germ-free mice but neutralization of Ym1, a chitinase-like molecule that is associated with alternatively-activated macrophages, could partially restore antiviral immunity. These data indicate that helminth-induced immuno-modulation occurs independently of changes in the microbiota but is dependent on Ym1. PMID:25082704

  13. Quercetin enhances adiponectin secretion by a PPAR-gamma independent mechanism

    DEFF Research Database (Denmark)

    Wein, Silvia; Behm, Norma; Petersen, Rasmus Koefoed

    2010-01-01

    To study possible insulin sensitizing, anti-inflammatory and anti-oxidative effects of the flavonol quercetin, rats were fed a high-fat diet (19%, w/w) with (HFQ) or without (HF) 0.03% quercetin or a flavonoid-poor low-fat (5%, w/w) maintenance diet (LF) over 4 weeks. Body weight was measured...... and WAT mRNA levels of adiponectin were elevated compared with the HF group, however, PPAR-gamma mRNA concentration in WAT was decreased (HFQ vs. HF). Compared to both other groups quercetin feeding significantly reduced oxidative stress, measured by plasma 8-iso-PGF(2alpha), while body weight gain, body...... composition and plasma leptin levels were not affected. Neither quercetin nor its metabolites induced PPAR-gamma-mediated transactivation in vitro. Adiponectin stimulating effects of quercetin are PPAR-gamma-independent and prevent impairment of insulin sensitivity without affecting body weight...

  14. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms.

    Science.gov (United States)

    Srinivasan, Supriya; Sadegh, Leila; Elle, Ida C; Christensen, Anne G L; Faergeman, Nils J; Ashrafi, Kaveh

    2008-06-01

    We investigated serotonin signaling in C. elegans as a paradigm for neural regulation of energy balance and found that serotonergic regulation of fat is molecularly distinct from feeding regulation. Serotonergic feeding regulation is mediated by receptors whose functions are not required for fat regulation. Serotonergic fat regulation is dependent on a neurally expressed channel and a G protein-coupled receptor that initiate signaling cascades that ultimately promote lipid breakdown at peripheral sites of fat storage. In turn, intermediates of lipid metabolism generated in the periphery modulate feeding behavior. These findings suggest that, as in mammals, C. elegans feeding behavior is regulated by extrinsic and intrinsic cues. Moreover, obesity and thinness are not solely determined by feeding behavior. Rather, feeding behavior and fat metabolism are coordinated but independent responses of the nervous system to the perception of nutrient availability.

  15. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    Science.gov (United States)

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.

  16. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Janine Spieker

    Full Text Available Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS. Here, we first analyzed the expression of acetylcholinesterase (AChE by IHC and of choline acetyltransferase (ChAT by ISH in developing embryonic chicken limbs (stages HH17-37. AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER and zone of polarizing activity (ZPA, respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB and Alizarin red (AR stainings, respectively. Both acetylcholine (ACh- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.

  17. Naringenin inhibits seed germination and seedling root growth through a salicylic acid-independent mechanism in Arabidopsis thaliana.

    Science.gov (United States)

    Hernández, Iker; Munné-Bosch, Sergi

    2012-12-01

    Flavonoids fulfill an enormous range of biological functions in plants. In seeds, these compounds play several roles; for instance proanthocyanidins protect them from moisture, pathogen attacks, mechanical stress, UV radiation, etc., and flavonols have been suggested to protect the embryo from oxidative stress. The present study aimed at determining the role of flavonoids in Arabidopsis thaliana (L.) seed germination, and the involvement of salicylic acid (SA) and auxin (indole-3-acetic acid), two phytohormones with the same biosynthetic origin as flavonoids, the shikimate pathway, in such a putative role. We show that naringenin, a flavanone, strongly inhibits the germination of A. thaliana seeds in a dose-dependent and SA-independent manner. Altered auxin levels do not affect seed germination in Arabidopsis, but impaired auxin transport does, although to a minor extent. Naringenin and N-1-naphthylphthalamic acid (NPA) impair auxin transport through the same mechanisms, so the inhibition of germination by naringenin might involve impaired auxin transport among other mechanisms. From the present study it is concluded that naringenin inhibits the germination of Arabidopsis seeds in a dose-dependent and SA-independent manner, and the results also suggest that such effects are exerted, at least to some extent, through impaired auxin transport, although additional mechanisms seem to operate as well. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    Science.gov (United States)

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  19. Iron-Induced Damage in Cardiomyopathy: Oxidative-Dependent and Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Elena Gammella

    2015-01-01

    Full Text Available The high incidence of cardiomyopathy in patients with hemosiderosis, particularly in transfusional iron overload, strongly indicates that iron accumulation in the heart plays a major role in the process leading to heart failure. In this context, iron-mediated generation of noxious reactive oxygen species is believed to be the most important pathogenetic mechanism determining cardiomyocyte damage, the initiating event of a pathologic progression involving apoptosis, fibrosis, and ultimately cardiac dysfunction. However, recent findings suggest that additional mechanisms involving subcellular organelles and inflammatory mediators are important factors in the development of this disease. Moreover, excess iron can amplify the cardiotoxic effect of other agents or events. Finally, subcellular misdistribution of iron within cardiomyocytes may represent an additional pathway leading to cardiac injury. Recent advances in imaging techniques and chelators development remarkably improved cardiac iron overload detection and treatment, respectively. However, increased understanding of the pathogenic mechanisms of iron overload cardiomyopathy is needed to pave the way for the development of improved therapeutic strategies.

  20. Independent risk of mechanical ventilation for AIDS-related Pneumocystis carinii pneumonia associated with bronchoalveolar lavage neutrophilia

    DEFF Research Database (Denmark)

    Bang, D.; Emborg, J.; Elkjaer, J.

    2001-01-01

    The use of mechanical ventilation (MV) for AIDS-related Pneumocystis carinii pneumonia (PCP) has varied over time. The introduction of adjunctive corticosteroid therapy has changed the pathophysiology of PCP. In the present study, we attempted to identify factors predictive of severe respiratory......%). In a logistic regression analysis, higher age, increased bronchoalveolar lavage (BAL) neutrophilia and a positive BAL cytomegalovirus CMV culture were associated with the need of MV. In multivariate analyses, only BAL neutrophilia remained independently predictive of mechanical ventilation. In conclusion, short......-term mortality remained high after the introduction of adjunctive corticosteroid therapy. BAL neutrophilia may be a useful prognostic marker to identify patients at high risk of requiring mechanical ventilation Udgivelsesdato: 2001/8...

  1. Nefiracetam facilitates hippocampal neurotransmission by a mechanism independent of the piracetam and aniracetam action.

    Science.gov (United States)

    Nomura, T; Nishizaki, T

    2000-07-07

    Nefiracetam, a nootropic (cognition-enhancing) agent, facilitated neurotransmission in the dentate gyrus of rat hippocampal slices in a dose-dependent manner at concentrations ranged from 1 nM to 1 microM, being evident at 60-min washing-out of the drug. The facilitatory action was blocked by the nicotinic acetylcholine (ACh) receptor antagonists, alpha-bungarotoxin and mecamylamine. A similar facilitation was induced by the other nootropic agents, piracetam and aniracetam, but the facilitation was not inhibited by nicotinic ACh receptor antagonists and it did not occlude the potentiation induced by nefiracetam. In the Xenopus oocyte expression systems, nefiracetam potentiated currents through a variety of neuronal nicotinic ACh receptors (alpha 3beta 2, alpha 3beta 4, alpha 4 beta 2, alpha 4 beta 4, and alpha 7) to a different extent. In contrast, neither piracetam nor aniracetam had any potentiating action on alpha 7 receptor currents. While aniracetam delayed the decay time of currents through the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, GluR1, -2, -3, expressed in oocytes, nefiracetam or piracetam had no effect on the currents. Nefiracetam, thus, appears to facilitate hippocampal neurotransmission by functionally targeting nicotinic ACh receptors, independently of the action of piracetam and aniracetam.

  2. Acidic mammalian chitinase regulates epithelial cell apoptosis via a chitinolytic-independent mechanism.

    Science.gov (United States)

    Hartl, Dominik; He, Chuan Hua; Koller, Babara; Da Silva, Carla A; Kobayashi, Yasushi; Lee, Chun Geun; Flavell, Richard A; Elias, Jack A

    2009-04-15

    Acidic mammalian chitinase (AMCase) is produced during and plays an important role in the pathogenesis of Th2-mediated diseases and antiparasite responses. However, the effector responses of AMCase in these settings have not been adequately defined and the relationship(s) between its chitinolytic and other biologic properties have not been investigated. In these studies, we demonstrate that AMCase protects airway epithelial cells from Fas ligand- and growth factor withdrawal-induced apoptosis. This cytoprotection was associated with Akt phosphorylation and abrogated when the PI3K/Akt pathway was inhibited. Comparable cytoprotection was also seen in experiments comparing wild-type AMCase and mutant AMCase that lacked chitinolytic activity. Importantly, the apoptosis-inhibiting effect of enzymatically active and inactive AMCase was abrogated by treatment with allosamidin. These studies demonstrate that secreted AMCase feeds back in an autocrine and/or paracrine manner to protect pulmonary epithelial cells from growth factor withdrawal- and Fas ligand-induced apoptosis. They also demonstrate that the cytoprotection is mediated via a PI3K/Akt-dependent and allosamidin-sensitive pathway that is independent of the chitinolytic activity of this chitinase.

  3. Acidic Mammalian Chitinase Regulates Epithelial Cell via a Chitinolytic-Independent Mechanism

    Science.gov (United States)

    Hartl, D.; He, C. H.; Koller, B.; Da Silva, C. A.; Kobayashi, Y.; Lee, C. G.; Flavell, R. A.

    2009-01-01

    Acidic mammalian chitinase (AMCase) is produced during and plays an important role in the pathogenesis of Th2-mediated diseases and antiparasite responses. However, the effector responses of AMCase in these settings have not been adequately defined and the relationship(s) between its chitinolytic and other biologic properties have not been investigated. In these studies we demonstrate that AMCase protects airway epithelial cells from Fas ligand (FasL)- and growth factor withdrawal-induced apoptosis. This cytoprotection was associated with Akt phosphorylation and abrogated when the phosphoinositide 3-kinase (PI3K)/Akt pathway was inhibited. Comparable cytoprotection was also seen in experiments comparing wild type AMCase and mutant AMCase that lacked chitinolytic activity. Importantly, the apoptosis-inhibiting effect of enzymatically-active and -inactive AMCase was abrogated by treatment with allosamidin. These studies demonstrate that secreted AMCase feeds back in an autocrine and/or paracrine manner to protect pulmonary epithelial cells from growth factor withdrawal- and FasL-induced apoptosis. They also demonstrate that the cytoprotection is mediated via a PI3K/Akt-dependent and allosamidin-sensitive pathway that is independent of the chitinolytic acvtivity of this chitinase. PMID:19342690

  4. Diacylglycerol kinase ζ regulates RhoA activation via a kinase-independent scaffolding mechanism

    DEFF Research Database (Denmark)

    Ard, Ryan; Mulatz, Kirk; Abramovici, Hanan

    2012-01-01

    , but the underlying mechanisms are unclear. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, selectively dissociates Rac1 by stimulating PAK1-mediated phosphorylation of RhoGDI on Ser-101/174. Similarly, phosphorylation of RhoGDI on Ser-34 by protein kinase Cα (PKCα...... DGKζ functions as a scaffold to assemble a signaling complex that functions as a RhoA-selective, GDI dissociation factor. As a regulator of Rac1 and RhoA activity, DGKζ is a critical factor linking changes in lipid signaling to actin reorganization....

  5. [The clinical picture of rheumatoid arthritis--the complex of three independent mechanisms].

    Science.gov (United States)

    Fassbender, Hans Georg; Meyer-Scholten, Carola; Zorn, Kati

    2009-01-01

    The assumption of inflamation as the only cause of the complex clinical picture of rheumatoid atrhritis does not correspond to facts. We have found and proven the existence of three seemingly unconnected mechanisms, and only their combination can account for the general clinical picture of rheumatoid arthritis. They are: 1. immunologic synovitis, responsible for pain, swelling and stiffnes; 2. oncological process ("tumorlike proliferation"), responsible for the destruction of joints; 3. Primary necrotizing process, responsible for the (sometimes lethal) destructions in the heart and blood vessels.

  6. Biochemical targets of drugs mitigating oxidative stress via redox-independent mechanisms.

    Science.gov (United States)

    Gesslbauer, Bernd; Bochkov, Valery

    2017-12-15

    Acute or chronic oxidative stress plays an important role in many pathologies. Two opposite approaches are typically used to prevent the damage induced by reactive oxygen and nitrogen species (RONS), namely treatment either with antioxidants or with weak oxidants that up-regulate endogenous antioxidant mechanisms. This review discusses options for the third pharmacological approach, namely amelioration of oxidative stress by 'redox-inert' compounds, which do not inactivate RONS but either inhibit the basic mechanisms leading to their formation (i.e. inflammation) or help cells to cope with their toxic action. The present study describes biochemical targets of many drugs mitigating acute oxidative stress in animal models of ischemia-reperfusion injury or N -acetyl- p -aminophenol overdose. In addition to the pro-inflammatory molecules, the targets of mitigating drugs include protein kinases and transcription factors involved in regulation of energy metabolism and cell life/death balance, proteins regulating mitochondrial permeability transition, proteins involved in the endoplasmic reticulum stress and unfolded protein response, nuclear receptors such as peroxisome proliferator-activated receptors, and isoprenoid synthesis. The data may help in identification of oxidative stress mitigators that will be effective in human disease on top of the current standard of care. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Karyotype rearrangements in a wine yeast strain by rad52-dependent and rad52-independent mechanisms.

    Science.gov (United States)

    Carro, David; Bartra, Enric; Piña, Benjamin

    2003-04-01

    Yeast strains isolated from the wild may undergo karyotype changes during vegetative growth, a characteristic that compromises their utility in genetic improvement projects for industrial purposes. Karyotype instability is a dominant trait, segregating among meiotic derivatives as if it depended upon only a few genetic elements. We show that disrupting the RAD52 gene in a hypervariable strain partially stabilizes its karyotype. Specifically, RAD52 disruption eliminated recombination at telomeric and subtelomeric sequences, had no influence on ribosomal DNA rearrangement rates, and reduced to 30% the rate of changes in chromosomal size. Thus, there are at least three mechanisms related to karyotype instability in wild yeast strains, two of them not requiring RAD52-mediated homologous recombination. When utilized for a standard sparkling-wine second fermentation, Deltarad52 strains retained the enological properties of the parental strain, specifically its vigorous fermentation capability. These data increase our understanding of the mechanisms of karyotype instability in yeast strains isolated from the wild and illustrate the feasibility and limitations of genetic remediation to increase the suitability of natural strains for industrial processes.

  8. SOCIO-PEDAGOGICAL EVALUATION OF TEACHING STAFF ACTIVITIES IN COMPREHENSIVE SCHOOLS AS AN INDEPENDENT MECHANISM OF EDUCATION QUALITY ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Irina О. Antipina

    2014-01-01

    Full Text Available The aim of the research is to reveal various ways for developing the independent mechanisms of education quality assessment.Methods involve the analysis of the existing views concerning the quality assessment of teaching staff activities.Results: The research findings demonstrate functional specificity of comprehensive schools, the main phases of socio-pedagogic assessment of teaching staff activities, and the main criteria and indices of their monitoring. The author considers professional educational activity as a general assessment criterion. The main feature of socio-pedagogic assessment procedures involves participation of different categories of teaching and research staff, along with students’ parents and the neighboring society members.Scientific novelty: The author specifies the concept of socio-pedagogic assessment of teaching staff activities.Practical significance: Implementation of the research outcomes can stimulate professional activity of pedagogical society in developing the independent system of education quality assessment.

  9. Polycomb Repressor Complex 1 Member, BMI1 Contributes to Urothelial Tumorigenesis through p16-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Lia E. De Faveri

    2015-10-01

    Full Text Available Urothelial carcinoma (UC causes significant morbidity and remains the most expensive cancer to treat because of the need for repeated resections and lifelong monitoring for patients with non–muscle-invasive bladder cancer (NMIBC. Novel therapeutics and stratification approaches are needed to improve the outlook for both NMIBC and muscle-invasive bladder cancer. We investigated the expression and effects of B Lymphoma Mo-MLV Insertion Region 1 (BMI1 in UC. BMI1 was found to be overexpressed in most UC cell lines and primary tumors by quantitative real-time polymerase chain reaction and immunohistochemistry. In contrast to some previous reports, no association with tumor stage or grade was observed in two independent tumor panels. Furthermore, upregulation of BMI1 was detected in premalignant bladder lesions, suggesting a role early in tumorigenesis. BMI1 is not located within a common region of genomic amplification in UC. The CDKN2A locus (which encodes the p16 tumor suppressor gene is a transcriptional target of BMI1 in some cellular contexts. In UC cell lines and primary tissues, no correlation between BMI1 and p16 expression was observed. Retroviral-mediated overexpression of BMI1 immortalized normal human urothelial cells (NHUC in vitro and was associated with induction of telomerase activity, bypass of senescence, and repression of differentiation. The effects of BMI1 on gene expression were identified by expression microarray analysis of NHUC-BMI1. Metacore analysis of the gene expression profile implicated downstream effects of BMI1 on α4/β1 integrin-mediated adhesion, cytoskeleton remodeling, and CREB1-mediated transcription.

  10. Compound C inhibits macrophage chemotaxis through an AMPK-independent mechanism

    International Nuclear Information System (INIS)

    Lee, Youngyi; Park, Byung-Hyun; Bae, Eun Ju

    2016-01-01

    Macrophage infiltration in adipose tissue is a well-established cause of obesity-linked insulin resistance. AMP-activated protein kinase (AMPK) activation in peripheral tissues such as adipose tissue has beneficial effects on the protection against obesity-induced insulin resistance, which is mainly mediated by prevention of adipose tissue macrophage infiltration and inflammation. In examining the role of AMPK on adipose tissue inflammation, we unexpectedly found that compound C (CC), despite its inhibition of AMPK, robustly inhibited macrophage chemotaxis in RAW 264.7 cells when adipocyte conditioned medium (CM) was used as a chemoattractant. Here, we report that CC inhibition of macrophage migration occurred independently of AMPK. Mechanistically, this inhibitory effect of cell migration by CC was mediated by inhibition of the focal adhesion kinase, AKT, nuclear factor κB pathways. Moreover, the expression of chemokine monocyte chemoattractant protein-1 and pro-inflammatory genes such as tumor necrosis factor α and inducible nitric oxide synthase were prevented by CC treatment in RAW 264.7 cells stimulated with either adipocyte CM or lipopolysaccharide. Lastly, in accord with the findings of the anti-inflammatory effect of CC, we demonstrated that CC functioned as a repressor of macrophage CM-mediated insulin resistance in adipocytes. Taken together, our results suggest that CC serves as a useful inhibitory molecule against macrophage chemotaxis into adipose tissue and thus might have therapeutic potential for the treatment of obesity-linked adipose inflammation. - Highlights: • Compound C (CC) inhibits macrophage chemotaxis regardless of AMPK suppression. • CC enhances insulin sensitivity in adipocytes. • CC inhibits focal adhesion kinase, AKT, and NF-κB signaling in RAW 264.7 cells.

  11. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism.

    Science.gov (United States)

    Wigerblad, Gustaf; Bas, Duygu B; Fernades-Cerqueira, Cátia; Krishnamurthy, Akilan; Nandakumar, Kutty Selva; Rogoz, Katarzyna; Kato, Jungo; Sandor, Katalin; Su, Jie; Jimenez-Andrade, Juan Miguel; Finn, Anja; Bersellini Farinotti, Alex; Amara, Khaled; Lundberg, Karin; Holmdahl, Rikard; Jakobsson, Per-Johan; Malmström, Vivianne; Catrina, Anca I; Klareskog, Lars; Svensson, Camilla I

    2016-04-01

    An interesting and so far unexplained feature of chronic pain in autoimmune disease is the frequent disconnect between pain and inflammation. This is illustrated well in rheumatoid arthritis (RA) where pain in joints (arthralgia) may precede joint inflammation and persist even after successful anti-inflammatory treatment. In the present study, we have addressed the possibility that autoantibodies against citrullinated proteins (ACPA), present in RA, may be directly responsible for the induction of pain, independent of inflammation. Antibodies purified from human patients with RA, healthy donors and murinised monoclonal ACPA were injected into mice. Pain-like behaviour was monitored for up to 28 days, and tissues were analysed for signs of pathology. Mouse osteoclasts were cultured and stimulated with antibodies, and supernatants analysed for release of factors. Mice were treated with CXCR1/2 (interleukin (IL) 8 receptor) antagonist reparixin. Mice injected with either human or murinised ACPA developed long-lasting pronounced pain-like behaviour in the absence of inflammation, while non-ACPA IgG from patients with RA or control monoclonal IgG were without pronociceptive effect. This effect was coupled to ACPA-mediated activation of osteoclasts and release of the nociceptive chemokine CXCL1 (analogue to human IL-8). ACPA-induced pain-like behaviour was reversed with reparixin. The data suggest that CXCL1/IL-8, released from osteoclasts in an autoantibody-dependent manner, produces pain by activating sensory neurons. The identification of this new pain pathway may open new avenues for pain treatment in RA and also in other painful diseases associated with autoantibody production and/or osteoclast activation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Compound C inhibits macrophage chemotaxis through an AMPK-independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngyi [College of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338 (Korea, Republic of); Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896 (Korea, Republic of); Park, Byung-Hyun, E-mail: bhpark@jbnu.ac.kr [Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896 (Korea, Republic of); Bae, Eun Ju, E-mail: ejbae@woosuk.ac.kr [College of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338 (Korea, Republic of)

    2016-01-15

    Macrophage infiltration in adipose tissue is a well-established cause of obesity-linked insulin resistance. AMP-activated protein kinase (AMPK) activation in peripheral tissues such as adipose tissue has beneficial effects on the protection against obesity-induced insulin resistance, which is mainly mediated by prevention of adipose tissue macrophage infiltration and inflammation. In examining the role of AMPK on adipose tissue inflammation, we unexpectedly found that compound C (CC), despite its inhibition of AMPK, robustly inhibited macrophage chemotaxis in RAW 264.7 cells when adipocyte conditioned medium (CM) was used as a chemoattractant. Here, we report that CC inhibition of macrophage migration occurred independently of AMPK. Mechanistically, this inhibitory effect of cell migration by CC was mediated by inhibition of the focal adhesion kinase, AKT, nuclear factor κB pathways. Moreover, the expression of chemokine monocyte chemoattractant protein-1 and pro-inflammatory genes such as tumor necrosis factor α and inducible nitric oxide synthase were prevented by CC treatment in RAW 264.7 cells stimulated with either adipocyte CM or lipopolysaccharide. Lastly, in accord with the findings of the anti-inflammatory effect of CC, we demonstrated that CC functioned as a repressor of macrophage CM-mediated insulin resistance in adipocytes. Taken together, our results suggest that CC serves as a useful inhibitory molecule against macrophage chemotaxis into adipose tissue and thus might have therapeutic potential for the treatment of obesity-linked adipose inflammation. - Highlights: • Compound C (CC) inhibits macrophage chemotaxis regardless of AMPK suppression. • CC enhances insulin sensitivity in adipocytes. • CC inhibits focal adhesion kinase, AKT, and NF-κB signaling in RAW 264.7 cells.

  13. Performance pressure and caffeine both affect cognitive performance, but likely through independent mechanisms.

    Science.gov (United States)

    Boere, Julia J; Fellinger, Lizz; Huizinga, Duncan J H; Wong, Sebastiaan F; Bijleveld, Erik

    2016-02-01

    A prevalent combination in daily life, performance pressure and caffeine intake have both been shown to impact people's cognitive performance. Here, we examined the possibility that pressure and caffeine affect cognitive performance via a shared pathway. In an experiment, participants performed a modular arithmetic task. Performance pressure and caffeine intake were orthogonally manipulated. Findings indicated that pressure and caffeine both negatively impacted performance. However, (a) pressure vs. caffeine affected performance on different trial types, and (b) there was no hint of an interactive effect. So, though the evidence is indirect, findings suggest that pressure and caffeine shape performance via distinct mechanisms, rather than a shared one. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Geranylated 4-Phenylcoumarins Exhibit Anticancer Effects against Human Prostate Cancer Cells through Caspase-Independent Mechanism.

    Directory of Open Access Journals (Sweden)

    Noor Shahirah Suparji

    Full Text Available Geranylated 4-phenylcoumarins, DMDP-1 & -2 isolated from Mesua elegans were investigated for anticancer potential against human prostate cancer cells. Treatment with DMDP-1 & -2 resulted in cell death in a time and dose dependent manner in an MTT assay on all cancer cell lines tested with the exception of lung adenocarcinoma cells. DMDP-1 showed highest cytotoxic efficacy in PC-3 cells while DMDP-2 was most potent in DU 145 cells. Flow cytometry indicated that both coumarins were successful to induce programmed cell death after 24 h treatment. Elucidation on the mode-of-action via protein arrays and western blotting demonstrated death induced without any significant expressions of caspases, Bcl-2 family proteins and cleaved PARP, thus suggesting the involvement of caspase-independent pathways. In identifying autophagy, analysis of GFP-LC3 showed increased punctate in PC-3 cells pre-treated with CQ and treated with DMDP-1. In these cells decreased expression of autophagosome protein, p62 and cathepsin B further confirmed autophagy. In contrary, the DU 145 cells pre-treated with CQ and treated with DMDP-2 has reduced GFP-LC3 punctate although the number of cells with obvious GFP-LC3 puncta was significantly increased in the inhibitor-treated cells. The increase level of p62 suggested leakage of cathepsin B into the cytosol to trigger potential downstream death mediators. This correlated with increased expression of cathepsin B and reduced expression after treatment with its inhibitor, CA074. Also auto-degradation of calpain-2 upon treatment with DMDP-1 &-2 and its inhibitor alone, calpeptin compared with the combination treatment, further confirmed involvement of calpain-2 in PC-3 and DU 145 cells. Treatment with DMDP-1 & -2 also showed up-regulation of total and phosphorylated p53 levels in a time dependent manner. Hence, DMDP-1 & -2 showed ability to activate multiple death pathways involving autophagy, lysosomal and endoplasmic reticulum death

  15. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  16. Regulation of p73 by Hck through kinase-dependent and independent mechanisms

    Directory of Open Access Journals (Sweden)

    Radha Vegesna

    2007-05-01

    Full Text Available Abstract Background p73, a p53 family member is a transcription factor that plays a role in cell cycle, differentiation and apoptosis. p73 is regulated through post translational modifications and protein interactions. c-Abl is the only known tyrosine kinase that phosphorylates and activates p73. Here we have analyzed the role of Src family kinases, which are involved in diverse signaling pathways, in regulating p73. Results Exogenously expressed as well as cellular Hck and p73 interact in vivo. In vitro binding assays show that SH3 domain of Hck interacts with p73. Co-expression of p73 with Hck or c-Src in mammalian cells resulted in tyrosine phosphorylation of p73. Using site directed mutational analysis, we determined that Tyr-28 was the major site of phosphorylation by Hck and c-Src, unlike c-Abl which phosphorylates Tyr-99. In a kinase dependent manner, Hck co-expression resulted in stabilization of p73 protein in the cytoplasm. Activation of Hck in HL-60 cells resulted in tyrosine phosphorylation of endogenous p73. Both exogenous and endogenous Hck localize to the nuclear as well as cytoplasmic compartment, just as does p73. Ectopically expressed Hck repressed the transcriptional activity of p73 as determined by promoter assays and semi-quantitative RT-PCR analysis of the p73 target, Ipaf and MDM2. SH3 domain- dependent function of Hck was required for its effect on p73 activity, which was also reflected in its ability to inhibit p73-mediated apoptosis. We also show that Hck interacts with Yes associated protein (YAP, a transcriptional co-activator of p73, and shRNA mediated knockdown of YAP protein reduces p73 induced Ipaf promoter activation. Conclusion We have identified p73 as a novel substrate and interacting partner of Hck and show that it regulates p73 through mechanisms that are dependent on either catalytic activity or protein interaction domains. Hck-SH3 domain-mediated interactions play an important role in the inhibition of p73

  17. Cardiopulmonary dysfunction in the Osteogenesis imperfecta mouse model Aga2 and human patients are caused by bone-independent mechanisms.

    Science.gov (United States)

    Thiele, Frank; Cohrs, Christian M; Flor, Armando; Lisse, Thomas S; Przemeck, Gerhard K H; Horsch, Marion; Schrewe, Anja; Gailus-Durner, Valerie; Ivandic, Boris; Katus, Hugo A; Wurst, Wolfgang; Reisenberg, Catherine; Chaney, Hollis; Fuchs, Helmut; Hans, Wolfgang; Beckers, Johannes; Marini, Joan C; Hrabé de Angelis, Martin

    2012-08-15

    Osteogenesis imperfecta (OI) is an inherited connective tissue disorder with skeletal dysplasia of varying severity, predominantly caused by mutations in the collagen I genes (COL1A1/COL1A2). Extraskeletal findings such as cardiac and pulmonary complications are generally considered to be significant secondary features. Aga2, a murine model for human OI, was systemically analyzed in the German Mouse Clinic by means of in vivo and in vitro examinations of the cardiopulmonary system, to identify novel mechanisms accounting for perinatal lethality. Pulmonary and, especially, cardiac fibroblast of perinatal lethal Aga2/+ animals display a strong down-regulation of Col1a1 transcripts in vivo and in vitro, resulting in a loss of extracellular matrix integrity. In addition, dysregulated gene expression of Nppa, different types of collagen and Agt in heart and lung tissue support a bone-independent vicious cycle of heart dysfunction, including hypertrophy, loss of myocardial matrix integrity, pulmonary hypertension, pneumonia and hypoxia leading to death in Aga2. These murine findings are corroborated by a pediatric OI cohort study, displaying significant progressive decline in pulmonary function and restrictive pulmonary disease independent of scoliosis. Most participants show mild cardiac valvular regurgitation, independent of pulmonary and skeletal findings. Data obtained from human OI patients and the mouse model Aga2 provide novel evidence for primary effects of type I collagen mutations on the heart and lung. The findings will have potential benefits of anticipatory clinical exams and early intervention in OI patients.

  18. Caenorhabditis elegans reveals a FxNPxY-independent low-density lipoprotein receptor internalization mechanism mediated by epsin1

    Science.gov (United States)

    Kang, Yuan-Lin; Yochem, John; Bell, Leslie; Sorensen, Erika B.; Chen, Lihsia; Conner, Sean D.

    2013-01-01

    Low-density lipoprotein receptor (LDLR) internalization clears cholesterol-laden LDL particles from circulation in humans. Defects in clathrin-dependent LDLR endocytosis promote elevated serum cholesterol levels and can lead to atherosclerosis. However, our understanding of the mechanisms that control LDLR uptake remains incomplete. To identify factors critical to LDLR uptake, we pursued a genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport. In doing so, we discovered an unanticipated requirement for the clathrin-binding endocytic adaptor epsin1 in LDLR endocytosis. Epsin1 depletion reduced LDLR internalization rates in mammalian cells, similar to the reduction observed following clathrin depletion. Genetic and biochemical analyses of epsin in C. elegans and mammalian cells uncovered a requirement for the ubiquitin-interaction motif (UIM) as critical for receptor transport. As the epsin UIM promotes the internalization of some ubiquitinated receptors, we predicted LDLR ubiquitination as necessary for endocytosis. However, engineered ubiquitination-impaired LDLR mutants showed modest internalization defects that were further enhanced with epsin1 depletion, demonstrating epsin1-mediated LDLR endocytosis is independent of receptor ubiquitination. Finally, we provide evidence that epsin1-mediated LDLR uptake occurs independently of either of the two documented internalization motifs (FxNPxY or HIC) encoded within the LDLR cytoplasmic tail, indicating an additional internalization mechanism for LDLR. PMID:23242996

  19. LeuX tRNA-dependent and -independent mechanisms of Escherichia coli pathogenesis in acute cystitis.

    Science.gov (United States)

    Hannan, Thomas J; Mysorekar, Indira U; Chen, Swaine L; Walker, Jennifer N; Jones, Jennifer M; Pinkner, Jerome S; Hultgren, Scott J; Seed, Patrick C

    2008-01-01

    Uropathogenic Escherichia coli (UPEC) contain multiple horizontally acquired pathogenicity-associated islands (PAI) implicated in the pathogenesis of urinary tract infection. In a murine model of cystitis, type 1 pili-mediated bladder epithelial invasion and intracellular proliferation are key events associated with UPEC virulence. In this study, we examined the mechanisms by which a conserved PAI contributes to UPEC pathogenesis in acute cystitis. In the human UPEC strain UTI89, spontaneous excision of PAI II(UTI89) disrupts the adjacent leuX tRNA locus. Loss of wild-type leuX-encoded tRNA(5)(Leu) significantly delayed, but did not eliminate, FimB recombinase-mediated phase variation of type 1 pili. FimX, an additional FimB-like, leuX-independent recombinase, was also found to mediate type 1 pili phase variation. However, whereas FimX activity is relatively slow in vitro, it is rapid in vivo as a non-piliated strain lacking the other fim recombinases rapidly expressed type 1 pili upon experimental infection. Finally, we found that disruption of leuX, but not loss of PAI II(UTI89) genes, reduced bladder epithelial invasion and intracellular proliferation, independent of type 1 piliation. These findings indicate that the predominant mechanism for preservation of PAI II(UTI89) during the establishment of acute cystitis is maintenance of wild-type leuX, and not PAI II(UTI89) gene content.

  20. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms.

    Science.gov (United States)

    Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan

    2017-01-01

    ferroportin-independent homeostasis mechanisms.

  1. Independent Reporting Mechanism (IRM)

    DEFF Research Database (Denmark)

    Eberholst, Mads Kæmsgaard

    2017-01-01

    To raise the impact of OGP in Denmark, the government can broaden the inclusivity of the OGP process and deepen in-person engagement with a more diverse group of stakeholders. Future action plans may include commitments regarding political party fnancing, lobbying regulations and access to inform......To raise the impact of OGP in Denmark, the government can broaden the inclusivity of the OGP process and deepen in-person engagement with a more diverse group of stakeholders. Future action plans may include commitments regarding political party fnancing, lobbying regulations and access...

  2. Red human hair pheomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanomagenesis.

    Science.gov (United States)

    Panzella, Lucia; Leone, Loredana; Greco, Giorgia; Vitiello, Giuseppe; D'Errico, Gerardino; Napolitano, Alessandra; d'Ischia, Marco

    2014-03-01

    The highest incidence of melanoma in red haired individuals is attributed to the synthesis and phototoxic properties of pheomelanin pigments. Recently, pheomelanin has also been implicated in UV-independent pathways of oxidative stress; however, the underlying mechanisms have remained uncharted. Herein, we disclose the unprecedented property of purified red human hair pheomelanin (RHP) to promote (i) the oxygen-dependent depletion of major cell antioxidants, for example glutathione and NADH; (ii) the autoxidative formation of melanin pigments from their precursors. RHP would thus behave as a unique 'living' polymer and biocatalyst that may grow by simple exposure to monomer building blocks and may trigger autoxidative processes. These results yield new clues as to the origin of the pro-oxidant state in the red hair phenotype, uncover non-enzymatic pathways of melanogenesis, and pave the way to innovative strategies for melanoma prevention. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Membrane-mediated action of the endocannabinoid anandamide on membrane proteins: implications for understanding the receptor-independent mechanism

    Science.gov (United States)

    Medeiros, Djalma; Silva-Gonçalves, Laíz Da Costa; da Silva, Annielle Mendes Brito; Dos Santos Cabrera, Marcia Perez; Arcisio-Miranda, Manoel

    2017-01-01

    Endocannabinoids are amphiphilic molecules that play crucial neurophysiological functions acting as lipid messengers. Antagonists and knockdown of the classical CB1 and CB2 cannabinoid receptors do not completely abolish many endocannabinoid activities, supporting the idea of a mechanism independent of receptors whose mode of action remains unclear. Here we combine gramicidin A (gA) single channel recordings and membrane capacitance measurements to investigate the lipid bilayer-modifying activity of endocannabinoids. Single channel recordings show that the incorporation of endocannabinoids into lipid bilayers reduces the free energy necessary for gramicidin channels to transit from the monomeric to the dimeric conformation. Membrane capacitance demonstrates that the endocannabinoid anandamide has limited effects on the overall structure of the lipid bilayers. Our results associated with the theory of membrane elastic deformation reveal that the action of endocannabinoids on membrane proteins can involve local adjustments of the lipid/protein hydrophobic interface. The current findings shed new light on the receptor-independent mode of action of endocannabinoids on membrane proteins, with important implications towards their neurobiological function.

  4. Age-associated impairments in contraction-induced rapid onset vasodilatation within the forearm are independent of mechanical factors.

    Science.gov (United States)

    Hughes, William E; Kruse, Nicholas T; Casey, Darren P

    2018-03-12

    What is the central question of this study? We examined whether the mechanical contribution to contraction-induced rapid onset vasodilatation (ROV) differed with age, and whether ROV is associated with peripheral artery stiffness. Furthermore, we examined how manipulation of perfusion pressure modulates ROV in young and older adults. What is the main finding and its importance? The mechanical contribution to ROV is similar in young and older adults. Conversely, peripheral arterial stiffness is not associated with ROV. Enhancing perfusion pressure augments ROV to a similar extent in young and older adults. These results suggest that age-related attenuations in ROV are not due to a mechanical component, and ROV responses are independent of peripheral artery stiffness. Contraction-induced rapid onset vasodilatation (ROV) is modulated by perfusion and transmural pressure in young adults; however, this effect remains unknown in older adults. The present study examined the mechanical contribution to ROV in young versus older adults, the influence of perfusion pressure, and whether these responses are associated with arterial stiffness. Forearm vascular conductance (VC; ml·min -1 ·100 mmHg -1 ) was measured in 12 healthy young (24 ± 4 yrs.) and 12 older (67 ± 3 yrs.) adults during: 1) single dynamic contractions at 20% of maximum voluntary contraction; and 2) single external mechanical compression of the forearm (200 mmHg) positioned above, at, and below-heart level. Carotid-radial pulse-wave velocity characterized upper limb arterial stiffness. Total ROV responses to single muscle contractions and single external mechanical compressions were attenuated in older adults at-heart level (P ROV responses similarly between young and older adults (P ROV are not due to a mechanical component; 2) enhancing perfusion pressure augments ROV to a similar extent between young and older adults; and 3) basal upper limb arterial stiffness is not associated with the

  5. A short motif in Arabidopsis CDK inhibitor ICK1 decreases the protein level, probably through a ubiquitin-independent mechanism.

    Science.gov (United States)

    Li, Qin; Shi, Xianzong; Ye, Shengjian; Wang, Sheng; Chan, Ron; Harkness, Troy; Wang, Hong

    2016-09-01

    The ICK/KRP family of cyclin-dependent kinase (CDK) inhibitors modulates the activity of plant CDKs through protein binding. Previous work has shown that changing the levels of ICK/KRP proteins by overexpression or downregulation affects cell proliferation and plant growth, and also that the ubiquitin proteasome system is involved in degradation of ICK/KRPs. We show in this study that the region encompassing amino acids 21 to 40 is critical for ICK1 levels in both Arabidopsis and yeast. To determine how degradation of ICK1 is controlled, we analyzed the accumulation of hemagglutinin (HA) epitope-tagged ICK1 proteins in yeast mutants defective for two ubiquitin E3 ligases. The highest level of HA-ICK1 protein was observed when both the N-terminal 1-40 sequence was removed and the SCF (SKP1-Cullin1-F-box complex) function disrupted, suggesting the involvement of both SCF-dependent and SCF-independent mechanisms in the degradation of ICK1 in yeast. A short motif consisting of residues 21-30 is sufficient to render green fluorescent protein (GFP) unstable in plants and had a similar effect in plants regardless of whether it was fused to the N-terminus or C-terminus of GFP. Furthermore, results from a yeast ubiquitin receptor mutant rpn10Δ indicate that protein ubiquitination is not critical in the degradation of GFP-ICK1(1-40) in yeast. These results thus identify a protein-destabilizing sequence motif that does not contain a typical ubiquitination residue, suggesting that it probably functions through an SCF-independent mechanism. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  6. Tumor necrosis factor-α accelerates the calcification of human aortic valve interstitial cells obtained from patients with calcific aortic valve stenosis via the BMP2-Dlx5 pathway.

    Science.gov (United States)

    Yu, Zaiqiang; Seya, Kazuhiko; Daitoku, Kazuyuki; Motomura, Shigeru; Fukuda, Ikuo; Furukawa, Ken-Ichi

    2011-04-01

    Calcific aortic valve stenosis (CAS) is the most frequent heart valve disease in the elderly, accompanied by valve calcification. Tumor necrosis factor-α (TNF-α), a pleiotropic cytokine secreted mainly from macrophages, has been detected in human calcified valves. However, the role of TNF-α in valve calcification remains unclear. To clarify whether TNF-α accelerates the calcification of aortic valves, we investigated the effect of TNF-α on human aortic valve interstitial cells (HAVICs) obtained from patients with CAS (CAS group) and with aortic regurgitation or aortic dissection having a noncalcified aortic valve (control group). HAVICs (2 × 10(4)) were cultured in a 12-well dish in Dulbecco's modified Eagle's medium with 10% fetal bovine serum. The medium containing TNF-α (30 ng/ml) was replenished every 3 days after the cells reached confluence. TNF-α significantly accelerated the calcification and alkaline phosphatase (ALP) activity of HAVICs from CAS but not the control group after 12 days of culture. Furthermore, gene expression of calcigenic markers, ALP, bone morphogenetic protein 2 (BMP2), and distal-less homeobox 5 (Dlx5) were significantly increased after 6 days of TNF-α treatment in the CAS group but not the control group. Dorsomorphin, an inhibitor of mothers against decapentaplegic homologs (Smads) 1/5/8 phosphorylation, significantly inhibited the enhancement of TNF-α-induced calcification, ALP activity, Smad phosphorylation, and Dlx5 gene expression of HAVICs from the CAS group. These results suggest that HAVICs from the CAS group have greater sensitivity to TNF-α, which accelerates the calcification of aortic valves via the BMP2-Dlx5 pathway.

  7. Design of an independent water cooled plasma facing armor with mechanically attached conduction cooled tiles for net first wall

    International Nuclear Information System (INIS)

    Lipa, M.; Deck, C.; Deschamps, P.; Schlosser, J.

    1990-01-01

    The low temperature ( 0 C) Plasma Facing Component concept which is under development for NET, is an independent structure located on the plasma facing side of the shielding box. The armor consists of carbon based square tiles, mechanically attached by a spring system, to individual water cooled support plates. A compliant conductive layer to enhance heat transfer from the tile to the cooled structure is foreseen. Assemblies of the dipersoid strengthened copper (glidcop) back plates are brazed to two adjacent poloidally directed stainless steel tubes. The main design specifications are: average surface heat flux: 0.6 MW/m 2 , volumetric nuclear heating = 7 MW/m 3 , coolant inlet temperature lower than 100 0 C and nuclear irradiation of the components of the order of 0.2 dpa. In this paper we report 2D and 3D thermohydraulic and global stress analysis of the structure, the optimization of the compliant layer with the elastic attachment mechanism, the component design compatible with in-situ remote maintenance. The manufacture of the first mock-up for heat flux testing is also described

  8. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    International Nuclear Information System (INIS)

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-01-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca 2+ concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes

  9. NF-κB dependent and independent mechanisms of quartz-induced proinflammatory activation of lung epithelial cells

    Science.gov (United States)

    2010-01-01

    In the initiation and progression of pulmonary inflammation, macrophages have classically been considered as a crucial cell type. However, evidence for the role of epithelial type II cells in pulmonary inflammation has been accumulating. In the current study, a combined in vivo and in vitro approach has been employed to investigate the mechanisms of quartz-induced proinflammatory activation of lung epithelial cells. In vivo, enhanced expression of the inflammation- and oxidative stress-related genes HO-1 and iNOS was found on the mRNA level in rat lungs after instillation with DQ12 respirable quartz. Activation of the classical NF-κB pathway in macrophages and type II pneumocytes was indicated by enhanced immunostaining of phospho-IκBα in these specific lung cell types. In vitro, the direct, particle-mediated effect on proinflammatory signalling in a rat lung epithelial (RLE) cell line was compared to the indirect, macrophage product-mediated effect. Treatment with quartz particles induced HO-1 and COX-2 mRNA expression in RLE cells in an NF-κB independent manner. Supernatant from quartz-treated macrophages rapidly activated the NF-κB signalling pathway in RLE cells and markedly induced iNOS mRNA expression up to 2000-fold compared to non-treated control cells. Neutralisation of TNFα and IL-1β in macrophage supernatant did not reduce its ability to elicit NF-κB activation of RLE cells. In addition the effect was not modified by depletion or supplementation of intracellular glutathione. The results from the current work suggest that although both oxidative stress and NF-κB are likely involved in the inflammatory effects of toxic respirable particles, these phenomena can operate independently on the cellular level. This might have consequences for in vitro particle hazard testing, since by focusing on NF-κB signalling one might neglect alternative inflammatory pathways. PMID:20492675

  10. NF-κB dependent and independent mechanisms of quartz-induced proinflammatory activation of lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2010-05-01

    Full Text Available Abstract In the initiation and progression of pulmonary inflammation, macrophages have classically been considered as a crucial cell type. However, evidence for the role of epithelial type II cells in pulmonary inflammation has been accumulating. In the current study, a combined in vivo and in vitro approach has been employed to investigate the mechanisms of quartz-induced proinflammatory activation of lung epithelial cells. In vivo, enhanced expression of the inflammation- and oxidative stress-related genes HO-1 and iNOS was found on the mRNA level in rat lungs after instillation with DQ12 respirable quartz. Activation of the classical NF-κB pathway in macrophages and type II pneumocytes was indicated by enhanced immunostaining of phospho-IκBα in these specific lung cell types. In vitro, the direct, particle-mediated effect on proinflammatory signalling in a rat lung epithelial (RLE cell line was compared to the indirect, macrophage product-mediated effect. Treatment with quartz particles induced HO-1 and COX-2 mRNA expression in RLE cells in an NF-κB independent manner. Supernatant from quartz-treated macrophages rapidly activated the NF-κB signalling pathway in RLE cells and markedly induced iNOS mRNA expression up to 2000-fold compared to non-treated control cells. Neutralisation of TNFα and IL-1β in macrophage supernatant did not reduce its ability to elicit NF-κB activation of RLE cells. In addition the effect was not modified by depletion or supplementation of intracellular glutathione. The results from the current work suggest that although both oxidative stress and NF-κB are likely involved in the inflammatory effects of toxic respirable particles, these phenomena can operate independently on the cellular level. This might have consequences for in vitro particle hazard testing, since by focusing on NF-κB signalling one might neglect alternative inflammatory pathways.

  11. Celecoxib inhibits osteoblast differentiation independent of cyclooxygenase activity.

    Science.gov (United States)

    Matsuyama, Atsushi; Higashi, Sen; Tanizaki, Saori; Morotomi, Takahiko; Washio, Ayako; Ohsumi, Tomoko; Kitamura, Chiaki; Takeuchi, Hiroshi

    2018-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) exert their effects primarily by inhibiting the activity of cyclooxygenase (COX), thus suppressing prostaglandin synthesis. Some NSAIDs are known to perform functions other than pain control, such as suppressing tumour cell growth, independent of their COX-inhibiting activity. To identify NSAIDs with COX-independent activity, we examined various NSAIDs for their ability to inhibit osteoblastic differentiation using the mouse pre-osteoblast cell line MC3T3-E1. Only celecoxib and valdecoxib strongly inhibited osteoblastic differentiation, and this effect was not correlated with COX-inhibiting activity. Moreover, 2,5-dimethyl (DM)-celecoxib, a celecoxib analogue that does not inhibit COX activity, also inhibited osteoblastic differentiation. Celecoxib and DM-celecoxib inhibited osteoblastic differentiation induced by bone morphogenetic protein (BMP)-2 in C2C12 mouse myoblast cell line. Although celecoxib suppresses the growth of some tumour cells, the viability and proliferation of MC3T3-E1 cells were not affected by celecoxib or DM-celecoxib. Instead, celecoxib and DM-celecoxib suppressed BMP-2-induced phosphorylation of Smad1/5, a major downstream target of BMP receptor. Although it is well known that COX plays important roles in osteoblastic differentiation, these results suggest that some NSAIDs, such as celecoxib, have targets other than COX and regulate phospho-dependent intracellular signalling, thereby modifying bone remodelling. © 2017 John Wiley & Sons Australia, Ltd.

  12. Novel naproxen/esomeprazole magnesium compound pellets based on acid-independent mechanism: in vitro and in vivo evaluation.

    Science.gov (United States)

    Lu, Jing; Kan, Shuling; Zhao, Yi; Zhang, Wenli; Liu, Jianping

    2016-09-01

    The purpose of this study was to develop the novel naproxen/esomeprazole magnesium compound pellets (novel-NAP/EMZ) depending on EMZ acid-independent mechanism which has been proved to be predominate in the mechanism of co-therapy with nonsteroidal anti-inflammatory drug. The novel-NAP/EMZ compound pellets, composed of NAP colon-specific pellets (NAP-CSPs) and EMZ modified-release pellets (EMZ-MRPs), were prepared by fluid-bed coating technology with desired in vitro release profiles. The resulting pellets were filled into hard gelatin capsules for in vivo evaluation in rats and compared with the reference compound pellets, consisted of NAP enteric-coated pellets (NAP-ECPs) and EMZ immediate-release pellets (EMZ-IRPs). The reference compound pellets were prepared simulating the drug delivery system of VIMOVO(®). In vivo pharmacokinetics, EMZ-MRPs had significantly larger AUC0-t (p < 0.01), 1.67 times more than that of EMZ-IRPs, and prolonged mean residence time (7.55 ± 0.12 h) than that of IRPs (1.46 ± 0.39 h). NAP-CSPs and NAP-ECPs showed similar AUC0-t. Compared to the reference compound pellets, the novel-NAP/EMZ compound pellets did not show distinct differences in histological mucosal morphology. However, biochemical tests exhibited enhanced total antioxidant capacity, increased nitric oxide content and reduced malondialdehyde level for novel-NAP/EMZ compound pellets, indicating that the acid-independent action took effect. The gastric pH values of novel-NAP/EMZ compound pellets were at a low and stable level, which could ensure normal physiological range of human gastric pH. As a result, the novel-NAP/EMZ compound pellets may be a more suitable formulation with potential advantages by improving bioavailability of drug and further reducing undesirable gastrointestinal damages.

  13. Black cohosh (Cimicifuga racemosa) relaxes the isolated rat thoracic aorta through endothelium-dependent and -independent mechanisms.

    Science.gov (United States)

    Kim, Eun-Young; Lee, Young Joo; Rhyu, Mee-Ra

    2011-11-18

    The rhizome of the Cimicifuga racemosa (commonly known as black cohosh) has been used in treatment of climacteric complaints for decades in North America and Europe. A number of studies investigated the estrogenic potential of black cohosh, but its effectiveness is still controversial. Recently, it was reported that the extract of black cohosh acted as an agonist at the serotonin (5-HT) receptor and 5-HT derivative was isolated out of the black cohosh extract. Because it is well known that the 5-HT elicited the various cardiovascular effects including vasorelaxation, we investigated the vasorelaxant effects of the extract of black cohosh and its possible mechanisms of action. The extract of black cohosh (BcEx) was examined for its vasorelaxant effects in isolated rat aorta. The aortic rings were equilibrated under resting tension and induced reproducible contraction in organ bath. The control contraction was produced by 300 nM NE, and then BcEx were added. In experiments where specific inhibitors were used, they were added 20 min before NE contraction. BcEx elicited two phases of relaxation in rat aorta pre-contracted with norepinephrine. The first, a rapid relaxation, which occurred within seconds of BcEx administration, was eliminated by pretreatment with N(G)-nitro-l-arginine (l-NNA) or methylene blue. The endogenous NO synthase substrate l-Arg markedly reversed the action of l-NNA, indicating that BcEx elicited the vasorelaxant effect via the NO/cGMP pathway. The second, slowly developing relaxation was not affected by the endothelium denudation. BcEx-induced endothelium-independent vasorelaxation appears to involve the inhibition of calcium influx mediated by the opening of inward rectifier potassium channels. BcEx elicits the vasorelaxant effect via endothelium-dependent and -independent mechanisms and may contribute to a better understanding of a potential link between the use of black cohosh and its beneficial effects on vascular health. Copyright © 2011

  14. Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism

    Directory of Open Access Journals (Sweden)

    Perrella Joel

    2005-05-01

    Full Text Available Abstract Background High concentrations of glutamate can accumulate in the brain and may be involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. This form of neurotoxicity involves changes in the regulation of cellular calcium (Ca2+ and generation of free radicals such as peroxynitrite (ONOO-. Estrogen may protect against glutamate-induced cell death by reducing the excitotoxic Ca2+ influx associated with glutamate excitotoxicity. In this study, the inhibition of N-methyl-D-aspartate (NMDA receptor and nitric oxide synthase (NOS along with the effect of 17β-estradiol (17β-E2 and a more potent antioxidant Δ8, 17β-estradiol (Δ8, 17β-E2 on cell viability and intracellular Ca2+ ([Ca2+]i, following treatment of rat cortical cells with glutamate, was investigated. Results Primary rat cortical cells were cultured for 7–12 days in Neurobasal medium containing B27 supplements. Addition of glutamate (200 μM decreased cell viability to 51.3 ± 0.7% compared to control. Treatment with the noncompetitive NMDAR antagonist, MK-801, and the NOS inhibitor, L-NAME, completely prevented cell death. Pretreatment (24 hrs with 17β-E2 and Δ8, 17β-E2 (0.01 to 10 μM significantly reduced cell death. 17β-E2 was more potent than Δ8, 17β-E2. Glutamate caused a rapid 2.5 fold increase in [Ca2+]i. Treatment with 0.001 to 10 μM MK-801 reduced the initial Ca2+ influx by 14–41% and increased cell viability significantly. Pretreatment with 17β-E2 and Δ8, 17β-E2 had no effect on Ca2+ influx but protected the cortical cells against glutamate-induced cell death. Conclusion Glutamate-induced cell death in cortical cultures can occur through NMDAR and NOS-linked mechanisms by increasing nitric oxide and ONOO-. Equine estrogens: 17β-E2 and Δ8, 17β-E2, significantly protected cortical cells against glutamate-induced excitotoxicity by a mechanism that appears to be independent of Ca2+ influx. To our knowledge, this is a first

  15. A selection fit mechanism in BMP receptor IA as a possible source for BMP ligand-receptor promiscuity.

    Directory of Open Access Journals (Sweden)

    Stefan Harth

    Full Text Available BACKGROUND: Members of the TGF-β superfamily are characterized by a highly promiscuous ligand-receptor interaction as is readily apparent from the numeral discrepancy of only seven type I and five type II receptors available for more than 40 ligands. Structural and functional studies have been used to address the question of how specific signals can be deduced from a limited number of receptor combinations and to unravel the molecular mechanisms underlying the protein-protein recognition that allow such limited specificity. PRINCIPAL FINDINGS: In this study we have investigated how an antigen binding antibody fragment (Fab raised against the extracellular domain of the BMP receptor type IA (BMPR-IA recognizes the receptor's BMP-2 binding epitope and thereby neutralizes BMP-2 receptor activation. The crystal structure of the complex of the BMPR-IA ectodomain bound to the Fab AbD1556 revealed that the contact surface of BMPR-IA overlaps extensively with the contact surface for BMP-2 interaction. Although the structural epitopes of BMPR-IA to both binding partners coincides, the structures of BMPR-IA in the two complexes differ significantly. In contrast to the structural differences, alanine-scanning mutagenesis of BMPR-IA showed that the functional determinants for binding to the antibody and BMP-2 are almost identical. CONCLUSIONS: Comparing the structures of BMPR-IA bound to BMP-2 or bound to the Fab AbD1556 with the structure of unbound BMPR-IA shows that binding of BMPR-IA to its interaction partners follows a selection fit mechanism, possibly indicating that the ligand promiscuity of BMPR-IA is inherently encoded by structural adaptability. The functional and structural analysis of the BMPR-IA binding antibody AbD1556 mimicking the BMP-2 binding epitope may thus pave the way for the design of low-molecular weight synthetic receptor binders/inhibitors.

  16. Alternate capping mechanisms for transcription of spring viremia of carp virus: evidence for independent mRNA initiation.

    Science.gov (United States)

    Gupta, K C; Roy, P

    1980-01-01

    Two alternate mechanisms of mRNA capping for spring viremia of carp virus have been observed. Under normal reaction conditions, a ppG residue of the capping GTP is transferred to a pA moiety of the 5' termini of mRNA transcripts. However, in reaction conditions where GppNHp is used instead of GTP, an alternate capping mechanism occurs whereby a pG residue of the capping GTP is transferred to a ppA moiety of the transcripts. The first mechanism is identical to that described previously for vesicular stomatitis virus (G. Abraham, D. P. Rhodes, and A. K. Banerjee, Nature [London] 255:37-40, 1975; A. K. Banerjee, S. A. Moyer, and D. P. Rhodes, Virology 61:547-558, 1974), and thus appears to be a conserved function during the evolution of rhabdoviruses. The alternate mechanism of capping indicates not only that capping can take place by two procedures, but also that the substrate termini have di- or triphosphate 5' ends, indicating that they are probably independently initiated. An analog of ATP, AppNHp, has been found to completely inhibit the initiation of transcription by spring viremia of carp virus, suggesting that a cleavage between the beta and gamma phosphates of ATP is essential for the initiation of transcription. However, in the presence of GppNHp, uncapped (ppAp and pppAp), capped (GpppAp), and capped methylated (m7GpppAmpAp and GpppAmpAp) transcripts are detected. Size analyses of oligodeoxythymidylic acid-cellulose-bound transcripts resolved by formamide gel electrophoresis demonstrated that full-size mRNA transcripts are synthesized as well as larger RNA species. The presence of GppNHp and S-adenosylhomocysteine in reaction mixtures did not have any effect on the type of unmethylated transcription products. Our results favor a transcription model postulated previously (D. H. L. Bishop, in H. Fraenkel-Conrat and R. R. Wagner, ed., Comprehensive Virology, vol. 10, Plenum Press, New York, 1977; D. H. L. Bishop and A. Flamand, in D. C. Burke and W. C. Russell

  17. CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection.

    Science.gov (United States)

    Foreman, Taylor W; Mehra, Smriti; LoBato, Denae N; Malek, Adel; Alvarez, Xavier; Golden, Nadia A; Bucşan, Allison N; Didier, Peter J; Doyle-Meyers, Lara A; Russell-Lodrigue, Kasi E; Roy, Chad J; Blanchard, James; Kuroda, Marcelo J; Lackner, Andrew A; Chan, John; Khader, Shabaana A; Jacobs, William R; Kaushal, Deepak

    2016-09-20

    The synergy between Mycobacterium tuberculosis (Mtb) and HIV in coinfected patients has profoundly impacted global mortality because of tuberculosis (TB) and AIDS. HIV significantly increases rates of reactivation of latent TB infection (LTBI) to active disease, with the decline in CD4(+) T cells believed to be the major causality. In this study, nonhuman primates were coinfected with Mtb and simian immunodeficiency virus (SIV), recapitulating human coinfection. A majority of animals exhibited rapid reactivation of Mtb replication, progressing to disseminated TB and increased SIV-associated pathology. Although a severe loss of pulmonary CD4(+) T cells was observed in all coinfected macaques, a subpopulation of the animals was still able to prevent reactivation and maintain LTBI. Investigation of pulmonary immune responses and pathology in this cohort demonstrated that increased CD8(+) memory T-cell proliferation, higher granzyme B production, and expanded B-cell follicles correlated with protection from reactivation. Our findings reveal mechanisms that control SIV- and TB-associated pathology. These CD4-independent protective immune responses warrant further studies in HIV coinfected humans able to control their TB infection. Moreover, these findings will provide insight into natural immunity to Mtb and will guide development of novel vaccine strategies and immunotherapies.

  18. Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms.

    Science.gov (United States)

    Fortune, Sarah M; Solache, Alejandra; Jaeger, Alejandra; Hill, Preston J; Belisle, John T; Bloom, Barry R; Rubin, Eric J; Ernst, Joel D

    2004-05-15

    Mycobacterium tuberculosis overcomes macrophage bactericidal activities and persists intracellularly. One mechanism by which M. tuberculosis avoids macrophage killing might be through inhibition of IFN-gamma-mediated signaling. In this study we provide evidence that at least two distinct components of M. tuberculosis, the 19-kDa lipoprotein and cell wall peptidoglycan (contained in the mycolylarabinogalactan peptidoglycan (mAGP) complex), inhibit macrophage responses to IFN-gamma at a transcriptional level. Moreover, these components engage distinct proximal signaling pathways to inhibit responses to IFN-gamma: the 19-kDa lipoprotein inhibits IFN-gamma signaling in a Toll-like receptor (TLR)2-dependent and myeloid differentiation factor 88-dependent fashion whereas mAGP inhibits independently of TLR2, TLR4, and myeloid differentiation factor 88. In addition to inhibiting the induction of specific IFN-gamma responsive genes, the 19-kDa lipoprotein and mAGP inhibit the ability of IFN-gamma to activate murine macrophages to kill virulent M. tuberculosis without inhibiting production of NO. These results imply that inhibition of macrophage responses to IFN-gamma may contribute to the inability of an apparently effective immune response to eradicate M. tuberculosis.

  19. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism

    Directory of Open Access Journals (Sweden)

    Lee Young Ah

    2014-01-01

    Full Text Available Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs contain large amounts of cysteine proteases (CPs, one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2 did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis.

  20. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism

    International Nuclear Information System (INIS)

    Lakatos, Petra; Hegedűs, Csaba; Salazar Ayestarán, Nerea; Juarranz, Ángeles; Kövér, Katalin E.; Szabó, Éva; Virág, László

    2016-01-01

    Highlights: • PARP-1 is not a key regulator of photochemotherapy. • The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism. • Photosensitization by PJ-34 is associated with increased ROS production and DNA damage. • Cells sensitized by PJ-34 undergo caspase-mediated apoptosis. - Abstract: A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5 J/cm 2 ) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ–34 + UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and −8. In conclusion, PJ-34 is a photosensitizer and PJ–34 + UVA causes DNA damage and caspase

  1. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Petra; Hegedűs, Csaba [Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen (Hungary); Salazar Ayestarán, Nerea; Juarranz, Ángeles [Department of Biology, Faculty of Sciences, Universidad Autónoma of Madrid, 28049-Madrid (Spain); Kövér, Katalin E. [Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Debrecen, Debrecen (Hungary); Szabó, Éva [Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen (Hungary); Virág, László, E-mail: lvirag@med.unideb.hu [Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen (Hungary); MTA-DE Cell Biology and Signaling Research Group, Debrecen (Hungary)

    2016-08-15

    Highlights: • PARP-1 is not a key regulator of photochemotherapy. • The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism. • Photosensitization by PJ-34 is associated with increased ROS production and DNA damage. • Cells sensitized by PJ-34 undergo caspase-mediated apoptosis. - Abstract: A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5 J/cm{sup 2}) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ–34 + UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and −8. In conclusion, PJ-34 is a photosensitizer and PJ–34 + UVA causes DNA damage and caspase

  2. A novel statistical algorithm for gene expression analysis helps differentiate pregnane X receptor-dependent and independent mechanisms of toxicity.

    Directory of Open Access Journals (Sweden)

    M Ann Mongan

    Full Text Available Genome-wide gene expression profiling has become standard for assessing potential liabilities as well as for elucidating mechanisms of toxicity of drug candidates under development. Analysis of microarray data is often challenging due to the lack of a statistical model that is amenable to biological variation in a small number of samples. Here we present a novel non-parametric algorithm that requires minimal assumptions about the data distribution. Our method for determining differential expression consists of two steps: 1 We apply a nominal threshold on fold change and platform p-value to designate whether a gene is differentially expressed in each treated and control sample relative to the averaged control pool, and 2 We compared the number of samples satisfying criteria in step 1 between the treated and control groups to estimate the statistical significance based on a null distribution established by sample permutations. The method captures group effect without being too sensitive to anomalies as it allows tolerance for potential non-responders in the treatment group and outliers in the control group. Performance and results of this method were compared with the Significant Analysis of Microarrays (SAM method. These two methods were applied to investigate hepatic transcriptional responses of wild-type (PXR(+/+ and pregnane X receptor-knockout (PXR(-/- mice after 96 h exposure to CMP013, an inhibitor of β-secretase (β-site of amyloid precursor protein cleaving enzyme 1 or BACE1. Our results showed that CMP013 led to transcriptional changes in hallmark PXR-regulated genes and induced a cascade of gene expression changes that explained the hepatomegaly observed only in PXR(+/+ animals. Comparison of concordant expression changes between PXR(+/+ and PXR(-/- mice also suggested a PXR-independent association between CMP013 and perturbations to cellular stress, lipid metabolism, and biliary transport.

  3. A clathrin independent macropinocytosis-like entry mechanism used by bluetongue virus-1 during infection of BHK cells.

    Directory of Open Access Journals (Sweden)

    Sarah Gold

    2010-06-01

    Full Text Available Acid dependent infection of Hela and Vero cells by BTV-10 occurs from within early-endosomes following virus uptake by clathrin-mediated endocytosis (Forzan et al., 2007: J Virol 81: 4819-4827. Here we report that BTV-1 infection of BHK cells is also dependent on a low endosomal pH; however, virus entry and infection were not inhibited by dominant-negative mutants of Eps15, AP180 or the 'aa' splice variant of dynamin-2, which were shown to inhibit clathrin-mediated endocytosis. In addition, infection was not inhibited by depletion of cellular cholesterol, which suggests that virus entry is not mediated by a lipid-raft dependent process such as caveolae-mediated endocytosis. Although virus entry and infection were not inhibited by the dominant-negative dynamin-2 mutant, entry was inhibited by the general dynamin inhibitor, dynasore, indicating that virus entry is dynamin dependent. During entry, BTV-1 co-localised with LAMP-1 but not with transferrin, suggesting that virus is delivered to late-endosomal compartments without first passing through early-endosomes. BTV-1 entry and infection were inhibited by EIPA and cytochalasin-D, known macropinocytosis inhibitors, and during entry virus co-localised with dextran, a known marker for macropinocytosis/fluid-phase uptake. Our results extend earlier observations with BTV-10, and show that BTV-1 can infect BHK cells via an entry mechanism that is clathrin and cholesterol-independent, but requires dynamin, and shares certain characteristics in common with macropinocytosis.

  4. PD123319 augments angiotensin II-induced abdominal aortic aneurysms through an AT2 receptor-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Alan Daugherty

    Full Text Available AT2 receptors have an unclear function on development of abdominal aortic aneurysms (AAAs, although a pharmacological approach using the AT2 receptor antagonist PD123319 has implicated a role. The purpose of the present study was to determine the role of AT2 receptors in AngII-induced AAAs using a combination of genetic and pharmacological approaches. We also defined effects of AT2 receptors in AngII-induced atherosclerosis and thoracic aortic aneurysms.Male AT2 receptor wild type (AT2 +/y and deficient (AT2 -/y mice in an LDL receptor -/- background were fed a saturated-fat enriched diet, and infused with either saline or AngII (500 ng/kg/min. AT2 receptor deficiency had no significant effect on systolic blood pressure during AngII-infusion. While AngII infusion induced AAAs, AT2 receptor deficiency did not significantly affect either maximal width of the suprarenal aorta or incidence of AAAs. The AT2 receptor antagonist PD123319 (3 mg/kg/day and AngII were co-infused into male LDL receptor -/- mice that were either AT2 +/y or -/y. PD123319 had no significant effect on systolic blood pressure in either wild type or AT2 receptor deficient mice. Consistent with our previous findings, PD123319 increased AngII-induced AAAs. However, this effect of PD123319 occurred irrespective of AT2 receptor genotype. Neither AT2 receptor deficiency nor PD123319 had any significant effect on AngII-induced thoracic aortic aneurysms or atherosclerosis.AT2 receptor deficiency does not affect AngII-induced AAAs, thoracic aortic aneurysms and atherosclerosis. PD123319 augments AngII-induced AAAs through an AT2 receptor-independent mechanism.

  5. Two different avian cold-sensitive sensory neurons: Transient receptor potential melastatin 8 (TRPM8)-dependent and -independent activation mechanisms.

    Science.gov (United States)

    Yamamoto, A; Takahashi, K; Saito, S; Tominaga, M; Ohta, T

    2016-12-01

    Sensing the ambient temperature is an important function for survival in animals. Some TRP channels play important roles as detectors of temperature and irritating chemicals. There are functional differences of TRP channels among species. TRPM8 in mammals is activated by cooling compounds and cold temperature, but less information is available on the functional role of TRPM8 in avian species. Here we investigated the pharmacological properties and thermal sensitivities of chicken TRPM8 (cTRPM8) and cold-sensitive mechanisms in avian sensory neurons. In heterologously expressed cTRPM8, menthol and its derivative, WS-12 elicited [Ca 2+ ] i increases, but icilin did not. In chicken sensory neurons, icilin increased [Ca 2+ ] i, in a TRPA1-dependent manner. Icilin selectively stimulated heterologously expressed chicken TRPA1 (cTRPA1). Similar to mammalian orthologue, cTRPM8 was activated by cold. Both heterologous and endogenous expressed cTRPM8 were sensitive to mammalian TRPM8 antagonists. There are two types of cold-sensitive cells regarding menthol sensitivity in chicken sensory neurons. The temperature threshold of menthol-insensitive neurons was significantly lower than that of menthol-sensitive ones. The population of menthol-insensitive neurons was large in chicken but almost little in mammals. The cold-induced [Ca 2+ ] i increases were not abolished by the external Ca 2+ removal or by blockades of PLC-IP 3 pathways and ryanodine channels. The cold stimulation failed to evoke [Ca 2+ ] i increases after intracellular Ca 2+ store-depletion. These results indicate that cTRPM8 acts as a cold-sensor similar to mammals. It is noteworthy that TRPM8-independent cold-sensitive neurons are abundant in chicken sensory neurons. Our results suggest that most of the cold-induced [Ca 2+ ] i increases are mediated via Ca 2+ release from intracellular stores and that these mechanisms may be specific to avian species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Resveratrol Increases Serum BDNF Concentrations and Reduces Vascular Smooth Muscle Cells Contractility via a NOS-3-Independent Mechanism

    Directory of Open Access Journals (Sweden)

    Michał Wiciński

    2017-01-01

    Full Text Available Resveratrol is a polyphenol that presents both antineuroinflammatory properties and the ability to interact with NOS-3, what contributes to vasorelaxation. Brain-derived neurotrophic factor (BNDF, a molecule associated with neuroprotection in many neurodegenerative disorders, is considered as an important element of maintaining stable cerebral blood flow. Vascular smooth muscle cells (VSMCs are considered to be an important element in the pathogenesis of neurodegeneration and a potential preventative target by agents which reduce the contractility of the vessels. Our main objectives were to define the relationship between serum and long-term oral resveratrol administration in the rat model, as well as to assess the effect of resveratrol on phenylephrine- (PHE- induced contraction of vascular smooth muscle cells (VSMCs. Moreover, we attempt to define the dependence of contraction mechanisms on endothelial NO synthase. Experiments were performed on Wistar rats (n=17 pretreated with resveratrol (4 weeks; 10 mg/kg p.o. or placebo. Serum BDNF levels were quantified after 2 and 4 weeks of treatment with ELISA. Contraction force was measured on isolated and perfused tail arteries as the increase of perfusion pressure with a constant flow. Values of serum BNDF in week 0 were 1.18±0.12 ng/mL (treated and 1.17±0.13 ng/mL (control (p = ns. After 2 weeks of treatment, BDNF in the treatment group was higher than in controls, 1.52±0.23 ng/mL and 1.24±0.13 ng/mL, respectively. (p=0.02 Following 4 weeks of treatment, BDNF values were higher in the resveratrol group compared to control 1.64±0.31 ng/mL and 1.32±0.26 ng/mL, respectively (p=0.031. EC50 values obtained for PHE in resveratrol pretreated arteries were significantly higher than controls (5.33±1.7 × 10−7 M/L versus 4.53±1.2 × 10−8 M/L, p<0.05. These results show a significant increase in BDNF concentration in the resveratrol pretreated group. The reactivity of resistant

  7. Heterogeneity of type III secretion system (T3SS)-1-independent entry mechanisms used by Salmonella Enteritidis to invade different cell types.

    Science.gov (United States)

    Rosselin, Manon; Abed, Nadia; Virlogeux-Payant, Isabelle; Bottreau, Elisabeth; Sizaret, Pierre-Yves; Velge, Philippe; Wiedemann, Agnès

    2011-03-01

    Salmonella causes a wide range of diseases from acute gastroenteritis to systemic typhoid fever, depending on the host. To invade non-phagocytic cells, Salmonella has developed different mechanisms. The main invasion system requires a type III secretion system (T3SS) known as T3SS-1, which promotes a Trigger entry mechanism. However, other invasion factors have recently been described in Salmonella, including Rck and PagN, which were not expressed under our bacterial culture conditions. Based on these observations, we used adhesion and invasion assays to analyse the respective roles of Salmonella Enteritidis T3SS-1-dependent and -independent invasion processes at different times of infection. Diverse cell lines and cell types were tested, including endothelial, epithelial and fibroblast cells. We demonstrated that cell susceptibility to the T3SS-1-independent entry differs by a factor of nine between the most and the least permissive cell lines tested. In addition, using scanning electron and confocal microscopy, we showed that T3SS-1-independent entry into cells was characterized by a Trigger-like alteration, as for the T3SS-1-dependent entry, and also by Zipper-like cellular alteration. Our results demonstrate for what is believed to be the first time that Salmonella can induce Trigger-like entry independently of T3SS-1 and can induce Zipper-like entry independently of Rck. Overall, these data open new avenues for discovering new invasion mechanisms in Salmonella.

  8. Regulation of gene expression by 17β-estradiol in the arcuate nucleus of the mouse through ERE-dependent and ERE-independent mechanisms.

    Science.gov (United States)

    Yang, Jennifer A; Mamounis, Kyle J; Yasrebi, Ali; Roepke, Troy A

    2016-03-01

    17β-Estradiol (E2) modulates gene expression in the hypothalamic arcuate nucleus (ARC) to control homeostatic functions. In the ARC, estrogen receptor (ER) α is highly expressed and is an important contributor to E2's actions, controlling gene expression through estrogen response element (ERE)-dependent and -independent mechanisms. The objective of this study was to determine if known E2-regulated genes are regulated through these mechanisms. The selected genes have been shown to regulate homeostasis and have been separated into three subsections: channels, receptors, and neuropeptides. To determine if ERE-dependent or ERE-independent mechanisms regulate gene expression, two transgenic mouse models, an ERα knock-out (ERKO) and an ERα knock-in/knock-out (KIKO), which lacks a functional ERE binding domain, were used in addition to their wild-type littermates. Females of all genotypes were ovariectomized and injected with oil or estradiol benzoate (E2B). Our results suggest that E2B regulates multiple genes through these mechanisms. Of note, Cacna1g and Kcnmb1 channel expression was increased by E2B in WT females only, suggesting an ERE-dependent regulation. Furthermore, the NKB receptor, Tac3r, was suppressed by E2B in WT and KIKO females but not ERKO females, suggesting that ERα-dependent, ERE-independent signaling is necessary for Tac3r regulation. The adrenergic receptor Adra1b was suppressed by E2B in all genotypes indicating that ERα is not the primary receptor for E2B's actions. The neuropeptide Tac2 was suppressed by E2B through ERE-dependent mechanisms. These results indicate that E2B activates both ERα-dependent and independent signaling in the ARC through ERE-dependent and ERE-independent mechanisms to control gene expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Liliana, E-mail: lilianam87@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Araújo, Isabel, E-mail: isa.araujo013@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Costa, Tito, E-mail: tito.fmup16@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Correia-Branco, Ana, E-mail: ana.clmc.branco@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Faria, Ana, E-mail: anafaria@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Chemistry Investigation Centre (CIQ), Faculty of Sciences of University of Porto, Rua Campo Alegre, 4169-007 Porto (Portugal); Faculty of Nutrition and Food Sciences of University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Martel, Fátima, E-mail: fmartel@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Keating, Elisa, E-mail: keating@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal)

    2013-07-15

    In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.

  10. Macrolactin F inhibits RANKL-mediated osteoclastogenesis by suppressing Akt, MAPK and NFATc1 pathways and promotes osteoblastogenesis through a BMP-2/smad/Akt/Runx2 signaling pathway.

    Science.gov (United States)

    Li, Liang; Sapkota, Mahesh; Gao, Ming; Choi, Hyukjae; Soh, Yunjo

    2017-11-15

    The balance between bone formation and bone resorption is maintained by osteoblasts and osteoclasts. In the current study, macrolactin F (MF) was investigated for novel biological activity on the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis in primary bone marrow-derived macrophages (BMMs). We found that RANKL-induced osteoclast formation and differentiation from BMMs was significantly inhibited by MF in a dose-dependent manner without cytotoxicity. RANKL-induced F-actin ring formation and bone resorption activity in BMMs which was attenuated by MF. In addition, MF suppressed the expression of osteoclast-related genes, including c-myc, RANK, tartrate-resistant acid phosphatase (TRAP), nuclear factor of activated T cells c1 (NFATc1), cathepsin K and matrix metalloproteinase 9 (MMP9). Furthermore, the protein expression NFATc1, c-Fos, MMP9, cathepsin K and phosphorylation of Jun N-terminal kinase (JNK), p38 and Akt were also down-regulated by MF treatment. Interestingly, MF promoted pre-osteoblast cell differentiation on Alizarin Red-mineralization activity, alkaline phosphatase (ALP) activity, and the expression of osteoblastogenic markers including Runx2, Osterix, Smad4, ALP, type I collagen alpha 1 (Col1α), osteopontin (OPN), and osteocalcin (OCN) via activation of the BMP-2/smad/Akt/Runx2 pathway on MC3T3-E1. Taken together, these results indicate that MF may be useful as a therapeutic agent to enhance bone health and treat osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hypoxaemia and septic shock were independent risk factors for mechanical ventilation in Bangladeshi children hospitalised for diarrhoea.

    Science.gov (United States)

    Chisti, Mohammod Jobayer; Shahunja, K M; Afroze, Farzana; Shahid, Abu S M S B; Sharifuzzaman; Ahmed, Tahmeed

    2017-07-01

    In Bangladesh, approximately 6% of children under five years of age die due to diarrhoea. We evaluated the admission and hospitalisation risk factors for mechanical ventilation and outcomes in children with diarrhoea. This retrospective case-control chart analysis was conducted in the intensive care unit of Dhaka Hospital of International Centre for Diarrhoeal Disease Research, Bangladesh. We enrolled 219 children with diarrhoea aged 0-59 months between August 2009 and July 2013. The 73 cases were children who were initially identified as requiring mechanical ventilation during the study period, and the 146 controls were randomly selected from those who did not require mechanical ventilation. We compared the groups to determine the risk factors for mechanical ventilation. Mortality was significantly higher among the cases than the controls (p mechanical ventilation on admission were hypoxaemia (p mechanical ventilation frequently had hypoxaemia and septic shock and were more likely to die than unventilated controls. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  12. Are anticoagulant independent mechanical valves within reach-fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models.

    Science.gov (United States)

    Scotten, Lawrence N; Siegel, Rolland

    2015-08-01

    Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring

  13. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    Science.gov (United States)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  14. Mechanisms of biopower and neoliberal governmentality in precarious work: Mobilizing the dependent self-employed as independent business owners

    NARCIS (Netherlands)

    Moisander, J.; Groß, C.; Eräranta, K.

    2018-01-01

    In the contemporary conditions of neoliberal governmentality, and the emerging ‘gig economy,’ standard employment relationships appear to be giving way to precarious work. This article examines the mechanisms of biopower and techniques of managerial control that underpin—and produce consent

  15. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms.

    Science.gov (United States)

    Scialo, Filippo; Mallikarjun, Venkatesh; Stefanatos, Rhoda; Sanz, Alberto

    2013-12-01

    Aging is a consequence of the accumulation of cellular damage that impairs the capacity of an aging organism to adapt to stress. The Mitochondrial Free Radical Theory of Aging (MFRTA) has been one of the most influential ideas over the past 50 years. The MFRTA is supported by the accumulation of oxidative damage during aging along with comparative studies demonstrating that long-lived species or individuals produce fewer mitochondrial reactive oxygen species and have lower levels of oxidative damage. Recently, however, species that combine high oxidative damage with a longer lifespan (i.e., naked mole rats) have been described. Moreover, most of the interventions based on antioxidant supplementation do not increase longevity, as would be predicted by the MFRTA. Studies to date provide a clear understanding that mitochondrial function regulates the rate of aging, but the underlying mechanisms remain unclear. Here, we review the reactive oxygen species (ROS)-dependent and ROS-independent mechanisms by which mitochondria can affect longevity. We discuss the role of different ROS (superoxide, hydrogen peroxide, and hydroxyl radical), both as oxidants as well as signaling molecules. We also describe how mitochondria can regulate longevity by ROS-independent mechanisms. We discuss alterations in mitochondrial DNA, accumulation of cellular waste as a consequence of glyco- and lipoxidative damage, and the regulation of DNA maintenance enzymes as mechanisms that can determine longevity without involving ROS. We also show how the regulation of longevity is a complex process whereby ROS-dependent and ROS-independent mechanisms interact to determine the maximum lifespan of species and individuals.

  16. Estradiol induces dendritic spines by enhancing glutamate release independent of transcription: A mechanism for organizational sex differences

    Science.gov (United States)

    Schwarz, Jaclyn M.; Liang, Shu-Ling; Thompson, Scott M.; McCarthy, Margaret M.

    2008-01-01

    SUMMARY The naturally occurring sex difference in dendritic spine number on hypothalamic neurons offers a unique opportunity to investigate mechanisms establishing synaptic patterning during perinatal sensitive periods. A major advantage of the model is the ability to treat neonatal females with estradiol to permanently induce the male phenotype. During the development of other systems, exuberant innervation is followed by activity-dependent pruning necessary for elimination of spurious synapses. In contrast, we demonstrate that estradiol-induced organization in the hypothalamus involves the induction of new synapses on dendritic spines. Activation of estrogen receptors by estradiol triggers a non-genomic activation of PI3 kinase that results in enhanced glutamate release from presynaptic neurons. Subsequent activation of ionotropic glutamate receptors activates MAP kinases inducing dendritic spine formation. These results reveal a trans-neuronal mechanism by which estradiol acts during a sensitive period to establish a profound and lasting sex difference in hypothalamic synaptic patterning. PMID:18498739

  17. The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding.

    Directory of Open Access Journals (Sweden)

    Xin Xie

    2015-06-01

    Full Text Available The lineage factor Foxp3 is essential for the development and maintenance of regulatory T cells, but little is known about the mechanisms involved. Here, we demonstrate that an N-terminal proline-rich interaction region is crucial for Foxp3's function. Subdomains within this key region link Foxp3 to several independent mechanisms of transcriptional regulation. Our study suggests that Foxp3, even in the absence of its DNA-binding forkhead domain, acts as a bridge between DNA-binding interaction partners and proteins with effector function permitting it to regulate a large number of genes. We show that, in one such mechanism, Foxp3 recruits class I histone deacetylases to the promoters of target genes, counteracting activation-induced histone acetylation and thereby suppressing their expression.

  18. The retrohoming of linear group II intron RNAs in Drosophila melanogaster occurs by both DNA ligase 4-dependent and -independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Travis B White

    Full Text Available Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in eukaryotes by performing only the first step of reverse splicing, ligating their 3' end to the downstream DNA exon. Reverse transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that yields junctions similar to those formed by non-homologous end joining (NHEJ. Here, by using Drosophila melanogaster NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase θ plays a crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications for retrohoming mechanisms and

  19. In vitro evidence supports the presence of glucokinase-independent glucosensing mechanisms in hypothalamus and hindbrain of rainbow trout.

    Science.gov (United States)

    Otero-Rodiño, Cristina; Velasco, Cristina; Álvarez-Otero, Rosa; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L

    2016-06-01

    We previously obtained evidence in rainbow trout for the presence and response to changes in circulating levels of glucose (induced by intraperitoneal hypoglycaemic and hyperglycaemic treatments) of glucosensing mechanisms based on liver X receptor (LXR), mitochondrial production of reactive oxygen species (ROS) leading to increased expression of uncoupling protein 2 (UCP2), and sweet taste receptor in the hypothalamus, and on sodium/glucose co-transporter 1 (SGLT-1) in hindbrain. However, these effects of glucose might be indirect. Therefore, we evaluated the response of parameters related to these glucosensing mechanisms in a first experiment using pooled sections of hypothalamus and hindbrain incubated for 6 h at 15°C in modified Hanks' medium containing 2, 4 or 8 mmol l(-1) d-glucose. The responses observed in some cases were consistent with glucosensing capacity. In a second experiment, pooled sections of hypothalamus and hindbrain were incubated for 6 h at 15°C in modified Hanks' medium with 8 mmol l(-1) d-glucose alone (control) or containing 1 mmol l(-1) phloridzin (SGLT-1 antagonist), 20 µmol l(-1) genipin (UCP2 inhibitor), 1 µmol l(-1) trolox (ROS scavenger), 100 µmol l(-1) bezafibrate (T1R3 inhibitor) and 50 µmol l(-1) geranyl-geranyl pyrophosphate (LXR inhibitor). The response observed in the presence of these specific inhibitors/antagonists further supports the proposal that critical components of the different glucosensing mechanisms are functioning in rainbow trout hypothalamus and hindbrain. © 2016. Published by The Company of Biologists Ltd.

  20. Left ventricular mechanics in humans with high aerobic fitness: adaptation independent of structural remodelling, arterial haemodynamics and heart rate

    Science.gov (United States)

    Stöhr, Eric J; McDonnell, Barry; Thompson, Jane; Stone, Keeron; Bull, Tom; Houston, Rory; Cockcroft, John; Shave, Rob

    2012-01-01

    Individuals with high aerobic fitness have lower systolic left ventricular strain, rotation and twist (‘left ventricular (LV) mechanics’) at rest, suggesting a beneficial reduction in LV myofibre stress and more efficient systolic function. However, the mechanisms responsible for this functional adaptation are not known and the influence of aerobic fitness on LV mechanics during dynamic exercise has never been studied. We assessed LV mechanics, LV wall thickness and dimensions, central augmentation index (AIx), aortic pulse wave velocity (aPWV), blood pressure and heart rate in 28 males (age: 21 ± 2 years SD) with a consistent physical activity level (no change >6 months). Individuals were examined at rest and during exercise (40% peak exercise capacity) and separated post hoc into a moderate and high aerobic fitness group (: 49 ± 5 and 63 ± 7 ml kg−1 min−1, respectively, P 0.05). However, for the same AIx, the high group had significantly lower LV apical rotation (P = 0.002) and LV twist (P = 0.003) while basal rotation and strain indices did not differ between groups (P > 0.05). We conclude that young males with high aerobic fitness have lower LV apical rotation at rest and during submaximal exercise that can occur without changes in gross LV structure, arterial haemodynamics or heart rate. The findings suggest a previously unknown type of physiological adaptation of the left ventricle that may have important implications for exercise training in older individuals and patient populations in which exercise training has previously failed to show clear benefits for LV function. PMID:22431336

  1. Phorbol esters inhibit chondrogenesis in limb mesenchyme by mechanisms independent of PGE sub 2 or cyclic AMP

    Energy Technology Data Exchange (ETDEWEB)

    Biddulph, D.M.; Dozier, M.M. (Wake Forest Univ., Winston-Salem, NC (United States))

    1989-12-01

    Effects of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) on chondrogenesis and concentrations of prostaglandin E{sub 2} (PGE{sub 2}) and cyclic AMP (cAMP) were investigated in micromass cultures of chick limb mesenchyme derived from the distal tip of stage 25 limb buds. TPA completely inhibited chondrogenesis during the first 4 days of culture; however, a few small cartilage nodules formed by day 6. Relative to control cultures, both PGE{sub 2} and cAMP concentrations were altered by TPA treatment during the 6-day period of cell culture. Concentrations of both compounds increased in control cells during the first 24 hours of culture and then declined during the remaining 5 days. In TPA-treated cells both PGE{sub 2} and cAMP levels increased progressively during the 6 days of cell culture, each being elevated at day 6 by twofold over control cells. The results suggest the presence of regulatory pathways important in chondrogenesis which occur independent of those initiated by PGE{sub 2} and the cAMP system.

  2. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    International Nuclear Information System (INIS)

    Choong, Grace; Liu, Ying; Xiao, Weiqun; Templeton, Douglas M.

    2013-01-01

    synthesis but is independent of ROS. • Glutathionylation is protective against cytoskeletal disruption at low cadmium

  3. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    Energy Technology Data Exchange (ETDEWEB)

    Choong, Grace; Liu, Ying; Xiao, Weiqun; Templeton, Douglas M., E-mail: doug.templeton@utoronto.ca

    2013-10-15

    Glutathionylation requires glutathione synthesis but is independent of ROS. • Glutathionylation is protective against cytoskeletal disruption at low cadmium.

  4. Goal-independent mechanisms for free response generation: creative and pseudo-random performance share neural substrates.

    Science.gov (United States)

    de Manzano, Örjan; Ullén, Fredrik

    2012-01-02

    To what extent free response generation in different tasks uses common and task-specific neurocognitive processes has remained unclear. Here, we investigated overlap and differences in neural activity during musical improvisation and pseudo-random response generation. Brain activity was measured using fMRI in a group of professional classical pianists, who performed musical improvisation of melodies, pseudo-random key-presses and a baseline condition (sight-reading), on either two, six or twelve keys on a piano keyboard. The results revealed an extensive overlap in neural activity between the two generative conditions. Active regions included the dorsolateral and dorsomedial prefrontal cortices, inferior frontal gyrus, anterior cingulate cortex and pre-SMA. No regions showed higher activity in improvisation than in pseudo-random generation. These findings suggest that the activated regions fulfill generic functions that are utilized in different types of free generation tasks, independent of overall goal. In contrast, pseudo-random generation was accompanied by higher activity than improvisation in several regions. This presumably reflects the participants' musical expertise as well as the pseudo-random generation task's high load on attention, working memory, and executive control. The results highlight the significance of using naturalistic tasks to study human behavior and cognition. No brain activity was related to the size of the response set. We discuss that this may reflect that the musicians were able to use specific strategies for improvisation, by which there was no simple relationship between response set size and neural activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Caspase dependent and independent mechanisms of apoptosis across gestation in a sheep model of placental insufficiency and intrauterine growth restriction.

    Science.gov (United States)

    Monson, Troy; Wright, Tanner; Galan, Henry L; Reynolds, Paul R; Arroyo, Juan A

    2017-05-01

    Increased placental apoptosis is a hallmark of intrauterine growth restricted (IUGR). Several molecules have been shown to be involved in the control of apoptosis during this disease. Our objective was to determine the expression of Bcl2, Bax, phospho XIAP, AIF, caspase 3 and 9, and telomerase activity across gestation in an ovine hyperthermia-induced model of IUGR. Pregnant sheep were placed in hyperthermic (HT) conditions to induce IUGR along with age-matched controls. Placental tissues were collected at 55 (early), 95 (mid-gestation) and 130 (near-term) days of gestational age (dGA) to determine the expression of apoptotic molecules during the development of IUGR. Compared to the control placenta, IGUR pregnancies showed: significantly reduced placental Bcl2 in early gestation (55 dGA) with a significant increase observed at mid gestation (95 dGA); decreased placental pXIAP at both mid and near term gestational days (95 and 130 dGA); placental AIF increased only at 55 dGA (early gestation); active caspase 3 increased at both mid and near term gestational days (95 and 130 dGA); caspase 9 only increased at mid gestation (95 dGA) and decreased Telomerase activity near term. Placental apoptosis, mediated in part by the apoptosis related molecule, participates in the development of IUGR. Findings from this study suggest a caspase-independent apoptotic pathway during early gestation and caspase-dependent apoptosis at mid and near term gestation. The data also implicate decreased activation of XIAP as a plausible factor involved in the control of placental apoptosis during IUGR.

  6. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses.

    Science.gov (United States)

    Mutka, Andrew M; Fawley, Stephen; Tsao, Tiffany; Kunkel, Barbara N

    2013-06-01

    Auxin is a key plant growth regulator that also impacts plant-pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole-3-acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector-triggered immunity was active in YUC1-overexpressing plants, and we observed only minor effects on SA levels and SA-mediated responses. Furthermore, a plant line carrying both the YUC1-overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA-mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA-mediated defenses. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  7. HIV-1 Nef down-modulates C-C and C-X-C chemokine receptors via ubiquitin and ubiquitin-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Prabha Chandrasekaran

    Full Text Available Human and Simian Immunodeficiency virus (HIV-1, HIV-2, and SIV encode an accessory protein, Nef, which is a pathogenesis and virulence factor. Nef is a multivalent adapter that dysregulates the trafficking of many immune cell receptors, including chemokine receptors (CKRs. Physiological endocytic itinerary of agonist occupied CXCR4 involves ubiquitinylation of the phosphorylated receptor at three critical lysine residues and dynamin-dependent trafficking through the ESCRT pathway into lysosomes for degradation. Likewise, Nef induced CXCR4 degradation was critically dependent on the three lysines in the C-terminal -SSLKILSKGK- motif. Nef directly recruits the HECT domain E3 ligases AIP4 or NEDD4 to CXCR4 in the resting state. This mechanism was confirmed by ternary interactions of Nef, CXCR4 and AIP4 or NEDD4; by reversal of Nef effect by expression of catalytically inactive AIP4-C830A mutant; and siRNA knockdown of AIP4, NEDD4 or some ESCRT-0 adapters. However, ubiquitinylation dependent lysosomal degradation was not the only mechanism by which Nef downregulated CKRs. Agonist and Nef mediated CXCR2 (and CXCR1 degradation was ubiquitinylation independent. Nef also profoundly downregulated the naturally truncated CXCR4 associated with WHIM syndrome and engineered variants of CXCR4 that resist CXCL12 induced internalization via an ubiquitinylation independent mechanism.

  8. Zinc protoporphyrin suppresses cancer cell viability through a heme oxygenase-1-independent mechanism: the involvement of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Wang, Shuai; Avery, Jori E; Hannafon, Bethany N; Lind, Stuart E; Ding, Wei-Qun

    2013-06-01

    Zinc protoporphyrin (ZnPP), a known inhibitor of heme oxygenase-1 (HO-1), has been reported to have anticancer activity in both in vitro and in vivo model systems. While the mechanisms of ZnPP's anticancer activity remain to be elucidated, it is generally believed that ZnPP suppresses tumor growth through inhibition of HO-1 activity. We examined this hypothesis by altering cellular levels of HO-1 in human ovarian (A2780) and prostate cancer (DU145) cells and found that ZnPP inhibits cancer cell viability through an HO-1-independent mechanism. Neither over-expression nor knockdown of HO-1 significantly alters ZnPP's cytotoxicity in human cancer cells, indicating that HO-1 does not mediate ZnPP's inhibitory effect on cancer cell growth. Consistent with these observations, tin protoporphyrin (SnPP), a well-established HO-1 inhibitor, was found to be much less cytotoxic than ZnPP, and docosahexaenoic acid (DHA), an HO-1 inducer, enhanced ZnPP's cytotoxicity. In an effort to define the mechanisms of ZnPP-induced cytotoxicity, we found that ZnPP but not SnPP, diminished β-catenin expression through proteasome degradation and potently suppressed β-catenin-mediated signaling in our model systems. Thus, ZnPP-induced cytotoxicity is independent of HO-1 expression in cancer cells and the Wnt/β-catenin pathway is potentially involved in ZnPP's anticancer activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Marie Courbebaisse

    Full Text Available BACKGROUND: The sodium-hydrogen exchanger regulatory factor 1 (NHERF1 binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule. METHODS: We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production. RESULTS: We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a. CONCLUSIONS: Our results indicate that the PDZ1 domain is critical for NHERF1-NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.

  10. Mechanical strain promotes osteoblast ECM formation and improves its osteoinductive potential

    Directory of Open Access Journals (Sweden)

    Guo Yong

    2012-10-01

    Full Text Available Abstract Background The extracellular matrix (ECM provides a supportive microenvironment for cells, which is suitable as a tissue engineering scaffold. Mechanical stimulus plays a significant role in the fate of osteoblast, suggesting that it regulates ECM formation. Therefore, we investigated the influence of mechanical stimulus on ECM formation and bioactivity. Methods Mouse osteoblastic MC3T3-E1 cells were cultured in cell culture dishes and stimulated with mechanical tensile strain. After removing the cells, the ECMs coated on dishes were prepared. The ECM protein and calcium were assayed and MC3T3-E1 cells were re-seeded on the ECM-coated dishes to assess osteoinductive potential of the ECM. Results The cyclic tensile strain increased collagen, bone morphogenetic protein 2 (BMP-2, BMP-4, and calcium levels in the ECM. Compared with the ECM produced by unstrained osteoblasts, those of mechanically stimulated osteoblasts promoted alkaline phosphatase activity, elevated BMP-2 and osteopontin levels and mRNA levels of runt-related transcriptional factor 2 (Runx2 and osteocalcin (OCN, and increased secreted calcium of the re-seeded MC3T3-E1 cells. Conclusion Mechanical strain promoted ECM production of osteoblasts in vitro, increased BMP-2/4 levels, and improved osteoinductive potential of the ECM. This study provided a novel method to enhance bioactivity of bone ECM in vitro via mechanical strain to osteoblasts.

  11. Probenecid blocks human P2X7 receptor-induced dye uptake via a pannexin-1 independent mechanism.

    Science.gov (United States)

    Bhaskaracharya, Archana; Dao-Ung, Phuong; Jalilian, Iman; Spildrejorde, Mari; Skarratt, Kristen K; Fuller, Stephen J; Sluyter, Ronald; Stokes, Leanne

    2014-01-01

    P2X7 is a ligand-gated ion channel which is activated by ATP and displays secondary permeability characteristics. The mechanism of development of the secondary permeability pathway is currently unclear, although a role for the hemichannel protein pannexin-1 has been suggested. In this study we investigated the role of pannexin-1 in P2X7-induced dye uptake and ATP-induced IL-1β secretion from human monocytes. We found no pharmacological evidence for involvement of pannexin-1 in P2X7-mediated dye uptake in transfected HEK-293 cells with no inhibition seen for carbenoxolone and the pannexin-1 mimetic inhibitory peptide, 10Panx1. However, we found that probenecid inhibited P2X7-induced cationic and anionic dye uptake in stably transfected human P2X7 HEK-293 cells. An IC50 value of 203 μM was calculated for blockade of ATP-induced responses at human P2X7. Probenecid also reduced dye uptake and IL-1β secretion from human CD14+ monocytes whereas carbenoxolone and 10Panx1 showed no inhibitory effect. Patch clamp and calcium indicator experiments revealed that probenecid directly blocks the human P2X7 receptor.

  12. Probenecid blocks human P2X7 receptor-induced dye uptake via a pannexin-1 independent mechanism.

    Directory of Open Access Journals (Sweden)

    Archana Bhaskaracharya

    Full Text Available P2X7 is a ligand-gated ion channel which is activated by ATP and displays secondary permeability characteristics. The mechanism of development of the secondary permeability pathway is currently unclear, although a role for the hemichannel protein pannexin-1 has been suggested. In this study we investigated the role of pannexin-1 in P2X7-induced dye uptake and ATP-induced IL-1β secretion from human monocytes. We found no pharmacological evidence for involvement of pannexin-1 in P2X7-mediated dye uptake in transfected HEK-293 cells with no inhibition seen for carbenoxolone and the pannexin-1 mimetic inhibitory peptide, 10Panx1. However, we found that probenecid inhibited P2X7-induced cationic and anionic dye uptake in stably transfected human P2X7 HEK-293 cells. An IC50 value of 203 μM was calculated for blockade of ATP-induced responses at human P2X7. Probenecid also reduced dye uptake and IL-1β secretion from human CD14+ monocytes whereas carbenoxolone and 10Panx1 showed no inhibitory effect. Patch clamp and calcium indicator experiments revealed that probenecid directly blocks the human P2X7 receptor.

  13. Mechanical hemolysis in blood flow: user-independent predictions with the solution of a partial differential equation.

    Science.gov (United States)

    Lacasse, David; Garon, Andre; Pelletier, Dominique

    2007-02-01

    This paper presents for the first time numerical predictions of mechanical blood hemolysis obtained by solving a hyperbolic partial differential equation (PDE) modelling the hemolysis in a Eulerian frame of reference. This provides hemolysis predictions over the entire computational domain as an alternative to the Lagrangian approach consisting in evaluating cell hemolysis along their trajectories. The solution of a PDE over a computational domain, such as in the approach presented herein, yields a unique solution. This is a clear advantage over the Lagrangian approach, which requires the human-made choice of a limited number of trajectories for integration and inevitably results in the incomplete coverage of the computational domain. The hyperbolic hemolysis model is solved with a Discontinuous Galerkin finite element method. The solution algorithm also includes adaptive remeshing to provide high accuracy simulations. Predictions of the modified index of hemolysis (MIH) are presented for flows in dialysis cannulae and sudden contractions. MIH predictions for cannulae differ significantly from those obtained by other authors using the Lagrangian approach. The predictions for flows in sudden contractions are used, along with our own experimental measurements, to assess the value of the threshold shear stress required for hemolysis that is included in the hemolysis model.

  14. DEHP exposure impairs mouse oocyte cyst breakdown and primordial follicle assembly through estrogen receptor-dependent and independent mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xinyi [Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016 (China); Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016 (China); Liao, Xinggui; Chen, Xuemei; Li, Yanli; Wang, Meirong; Shen, Cha; Zhang, Xue; Wang, Yingxiong; Liu, Xueqing [Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016 (China); He, Junlin, E-mail: hejunlin_11@aliyun.com [Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016 (China)

    2015-11-15

    Highlights: • DEHP inhibits primordial folliculogenesis in vivo and in vitro. • Estrogen receptors participate in the effect of DEHP on early ovarian development. • DEHP exposure impairs the expression of Notch2 signaling components. • DEHP exposure disrupts the proliferation of pregranulosa precursor cells. - Abstract: Estrogen plays an essential role in the development of mammalian oocytes, and recent studies suggest that it also regulates primordial follicle assembly in the neonatal ovaries. During the last decade, potential exposure of humans and animals to estrogen-like endocrine disrupting chemicals has become a growing concern. In the present study, we focused on the effect of diethylhexyl phthalate (DEHP), a widespread plasticizer with estrogen-like activity, on germ-cell cyst breakdown and primordial follicle assembly in the early ovarian development of mouse. Neonatal mice injected with DEHP displayed impaired cyst breakdown. Using ovary organ cultures, we revealed that impairment was mediated through estrogen receptors (ERs), as ICI 182,780, an efficient antagonist of ER, reversed this DEHP-mediated effect. DEHP exposure reduced the expression of ERβ, progesterone receptor (PR), and Notch2 signaling components. Finally, DEHP reduced proliferation of pregranulosa precursor cells during the process of primordial folliculogenesis. Together, our results indicate that DEHP influences oocyte cyst breakdown and primordial follicle formation through several mechanisms. Therefore, exposure to estrogen-like chemicals during fetal or neonatal development may adversely influence early ovarian development.

  15. IFN-Gamma-Dependent and Independent Mechanisms of CD4+ Memory T Cell-Mediated Protection from Listeria Infection

    Science.gov (United States)

    Meek, Stephanie M.; Williams, Matthew A.

    2018-01-01

    While CD8+ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4+ T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely infecting strain of lymphocytic choriomeningitis virus (LCMV), followed by a heterologous rechallenge with Listeria monocytogenes recombinantly expressing the MHC Class II-restricted LCMV epitope, GP61–80 (Lm-gp61). We found that heterologous Lm-gp61 rechallenge resulted in robust activation of CD4+ memory T cells and that they were required for rapid bacterial clearance. We further assessed the relative roles of TNF and IFNγ in the direct anti-bacterial function of CD4+ memory T cells. We found that disruption of TNF resulted in a complete loss of protection mediated by CD4+ memory T cells, whereas disruption of IFNγ signaling to macrophages results in only a partial loss of protection. The protective effect mediated by CD4+ T cells corresponded to the rapid accumulation of pro-inflammatory macrophages in the spleen and an altered inflammatory environment in vivo. Overall, we conclude that protection mediated by CD4+ memory T cells from heterologous Listeria challenge is most directly dependent on TNF, whereas IFNγ only plays a minor role. PMID:29438281

  16. Transgenic fatal familial insomnia mice indicate prion infectivity-independent mechanisms of pathogenesis and phenotypic expression of disease.

    Directory of Open Access Journals (Sweden)

    Ihssane Bouybayoune

    2015-04-01

    Full Text Available Fatal familial insomnia (FFI and a genetic form of Creutzfeldt-Jakob disease (CJD178 are clinically different prion disorders linked to the D178N prion protein (PrP mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known. We generated transgenic (Tg mice expressing the mouse PrP homolog of the FFI mutation. These mice synthesize a misfolded form of mutant PrP in their brains and develop a neurological illness with severe sleep disruption, highly reminiscent of FFI and different from that of analogously generated Tg(CJD mice modeling CJD178. No prion infectivity was detectable in Tg(FFI and Tg(CJD brains by bioassay or protein misfolding cyclic amplification, indicating that mutant PrP has disease-encoding properties that do not depend on its ability to propagate its misfolded conformation. Tg(FFI and Tg(CJD neurons have different patterns of intracellular PrP accumulation associated with distinct morphological abnormalities of the endoplasmic reticulum and Golgi, suggesting that mutation-specific alterations of secretory transport may contribute to the disease phenotype.

  17. IFN-Gamma-Dependent and Independent Mechanisms of CD4+ Memory T Cell-Mediated Protection from Listeria Infection

    Directory of Open Access Journals (Sweden)

    Stephanie M. Meek

    2018-02-01

    Full Text Available While CD8+ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4+ T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely infecting strain of lymphocytic choriomeningitis virus (LCMV, followed by a heterologous rechallenge with Listeria monocytogenes recombinantly expressing the MHC Class II-restricted LCMV epitope, GP61–80 (Lm-gp61. We found that heterologous Lm-gp61 rechallenge resulted in robust activation of CD4+ memory T cells and that they were required for rapid bacterial clearance. We further assessed the relative roles of TNF and IFNγ in the direct anti-bacterial function of CD4+ memory T cells. We found that disruption of TNF resulted in a complete loss of protection mediated by CD4+ memory T cells, whereas disruption of IFNγ signaling to macrophages results in only a partial loss of protection. The protective effect mediated by CD4+ T cells corresponded to the rapid accumulation of pro-inflammatory macrophages in the spleen and an altered inflammatory environment in vivo. Overall, we conclude that protection mediated by CD4+ memory T cells from heterologous Listeria challenge is most directly dependent on TNF, whereas IFNγ only plays a minor role.

  18. Nitric oxide donor NOR 3 inhibits ketogenesis from oleate in isolated rat hepatocytes by a cyclic GMP-independent mechanism.

    Science.gov (United States)

    Nomura, T; Ohtsuki, M; Matsui, S; Sumi-Ichinose, C; Nomura, H; Hagino, Y

    1998-01-01

    Studies were conducted to clarify the effects of nitric oxide donors NOR 3 ((+/-)-(E)-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexeneamide, FK409), SIN-1 (3-morpholinosydnonimine) and SNAP (S-nitroso-N-acetylpenicillamine) on the accumulation of cGMP and cAMP and Ca2+ mobilization as well as ketogenesis from oleate in isolated rat hepatocytes. NOR 3 caused inhibition of ketogenesis from oleate along with stimulation of cGMP accumulation in rat hepatocytes, whereas SIN-1 and SNAP exerted no effect on ketogenesis despite their marked stimulation of cGMP accumulation. Although the nitric oxide trapping agent, carboxy-PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide), antagonized the stimulation by NOR 3 of cGMP accumulation, it failed to modulate the anti-ketogenic action of NOR 3. Furthermore, neither 8-bromoguanosine-3',5'-cyclic monophosphate nor N2,2'-O-dibutyrylguanosine-3',5'-cyclic monophosphate mimicked the anti-ketogenic action of NOR 3. It is concluded in the present study that NOR 3-induced inhibition of ketogenesis in rat hepatocytes is not mediated by cGMP. The present study revealed that the remaining structure of NOR 3 from which nitric oxide had been spontaneously released had no anti-ketogenic action. We first and clearly demonstrated that nitrite production was dramatically enhanced when NOR 3 was incubated in the presence of rat hepatocytes. The mechanism whereby NOR 3 inhibits ketogenesis in rat hepatocytes will be discussed.

  19. Food-Derived Bioactives Can Protect the Anti-Inflammatory Activity of Cortisol with Antioxidant-Dependent and -Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Erik J. B. Ruijters

    2016-02-01

    Full Text Available In chronic inflammatory diseases the anti-inflammatory effect of glucocorticoids (GCs is often decreased, leading to GC resistance. Inflammation is related with increased levels of reactive oxygen species (ROS, leading to oxidative stress which is thought to contribute to the development of GC resistance. Plant-derived compounds such as flavonoids are known for their ability to protect against ROS. In this exploratory study we screened a broad range of food-derived bioactives for their antioxidant and anti-inflammatory effects in order to investigate whether their antioxidant effects are associated with the ability to preserve the anti-inflammatory effects of cortisol. The anti-inflammatory potency of the tested compounds was assessed by measuring the oxidative stress–induced GC resistance in human macrophage-like cells. Cells were pre-treated with H2O2 (800 µM with and without bioactives and then exposed to lipopolysaccharides (LPS (10 ng/mL and cortisol (100 nM. The level of inflammation was deducted from the concentration of interleukin-8 (IL-8 in the medium. Intracellular oxidative stress was measured using the fluorescent probe 2′,7′-dichlorofluorescein (DCFH. We found that most of the dietary bioactives display antioxidant and anti-inflammatory action through the protection of the cortisol response. All compounds, except for quercetin, revealing antioxidant activity also protect the cortisol response. This indicates that the antioxidant activity of compounds plays an important role in the protection of the GC response. However, next to the antioxidant activity of the bioactives, other mechanisms also seem to be involved in this protective, anti-inflammatory effect.

  20. A mechanism accounting for independence on starting length of tension increase in ramp stretches of active skeletal muscle at short half-sarcomere lengths.

    Science.gov (United States)

    Till, Olaf; Siebert, Tobias; Blickhan, Reinhard

    2010-09-07

    Based on previous experimental results of independence on starting length of the tension gradient in constant-velocity stretches of active skeletal muscle at muscle lengths including the ascending limb and the plateau of the tension-length relation, a possible physiological mechanism determining the tension increase in lengthening active muscle is discussed. Considering the sliding filament theory, it is suggested that the tension-length relation of a half-sarcomere in lengthening contractions is different from that in isometric contractions. The assumed mechanism predicts, among others, that the thick filament retains its shortened length in lengthening contractions starting from a half-sarcomere length where this filament is compressed. An example model is implemented and checked with simulations. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Interleukin-4- and NACHT, LRR and PYD domains-containing protein 3-independent mechanisms of alum enhanced T helper type 2 responses on basophils.

    Science.gov (United States)

    Huang, Feng-Juan; Ma, Yi-Lei; Tang, Ruo-Yu; Gong, Wen-Ci; Li, Jun; Chen, Chun-Xia; Yin, Lan; Chen, Xiao-Ping

    2016-10-01

    Aluminium hydroxide (alum), the most widely used adjuvant in human and animal vaccines, has long been known to promote T helper type 2 (Th2) responses and Th2-associated humoral responses, but the mechanisms have remained poorly understood. In this study, we explored whether alum is able to directly modulate antigen-presenting cells to enhance their potency for Th2 polarization. We found that alum treatment of dendritic cells failed to show any Th2-promoting activities. In contrast, alum was able to enhance the capacity of basophils to induce Th2 cells. When basophils from interleukin-4 (IL-4) knockout mice were examined, the intrinsic Th2-promoting activities by basophils were largely abrogated, but the alum-enhanced Th2-promoting activities on basophils were still detectable. More importantly, Th2-promoting adjuvant activities by alum found in IL-4 knockout mice were also largely reduced when basophils were depleted by antibody administration. Therefore, basophils can mediate Th2-promoting activities by alum both in vitro and in vivo through IL-4-independent mechanisms. Further studies revealed that secreted soluble molecules from alum-treated basophils were able to confer the Th2-promoting activities, and neutralization of thymic stromal lymphopoietin or IL-25 attenuated the IL-4-independent development of Th2 cells elicited by alum-treated basophils. Finally, alum was able to activate NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome in murine basophils in the same way as alum in professional antigen-presenting cells, but NLRP3 was not required for Th2-promoting activities on basophils by alum in vitro. These results demonstrated that alum can enhance the capacities of basophils to polarize Th2 cells via IL-4- and NLRP3-independent pathways. © 2016 John Wiley & Sons Ltd.

  2. Activation of parallel fiber feedback by spatially diffuse stimuli reduces signal and noise correlations via independent mechanisms in a cerebellum-like structure.

    Directory of Open Access Journals (Sweden)

    Benjamin Simmonds

    2015-01-01

    Full Text Available Correlations between the activities of neighboring neurons are observed ubiquitously across systems and species and are dynamically regulated by several factors such as the stimulus' spatiotemporal extent as well as by the brain's internal state. Using the electrosensory system of gymnotiform weakly electric fish, we recorded the activities of pyramidal cell pairs within the electrosensory lateral line lobe (ELL under spatially localized and diffuse stimulation. We found that both signal and noise correlations were markedly reduced (>40% under the latter stimulation. Through a network model incorporating key anatomical features of the ELL, we reveal how activation of diffuse parallel fiber feedback from granule cells by spatially diffuse stimulation can explain both the reduction in signal as well as the reduction in noise correlations seen experimentally through independent mechanisms. First, we show that burst-timing dependent plasticity, which leads to a negative image of the stimulus and thereby reduces single neuron responses, decreases signal but not noise correlations. Second, we show trial-to-trial variability in the responses of single granule cells to sensory input reduces noise but not signal correlations. Thus, our model predicts that the same feedback pathway can simultaneously reduce both signal and noise correlations through independent mechanisms. To test this prediction experimentally, we pharmacologically inactivated parallel fiber feedback onto ELL pyramidal cells. In agreement with modeling predictions, we found that inactivation increased both signal and noise correlations but that there was no significant relationship between magnitude of the increase in signal correlations and the magnitude of the increase in noise correlations. The mechanisms reported in this study are expected to be generally applicable to the cerebellum as well as other cerebellum-like structures. We further discuss the implications of such

  3. Investigating mitochondrial metabolism in contracting HL-1 cardiomyocytes following hypoxia and pharmacological HIF activation identifies HIF-dependent and independent mechanisms of regulation.

    Science.gov (United States)

    Ambrose, Lucy J A; Abd-Jamil, Amira H; Gomes, Renata S M; Carter, Emma E; Carr, Carolyn A; Clarke, Kieran; Heather, Lisa C

    2014-11-01

    Hypoxia is a consequence of cardiac disease and downregulates mitochondrial metabolism, yet the molecular mechanisms through which this occurs in the heart are incompletely characterized. Therefore, we aimed to use a contracting HL-1 cardiomyocyte model to investigate the effects of hypoxia on mitochondrial metabolism. Cells were exposed to hypoxia (2% O2) for 6, 12, 24, and 48 hours to characterize the metabolic response. Cells were subsequently treated with the hypoxia inducible factor (HIF)-activating compound, dimethyloxalylglycine (DMOG), to determine whether hypoxia-induced mitochondrial changes were HIF dependent or independent, and to assess the suitability of this cultured cardiac cell line for cardiovascular pharmacological studies. Hypoxic cells had increased glycolysis after 24 hours, with glucose transporter 1 and lactate levels increased 5-fold and 15-fold, respectively. After 24 hours of hypoxia, mitochondrial networks were more fragmented but there was no change in citrate synthase activity, indicating that mitochondrial content was unchanged. Cellular oxygen consumption was 30% lower, accompanied by decreases in the enzymatic activities of electron transport chain (ETC) complexes I and IV, and aconitase by 81%, 96%, and 72%, relative to controls. Pharmacological HIF activation with DMOG decreased cellular oxygen consumption by 43%, coincident with decreases in the activities of aconitase and complex I by 26% and 30%, indicating that these adaptations were HIF mediated. In contrast, the hypoxia-mediated decrease in complex IV activity was not replicated by DMOG treatment, suggesting HIF-independent regulation of this complex. In conclusion, 24 hours of hypoxia increased anaerobic glycolysis and decreased mitochondrial respiration, which was associated with changes in ETC and tricarboxylic acid cycle enzyme activities in contracting HL-1 cells. Pharmacological HIF activation in this cardiac cell line allowed both HIF-dependent and independent

  4. Deriving time dependent Schrödinger equation from Wave-Mechanics, Schrödinger time independent equation, Classical and Hamilton-Jacobi equations

    Directory of Open Access Journals (Sweden)

    Nilesh P. BARDE

    2015-05-01

    Full Text Available The concept of time dependent Schrödinger equation (TDSE illustrated in literature and even during class room teaching is mostly either complex or meant for advanced learners. This article is intended to enlighten the concept to the beginners in the field and further to improve knowledge about detailed steps for abstract mathematical formulation used which helps in understanding to derive TDSE using various tools and in more comprehensible manner. It is shown that TDSE may be derived using wave mechanics, time independent equation, classical & Hamilton-Jacobi’s equations. Similar attempts have been done earlier by some researchers. However, this article provides a comprehensive, lucid and well derived derivation, derived using various approaches, which would make this article unique.

  5. Rosiglitazone Suppresses the Growth and Invasiveness of SGC-7901 Gastric Cancer Cells and Angiogenesis In Vitro via PPARγ Dependent and Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Qing He

    2008-01-01

    Full Text Available Although thiazolidinediones (TZDs were found to be ligands for peroxisome proliferators-activated receptorγ (PPARγ, the mechanism by which TZDs exert their anticancer effect remains unclear. Furthermore, the effect of TZDs on metastatic and angiogenesis potential of cancer cells is unknown. Our results in this paper show that rosiglitazone inhibited SGC-7901 gastric cancer cells growth, caused G1 cell cycle arrest and induced apoptosis in a dose-dependent manner. The effects of rosiglitazone on SGC-7901 cancer cells were completely reversed by treatment with PPARγ antagonist GW9662. Rosiglitazone inhibited SGC-7901 cell migration, invasiveness, and the expression of MMP-2 in dose-dependent manner via PPARγ-independent manner. Rosiglitazone reduced the VEGF induced angiogenesis of HUVEC in dose-dependent manner through PPARγ-dependent pathway. Moreover, rosiglitazone did not affect the expression of VEGF by SGC-7901 cells. Our results demonstrated that by PPARγ ligand, rosiglitazone inhibited growth and invasiveness of SGC-7901 gastric cancer cells and angiogenesis in vitro via PPARγ-dependent or -independent pathway.

  6. 3-Aminobenzamide protects primary human keratinocytes from UV-induced cell death by a poly(ADP-ribosyl)ation independent mechanism.

    Science.gov (United States)

    Lakatos, Petra; Szabó, Éva; Hegedűs, Csaba; Haskó, György; Gergely, Pál; Bai, Péter; Virág, László

    2013-03-01

    Poly(ADP-ribosyl)ation (PARylation) is a NAD(+)-dependent protein modification carried out by PARP [poly(ADP-ribose) polymerase] enzymes. Here we set out to investigate whether PARylation regulates UVB-induced cell death in primary human keratinocytes. We used the benchmark PARP inhibitor 3-aminobenzamide (3AB) and a more potent and specific inhibitor PJ34 and found that UVB (0.05-0.2J/cm(2)) induced a dose dependent loss of viability that was prevented by 3AB but not by PJ34. Similarly to PJ34, two other new generation PARP inhibitors also failed to protect keratinocytes from UVB-induced loss of viability. Moreover, silencing PARP-1 in HaCaT human keratinocytes sensitized cells to UVB toxicity but 3AB provided protection to both control HaCaT cells and to PARP-1 silenced cells indicating that the photoprotective effect of 3AB is independent of PARP inhibition. Lower UVB doses (0.0125-0.05J/cm(2)) caused inhibition of proliferation of keratinocytes which was prevented by 3AB but augmented by PJ34. UVB-induced keratinocyte death displayed the characteristics of both apoptosis (morphology, caspase activity, DNA fragmentation) and necrosis (morphology, LDH release) with all of these parameters being inhibited by 3AB and apoptotic parameters slightly enhanced by PJ34. UVA also caused apoptotic and necrotic cell death in keratinocytes with 3AB protecting and PJ34 sensitizing cells to UVA-induced toxicity. 3AB prevented UVB-induced mitochondrial membrane depolarization and generation of hydrogen peroxide. In summary, PARylation is a survival mechanism in UV-treated keratinocytes. Moreover, 3-aminobenzamide is photoprotective and acts by a PARP-independent mechanism at a premitochondrial step of phototoxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Independent Directors

    DEFF Research Database (Denmark)

    Ringe, Wolf-Georg

    2013-01-01

    about board independence in Western jurisdictions, a surprising disharmony prevails about the justification, extent and purpose of independence requirements. These considerations lead me to question the benefits of the current system. Instead, this paper proposes a new, ‘functional’ concept of board...

  8. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes.

    Science.gov (United States)

    Deren, Matthew E; Yang, Xu; Guan, Yingjie; Chen, Qian

    2016-02-04

    Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88) siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation) of ATDC5 cells in three-dimensional (3D) culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II), hypertrophic chondrocyte marker Type X collagen (Col X), and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2). The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  9. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Matthew E. Deren

    2016-02-01

    Full Text Available Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88 siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation of ATDC5 cells in three-dimensional (3D culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II, hypertrophic chondrocyte marker Type X collagen (Col X, and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2. The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  10. Mouse Mammary Tumor Virus Signal Peptide Uses a Novel p97-Dependent and Derlin-Independent Retrotranslocation Mechanism To Escape Proteasomal Degradation

    Directory of Open Access Journals (Sweden)

    Hyewon Byun

    2017-03-01

    Full Text Available Multiple pathogens, including viruses and bacteria, manipulate endoplasmic reticulum-associated degradation (ERAD to avoid the host immune response and promote their replication. The betaretrovirus mouse mammary tumor virus (MMTV encodes Rem, which is a precursor protein that is cleaved into a 98-amino-acid signal peptide (SP and a C-terminal protein (Rem-CT. SP uses retrotranslocation for ER membrane extraction and yet avoids ERAD by an unknown mechanism to enter the nucleus and function as a Rev-like protein. To determine how SP escapes ERAD, we used a ubiquitin-activated interaction trap (UBAIT screen to trap and identify transient protein interactions with SP, including the ERAD-associated p97 ATPase, but not E3 ligases or Derlin proteins linked to retrotranslocation, polyubiquitylation, and proteasomal degradation of extracted proteins. A dominant negative p97 ATPase inhibited both Rem and SP function. Immunoprecipitation experiments indicated that Rem, but not SP, is polyubiquitylated. Using both yeast and mammalian expression systems, linkage of a ubiquitin-like domain (UbL to SP or Rem induced degradation by the proteasome, whereas SP was stable in the absence of the UbL. ERAD-associated Derlin proteins were not required for SP activity. Together, these results suggested that Rem uses a novel p97-dependent, Derlin-independent retrotranslocation mechanism distinct from other pathogens to avoid SP ubiquitylation and proteasomal degradation.

  11. Production, Characterization, and Flocculation Mechanism of Cation Independent, pH Tolerant, and Thermally Stable Bioflocculant from Enterobacter sp. ETH-2

    Science.gov (United States)

    Tang, Wei; Song, Liyan; Li, Dou; Qiao, Jing; Zhao, Tiantao; Zhao, Heping

    2014-01-01

    Synthetic high polymer flocculants, frequently utilized for flocculating efficiency and low cost, recently have been discovered as producing increased risk to human health and the environment. Development of a more efficient and environmentally sound alternative flocculant agent is investigated in this paper. Bioflocculants are produced by microorganisms and may exhibit a high rate of flocculation activity. The bioflocculant ETH-2, with high flocculating activity (2849 mg Kaolin particle/mg ETH-2), produced by strain Enterobacter sp. isolated from activated sludge, was systematically investigated with regard to its production, characterization, and flocculation mechanism. Analyses of microscopic observation, zeta potential and ETH-2 structure demonstrates the bridging mechanism, as opposed to charge neutralization, was responsible for flocculation of the ETH-2. ETH-2 retains high molecular weight (603 to 1820 kDa) and multi-functional groups (hydroxyl, amide and carboxyl) that contributed to flocculation. Polysaccharides mainly composed of mannose, glucose, and galactose, with a molar ratio of 1∶2.9∶9.8 were identified as the active constituents in bioflocculant. The structure of the long backbone with active sites of polysaccharides was determined as a primary basis for the high flocculation activity. Bioflocculant ETH-2 is cation independent, pH tolerant, and thermally stable, suggesting a potential fit for industrial application. PMID:25485629

  12. Cadmium down-regulates expression of XIAP at the post-transcriptional level in prostate cancer cells through an NF-κB-independent, proteasome-mediated mechanism

    Directory of Open Access Journals (Sweden)

    Fox Eric

    2010-07-01

    Full Text Available Abstract Background Cadmium has been classified as a human carcinogen, affecting health through occupational and environmental exposure. Cadmium has a long biological half-life (>25 years, due to the flat kinetics of its excretion. The prostate is one of the organs with highest levels of cadmium accumulation. Importantly, patients with prostate cancer appear to have higher levels of cadmium both in the circulation and in prostatic tissues. Results In the current report, we demonstrate for the first time that cadmium down-regulates expression of the X-linked inhibitor of apoptosis protein (XIAP in prostate cancer cells. Cadmium-mediated XIAP depletion occurs at the post-transcriptional level via an NF-κB-independent, proteasome-mediated mechanism and coincides with an increased sensitivity of prostate cancer cells to TNF-α-mediated apoptosis. Prolonged treatment with cadmium results in selection of prostate cancer cells with apoptosis-resistant phenotype. Development of apoptosis-resistance coincides with restoration of XIAP expression in cadmium-selected PC-3 cells. Conclusions Selection of cadmium-resistant cells could represent an adaptive survival mechanism that may contribute to progression of prostatic malignancies.

  13. Production, characterization, and flocculation mechanism of cation independent, pH tolerant, and thermally stable bioflocculant from Enterobacter sp. ETH-2.

    Directory of Open Access Journals (Sweden)

    Wei Tang

    Full Text Available Synthetic high polymer flocculants, frequently utilized for flocculating efficiency and low cost, recently have been discovered as producing increased risk to human health and the environment. Development of a more efficient and environmentally sound alternative flocculant agent is investigated in this paper. Bioflocculants are produced by microorganisms and may exhibit a high rate of flocculation activity. The bioflocculant ETH-2, with high flocculating activity (2849 mg Kaolin particle/mg ETH-2, produced by strain Enterobacter sp. isolated from activated sludge, was systematically investigated with regard to its production, characterization, and flocculation mechanism. Analyses of microscopic observation, zeta potential and ETH-2 structure demonstrates the bridging mechanism, as opposed to charge neutralization, was responsible for flocculation of the ETH-2. ETH-2 retains high molecular weight (603 to 1820 kDa and multi-functional groups (hydroxyl, amide and carboxyl that contributed to flocculation. Polysaccharides mainly composed of mannose, glucose, and galactose, with a molar ratio of 1:2.9:9.8 were identified as the active constituents in bioflocculant. The structure of the long backbone with active sites of polysaccharides was determined as a primary basis for the high flocculation activity. Bioflocculant ETH-2 is cation independent, pH tolerant, and thermally stable, suggesting a potential fit for industrial application.

  14. The Role of Perturbations in the B-X UV Spectrum of S_{2} in a Temperature-Dependent Mechanism for Sulfur Mass Independent Fractionation

    Science.gov (United States)

    Hull, Alexander W.; Field, Robert W.; Ono, Shuhei

    2017-06-01

    Sulfur mass independent fractionation (S-MIF) describes anomalous sulfur isotope ratios commonly found in sedimentary rocks older than 2.45 billion years. These anomalies likely originate from photochemistry of small, sulfur-containing molecules in the atmosphere, and their sudden disappearance from rock samples younger than 2.45 years is thought to be correlated with a sharp rise in atmospheric oxygen levels. The emergence of atmospheric oxygen is an important milestone in the development of life on Earth, but the mechanism for sulfur MIF in an anoxic atmosphere is not well understood. In this context, we present an analysis of the B-X UV spectrum of S_{2}, an extension of work presented last year. The B state of S_{2} is strongly perturbed by the nearby B" state, as originally described by Green and Western (1996). Our analysis suggests that a doorway-mediated transfer mechanism shifts excited state population from the short-lifetime B state to the longer-lifetime B" state. Furthermore, access to the perturbed doorway states is strongly dependent on the population distribution in the ground state. This suggests that the temperature of the Achaean atmosphere may have played a significant role in determining the extent of S-MIF.

  15. American = Independent?

    Science.gov (United States)

    Markus, Hazel Rose

    2017-09-01

    U.S. American cultures and psyches reflect and promote independence. Devos and Banaji (2005) asked, does American equal White? This article asks, does American equal independent? The answer is that when compared to people in East Asian or South Asian contexts, people in American contexts tend to show an independent psychological signature-a sense of self as individual, separate, influencing others and the world, free from influence, and equal to, if not better than, others (Markus & Conner, 2013). Independence is a reasonable description of the selves of people in the White, middle-class American mainstream. Yet it is a less good characterization of the selves of the majority of Americans who are working-class and/or people of color. A cultural psychological approach reveals that much of North American psychology is still grounded in an independent model of the self and, as such, neglects social contexts and the psychologies of a majority of Americans. Given the prominence of independence in American ideas and institutions, the interdependent tendencies that arise from intersections of national culture with social class, race, and ethnicity go unrecognized and are often misunderstood and stigmatized. This unseen clash of independence and interdependence is a significant factor in many challenges, including those of education, employment, health, immigration, criminal justice, and political polarization.

  16. Pou1f1, the key transcription factor related to somatic growth in tilapia (Orechromis niloticus), is regulated by two independent post-transcriptional regulation mechanisms.

    Science.gov (United States)

    Wang, Dongfang; Qin, Jingkai; Jia, Jirong; Yan, Peipei; Li, Wensheng

    2017-01-29

    This study aims to determine the post-transcriptional regulation mechanism of the transcription factor pou1f1 (pou class 1 homeobox 1), which is the key gene for pituitary development, somatic growth in vertebrates, and transcription of several hormone genes in teleost fish. MicroRNA miR-223-3p was identified as a bona fide target of pou1f; overexpression of miR-223-3p in primary pituitary cells led to the down-regulation of pou1f1 and downstream genes, and inhibition of miR-223-3p led to the up-regulation of pou1f1 in Nile tilapia dispersed primary pituitary cells. An adenylate-uridylate-rich element (AU-Rich element) was found in the 3'UTR of pou1f1 mRNA, and deletion of the AU-Rich element led to slower mRNA decay and therefore more protein output. A potential mutual relationship between miR-223-3p and the AU-rich element was also investigated, and the results demonstrated that with or without the AU-Rich element, miR-223-3p induced the up-regulation of a reporter system under serum starvation conditions, indicating that miR-223-3p and the AU-Rich element function independent of each other. This study is the first to investigate the post-transcriptional mechanism of pou1f1, which revealed that miR-223-3p down-regulated pou1f1 and downstream gene expressions, and the AU-Rich element led to rapid decay of pou1f1 mRNA. MicroRNA miR-223-3p and the AU-Rich element co-regulated the post-transcriptional expression of pou1f1 independently in Nile tilapia, demonstrating that pou1f1 is under the control of a dual post-transcription regulation mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. 70Z/3 Cbl induces PLC gamma 1 activation in T lymphocytes via an alternate Lat- and Slp-76-independent signaling mechanism.

    Science.gov (United States)

    Graham, Laurie J; Verí, Maria-Concetta; DeBell, Karen E; Noviello, Cristiana; Rawat, Rashmi; Jen, Sandy; Bonvini, Ezio; Rellahan, Barbara

    2003-04-24

    The oncoprotein 70Z/3 Cbl signals in an autonomous fashion or through blockade of endogenous c-Cbl, a negative regulator of signaling. The mechanism of 70Z/3 Cbl-induced signaling was investigated by comparing the molecular requirements for 70Z/3 Cbl- and TCR-induced phospholipase C gamma 1 (PLC gamma 1) activation. 70Z/3 Cbl-induced PLC gamma 1 tyrosine phosphorylation required, in addition to the PLC gamma 1 N-terminal SH2 domain, the C-terminal SH2 and SH3 domains that were dispensable for TCR-induced phosphorylation. Deletion of the leucine zipper of 70Z/3 Cbl did not eliminate 70Z/3 Cbl-induced PLC gamma 1 phosphorylation, suggesting that blockage of c-Cbl via dimerization with 70Z/3 Cbl cannot fully explain 70Z/3 Cbl activating characteristics. The complete elimination of PLC gamma 1 phosphorylation required deleting the SH3 domain-binding region of 70Z/3 Cbl, consistent with 70Z/3 Cbl binding the PLC gamma 1 SH3 domain. 70Z/3 Cbl-induced PLC gamma 1 phosphorylation required Zap-70, as for the TCR, and the tyrosine kinase binding domain of 70Z/3 Cbl, which binds Zap-70, but did not require PLC gamma 1 binding to Lat, a crucial interaction in TCR-induced PLC gamma 1 phosphorylation. Furthermore, 70Z/3 Cbl-induced activation of NFAT, a PLC gamma 1/Ca(2+)-dependent transcriptional event, required Zap-70, but was independent of Slp-76, an adapter required for TCR-induced NFAT activation. These results suggest that 70Z/3 Cbl and PLC gamma 1 form a TCR-, Lat- and Slp-76-independent complex that leads to PLC gamma 1 phosphorylation and activation.

  18. Oct-1 potentiates CREB-driven cyclin D1 promoter activation via a phospho-CREB- and CREB binding protein-independent mechanism.

    Science.gov (United States)

    Boulon, Séverine; Dantonel, Jean-Christophe; Binet, Virginie; Vié, Annick; Blanchard, Jean-Marie; Hipskind, Robert A; Philips, Alexandre

    2002-11-01

    Cyclin D1, the regulatory subunit for mid-G(1) cyclin-dependent kinases, controls the expression of numerous cell cycle genes. A cyclic AMP-responsive element (CRE), located upstream of the cyclin D1 mRNA start site, integrates mitogenic signals that target the CRE-binding factor CREB, which can recruit the transcriptional coactivator CREB-binding protein (CBP). We describe an alternative mechanism for CREB-driven cyclin D1 induction that involves the ubiquitous POU domain protein Oct-1. In the breast cancer cell line MCF-7, overexpression of Oct-1 or its POU domain strongly increases transcriptional activation of cyclin D1 and GAL4 reporter genes that is specifically dependent upon CREB but independent of Oct-1 DNA binding. Gel retardation and chromatin immunoprecipitation assays confirm that POU forms a complex with CREB bound to the cyclin D1 CRE. In solution, CREB interaction with POU requires the CREB Q2 domain and, notably, occurs with CREB that is not phosphorylated on Ser 133. Accordingly, Oct-1 also potently enhances transcriptional activation mediated by a Ser133Ala CREB mutant. Oct-1/CREB synergy is not diminished by the adenovirus E1A 12S protein, a repressor of CBP coactivator function. In contrast, E1A strongly represses CBP-enhanced transactivation by CREB phosphorylated on Ser 133. Our observation that Oct-1 potentiates CREB-dependent cyclin D1 transcriptional activity independently of Ser 133 phosphorylation and E1A-sensitive coactivator function offers a new paradigm for the regulation of cyclin D1 induction by proliferative signals.

  19. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    International Nuclear Information System (INIS)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by γH 2 AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual γH2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2

  20. Low concentrations of o,p'-DDT inhibit gene expression and prostaglandin synthesis by estrogen receptor-independent mechanism in rat ovarian cells.

    Directory of Open Access Journals (Sweden)

    Jing Liu

    Full Text Available o,p'-DDT is an infamous xenoestrogen as well as a ubiquitous and persistent pollutant. Biomonitoring studies show that women have been internally exposed to o,p'-DDT at range of 0.3-500 ng/g (8.46×10(-10 M-1.41×10(-6 M in blood and other tissues. However, very limited studies have investigated the biological effects and mechanism(s of o,p'-DDT at levels equal to or lower than current exposure levels in human. In this study, using primary cultures of rat ovarian granulosa cells, we determined that very low doses of o,p'-DDT (10(-12-10(-8 M suppressed the expression of ovarian genes and production of prostaglandin E2 (PGE2. In vivo experiments consistently demonstrated that o,p'-DDT at 0.5-1 mg/kg inhibited the gene expression and PGE2 levels in rat ovary. The surprising results from the receptor inhibitors studies showed that these inhibitory effects were exerted independently of either classical estrogen receptors (ERs or G protein-coupled receptor 30 (GPR30. Instead, o,p'-DDT altered gene expression or hormone action via inhibiting the activation of protein kinase A (PKA, rather than protein kinase C (PKC. We further revealed that o,p'-DDT directly interfered with the PKA catalytic subunit. Our novel findings support the hypothesis that exposure to low concentrations of o,p'-DDT alters gene expression and hormone synthesis through signaling mediators beyond receptor binding, and imply that the current exposure levels of o,p'-DDT observed in the population likely poses a health risk to female reproduction.

  1. CAT-1 as a novel CAM stabilizes endothelial integrity and mediates the protective actions of L-Arg via a NO-independent mechanism.

    Science.gov (United States)

    Guo, Lu; Tian, Shuang; Chen, Yuguo; Mao, Yun; Cui, Sumei; Hu, Aihua; Zhang, Jianliang; Xia, Shen-Ling; Su, Yunchao; Du, Jie; Block, Edward R; Wang, Xing Li; Cui, Zhaoqiang

    2015-10-01

    Interendothelial junctions play an important role in the maintenance of endothelial integrity and the regulation of vascular functions. We report here that cationic amino acid transporter-1 (CAT-1) is a novel interendothelial cell adhesion molecule (CAM). We identified that CAT-1 protein localized at cell-cell adhesive junctions, similar to the classic CAM of VE-cadherin, and knockdown of CAT-1 with siRNA led to an increase in endothelial permeability. In addition, CAT-1 formed a cis-homo-dimer and showed Ca(2+)-dependent trans-homo-interaction to cause homophilic cell-cell adhesion. Co-immunoprecipitation assays showed that CAT-1 can associate with β-catenin. Furthermore, we found that the sub-cellular localization and function of CAT-1 are associated with cell confluency, in sub-confluent ECs CAT-1 proteins distribute on the entire surface and function as L-Arg transporters, but most of the CAT-1 in the confluent ECs are localized at interendothelial junctions and serve as CAMs. Further functional characterization has disclosed that extracellular L-Arg exposure stabilizes endothelial integrity via abating the cell junction disassembly of CAT-1 and blocking the cellular membrane CAT-1 internalization, which provides the new mechanisms for L-Arg paradox and trans-stimulation of cationic amino acid transport system (CAAT). These results suggest that CAT-1 is a novel CAM that directly regulates endothelial integrity and mediates the protective actions of L-Arg to endothelium via a NO-independent mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Chimeric oncoprotein E2a-Pbx1 induces apoptosis of hematopoietic cells by a p53-independent mechanism that is suppressed by Bcl-2.

    Science.gov (United States)

    Smith, K S; Jacobs, Y; Chang, C P; Cleary, M L

    1997-06-19

    The chimeric oncoprotein E2a-Pbx1 results from fusion of the E2A and PBX1 genes following t(1;19) chromosomal translocations in B cell precursor acute leukemias. Experimentally B cell progenitors do not tolerate constitutive expression of E2a-Pbx1 which contrasts with transformation of several other cell types following its stable expression both in vitro and in vivo. To further investigate the effects of E2a-Pbx1 on the B cell progenitors, we conditionally expressed E2a-Pbx1 under control of a metal response element in hematopoietic precursor cell lines in vitro. Inducible expression of E2a-Pbx1 resulted in cell death with the morphologic and molecular features of apoptosis. A structure-function analysis demonstrated that induction of apoptosis was not a dominant-negative effect of the E2a moiety but, rather, required the DNA-binding homeodomain of Pbx1. E2a-Pbx1-induced apoptosis proceeded through a BCL2-responsive checkpoint eventuating in PARP inactivation but did require p53. Constitutive expression of E2a-Pbx1 did not induce apoptosis or continued cycling of Rat-1 fibroblasts in low serum conditions. These studies demonstrate that E2a-Pbx1 initiates programmed cell death of hematopoietic precursers by a mechanism that requires its chimeric transcriptional properties, but, unlike other nuclear oncoproteins, is independent of p53.

  3. DNA-histone complexes as ligands amplify cell penetration and nuclear targeting of anti-DNA antibodies via energy-independent mechanisms.

    Science.gov (United States)

    Zannikou, Markella; Bellou, Sofia; Eliades, Petros; Hatzioannou, Aikaterini; Mantzaris, Michael D; Carayanniotis, George; Avrameas, Stratis; Lymberi, Peggy

    2016-01-01

    We have generated three monoclonal cell-penetrating antibodies (CPAbs) from a non-immunized lupus-prone (NZB × NZW)F1 mouse that exhibited high anti-DNA serum titres. These CPAbs are polyreactive because they bind to DNA and other cellular components, and localize mainly in the nucleus of HeLa cells, albeit with a distinct nuclear labelling profile. Herein, we have examined whether DNA-histone complexes (DHC) binding to CPAbs, before cell entry, could modify the cell penetration of CPAbs or their nuclear staining properties. By applying confocal microscopy and image analysis, we found that extracellular binding of purified CPAbs to DHC significantly enhanced their subsequent cell-entry, both in terms of percentages of positively labelled cells and fluorescence intensity (internalized CPAb amount), whereas there was a variable effect on their nuclear staining profile. Internalization of CPAbs, either alone or bound to DHC, remained unaltered after the addition of endocytosis-specific inhibitors at 37° or assay performance at 4°, suggesting the involvement of energy-independent mechanisms in the internalization process. These findings assign to CPAbs a more complex pathogenetic role in systemic lupus erythematosus where both CPAbs and nuclear components are abundant. © 2015 John Wiley & Sons Ltd.

  4. Insulin-Like Growth Factor-I Induces Arginase Activity in Leishmania amazonensis Amastigote-Infected Macrophages through a Cytokine-Independent Mechanism

    Directory of Open Access Journals (Sweden)

    Celia Maria Vieira Vendrame

    2014-01-01

    Full Text Available Leishmania (Leishmania amazonensis exhibits peculiarities in its interactions with hosts. Because amastigotes are the primary form associated with the progression of infection, we studied the effect of insulin-like growth factor (IGF-I on interactions between L. (L. amazonensis amastigotes and macrophages. Upon stimulation of infected macrophages with IGF-I, we observed decreased nitric oxide production but increased arginase expression and activity, which lead to increased parasitism. However, stimulation of amastigote-infected macrophages with IGF-I did not result in altered cytokine levels compared to unstimulated controls. Because IGF-I is present in tissue fluids and also within macrophages, we examined the possible effect of this factor on phosphatidylserine (PS exposure on amastigotes, seen previously in tissue-derived amastigotes leading to increased parasitism. Stimulation with IGF-I induced PS exposure on amastigotes but not on promastigotes. Using a PS-liposome instead of amastigotes, we observed that the PS-liposome but not the control phosphatidylcholine-liposome led to increased arginase activity in macrophages, and this process was not blocked by anti-TGF-β antibodies. Our results suggest that in L. (L. amazonensis amastigote-infected macrophages, IGF-I induces arginase activity directly in amastigotes and in macrophages through the induction of PS exposure on amastigotes in the latter, which could lead to the alternative activation of macrophages through cytokine-independent mechanisms.

  5. Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer

    International Nuclear Information System (INIS)

    Yeh, Chen-Yun; Tseng, Vincent S; Lee, Yuan-Chii G; Shen, Cheng-Huang; Chow, Nan-Haw; Liu, Hsiao-Sheng; Shin, Shin-Mei; Yeh, Hsuan-Heng; Wu, Tsung-Jung; Shin, Jyh-Wei; Chang, Tsuey-Yu; Raghavaraju, Giri; Lee, Chung-Ta; Chiang, Jung-Hsien

    2011-01-01

    A cross-talk between different receptor tyrosine kinases (RTKs) plays an important role in the pathogenesis of human cancers. Both NIH-Met5 and T24-Met3 cell lines harboring an inducible human c-Met gene were established. C-Met-related RTKs were screened by RTK microarray analysis. The cross-talk of RTKs was demonstrated by Western blotting and confirmed by small interfering RNA (siRNA) silencing, followed by elucidation of the underlying mechanism. The impact of this cross-talk on biological function was demonstrated by Trans-well migration assay. Finally, the potential clinical importance was examined in a cohort of 65 cases of locally advanced and metastatic bladder cancer patients. A positive association of Axl or platelet-derived growth factor receptor-alpha (PDGFR-α) with c-Met expression was demonstrated at translational level, and confirmed by specific siRNA knock-down. The transactivation of c-Met on Axl or PDGFR-α in vitro was through a ras- and Src-independent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. In human bladder cancer, co-expression of these RTKs was associated with poor patient survival (p < 0.05), and overexpression of c-Met/Axl/PDGFR-α or c-Met alone showed the most significant correlation with poor survival (p < 0.01). In addition to c-Met, the cross-talk with Axl and/or PDGFR-α also contributes to the progression of human bladder cancer. Evaluation of Axl and PDGFR-α expression status may identify a subset of c-Met-positive bladder cancer patients who may require co-targeting therapy

  6. Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism.

    Science.gov (United States)

    Liu, Yuanyuan; Zhao, Yuyan; Guo, Lei

    2016-01-15

    Orexins are hypothalamic neuropeptides that regulate food intake, energy homeostasis, reward system and sleep/wakefulness states. The purpose of this study was to investigate the effects of orexin A on glucose metabolism in human hepatocellular carcinoma cell line, Hep3B, and determine the possible mechanisms. Hep3B cells were incubated with different concentrations of orexin A (10(-9)-10(-7) M) in vitro in the presence or absence of the orexin receptor 1 (OX1R) inhibitor (SB334867), Akt inhibitor (PF-04691502) and mammalian target of rapamycin (mTOR) inhibitor (temsirolimus). Subsequently, OX1R protein expression, glucose transporter 1 (GLUT1) expression, glucose uptake, the mRNA expression of lactate dehydrogenase (LDHA), pyruvate dehydrogenase kinase 1 (PDK1) and pyruvate dehydrogenase B (PDHB), lactate generation and mitochondrial pyruvate dehydrogenase (PDH) enzyme activity were measured. The activity of phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was also determined. OX1R was expressed in hepatoma tissues and Hep3B cells. Stimulation of the Hep3B cells with orexin A resulted in a dose-dependent increase of GLUT1 expression and glucose uptake, which was associated with the activation of PI3K/Akt/mTOR pathway. Further, orexin A increased PDHB expression and PDH enzyme activity, decreased LDHA, PDK1 mRNA levels and lactate generation independent of PI3K/Akt/mTOR pathway. Our results demonstrated that orexin A directed the cellular metabolism towards mitochondrial glucose oxidation rather than glycolysis. These findings provide functional evidence of the metabolic actions of orexin A in hepatocellular carcinoma cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. 2'-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo.

    Directory of Open Access Journals (Sweden)

    Kristy J Szretter

    Full Text Available Prior studies have shown that 2'-O methyltransferase activity of flaviviruses, coronaviruses, and poxviruses promotes viral evasion of Ifit1, an interferon-stimulated innate immune effector protein. Viruses lacking 2'-O methyltransferase activity exhibited attenuation in primary macrophages that was rescued in cells lacking Ifit1 gene expression. Here, we examined the role of Ifit1 in restricting pathogenesis in vivo of wild type WNV (WNV-WT and a mutant in the NS5 gene (WNV-E218A lacking 2'-O methylation of the 5' viral RNA cap. While deletion of Ifit1 had marginal effects on WNV-WT pathogenesis, WNV-E218A showed increased replication in peripheral tissues of Ifit1⁻/⁻ mice after subcutaneous infection, yet this failed to correlate with enhanced infection in the brain or lethality. In comparison, WNV-E218A was virulent after intracranial infection as judged by increased infection in different regions of the central nervous system (CNS and a greater than 16,000-fold decrease in LD(50 values in Ifit1⁻/⁻ compared to wild type mice. Ex vivo infection experiments revealed cell-type specific differences in the ability of an Ifit1 deficiency to complement the replication defect of WNV-E218A. In particular, WNV-E218A infection was impaired in both wild type and Ifit1⁻/⁻ brain microvascular endothelial cells, which are believed to participate in blood-brain barrier (BBB regulation of virus entry into the CNS. A deficiency of Ifit1 also was associated with increased neuronal death in vivo, which was both cell-intrinsic and mediated by immunopathogenic CD8⁺ T cells. Our results suggest that virulent strains of WNV have largely evaded the antiviral effects of Ifit1, and viral mutants lacking 2'-O methylation are controlled in vivo by Ifit1-dependent and -independent mechanisms in different cell types.

  8. Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Matthew Prideaux

    results show that PTH induces loss of the mature osteocyte phenotype and promotes the motility of these cells. These two effects are mediated through different mechanisms. The loss of phenotype effect is independent and the cell motility effect is dependent on calcium signaling.

  9. Repetitive recombinant human bone morphogenetic protein 2 injections improve the callus microarchitecture and mechanical stiffness in a sheep model of distraction osteogenesis

    Directory of Open Access Journals (Sweden)

    Marc-Frederic Pastor

    2012-03-01

    Full Text Available Evidence suggests that recombinant human bone morphogenetic protein 2 (rhBMP-2 increases the mechanical integrity of callus tissue during bone healing. This effect may be either explained by an increase of callus formation or a modification of the trabecular microarchitecture. Therefore the purpose of the study was to evaluate the potential benefit of rhBMP-2 on the trabecular microarchitecture and on multidirectional callus stiffness. Further we asked, whether microarchitecture changes correlate with optimized callus stiffness. In this study a tibial distraction osteogenesis (DO model in 12 sheep was used to determine, whether percutaneous injection of rhBMP-2 into the distraction zone influences the microarchitecture of the bone regenerate. After a latency period of 4 days, the tibiae were distracted at a rate of 1.25 mm/day over a period of 20 days, resulting in total lengthening of 25 mm. The operated limbs were randomly assigned to one treatment groups and one control group: (A triple injection of rhBMP-2 (4 mg rhBMP-2/injection and (B no injection. The tibiae were harvested after 74 days and scanned by μCT (90 μm/voxel. In addition, we conducted a multidirectional mechanical testing of the tibiae by using a material testing system to assess the multidirectional strength. The distraction zones were tested for torsional stiffness and bending stiffness antero-posterior (AP and medio-lateral (ML direction, compression strength and maximum axial torsion. Statistical analysis was performed using multivariate analysis of variance (ANOVA followed by student’s t-test and Regression analysis using power functions with a significance level of P<0.05. Triple injections of rhBMP-2 induced significant changes in the trabecular architecture of the regenerate compared with the control: increased trabecular number (Tb.N. (treatment group 1.73 mm/1 vs. control group 1.2 mm/1, increased cortical bone volume fraction (BV/TV (treatment group 0.68 vs

  10. Histamine H1-receptor antagonists inhibit nuclear factor-kappaB and activator protein-1 activities via H1-receptor-dependent and -independent mechanisms.

    Science.gov (United States)

    Roumestan, C; Henriquet, C; Gougat, C; Michel, A; Bichon, F; Portet, K; Jaffuel, D; Mathieu, M

    2008-06-01

    and desloratadine dose-dependently decreased tumour necrosis factor-alpha-induced production of RANTES. Diphenhydramine, H2- and H3-receptor antagonists as well as selective inhibitors of 5-LO were ineffective in this assay. Repression of NF-kappaB and AP-1 activities by H1-receptor antagonists involves H1-receptor-dependent and -independent mechanisms but not 5-LO.

  11. The anti-diabetic drug miglitol is protective against anginal ischaemia through a mechanism independent of regional myocardial blood flow in the dog.

    Science.gov (United States)

    Uno, Yoshihiro; Minatoguchi, Shinya; Arai, Masazumi; Wang, Ningyuan; Chen, Xue-Hai; Hashimoto, Kazuaki; Lu, Cuanjiang; Takemura, Genzou; Fujiwara, Hisayoshi

    2005-10-01

    and attenuated the accumulation of myocardial interstitial lactate during anginal ischaemia without altering regional myocardial blood flow. Miglitol has an anti-anginal ischaemia effect via a mechanism that is independent of regional myocardial blood flow.

  12. Chronic methamphetamine treatment induces oxytocin receptor up-regulation in the amygdala and hypothalamus via an adenosine A2A receptor-independent mechanism.

    Science.gov (United States)

    Zanos, Panos; Wright, Sherie R; Georgiou, Polymnia; Yoo, Ji Hoon; Ledent, Catherine; Hourani, Susanna M; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

    2014-04-01

    There is mounting evidence that the neuropeptide oxytocin is a possible candidate for the treatment of drug addiction. Oxytocin was shown to reduce methamphetamine self-administration, conditioned place-preference, hyperactivity and reinstatement in rodents, highlighting its potential for the management of methamphetamine addiction. Thus, we hypothesised that the central endogenous oxytocinergic system is dysregulated following chronic methamphetamine administration. We tested this hypothesis by examining the effect of chronic methamphetamine administration on oxytocin receptor density in mice brains with the use of quantitative receptor autoradiographic binding. Saline (4ml/kg/day, i.p.) or methamphetamine (1mg/kg/day, i.p.) was administered daily for 10 days to male, CD1 mice. Quantitative autoradiographic mapping of oxytocin receptors was carried out with the use of [(125)I]-vasotocin in brain sections of these animals. Chronic methamphetamine administration induced a region specific upregulation of oxytocin receptor density in the amygdala and hypothalamus, but not in the nucleus accumbens and caudate putamen. As there is evidence suggesting an involvement of central adenosine A2A receptors on central endogenous oxytocinergic function, we investigated whether these methamphetamine-induced oxytocinergic neuroadaptations are mediated via an A2A receptor-dependent mechanism. To test this hypothesis, autoradiographic oxytocin receptor binding was carried out in brain sections of male CD1 mice lacking A2A receptors which were chronically treated with methamphetamine (1mg/kg/day, i.p. for 10 days) or saline. Similar to wild-type animals, chronic methamphetamine administration induced a region-specific upregulation of oxytocin receptor binding in the amygdala and hypothalamus of A2A receptor knockout mice and no genotype effect was observed. These results indicate that chronic methamphetamine use can induce profound neuroadaptations of the oxytocinergic receptor

  13. NPY and carbachol raise Ca2+ in SK-N-MC cells by three different mechanisms. Evidence for inositol phosphate-independent Ca2+ mobilization by NPY

    NARCIS (Netherlands)

    Michel, M. C.; Feth, F.; Stieneker, M.; Rascher, W.

    1992-01-01

    We have compared the mechanism of NPY- and carbachol-stimulated Ca2+ increases in SK-N-MC cells. NPY stimulated Ca2+ mobilization via a pertussis toxin-sensitive mechanism. Carbachol stimulated Ca2+ mobilization and influx via pertussis toxin-insensitive and -sensitive mechanisms, respectively.

  14. Mechanism

    Directory of Open Access Journals (Sweden)

    Yao Yu

    2010-01-01

    Full Text Available The kinematics analysis method of a novel 3-DOF wind tunnel mechanism based on cable-driven parallel mechanism is provided. Rodrigues' parameters are applied to express the transformation matrix of the wire-driven mechanism in the paper. The analytical forward kinematics model is described as three quadratic equations using three Rodridgues' parameters based on the fundamental theory of parallel mechanism. Elimination method is used to remove two of the variables, so that an eighth-order polynomial with one variable is derived. From the equation, the eight sets of Rodridgues' parameters and corresponding Euler angles for the forward kinematical problem can be obtained. In the end, numerical example of both forward and inverse kinematics is included to demonstrate the presented forward-kinematics solution method. The numerical results show that the method for the position analysis of this mechanism is effective.

  15. Insulin-like growth factor-binding protein-2 promotes prostate cancer cell growth via IGF-dependent or -independent mechanisms and reduces the efficacy of docetaxel

    Science.gov (United States)

    Uzoh, C C; Holly, J M P; Biernacka, K M; Persad, R A; Bahl, A; Gillatt, D; Perks, C M

    2011-01-01

    Background: The development of androgen independence, chemo-, and radioresistance are critical markers of prostate cancer progression and the predominant reasons for its high mortality. Understanding the resistance to therapy could aid the development of more effective treatments. Aim: The aim of this study is to investigate the effects of insulin-like growth factor-binding protein-2 (IGFBP-2) on prostate cancer cell proliferation and its effects on the response to docetaxel. Methods: DU145 and PC3 cells were treated with IGFBP-2, insulin-like growth factor I (IGF-I) alone or in combination with blockade of the IGF-I receptor or integrin receptors. Cells were also treated with IGFBP-2 short interfering ribonucleic acid with or without a PTEN (phosphatase and tensin homologue deleted on chromosome 10) inhibitor or docetaxel. Tritiated thymidine incorporation was used to measure cell proliferation and Trypan blue cell counting for cell death. Levels of IGFBP-2 mRNA were measured using RT–PCR. Abundance and phosphorylation of proteins were assessed using western immunoblotting. Results: The IGFBP-2 promoted cell growth in both cell lines but with PC3 cells this was in an IGF-dependent manner, whereas with DU145 cells the effect was independent of IGF receptor activation. This IGF-independent effect of IGFBP-2 was mediated by interaction with β-1-containing integrins and a consequent increase in PTEN phosphorylation. We also determined that silencing IGFBP-2 in both cell lines increased the sensitivity of the cells to docetaxel. Conclusion: The IGFBP-2 has a key role in the growth of prostate cancer cells, and silencing IGFBP-2 expression reduced the resistance of these cells to docetaxel. Targeting IGFBP-2 may increase the efficacy of docetaxel. PMID:21487405

  16. Light-dependent and -independent behavioral effects of extremely low frequency magnetic fields in a land snail are consistent with a parametric resonance mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Prato, F.S.; Thomas, A.W. [Univ. of Western Ontario, London, Ontario (Canada)]|[St. Joseph`s Health Centre, London, Ontario (Canada); Kavaliers, M. [Univ. of Western Ontario, London, Ontario (Canada); Cullen, A.P. [Univ. of Waterloo, Ontario (Canada). School of Optometry

    1997-05-01

    Exposure to extremely low frequency (ELF) magnetic fields has been shown to attenuate endogenous opioid peptide mediated antinociception or analgesia in the terrestrial pulmonate snail, Cepaea nemoralis. Here the authors examine the roles of light in determining this effect and address the mechanisms associated with mediating the effects of the ELF magnetic fields in both the presence and absence of light. Specifically, they consider whether the magnetic field effects involve an indirect induced electric current mechanism or a direct effect such as a parametric resonance mechanism (PRM). They exposed snails in both the presence and absence of light at three different frequencies (30, 60, and 120 Hz) with static field values (B{sub DC}) and ELF magnetic field amplitude (peak) and direction (B{sub AC}) set according to the predictions of the PRM for Ca{sup 2+}. Analgesia was induced in snails by injecting them with an enkephalinase inhibitor, which augments endogenous opioid (enkephalin) activity. They found that the magnetic field exposure reduced this opioid-induced analgesia significantly more if the exposure occurred in the presence rather than the absence of light. However, the percentage reduction in analgesia in both the presence and absence of light was not dependent on the ELF frequency. This finding suggests that in both the presence and the absence of light the effect of the ELF magnetic field was mediated by a direct magnetic field detection mechanism such as the PRM rather than an induced current mechanism.

  17. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  18. Orexin A affects HepG2 human hepatocellular carcinoma cells glucose metabolism via HIF-1α-dependent and -independent mechanism.

    Science.gov (United States)

    Wan, Xing; Liu, Yuanyuan; Zhao, Yuyan; Sun, Xiaoqi; Fan, Dongxiao; Guo, Lei

    2017-01-01

    Orexins are hypothalamic neuropeptides that regulate feeding, reward, wakefulness and energy homeostasis. The present study sought to characterize the involvement of orexin A in glucose metabolism in HepG2 human hepatocellular carcinoma cells, and investigated the role of hypoxia-inducible factor-1α (HIF-1α) in the response. HepG2 cells were exposed to different concentrations of orexin A (10-9 to 10-7 M) in vitro, without or with the orexin receptor 1 (OX1R) inhibitor (SB334867), HIF-1α inhibitor (YC-1) or a combination of both inhibitors. Subsequently, OX1R, HIF-1α expression and localization, glucose uptake, glucose transporter 1 (GLUT1) expression and ATP content were measured. We further investigated the intracellular fate of glucose by measuring the gene expression of pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase (LDHA) and pyruvate dehydrogenase B (PDHB), as well as metabolite levels including lactate generation and mitochondrial pyruvate dehydrogenase (PDH) activity. The activity of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was also assessed. Our results showed that the expression of OX1R was predominantly located in the nucleus in HepG2 cells. Orexin A oxygen-independently promoted the mRNA and protein expression of HIF-1α as well as its nuclear accumulation in HepG2 cells and the elevated HIF-1α protein was associated, at least partly, with the activation of the PI3K/Akt/mTOR pathway. Orexin A stimulated GLUT1 expression, glucose uptake as well as ATP generation in HepG2 cells via OX1R acting through the HIF-1α pathway. Moreover, orexin A inhibited LDHA, PDK1 expression and lactate production, stimulated PDHB expression and PDH enzyme activity independent of HIF-1α. Our results indicated that orexin signaling facilitated the glucose flux into mitochondrial oxidative metabolism rather than glycolysis in HepG2 cells. These findings provide new insight into the regulation of glucose metabolism

  19. Elucidating the mechanisms of fear extinction in developing animals: a special case of NMDA receptor-independent extinction in adolescent rats.

    Science.gov (United States)

    Bisby, Madelyne A; Baker, Kathryn D; Richardson, Rick

    2018-04-01

    NMDA receptors (NMDARs) are considered critical for the consolidation of extinction but recent work challenges this assumption. Namely, NMDARs are not required for extinction retention in infant rats as well as when extinction training occurs for a second time (i.e., reextinction) in adult rats. In this study, a possible third instance of NMDAR-independent extinction was tested. Although adolescents typically exhibit impaired extinction retention, rats that are conditioned as juveniles and then given extinction training as adolescents (JuvCond-AdolesExt) have good extinction retention. Unexpectedly, this good extinction retention is not associated with an up-regulation of a synaptic plasticity marker in the medial prefrontal cortex, a region implicated in extinction consolidation. In the current study, rats received either the noncompetitive NMDAR antagonist MK801 (0.1 mg/kg, s.c.) or saline before extinction training. In several experiments, rats conditioned and extinguished as juveniles, adolescents, or adults exhibited impaired extinction retention after MK801 compared to saline, but this effect was not observed in JuvCond-AdolesExt rats. Further experiments ruled out several alternative explanations for why NMDAR antagonism did not affect extinction retention in adolescents extinguishing fear learned as a juvenile. These results illustrate yet another circumstance in which NMDARs are not required for successful extinction retention and highlight the complexity of fear inhibition across development. © 2018 Bisby et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Proteasome-dependent and -independent mechanisms for FosB destabilization: identification of FosB degron domains and implications for DeltaFosB stability.

    Science.gov (United States)

    Carle, Tiffany L; Ohnishi, Yoshinori N; Ohnishi, Yoko H; Alibhai, Imran N; Wilkinson, Matthew B; Kumar, Arvind; Nestler, Eric J

    2007-05-01

    The transcription factor DeltaFosB (Delta FosB) accumulates in a region-specific manner in the brain during chronic exposure to stress, drugs of abuse or other chronic stimuli. Once induced, DeltaFosB persists in the brain for at least several weeks following cessation of the chronic stimulus. The biochemical basis of the persistent expression of DeltaFosB has remained unknown. Here, we show that the FosB C-terminus, absent in DeltaFosB as a result of alternative splicing, contains two degron domains. Pulse-chase experiments of C-terminal truncation mutants of full-length FosB indicate that removal of its most C-terminal degron increases its half-life approximately fourfold, and prevents its proteasome-mediated degradation and ubiquitylation, properties similar to DeltaFosB. In addition, removal of a second degron domain, which generates DeltaFosB, further stabilizes FosB approximately twofold, but in a proteasome-independent manner. These data indicate that alternative splicing specifically removes two destabilizing elements from FosB in order to generate a longer-lived transcription factor, DeltaFosB, in response to chronic perturbations to the brain.

  1. Cas Ilgly Induces Apoptosis in Glioma C6 Cells In Vitro and In Vivo through Caspase-Dependent and Caspase-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Cristina Trejo-Solís

    2005-06-01

    Full Text Available In this work, we investigated the effects of Casiopeina Il-gly (Cas ILgly—a new copper compound exhibiting antineoplastic activity—on glioma C6 cells under both in vitro and in vivo conditions, as an approach to identify potential therapeutic agents against malignant glioma. The exposure of C6 cells to Cas Ilgly significantly inhibited cell proliferation, increased reactive oxygen species (ROS formation, and induced apoptosis in a dose-dependent manner. In cultured C6 cells, Cas Ilgly caused mitochondrio-nuclear translocation of apoptosis induction factor (AIF and endonuclease G at all concentrations tested; in contrast, fragmentation of nucleosomal DNA, cytochrome c release, and caspase-3 activation were observed at high concentrations. Administration of N-acetyl-l-cystein, an antioxidant, resulted in significant inhibition of AIF translocation, nucleosomal DNA fragmentation, and caspase-3 activation induced by Cas Ilgly. These results suggest that caspase-dependent and caspase-independent pathways both participate in apoptotic events elicited by Cas Ilgly. ROS formation induced by Cas Ilgly might also be involved in the mitochondrio-nuclear translocation of AIF and apoptosis. In addition, treatment of glioma C6-positive rats with Cas Ilgly reduced tumor volume and mitotic and cell proliferation indexes, and increased apoptotic index. Our findings support the use of Cas Ilgly for the treatment of malignant gliomas.

  2. Poly(ADP-ribosyl)ation as a fail-safe, transcription-independent, suicide mechanism in acutely DNA-damaged cells: a hypothesis

    International Nuclear Information System (INIS)

    Nagele, A.

    1995-01-01

    Poly(ADP-ribose) polymerase is an abundant nuclear protein that is higly conserved and consitutively expressed in all higher eukaryotic cells in investigated. Today, after about two decades of intensive research, we have a fairly comprehensive picture of its remarkable enzymatic functions and of its molecular structure. Its physiological role, however, remains controversial. The present hypothesis attempts to reconcile the different findings. By extending and earlier hypothesis, it is proposed that poly(ADP-ribosy)ation is primarily a mechanism to prevent survival of mutated, possibly apoptosis-incompetent, cells after acute DNA-damage. (orig.)

  3. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism

    DEFF Research Database (Denmark)

    Hattori, Shohei; Schmidt, Johan Albrecht; Johnson, Matthew Stanley

    2013-01-01

    Natural climate variation, such as that caused by volcanoes, is the basis for identifying anthropogenic climate change. However, knowledge of the history of volcanic activity is inadequate, particularly concerning the explosivity of specific events. Some material is deposited in ice cores...... in glacial sulfate. We describe a mechanism, photoexcitation of SO2, that links the two, yielding a useful metric of the explosivity of historic volcanic events. A plume model of S(IV) to S(VI) conversion was constructed including photochemistry, entrainment of background air, and sulfate deposition...

  4. The Autonomic Nervous System Regulates the Heart Rate through cAMP-PKA Dependent and Independent Coupled-Clock Pacemaker Cell Mechanisms.

    Science.gov (United States)

    Behar, Joachim; Ganesan, Ambhighainath; Zhang, Jin; Yaniv, Yael

    2016-01-01

    Sinoatrial nodal cells (SANCs) generate spontaneous action potentials (APs) that control the cardiac rate. The brain modulates SANC automaticity, via the autonomic nervous system, by stimulating membrane receptors that activate (adrenergic) or inactivate (cholinergic) adenylyl cyclase (AC). However, these opposing afferents are not simply additive. We showed that activation of adrenergic signaling increases AC-cAMP/PKA signaling, which mediates the increase in the SANC AP firing rate (i.e., positive chronotropic modulation). However, there is a limited understanding of the underlying internal pacemaker mechanisms involved in the crosstalk between cholinergic receptors and the decrease in the SANC AP firing rate (i.e., negative chronotropic modulation). We hypothesize that changes in AC-cAMP/PKA activity are crucial for mediating either decrease or increase in the AP firing rate and that the change in rate is due to both internal and membrane mechanisms. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, PKA activity and AP firing rate were tightly linked in response to either adrenergic receptor stimulation (by isoproterenol, ISO) or cholinergic stimulation (by carbachol, CCh). To identify the main molecular targets that mediate between PKA signaling and pacemaker function, we developed a mechanistic computational model. The model includes a description of autonomic-nervous receptors, post- translation signaling cascades, membrane molecules, and internal pacemaker mechanisms. Yielding results similar to those of the experiments, the model simulations faithfully reproduce the changes in AP firing rate in response to CCh or ISO or a combination of both (i.e., accentuated antagonism). Eliminating AC-cAMP-PKA signaling abolished the core effect of autonomic receptor stimulation on the AP firing rate. Specifically, disabling the phospholamban modulation of the SERCA activity resulted in a significantly reduced effect

  5. Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway.

    Science.gov (United States)

    Tulsulkar, Jatin; Glueck, Bryan; Hinds, Terry D; Shah, Zahoor A

    2016-04-01

    It is well known that gender differences exist in experimental or clinical stroke with respect to brain damage and loss of functional outcome. We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia using male mice, and the mechanism of action was attributed to the upregulation of the heme oxygenase 1 (HO1)/Wnt pathway. Here, we sought to investigate whether EGb 761's protective effect in ovariectomized female mice following stroke is also mediated by the HO1/Wnt pathway. Female mice were ovariectomized (OVX) to remove the protective effect of estrogen and were treated with EGb 761 for 7 days prior to inducing permanent middle cerebral artery occlusion (pMCAO) and allowed to survive for an additional 7 days. At day 8, animals were sacrificed, and the brains were harvested for infarct volume analysis, western blots, and immunohistochemistry. The OVX female mice treated with EGb 761 showed significantly lower infarct size as compared to Veh/OVX animals. EGb 761 treatment in female mice inhibited apoptosis by preventing caspase-3 cleavage and blocking the extrinsic apoptotic pathway. EGb 761 pretreatment significantly enhanced neurogenesis in OVX mice as compared to the Veh/OVX group and significantly upregulated androgen receptor expression with no changes in HO1/Wnt signaling. These results suggest that EGb 761 prevented brain damage in OVX female mice by improving grip strength and neurological deficits, and the mechanism of action is not through HO1/Wnt but via blocking the extrinsic apoptotic pathway.

  6. 15-Deoxy-Δ12,14-prostaglandin J2 induces renal epithelial cell death through NF-κB-dependent and MAPK-independent mechanism

    International Nuclear Information System (INIS)

    Kang, Dae Sik; Kwon, Chae Hwa; Park, Ji Yeon; Kim, Jae Ho; Woo, Jae Suk; Jung, Jin Sup; Kim, Yong Keun

    2006-01-01

    The peroxisome proliferator-activated receptor-γ (PPARγ) ligand 15d-PGJ 2 induces cell death in renal proximal tubular cells. However, the underlying molecular mechanism(s) remains unidentified. The present study was undertaken to examine the roles of reactive oxygen species (ROS), mitogen-activated protein kinase, and NF-κB in opossum kidney (OK) cell death induced by 15d-PGJ 2 . Treatment of OK cells with 15d-PGJ 2 resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. 15d-PGJ 2 increased ROS production and the effect was inhibited by catalase and N-acetylcysteine. The 15d-PGJ 2 -induced cell death was also prevented by these antioxidants, suggesting that the cell death was associated with ROS generation. The PPARγ antagonist GW9662 did not prevent the 15d-PGJ 2 -induced cell death. 15d-PGJ 2 caused a transient activation of extracellular signal-regulated kinase (ERK). However, inhibitors (PD98059 and U0126) of MEK, an ERK upstream kinase, did not alter the 15d-PGJ 2 -induced cell death. Transfection with constitutively active MEK and dominant-negative MEK had no effect on the cell death. 15d-PGJ 2 inhibited the NF-κB transcriptional activity, which was accompanied by an inhibition of nuclear translocation of the NF-κB subunit p65 and impairment in DNA binding. Inhibition of NF-κB with a NF-κB specific inhibitor pyrrolidinecarbodithioate and transfection with IκBα (S32A/36A) caused cell death. These results suggest that the 5d-PGJ 2 -induced OK cell death was associated with ROS production and NF-κB inhibition, but not with MAPK activation

  7. Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia.

    Directory of Open Access Journals (Sweden)

    Ryutaro Kimura

    Full Text Available SRY (sex-determining region Y is widely conserved in eutherian mammals as a sex-determining gene located on the Y chromosome. SRY proteins bind to the testis-specific enhancer of SOX9 (TES with SF1 to upregulate SOX9 expression in undifferentiated gonads of XY embryos of humans and mice. The core region within TES, named TESCO, is an important enhancer for mammalian sex determination. We show that TESCO of the genus Tokudaia lost enhancer activity caused by mutations in its SRY and SF1 binding sites. Two species of Tokudaia do not have the Y chromosome or SRY, and one species has multiple SRYs located on the neo-Y chromosome consisting of the Y fused with an autosome. The sequence of Tokudaia TESCO exhibited more than 83% identity with mouse TESCO, however, nucleotide substitution(s were found in two out of three SRY binding sites and in five out of six SF1 binding sites. TESCO of all species showed low enhancer activity in cells co-transfected with SRY and SF1, and SOX9 and SF1 in reporter gene assays. Mutated TESCO, in which nucleotide substitutions found in SRY and SF1 binding sites were replaced with mouse sequence, recovered the activity. Furthermore, SRYs of the SRY-positive species could not activate the mutated TESCO or mouse TESCO, suggesting that SRYs lost function as a sex-determining gene any more. Our results indicate that the SRY dependent sex-determining mechanism was lost in a common ancestor of the genus Tokudaia caused by nucleotide substitutions in SRY and SF1 binding sites after emergence of a new sex-determining gene. We present the first evidence for an intermediate stage of the switchover from SRY to a new sex-determining gene in the evolution of mammalian sex-determining mechanism.

  8. Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia.

    Science.gov (United States)

    Kimura, Ryutaro; Murata, Chie; Kuroki, Yoko; Kuroiwa, Asato

    2014-01-01

    SRY (sex-determining region Y) is widely conserved in eutherian mammals as a sex-determining gene located on the Y chromosome. SRY proteins bind to the testis-specific enhancer of SOX9 (TES) with SF1 to upregulate SOX9 expression in undifferentiated gonads of XY embryos of humans and mice. The core region within TES, named TESCO, is an important enhancer for mammalian sex determination. We show that TESCO of the genus Tokudaia lost enhancer activity caused by mutations in its SRY and SF1 binding sites. Two species of Tokudaia do not have the Y chromosome or SRY, and one species has multiple SRYs located on the neo-Y chromosome consisting of the Y fused with an autosome. The sequence of Tokudaia TESCO exhibited more than 83% identity with mouse TESCO, however, nucleotide substitution(s) were found in two out of three SRY binding sites and in five out of six SF1 binding sites. TESCO of all species showed low enhancer activity in cells co-transfected with SRY and SF1, and SOX9 and SF1 in reporter gene assays. Mutated TESCO, in which nucleotide substitutions found in SRY and SF1 binding sites were replaced with mouse sequence, recovered the activity. Furthermore, SRYs of the SRY-positive species could not activate the mutated TESCO or mouse TESCO, suggesting that SRYs lost function as a sex-determining gene any more. Our results indicate that the SRY dependent sex-determining mechanism was lost in a common ancestor of the genus Tokudaia caused by nucleotide substitutions in SRY and SF1 binding sites after emergence of a new sex-determining gene. We present the first evidence for an intermediate stage of the switchover from SRY to a new sex-determining gene in the evolution of mammalian sex-determining mechanism.

  9. Recombinant Tissue Plasminogen Activator Induces Neurological Side Effects Independent on Thrombolysis in Mechanical Animal Models of Focal Cerebral Infarction: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Mei-Xue Dong

    Full Text Available Recombinant tissue plasminogen activator (rtPA is the only effective drug approved by US FDA to treat ischemic stroke, and it contains pleiotropic effects besides thrombolysis. We performed a meta-analysis to clarify effect of tissue plasminogen activator (tPA on cerebral infarction besides its thrombolysis property in mechanical animal stroke.Relevant studies were identified by two reviewers after searching online databases, including Pubmed, Embase, and ScienceDirect, from 1979 to 2016. We identified 6, 65, 17, 12, 16, 12 and 13 comparisons reporting effect of endogenous tPA on infarction volume and effects of rtPA on infarction volume, blood-brain barrier, brain edema, intracerebral hemorrhage, neurological function and mortality rate in all 47 included studies. Standardized mean differences for continuous measures and risk ratio for dichotomous measures were calculated to assess the effects of endogenous tPA and rtPA on cerebral infarction in animals. The quality of included studies was assessed using the Stroke Therapy Academic Industry Roundtable score. Subgroup analysis, meta-regression and sensitivity analysis were performed to explore sources of heterogeneity. Funnel plot, Trim and Fill method and Egger's test were obtained to detect publication bias.We found that both endogenous tPA and rtPA had not enlarged infarction volume, or deteriorated neurological function. However, rtPA would disrupt blood-brain barrier, aggravate brain edema, induce intracerebral hemorrhage and increase mortality rate.This meta-analysis reveals rtPA can lead to neurological side effects besides thrombolysis in mechanical animal stroke, which may account for clinical exacerbation for stroke patients that do not achieve vascular recanalization with rtPA.

  10. Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP Kinase-dependent and -independent mechanisms in mouse RAW264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Lee Jong

    2012-05-01

    MWCNTs. Furthermore, our work demonstrates that COX-2 induction by MWCNTs in RAW264.7 macrophages is ERK1,2-dependent, while iNOS induction by MWCNTs is ERK1,2-independent. Our data also suggest contributory physicochemical factors other than residual Ni catalyst play a role in COX-2 induction to MWCNT.

  11. IFN-Gamma-Dependent and Independent Mechanisms of CD4⁺ Memory T Cell-Mediated Protection from Listeria Infection.

    Science.gov (United States)

    Meek, Stephanie M; Williams, Matthew A

    2018-02-13

    While CD8⁺ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4⁺ T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely infecting strain of lymphocytic choriomeningitis virus (LCMV), followed by a heterologous rechallenge with Listeria monocytogenes recombinantly expressing the MHC Class II-restricted LCMV epitope, GP 61-80 (Lm-gp61). We found that heterologous Lm-gp61 rechallenge resulted in robust activation of CD4⁺ memory T cells and that they were required for rapid bacterial clearance. We further assessed the relative roles of TNF and IFNγ in the direct anti-bacterial function of CD4⁺ memory T cells. We found that disruption of TNF resulted in a complete loss of protection mediated by CD4⁺ memory T cells, whereas disruption of IFNγ signaling to macrophages results in only a partial loss of protection. The protective effect mediated by CD4⁺ T cells corresponded to the rapid accumulation of pro-inflammatory macrophages in the spleen and an altered inflammatory environment in vivo. Overall, we conclude that protection mediated by CD4⁺ memory T cells from heterologous Listeria challenge is most directly dependent on TNF, whereas IFNγ only plays a minor role.

  12. Artesunate Exerts a Direct Effect on Endothelial Cell Activation and NF-κB Translocation in a Mechanism Independent of Plasmodium Killing

    Science.gov (United States)

    Souza, Mariana C.; Paixão, Flávio Henrique Marcolino; Ferraris, Fausto K.; Ribeiro, Isabela; Henriques, Maria das Graças M. O.

    2012-01-01

    Artemisinin and its derivates are an important class of antimalarial drug and are described to possess immunomodulatory activities. Few studies have addressed the effect of artesunate in the murine malaria model or its effect on host immune response during malaria infection. Herein, we study the effect of artesunate treatment and describe an auxiliary mechanism of artesunate in modulating the inflammatory response during experimental malaria infection in mice. Treatment with artesunate did not reduce significantly the parasitemia within 12 h, however, reduced BBB breakdown and TNF-α mRNA expression in the brain tissue of artesunate-treated mice. Conversely, mefloquine treatment was not able to alter clinical features. Notably, artesunate pretreatment failed to modulate the expression of LFA-1 in splenocytes stimulated with parasitized red blood cells (pRBCs) in vitro; however, it abrogated the expression of ICAM-1 in pRBC-stimulated endothelial cells. Accordingly, a cytoadherence in vitro assay demonstrated that pRBCs did not adhere to artesunate-treated vascular endothelial cells. In addition, NF-κB nuclear translocation in endothelial cells stimulated with pRBCs was impaired by artesunate treatment. Our results suggest that artesunate is able to exert a protective effect against the P. berghei-induced inflammatory response by inhibiting NF-κB nuclear translocation and the subsequent expression of ICAM-1. PMID:23097741

  13. The ent-15α-Acetoxykaur-16-en-19-oic Acid Relaxes Rat Artery Mesenteric Superior via Endothelium-Dependent and Endothelium-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Êurica Adélia Nogueira Ribeiro

    2012-01-01

    Full Text Available The objective of the study was to investigate the mechanism of the relaxant activity of the ent-15α-acetoxykaur-16-en-19-oic acid (KA-acetoxy. In rat mesenteric artery rings, KA-acetoxy induced a concentration-dependent relaxation in vessels precontracted with phenylephrine. In the absence of endothelium, the vasorelaxation was significantly shifted to the right without reduction of the maximum effect. Endothelium-dependent relaxation was significantly attenuated by pretreatment with L-NAME, an inhibitor of the NO-synthase (NOS, indomethacin, an inhibitor of the cyclooxygenase, L-NAME + indomethacin, atropine, a nonselective antagonist of the muscarinic receptors, ODQ, selective inhibitor of the guanylyl cyclase enzyme, or hydroxocobalamin, a nitric oxide scavenger. The relaxation was completely reversed in the presence of L-NAME + 1 mM L-arginine or L-arginine, an NO precursor. Diterpene-induced relaxation was not affected by TEA, a nonselective inhibitor of K+ channels. The KA-acetoxy antagonized CaCl2-induced contractions in a concentration-dependent manner and also inhibited an 80 mM KCl-induced contraction. The KA-acetoxy did not interfere with Ca2+ release from intracellular stores. The vasorelaxant induced by KA-acetoxy seems to involve the inhibition of the Ca2+ influx and also, at least in part, by endothelial muscarinic receptors activation, NO and PGI2 release.

  14. Drosophila lipophorin receptors mediate the uptake of neutral lipids in oocytes and imaginal disc cells by an endocytosis-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Esmeralda Parra-Peralbo

    2011-02-01

    Full Text Available Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption, storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2 (lpr1 and lpr2, two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR family, are essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms containing a particular LDLR type A module mediate neutral