WorldWideScience

Sample records for bmp-2 co-dependently induce

  1. S100A4 and BMP-2 Co-Dependently Induce Vascular Smooth Muscle Cell Migration via pERK and Chloride Intracellular Channel 4 (CLIC4)

    Science.gov (United States)

    Spiekerkoetter, Edda; Guignabert, Christophe; de Jesus Perez, Vinicio; Alastalo, Tero-Pekka; Powers, Janine M; Wang, Lingli; Lawrie, Allan; Ambartsumian, Noona; Schmidt, Ann-Marie; Berryman, Mark; Ashley, Richard H; Rabinovitch, Marlene

    2009-01-01

    Rationale S100A4/Mts1 is implicated in motility of human pulmonary artery smooth muscle cells (hPASMC), through an interaction with the receptor for advanced glycation end products (RAGE). Objective We hypothesized that S100A4/Mts1-mediated hPASMC motility might be enhanced by loss of function of bone morphogenetic protein (BMP) receptor (R) II, observed in pulmonary arterial hypertension (PAH). Methods and Results Both S100A4/Mts1 (500ng/ml) and BMP-2 (10ng/ml) induce migration of hPASMCS in a novel co-dependent manner, in that the response to either ligand is lost with anti-RAGE or BMPRII siRNA. Phosphorylation of ERK is induced by both ligands and is required for motility by inducing MMP2 activity, but phosphoERK1/2 is blocked by anti-RAGE and not by BMPRII siRNA. In contrast, BMPRII siRNA, but not anti-RAGE, reduces expression of intracellular chloride channel 4 (CLIC4), a scaffolding molecule necessary for motility in response to S100A4/Mts1 or BMP-2. Reduced CLIC4 expression does not interfere with S100A4/Mts1 internalization or its interaction with myosin heavy chain IIA (MHCIIA), but does alter alignment of MHCIIA and actin filaments creating the appearance of vacuoles. This abnormality is associated with reduced peripheral distribution and/or delayed activation of RhoA and Rac1, small GTPases required for retraction and extension of lamellipodiae in motile cells. Conclusions Our studies demonstrate how a single ligand (BMP-2 or S100A4/Mts1) can recruit multiple cell surface receptors to relay signals that coordinate events culminating in a functional response, i.e., cell motility. We speculate that this carefully controlled process limits signals from multiple ligands, but could be subverted in disease. PMID:19713532

  2. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  3. Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells.

    Science.gov (United States)

    Taşlı, P Neslihan; Aydın, Safa; Yalvaç, Mehmet Emir; Sahin, Fikrettin

    2014-03-01

    Bone morphogenetic proteins (BMPs) initiate, promote, and maintain odontogenesis and osteogenesis. In this study, we studied the effect of bone morphogenic protein 2 (BMP 2) and bone morphogenic protein 7 (BMP 7) as differentiation inducers in tooth and bone regeneration. We compared the effect of BMP 2 and BMP 7 on odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs). Third molar-derived hTGSCs were characterized with mesenchymal stem cell surface markers by flow cytometry. BMP 2 and BMP 7 were transfected into hTGSCs and the cells were seeded onto six-well plates. One day after the transfection, hTGSCs were treated with odontogenic and osteogenic mediums for 14 days. For confirmation of odontogenic and osteogenic differentiation, mRNA levels of BMP2, BMP 7, collagen type 1 (COL1A), osteocalsin (OCN), and dentin sialophosphoprotein (DSPP) genes were measured by quantitative real-time PCR. In addition to this, immunocytochemistry was performed by odontogenic and osteogenic antibodies and mineralization obtained by von Kossa staining. Our results showed that the BMP 2 and BMP 7 both promoted odontogenic and osteogenic differentiation of hTGSCs. Data indicated that BMP 2 treatment and BMP 7 treatment induce odontogenic differentiation without affecting each other, whereas they induce osteogenic differentiation by triggering expression of each other. These findings provide a feasible tool for tooth and bone tissue engineering.

  4. Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation.

    Science.gov (United States)

    Miszuk, Jacob M; Xu, Tao; Yao, Qingqing; Fang, Fang; Childs, Josh D; Hong, Zhongkui; Tao, Jianning; Fong, Hao; Sun, Hongli

    2018-03-01

    Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities in vitro , however, these bio-inert synthetic polymers produced limited BMP2-induced bone formation in vivo. We therefore hypothesize that functionalization of NF 3D PCL scaffolds with bone-like hydroxyapatite (HA) and BMP2 signaling activator phenamil will provide a favorable osteogenic niche for bone formation at low doses of BMP2. Compared to PCL-3D scaffolds, PCL/HA-3D scaffolds demonstrated synergistically enhanced osteogenic differentiation capabilities of C2C12 cells with phenamil. Importantly, in vivo studies showed this synergism was able to generate significantly increased new bone in an ectopic mouse model, suggesting PCL/HA-3D scaffolds act as a favorable synthetic extracellular matrix for bone regeneration.

  5. BMP2 induces PANC-1 cell invasion by MMP-2 overexpression through ROS and ERK.

    Science.gov (United States)

    Liu, Jun; Ben, Qi-Wen; Yao, Wei-Yan; Zhang, Jian-Jun; Chen, Da-Fan; He, Xiang-Yi; Li, Lei; Yuan, Yao-Zong

    2012-06-01

    The emerging roles of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers have drawn great attention in cancer research. We hypothesized that BMP2 promotes cancer metastasis by modulating MMP-2 secretion and activity through intracellular ROS regulation and ERK activation in human pancreatic cancer. Our data show that stimulation of PANC-1 cells with BMP2 induced MMP-2 secretion and activation, associated with decreased E-cadherin expression, resulting in epithelial-to-mesenchymal transformation (EMT) and cell invasion. Blockade of ROS by the ROS scavenger, 2-MPG, abolished cell invasion, inhibited the EMT process and decreased MMP-2 expression, suggesting ROS accumulation caused an increase in MMP-2 expression in BMP2-stimulated PANC-1 cell invasion. Furthermore, treatment of PANC-1 cells with 2-MPG or ERK inhibitor PD98059 reduced the phosphorylation of ERK, resulting in attenuation of BMP2-induced cell invasion and MMP-2 activation. Taken together, these results suggest that BMP2 induces the cell invasion of PANC-1 cells by enhancing MMP-2 secretion and acting through ROS accumulation and ERK activation.

  6. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  7. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Science.gov (United States)

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1(-/-) ) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/-) mice. In serum assays, Aldh1a1(-/-) mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/-) mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/-) mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/-) mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  8. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  9. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    International Nuclear Information System (INIS)

    Sato, Chieri; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime

    2012-01-01

    Highlights: ► We investigated the role of S1P signaling for osteoblast differentiation. ► Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. ► S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. ► MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P receptor-mediated signaling plays a crucial role for osteoblast differentiation.

  10. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway.

    Science.gov (United States)

    Nepal, Manoj; Li, Liang; Cho, Hyoung Kwon; Park, Jong Kun; Soh, Yunjo

    2013-12-01

    Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Kaempferol-treated ATDC5 cells stained more intensely with alcian blue staining than control cells, suggesting greater synthesis of matrix proteoglycans in the kaempferol-treated cells. Similarly, kaempferol induced greater activation of alkaline phosphatase activity than control cells, and it enhanced the expression of chondrogenic marker genes, such as collagen type I, collagen type X, OCN, Runx2, and Sox9. Kaempferol induced an acute activation of extracellular signal-regulated kinase (ERK) but not c-jun N-terminal kinase or p38 MAP kinase. PD98059, an inhibitor of MAPK/ERK, decreased in stained cells treated with kaempferol. Furthermore, kaempferol greatly expressed the protein and mRNA levels of BMP-2, suggesting chondrogenesis was stimulated via a BMP-2 pathway. Taken together, our results suggest that kaempferol has chondromodulating effects via an ERK/BMP-2 signaling pathway and could potentially be used as a therapeutic agent for bone growth disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2015-04-01

    Full Text Available Background/Aims: Joint cartilage defects are difficult to treat due to the limited self-repair capacities of cartilage. Cartilage tissue engineering based on stem cells and gene enhancement is a potential alternative for cartilage repair. Bone morphogenetic protein 2 (BMP2 has been shown to induce chondrogenic differentiation in mesenchymal stem cells (MSCs; however, maintaining the phenotypes of MSCs during cartilage repair since differentiation occurs along the endochondral ossification pathway. In this study, hypoxia inducible factor, or (HIF-1α, was determined to be a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral bone formation. Methods: BMP2 was used to induce chondrogenic and osteogenic differentiation in stem cells and fetal limb development. After HIF-1α was added to the inducing system, any changes in the differentiation markers were assessed. Results: HIF-1α was found to potentiate BMP2-induced Sox9 and the expression of chondrogenesis by downstream markers, and inhibit Runx2 and the expression of osteogenesis by downstream markers in vitro. In subcutaneous stem cell implantation studies, HIF-1α was shown to potentiate BMP2-induced cartilage formation and inhibit endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited chondrocyte hypertrophy and endochondral ossification. Conclusion: The results of this study indicated that, when combined with BMP2, HIF-1α induced MSC differentiation could become a new method of maintaining cartilage phenotypes during cartilage tissue engineering.

  12. [miRNA profile of the human dental pulp cells during odontoblast differentiation induced by BMP-2].

    Science.gov (United States)

    Bao, Li-Rong; Zhao, Wen-Qing; Lin, Tian; Lu, Yan-Ling; Wu, Yu

    2017-10-01

    To screen and verify the differentially expressed microRNAs (miRNAs) during the differentiation of human dental pulp cells (hDPCs) to odontoblasts induced by BMP-2. The isolated hDPCs were cultured in vitro and induced by BMP-2. The levels of ALP, DMP-1 and DSPP were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). The potential characteristics of hDPCs were investigated by miRNA microarray and highly expressed miRNAs were selected with bio-information software for predicting target genes and their biological functions. Then the results were validated using qRT-PCR analysis for the selected miRNAs. Statistical analysis was performed using SPSS 18.0 software package. The expression of ALP, DSPP, and DMP-1 showed significantly higher levels in BMP-2 induced groups compared to the control group(Pfunction(33%), while the function of other 0.2% genes remained unknown. This study identified differential expression of miRNAs in BMP-2-induced odontoblastic differentiation of hDPCs, thus contributing to further investigations of regulatory mechanisms and biological effect of target genes in BMP-2-induced odontoblastic differentiation of hDPCs.

  13. BMP-2 induces EMT and breast cancer stemness through Rb and CD44

    DEFF Research Database (Denmark)

    Huang, Peide; Chen, Anan; He, Weiyi

    2017-01-01

    Bone morphogenetic protein 2 (BMP-2) has been reported to facilitate epithelial-to-mesenchymal transition (EMT) and bone metastasis in breast cancer xenograft models. To investigate the role of BMP-2 in the development of breast cancer stem cells (BCSCs), and to further elucidate the mechanisms u...... then contribute to breast cancer metastasis. These findings may be helpful for developing new strategies for the treatment and prognosis of advanced breast cancer....

  14. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells.

    Science.gov (United States)

    Son, Hyo-Eun; Kim, Eun-Jung; Jang, Won-Gu

    2018-01-15

    Curcumin (diferuloylmethane or [1E,6E]-1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6heptadiene-3,5-dione) is a phenolic natural product derived from the rhizomes of the turmeric plant, Curcuma longa. It is reported to have various biological actions such as anti-oxidative, anti-inflammatory, and anti-cancer effects. However, the molecular mechanism of osteoblast differentiation by curcumin has not yet been reported. The cytotoxicity of curcumin was identified using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of osteogenic markers and endoplasmic reticulum (ER) stress markers in C3H1-T1/2 cells were measured using reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity in C3H10T1/2 cells. Transcriptional activity was detected using a luciferase reporter assay. Curcumin increased the expression of genes such as distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OC), which subsequently induced osteoblast differentiation in C3H10T1/2 cells. In addition, ALP activity and mineralization was found to be increased by curcumin treatment. Curcumin also induced mild ER stress similar to bone morphogenetic protein 2 (BMP2) function in osteoblast cells. Next, we confirmed that curcumin increased mild ER stress and osteoblast differentiation similar to BMP2 in C3H10T1/2 mesenchymal stem cells. Transient transfection studies also showed that curcumin increased ATF6-Luc activity, while decreasing the activities of CREBH-Luc and SMILE-Luc. In addition, similar to BMP2, curcumin induced the phosphorylation of Smad 1/5/9. Overall, these results demonstrate that curcumin-induced mild ER stress increases osteoblast differentiation via ATF6 expression in C3H10T1/2 cells. Copyright © 2017. Published by Elsevier Inc.

  15. Bone morphogenetic protein 2 (BMP2) induces growth suppression and enhances chemosensitivity of human colon cancer cells

    DEFF Research Database (Denmark)

    Vishnubalaji, Radhakrishnan; Yue, Shijun; Alfayez, Musaad

    2016-01-01

    expression were assessed using qRT-PCR. AlamarBlue assay was used to assess cell viability in vitro. In vivo experiments were conducted using SCID mice. RESULTS: Our data revealed frequent downregulation of BMP2 in primary CRC tissues. Additionally, interrogation of publically available gene expression......, suggesting that restoration of BMP2 expression could be a potential therapeutic strategy for CRC....

  16. Conditions Inducing Excessive O-GlcNAcylation Inhibit BMP2-Induced Osteogenic Differentiation of C2C12 Cells.

    Science.gov (United States)

    Gu, Hanna; Song, Mina; Boonanantanasarn, Kanitsak; Baek, Kyunghwa; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa

    2018-01-09

    Hyperglycemic conditions in diabetic patients can affect various cellular functions, including the modulation of osteogenic differentiation. However, the molecular mechanisms by which hyperglycemia affects osteogenic differentiation are yet to be clarified. This study aimed to investigate whether the aberrant increase in protein O -linked-β- N -acetylglucosamine glycosylation ( O -GlcNAcylation) contributes to the suppression of osteogenic differentiation due to hyperglycemia. To induce osteogenic differentiation, C2C12 cells were cultured in the presence of recombinant human bone morphogenetic protein 2 (BMP2). Excessive protein O -GlcNAcylation was induced by treating C2C12 cells with high glucose, glucosamine, or N -acetylglucosamine concentrations or by O -GlcNAc transferase (OGT) overexpression. The effect of O -GlcNAcylation on osteoblast differentiation was then confirmed by examining the expression levels of osteogenic marker gene mRNAs, activity of alkaline phosphatase, and transcriptional activity of Runx2, a critical transcription factor for osteoblast differentiation and bone formation. Cell treatment with high glucose, glucosamine or N -acetylglucosamine increased O -GlcNAcylation of Runx2 and the total levels of O -GlcNAcylated proteins, which led to a decrease in the transcriptional activity of Runx2, expression levels of osteogenic marker genes (Runx2, osterix, alkaline phosphatase, and type I collagen), and activity of alkaline phosphatase. These inhibitory effects were rescued by lowering protein O -GlcNAcylation levels by adding STO45849, an OGT inhibitor, or by overexpressing β- N -acetylglucosaminidase. Our findings suggest that excessive protein O -GlcNAcylation contributes to high glucose-suppressed osteogenic differentiation.

  17. Early changes in retinal structure and BMP2 expression in the retina and crystalline lens of streptozotocin-induced diabetic pigs.

    Science.gov (United States)

    Jeong, Jae Seung; Lee, Woon-Kyu; Moon, Yeon Sung; Kim, Na Rae

    2017-09-01

    This study aims to evaluate early changes in retinal structure and BMP2 expression in the retina and crystalline lens by comparing streptozotocin-induced diabetic pigs and normal control group pigs. Five eye samples from five diabetic Micro-pigs (Medikinetics, Pyeongtaek, Korea) and five eye samples from five control pigs bred in a specific pathogen-free area were used. Diabetes was developed through intravenous injection of nicotinamide and streptozotocin, and the average fasting glucose level was maintained at 250 mg/dL or higher for 16 weeks. To evaluate BMP2 expression in the retina and crystalline lens, Western blotting was performed. In Hematoxylin and Eosin staining, most diabetic pigs showed structural abnormalities in the inner plexiform layer. The number of nuclei in the ganglion cell layer within the range of 10 4 µm 2 was 3.78±0.60 for diabetic pigs and 5.57±1.07 for control group pigs, showing a statistically significant difference. In immunohistochemical staining, diabetic retinas showed an overall increase in BMP2 expression. In Western blotting, the average BMP2/actin level of diabetic retinas was 1.19±0.05, showing a significant increase compared to the 1.06±0.03 of the control group retinas ( P =0.016). The BMP2/actin level of diabetic crystalline lenses was similar to the control group crystalline lenses ( P =0.730). Compared to control group pigs, the number of nuclei in the inner nuclear layer of retinas from streptozotocin-induced diabetic pigs decreased, while an increase in BMP2 expression was observed in the retina of diabetic pigs.

  18. Vitamin C-linker-conjugated tripeptide AHK stimulates BMP-2-induced osteogenic differentiation of mouse myoblast C2C12 cells.

    Science.gov (United States)

    Jung, Jung-Il; Park, Kyeong-Yong; Lee, Yura; Park, Mira; Kim, Jiyeon

    2018-03-15

    Vitamin C-linker-conjugated Ala-His-Lys tripeptide (Vit C-AHK) is a derivative of Vitamin C-conjugated tripeptides, which were originally developed as a component of a product for collagen synthesis enhancement or human dermal fibroblast growth. Here, we investigated the effect of Vit C-AHK on bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Vit C-AHK enhanced proliferation of C2C12 cells and induction of BMP-2-induced alkaline phosphatase, a typical marker of osteoblast differentiation. Vit C-AHK also stimulated the phosphorylation and translocation of Smad1/5/8 to the nucleus and phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2 and p38. In addition, Vit C-AHK enhanced the BMP-2-induced mRNA expression of osteoblast differentiation-related genes such as ALP, BMP-2, Osteocalcin, and Runx2. Our results suggest that Vit C-AHK exerts an enhancing effect on osteoblast proliferation and differentiation through activation of Smad1/5/8 and MAPK ERK1/2 and p38 signaling and without significant cytotoxicity. These results provide important data for the development of peptide-based bone-regenerative agents and treatment of bone-related disorders. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  19. Retinal and choroidal expression of BMP-2 in lens-induced myopia and recovery from myopia in guinea pigs.

    Science.gov (United States)

    Li, Honghui; Wu, Juan; Cui, Dongmei; Zeng, Junwen

    2016-03-01

    The present study investigated the retinal and choroidal expression of bone morphogenetic protein-2 (BMP-2) in myopia and in myopia recovery in a guinea pig model. For this investigation, two groups of guinea pigs, lens‑induced myopia and recovery from myopia, were used, and defocused myopia was induced the guinea pigs wearing ‑4.00 D lenses on the right eyes for 3 weeks, with the left eyes serving as the contralateral. In the following week, the lenses of the guinea pigs in the recovery group were removed, and the refractive power and axial length were measured. The expression of BMP‑2 in the eyeballs was observed using immunohistochemistry and analyzed using Western blot analysis. After 3 weeks, the eyes acquired relative myopia and longer axial lengths in the two groups of guinea pigs. After 1 week without lenses in the recovery group, the myopia and axial lengths regressed. Immunofluorescence staining showed that BMP‑2 was expressed in the posterior retina, RPE, choroid and sclera. The expression of BMP‑2 decreased in the myopic retina of the guinea pigs. Following the regression of myopia in the recovery group, no difference in the expression of BMP‑2 was observed between the recovered treated eyes and the contralateral eyes. The choroidal expression level of BMP‑2 in the treated eyes showed no significant changes in either group. Therefore, BMP‑2 may be involved in the development of myopia, however, it does not have a primary role in the retinal and choroidal signals regulating scleral remodeling.

  20. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy.

    Science.gov (United States)

    Shintani, Nahoko; Siebenrock, Klaus A; Hunziker, Ernst B

    2013-01-01

    Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated. Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the

  1. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy.

    Directory of Open Access Journals (Sweden)

    Nahoko Shintani

    Full Text Available Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2 induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2 and transforming growth factor beta 1 (TGF-ß1 were investigated.Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml for 4 (or 6 weeks. FGF-2 (10 ng/ml or TGF-ß1 (10 ng/ml was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2, but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume.TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the

  2. Delta-like 1/fetal antigen 1(DLK1/FA1) inhibits BMP2 induced osteoblast differentiation through modulation of NFκB signaling pathway

    DEFF Research Database (Denmark)

    Qiu, Weimin; Abdallah, Basem; Kassem, Moustapha

    DLK1/FA1 (delta-like 1/fetal antigen-1) is a negative regulator of bone mass that acts to inhibit osteoblast differentiation and stimulate osteoclast differentiation. However, the molecular mechanisms underlying these effects are not known. Thus, we studied the effect of DLK1/FA1 on different...... osteogenic factors-induced osteoblast differentiation. We identified DLK1/FA1 as an inhibitor of BMP2-induced osteogenesis in mouse myoblast C2C12 cells. Stable overexpression of DLK1/FA1 in C2C12 cells or the addition of its soluble form protein FA1 significantly inhibited BMP2-induced osteogenesis...... as assessed by reduced Alp activity and osteogenic gene expression including Alp, Col1a1, Runx2 and Bglap. In addition, DLK1/FA1 inhibited BMP signaling as demonstrated by reduced gene expression of BMP-responsive genes: Junb and Id1, reduced BMP2 induced luciferase activity in C2C12 BMP luciferase reporter...

  3. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.

    Science.gov (United States)

    Murphy, Meghan K; Huey, Daniel J; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-03-01

    Replacement of degenerated cartilage with cell-based cartilage products may offer a long-term solution to halt arthritis' degenerative progression. Chondrocytes are frequently used in cell-based FDA-approved cartilage products; yet human marrow-derived stromal cells (hMSCs) show significant translational potential, reducing donor site morbidity and maintaining their undifferentiated phenotype with expansion. This study sought to investigate the effects of transforming growth factor β1 (TGF-β1), growth/differentiation factor 5 (GDF-5), and bone morphogenetic protein 2 (BMP-2) during postexpansion chondrogenesis in human articular chondrocytes (hACs) and to compare chondrogenesis in passaged hACs with that of passaged hMSCs. Through serial expansion, chondrocytes dedifferentiated, decreasing expression of chondrogenic genes while increasing expression of fibroblastic genes. However, following expansion, 10 ng/mL TGF-β1, 100 ng/mL GDF-5, or 100 ng/mL BMP-2 supplementation during three-dimensional aggregate culture each upregulated one or more markers of chondrogenic gene expression in both hACs and hMSCs. Additionally, in both cell types, the combination of TGF-β1, GDF-5, and BMP-2 induced the greatest upregulation of chondrogenic genes, that is, Col2A1, Col2A1/Col1A1 ratio, SOX9, and ACAN, and synthesis of cartilage-specific matrix, that is, glycosaminoglycans (GAGs) and ratio of collagen II/I. Finally, TGF-β1, GDF-5, and BMP-2 stimulation yielded mechanically robust cartilage rich in collagen II and GAGs in both cell types, following 4 weeks maturation. This study illustrates notable success in using the self-assembling method to generate robust, scaffold-free neocartilage constructs using expanded hACs and hMSCs. © 2014 AlphaMed Press.

  4. The effect of core decompression on local expression of BMP-2, PPAR-γ and bone regeneration in the steroid-induced femoral head osteonecrosis

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-08-01

    Full Text Available Abstract Background To investigate the efficacy of the sole core decompression surgery for the treatment of steroid-induced femoral head osteonecrosis. Methods The model was established by administration of steroids in combination with horse serum. The rabbits with bilateral femoral head osteonecrosis were randomly selected to do the one side of core decompression. The other side was used as the sham. Quantitative RT-PCR and western blot techniques were used to measure the local expression of BMP-2 and PPAR-γ. Bone tissues from control and operation groups were histologically analyzed by H&E staining. The comparisons of the local expression of BMP-2 and PPAR-γ and the bone regeneration were further analyzed between different groups at each time point. Results The expression of BMP-2 in the osteonecrosis femoral head with or without decompression was significantly lower than that in normal animals. BMP-2 expression both showed the decreasing trend with the increased post-operation time. No significant difference of BMP-2 expression occurred between femoral head osteonecrosis with and without decompression. The PPAR-γ expression in the femoral head osteonecrosis with and without core decompression both was significantly higher than that in control. Its expression pattern showed a significantly increased trend with increased the post-operation time. However, there was no significant difference of PPAR-γ expression between the femoral head osteonecrosis with and without decompression at each time point. Histopathological analysis revealed that new trabecular bone and a large number of osteoblasts were observed in the steroid-induced femoral head osteonecrosis with lateral decompression at 8 weeks after surgery, but there still existed trabecular bone fractures and bone necrosis. Conclusions Although decompression takes partial effect in promoting bone regeneration in the early treatment of femoral head osteonecrosis, such an effect does not

  5. BMP2 induced osteogenic differentiation of human umbilical cord stem cells in a peptide-based hydrogel scaffold

    Science.gov (United States)

    Lakshmana, Shruthi M.

    Craniofacial tissue loss due to traumatic injuries and congenital defects is a major clinical problem around the world. Cleft palate is the second most common congenital malformation in the United States occurring with an incidence of 1 in 700. Some of the problems associated with this defect are feeding difficulties, speech abnormalities and dentofacial anomalies. Current treatment protocol offers repeated surgeries with extended healing time. Our long-term goal is to regenerate bone in the palatal region using tissue-engineering approaches. Bone tissue engineering utilizes osteogenic cells, osteoconductive scaffolds and osteoinductive signals. Mesenchymal stem cells derived from human umbilical cord (HUMSCs) are highly proliferative with the ability to differentiate into osteogenic precursor cells. The primary objective of the study was to characterize HUMSCs and culture them in a 3D hydrogel scaffold and investigate their osteogenic potential. PuraMatrix(TM) is an injectable 3D nanofiber scaffold capable of self-assembly when exposed to physiologic conditions. Our second objective was to investigate the effect of Bone Morphogenic Protein 2 (BMP2) in enhancing the osteogenic differentiation of HUMSCs encapsulated in PuraMatrix(TM). We isolated cells isolated from Wharton's Jelly region of the umbilical cord obtained from NDRI (New York, NY). Isolated cells satisfied the minimal criteria for mesenchymal stem cells (MSCs) as defined by International Society of Cell Therapy in terms of plastic adherence, fibroblastic phenotype, surface marker expression and osteogenic differentiation. Flow Cytometry analysis showed that cells were positive for CD73, CD90 and CD105 while negative for hematopoietic marker CD34. Alkaline phosphatase activity (ALP) of HUMSCs showed peak activity at 2 weeks (p<0.05). Cells were encapsulated in 0.2% PuraMatrix(TM) at cell densities of 10x104, 20x104, 40x10 4 and 80x104. Cell viability with WST and proliferation with Live-Dead cell assays

  6. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats.

    Science.gov (United States)

    Su, Yu-Wen; Chung, Rosa; Ruan, Chun-Sheng; Chim, Shek Man; Kuek, Vincent; Dwivedi, Prem P; Hassanshahi, Mohammadhossein; Chen, Ke-Ming; Xie, Yangli; Chen, Lin; Foster, Bruce K; Rosen, Vicki; Zhou, Xin-Fu; Xu, Jiake; Xian, Cory J

    2016-06-01

    Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016

  7. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Sørensen, O H

    2004-01-01

    . Osteoblast phenotypes were induced by either dexamethasone (Dex) or bone morphogenetic protein-2 (BMP-2). Bone marrow was obtained from biopsies at the posterior iliac spine. Cells were isolated by gradient centrifugation and grown to confluence. Cells were treated with 1 nM 1,25-dihydroxyvitamin D (vitamin...... activity was increased by Dex, but not by BMP-2 treatment. P1NP production was decreased after Dex treatment, while BMP-2 had no effect on P1NP levels. Osteocalcin production was low in cultures not stimulated with vitamin D. Dex or BMP-2 treatment alone did not affect the basic osteocalcin levels......, but in combination with vitamin D, BMP-2 increased the osteocalcin production, while Dex treatment completely suppressed osteocalcin production. Further, PTH-induced cAMP production was greatly enhanced by Dex treatment, whereas BMP-2 did not affect cAMP production. Finally, in vitro mineralization was greatly...

  8. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hui Xue

    Full Text Available The present study was designed to determine the underlying mechanism of low-intensity pulsed ultrasound (LIPUS induced alveolar bone remodeling and the role of BMP-2 expression in a rat orthodontic tooth movement model. Orthodontic appliances were placed between the homonymy upper first molars and the upper central incisors in rats under general anesthesia, followed by daily 20-min LIPUS or sham LIPUS treatment beginning at day 0. Tooth movement distances and molecular changes were evaluated at each observation point. In vitro and in vivo studies were conducted to detect HGF (Hepatocyte growth factor/Runx2/BMP-2 signaling pathways and receptor activator of NFκB ligand (RANKL expression by quantitative real time PCR (qRT-PCR, Western blot and immunohistochemistry. At day 3, LIPUS had no effect on the rat orthodontic tooth movement distance and BMP-2-induced alveolar bone remodeling. However, beginning at day 5 and for the following time points, LIPUS significantly increased orthodontic tooth movement distance and BMP-2 signaling pathway and RANKL expression compared with the control group. The qRT-PCR and Western blot data in vitro and in vivo to study BMP-2 expression were consistent with the immunohistochemistry observations. The present study demonstrates that LIPUS promotes alveolar bone remodeling by stimulating the HGF/Runx2/BMP-2 signaling pathway and RANKL expression in a rat orthodontic tooth movement model, and LIPUS increased BMP-2 expression via Runx2 regulation.

  9. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  10. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects.

    Science.gov (United States)

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.

  11. Dual delivery of rhPDGF-BB and bone marrow mesenchymal stromal cells expressing the BMP2 gene enhance bone formation in a critical-sized defect model.

    Science.gov (United States)

    Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo; Seol, Yang-Jo

    2013-11-01

    Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis.

  12. Strontium doping promotes bioactivity of rhBMP-2 upon calcium phosphate cement via elevated recognition and expression of BMPR-IA.

    Science.gov (United States)

    Huang, Baolin; Tian, Yu; Zhang, Wenjing; Ma, Yifan; Yuan, Yuan; Liu, Changsheng

    2017-11-01

    Preserving and improving osteogenic activity of bone morphogenetic protein-2 (BMP-2) upon implants remains one of the key limitations in bone regeneration. With calcium phosphate cement (CPC) as model, we have developed a series of strontium (Sr)-doped CPC (SCPC) to address this issue. The effects of fixed Sr on the bioactivity of recombinant human BMP-2 (rhBMP-2) as well as the underlying mechanism were investigated. The results suggested that the rhBMP-2-induced osteogenic activity was significantly promoted upon SCPCs, especially with a low amount of fixed Sr (SrCO 3 content IA (BMPR-IA) to rhBMP-2 and an increased expression of BMPR-IA in C2C12 model cells. As a result, the activations of BMP-induced signaling pathways were different in C2C12 cells incubated upon CPC/rhBMP-2 and SCPCs/rhBMP-2. These findings explicitly decipher the mechanism of SCPCs promoting osteogenic bioactivity of rhBMP-2 and signify the promising application of the SCPCs/rhBMP-2 matrix in bone regeneration implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The influence of Aloe vera and xenograft XCB toward of bone morpho protein 2 BMP2 expression and amount of osteoblast of alveolar bone induced into tooth extraction sockets Cavia cobaya

    Directory of Open Access Journals (Sweden)

    Utari Kresnoadi

    2014-12-01

    Full Text Available Tooth extraction can cause inflammation leading to alveolar ridge resorption. In addition, prominent ridge has crucial role for making denture su-ccessfully. Thus, socket preservation is needed to prevent greater alveolar ridge resorption. An innovative material, a combination of Aloe vera and xe-nograft (XCB, is then considered as a biogenic stimulator that can reduce inflammation, as a result, the growth of alveolar bone is expected to be impro-ved. This research is aimed to prove whether the mixture of Aloe vera and xenograft can stimulate BMP2 and increase osteoblasts. Forty-eight Cavia co-baya animals were divided into eight groups each of which consisted of six animals. The mandibular incisors of those Cavia cobaya animals were then extracted and filled with PEG as Group Control, XCB as Group XCB, Aloe vera as Group Aloe vera, and a combination of Aloe vera +XCB as Group Aloe vera +XCB. Next, the first four groups were sacrificed seven days after extraction, and the second four groups were sacrificed 30 days after extrac-tion. And then, immunohistochemical and histopathology examinations were conducted to examine BMP2 expression and osteoblasts. Based on the re-sult known that the mixture of Aloe vera and xenograft can increase BMP2 expression and amount of osteoblasts. It can be concluded that the mixture of Aloe vera and xenograft can increase BMP2 expression and amount of osteoblast cel . It can be used as an alternative material to increase the growth of alveolar bone after extraction.

  14. Low-dose rhBMP2/7 heterodimer to reconstruct peri-implant bone defects: a micro-CT evaluation

    NARCIS (Netherlands)

    Wang, J.; Zheng, Y.; Zhao, J.; Liu, T.; Gao, L.; Gu, Z.; Wu, G.

    2012-01-01

    Objectives To delineate the dynamic micro-architectures of bone induced by low-dose bone morphogenetic protein (BMP)-2/7 heterodimer in peri-implant bone defects compared to BMP2 and BMP7 homodimer. Material and Methods Peri-implant bone defects (8 mm in diameter, 4 mm in depth) were created

  15. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis

    Directory of Open Access Journals (Sweden)

    DeCarlo Arthur A

    2012-09-01

    Full Text Available Abstract Background Many growth factors, such as bone morphogenetic protein (BMP-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS glycosaminoglycans (GAGs, which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS, regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1 expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™. Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid

  16. Myoblast sensitivity and fibroblast insensitivity to osteogenic conversion by BMP-2 correlates with the expression of Bmpr-1a

    Directory of Open Access Journals (Sweden)

    North Kathryn N

    2009-05-01

    Full Text Available Abstract Background Osteoblasts are considered to primarily arise from osseous progenitors within the periosteum or bone marrow. We have speculated that cells from local soft tissues may also take on an osteogenic phenotype. Myoblasts are known to adopt a bone gene program upon treatment with the osteogenic bone morphogenetic proteins (BMP-2,-4,-6,-7,-9, but their osteogenic capacity relative to other progenitor types is unclear. We further hypothesized that the sensitivity of cells to BMP-2 would correlate with BMP receptor expression. Methods We directly compared the BMP-2 sensitivity of myoblastic murine cell lines and primary cells with osteoprogenitors from osseous tissues and fibroblasts. Fibroblasts forced to undergo myogenic conversion by transduction with a MyoD-expressing lentiviral vector (LV-MyoD were also examined. Outcome measures included alkaline phosphatase expression, matrix mineralization, and expression of osteogenic genes (alkaline phosphatase, osteocalcin and bone morphogenetic protein receptor-1A as measured by quantitative PCR. Results BMP-2 induced a rapid and robust osteogenic response in myoblasts and osteoprogenitors, but not in fibroblasts. Myoblasts and osteoprogenitors grown in osteogenic media rapidly upregulated Bmpr-1a expression. Chronic BMP-2 treatment resulted in peak Bmpr-1a expression at day 6 before declining, suggestive of a negative feedback mechanism. In contrast, fibroblasts expressed low levels of Bmpr-1a that was only weakly up-regulated by BMP-2 treatment. Bioinformatics analysis confirmed the presence of myogenic responsive elements in the proximal promoter region of human and murine BMPR-1A/Bmpr-1a. Forced myogenic gene expression in fibroblasts was associated with a significant increase in Bmpr-1a expression and a synergistic increase in the osteogenic response to BMP-2. Conclusion These data demonstrate the osteogenic sensitivity of muscle progenitors and provide a mechanistic insight into the

  17. Enhanced Healing of Rat Calvarial Defects with MSCs Loaded on BMP-2 Releasing Chitosan/Alginate/Hydroxyapatite Scaffolds

    Science.gov (United States)

    He, Xiaoning; Liu, Yang; Yuan, Xue; Lu, Li

    2014-01-01

    In this study, we designed a chitosan/alginate/hydroxyapatite scaffold as a carrier for recombinant BMP-2 (CAH/B2), and evaluated the release kinetics of BMP-2. We evaluated the effect of the CAH/B2 scaffold on the viability and differentiation of bone marrow mesenchymal stem cells (MSCs) by scanning electron microscopy, MTS, ALP assay, alizarin-red staining and qRT-PCR. Moreover, MSCs were seeded on scaffolds and used in a 8 mm rat calvarial defect model. New bone formation was assessed by radiology, hematoxylin and eosin staining 12 weeks postoperatively. We found the release kinetics of BMP-2 from the CAH/B2 scaffold were delayed compared with those from collagen gel, which is widely used for BMP-2 delivery. The BMP-2 released from the scaffold increased MSC differentiation and did not show any cytotoxicity. MSCs exhibited greater ALP activity as well as stronger calcium mineral deposition, and the bone-related markers Col1α, osteopontin, and osteocalcin were upregulated. Analysis of in vivo bone formation showed that the CAH/B2 scaffold induced more bone formation than other groups. This study demonstrates that CAH/B2 scaffolds might be useful for delivering osteogenic BMP-2 protein and present a promising bone regeneration strategy. PMID:25084008

  18. Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2.

    Science.gov (United States)

    Egashira, Kazuhiro; Sumita, Yoshinori; Zhong, Weijian; I, Takashi; Ohba, Seigo; Nagai, Kazuhiro; Asahina, Izumi

    2018-01-01

    Bone marrow concentrate (BMC), which is enriched in mononuclear cells (MNCs) and platelets, has recently attracted the attention of clinicians as a new optional means for bone engineering. We previously reported that the osteoinductive effect of bone morphogenetic protein-2 (BMP-2) could be enhanced synergistically by co-transplantation of peripheral blood (PB)-derived platelet-rich plasma (PRP). This study aims to investigate whether BMC can effectively promote bone formation induced by low-dose BMP-2, thereby reducing the undesirable side-effects of BMP-2, compared to PRP. Human BMC was obtained from bone marrow aspirates using an automated blood separator. The BMC was then seeded onto β-TCP granules pre-adsorbed with a suboptimal-dose (minimum concentration to induce bone formation at 2 weeks in mice) of recombinant human (rh) BMP-2. These specimens were transplanted subcutaneously to the dorsal skin of immunodeficient-mice and the induction of ectopic bone formation was assessed 2 and 4 weeks post-transplantation. Transplantations of five other groups [PB, PRP, platelet-poor plasma (PPP), bone marrow aspirate (BM), and BM-PPP] were employed as experimental controls. Then, to clarify the effects on vertical bone augmentation, specimens from the six groups were transplanted for on-lay placement on the craniums of mice. The results indicated that BMC, which contained an approximately 2.5-fold increase in the number of MNCs compared to PRP, could accelerate ectopic bone formation until 2 weeks post-transplantation. On the cranium, the BMC group promoted bone augmentation with a suboptimal-dose of rhBMP-2 compared to other groups. Particularly in the BMC specimens harvested at 4 weeks, we observed newly formed bone surrounding the TCP granules at sites far from the calvarial bone. In conclusion, the addition of BMC could reduce the amount of rhBMP-2 by one-half via its synergistic effect on early-phase osteoinduction. We propose here that BMC transplantation

  19. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Grassi Rici Rose

    2012-02-01

    Full Text Available Abstract Background The bone morphogenetic proteins (BMPs belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p

  20. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells.

    Science.gov (United States)

    Rici, Rose Eli Grassi; Alcântara, Dayane; Fratini, Paula; Wenceslau, Cristiane Valverde; Ambrósio, Carlos Eduardo; Miglino, Maria Angelica; Maria, Durvanei Augusto

    2012-02-22

    The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. We propose that rhBMP-2 has great

  1. Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2

    International Nuclear Information System (INIS)

    Li, Chen-Shuang; Tian, Haijun; Zou, Min; Zhao, Ke-Wei; Li, Yawei; Lao, Lifeng; Brochmann, Elsa J.; Duarte, M. Eugenia L.; Daubs, Michael D.; Zhou, Yan-Heng; Murray, Samuel S.; Wang, Jeffrey C.

    2015-01-01

    The emerging role of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers has drawn great attention in cancer research. In this study, we report that BMP-2 can promote the proliferation of the pancreatic tumor cell line, PANC-1. Secreted phosphoprotein 24 kD (Spp24), a BMP binding protein, did not affect the proliferation of the cells but promoted the apoptosis of the cells in vitro. In a xeneograft tumor model using PANC-1 cells, BMP-2 dramatically promoted tumor growth, while Spp24 not only abolished the effect of BMP-2, but also dramatically induced tumor shrinking when used alone. Activation of Smad1/5/8 participated in this process as demonstrated by immunohistochemical staining of phosphorylated Smad 1/5/8. We conclude that Spp24 can be developed into a therapeutic agent that could be employed in clinical situations where the inhibition of BMPs and related proteins is advantageous. - Highlights: • Spp24 effectively inhibited the in vivo tumor growth of PANC-1. • BMP-2 dramatically promoted tumor growth by promoting PANC-1 proliferation. • Spp24 abolished the tumor growth effect of BMP-2 by promoting PANC-1 apoptosis. • Spp24 may be a candidate as a therapeutic agent of pancreatic cancer.

  2. Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chen-Shuang [Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing (China); Tian, Haijun, E-mail: haijuntianmd@gmail.com [Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai (China); Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA (United States); Department of Surgery, Bethune School of Medics, Shijiazhuang (China); Zou, Min [Department of Orthodontics, School and Hospital of Stomatology, Xi' an Jiaotong University, Xi' an (China); Zhao, Ke-Wei [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Li, Yawei; Lao, Lifeng [Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA (United States); Brochmann, Elsa J. [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Department of Medicine, University of California, Los Angeles, Los Angeles, CA (United States); Duarte, M. Eugenia L. [National Institute of Traumatology and Orthopaedics, Rio de Janeiro (Brazil); Daubs, Michael D. [Division of Orthopaedic Surgery, Department of Surgery, University of Nevada School of Medicine, Las Vegas, NV (United States); Zhou, Yan-Heng, E-mail: yanhengzhou@vip.163.com [Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing (China); Murray, Samuel S. [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Department of Medicine, University of California, Los Angeles, Los Angeles, CA (United States); Wang, Jeffrey C. [Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA (United States)

    2015-10-16

    The emerging role of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers has drawn great attention in cancer research. In this study, we report that BMP-2 can promote the proliferation of the pancreatic tumor cell line, PANC-1. Secreted phosphoprotein 24 kD (Spp24), a BMP binding protein, did not affect the proliferation of the cells but promoted the apoptosis of the cells in vitro. In a xeneograft tumor model using PANC-1 cells, BMP-2 dramatically promoted tumor growth, while Spp24 not only abolished the effect of BMP-2, but also dramatically induced tumor shrinking when used alone. Activation of Smad1/5/8 participated in this process as demonstrated by immunohistochemical staining of phosphorylated Smad 1/5/8. We conclude that Spp24 can be developed into a therapeutic agent that could be employed in clinical situations where the inhibition of BMPs and related proteins is advantageous. - Highlights: • Spp24 effectively inhibited the in vivo tumor growth of PANC-1. • BMP-2 dramatically promoted tumor growth by promoting PANC-1 proliferation. • Spp24 abolished the tumor growth effect of BMP-2 by promoting PANC-1 apoptosis. • Spp24 may be a candidate as a therapeutic agent of pancreatic cancer.

  3. Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle

    Science.gov (United States)

    Guillot, R.; Pignot-Paintrand, I.; Lavaud, J.; Decambron, A.; Bourgeois, E.; Josserand, V.; Logeart-Avramoglou, D.; Viguier, E.; Picart, C.

    2016-01-01

    The aim of this study was to evaluate the osseointegration of titanium implants (Ti-6Al-4V, noted here TA6V) and poly(etheretherketone) PEEK implants induced by a BMP-2-delivering surface coating made of polyelectrolyte multilayer films. The in vitro bioactivity of the polyelectrolyte film-coated implants was assessed using the alkaline phosphatase assay. BMP-2-coated TA6V and PEEK implants with a total dose of 9.3 µg of BMP-2 were inserted into the femoral condyles of New Zealand white rabbits and compared to uncoated implants. Rabbits were sacrificed 4 and 8 weeks after implantation. Histomorphometric analyses on TA6V and PEEK implants and microcomputed tomography on PEEK implants revealed that the bone-to-implant contact and bone area around the implants were significantly lower for the BMP-2-coated implants than for the bare implants. This was confirmed by scanning electron microscopy imaging. This difference was more pronounced at 4 weeks in comparison to the 8-week time point. However, bone growth inside the hexagonal upper hollow cavity of the screws was higher in the case of the BMP-2 coated implants. Overall, this study shows that a high dose of BMP-2 leads to localized and temporary bone impairment, and that the dose of BMP-2 delivered at the surface of an implant needs to be carefully optimized. PMID:26965394

  4. 2-N, 6-O-sulfated chitosan-assisted BMP-2 immobilization of PCL scaffolds for enhanced osteoinduction

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lingyan [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168 (Australia); Department of Prosthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011 (China); Yu, Yuanman [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jing, E-mail: biomatwj@163.com [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Werkmeister, Jerome A [CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168 (Australia); McLean, Keith M, E-mail: Keith.McLean@csiro.au [CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168 (Australia); Liu, Changsheng, E-mail: liucs@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2017-05-01

    The aim of this study was to develop a 2-N, 6-O-sulfated chitosan (26SCS) modified electrospun fibrous PCL scaffold for bone morphogenetic protein-2 (BMP-2) delivery to improve osteoinduction. The PCL scaffold was modified by an aminolysis reaction using ethylenediamine (ED) and 26SCS was immobilized via electrostatic interactions (PCL-N-S). Scaffolds were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. In vitro BMP-2 adsorption and release kinetics indicated that modified PCL-N-S scaffolds showed higher levels of binding of BMP-2 (about 30–100 times), moderative burst release (about one third), and prolonged releasing time compared to the unmodified PCL scaffold. The bioactivity of released BMP-2 determined by alkaline phosphatase (ALP) activity assay was maintained and improved 8– 12 times with increasing concentration of immobilized 26SCS on the scaffolds. In vitro studies demonstrated that bone marrow mesenchymal stem cells (BMSCs) attached more readily to the PCL-N-S scaffolds with increased spreading. In conclusion, 26SCS modified PCL scaffolds can be a potent system for the sustained and bioactive delivery of BMP-2. - Graphical abstract: Limited self-regenerating capacity of human body makes the reconstruction of critical size bone defect a significant challenge. Although bone morphogenetic protein-2 (BMP-2) is an important differentiation factor inducing bone regeneration, it's short half-life in vivo and potent side effect at high dosage still show lots of concerns in the clinical use. Herein, modification of electrospun PCL scaffolds was presented through immobilizing of sulfated chitosan (26SCS). The modified scaffolds effectively improve the binding capacity of BMP-2 and exhibited an enhanced bioactivity and sustained release in vitro. Thus, the use of 26SCS modified PCL scaffolds combined with BMP-2 could be a useful scaffold for tissue

  5. Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaschte, K

    2007-01-01

    transcriptional regulation of Dlx-5, Msx-2 and Runx-2. MATERIALS AND METHODS: Encapsulated ASC were cultured for 14 days in medium containing TGF-beta1 and/or BMP-2. mRNA expression of the extracellular matrix molecules col2a1, cartilage oligomeric matrix protein, col10a1, alkaline phosphatase (AP......) and transcription factors Msx-2, Dlx-5 and Runx-2 was analysed. Release of glycosaminoglycans, collagen types II and X into the extracellular matrix was demonstrated. RESULTS: BMP-2 and TGF-beta1 induced a chondrogenic phenotype in ASC. Combined growth factor treatment had a synergistic effect on col10a1...

  6. Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis

    International Nuclear Information System (INIS)

    Srinivasan, Padma P; McCoy, Sarah Y; Yang Weidong; Farach-Carson, Mary C; Kirn-Safran, Catherine B; Jha, Amit K; Jia Xinqiao

    2012-01-01

    The goal of this study was to use bioengineered injectable microgels to enhance the action of bone morphogenetic protein 2 (BMP2) and stimulate cartilage matrix repair in a reversible animal model of osteoarthritis (OA). A module of perlecan (PlnD1) bearing heparan sulfate (HS) chains was covalently immobilized to hyaluronic acid (HA) microgels for the controlled release of BMP2 in vivo. Articular cartilage damage was induced in mice using a reversible model of experimental OA and was treated by intra-articular injection of PlnD1-HA particles with BMP2 bound to HS. Control injections consisted of BMP2-free PlnD1-HA particles, HA particles, free BMP2 or saline. Knees dissected following these injections were analyzed using histological, immunostaining and gene expression approaches. Our results show that knees treated with PlnD1-HA/BMP2 had lesser OA-like damage compared to control knees. In addition, the PlnD1-HA/BMP2-treated knees had higher mRNA levels encoding for type II collagen, proteoglycans and xylosyltransferase 1, a rate-limiting anabolic enzyme involved in the biosynthesis of glycosaminoglycan chains, relative to control knees (PlnD1-HA). This finding was paralleled by enhanced levels of aggrecan in the articular cartilage of PlnD1-HA/BMP2-treated knees. Additionally, decreases in the mRNA levels encoding for cartilage-degrading enzymes and type X collagen were seen relative to controls. In conclusion, PlnD1-HA microgels constitute a formulation improvement compared to HA for efficient in vivo delivery and stimulation of proteoglycan and cartilage matrix synthesis in mouse articular cartilage. Ultimately, PlnD1-HA/BMP2 may serve as an injectable therapeutic agent for slowing or inhibiting the onset of OA after knee injury.

  7. Calcium phosphate implants coatings as carriers for BMP-2

    NARCIS (Netherlands)

    Liu, Y.; He, J.F.; Hunziker, E.B.

    2009-01-01

    The osteoconductivity of dental implants can be improved by coating them with a layer of calcium phosphate (CaP), which can be rendered osteoinductive by functionalizing it with an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2). In the present study, we wished to compare the

  8. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation.

    Science.gov (United States)

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo.

  9. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    International Nuclear Information System (INIS)

    Si, Lina; Shi, Jin; Gao, Wenqun; Zheng, Min; Liu, Lingjuan; Zhu, Jing; Tian, Jie

    2014-01-01

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  10. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Si, Lina; Shi, Jin; Gao, Wenqun [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Zheng, Min [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Liu, Lingjuan; Zhu, Jing [Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Tian, Jie, E-mail: jietian@cqmu.edu.cn [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China)

    2014-07-18

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  11. Metastatic function of BMP-2 in gastric cancer cells: The role of PI3K/AKT, MAPK, the NF-{kappa}B pathway, and MMP-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myoung Hee [Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Oh, Sang Cheul [Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Hyun Joo [Department of Pathology, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kang, Han Na; Kim, Jung Lim [Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kim, Jun Suk [Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Yoo, Young A., E-mail: ydanbi@korea.ac.kr [Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of)

    2011-07-15

    Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-{kappa}B, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of I{kappa}B{alpha} and the nuclear translocation/activation of NF-{kappa}B. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-{kappa}B. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-{kappa}B inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-{kappa}B and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.

  12. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.

    Science.gov (United States)

    Du, Mingchun; Chen, Bing; Meng, Qingyuan; Liu, Sumei; Zheng, Xiongfei; Zhang, Cheng; Wang, Heran; Li, Hongyi; Wang, Nuo; Dai, Jianwu

    2015-12-18

    Three-dimensional (3D) bioprinting combines biomaterials, cells and functional components into complex living tissues. Herein, we assembled function-control modules into cell-laden scaffolds using 3D bioprinting. A customized 3D printer was able to tune the microstructure of printed bone mesenchymal stem cell (BMSC)-laden methacrylamide gelatin scaffolds at the micrometer scale. For example, the pore size was adjusted to 282 ± 32 μm and 363 ± 60 μm. To match the requirements of the printing nozzle, collagen microfibers with a length of 22 ± 13 μm were prepared with a high-speed crusher. Collagen microfibers bound bone morphogenetic protein 2 (BMP2) with a collagen binding domain (CBD) as differentiation-control module, from which BMP2 was able to be controllably released. The differentiation behaviors of BMSCs in the printed scaffolds were compared in three microenvironments: samples without CBD-BMP2-collagen microfibers in the growth medium, samples without microfibers in the osteogenic medium and samples with microfibers in the growth medium. The results indicated that BMSCs showed high cell viability (>90%) during printing; CBD-BMP2-collagen microfibers induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. Our studies suggest that these function-control modules are attractive biomaterials and have potential applications in 3D bioprinting.

  13. Bone regeneration by gelatin hydro-gel seat containing BMP-2 and its application to canine orbital floor fracture Model

    International Nuclear Information System (INIS)

    Mochizuki, Yuichi

    2007-01-01

    Reported are preparation of the gel seat in the title (GHG) for sustained release of BMP-2 (bone morphogenetic protein-2) and its application to the fracture model of orbital floor of the dog. The chemically linked GHG was prepared from gelatin and glutaraldehyde and lyophilized. BMP-2 solution was dropped on the GHG seat to be contained there. To see the biobehavior of BMP-2 and GHG, they were labeled with 125 I and were given subcutaneously in the back of nude mice, of which remaining radioactivity was periodically measured by Aloka ARC-310B gamma counter. This experiment revealed the sustained release of BMP-2 along with degradation of the GHG. Then a complex of the GHG and bio-degradable polymer (L-lactide-ε-caprolactone) was prepared and implanted to the artificially fractured region (10 x 10 mm) of dog orbit floor, of which recovering process was evaluated by analysis of bone structure with soft X-ray (SOFRON, TRS-1005) roentgenography, histology, and micro-CT imaging (Comscantecno's Scan Xmate-A090S) for trabecular bone volume, thickness, number and separation. This experiment revealed that new bone was effectively induced to regenerate on the complex, of which structure was found similar to the normal trabecula. Thus in future, the complex can be useful for ideal treatment of the orbit floor fracture without necessity of donor. (R.T.)

  14. Time kinetics of bone defect healing in response to BMP-2 and GDF-5 characterised by in vivo biomechanics

    Directory of Open Access Journals (Sweden)

    D Wulsten

    2011-02-01

    Full Text Available This study reports that treatment of osseous defects with different growth factors initiates distinct rates of repair. We developed a new method for monitoring the progression of repair, based upon measuring the in vivo mechanical properties of healing bone. Two different members of the bone morphogenetic protein (BMP family were chosen to initiate defect healing: BMP-2 to induce osteogenesis, and growth-and-differentiation factor (GDF-5 to induce chondrogenesis. To evaluate bone healing, BMPs were implanted into stabilised 5 mm bone defects in rat femurs and compared to controls. During the first two weeks, in vivo biomechanical measurements showed similar values regardless of the treatment used. However, 2 weeks after surgery, the rhBMP-2 group had a substantial increase in stiffness, which was supported by the imaging modalities. Although the rhGDF-5 group showed comparable mechanical properties at 6 weeks as the rhBMP-2 group, the temporal development of regenerating tissues appeared different with rhGDF-5, resulting in a smaller callus and delayed tissue mineralisation. Moreover, histology showed the presence of cartilage in the rhGDF-5 group whereas the rhBMP-2 group had no cartilaginous tissue.Therefore, this study shows that rhBMP-2 and rhGDF-5 treated defects, under the same conditions, use distinct rates of bone healing as shown by the tissue mechanical properties. Furthermore, results showed that in vivo biomechanical method is capable of detecting differences in healing rate by means of change in callus stiffness due to tissue mineralisation.

  15. Gallic acid inhibits vascular calcification through the blockade of BMP2-Smad1/5/8 signaling pathway.

    Science.gov (United States)

    Kee, Hae Jin; Cho, Soo-Na; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kim, In Kyeom; Hong, Young Joon; Park, Hyung Wook; Ahn, Youngkeun; Cho, Jeong Gwan; Park, Jong Chun; Jeong, Myung Ho

    2014-11-01

    Vascular calcification is associated with increased risk of morbidity and mortality in patients with cardiovascular diseases, chronic kidney diseases, and diabetes. Gallic acid, a natural compound found in gallnut and green tea, is known to be antifungal, antioxidant, and anticancer. Here we investigated the effect of gallic acid on vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Gallic acid inhibited inorganic phosphate-induced osteoblast differentiation markers as well as calcification phenotypes (as determined by calcium deposition, Alizarin Red, and Von Kossa staining). Knockdown of BMP2 or Noggin blocked phosphate-induced calcification. Gallic acid suppressed phosphorylation of Smad1/5/8 protein induced by inorganic phosphate. Taken together, we suggest that gallic acid acts as a novel therapeutic agent of vascular calcification by mediating BMP2-Smad1/5/8 signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep.

    Science.gov (United States)

    Liu, Tie; Wu, Gang; Wismeijer, Daniel; Gu, Zhiyuan; Liu, Yuelian

    2013-09-01

    As an alternative to an autologous bone graft, deproteinized bovine bone (DBB) is widely used in the clinical dentistry. Although DBB provides an osteoconductive scaffold, it is not capable of enhancing bone regeneration because it is not osteoinductive. In order to render DBB osteoinductive, bone morphogenetic protein 2 (BMP-2) has previously been incorporated into a three dimensional reservoir (a biomimetic calcium phosphate coating) on DBB, which effectively promoted the osteogenic response by the slow delivery of BMP-2. The aim of this study was to investigate the therapeutic effectiveness of such coating on the DBB granules in repairing a large cylindrical bone defect (8 mm diameter, 13 mm depth) in sheep. Eight groups were randomly assigned to the bone defects: (i) no graft material; (ii) autologous bone; (iii) DBB only; (iv) DBB mixed with autologous bone; (v) DBB bearing adsorbed BMP-2; (vi) DBB bearing a coating but no BMP-2; (vii) DBB bearing a coating with adsorbed BMP-2; and (viii) DBB bearing a coating-incorporated depot of BMP-2. 4 and 8 weeks after implantation, samples were withdrawn for a histological and a histomorphometric analysis. Histological results confirmed the excellent biocompatibility and osteoconductivity of all the grafts tested. At 4 weeks, DBB mixed with autologous bone or functionalized with coating-incorporated BMP-2 showed more newly-formed bone than the other groups with DBB. At 8 weeks, the volume of newly-formed bone around DBB that bore a coating-incorporated depot of BMP-2 was greatest among the groups with DBB, and was comparable to the autologous bone group. The use of autologous bone and BMP-2 resulted in more bone marrow formation. Multinucleated giant cells were observed in the resorption process around DBB, whereas histomorphometric analysis revealed no significant degradation of DBB. In conclusion, it was shown that incorporating BMP-2 into the calcium phosphate coating of DBB induced strong bone formation around DBB

  17. Influence of Mussel-Derived Bioactive BMP-2-Decorated PLA on MSC Behavior in Vitro and Verification with Osteogenicity at Ectopic Sites in Vivo.

    Science.gov (United States)

    Chen, Zhuoyue; Zhang, Zhen; Feng, Juantao; Guo, Yayuan; Yu, Yuan; Cui, Jihong; Li, Hongmin; Shang, Lijun

    2018-04-11

    Osteoinductive activity of the implant in bone healing and regeneration is still a challenging research topic. Therapeutic application of recombinant human bone morphogenetic protein-2 (BMP-2) is a promising approach to enhance osteogenesis. However, high dose and uncontrolled burst release of BMP-2 may introduce edema, bone overgrowth, cystlike bone formation, and inflammation. In this study, low-dose BMP-2 of 1 μg was used to design PLA-PD-BMP for functionalization of polylactic acid (PLA) implants via mussel-inspired polydopamine (PD) assist. For the first time, the binding property and efficiency of the PD coating with BMP-2 were directly demonstrated and analyzed using an antigen-antibody reaction. The obtained PLA-PD-BMP surface immobilized with this low BMP-2 dose can endow the implants with abilities of introducing strong stem cell adhesion and enhanced osteogenicity. Furthermore, in vivo osteoinduction of the PLA-PD-BMP-2 scaffolds was confirmed by a rat ectopic bone model, which is marked as the "gold standard" for the evidence of osteoinductive activity. The microcomputed tomography, Young's modulus, and histology analyses were also employed to demonstrate that PLA-PD-BMP grafted with 1 μg of BMP-2 can induce bone formation. Therefore, the method in this study can be used as a model system to immobilize other growth factors onto various different types of polymer substrates. The highly biomimetic mussel-derived strategy can therefore improve the clinical outcome of polymer-based medical implants in a facile, safe, and effective way.

  18. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2

    International Nuclear Information System (INIS)

    Li Huiwu; Dai Kerong; Tang Tingting; Zhang Xiaoling; Yan Mengning; Lou Jueren

    2007-01-01

    In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a β-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified by BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals

  19. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.

    Science.gov (United States)

    Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko

    2015-07-01

    The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. E. coli-Produced BMP-2 as a Chemopreventive Strategy for Colon Cancer: A Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Saravanan Yuvaraj

    2012-01-01

    Full Text Available Colon cancer is a serious health problem, and novel preventive and therapeutical avenues are urgently called for. Delivery of proteins with anticancer activity through genetically modified bacteria provides an interesting, potentially specific, economic and effective approach here. Interestingly, bone morphogenetic protein 2 (BMP-2 is an important and powerful tumour suppressor in the colon and is thus an attractive candidate protein for delivery through genetically modified bacteria. It has not been shown, however, that BMP production in the bacterial context is effective on colon cancer cells. Here we demonstrate that transforming E. coli with a cDNA encoding an ileal-derived mature human BMP-2 induces effective apoptosis in an in vitro model system for colorectal cancer, whereas the maternal organism was not effective in this respect. Furthermore, these effects were sensitive to cotreatment with the BMP inhibitor Noggin. We propose that prevention and treatment of colorectal cancer using transgenic bacteria is feasible.

  1. Cell saver filtering of extravasated rhBMP-2 after degenerative scoliosis reconstruction

    Directory of Open Access Journals (Sweden)

    Gabriel Liu, MBBCh, MSc, FRCS, FAMS (Orth

    2015-06-01

    Full Text Available RhBMP-2 is a bone fusion enhancer commonly used in scoliosis reconstruction surgery. It is delivered via an absorbable collagen sponge but has been known to migrate away from its delivery site. RhBMP-2 extravasation in surgical drainage has been noted during first two days post-surgery. Cell savers are widely used in scoliosis reconstruction to limit transfusion requirements and are commonly deployed in cases where rhBMP-2 is used for fusion augmentation. It is not known whether rhBMP-2 is present in salvaged blood or filtered away during cell saver recycling. Through this case series of four patients who underwent scoliosis reconstruction, we assess cell saver efficacy in filtering rhBMP-2 molecules by quantifying the amount of rhBMP-2 present in salvaged blood obtained after postoperative drainage recycling by OrthoPAT® cell saver and comparing it to rhBMP-2 leakage in postoperative drainage without cell saver recycling. We report an almost 10-fold reduction of rhBMP-2 concentration in salvaged blood obtained after cell saver recycling of postoperative drainage, suggesting cell saver effectiveness in filtering rhBMP-2 molecules.

  2. Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.

    Science.gov (United States)

    Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-08-01

    Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo. © 2015 Wiley Periodicals, Inc.

  3. Low-dose rhBMP2/7 heterodimer to reconstruct peri-implant bone defects: a micro-CT evaluation.

    Science.gov (United States)

    Wang, Jingxiao; Zheng, Yuanna; Zhao, Juan; Liu, Tie; Gao, Lixia; Gu, Zhiyuan; Wu, Gang

    2012-01-01

    To delineate the dynamic micro-architectures of bone induced by low-dose bone morphogenetic protein (BMP)-2/7 heterodimer in peri-implant bone defects compared to BMP2 and BMP7 homodimer. Peri-implant bone defects (8 mm in diameter, 4 mm in depth) were created surrounding SLA-treated titanium implants (3.1 mm in diameter, 10 mm in length) in minipig's calvaria. We administrated collagen sponges with adsorbed low-dose (30 ng/mm(3) ) BMP2/7 to treat the defects using BMP2, BMP7 or no BMP as controls.2, 3 and 6 weeks after implantation, we adopted micro-computer tomography to evaluate the micro-architectures of new bone using the following parameters: relative bone volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), connectivity density, and structure mode index (SMI). Bone implant contact (BIC) was also revealed histologically. Consistent with 2 and 3 weeks, after 6 weeks post-operation, BMP2/7 resulted in significantly higher BV/TV (63.033 ± 2.055%) and significantly lower SMI (-4.405 ± 0.500) than BMP2 (BV/TV: 43.133 ± 2.001%; SMI: -0.086 ± 0.041) and BMP7 (BV/TV: 41.467 ± 1.850%; SMI: -0.044 ± 0.016) respectively. Significant differences were also found in Tb.N, Tb.Th and Tb.Sp at all time points. At 2 weeks, BMP2/7 resulted in significantly higher BIC than the controls. Low-dose BMP2/7 heterodimer facilitated more rapid bone regeneration in better quality in peri-implant bone defects than BMP2 and BMP7 homodimers. © 2011 John Wiley & Sons A/S.

  4. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen

    International Nuclear Information System (INIS)

    Li Jingfeng; Lin Zhenyu; Zheng Qixin; Guo Xiaodong; Lan Shenghui; Liu Sunan; Yang Shuhua

    2010-01-01

    An ideal bone graft material is the one characterized with good biocompatibility, biodegradation, osteoconductivity and osteoinductivity. In this study, a novel synthetic BMP-2-related peptide (designated P24) corresponding to residues of the knuckle epitope of BMP-2 was introduced into a biomimetic scaffold based on sintered bovine bone or true bone ceramics (TBC) and type I collagen (TBC/collagen I) using a simulated body fluid (SBF). Hydroxylapatite crystal mineralization with a Ca/P molar ratio of 1.63 was observed on the surface of P24/TBC/collagen I composite by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Cell adhesion rate evaluation of bone marrow stromal cells (BMSCs) seeded on materials in vitro showed that the percentage of cells attached to P24/TBC/collagen I composite was significantly higher than that of the TBC/collagen I composite. A 10 mm unilateral segmental bone defect was created in the radius of New Zealand white rabbits and randomly implanted with three groups of biomaterials (Group A: P24/TBC/collagen I composite; Group B: TBC/collagen I composite and Group C: TBC alone). Based on radiographic evaluation and histological examination, the implants of P24/TBC/collagen I composite significantly stimulated bone growth, thereby confirming the enhanced rate of bone healing compared with that of TBC/collagen I composite and TBC alone. It was concluded that BMP-2-related peptide P24 could induce nucleation of calcium phosphate crystals on the surface of TBC/collagen I composite. The TBC/collagen I composite loaded with the synthetic BMP-2-related peptide is a promising scaffold biomaterial for bone tissue engineering.

  5. Alveolar ridge and maxillary sinus augmentation using rhBMP-2: a systematic review.

    Science.gov (United States)

    Freitas, Rubens Moreno de; Spin-Neto, Rubens; Marcantonio Junior, Elcio; Pereira, Luís Antônio Violin Dias; Wikesjö, Ulf M E; Susin, Cristiano

    2015-01-01

    The aim of this systematic review was to evaluate clinical and safety data for recombinant human bone morphogenetic protein-2 (rhBMP-2) in an absorbable collagen sponge (ACS) carrier when used for alveolar ridge/maxillary sinus augmentation in humans. Clinical studies/case series published 1980 through June 2012 using rhBMP-2/ACS were searched. Studies meeting the following criteria were considered eligible for inclusion: >10 subjects at baseline and maxillary sinus or alveolar ridge augmentation not concomitant with implant placement. Seven of 69 publications were eligible for review. rhBMP-2/ACS yielded clinically meaningful bone formation for maxillary sinus augmentation that would allow placement of regular dental implants without consistent differences between rhBMP-2 concentrations. Nevertheless, the statistical analysis showed that sinus augmentation following autogenous bone graft was significantly greater (mean bone height: 1.6 mm, 95% CI: 0.5-2.7 mm) than for rhBMP-2/ACS (rhBMP-2 at 1.5 mg/mL). In extraction sockets, rhBMP-2/ACS maintained alveolar ridge height while enhancing alveolar ridge width. Safety reports did not represent concerns for the proposed indications. rhBMP-2/ACS appears a promising alternative to autogenous bone grafts for alveolar ridge/maxillary sinus augmentation; dose and carrier optimization may expand its efficacy, use, and clinical application. © 2013 Wiley Periodicals, Inc.

  6. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    International Nuclear Information System (INIS)

    Wu, Li-An; Yuan, Guohua; Yang, Guobin; Ortiz-Gonzalez, Iris; Yang, Wuchen; Cui, Yong; MacDougall, Mary; Donly, Kevin J.; Harris, Stephen; Chen, Shuo

    2009-01-01

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  7. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Li-An [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an (China); Yuan, Guohua; Yang, Guobin [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Key Laboratory of Oral Biomedical Engineering Ministry of Education, Wuhan (China); Ortiz-Gonzalez, Iris [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Yang, Wuchen; Cui, Yong [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); MacDougall, Mary [Department of Oral/Maxillofacial Surgery, University of Alabama, Birmingham, AL (United States); Donly, Kevin J. [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Harris, Stephen [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); Chen, Shuo, E-mail: chens0@uthscsa.edu [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States)

    2009-08-14

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  8. Construction of doxycycline-mediated BMP-2 transgene combining with APA microcapsules for bone repair.

    Science.gov (United States)

    Qian, Dongyang; Bai, Bo; Yan, Guangbin; Zhang, Shujiang; Liu, Qi; Chen, Yi; Tan, Xiaobo; Zeng, Yanjun

    2016-01-01

    The repairing of large segmental bone defects is difficult for clinical orthopedists at present. Gene therapy is regarded as a promising method for bone defects repair. The present study aimed to construct an effective and controllable Tet-On expression system for transferring hBMP-2 gene into bone marrow mesenchymal progenitor cells (BMSCs). Meanwhile, with combination of alginate-poly-L-lysine-alginate (APA) microencapsulation technology, we attempted to reduce the influence of immunologic rejection and examine the effect of the Tet-On expression system on osteogenesis of BMSCs. The adenovirus encoding hBMP-2 (ADV-hBMP2) was constructed using the means of molecular cloning. The ADV-hBMP2 and Adeno-X Tet-On virus was respectively transfected to the HEK293 for amplification and afterward BMSCs were co-infected with the virus of ADV-hBMP2 and the Adeno-X Tet-On. The expression of hBMP-2 was measured with induction by doxycycline (DOX) at different concentration by means of RT-PCR and ELISA. Combining Tet-On expression system and APA microcapsules with the use of the pulsed high-voltage electrostatic microcapsule instrument, we examined the expression level of hBMP-2 in APA microcapsules by ELISA as well as the osteogenesis by alizarin red S staining. An effective Tet-On expression system for transferring hBMP-2 gene into BMSCs was constructed successfully. Also, the expression of hBMP-2 could be regulated by concentration of DOX. The data exhibited that BMSCs in APA microcapsules maintained the capability of proliferation and differentiation. The combination of Tet-On expression system and APA microcapsules could promote the osteogenesis of BMSCs. According to the results, microencapsulated Tet-On expression system showed the effective characteristics of secreting hBMP-2 and enhancing osteogenesis, which would provide a promising way for bone repair.

  9. Comparison of the osteogenesis and fusion rates between activin A/BMP-2 chimera (AB204) and rhBMP-2 in a beagle's posterolateral lumbar spine model.

    Science.gov (United States)

    Zheng, Guang Bin; Yoon, Byung-Hak; Lee, Jae Hyup

    2017-10-01

    Activin A/BMP-2 chimera (AB204) could promote bone healing more effectively than recombinant bone morphogenetic protein 2 (rhBMP-2) with much lower dose in a rodent model, but there is no report about the effectiveness of AB204 in a large animal model. The purpose of this study was to compare the osteogenesis and fusion rate between AB204 and rhBMP-2 using biphasic calcium phosphate (BCP) as a carrier in a beagle's posterolateral lumbar fusion model. This is a randomized control animal study. Seventeen male beagle dogs were included. Bilateral posterolateral fusion was performed at the L1-L2 and L4-L5 levels. Biphasic calcium phosphate (2 cc), rhBMP-2 (50 µg)+BCP (2 cc), or AB204 (50 µg)+BCP (2 cc) were implanted into the intertransverse space randomly. X-ray was performed at 4 and 8 weeks. After 8 weeks, the animals were sacrificed, and new bone formation and fusion rate were evaluated by manual palpation, computed tomography (CT), and undecalcified histology. The AB204 group showed significantly higher fusion rate (90%) than the rhBMP-2 group (15%) or the Osteon group (6.3%) by manual palpation. On x-ray and CT assessment, fusion rate and the volume of newly formed bone were also significantly higher in AB204 group than other groups. In contrast, more osteolysis was found in rhBMP-2 group (40%) than in AB204 group (10%) on CT study. In histologic results, new bone formation was sufficient between transverse processes in AB204 group, and obvious trabeculation and bone remodeling were observed. But in rhBMP-2 group, new bone formation was less than AB204 group and osteolysis was observed between the intertransverse spaces. A low dose of AB204 with BCP as a carrier significantly promotes the fusion rate in a large animal model when compared with the rhBMP-2. These findings demonstrate that AB204 could be an alternative to rhBMP-2 to improve fusion rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Immobilization of Murine Anti-BMP-2 Monoclonal Antibody on Various Biomaterials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sahar Ansari

    2014-01-01

    Full Text Available Biomaterials are widely used as scaffolds for tissue engineering. We have developed a strategy for bone tissue engineering that entails application of immobilized anti-BMP-2 monoclonal antibodies (mAbs to capture endogenous BMPs in vivo and promote antibody-mediated osseous regeneration (AMOR. The purpose of the current study was to compare the efficacy of immobilization of a specific murine anti-BMP-2 mAb on three different types of biomaterials and to evaluate their suitability as scaffolds for AMOR. Anti-BMP-2 mAb or isotype control mAb was immobilized on titanium (Ti microbeads, alginate hydrogel, and ACS. The treated biomaterials were surgically implanted in rat critical-sized calvarial defects. After 8 weeks, de novo bone formation was assessed using micro-CT and histomorphometric analyses. Results showed de novo bone regeneration with all three scaffolds with immobilized anti-BMP-2 mAb, but not isotype control mAb. Ti microbeads showed the highest volume of bone regeneration, followed by ACS. Alginate showed the lowest volume of bone. Localization of BMP-2, -4, and -7 antigens was detected on all 3 scaffolds with immobilized anti-BMP-2 mAb implanted in calvarial defects. Altogether, these data suggested a potential mechanism for bone regeneration through entrapment of endogenous BMP-2, -4, and -7 proteins leading to bone formation using different types of scaffolds via AMOR.

  11. Site-Directed Immobilization of BMP-2: Two Approaches for the Production of Innovative Osteoinductive Scaffolds.

    Science.gov (United States)

    Tabisz, Barbara; Schmitz, Werner; Schmitz, Michael; Luehmann, Tessa; Heusler, Eva; Rybak, Jens-Christoph; Meinel, Lorenz; Fiebig, Juliane E; Mueller, Thomas D; Nickel, Joachim

    2017-03-13

    The regenerative potential of bone is strongly impaired in pathological conditions, such as nonunion fractures. To support bone regeneration various scaffolds have been developed in the past, which have been functionalized with osteogenic growth factors such as bone morphogenetic proteins (BMPs). However, most of them required supra-physiological levels of these proteins leading to burst releases, thereby causing severe side effects. Site-specific, covalent coupling of BMP2 to implant materials might be an optimal strategy in order to overcome these problems. Therefore, we created a BMP-2 variant (BMP2-K3Plk) containing a noncanonical amino acid (propargyl-l-lysine) substitution introduced by genetic code expansion that allows for site-specific and covalent immobilization onto polymeric scaffold materials. To directly compare different coupling strategies, we also produced a BMP2 variant containing an additional cysteine residue (BMP2-A2C) allowing covalent coupling by thioether formation. The BMP2-K3Plk mutant was coupled to functionalized beads by a copper-catalyzed azide-alkyne cycloaddition (CuAAC) either directly or via a short biotin-PEG linker both with high specificity. After exposing the BMP-coated beads to C2C12 cells, ALP expression appeared locally restricted in close proximity to these beads, showing that both coupled BMP2 variants trigger cell differentiation. The advantage of our approach over non-site-directed immobilization techniques is the ability to produce fully defined osteogenic surfaces, allowing for lower BMP2 loads and concomitant higher bioactivities, for example, due to controlled orientation toward BMP2 receptors. Such products might provide superior bone healing capabilities with potential safety advantages as of homogeneous product outcome.

  12. Quinoline compound KM11073 enhances BMP-2-dependent osteogenic differentiation of C2C12 cells via activation of p38 signaling and exhibits in vivo bone forming activity.

    Directory of Open Access Journals (Sweden)

    Seung-hwa Baek

    Full Text Available Recombinant human bone morphogenetic protein (rhBMP-2 has been approved by the FDA for clinical application, but its use is limited due to high cost and a supra-physiological dose for therapeutic efficacy. Therefore, recent studies have focused on the generation of new therapeutic small molecules to induce bone formation or potentiate the osteogenic activity of BMP-2. Here, we show that [4-(7-chloroquinolin-4-yl piperazino][1-phenyl-5-(trifluoromethyl-1H-pyrazol-4-yl]methanone (KM11073 strongly enhances the BMP-2-stimulated induction of alkaline phosphatase (ALP, an early phase biomarker of osteoblast differentiation, in bi-potential mesenchymal progenitor C2C12 cells. The KM11073-mediated ALP induction was inhibited by the BMP antagonist noggin, suggesting that its osteogenic activity occurs via BMP signaling. In addition, a pharmacological inhibition study suggested the involvement of p38 activation in the osteogenic action of KM11073 accompanied by enhanced expression of BMP-2, -6, and -7 mRNA. Furthermore, the in vivo osteogenic activity of KM11073 was confirmed in zebrafish and mouse calvarial bone formation models, suggesting the possibility of its single use for bone formation. In conclusion, the combination of rhBMP-2 with osteogenic small molecules could reduce the use of expensive rhBMP-2, mitigating the undesirable side effects of its supra-physiological dose for therapeutic efficacy. Moreover, due to their inherent physical properties, small molecules could represent the next generation of regenerative medicine.

  13. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats.

    Directory of Open Access Journals (Sweden)

    Michelle T Poldervaart

    Full Text Available The design of bioactive three-dimensional (3D scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2 influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo.

  14. Effect of a Novel Nonviral Gene Delivery of BMP-2 on Bone Healing

    Directory of Open Access Journals (Sweden)

    P. Schwabe

    2012-01-01

    Full Text Available Background. Gene therapeutic drug delivery approaches have been introduced to improve the efficiency of growth factors at the site of interest. This study investigated the efficacy and safety of a new nonviral copolymer-protected gene vector (COPROG for the stimulation of bone healing. Methods. In vitro, rat osteoblasts were transfected with COPROG + luciferase plasmid or COPROG + hBMP-2 plasmid. In vivo, rat tibial fractures were intramedullary stabilized with uncoated versus COPROG+hBMP-2-plasmid-coated titanium K-wires. The tibiae were prepared for biomechanical and histological analyses at days 28 and 42 and for transfection/safety study at days 2, 4, 7, 28, and 42. Results. In vitro results showed luciferase expression until day 21, and hBMP-2-protein was measured from day 2 – day 10. In vivo, the local application of hBMP-2-plasmid showed a significantly higher maximum load after 42 days compared to that in the control. The histomorphometric analysis revealed a significantly less mineralized periosteal callus area in the BMP-2 group compared to the control at day 28. The rt-PCR showed no systemic biodistribution of luciferase RNA. Conclusion. A positive effect on fracture healing by nonviral BMP-2 plasmid application from COPROG-coated implants could be shown in this study; however, the effect of the vector may be improved with higher plasmid concentrations. Transfection showed no biodistribution to distant organs and was considered to be safe.

  15. Controlled Retention of BMP-2-Derived Peptide on Nanofibers Based on Mussel-Inspired Adhesion for Bone Formation.

    Science.gov (United States)

    Lee, Jinkyu; Perikamana, Sajeesh Kumar Madhurakkat; Ahmad, Taufiq; Lee, Min Suk; Yang, Hee Seok; Kim, Do-Gyoon; Kim, Kyobum; Kwon, Bosun; Shin, Heungsoo

    2017-04-01

    Although bone morphogenetic protein-2 (BMP-2) has been frequently used to stimulate bone formation, it has several side effects to be addressed, including the difficulty in optimization of clinically relevant doses and unwanted induction of cancerous signaling processes. In this study, an osteogenic peptide (OP) derived from BMP-2 was investigated as a substitute for BMP-2. In vitro studies showed that OP was able to enhance the osteogenic differentiation and mineralization of human mesenchymal stem cells (hMSCs). The peptides were then conjugated onto biocompatible poly-ι-lactide electrospun nanofibers through polydopamine chemistry. Surface chemical analysis proved that more than 80% of the peptides were stably retained on the nanofiber surface after 8 h of polydopamine coating during at least 28 days, and the amount of peptides that was retained increased depending on the polydopamine coating time. For instance, about 65% of the peptides were retained on nanofibers after 4 h of polydopamine coating. Also, a relatively small dose of peptides could effectively induce bone formation in in vivo critical-sized defects on the calvarial bones of mice. More than 50.4% ± 16.9% of newly formed bone was filled within the defect after treatment with only 10.5 ± 0.6 μg of peptides. Moreover, these groups had similar elastic moduli and contact hardnesses with host bone. Taken together, our results suggest that polydopamine-mediated OP immobilized on nanofibers can modulate the retention of relatively short lengths of peptides, which might make this an effective therapeutic remedy to guide bone regeneration using a relatively small amount of peptides.

  16. Insulin-like growth factor-1 (IGF-1) enhances the osteogenic activity of bone morphogenetic protein-6 (BMP-6) in vitro and in vivo, and together have a stronger osteogenic effect than when IGF-1 is combined with BMP-2.

    Science.gov (United States)

    Rico-Llanos, Gustavo A; Becerra, Jose; Visser, Rick

    2017-07-01

    Bone morphogenetic protein-2 (BMP-2) is widely used in orthopedic surgery and bone tissue engineering because of its strong osteogenic activity. However, BMP-2 treatments have several drawbacks and many groups are actively exploring alternatives. Since BMP-6 has been demonstrated to be more osteoinductive, its use, either alone or together with other growth factors, might be an interesting option. In this work, we have compared the effect of BMP-2, BMP-6, or insulin-like growth factor-1 (IGF-1), either alone or in combination. Murine preosteoblasts were treated with 15 nM IGF-1 and/or 6 nM BMP-2 or -6 and the expression of osteogenic marker genes, proliferation, and alkaline phosphatase (ALP) activity in vitro were analyzed. The results showed that IGF-1 greatly enhanced the BMP-induced osteogenic differentiation of these cells in general and that the ALP activity in the cultures was higher when the combination was made with BMP-6 than with BMP-2. Furthermore, we tested the osteogenic potential of these treatments in vivo by loading 25 pmoles of IGF-1 and/or 10 pmoles of BMP-2 or -6 onto absorbable collagen sponges and implanting them into an ectopic bone formation model in rats. This study revealed that only BMP-6 was able to induce bone formation at the used dose and that the addition of IGF-1 contributed to an increase of the mineralization in the implants. Hence, the combination of BMP-6 with IGF-1 might be a better alternative than BMP-2 for orthopedic surgery or bone tissue engineering approaches. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1867-1875, 2017. © 2017 Wiley Periodicals, Inc.

  17. Acellular dermal matrix loading with bFGF achieves similar acceleration of bone regeneration to BMP-2 via differential effects on recruitment, proliferation and sustained osteodifferentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Du, Mi; Zhu, Ting; Duan, Xiaoqi; Ge, Shaohua; Li, Ning; Sun, Qinfeng; Yang, Pishan

    2017-01-01

    New generation of barrier membranes has been developed, which not only act as barriers but also as delivery devices to release specific growth factors. This study observed biological behaviors of bone morrow mesenchymal stem cells (BMMSCs) pretreated by bFGF or BMP-2 in vitro and evaluated differential bone regeneration process induced by bFGF and BMP-2 loaded acellular dermal matrix (ADM) membrane using critical-size rat calvarial defect model in vivo. The results showed that the proliferation capability of BMMSCs pretreated by bFGF was stronger than that by BMP-2, while there was temporally differential effect of bFGF and BMP-2 pretreatment on MSC osteogenic differentiation potentials. During healing process of rat calvarial defects, 2-fold more CD34 −/CD90 + MSCs in group of bFGF-ADM was observed than in any other treatment group at 2 weeks. However, there were similar amount of new bone formation and expression of osteopotin in newly-formed bone tissue in groups of bFGF- and BMP-2-ADM at 8 weeks, which were more than those in ADM alone and blank control. Taken together, bFGF-ADM guided similar bone regeneration to BMP-2 through more efficient recruitment of MSCs, and moreover, BMMSCs pretreated by bFGF showed stronger proliferation at 1–5 days and osteogenic differentiation potentials at 14 days compared with BMP-2 pretreatment. - Highlights: • An improved barrier membrane used in the field of bone tissue engineering was proposed, which is acellular dermal matrix (ADM) loaded with growth factors. • It is generally agreed that BMP-2 and -7 provide the greatest bone regeneration potentials, however, we found that ADM loading with bFGF could guide similar bone regeneration to BMP-2. • Compared with BMP-2, bFGF could more effectively recruit MSCs and moreover, BMMSCs pretreated by bFGF showed out stronger proliferation at 1-5 days and osteogenic differentiation potentials at 14 days.

  18. Binding Interactions of Keratin-Based Hair Fiber Extract to Gold, Keratin, and BMP-2.

    Directory of Open Access Journals (Sweden)

    Roche C de Guzman

    Full Text Available Hair-derived keratin biomaterials composed mostly of reduced keratin proteins (kerateines have demonstrated their utility as carriers of biologics and drugs for tissue engineering. Electrostatic forces between negatively-charged keratins and biologic macromolecules allow for effective drug retention; attraction to positively-charged growth factors like bone morphogenetic protein 2 (BMP-2 has been used as a strategy for osteoinduction. In this study, the intermolecular surface and bulk interaction properties of kerateines were investigated. Thiol-rich kerateines were chemisorbed onto gold substrates to form an irreversible 2-nm rigid layer for surface plasmon resonance analysis. Kerateine-to-kerateine cohesion was observed in pH-neutral water with an equilibrium dissociation constant (KD of 1.8 × 10(-4 M, indicating that non-coulombic attractive forces (i.e. hydrophobic and van der Waals were at work. The association of BMP-2 to kerateine was found to be greater (KD = 1.1 × 10(-7 M, within the range of specific binding. Addition of salts (phosphate-buffered saline; PBS shortened the Debye length or the electrostatic field influence which weakened the kerateine-BMP-2 binding (KD = 3.2 × 10(-5 M. BMP-2 in bulk kerateine gels provided a limited release in PBS (~ 10% dissociation in 4 weeks, suggesting that electrostatic intermolecular attraction was significant to retain BMP-2 within the keratin matrix. Complete dissociation between kerateine and BMP-2 occurred when the PBS pH was lowered (to 4.5, below the keratin isoelectric point of 5.3. This phenomenon can be attributed to the protonation of keratin at a lower pH, leading to positive-positive repulsion. Therefore, the dynamics of kerateine-BMP-2 binding is highly dependent on pH and salt concentration, as well as on BMP-2 solubility at different pH and molarity. The study findings may contribute to our understanding of the release kinetics of drugs from keratin biomaterials and allow for the

  19. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair.

    Science.gov (United States)

    Dupont, Kenneth M; Boerckel, Joel D; Stevens, Hazel Y; Diab, Tamim; Kolambkar, Yash M; Takahata, Masahiko; Schwarz, Edward M; Guldberg, Robert E

    2012-03-01

    Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.

  20. Bone induction through controlled release of novel BMP-2-related peptide from PTMC11-F127-PTMC11 hydrogels

    International Nuclear Information System (INIS)

    Tang Shuo; Li Jingfeng; Teng Yu; Guo Xiaodong; Zhao Jingjing; Xu Shuyun; Quan Daping

    2012-01-01

    Bone morphogenetic protein 2 (BMP-2) is the most powerful osteogenic factor; its effectiveness in enhancing osteoblastic activation has been confirmed both in vitro and in vivo. We developed a novel peptide (designated P24) derived from the ‘knuckle’ epitope of BMP-2 and found it also had osteogenic bioactivity to some extent. The main objective of this study was to develop a controlled release system based on poly(trimethylene carbonate)–F127–poly(trimethylene carbonate) (PTMC 11 -F127-PTMC 11 ) hydrogels for the P24 peptide, to promote bone formation. By varying the copolymer concentrations, we demonstrated that P24/PTMC 11 -F127-PTMC 11 hydrogels were an efficient system for the sustained release of P24 over 21–35 days. The P24-loaded hydrogels elevated alkaline phosphatase activity and promoted the expression of osteocalcin mRNA in bone marrow stromal cells (BMSCs) in vitro. Radiographic and histological examination showed that P24-loaded hydrogels could induce more effective ectopic bone formation in vivo than P24-free hydrogels. These results indicate that the PTMC 11 -F127-PTMC 11 hydrogel is a suitable carrier for the controlled release of P24, and is a promising injectable biomaterial for the induction of bone regeneration. (paper)

  1. Evaluation of a Novel HA/ZrO2-Based Porous Bioceramic Artificial Vertebral Body Combined with a rhBMP-2/Chitosan Slow-Release Hydrogel.

    Directory of Open Access Journals (Sweden)

    Yihui Shi

    Full Text Available A new HA/ZrO2-based porous bioceramic artificial vertebral body (AVB, carried a recombinant human bone morphogenetic protein-2 (rhBMP-2/chitosan slow-release hydrogel was prepared to repair vertebral bone defect in beagles. An ionic cross-linking was used to prepare the chitosan hydrogel (CS gel as the rhBMP-2 slow-release carrier. The vertebral body defects were implanted with the rhBMP-2-loaded AVB in group A, or a non-drug-loaded AVB in group B, or autologous iliac in group C. The encapsulation rate of rhBMP-2 in rhBMP-2-loaded CS gel was 91.88±1.53%, with a drug load of 39.84±2.34 ng/mg. At 6, 12, 24 weeks postoperatively, radiography showed that the bone calluses gradually increased with time in group A, where the artificial vertebral body had completely fused with host-bone at 24 weeks after surgery. In group C, an apparent bone remodeling was occurred in the early stages, and the graft-bone and host-bone had also fused completely at 24 weeks postoperatively. In group B, fusion occurred less than in groups A and C. At 24 weeks after surgery, micro-computed tomography (Micro-CT revealed that the volume of newly-formed bone in group A was significantly more than in group B (p<0.05. At 24 weeks after surgery, ultra-compressive strengths of the operated segments were 14.03±1.66 MPa in group A, 8.62±1.24 MPa in group B, and 13.78±1.43 MPa in group C. Groups A and C were both significantly higher than group B (p < 0.05. At 24 weeks postoperatively, the hard tissue sections showed that the AVB of group A had tightly fused with host bone, and that pores of the AVB had been filled with abundant nearly mature bone, and that the new bone structured similarly to a trabecular framework, which was similar to that in group C. In contrast, implant fusion of the AVB in group B was not as apparent as group A. In conclusion, the novel HA/ZrO2-based porous bioceramic AVB carried the rhBMP-2-loaded CS gel can promote the repair of bony defect, and induce

  2. Bone Morphogenic Protein-2 (rhBMP2)-Loaded Silk Fibroin Scaffolds to Enhance the Osteoinductivity in Bone Tissue Engineering

    Science.gov (United States)

    Du, Guang-Yu; He, Sheng-Wei; Sun, Chuan-Xiu; Mi, Li-Dong

    2017-10-01

    There is an increasing demand for formulations of silk fibroin (SF) scaffolds in biomedical applications. SF was crosslinked via glutaraldehyde with osteoinductive recombinant human bone morphogenic protein-2 (rhBMP2) of different ratios viz. (i) 3% SF with no rhBMP2 (SF), (ii) 3% SF with equal amount of rhBMP2 (SF+BMP2), and (iii) 12% SF with 3% of rhBMP2 (4SF+BMP2), and these solutions were used in electrospinning-based fabrication of nanoscaffolds for evaluating increased osteoinductive potential of SF scaffolds with rhBMP2. Stress-strain relationship suggested there is no loss in mechanical strength of fibers with addition of rhBMP2, and mechanical strength of scaffold was improved with increase in concentration of SF. rhBMP2 association increased the water retention capacity of scaffold as evident from swelling studies. Viability of hMSCs was found to be higher in conjugated scaffolds, and scaffolds do not exhibit any cytotoxicity towards guest cells. Cells were found to have higher alkaline phosphatase activity in conjugated scaffolds under in vitro and in vivo conditions which establishes the increased osteoinductivity of the novel construct. The scaffolds were found to be effective for in vivo bone formation as well.

  3. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells

    Science.gov (United States)

    Yang, Wuchen; Guo, Dayong; Harris, Marie A.; Cui, Yong; Gluhak-Heinrich, Jelica; Wu, Junjie; Chen, Xiao-Dong; Skinner, Charles; Nyman, Jeffry S.; Edwards, James R.; Mundy, Gregory R.; Lichtler, Alex; Kream, Barbara E.; Rowe, David W.; Kalajzic, Ivo; David, Val; Quarles, Darryl L.; Villareal, Demetri; Scott, Greg; Ray, Manas; Liu, S.; Martin, James F.; Mishina, Yuji; Harris, Stephen E.

    2013-01-01

    Summary We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKOob) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKOob mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKOob osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA+ MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells. PMID:23843612

  4. Expression of BMP-2 in Vascular Endothelial Cells of Recipient May Predict Delayed Graft Function After Renal Transplantation.

    Science.gov (United States)

    Basic-Jukic, Nikolina; Gulin, Marijana; Hudolin, Tvrtko; Kastelan, Zeljko; Katalinic, Lea; Coric, Marijana; Veda, Marija Varnai; Ivkovic, Vanja; Kes, Petar; Jelakovic, Bojan

    2016-01-01

    Delayed graft function (DGF) is associated with adverse outcomes after renal transplantation. Bone morphogenetic protein-2 (BMP-2) is involved in both endothelial function and immunological events. We compared expression of BMP-2 in epigastric artery of renal transplant recipients with immediate graft function (IGF) and DGF. 79 patients were included in this prospective study. Patients were divided in IGF group (64 patients) and DGF group (15 patients). BMP-2 expression in intima media (BMP2m) and endothelium (BMP2e) of epigastric artery was assessed by immunohistochemistry. Lower intensity of BMP2e staining was recorded in DGF compared to IGF. In DGF patients, 93% had no expression of BMP2e and 7% had 1st grade expression, compared to 45% and 41% in IGF group, respectively (P=0.001) (P<0.001 for no expression and P = 0.015 for 1st grade expression). Patients who had BMP2e staining positive had lower odds for DGF (OR 0.059 [0.007, 0.477]) and this remained significant even after adjustment for donor and recipient variables, cold ischemia time, and immunological matching (OR 0.038 [0.003, 0.492]). Our results demonstrate that BMP-2 expression in endothelial cells of epigastric arteries may predict development of DGF. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. Expression of BMP-2 in Vascular Endothelial Cells of Recipient May Predict Delayed Graft Function After Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Nikolina Basic-Jukic

    2016-11-01

    Full Text Available Background/Aims: Delayed graft function (DGF is associated with adverse outcomes after renal transplantation. Bone morphogenetic protein-2 (BMP-2 is involved in both endothelial function and immunological events. We compared expression of BMP-2 in epigastric artery of renal transplant recipients with immediate graft function (IGF and DGF. Methods: 79 patients were included in this prospective study. Patients were divided in IGF group (64 patients and DGF group (15 patients. BMP-2 expression in intima media (BMP2m and endothelium (BMP2e of epigastric artery was assessed by immunohistochemistry. Results: Lower intensity of BMP2e staining was recorded in DGF compared to IGF. In DGF patients, 93% had no expression of BMP2e and 7% had 1st grade expression, compared to 45% and 41% in IGF group, respectively (P=0.001 (Pst grade expression. Patients who had BMP2e staining positive had lower odds for DGF (OR 0.059 [0.007, 0.477] and this remained significant even after adjustment for donor and recipient variables, cold ischemia time, and immunological matching (OR 0.038 [0.003, 0.492]. Conclusions: Our results demonstrate that BMP-2 expression in endothelial cells of epigastric arteries may predict development of DGF.

  6. rhBMP-2 for posterolateral instrumented lumbar fusion: a multicenter prospective randomized controlled trial.

    Science.gov (United States)

    Hurlbert, R John; Alexander, David; Bailey, Stewart; Mahood, James; Abraham, Ed; McBroom, Robert; Jodoin, Alain; Fisher, Charles

    2013-12-01

    Multicenter randomized controlled trial. To evaluate the effect of recombinant human bone morphogenetic protein (rhBMP-2) on radiographical fusion rate and clinical outcome for surgical lumbar arthrodesis compared with iliac crest autograft. In many types of spinal surgery, radiographical fusion is a primary outcome equally important to clinical improvement, ensuring long-term stability and axial support. Biologic induction of bone growth has become a commonly used adjunct in obtaining this objective. We undertook this study to objectify the efficacy of rhBMP-2 compared with traditional iliac crest autograft in instrumented posterolateral lumbar fusion. Patients undergoing 1- or 2-level instrumented posterolateral lumbar fusion were randomized to receive either autograft or rhBMP-2 for their fusion construct. Clinical and radiographical outcome measures were followed for 2 to 4 years postoperatively. One hundred ninety seven patients were successfully randomized among the 8 participating institutions. Adverse events attributable to the study drug were not significantly different compared with controls. However, the control group experienced significantly more graft-site complications as might be expected. 36-Item Short Form Health Survey, Oswestry Disability Index, and leg/back pain scores were comparable between the 2 groups. After 4 years of follow-up, radiographical fusion rates remained significantly higher in patients treated with rhBMP-2 (94%) than those who received autograft (69%) (P = 0.007). The use of rhBMP-2 for instrumented posterolateral lumbar surgery significantly improves the chances of radiographical fusion compared with the use of autograft. However, there is no associated improvement in clinical outcome within a 4-year follow-up period. These results suggest that use of rhBMP-2 should be considered in cases where lumbar arthrodesis is of primary concern.

  7. Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity

    Science.gov (United States)

    Intini, Giuseppe; Nyman, Jeffry S.

    2015-01-01

    Bone fractures remain a serious health burden and prevention and enhanced healing of fractures has been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1+/−) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2c/c;Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1+/− mice were crossed with Bmp2c/c;Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy. PMID:25603465

  8. BMP2 and BMP7 play antagonistic roles in feather induction

    Science.gov (United States)

    Michon, Frédéric; Forest, Loïc; Collomb, Elodie; Demongeot, Jacques; Dhouailly, Danielle

    2008-01-01

    Summary During embryonic development, feathers first appear as primordia consisting of an epidermal placode associated with a dermal condensation. In most previous studies, the BMPs have been proposed to function as inhibitors of the formation of cutaneous appendages. We showed that the function of BMPs is quite nuanced: BMP-2 and BMP-7, which are expressed in both skin components, act antagonistically and yet are both involved in the dermal condensations formation. BMP-7, the first to be expressed, is implicated in chemotaxis which leads to cell recruitment to the condensation, whereas BMP-2, which is expressed later, leads to an arrest of cell migration, likely via its modulation of EIIIA Fibronectin domain and α4-Integrin expression. We also propose a mathematical model, a reaction-diffusion system, based on cell proliferation, chemotaxis and the timing of BMP-2 and BMP-7 expression, which simulates the endogenous situation and reproduces the negative effects of excess BMP-2 or BMP-7 on feather patterning. PMID:18635609

  9. Enhanced osteogenesis of adipose derived stem cells with Noggin suppression and delivery of BMP-2.

    Directory of Open Access Journals (Sweden)

    Jiabing Fan

    Full Text Available Bone morphogenetic proteins (BMPs are believed to be the most potent osteoinductive factors. However, BMPs are highly pleiotropic molecules and their supra-physiological high dose requirement leads to adverse side effects and inefficient bone formation. Thus, there is a need to develop alternative osteoinductive growth factor strategies that can effectively complement BMP activity. In this study, we intrinsically stimulated BMP signaling in adipose derived stem cells (ASCs by downregulating noggin, a potent BMP antagonist, using an RNAi strategy. ASCs transduced with noggin shRNA significantly enhanced osteogenic differentiation of cells. The potency of endogenous BMPs was subsequently enhanced by stimulating ASCs with exogenous BMPs at a significantly reduced dose. The level of mineralization in noggin shRNA treated ASCs when treated with BMP-2 was comparable to that of control shRNA treated cell treated with 10-fold more BMP-2. The complementary strategy of noggin suppression + BMP-2 to enhance osteogenesis was further confirmed in 3D in vitro environments using scaffolds consisting of chitosan (CH, chondroitin sulfate (CS, and apatite layer on their surfaces designed to slowly release BMP-2. This finding supports the novel therapeutic potential of this complementary strategy in bone regeneration.

  10. Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion.

    Science.gov (United States)

    Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia

    2017-07-01

    Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. rhBMP-2 (ACS and CRM formulations) overcomes pseudarthrosis in a New Zealand white rabbit posterolateral fusion model.

    Science.gov (United States)

    Lawrence, James P; Waked, Walid; Gillon, Thomas J; White, Andrew P; Spock, Christopher R; Biswas, Debdut; Rosenberger, Patricia; Troiano, Nancy; Albert, Todd J; Grauer, Jonathan N

    2007-05-15

    The study design consisted of a New Zealand white rabbit model of pseudarthrosis repair. Study groups consisting of no graft, autograft, or recombinant human bone morphogenetic protein-2 (rhBMP-2) with absorbable collagen sponge (ACS) or compression resistant matrix (CRM) were evaluated. To evaluate the relative efficacy of bone graft materials (autograft, ACS, and CRM). rhBMP-2 has been shown to have a 100% fusion rate in a primary rabbit fusion model, even in the presence of nicotine, which is known to inhibit fusion. Seventy-two New Zealand white rabbits underwent posterolateral lumbar fusion with iliac crest autograft. To establish pseudarthroses, nicotine was administered to all animals. At 5 weeks, the spines were explored and all pseudarthroses were redecorticated and implanted with no graft, autograft, rhBMP-2/ACS, or rhBMP-2/CRM. At 10 weeks, fusions were assessed by manual palpation and histology. Eight rabbits (11%) were lost to complications. At 5 weeks, 66 (97%) had pseudarthroses. At 10 weeks, attempted pseudarthrosis repairs were fused in 1 of 16 of no graft rabbits (6%), 5 of 17 autograft rabbits (29%), and 31 of 31 rhBMP-2 rabbits (with ACS or CRM) (100%). Histologic analysis demonstrated more mature bone formation in the rhBMP-2 groups. The 2 rhBMP-2 formulations led to significantly higher fusion rates and histologic bone formation than no graft and autograft controls in this pseudarthrosis repair model.

  12. Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects.

    Directory of Open Access Journals (Sweden)

    Markus D Schofer

    Full Text Available Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM.The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2 into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1 left unfilled, or treated with (2 bovine spongiosa, (3 PLLA scaffolds alone or (4 PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5.PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups.Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone

  13. Spatial control of bone formation using a porous polymer scaffold co-delivering anabolic rhBMP-2 and anti-resorptive agents

    Directory of Open Access Journals (Sweden)

    NYC Yu

    2014-01-01

    Full Text Available Current clinical delivery of recombinant human bone morphogenetic proteins (rhBMPs utilises freeze-dried collagen. Despite effective new bone generation, rhBMP via collagen can be limited by significant complications due to inflammation and uncontrolled bone formation. This study aimed to produce an alternative rhBMP local delivery system to permit more controllable and superior rhBMP-induced bone formation. Cylindrical porous poly(lactic-co-glycolic acid (PLGA scaffolds were manufactured by thermally-induced phase separation. Scaffolds were encapsulated with anabolic rhBMP-2 (20 µg ± anti-resorptive agents: zoledronic acid (5 µg ZA, ZA pre-adsorbed onto hydroxyapatite microparticles, (5 µg ZA/2 % HA or IkappaB kinase (IKK inhibitor (10 µg PS-1145. Scaffolds were inserted in a 6-mm critical-sized femoral defect in Wistar rats, and compared against rhBMP-2 via collagen. The regenerate region was examined at 6 weeks by 3D microCT and descriptive histology. MicroCT and histology revealed rhBMP-induced bone was more restricted in the PLGA scaffolds than collagen scaffolds (-92.3 % TV, p < 0.01. The regenerate formed by PLGA + rhBMP-2/ZA/HA showed comparable bone volume to rhBMP-2 via collagen, and bone mineral density was +9.1 % higher (p < 0.01. Local adjunct ZA/HA or PS-1145 significantly enhanced PLGA + rhBMP-induced bone formation by +78.2 % and +52.0 %, respectively (p ≤ 0.01. Mechanistically, MG-63 human osteoblast-like cells showed cellular invasion and proliferation within PLGA scaffolds. In conclusion, PLGA scaffolds enabled superior spatial control of rhBMP-induced bone formation over clinically-used collagen. The PLGA scaffold has the potential to avoid uncontrollable bone formation-related safety issues and to customise bone shape by scaffold design. Moreover, local treatment with anti-resorptive agents incorporated within the scaffold further augmented rhBMP-induced bone formation.

  14. Stimulation of porcine bone marrow stromal cells by hyaluronan, dexamethasone and rhBMP-2

    DEFF Research Database (Denmark)

    Zou, Xuenong; Li, Haisheng; Chen, Li

    2004-01-01

    and 7. When BMSc were cultivated with HY of 4.0 mg/ml alone, its combinations with Dex (+) and 10 ng/ml rhBMP-2, and with DMEM/FBS alone, expression of bone-related marker genes was evaluated by real-time reverse transcription-polymerase chain reaction (Real-time RT-PCR) analysis. Osteocalcin was up...... collagen and type X collagen were down-regulated in the presence of 4 mg/ml HY by Day 7. These results suggest that HY stimulates BMSc proliferation, osteocalcin gene expression, and a secretion of enzymes such as that of ALP activity in vitro. More importantly, HY can interact with Dex and rhBMP-2...

  15. Histone deacetylases control neurogenesis in embryonic brain by inhibition of BMP2/4 signaling.

    Directory of Open Access Journals (Sweden)

    Maya Shakèd

    Full Text Available BACKGROUND: Histone-modifying enzymes are essential for a wide variety of cellular processes dependent upon changes in gene expression. Histone deacetylases (HDACs lead to the compaction of chromatin and subsequent silencing of gene transcription, and they have recently been implicated in a diversity of functions and dysfunctions in the postnatal and adult brain including ocular dominance plasticity, memory consolidation, drug addiction, and depression. Here we investigate the role of HDACs in the generation of neurons and astrocytes in the embryonic brain. PRINCIPAL FINDINGS: As a variety of HDACs are expressed in differentiating neural progenitor cells, we have taken a pharmacological approach to inhibit multiple family members. Inhibition of class I and II HDACs in developing mouse embryos with trichostatin A resulted in a dramatic reduction in neurogenesis in the ganglionic eminences and a modest increase in neurogenesis in the cortex. An identical effect was observed upon pharmacological inhibition of HDACs in in vitro-differentiating neural precursors derived from the same brain regions. A reduction in neurogenesis in ganglionic eminence-derived neural precursors was accompanied by an increase in the production of immature astrocytes. We show that HDACs control neurogenesis by inhibition of the bone morphogenetic protein BMP2/4 signaling pathway in radial glial cells. HDACs function at the transcriptional level by inhibiting and promoting, respectively, the expression of Bmp2 and Smad7, an intracellular inhibitor of BMP signaling. Inhibition of the BMP2/4 signaling pathway restored normal levels of neurogenesis and astrogliogenesis to both ganglionic eminence- and cortex-derived cultures in which HDACs were inhibited. CONCLUSIONS: Our results demonstrate a transcriptionally-based regulation of BMP2/4 signaling by HDACs both in vivo and in vitro that is critical for neurogenesis in the ganglionic eminences and that modulates cortical

  16. Enhanced Bone Formation in Segmental Defects with BMP2 in a Biologically Relevant Molecular Context

    Science.gov (United States)

    2016-10-16

    interfere with the biological activity of the BMP2, and because radioisotope detection methods are highly sensitive and remain quantitative across a large...PRINCIPAL INVESTIGATOR: Dominik R. Haudenschild CONTRACTING ORGANIZATION: University of California, Davis Davis, CA 95618 REPORT DATE : October 2016...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE October 2016 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2015

  17. Bone regeneration in osteoporosis by delivery BMP-2 and PRGF from tetronic-alginate composite thermogel.

    Science.gov (United States)

    Segredo-Morales, Elisabet; García-García, Patricia; Reyes, Ricardo; Pérez-Herrero, Edgar; Delgado, Araceli; Évora, Carmen

    2018-05-30

    As the life expectancy of the world population increases, osteoporotic (OP) fracture risk increase. Therefore in the present study a novel injectable thermo-responsive hydrogel loaded with microspheres of 17β-estradiol, microspheres of bone morphogenetic protein-2 (BMP-2) and plasma rich in growth factors (PRGF) was applied locally to regenerate a calvaria critical bone defect in OP female rats. Three systems were characterized: Tetronic® 1307 (T-1307) reinforced with alginate (T-A), T-A with PRGF and T-A-PRGF with microspheres. The addition of the microspheres increased the viscosity but the temperature for the maximum viscosity did not change (22-24 °C). The drugs were released during 6 weeks in one fast phase (three days) followed by a long slow phase. In vivo evaluation was made in non-OP and OP rats treated with T-A, T-A with microspheres of 17β-estradiol (T-A-βE), T-A-βE prepared with PRGF (T-A-PRGF-βE), T-A-βE with microspheres of BMP-2 (T-A-βE-BMP-2) and the combination of the three (T-A-PRGF-βE-BMP). After 12 weeks, histological and histomorphometric analyzes showed a synergic effect due to the addition of BMP-2 to the T-A-βE formulation. The PRGF did not increased the bone repair. The new bone filling the OP defect was less mineralized than in the non-OP groups. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. [Preparation of vanilline cross-linked rhBMP-2/chitosan microspheres and its effect on mesenchymal stem cells].

    Science.gov (United States)

    Wu, Gui; Wang, Hai; Qiu, Guixing; Yu, Xin; Su, Xinlin; Ma, Pei; Yin, Bo; Wu, Zhihong

    2015-06-02

    To prepare rhBMP-2/chitosan microspheres (rhBMP-2 CMs) with vanilline as a cross-linking reagent and study the biocompatibility and drug release characteristic of microspheres in vitro. Emulsion cross-linking method was utilized to prepare rhBMP-2 CMs, Scanning electron microscope (SEM) was used to observe the microstructure of microspheres.Leaching solution of microspheres and blank culture medium were designated as experimental and control groups respectively. Both groups were cultured with human mesenchymal stem cells (hMSCs) to determine its cytotoxicity and its effect on the proliferation of hMSCs. Dynamic immersion method was used to examine the in vitro release characteristic of rhBMP-2. And the alkaline phosphatase (ALP) activity of hMSCs was determined to reveal the bioactivity of released rhBMP-2. The rhBMP-2 CMs were spherical under SEM.After treating with leaching solution for 24 and 48 h, there was no inter-group statistical difference in optical density (OD) values at both timepoints (24 h:0.72 ± 0.07 vs 0.73 ± 0.05, P > 0.05; 48 h:1.19 ± 0.11 vs 1.27 ± 0.06, P > 0.05). After culturing with leaching solution for 1, 3 and 7 days, the number of cells increased with time for both groups. And the OD values were not statistically different at each timepoint. Five milligram rhBMP-2 CMs soaked for 19 days with a gradual release of rhBMP-2. The concentration of rhBMP-2 was 216.1 ± 20.0 ng/ml at Day 19. At Days 3 and 7, the ALP activities of hMSCs were (0.50 ± 0.07) and (0.68 ± 0.06) µmol pNPP·min⁻¹·mg⁻¹ protein respectively and both were higher than that of blank culture medium group (0.14 ± 0.01) (P < 0.05). With an excellent biocompatibility, rhBMP-2 CMs may be an ideal carrier for control-released rhBMP-2 and encapsulated rhBMP-2 remains bioactive.

  19. Trends Analysis of rhBMP2 Utilization in Single-Level Anterior Lumbar Interbody Fusion in the United States.

    Science.gov (United States)

    Lao, Lifeng; Cohen, Jeremiah R; Buser, Zorica; Brodke, Darrel S; Yoon, S Tim; Youssef, Jim A; Park, Jong-Beom; Meisel, Hans-Joerg; Wang, Jeffrey C

    2018-04-01

    Retrospective case study. To evaluate the trends and demographics of recombinant human bone morphogenetic protein 2 (rhBMP2) utilization in single-level anterior lumbar interbody fusion (ALIF) in the United States. Patients who underwent single-level ALIF from 2005 to 2011 were identified by searching ICD-9 diagnosis and procedure codes in the PearlDiver Patient Records Database (PearlDiver Technologies, Fort Wayne, IN), a national database of orthopedic insurance records. The year of procedure, age, gender, and region of the United States were analyzed for each patient. A total of 921 patients were identified who underwent a single-level ALIF in this study. The average rate of single-level ALIF with rhBMP2 utilization increased (35%-48%) from 2005 to 2009, but sharply decreased to 16.7% in 2010 and 15.0% in 2011. The overall incidence of single-level ALIF without rhBMP2 (0.20 cases per 100 000 patients) was more than twice of the incidence of single-level ALIF with rhBMP2 (0.09 cases per 100 000 patients). The average rate of single-level ALIF with rhBMP2 utilization is highest in West (41.4%), followed by Midwest (33.3%), South (26.5%) and Northeast (22.2%). The highest incidence of single-level ALIF with rhBMP2 was observed in the group aged less than 65 years (compared with any other age groups, P level ALIF increased from 2006 to 2009, but decreased in 2010 and 2011. The Northeast region had the lowest incidence of rhBMP2 utilization. The group aged less than 65 years trended to have the higher incidence of single-level ALIF with rhBMP2 utilization.

  20. Expression characteristics of BMP2, BMPR-IA and Noggin in different stages of hair follicle in yak skin.

    Science.gov (United States)

    Song, Liang-Li; Cui, Yan; Yu, Si-Jiu; Liu, Peng-Gang; Liu, Jun; Yang, Xue; He, Jun-Feng; Zhang, Qian

    2018-05-01

    Bone morphogenetic protein 2 (BMP2), BMP receptor-IA (BMPR-IA), and the BMP2 antagonist Noggin are important proteins involved in regulating the hair follicle (HF) cycle in skin. In order to explore the expression profiles of BMP2, BMPR-IA, and Noggin in the HF cycle of yak skin, we collected adult yak skin in the telogen, proanagen, and midanagen phases of HFs and evaluated gene and protein expression by real-time quantitative polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. qRT-PCR and western blotting results showed that BMP2 and BMPR-IA expression levels were highest in the telogen of HFs and higher than that of Noggin in the same phase. The expression of Noggin was significantly higher in proanagen and midanagen phases of HFs than in the telogen phase, with the highest expression observed in the proanagen phase. Moreover, the expression of Noggin in the proanagen phase was significantly higher than those of BMP2 and BMPR-IA during the same phase. Immunohistochemistry results showed that BMP2, BMPR-IA, and Noggin were expressed in the skin epidermis, sweat glands, sebaceous glands, HF outer root sheath, and hair matrix. In summary, the characteristic expression profiles of BMP2, BMPR-IA, and Noggin suggested that BMP2 and BMPR-IA had inhibitory effects on the growth of HFs in yaks, whereas Noggin promoted the growth of yak HFs, mainly by affecting skin epithelial cell activity. These results provide a basis for further studies of HF development and cycle transition in yak skin. Copyright © 2017. Published by Elsevier Inc.

  1. Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia.

    Science.gov (United States)

    Barlow, A J; Francis-West, P H

    1997-01-01

    The facial primordia initially consist of buds of undifferentiated mesenchyme, which give rise to a variety of tissues including cartilage, muscle and nerve. These must be arranged in a precise spatial order for correct function. The signals that control facial outgrowth and patterning are largely unknown. The bone morphogenetic proteins Bmp-2 and Bmp-4 are expressed in discrete regions at the distal tips of the early facial primordia suggesting possible roles for BMP-2 and BMP-4 during chick facial development. We show that expression of Bmp-4 and Bmp-2 is correlated with the expression of Msx-1 and Msx-2 and that ectopic application of BMP-2 and BMP-4 can activate Msx-1 and Msx-2 gene expression in the developing facial primordia. We correlate this activation of gene expression with changes in skeletal development. For example, activation of Msx-1 gene expression across the distal tip of the mandibular primordium is associated with an extension of Fgf-4 expression in the epithelium and bifurcation of Meckel's cartilage. In the maxillary primordium, extension of the normal domain of Msx-1 gene expression is correlated with extended epithelial expression of shh and bifurcation of the palatine bone. We also show that application of BMP-2 can increase cell proliferation of the mandibular primordia. Our data suggest that BMP-2 and BMP-4 are part of a signalling cascade that controls outgrowth and patterning of the facial primordia.

  2. Plasma Treated High-Density Polyethylene (HDPE Medpor Implant Immobilized with rhBMP-2 for Improving the Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jin-Su Lim

    2014-01-01

    Full Text Available We investigate the bone generation capacity of recombinant human bone morphogenetic protein-2 (rhBMP-2 immobilized Medpor surface through acrylic acid plasma-polymerization. Plasma-polymerization was carried out at a 20 W at an acrylic acid flow rate of 7 sccm for 5 min. The plasma-polymerized Medpor surface showed hydrophilic properties and possessed a high density of carboxyl groups. The rhBMP-2 was immobilized with covalently attached carboxyl groups using 1-ethyl-3-(3-dimethylaminopropyl carbodiimide and N-hydroxysuccinimide. Carboxyl groups and rhBMP-2 immobilization on the Medpor surface were identified by Fourier transform infrared spectroscopy. The activity of Medpor with rhBMP-2 immobilized was examined using an alkaline phosphatase assay on MC3T3-E1 cultured Medpor. These results showed that the rhBMP-2 immobilized Medpor increased the level of MC3T3-E1 cell differentiation. These results demonstrated that plasma surface modification has the potential to immobilize rhBMP-2 on polymer implant such as Medpor and can be used for the binding of bioactive nanomolecules in bone tissue engineering.

  3. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    International Nuclear Information System (INIS)

    Xiao Caiwen; Zhou Huifang; Fu Yao; Gu Ping; Fan Xianqun; Liu Guangpeng; Zhang Peng; Hou Hongliang; Tang Tingting

    2011-01-01

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  4. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    Science.gov (United States)

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells.

    Directory of Open Access Journals (Sweden)

    Yu Mi Park

    Full Text Available Presently, few treatments for spinal cord injury (SCI are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm, a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm(2 weight for 1 min at thoracic vertebra (Th 9 segment. Mice that received an intraperitoneal (i.p. injection of Agm (100 mg/kg/day within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following

  6. The Multifaceted Effects of Agmatine on Functional Recovery after Spinal Cord Injury through Modulations of BMP-2/4/7 Expressions in Neurons and Glial Cells

    Science.gov (United States)

    Park, Yu Mi; Lee, Won Taek; Bokara, Kiran Kumar; Seo, Su Kyoung; Park, Seung Hwa; Kim, Jae Hwan; Yenari, Midori A.; Park, Kyung Ah; Lee, Jong Eun

    2013-01-01

    Presently, few treatments for spinal cord injury (SCI) are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm), a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm2 weight for 1 min at thoracic vertebra (Th) 9 segment. Mice that received an intraperitoneal (i.p.) injection of Agm (100 mg/kg/day) within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs) are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST) demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following SCI. PMID

  7. BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs

    Directory of Open Access Journals (Sweden)

    Finnson Kenneth

    2010-02-01

    Full Text Available Abstract Background Axolotls have the unique ability, among vertebrates, to perfectly regenerate complex body parts, such as limbs, after amputation. In addition, axolotls pattern developing and regenerating autopods from the anterior to posterior axis instead of posterior to anterior like all tetrapods studied to date. Sonic hedgehog is important in establishing this anterior-posterior axis of limbs in all tetrapods including axolotls. Interestingly, its expression is conserved (to the posterior side of limb buds and blastemas in axolotl limbs as in other tetrapods. It has been suggested that BMP-2 may be the secondary mediator of sonic hedgehog, although there is mounting evidence to the contrary in mice. Since BMP-2 expression is on the anterior portion of developing and regenerating limbs prior to digit patterning, opposite to the expression of sonic hedgehog, we examined whether BMP-2 expression was dependent on sonic hedgehog signaling and whether it affects patterning of the autopod during regeneration. Results The expression of BMP-2 and SOX-9 in developing and regenerating axolotl limbs corresponded to the first digits forming in the anterior portion of the autopods. The inhibition of sonic hedgehog signaling with cyclopamine caused hypomorphic limbs (during development and regeneration but did not affect the expression of BMP-2 and SOX-9. Overexpression of BMP-2 in regenerating limbs caused a loss of digits. Overexpression of Noggin (BMP inhibitor in regenerating limbs also resulted in a loss of digits. Histological analysis indicated that the loss due to BMP-2 overexpression was the result of increased cell condensation and apoptosis while the loss caused by Noggin was due to a decrease in cell division. Conclusion The expression of BMP-2 and its target SOX-9 was independent of sonic hedgehog signaling in developing and regenerating limbs. Their expression correlated with chondrogenesis and the appearance of skeletal elements has

  8. Osteogenesis differentiation of human periodontal ligament cells by CO2 laser-treatment stimulating macrophages via BMP2 signalling pathway

    International Nuclear Information System (INIS)

    Hsieh, Wen-Hui; Chen, Yi-Jyun; Hung, Chi-Jr; Huang, Tsui-Hsien; Kao, Chia-Tze; Shie, Ming-You

    2014-01-01

    Immune reactions play an important role in determining the biostimulation of bone formation, either in new bone formation or inflammatory fibrous tissue encapsulation. Macrophage cell, the important effector cells in the immune reaction, which are indispensable for osteogenesis and their heterogeneity and plasticity, render macrophages a primer target for immune system modulation. However, there are very few studies about the effects of macrophage cells on laser treatment-regulated osteogenesis. In this study, we used CO 2 laser as a model biostimulation to investigate the role of macrophage cells on the CO 2 laser stimulated osteogenesis. Bone morphogenetic protein 2 (BMP2) was also significantly up regulated by the CO 2 laser stimulation, indicating that macrophage may participate in the CO 2 laser stimulated osteogenesis. Interestingly, when laser treatment macrophage-conditioned medium were applied to human periodontal ligament cells (hPDLs), the osteogenesis differentiation of hPDLs was significantly enhanced, indicating the important role of macrophages in CO 2 laser-induced osteogenesis. These findings provided valuable insights into the mechanism of CO 2 laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment. (paper)

  9. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    Science.gov (United States)

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  10. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2

    DEFF Research Database (Denmark)

    Dathe, Katarina; Kjaer, Klaus W; Brehm, Anja

    2009-01-01

    Autosomal-dominant brachydactyly type A2 (BDA2), a limb malformation characterized by hypoplastic middle phalanges of the second and fifth fingers, has been shown to be due to mutations in the Bone morphogenetic protein receptor 1B (BMPR1B) or in its ligand Growth and differentiation factor 5 (GDF5......). A linkage analysis performed in a mutation-negative family identified a novel locus for BDA2 on chromosome 20p12.3 that incorporates the gene for Bone morphogenetic protein 2 (BMP2). No point mutation was identified in BMP2, so a high-density array CGH analysis covering the critical interval...... within the identified duplication. Our results reveal an additional functional mechanism for the pathogenesis of BDA2, which is duplication of a regulatory element that affects the expression of BMP2 in the developing limb....

  11. Select polyphenolic fractions from dried plum enhance osteoblast activity through BMP-2 signaling.

    Science.gov (United States)

    Graef, Jennifer L; Rendina-Ruedy, Elizabeth; Crockett, Erica K; Ouyang, Ping; King, Jarrod B; Cichewicz, Robert H; Lucas, Edralin A; Smith, Brenda J

    2018-05-01

    Dried plum supplementation has been shown to enhance bone formation while suppressing bone resorption. Evidence from previous studies has demonstrated that these responses can be attributed in part to the fruit's polyphenolic compounds. The purpose of this study was to identify the most bioactive polyphenolic fractions of dried plum with a focus on their osteogenic activity and to investigate their mechanisms of action under normal and inflammatory conditions. Utilizing chromatographic techniques, six fractions of polyphenolic compounds were prepared from a crude extract of dried plum. Initial screening assays revealed that two fractions (DP-FrA and DP-FrB) had the greatest osteogenic potential. Subsequent experiments using primary bone-marrow-derived osteoblast cultures demonstrated these two fractions enhanced extracellular alkaline phosphatase (ALP), an indicator of osteoblast activity, and mineralized nodule formation under normal conditions. Both fractions enhanced bone morphogenetic protein (BMP) signaling, as indicated by increased Bmp2 and Runx2 gene expression and protein levels of phosphorylated Smad1/5. DP-FrB was most effective at up-regulating Tak1 and Smad1, as well as protein levels of phospho-p38. Under inflammatory conditions, TNF-α suppressed ALP and tended to decrease nodule formation (P=.0674). This response coincided with suppressed gene expression of Bmp2 and the up-regulation of Smad6, an inhibitor of BMP signaling. DP-FrA and DP-FrB partially normalized these responses. Our results show that certain fractions of polyphenolic compounds in dried plum up-regulate osteoblast activity by enhancing BMP signaling, and when this pathway is inhibited by TNF-α, the osteogenic response is attenuated. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Stiffness-dependent cellular internalization of matrix-bound BMP-2 and its relation to Smad and non-Smad signaling.

    Science.gov (United States)

    Gilde, Flora; Fourel, Laure; Guillot, Raphael; Pignot-Paintrand, Isabelle; Okada, Takaharu; Fitzpatrick, Vincent; Boudou, Thomas; Albiges-Rizo, Corinne; Picart, Catherine

    2016-12-01

    Surface coatings delivering BMP are a promising approach to render biomaterials osteoinductive. In contrast to soluble BMPs which can interact with their receptors at the dorsal side of the cell, BMPs presented as an insoluble cue physically bound to a biomimetic matrix, called here matrix-bound (bBMP-2), are presented to cells by their ventral side. To date, BMP-2 internalization and signaling studies in cell biology have always been performed by adding soluble (sBMP-2) to cells adhered on cell culture plates or glass slides, which will be considered here as a "reference" condition. However, whether and how matrix-bound BMP-2 can be internalized by cells and its relation to canonical (SMAD) and non-canonical signaling (ALP) remain open questions. In this study, we investigated the uptake and processing of BMP-2 by C2C12 myoblasts. This BMP-2 was presented either embedded in polyelectrolyte multilayer films (matrix-bound presentation) or as soluble form. Using fluorescently labeled BMP-2, we showed that the amount of matrix-bound BMP-2 internalized is dependent on the level of crosslinking of the polyelectrolyte films. Cav-1-mediated internalization is related to both SMAD and ALP signaling, while clathrin-mediated is only related to ALP signaling. BMP-2 internalization was independent of the presentation mode (sBMP-2 versus bBMP-2) for low crosslinked films (soft, EDC10) in striking contrast with high crosslinked (stiff, EDC70) films where internalization was much lower and slower for bBMP-2. As anticipated, internalization of sBMP-2 barely depended on the underlying matrix. Taken together, these results indicate that BMP-2 internalization can be tuned by the underlying matrix and activates downstream BMP-2 signaling, which is key for the effective formation of bone tissue. The presentation of growth factors from material surfaces currently presents significant challenges in academic research, clinics and industry. Being able to deliver efficiently these growth

  13. Influence of Poly(L-Lactic Acid Nanofibers and BMP-2–Containing Poly(L-Lactic Acid Nanofibers on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Markus D. Schofer

    2008-01-01

    Full Text Available The aim of this study was to characterize synthetic poly-(L-lactic acid (PLLA nanofibers concerning their ability to promote growth and osteogenic differentiation of stem cells in vitro, as well as to test their suitability as a carrier system for growth factors. Fiber matrices composed of PLLA or BMP-2–incorporated PLLA were seeded with human mesenchymal stem cells and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of alkaline phosphatase (ALP, osteocalcin (OC, and collagen I (COL-I. Furthermore, COL-I and OC deposition, as well as cell densities and proliferation, were analyzed using fluorescence microscopy. Although the presence of nanofibers diminished the dexamethasone-induced proliferation, there were no differences in cell densities or deposition of either COL-I or OC after 22 days of culture. The gene expression of ALP, OC, and COL-I decreased in the initial phase of cell cultivation on PLLA nanofibers as compared to cover slip control, but normalized during the course of cultivation. The initial down-regulation was not observed when BMP-2 was directly incorporated into PLLA nanofibers by electrospinning, indicating that growth factors like BMP-2 might survive the spinning process in a bioactive form.

  14. Influence of Poly(L-Lactic Acid) Nanofibers and BMP-2–Containing Poly(L-Lactic Acid) Nanofibers on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Science.gov (United States)

    Schofer, Markus D.; Fuchs-Winkelmann, Susanne; Gräbedünkel, Christian; Wack, Christina; Dersch, Roland; Rudisile, Markus; Wendorff, Joachim H.; Greiner, Andreas; Paletta, Jürgen R. J.; Boudriot, Ulrich

    2008-01-01

    The aim of this study was to characterize synthetic poly-(L-lactic acid) (PLLA) nanofibers concerning their ability to promote growth and osteogenic differentiation of stem cells in vitro, as well as to test their suitability as a carrier system for growth factors. Fiber matrices composed of PLLA or BMP-2–incorporated PLLA were seeded with human mesenchymal stem cells and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and collagen I (COL-I). Furthermore, COL-I and OC deposition, as well as cell densities and proliferation, were analyzed using fluorescence microscopy. Although the presence of nanofibers diminished the dexamethasone-induced proliferation, there were no differences in cell densities or deposition of either COL-I or OC after 22 days of culture. The gene expression of ALP, OC, and COL-I decreased in the initial phase of cell cultivation on PLLA nanofibers as compared to cover slip control, but normalized during the course of cultivation. The initial down-regulation was not observed when BMP-2 was directly incorporated into PLLA nanofibers by electrospinning, indicating that growth factors like BMP-2 might survive the spinning process in a bioactive form. PMID:19112539

  15. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK)

    Science.gov (United States)

    Du, Ya-Wei; Zhang, Li-Nan; Ye, Xin; Nie, He-Min; Hou, Zeng-Tao; Zeng, Teng-Hui; Yan, Guo-Ping; Shang, Peng

    2015-03-01

    Polyetheretherketone (PEEK) is regarded as one of the most potential candidates of biomaterials in spinal implant applications. However, as a bioinert material, PEEK plays a limited role in osteoconduction and osseointegration. In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was immobilized onto the surface of collagen-coated PEEK in order to prepare a multi-functional material. After adsorbed onto the PEEK surface by hydrophobic interaction, collagen was cross-linked with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). EDC/NHS system also contributed to the immobilization of rhBMP-2. Water contact angle tests, XPS and SEM clearly demonstrated the surface changes. ELISA tests quantified the amount of rhBMP-2 immobilized and the release over a period of 30 d. In vitro evaluation proved that the osteogenesis differentiation rate was higher when cells were cultured on modified PEEK discs than on regular ones. In vivo tests were conducted and positive changes of major parameters were presented. This report demonstrates that the rhBMP-2 immobilized method for PEEK modification increase bioactivity in vitro and in vivo, suggesting its practicability in orthopedic and spinal clinical applications.

  16. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu [College of Science, Sichuan Agricultural University, Ya' an 625014 (China); He, Hua [Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Sichuan 611130 (China); Rao, Hanbing, E-mail: rhbscu@gmail.com [College of Science, Sichuan Agricultural University, Ya' an 625014 (China)

    2015-07-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g{sup −1}, respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the

  17. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    International Nuclear Information System (INIS)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g −1 , respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the BMP-2

  18. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2.

    Science.gov (United States)

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M; Cai, Chen-Leng

    2011-12-15

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2.

    Directory of Open Access Journals (Sweden)

    Frederico O Ribeiro

    Full Text Available The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2 has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies.

  20. Repair of Cranial Bone Defects Using rhBMP2 and Submicron Particle of Biphasic Calcium Phosphate Ceramics with Through-Hole

    Directory of Open Access Journals (Sweden)

    Byung-Chul Jeong

    2015-01-01

    Full Text Available Recently a submicron particle of biphasic calcium phosphate ceramic (BCP with through-hole (donut-shaped BCP (d-BCP was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing.

  1. Repair of Cranial Bone Defects Using rhBMP2 and Submicron Particle of Biphasic Calcium Phosphate Ceramics with Through-Hole.

    Science.gov (United States)

    Jeong, Byung-Chul; Choi, Hyuck; Hur, Sung-Woong; Kim, Jung-Woo; Oh, Sin-Hye; Kim, Hyun-Seung; Song, Soo-Chang; Lee, Keun-Bae; Park, Kwang-Bum; Koh, Jeong-Tae

    2015-01-01

    Recently a submicron particle of biphasic calcium phosphate ceramic (BCP) with through-hole (donut-shaped BCP (d-BCP)) was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing.

  2. Lack of Obvious Influence of PLLA Nanofibers on the Gene Expression of BMP-2 and VEGF during Growth and Differentiation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Markus D. Schofer

    2009-01-01

    Full Text Available Growth factors like bone morphogenetic protein 2 (BMP-2 and vascular endothelial growth factor (VEGF play an important role in bone remodeling and fracture repair. Therefore, with respect to tissue engineering, an artificial graft should have no negative impact on the expression of these factors. In this context, the aim of this study was to analyze the impact of poly(L-lactic acid (PLLA nanofibers on VEGF and BMP-2 gene expression during the time course of human mesenchymal stem cell (hMSC differentiation towards osteoblasts. PLLA matrices were seeded with hMSCs and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of VEGF and BMP-2. Furthermore, BMP-2–enwoven PLLA nanofibers were used in order to elucidate whether initial down-regulation of growth factor expression could be compensated. Although there was a great interpatient variability with respect to the expression of VEGF and BMP-2, PLLA nanofibers tend to result in a down-regulation in BMP-2 expression during the early phase of cultivation. This effect was diminished in the case of VEGF gene expression. The initial down-regulation was overcome when BMP-2 was directly incorporated into the PLLA nanofibers by electrospinning. Furthermore, the incorporation of BMP-2 into the PLLA nanofibers resulted in an increase in VEGF gene expression. Summarized, the results indicate that the PLLA nanofibers have little effect on growth factor production. An enhancement in gene expression of BMP-2 and VEGF can be achieved by an incorporation of BMP-2 into the PLLA nanofibers.

  3. Lack of Obvious Influence of PLLA Nanofibers on the Gene Expression of BMP-2 and VEGF during Growth and Differentiation of Human Mesenchymal Stem Cells

    Science.gov (United States)

    Schofer, Markus D.; Fuchs-Winkelmann, S.; Wack, C.; Rudisile, M.; Dersch, R.; Leifeld, I.; Wendorff, J.; Greiner, A.; Paletta, J. R. J.; Boudriot, U.

    2009-01-01

    Growth factors like bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF) play an important role in bone remodeling and fracture repair. Therefore, with respect to tissue engineering, an artificial graft should have no negative impact on the expression of these factors. In this context, the aim of this study was to analyze the impact of poly(L-lactic acid) (PLLA) nanofibers on VEGF and BMP-2 gene expression during the time course of human mesenchymal stem cell (hMSC) differentiation towards osteoblasts. PLLA matrices were seeded with hMSCs and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of VEGF and BMP-2. Furthermore, BMP-2–enwoven PLLA nanofibers were used in order to elucidate whether initial down-regulation of growth factor expression could be compensated. Although there was a great interpatient variability with respect to the expression of VEGF and BMP-2, PLLA nanofibers tend to result in a down-regulation in BMP-2 expression during the early phase of cultivation. This effect was diminished in the case of VEGF gene expression. The initial down-regulation was overcome when BMP-2 was directly incorporated into the PLLA nanofibers by electrospinning. Furthermore, the incorporation of BMP-2 into the PLLA nanofibers resulted in an increase in VEGF gene expression. Summarized, the results indicate that the PLLA nanofibers have little effect on growth factor production. An enhancement in gene expression of BMP-2 and VEGF can be achieved by an incorporation of BMP-2 into the PLLA nanofibers. PMID:19412560

  4. Expression of human bone morphogenetic protein (BMP-2 and BMP-4 genes in transgenic bovine fibroblasts Expressão dos genes bone morphogenetic protein (BMP-2 e BMP-4 em fibroblastos bovinos transgênicos

    Directory of Open Access Journals (Sweden)

    C. Oleskovicz

    2004-08-01

    Full Text Available cDNAs dos genes bone morphogenetic protein-2 (BMP-2 e bone morphogenetic protein-4 (BMP-4 foram sintetizados a partir de RNA total extraído de tecidos ósseos de pacientes que apresentavam trauma facial (fraturas do maxilar entre o 7º e o 10º dia pós-trauma e clonados num vetor para expressão em células mamíferas, sob controle do promotor de citomegalovírus (CMV. Os vetores contendo os genes BMP-2 e o BMP-4 foram utilizados para a transfecção de fibroblastos bovinos. mRNAs foram indiretamente detectados por RT-PCR nas células transfectadas. As proteínas BMP-2 e BMP-4 foram detectadas mediante análises de Western blot. Os resultados demonstram a possibilidade de produção desses fatores de crescimento celular em fibroblastos bovinos. Essas células poderão ser utilizadas como fontes doadoras de material genético para a técnica de transferência nuclear na geração de animais transgênicos.

  5. A Long-Acting BMP-2 Release System Based on Poly(3-hydroxybutyrate) Nanoparticles Modified by Amphiphilic Phospholipid for Osteogenic Differentiation

    Science.gov (United States)

    Peng, Xiaochun; Chen, Yunsu; Li, Yamin; Wang, Yiming

    2016-01-01

    We explored a novel poly(3-hydroxybutyrate) (PHB) nanoparticle loaded with hydrophilic recombinant human BMP-2 with amphiphilic phospholipid (BPC-PHB NP) for a rapid-acting and long-acting delivery system of BMP-2 for osteogenic differentiation. The BPC-PHB NPs were prepared by a solvent evaporation method and showed a spherical particle with a mean particle size of 253.4 nm, mean zeta potential of −22.42 mV, and high entrapment efficiency of 77.18%, respectively. For BPC-PHB NPs, a short initial burst release of BMP-2 from NPs in 24 h was found and it has steadily risen to reach about 80% in 20 days for in vitro test. BPC-PHB NPs significantly reduced the burst release of BMP-2, as compared to that of PHB NPs loading BMP-2 without PL (B-PHB NPs). BPC-PHB NPs maintained the content of BMP-2 for a long-term osteogenic differentiation. The OCT-1 cells with BPC-PHB NPs have high ALP activity in comparison with others. The gene markers for osteogenic differentiation were significantly upregulated for sample with BPC-PHB NPs, implying that BPC-PHB NPs can be used as a rapid-acting and long-acting BMP-2 delivery system for osteogenic differentiation. PMID:27379249

  6. Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development.

    Science.gov (United States)

    Phippard, D J; Weber-Hall, S J; Sharpe, P T; Naylor, M S; Jayatalake, H; Maas, R; Woo, I; Roberts-Clark, D; Francis-West, P H; Liu, Y H; Maxson, R; Hill, R E; Dale, T C

    1996-09-01

    Expression of the Msx-1 and Msx-2 homeobox genes have been shown to be coordinately regulated with the Bmp-2 and Bmp-4 ligands in a variety of developing tissues. Here we report that transcripts from all four genes are developmentally regulated during both foetal and postnatal mammary gland development. The location and time-course of the Bmp and Msx expression point to a role for Msx and Bmp gene products in the control of epithelial-mesenchymal interactions. Expression of Msx-2, but not Msx-1, Bmp-2 or Bmp-4 was decreased following ovariectomy, while expression of the human Msx-2 homologue was regulated by 17beta-oestradiol in the MCF-7 breast cancer cell line. The regulation of Msx-2 expression by oestrogen raises the possibility that hormonal regulation of mammary development is mediated through the control of epithelial-mesenchymal interactions.

  7. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    International Nuclear Information System (INIS)

    Guo, Yue; Ren, Ling; Liu, Chang; Yuan, Yajiang; Lin, Xiao; Tan, Lili; Chen, Shurui; Yang, Ke; Mei, Xifan

    2013-01-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis

  8. The Effects of rhBMP-2 Used for Spinal Fusion on Spinal Cord Pathology After Traumatic Injury

    Science.gov (United States)

    2009-07-29

    1219-1224; discussion 1225. Basso DM , Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats...usage of rhBMP-2 in the anterior cervical spine. Spine 31:2813-2819. Stuesse SL, Crisp T, McBurney DL, Schechter JB, Lovell JA, Cruce WL (2001...250-256. Stuesse SL, Crisp T, McBurney DL, Schechter JB, Lovell JA, Cruce WL (2001) Neuropathic pain in aged rats: behavioral responses and

  9. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features.

    Science.gov (United States)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer-Emmett-Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g(-1), respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. MRI of transforaminal lumbar interbody fusion: imaging appearance with and without the use of human recombinant bone morphogenetic protein-2 (rhBMP-2)

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Michael G.; Goldberg, Judd M.; Gaskin, Cree M.; Barr, Michelle S.; Alford, Bennett [University of Virginia, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Patrie, James T. [University of Virginia, Department of Public Health Sciences, Charlottesville, VA (United States); Shen, Francis H. [University of Virginia, Department of Orthopedic Surgery, Charlottesville, VA (United States)

    2014-09-15

    To describe the vertebral endplate and intervertebral disc space MRI appearance following TLIF, with and without the use of rhBMP-2, and to determine if the appearance is concerning for discitis/osteomyelitis. After institutional review board approval, 116 TLIF assessments performed on 75 patients with rhBMP-2 were retrospectively and independently reviewed by five radiologists and compared to 73 TLIF assessments performed on 45 patients without rhBMP-2. MRIs were evaluated for endplate signal, disc space enhancement, disc space fluid, and abnormal paraspinal soft tissue. Endplate edema-like signal was reported when T1-weighted hypointensity, T2-weighted hyperintensity, and endplate enhancement were present. Subjective concern for discitis/osteomyelitis on MRI was graded on a five-point scale. Generalized estimating equation binomial regression model analysis was performed with findings correlated with rhBMP-2 use, TLIF level, graft type, and days between TLIF and MRI. The rhBMP-2 group demonstrated endplate edema-like signal (OR 5.66; 95 % CI [1.58, 20.24], p = 0.008) and disc space enhancement (OR 2.40; 95 % CI [1.20, 4.80], p = 0.013) more often after adjusting for the TLIF level, graft type, and the number of days following TLIF. Both groups had a similar temporal distribution for endplate edema-like signal but disc space enhancement peaked earlier in the rhBMP-2 group. Disc space fluid was only present in the rhBMP-2 group. Neither group demonstrated abnormal paraspinal soft tissue and discitis/osteomyelitis was not considered likely in any patient. Endplate edema-like signal and disc space enhancement were significantly more frequent and disc space enhancement developed more rapidly following TLIF when rhBMP-2 was utilized. The concern for discitis/osteomyelitis was similar and minimal in both groups. (orig.)

  11. Colloid, adhesive and release properties of nanoparticular ternary complexes between cationic and anionic polysaccharides and basic proteins like bone morphogenetic protein BMP-2.

    Science.gov (United States)

    Petzold, R; Vehlow, D; Urban, B; Grab, A L; Cavalcanti-Adam, E A; Alt, V; Müller, M

    2017-03-01

    Herein we describe an interfacial local drug delivery system for bone morphogenetic protein 2 (BMP-2) based on coatings of polyelectrolyte complex (PEC) nanoparticles (NP). The application horizon is the functionalization of bone substituting materials (BSM) used for the therapy of systemic bone diseases. Nanoparticular ternary complexes of cationic and anionic polysaccharides and BMP-2 or two further model proteins, respectively, were prepared in dependence of the molar mixing ratio, pH value and of the cationic polysaccharide. As further proteins chymotrypsin (CHY) and papain (PAP) were selected, which served as model proteins for BMP-2 due to similar isoelectric points and molecular weights. As charged polysaccharides ethylenediamine modified cellulose (EDAC) and trimethylammonium modified cellulose (PQ10) were combined with cellulose sulphatesulfate (CS). Mixing diluted cationic and anionic polysaccharide and protein solutions according to a slight either anionic or cationic excess charge colloidal ternary dispersions formed, which were cast onto germanium model substrates by water evaporation. Dynamic light scattering (DLS) demonstrated, that these dispersions were colloidally stable for at least one week. Fourier Transform Infrared (FTIR) showed, that the cast protein loaded PEC NP coatings were irreversibly adhesive at the model substrate in contact to HEPES buffer and solely CHY, PAP and BMP-2 were released within long-term time scale. Advantageously, out of the three proteins BMP-2 showed the smallest initial burst and the slowest release kinetics and around 25% of the initial BMP-2 content were released within 14days. Released BMP-2 showed significant activity in the myoblast cells indicating the ability to regulate the formation of new bone. Therefore, BMP-2 loaded PEC NP are suggested as novel promising tool for the functionalization of BSM used for the therapy of systemic bone diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation

    Directory of Open Access Journals (Sweden)

    Mira Moussa

    2015-04-01

    Full Text Available Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8. Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3% and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%. These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.

  13. Functionalization of deproteinized bovine bone with a coating-incorporated depot of BMP-2 renders the material efficiently osteoinductive and suppresses foreign-body reactivity.

    Science.gov (United States)

    Wu, Gang; Hunziker, Ernst B; Zheng, Yuanna; Wismeijer, Daniel; Liu, Yuelian

    2011-12-01

    The repair of critical-sized bony defects remains a challenge in the fields of implantology, maxillofacial surgery and orthopaedics. As an alternative bone-defect filler to autologous bone grafts, deproteinized bovine bone (DBB) is highly osteoconductive and clinically now widely used. However, this product suffers from the disadvantage of not being intrinsically osteoinductive. In the present study, this property was conferred by coating DBB with a layer of calcium phosphate into which bone morphogenetic protein 2 (BMP-2) was incorporated. Granules of DBB bearing a coating-incorporated depot of BMP-2--together with the appropriate controls (DBB bearing a coating but no BMP-2; uncoated DBB bearing adsorbed BMP-2; uncoated DBB bearing no BMP-2)--were implanted subcutaneously in rats. Five weeks later, the implants were withdrawn for a histomorphometric analysis of the volume densities of (i) bone, (ii) bone marrow, (iii) foreign-body giant cells and (iv) fibrous capsular tissue. Parameters (i) and (ii) were highest, whilst parameters (iii) and (iv) were lowest in association with DBB bearing a coating-incorporated depot of BMP-2. Hence, this mode of functionalization not only confers DBB with the property of osteoinductivity but also improves its biocompatibility--thus dually enhancing its clinical potential in the repair of bony defects. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model.

    Science.gov (United States)

    Fan, Jiabing; Park, Hyejin; Lee, Matthew K; Bezouglaia, Olga; Fartash, Armita; Kim, Jinku; Aghaloo, Tara; Lee, Min

    2014-08-01

    Reconstructing segmental mandiblular defects remains a challenge in the clinic. Tissue engineering strategies provide an alternative option to resolve this problem. The objective of the present study was to determine the effects of adipose-derived stem cells (ASCs) and bone morphogenetic proteins-2 (BMP-2) in three-dimensional (3D) scaffolds on mandibular repair in a small animal model. Noggin expression levels in ASCs were downregulated by a lentiviral short hairpin RNA strategy to enhance ASC osteogenesis (ASCs(Nog-)). Chitosan (CH) and chondroitin sulfate (CS), natural polysaccharides, were fabricated into 3D porous scaffolds, which were further modified with apatite coatings for enhanced cellular responses and efficient delivery of BMP-2. The efficacy of 3D apatite-coated CH/CS scaffolds supplemented with ASCs(Nog-) and BMP-2 were evaluated in a rat critical-sized mandibular defect model. After 8 weeks postimplantation, the scaffolds treated with ASCs(Nog-) and BMP-2 significantly promoted rat mandibular regeneration as demonstrated by micro-computerized tomography, histology, and immunohistochemistry, compared with the groups treated with ASCs(Nog-) or BMP-2 alone. These results suggest that our combinatorial strategy of ASCs(Nog-)+BMP-2 in 3D apatite microenvironments can significantly promote mandibular regeneration, and these may provide a potential tissue engineering approach to repair large bony defects.

  15. Matrix-immobilized BMP-2 on microcontact printed fibronectin as in vitro tool to study BMP-mediated signaling and cell migration

    Directory of Open Access Journals (Sweden)

    Kristin eHauff

    2015-05-01

    Full Text Available During development, bone morphogenetic proteins (BMPs exert important functions in several tissues by regulating signaling for cell differentiation and migration. In vivo the extracellular matrix (ECM not only provides a support for adherent cells, but also presents a reservoir of growth factors (GFs. Several constituents of the ECM provide adhesive cues, which serve as binding sites for cell transmembrane receptors, such as integrins, which convey adhesion-mediated signaling to the intracellular compartment. Integrins do not function alone but rather crosstalk and cooperate with other receptors, such as GF receptors, in regulating cell responses to extracellular signals. To this, we present here the immobilization of BMP-2 onto cellular fibronectin (cFN, a key protein of the ECM, to investigate their impact on GF-mediated signaling and migration.Following biotinylation, BMP-2 was linked to biotinylated cFN using NeutrAvidin (NA as cross-linker. Characterization with QCM-D and ELISA confirmed the efficient immobilization of BMP-2 on cFN over a period of 24 h.To validate the bioactivity of matrix-immobilized BMP-2 (iBMP-2 we investigated short- and long-term responses of C2C12 myoblasts in comparison to soluble BMP-2 (sBMP-2 or in absence of GFs. Similarly to sBMP-2, iBMP-2 triggered Smad 1/5 phosphorylation and translocation into the nucleus corresponding to the activation of BMP-mediated Smad-dependent pathway. Additionally, successful suppression of myotube formation was observed after six days.We next implemented this approach to fabricate cFN micro patterned stripes by soft lithography. These stripes only allowed cell-surface interaction on the pattern due to passivation of the surface in between, thus serving as platform for studies on directed cell migration. During a 10 h-period, cells showed an increased migratory activity upon BMP-2 exposure.Thus, this versatile tool retains the GF's bioactivity and allows the presentation of ECM

  16. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Calcium phosphate (Ca-P scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2 loaded calcium-deficient hydroxyapatite (CDHA scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR and enzyme-linked immunosorbent assay (ELISA demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2 promoted osteogenic differentiation of bone marrow stromal cells (bMSCs significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ± 5.32% and area (40.71% ± 7.14% as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ± 0.44%, calcein: 6.08% ± 1.37% and mineral apposition rate (4.13 ± 0.62 µm/day in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17 ± 15.02 Mpa and

  17. Evaluation of bioactive glass incorporated poly(caprolactone)-poly(vinyl alcohol) matrix and the effect of BMP-2 modification

    Energy Technology Data Exchange (ETDEWEB)

    Keothongkham, Khamsone [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok 10900 (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10900 (Thailand); Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170 (Thailand); Thongbunchoo, Jirawan; Suntornsaratoon, Panan; Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok 10900 (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10900 (Thailand); Tang, I-Ming [Department of Materials Science Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2017-05-01

    Composite materials having mechanical and biological properties similar to those of human bones are needed for bone regeneration and repair. In the present study, composites were made by incorporating bioactive glass (BG) into polycaprolactone (PCL)-polyvinyl alcohol (PVA) (PCLPVA) matrix. Composites with different BG contents of 10, 25 and 50 wt% were fabricated by an in-situ blending method. Physicochemical properties measurements found that the composite with 50 wt% BG in the PCLPVA organic matrix exhibited the best mechanical properties (compressive strength and compressive young's modulus up to 32.26 MPa and 530.91 MPa, respectively). We investigated the effects of the BG content on cell adhesion, proliferation and osteogenic activity of UMR-106 cells grown on the scaffolds using in vitro cell culture assay. The composite scaffolds having 25 wt% BG showed a significant increase in their cell adhesion capability and a faster cell proliferation. They also exhibited cell adhesion and spreading morphology after only 5 days of culturing. For these reasons, we chose to attach the bone morphogenetic protein (BMP)-2 to this composite. The resulting composite (labeled BMP-2-loaded PCLPVABG25) showed significant improvement in the UMR-106 cells adhesion, in the enhancement in osteogenic differentiation and osteoinductivity of this composite. - Highlights: • Preparation of PCLPVABGx composite scaffolds and their physical properties. • Mechanical properties could be adjusted by controlling BG contents in PCLPVA matrix. • In vitro cell availability tests confirmed the osteoblast grow on the PCLPVABGx composite scaffolds surface. • Upon the BMP-2-loaded PCLPVABG25 scaffolds can enhance cell attachment and significantly improved osteogenicity.

  18. Surface Modification of Titanium with BMP-2/GDF-5 by a Heparin Linker and Its Efficacy as a Dental Implant

    Directory of Open Access Journals (Sweden)

    Dae Hyeok Yang

    2017-01-01

    Full Text Available In this study, we prepared human bone morphogenetic protein-2 (hBMP-2/human growth and differentiation factor-5 (hGDF-5-coated titanium (Ti disc and screw types for controlled release of the growth factors (GFs. The two growth factors were coated onto Ti with a smooth surface using their specific interaction with heparin, because they have heparin binding sites in their molecular structures. Efficacy of the two growth factor-coated Ti for enhancement of bone formation and osseointegration was compared to pristine Ti, and hBMP-2- and hGDF-5-coated Ti in vivo. The surface chemical composition, surface morphology, and wettability characteristics of the metal samples were determined by X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM, and contact angle measurement, respectively. The initial burst of hBMP-2, hGDF-5, and their combination, occurred within one day of the release study, resulting in 12.5%, 4.5%, and 13.5%/3.2%, and then there was a sustained, even release of these two growth factors from the coated metal for 30 days. In vitro tests revealed that MC3T3-E1 cells cultured on the two growth factor-coated Ti had a higher proliferation rate and a higher activity for alkaline phosphatase (ALP, which led to a larger amount of calcium deposition and larger expressions of type I collagen (COL 1, ALP, and osteocalcin (OCN mRNAs. In vivo animal tests using ten white New Zealand rabbits showed that the two growth factor-coated Ti enhanced bone formation and osseointegration at the interface between the implants and host bone. In addition, histological evaluation showed that bone remodeling, including bone formation by osteoblasts and bone resorption by osteoclasts, actively occurred between the two growth factor-coated Ti and host bone. Consequently, it is suggested that Ti surface modification with the combination of hBMP-2 and hGDF-5 for the two growth factor-coated Ti implants can improve the clinical properties of

  19. Off-label use of rhBMP-2 as bone regeneration strategies in mandibular ameloblastoma unicystic.

    Science.gov (United States)

    Silva, Henrique Celestino Lima E; Cheim, Adonai Peixoto; Moreno, Roberto; Miranda, Sérgio Luis de

    2017-01-01

    Jawbone reconstruction after tumor resection is one of the most challenging clinical tasks for maxillofacial surgeons. Osteogenic, osteoinductive, osteoconductive and non-antigenic properties of autogenous bone place this bone as the gold standard for solving problems of bone availability. However, the need for a second surgical site to harvest the bone graft increases significantly both the cost and the morbidity associated with the reconstructive procedures. Bone grafting gained an important tool with the discovery of bone morphogenetic proteins in 1960. Benefit of obtaining functional and real bone matrix without need of second surgical site seems to be the great advantage of use bone morphogenetic proteins. This study analyzed the use of rhBMP-2 in unicystic ameloblastoma of the mandible, detailing its structure, mechanisms of cell signaling and biological efficacy, in addition to present possible advantages and disadvantages of clinical use of rhBMP-2 as bone regeneration strategy. RESUMO A reconstrução óssea dos maxilares após ressecções tumorais é uma das tarefas mais difíceis para o cirurgião maxilofacial. As propriedades osteogênicas, osteoindutoras, osteocondutoras e não antigênicas do osso autógeno o colocam como o padrão-ouro para a solução de problemas de disponibilidade óssea. Entretanto a coleta do enxerto ósseo necessita de um segundo sítio cirúrgico, aumentando significativamente o custo e a morbidade associados ao procedimento reconstrutivo. A enxertia óssea ganhou uma excelente ferramenta com a descoberta das proteínas ósseas morfogenéticas na década de 1960. O benefício da obtenção de matriz óssea verdadeira e funcional, sem a necessidade de um segundo sítio cirúrgico, parece ser a grande vantagem do uso das proteínas ósseas morfogenéticas. Neste contexto, o objetivo deste estudo foi analisar a utilização da rhBMP-2 na regeneração óssea de ameloblastoma mandibular unicístico, detalhando sua estrutura, seus

  20. Enhancement of Tendon–Bone Healing for Anterior Cruciate Ligament (ACL Reconstruction Using Bone Marrow-Derived Mesenchymal Stem Cells Infected with BMP-2

    Directory of Open Access Journals (Sweden)

    Shiyi Chen

    2012-10-01

    Full Text Available At present, due to the growing attention focused on the issue of tendon–bone healing, we carried out an animal study of the use of genetic intervention combined with cell transplantation for the promotion of this process. Here, the efficacy of bone marrow stromal cells infected with bone morphogenetic protein-2 (BMP-2 on tendon–bone healing was determined. A eukaryotic expression vector containing the BMP-2 gene was constructed and bone marrow-derived mesenchymal stem cells (bMSCs were infected with a lentivirus. Next, we examined the viability of the infected cells and the mRNA and protein levels of BMP-2-infected bMSCs. Gastrocnemius tendons, gastrocnemius tendons wrapped by bMSCs infected with the control virus (bMSCs+Lv-Control, and gastrocnemius tendons wrapped by bMSCs infected with the recombinant BMP-2 virus (bMSCs+Lv-BMP-2 were used to reconstruct the anterior cruciate ligament (ACL in New Zealand white rabbits. Specimens from each group were harvested four and eight weeks postoperatively and evaluated using biomechanical and histological methods. The bMSCs were infected with the lentivirus at an efficiency close to 100%. The BMP-2 mRNA and protein levels in bMSCs were significantly increased after lentiviral infection. The bMSCs and BMP-2-infected bMSCs on the gastrocnemius tendon improved the biomechanical properties of the graft in the bone tunnel; specifically, bMSCs infected with BMP-2 had a positive effect on tendon–bone healing. In the four-week and eight-week groups, bMSCs+Lv-BMP-2 group exhibited significantly higher maximum loads of 29.3 ± 7.4 N and 45.5 ± 11.9 N, respectively, compared with the control group (19.9 ± 6.4 N and 21.9 ± 4.9 N (P = 0.041 and P = 0.001, respectively. In the eight-week groups, the stiffness of the bMSCs+Lv-BMP-2 group (32.5 ± 7.3 was significantly higher than that of the bMSCs+Lv-Control group (22.8 ± 7.4 or control groups (12.4 ± 6.0 (p = 0.036 and 0.001, respectively. Based on the

  1. TNF-α Upregulates Expression of BMP-2 and BMP-3 Genes in the Rat Dental Follicle – Implications for Tooth Eruption

    Science.gov (United States)

    Yao, Shaomian; Prpic, Veronica; Pan, Fenghui; Wise, Gary E.

    2011-01-01

    The dental follicle appears to regulate both the alveolar bone resorption and bone formation needed for tooth eruption. Tumor necrosis factor-alpha ( TNF-α) gene expression is maximally upregulated at postnatal day 9 in the rat dental follicle of the 1st mandibular molar, a time that correlates with rapid bone growth at the base of the tooth crypt, as well as a minor burst of osteoclastogenesis. TNF-α expression is correlated with the expression of bone morphogenetic protein-2 (BMP-2), a molecule expressed in the dental follicle that can promote bone formation. Because BMP-2 signaling may be augmented by bone morphogenetic protein-3 (BMP-3), it was the objective of this study to determine 1) if the dental follicle expresses BMP-3 and 2) if TNF-α stimulates the dental follicle cells to express BMP-2 and BMP-3. Dental follicles were collected from different postnatal ages of rat pups. Dental follicle cells were incubated with TNF-α to study its dosage and time-course effects on gene expression of BMP-2 and BMP-3, as determined by real-time RT-PCR. Next, immunostaining was conducted to confirm if the protein was synthesized and ELISA of the conditioned medium was conducted to determine if BMP-2 was secreted. We found that BMP-3 expression is correlated with the expression of TNF-α in the dental follicle and TNF-α significantly increased BMP-2 and BMP-3 expression in vitro. Immunostaining and ELISA showed that BMP-2 and BMP-3 were synthesized and secreted. This study suggests that TNF-α can upregulate the expression of bone formation genes that may be needed for tooth eruption. PMID:20067418

  2. Gelatin Tight-Coated Poly(lactide-co-glycolide Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2015-03-01

    Full Text Available Surface coating is the simplest surface modification. However, bioactive molecules can not spread well on the commonly used polylactone-type skeletons; thus, the surface coatings of biomolecules are typically unstable due to the weak interaction between the polymer and the bioactive molecules. In this study, a special type of poly(lactide-co-glycolide (PLGA-based scaffold with a loosened skeleton was fabricated by phase separation, which allowed gelatin molecules to more readily diffuse throughout the structure. In this application, gelatin modified both the internal substrate and external surface. After cross-linking with glutaraldehyde, the surface layer gelatin was tightly bound to the diffused gelatin, thereby preventing the surface layer gelatin coating from falling off within 14 days. After gelatin modification, PLGA scaffold demonstrated enhanced hydrophilicity and improved mechanical properties (i.e., increased compression strength and elastic modulus in dry and wet states. Furthermore, a sustained release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2 was achieved in the coated scaffold. The coated scaffold also supported the in vitro attachment, proliferation, and osteogenesis of rabbit bone mesenchymal stem cells (BMSCs, indicating the bioactivity of rhBMP-2. These results collectively demonstrate that the cross-linked-gelatin-coated porous PLGA scaffold incorporating bioactive molecules is a promising candidate for bone tissue regeneration.

  3. Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network.

    Directory of Open Access Journals (Sweden)

    Anca Chiriac

    Full Text Available BACKGROUND: Pluripotent stem cells produce tissue-specific lineages through programmed acquisition of sequential gene expression patterns that function as a blueprint for organ formation. As embryonic stem cells respond concomitantly to diverse signaling pathways during differentiation, extraction of a pro-cardiogenic network would offer a roadmap to streamline cardiac progenitor output. METHODS AND RESULTS: To resolve gene ontology priorities within precursor transcriptomes, cardiogenic subpopulations were here generated according to either growth factor guidance or stage-specific biomarker sorting. Innate expression profiles were independently delineated through unbiased systems biology mapping, and cross-referenced to filter transcriptional noise unmasking a conserved progenitor motif (55 up- and 233 down-regulated genes. The streamlined pool of 288 genes organized into a core biological network that prioritized the "Cardiovascular Development" function. Recursive in silico deconvolution of the cardiogenic neighborhood and associated canonical signaling pathways identified a combination of integrated axes, CXCR4/SDF-1, Flk-1/VEGF and BMP2r/BMP2, predicted to synchronize cardiac specification. In vitro targeting of the resolved triad in embryoid bodies accelerated expression of Nkx2.5, Mef2C and cardiac-MHC, enhanced beating activity, and augmented cardiogenic yield. CONCLUSIONS: Transcriptome-wide dissection of a conserved progenitor profile thus revealed functional highways that coordinate cardiogenic maturation from a pluripotent ground state. Validating the bioinformatics algorithm established a strategy to rationally modulate cell fate, and optimize stem cell-derived cardiogenesis.

  4. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression.

    Science.gov (United States)

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-05-05

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2(f/f);Bmp4(f/f)ameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling.

  5. * Calvarial Bone Regeneration Is Enhanced by Sequential Delivery of FGF-2 and BMP-2 from Layer-by-Layer Coatings with a Biomimetic Calcium Phosphate Barrier Layer.

    Science.gov (United States)

    Gronowicz, Gloria; Jacobs, Emily; Peng, Tao; Zhu, Li; Hurley, Marja; Kuhn, Liisa T

    2017-12-01

    A drug delivery coating for synthetic bone grafts has been developed to provide sequential delivery of multiple osteoinductive factors to better mimic aspects of the natural regenerative process. The coating is composed of a biomimetic calcium phosphate (bCaP) layer that is applied to a synthetic bone graft and then covered with a poly-l-Lysine/poly-l-Glutamic acid polyelectrolyte multilayer (PEM) film. Bone morphogenetic protein-2 (BMP-2) was applied before the coating process directly on the synthetic bone graft and then, bCaP-PEM was deposited followed by adsorption of fibroblast growth factor-2 (FGF-2) into the PEM layer. Cells access the FGF-2 immediately, while the bCaP-PEM temporally delays the cell access to BMP-2. In vitro studies with cells derived from mouse calvarial bones demonstrated that Sca-1 and CD-166 positive osteoblast progenitor cells proliferated in response to media dosing with FGF-2. Coated scaffolds with BMP-2 and FGF-2 were implanted in mouse calvarial bone defects and harvested at 1 and 3 weeks. After 1 week in vivo, proliferation of cells, including Sca-1+ progenitors, was observed with low dose FGF-2 and BMP-2 compared to BMP-2 alone, indicating that in vivo delivery of FGF-2 activated a similar population of cells as shown by in vitro testing. At 3 weeks, FGF-2 and BMP-2 delivery increased bone formation more than BMP-2 alone, particularly in the center of the defect, confirming that the proliferation of the Sca-1 positive osteoprogenitors by FGF-2 was associated with increased bone healing. Areas of bone mineralization were positive for double fluorochrome labeling of calcium and alkaline phosphatase staining of osteoblasts, along with increased TRAP+ osteoclasts, demonstrating active bone formation distinct from the bone-like collagen/hydroxyapatite scaffold. In conclusion, the addition of a bCaP layer to PEM delayed access to BMP-2 and allowed the FGF-2 stimulated progenitors to populate the scaffold before differentiating in

  6. Sequential VEGF and BMP-2 releasing PLA-PEG-PLA scaffolds for bone tissue engineering: I. Design and in vitro tests.

    Science.gov (United States)

    Eğri, Sinan; Eczacıoğlu, Numan

    2017-03-01

    Biodegradable PLA-PEG-PLA block copolymers were synthesized with desired backbone structures and molecular weights using PEG20000. Rectangular scaffolds were prepared by freeze drying with or without using NaCl particles. Bone morphogenetic protein (BMP)-2 was loaded to the matrix after the scaffold formation for sustained release while vascular endothelial growth factor (VEGF) was loaded within the pores with gelatin solution. VEGF release was quite fast and almost 60% of it was released in 2 d. However, sequential - sustained released was observed for BMP-2 in the following few months. Corporation of VEGF/BMP-2 couple into the scaffolds increased the cell adhesion and proliferation. Neither significant cytotoxicity nor apoptosis/necrosis were observed.

  7. Three-Dimensional Cone Beam Computed Tomography Volumetric Outcomes of rhBMP-2/Demineralized Bone Matrix versus Iliac Crest Bone Graft for Alveolar Cleft Reconstruction.

    Science.gov (United States)

    Liang, Fan; Yen, Stephen L-K; Imahiyerobo, Thomas; Sanborn, Luke; Yen, Leia; Yen, Daniel; Nazarian, Sheila; Jedrzejewski, Breanna; Urata, Mark; Hammoudeh, Jeffrey

    2017-10-01

    Recent studies indicate that recombinant human bone morphogenetic protein-2 (rhBMP-2) in a demineralized bone matrix scaffold is a comparable alternative to iliac bone autograft in the setting of secondary alveolar cleft repair. Postreconstruction occlusal radiographs demonstrate improved bone stock when rhBMP-2/demineralized bone matrix (DBM) scaffold is used but lack the capacity to evaluate bone growth in three dimensions. This study uses cone beam computed tomography to provide the first clinical evaluation of volumetric and density comparisons between these two treatment modalities. A prospective study was conducted with 31 patients and 36 repairs of the alveolar cleft over a 2-year period. Twenty-one repairs used rhBMP-2/DBM scaffold and 14 repairs used iliac bone grafting. Postoperatively, occlusal radiographs were obtained at 3 months to evaluate bone fill; cone beam computed tomographic images were obtained at 6 to 9 months to compare volumetric and density data. At 3 months, postoperative occlusal radiographs demonstrated that 67 percent of patients receiving rhBMP-2/DBM scaffold had complete bone fill of the alveolus, versus 56 percent of patients in the autologous group. In contrast, cone beam computed tomographic data showed 31.6 percent (95 percent CI, 24.2 to 38.5 percent) fill in the rhBMP-2 group compared with 32.5 percent (95 percent CI, 22.1 to 42.9 percent) in the autologous population. Density analysis demonstrated identical average values between the groups (1.38 g/cc). These data demonstrate comparable bone regrowth and density values following secondary alveolar cleft repair using rhBMP-2/DBM scaffold versus autologous iliac bone graft. Cone beam computed tomography provides a more nuanced understanding of true bone regeneration within the alveolar cleft that may contribute to the information provided by occlusal radiographs alone. Therapeutic, II.

  8. Overlapping and differential localization of Bmp-2, Bmp-4, Msx-2 and apoptosis in the endocardial cushion and adjacent tissues of the developing mouse heart.

    Science.gov (United States)

    Abdelwahid, E; Rice, D; Pelliniemi, L J; Jokinen, E

    2001-07-01

    The bone morphogenetic proteins BMP-2 and BMP-4 and the homeobox gene MSX-2 are required for normal development of many embryonic tissues. To elucidate their possible roles during the remodeling of the tubular heart into a fully septated four-chambered heart, we have localized the mRNA of Bmp-2, Bmp-4, Msx-2 and apoptotic cells in the developing mouse heart from embryonic day (E)11 to E17. mRNA was localized by in situ hybridization, and apoptotic cells by TUNEL (TDT-mediated dUTP-biotin nick end-labeling) as well as by transmission electron microscopy. By analyzing adjacent serial sections, we demonstrated that the expression of Msx-2 and Bmp-2 strikingly overlapped in the atrioventricular canal myocardium, in the atrioventricular junctional myocardium, and in the maturing myocardium of the atrioventricular valves. Bmp-4 was expressed in the outflow tract myocardium and in the endocardial cushion of the outflow tract ridges from E12 to E14. Msx-2 appeared in the mesenchyme of the atrioventricular endocardial cushion from E11 to E14, while Bmp-2 and Bmp-4 were detected between E11 and E14. Apoptotic cells were also detected in the mesenchyme of the endocardial cushion between E12 and E14. Our results suggest that BMP-2 and MSX-2 are tightly linked to the formation of the atrioventricular junction and valves and that BMP-4 is involved in the development of the outflow tract myocardium and of the endocardial cushion. In addition, BMP-2, BMP-4 and MSX-2 and apoptosis seem to be associated with differentiation of the endocardial cushion.

  9. Effects of BMP-2 and dexamethasone on osteogenic differentiation of rat dental follicle progenitor cells seeded on three-dimensional beta-TCP

    Energy Technology Data Exchange (ETDEWEB)

    Xu Lulu; Jin Zuolin; Duan Yinzhong [Department of Orthodontics, Stomatological College, Fourth Military Medical University, Xi' an 710032 (China); Liu Hongchen; Wang Dongsheng; E Lingling [Department of Stomatology, China PLA General Hospital, Beijing 100853 (China); Xu Lin, E-mail: jinzuolin88@yahoo.com.c, E-mail: duanyinzhong@yahoo.com.c [Department of Stomatology, the First Hospital of PLA, Lanzhou 730000 (China)

    2009-12-15

    The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional beta-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial beta-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration. The third passage RDFCs could be seen adhered, extended and proliferated on the beta-TCP by scanning electron microscopy. The ALP activity, the calcium and phosphoniums and the osteocalcin content of dexamethasone (10{sup -8} M) or/and BMP-2 (100 ng ml{sup -1}) were significantly higher than their existence in the control group. They were the significantly highest among four groups after joint application of BMP-2 and dexamethasone. After 8 weeks of implantation, the percentage of the new bones formed area in the RDFCs+beta-TCP+BMP-2+Dex group was significantly higher than that in the RDFCs+beta-TCP+BMP-2 group. In contrast, beta-TCP, RDFCs+beta-TCP+Dex and control constructs lacked new bone formation by histological staining and histomorphometric analysis. The BMP-2+Dex could significantly promote osteogenic differentiation of RDFCs on beta-TCP. beta-TCP supported fast cellular adhesion, proliferation and differentiation of RDFCs. The feasibility of its application in periodontal tissue engineering was also proved.

  10. Effects of BMP-2 and dexamethasone on osteogenic differentiation of rat dental follicle progenitor cells seeded on three-dimensional β-TCP

    International Nuclear Information System (INIS)

    Xu Lulu; Jin Zuolin; Duan Yinzhong; Liu Hongchen; Wang Dongsheng; E Lingling; Xu Lin

    2009-01-01

    The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional β-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial β-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration. The third passage RDFCs could be seen adhered, extended and proliferated on the β-TCP by scanning electron microscopy. The ALP activity, the calcium and phosphoniums and the osteocalcin content of dexamethasone (10 -8 M) or/and BMP-2 (100 ng ml -1 ) were significantly higher than their existence in the control group. They were the significantly highest among four groups after joint application of BMP-2 and dexamethasone. After 8 weeks of implantation, the percentage of the new bones formed area in the RDFCs+β-TCP+BMP-2+Dex group was significantly higher than that in the RDFCs+β-TCP+BMP-2 group. In contrast, β-TCP, RDFCs+β-TCP+Dex and control constructs lacked new bone formation by histological staining and histomorphometric analysis. The BMP-2+Dex could significantly promote osteogenic differentiation of RDFCs on β-TCP. β-TCP supported fast cellular adhesion, proliferation and differentiation of RDFCs. The feasibility of its application in periodontal tissue engineering was also proved.

  11. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.

    Science.gov (United States)

    Yu, D; Li, Q; Mu, X; Chang, T; Xiong, Z

    2008-10-01

    Active artificial bone composed of poly lactide-co-glycolide (PLGA)/ tricalcium phosphate (TCP) was prefabricated using low-temperature rapid-prototyping technology so that the process of osteogenesis could be observed in it. PLGA and TCP were the primary materials, they were molded at low temperature, then recombinant human bone morphogenetic protein-2 (rhBMP-2) was added to form an active artificial bone. Goats with standard cranial defects were randomly divided into experimental (implants with rhBMP-2 added) and control (implants without rhBMP-2) groups, and osteogenesis was observed and evaluated by imaging and biomechanical and histological examinations. The PLGA-TCP artificial bone scaffold (90% porosity) had large and small pores of approximately 360microm and 3-5microm diameter. Preliminary and complete repair of the cranial defect in the goats occurred 12 and 24 weeks after surgery, respectively. The three-point bending strength of the repaired defects attained that of the normal cranium. In conclusion, low-temperature rapid-prototyping technology can preserve the biological activity of this scaffold material. The scaffold has a good three-dimensional structure and it becomes an active artificial bone after loading with rhBMP-2 with a modest degradation rate and excellent osteogenesis in the goat.

  12. Dual Delivery of BMP-2 and bFGF from a New Nano-Composite Scaffold, Loaded with Vascular Stents for Large-Size Mandibular Defect Regeneration

    Directory of Open Access Journals (Sweden)

    Hang Zhao

    2013-06-01

    Full Text Available The aim of this study was to investigate the feasibility and advantages of the dual delivery of bone morphogenetic protein-2 (BMP-2 and basic fibroblast growth factor (bFGF from nano-composite scaffolds (PLGA/PCL/nHA loaded with vascular stents (PLCL/Col/nHA for large bone defect regeneration in rabbit mandibles. Thirty-six large bone defects were repaired in rabbits using engineering bone composed of allogeneic bone marrow mesenchymal stem cells (BMSCs, bFGF, BMP-2 and scaffolds composed of PLGA/PCL/nHA loaded with PLCL/Col/nHA. The experiments were divided into six groups: BMSCs/bFGF/BMP-2/scaffold, BMSCs/BMP-2/scaffold, BMSCs/bFGF/scaffold, BMSCs/scaffold, scaffold alone and no treatment. Sodium alginate hydrogel was used as the carrier for BMP-2 and bFGF and its features, including gelling, degradation and controlled release properties, was detected by the determination of gelation and degradation time coupled with a controlled release study of bovine serum albumin (BSA. AlamarBlue assay and alkaline phosphatase (ALP activity were used to evaluate the proliferation and osteogenic differentiation of BMSCs in different groups. X-ray and histological examinations of the samples were performed after 4 and 12 weeks post-implantation to clarify new bone formation in the mandible defects. The results verified that the use of sodium alginate hydrogel as a controlled release carrier has good sustained release ability, and the combined application of bFGF and BMP-2 could significantly promote the proliferation and osteogenic differentiation of BMSCs (p < 0.05 or p < 0.01. In addition, X-ray and histological examinations of the samples exhibited that the dual release group had significantly higher bone formation than the other groups. The above results indicate that the delivery of both growth factors could enhance new bone formation and vascularization compared with delivery of BMP-2 or bFGF alone, and may supply a promising way of repairing large

  13. Interleukin 17 enhances bone morphogenetic protein-2-induced ectopic bone formation

    NARCIS (Netherlands)

    Croes, M.; Kruyt, M. C.; Groen, W. M.; Van Dorenmalen, K. M.A.; Dhert, W. J.A.; Öner, F. C.; Alblas, J.

    2018-01-01

    Interleukin 17 (IL-17) stimulates the osteogenic differentiation of progenitor cells in vitro through a synergy with bone morphogenetic protein (BMP)-2. This study investigates whether the diverse responses mediated by IL-17 in vivo also lead to enhanced BMP-2-induced bone formation. Since IL-17 is

  14. Efficacy of rhBMP-2 Loaded PCL/β-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Eun-Bin Bae

    2018-01-01

    Full Text Available This study was undertaken to evaluate the effect of 3D printed polycaprolactone (PCL/β-tricalcium phosphate (β-TCP scaffold containing bone demineralized and decellularized extracellular matrix (bdECM and human recombinant bone morphogenetic protein-2 (rhBMP-2 on bone regeneration. Scaffolds were divided into PCL/β-TCP, PCL/β-TCP/bdECM, and PCL/β-TCP/bdECM/BMP groups. In vitro release kinetics of rhBMP-2 were determined with respect to cell proliferation and osteogenic differentiation. These three reconstructive materials were implanted into 8 mm diameter calvarial bone defect in male Sprague-Dawley rats. Animals were sacrificed four weeks after implantation for micro-CT, histologic, and histomorphometric analyses. The findings obtained were used to calculate new bone volumes (mm3 and new bone areas (%. Excellent cell bioactivity was observed in the PCL/β-TCP/bdECM and PCL/β-TCP/bdECM/BMP groups, and new bone volume and area were significantly higher in the PCL/β-TCP/bdECM/BMP group than in the other groups (p<.05. Within the limitations of this study, bdECM printed PCL/β-TCP scaffolds can reproduce microenvironment for cells and promote adhering and proliferating the cells onto scaffolds. Furthermore, in the rat calvarial defect model, the scaffold which printed rhBMP-2 loaded bdECM stably carries rhBMP-2 and enhances bone regeneration confirming the possibility of bdECM as rhBMP-2 carrier.

  15. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Wang, Chong; Zhao, Qilong; Wang, Min

    2017-06-07

    The performance of bone tissue engineering scaffolds can be assessed through cell responses to scaffolds, including cell attachment, infiltration, morphogenesis, proliferation, differentiation, etc, which are determined or heavily influenced by the composition, structure, mechanical properties, and biological properties (e.g. osteoconductivity and osteoinductivity) of scaffolds. Although some promising 3D printing techniques such as fused deposition modeling and selective laser sintering could be employed to produce biodegradable bone tissue engineering scaffolds with customized shapes and tailored interconnected pores, effective methods for fabricating scaffolds with well-designed hierarchical porous structure (both interconnected macropores and surface micropores) and tunable osteoconductivity/osteoinductivity still need to be developed. In this investigation, a novel cryogenic 3D printing technique was investigated and developed for producing hierarchical porous and recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded calcium phosphate (Ca-P) nanoparticle/poly(L-lactic acid) nanocomposite scaffolds, in which the Ca-P nanoparticle-incorporated scaffold layer and rhBMP-2-encapsulated scaffold layer were deposited alternatingly using different types of emulsions as printing inks. The mechanical properties of the as-printed scaffolds were comparable to those of human cancellous bone. Sustained releases of Ca 2+ ions and rhBMP-2 were achieved and the biological activity of rhBMP-2 was well-preserved. Scaffolds with a desirable hierarchical porous structure and dual delivery of Ca 2+ ions and rhBMP-2 exhibited superior performance in directing the behaviors of human bone marrow-derived mesenchymal stem cells and caused improved cell viability, attachment, proliferation, and osteogenic differentiation, which has suggested their great potential for bone tissue engineering.

  16. Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells.

    Science.gov (United States)

    Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian

    2014-07-01

    The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  18. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2

    Science.gov (United States)

    Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia

    2017-01-01

    The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960

  19. Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1.

    Science.gov (United States)

    Branly, Thomas; Bertoni, Lélia; Contentin, Romain; Rakic, Rodolphe; Gomez-Leduc, Tangni; Desancé, Mélanie; Hervieu, Magalie; Legendre, Florence; Jacquet, Sandrine; Audigié, Fabrice; Denoix, Jean-Marie; Demoor, Magali; Galéra, Philippe

    2017-10-01

    Articular cartilage presents a poor capacity for self-repair. Its structure-function are frequently disrupted or damaged upon physical trauma or osteoarthritis in humans. Similar musculoskeletal disorders also affect horses and are the leading cause of poor performance or early retirement of sport- and racehorses. To develop a therapeutic solution for horses, we tested the autologous chondrocyte implantation technique developed on human bone marrow (BM) mesenchymal stem cells (MSCs) on horse BM-MSCs. This technique involves BM-MSC chondrogenesis using a combinatory approach based on the association of 3D-culture in collagen sponges, under hypoxia in the presence of chondrogenic factors (BMP-2 + TGF-β 1 ) and siRNA to knockdown collagen I and HtrA1. Horse BM-MSCs were characterized before being cultured in chondrogenic conditions to find the best combination to enhance, stabilize, the chondrocyte phenotype. Our results show a very high proliferation of MSCs and these cells satisfy the criteria defining stem cells (pluripotency-surface markers expression). The combination of BMP-2 + TGF-β 1 strongly induces the chondrogenic differentiation of MSCs and prevents HtrA1 expression. siRNAs targeting Col1a1 and Htra1 were functionally validated. Ultimately, the combined use of specific culture conditions defined here with specific growth factors and a Col1a1 siRNAs (50 nM) association leads to the in vitro synthesis of a hyaline-type neocartilage whose chondrocytes present an optimal phenotypic index similar to that of healthy, differentiated chondrocytes. Our results lead the way to setting up pre-clinical trials in horses to better understand the reaction of neocartilage substitute and to carry out a proof-of-concept of this therapeutic strategy on a large animal model.

  20. Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit

    International Nuclear Information System (INIS)

    Shim, Jin-Hyung; Jeong, Chang-Mo; Huh, Jung-Bo; Jang, Jinah; Jeong, Sung-In; Cho, Dong-Woo; Yoon, Min-Chul

    2014-01-01

    We successfully fabricated a three-dimensional (3D) printing-based PCL/PLGA/β-TCP guided bone regeneration (GBR) membrane that slowly released rhBMP-2. To impregnate the GBR membrane with intact rhBMP-2, collagen solution encapsulating rhBMP-2 (5 µg ml −1 ) was infused into pores of a PCL/PLGA/β-TCP membrane constructed using a 3D printing system with four dispensing heads. In a release profile test, sustained release of rhBMP-2 was observed for up to 28 d. To investigate the efficacy of the GBR membrane on bone regeneration, PCL/PLGA/β-TCP membranes with or without rhBMP-2 were implanted in an 8 mm calvaria defect of rabbits. Bone formation was evaluated at weeks 4 and 8 histologically and histomorphometrically. A space making ability of the GBR membrane was successfully maintained in both groups, and significantly more new bone was formed at post-implantation weeks 4 and 8 by rhBMP-2 loaded GBR membranes. Interestingly, implantation with rhBMP-2 loaded GBR membranes led to almost entire healing of calvaria defects within 8 weeks. (paper)

  1. Expression of the bone morphogenetic protein-2 (BMP2 in the human cumulus cells as a biomarker of oocytes and embryo quality

    Directory of Open Access Journals (Sweden)

    Sirin B Demiray

    2017-01-01

    Full Text Available Background: The members of the transforming growth factor-B superfamily, as the bone morphogenetic proteins (BMPs subfamily and anti-Müllerian hormone (AMH, play a role during follicular development, and the bone morphogenetic protein-2 (BMP2, AMH, and THY1 are expressed in ovaries. Aim: This study was designed to define whether or not the expressions of these proteins in human cumulus cells (CCs can be used as predictors of the oocyte and embryo competence. Settings and Design: The study included nine female patients who were diagnosed as idiopathic infertility, aged 25–33 years (median 30 years and underwent Assisted Reproductive Technologies. Materials and Methods: The CCs from 60 oocyte–cumulus complexes obtained from the nine patients were evaluated with immunofluorescence staining in respect of BMPs, AMH and THY1 markers. The CCs surrounding the same oocytes were evaluated separately according to the oocyte and embryo quality. Statistical Analysis: Quantitative data were statistically analyzed for differences using the two-sided Mann–Whitney U test (P < 0.05. Results and Conclusions: Significant differences in immunofluorescence staining were observed in oocyte quality and embryo quality for the BMP2 only (P < 0.05. No significant differences were observed for AMH or CD90/THY1. Conclusion: These results demonstrated that there is a significant difference in the expression of BMP2 in the CCs of good quality oocytes and subsequently a good embryo.

  2. Effects of piezosurgery in accelerating the movement of orthodontic alveolar bone tooth of rats and the expression mechanism of BMP-2.

    Science.gov (United States)

    Han, Jinyou; He, Hong

    2016-11-01

    The aim of the study was to investigate the effects of piezosurgery in accelerating the movement of orthodontic alveolar bone tooth of rats and the expression mechanism of bone morphogenetic protein-2 (BMP-2). Adult male Wistar rats (n=30), with an age range of 14-15 weeks, and an average weight of 250±16 g were used. The animals were randomly divided into the control and observation groups. The rats in the control group were injected with 25-dihydroxyvitamin (1,25-dihydroxycholecalciferol) into their dental ligament. The rats in the observation group were placed with an orthodontic device between the first molar and central incisor in the maxillary. On the first day after animal treatment, piezosurgery stimulation was performed on the first molar in maxillary. The changes of the movement distance of the first molar and gum surface temperature on days 1, 3, 5, 7 and 14 were then compared. Immunohistochemical staining was performed to detect the expression of BMP-2 of periodontal tissue in the tension side of the first molar. Tooth movement distance in the observation group on days 5, 7 and 14 was significantly longer than that in the control group (ppiezosurgery may significantly accelerate the movement of orthodontic alveolar bone tooth of rats and be associated with an increasing BMP-2 expression.

  3. The effect of a slow mode of BMP-2 delivery on the inflammatory response provoked by bone-defect-filling polymeric scaffolds.

    Science.gov (United States)

    Wu, Gang; Liu, Yuelian; Iizuka, Tateyuki; Hunziker, Ernst Bruno

    2010-10-01

    We investigated the inflammatory response to, and the osteoinductive efficacies of, four polymers (collagen, Ethisorb, PLGA and Polyactive) that bore either an adsorbed (fast-release kinetics) or a calcium-phosphate-coating-incorporated (slow-release kinetics) depot of BMP-2. Titanium-plate-supported discs of each polymer (n = 6 per group) were implanted at an ectopic (subcutaneous) ossification site in rats (n = 48). Five weeks later, they were retrieved for a histomorphometric analysis of the volumes of ectopic bone and foreign-body giant cells (a gauge of inflammatory reactivity), and the degree of polymer degradation. For each polymer, the osteoinductive efficacy of BMP-2 was higher when it was incorporated into a coating than when it was directly adsorbed onto the material. This mode of BMP-2 carriage was consistently associated with an attenuation of the inflammatory response. For coated materials, the volume density of foreign-body giant cells was inversely correlated with the volume density of bone (r(2) = 0.96), and the volume density of bone was directly proportional to the surface-area density of the polymer (r(2) = 0.97). Following coating degradation, other competitive factors, such as the biocompatibility and the biodegradability of the polymer itself, came into play. 2010 Elsevier Ltd. All rights reserved.

  4. Generation of an rhBMP-2-loaded beta-tricalcium phosphate/hydrogel composite and evaluation of its efficacy on peri-implant bone formation

    International Nuclear Information System (INIS)

    Lee, Jae Hyup; Baek, Hae-Ri; Lee, Ji-Ho; Ryu, Mi Young; Seo, Jun-Hyuk; Lee, Kyung-Mee

    2014-01-01

    Dental implant insertion on a site with low bone quality or bone defect should be preceded by a bone graft or artificial bone graft insertion to heal the defect. We generated a beta-tricalcium phosphate (β-TCP) and poloxamer 407-based hydrogel composite and penetration of the β-TCP/hydrogel composite into the peri-implant area of bone was evaluated by porous bone block experiments. The maximum penetration depth for porous bone blocks and dense bone blocks were 524 μm and 464 μm, respectively. We report the in-vivo performance of a composite of β-TCP/hydrogel composite as a carrier of recombinant human bone morphogenetic protein (rhBMP-2), implanted into a rabbit tibial defect model. Three holes drilled into each tibia of eight male rabbits were (1) grafted with dental implant fixtures; (2) filled with β-TCP/hydrogel composite (containing 5 μg of rhBMP-2), followed by grafting of the dental implant fixtures. Four weeks later, bone-implant contact ratio and peri-implant bone formation were analyzed by radiography, micro-CT and histology of undecalcified specimens. The micro-CT results showed a significantly higher level of trabecular thickness and new bone and peri-implant new bone formation in the experimental treatment compared to the control treatment. Histomorphometry revealed a significantly higher bone-implant contact ratio and peri-implant bone formation with the experimental treatment. The use of β-TCP/poloxamer 407 hydrogel composite as a carrier of rhBMP-2 significantly promoted new bone formation around the dental implant fixture and it also improved the quality of the new bone formed in the tibial marrow space. (paper)

  5. Estudio del quitosano como biomaterial portador de rhBMP-2: desarrollo, caracterización y aplicabilidad en regeneración de tejido óseo

    OpenAIRE

    Abarrategi López, Ander

    2008-01-01

    La ingeniería de tejidos es un campo de investigación emergente y profundamente multidisciplinar. En esencia, esta disciplina busca nuevas terapias que permitan obtener tejido vivo y funcional, mediante un soporte activo, células y factores diferenciadores. En este contexto, el objetivo de este trabajo es aportar propiedades osteoinductivas a materiales implantables de uso clínico. Puesto que la rhBMP-2 es el factor osteodiferenciador más conocido, ésta proteína se sintetizó en el laboratorio...

  6. Preparation and physical characterization of calcium sulfate cement/silica-based mesoporous material composites for controlled release of BMP-2

    Directory of Open Access Journals (Sweden)

    Tan H

    2015-07-01

    Full Text Available Honglue Tan,1 Shengbing Yang,2 Pengyi Dai,1 Wuyin Li,1 Bing Yue2 1Luoyang Orthopedics and Traumatology Institution, Luoyang Orthopedic-Traumatological Hospital, Luoyang, 2Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China Abstract: As a commonly used implant material, calcium sulfate cement (CSC, has some shortcomings, including low compressive strength, weak osteoinduction capability, and rapid degradation. In this study, silica-based mesoporous materials such as SBA-15 were synthesized and combined with CSC to prepare CSC/SBA-15 composites. The properties of SBA-15 were characterized by X-ray diffraction, transmission electron microscopy, and nitrogen adsorption–desorption isotherms. SBA-15 was blended into CSC at 0, 5, 10, and 20 wt%, referred to as CSC, CSC-5S (5% mass ratio, CSC-10S (10% mass ratio, and CSC-20S (20% mass ratio, respectively. Fourier-transform infrared spectroscopy and compression tests were used to determine the structure and mechanical properties of the composites, respectively. The formation of hydroxyapatite on composite surfaces was analyzed using scanning electron microscopy and X-ray diffraction after soaking in simulated body fluid. BMP-2 was loaded into the composites by vacuum freeze-drying, and its release characteristics were detected by Bradford protein assay. The in vitro degradation of the CSC/SBA-15 composite was investigated by measuring weight loss. The results showed that the orderly, nanostructured, mesoporous SBA-15 possessed regular pore size and structure. The compressive strength of CSC/SBA-15 increased with the increase in SBA-15 mass ratio, and CSC-20S demonstrated the maximum strength. Compared to CSC, hydroxyapatite that formed on the surfaces of CSC/SBA-15 was uniform and compact. The degradation rate of CSC/SBA-15 decreased with increasing

  7. Continuity resection of the mandible after ameloblastoma - feasibility of oral rehabilitation with rhBMP-2 associated to bovine xenograft followed by implant installation.

    Science.gov (United States)

    Lustosa, Romulo Maciel; Macedo, Diogo de Vasconcelos; Iwaki, Lilian Cristina Vessoni; Tolentino, Elen de Souza; Hasse, Paulo Norberto; Marson, Giordano Bruno de Oliveira; Iwaki Filho, Liogi

    2015-10-01

    Recombinant human morphogenetic protein (rhBMP) is a graft alternative for extensive mandibular reconstruction after tumor resections. However, the feasibility of rhBMP-2 to receive osseointegrated implants and prosthetic rehabilitation has been rarely reported. This study reports on a case of an extensive solid ameloblastoma along the mandibular body. The treatment consisted of resection followed by off-label use of rhBMP type 2 associated with bovine bone xenograft. Eleven months postoperatively, the patient was prosthetically rehabilitated with dental implants, without evidence of resorption or complications. The literature on mandibular reconstructions using rhBMP and their feasibility for future osseointegrated implant placement was also reviewed. Based on the presented case, the association between rhBMP-2 and a bovine bone xenograft could be considered a feasible option for the reconstruction and rehabilitation of large mandibular defects after tumor resection. According to the literature, the use of rhBMP as a graft material is encouraging, with good clinical outcome. However, there are no long-term studies demonstrating success and survival rates of implants placed in these grafts. Future investigations will be required to ascertain the long-term survival of implants in areas grafted with rhBMP. Also, there is a lack of information regarding the prosthetic rehabilitation of these patients. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Bone morphogenetic protein-2 (BMP-2 and transforming growth factor-β1 (TGF-β1 alter connexin 43 phosphorylation in MC3T3-E1 Cells

    Directory of Open Access Journals (Sweden)

    Rudkin George H

    2001-07-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs and transforming growth factor-βs (TGF-βs are important regulators of bone repair and regeneration. BMP-2 and TGF-β1 have been shown to inhibit gap junctional intercellular communication (GJIC in MC3T3-E1 cells. Connexin 43 (Cx43 has been shown to mediate GJIC in osteoblasts and it is the predominant gap junctional protein expressed in these murine osteoblast-like cells. We examined the expression, phosphorylation, and subcellular localization of Cx43 after treatment with BMP-2 or TGF-β1 to investigate a possible mechanism for the inhibition of GJIC. Results Northern blot analysis revealed no detectable change in the expression of Cx43 mRNA. Western blot analysis demonstrated no significant change in the expression of total Cx43 protein. However, significantly higher ratios of unphosphorylated vs. phosphorylated forms of Cx43 were detected after BMP-2 or TGF-β1 treatment. Immunofluorescence and cell protein fractionation revealed no detectable change in the localization of Cx43 between the cytosol and plasma membrane. Conclusions BMP-2 and TGF-β1 do not alter expression of Cx43 at the mRNA or protein level. BMP-2 and TGF-β1 may inhibit GJIC by decreasing the phosphorylated form of Cx43 in MC3T3-E1 cells.

  9. Macrolactin F inhibits RANKL-mediated osteoclastogenesis by suppressing Akt, MAPK and NFATc1 pathways and promotes osteoblastogenesis through a BMP-2/smad/Akt/Runx2 signaling pathway.

    Science.gov (United States)

    Li, Liang; Sapkota, Mahesh; Gao, Ming; Choi, Hyukjae; Soh, Yunjo

    2017-11-15

    The balance between bone formation and bone resorption is maintained by osteoblasts and osteoclasts. In the current study, macrolactin F (MF) was investigated for novel biological activity on the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis in primary bone marrow-derived macrophages (BMMs). We found that RANKL-induced osteoclast formation and differentiation from BMMs was significantly inhibited by MF in a dose-dependent manner without cytotoxicity. RANKL-induced F-actin ring formation and bone resorption activity in BMMs which was attenuated by MF. In addition, MF suppressed the expression of osteoclast-related genes, including c-myc, RANK, tartrate-resistant acid phosphatase (TRAP), nuclear factor of activated T cells c1 (NFATc1), cathepsin K and matrix metalloproteinase 9 (MMP9). Furthermore, the protein expression NFATc1, c-Fos, MMP9, cathepsin K and phosphorylation of Jun N-terminal kinase (JNK), p38 and Akt were also down-regulated by MF treatment. Interestingly, MF promoted pre-osteoblast cell differentiation on Alizarin Red-mineralization activity, alkaline phosphatase (ALP) activity, and the expression of osteoblastogenic markers including Runx2, Osterix, Smad4, ALP, type I collagen alpha 1 (Col1α), osteopontin (OPN), and osteocalcin (OCN) via activation of the BMP-2/smad/Akt/Runx2 pathway on MC3T3-E1. Taken together, these results indicate that MF may be useful as a therapeutic agent to enhance bone health and treat osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development and Assessment of a 3D-Printed Scaffold with rhBMP-2 for an Implant Surgical Guide Stent and Bone Graft Material: A Pilot Animal Study

    OpenAIRE

    Bae, Ji Cheol; Lee, Jin-Ju; Shim, Jin-Hyung; Park, Keun-Ho; Lee, Jeong-Seok; Bae, Eun-Bin; Choi, Jae-Won; Huh, Jung-Bo

    2017-01-01

    In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP)/bone decellularized extracellular matrix (bdECM) scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent an...

  11. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Ian P M Tomlinson

    2011-06-01

    Full Text Available Genome-wide association studies (GWAS have identified 14 tagging single nucleotide polymorphisms (tagSNPs that are associated with the risk of colorectal cancer (CRC, and several of these tagSNPs are near bone morphogenetic protein (BMP pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3, BMP4 (14q22.2, and BMP2 (20p12.3 using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10 and BMP2 (rs4813802, P = 4.65×10(-11. Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8 and rs11632715 (P = 2.30×10(-10. As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.

  12. Characteristics and stimulation potential with BMP-2 and BMP-7 of tenocyte-like cells isolated from the rotator cuff of female donors.

    Directory of Open Access Journals (Sweden)

    Franka Klatte-Schulz

    Full Text Available Tendon bone healing of the rotator cuff is often associated with non-healing or recurrent defects, which seems to be influenced by the patient's age and sex. The present study aims to examine cellular biological characteristics of tenocyte-like cells that may contribute to this impaired rotator cuff healing. Moreover, a therapeutic approach using growth factors could possibly stimulate tendon bone healing. Therefore, our second aim was to identify patient groups who would particularly benefit from growth factor stimulation. Tenocyte-like cells isolated from supraspinatus tendons of female donors younger and older than 65 years of age were characterized with respect to different cellular biological parameters, such as cell density, cell count, marker expression, collagen-I protein synthesis, and stem cell potential. Furthermore, cells of the donor groups were stimulated with BMP-2 and BMP-7 (200 and 1000 ng/ml in 3D-culture and analyzed for cell count, marker expression and collagen-I protein synthesis. Female donors older than 65 years of age showed significantly decreased cell count and collagen-I protein synthesis compared to cells from donors younger than 65 years. Cellular biological parameters including cell count, collagen-I and -III expression, and collagen-I protein synthesis of cells from both donor groups were stimulated with BMP-2 and BMP-7. The cells from donors older than 65 years revealed a decreased stimulation potential for cell count compared to the younger group. Cells from female donors older than 65 years of age showed inferior cellular biological characteristics. This may be one reason for a weaker healing potential observed in older female patients and should be taken into consideration for tendon bone healing of the rotator cuff.

  13. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm.

    Directory of Open Access Journals (Sweden)

    Alexandra Saudemont

    2010-12-01

    Full Text Available Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic ("ciliary band" region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of "ciliary band" genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we

  14. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue

    Directory of Open Access Journals (Sweden)

    Suzuki Erika

    2011-07-01

    Full Text Available Abstract Background In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2 converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. Results Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK, and fast myosin heavy chain (fMyHC, whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP, collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding/differentiation 1 (Id1. The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. Conclusions BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.

  15. Development and Assessment of a 3D-Printed Scaffold with rhBMP-2 for an Implant Surgical Guide Stent and Bone Graft Material: A Pilot Animal Study

    Directory of Open Access Journals (Sweden)

    Ji Cheol Bae

    2017-12-01

    Full Text Available In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL/β-tricalcium phosphate (β-TCP/bone decellularized extracellular matrix (bdECM scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, % but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %. Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results.

  16. Development and Assessment of a 3D-Printed Scaffold with rhBMP-2 for an Implant Surgical Guide Stent and Bone Graft Material: A Pilot Animal Study

    Science.gov (United States)

    Bae, Ji Cheol; Lee, Jin-Ju; Shim, Jin-Hyung; Park, Keun-Ho; Lee, Jeong-Seok; Bae, Eun-Bin; Choi, Jae-Won; Huh, Jung-Bo

    2017-01-01

    In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP)/bone decellularized extracellular matrix (bdECM) scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT) to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, %) but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %). Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results. PMID:29258172

  17. Dynamic MR imaging: Follow-up study after femoral head core decompression and rhBMP-2 instillation in patients with avascular necrosis of the femoral head; Dynamische Magnetresonanztomographie (MRT): Verlaufsbeobachtung nach Femurkerndekompression und Auffuellung mit rekombinantem, humanem Bone morphogenetic Protein-2 (rhBMP-2) bei avaskulaerer Femurkopfnekrose

    Energy Technology Data Exchange (ETDEWEB)

    Schedel, H. [Klinik Prof. Schedel, Kellberg (Germany); Schneller, A. [Humboldt-Universitaet, Berlin (Germany). Klinik fuer Allgemein- und Transplantationschirurgie; Vogl, T.; Mueller, H.F.; Maeurer, J.; Felix, R. [Humboldt-Universitaet, Berlin (Germany). Strahlenklinik und Poliklinik; Suedkamp, N. [Humboldt-Universitaet, Berlin (Germany). Unfall- und Wiederherstellungschirurgie; Eisenschenk, A. [Freie Univ. Berlin (Germany). Orthopaedische Klinik und Poliklinik

    2000-07-01

    Material and Methods: Six patients with avascular necrosis of the femoral head ARCO-stage I- or II-lesions were treated surgically by femoral head core decompression. Three of these patients were additionally treated with rhBMP-2-instillation. The progression or regression could be confirmed by T1- and T2-weighted spinecho-sequences (zero, four, ten, sixteen weeks and 24 months follow up). Results: Corresponding ARCO-classification with partly more sensitive measurement of vitality signs in comparison to the optical X-ray classification. The objective, quantitative measurement of signalintensity post contrast medium reduces the influence of experience and level of education. The dynamic sequences results are reproducable. (orig.) [German] Material und Methoden: Sechs Patienten mit avaskulaerer Nekrose des Femurkopfes des Stadiums I oder II nach ARCO wurden einer Femurkerndekompression unterzogen. Drei dieser Patienten erhielten zusaetzlich eine rhBMP-2-Auffuellung. Zum Zeitpunkt null, vier, zehn, sechszehn Wochen und 24 Monaten post OP erfolgte die kernspintomographische Untersuchung mit T1- und T2-gewichteten Sequenzen unter besonderer Beruecksichtigung der dynamischen Untersuchungssequenz nach Gabe von Gd-DTPA (Gadopentetsaeure, Dimegluminsalz; Magnevist {sup trademark}) zur Dokumentation der Signalintensitaetssteigerung pro Zeiteinheit in der Nekroseregion. Ergebnisse: Uebereinstimmende Stadienklassifikation nach ARCO mit zum Teil empfindlicherer Messung von Vitalitaetszeichen im Vergleich zu rein visuellen roentgenologischen Einteilung. Die objektive, quantitative Messung des Signalintensitaetssteigerungsverhaltens nach Kontrastmittelgabe im Bereich der Femurkopfnekrose kann den Einfluss von subjektiven Eigenschaften des Untersuchers (Erfahrung, Ausbildungsstand) reduzieren, wobei die Ergebnisse der Dynamiksequenzen objektiv reproduzierbar sind. (orig.)

  18. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue

    International Nuclear Information System (INIS)

    Lv, Jia; Xiu, Peng; Tan, Jie; Cai, Hong; Liu, Zhongjun; Jia, Zhaojun

    2015-01-01

    Electron beam melting (EBM)-fabricated porous titanium implants possessing low elastic moduli and tailored structures are promising biomaterials for orthopedic applications. However, the bio-inert nature of porous titanium makes reinforcement with growth factors (GFs) a promising method to enhance implant in vivo performance. Bone-morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) are key factors of angiogenesis and osteogenesis. Therefore, the present study is aimed at evaluating EBM-fabricated porous titanium implants incorporating GF-doped fibrin glue (FG) as composite scaffolds providing GFs for improvement of angiogenesis and osteogenesis in rabbit femoral condyle defects. BMP-2 and VEGF were added into the constituent compounds of FG, and then this GF-doped FG was subsequently injected into the porous scaffolds. In five groups of implants, angiogenesis and osteogenesis were evaluated at 4 weeks post-implantation using Microfil perfusion and histological analysis: eTi (empty scaffolds), cTi (containing undoped FG), BMP/cTi (containing 50 μg rhBMP-2), VEGF/cTi (containing 0.5 μg VEGF) and Dual/cTi (containing 50 μg rhBMP-2 and 0.5 μg VEGF). The results demonstrate that these composite implants are biocompatible and provide the desired gradual release of the bioactive growth factors. Incorporation of GF delivery, whether a single factor or dual factors, significantly enhanced both angiogenesis and osteogenesis inside the porous scaffolds. However, the synergistic effect of the dual factors combination was observable on angiogenesis but absent on osteogenesis. In conclusion, fibrin glue is a biocompatible material that could be employed as a delivery vehicle in EBM-fabricated porous titanium for controlled release of BMP-2 and VEGF. Application of this method for loading a porous titanium scaffold to incorporate growth factors is a convenient and promising strategy for improving osteogenesis of critical-sized bone defects

  19. Breast cancer cells obtain an osteomimetic feature via epithelial-mesenchymal transition that have undergone BMP2/RUNX2 signaling pathway induction.

    Science.gov (United States)

    Tan, Cong-Cong; Li, Gui-Xi; Tan, Li-Duan; Du, Xin; Li, Xiao-Qing; He, Rui; Wang, Qing-Shan; Feng, Yu-Mei

    2016-11-29

    Bone is one of the most common organs of breast cancer metastasis. Cancer cells that mimic osteoblasts by expressing bone matrix proteins and factors have a higher likelihood of metastasizing to bone. However, the molecular mechanisms of osteomimicry formation of cancer cells remain undefined. Herein, we identified a set of bone-related genes (BRGs) that are ectopically co-expressed in primary breast cancer tissues and determined that osteomimetic feature is obtained due to the osteoblast-like transformation of epithelial breast cancer cells that have undergone epithelial-mesenchymal transition (EMT) followed by bone morphogenetic protein-2 (BMP2) stimulation. Furthermore, we demonstrated that breast cancer cells that transformed into osteoblast-like cells with high expression of BRGs showed enhanced chemotaxis, adhesion, proliferation and multidrug resistance in an osteoblast-mimic bone microenvironment in vitro. During these processes, runt-related transcription factor 2 (RUNX2) functioned as a master mediator by suppressing or activating the transcription of BRGs that underlie the dynamic antagonism between the TGF-β/SMAD and BMP/SMAD signaling pathways in breast cancer cells. Our findings suggest a novel mechanism of osteomimicry formation that arises in primary breast tumors, which may explain the propensity of breast cancer to metastasize to the skeleton and contribute to potential strategies for predicting and targeting breast cancer bone metastasis and multidrug resistance.

  20. A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Silvia Claros

    2014-06-01

    Full Text Available Transforming growth factor-beta (TGF-β is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS for 10 days in the presence of rhTGF (recombinant human TGF-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.

  1. BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes.

    Science.gov (United States)

    Ollitrault, David; Legendre, Florence; Drougard, Carole; Briand, Mélanie; Benateau, Hervé; Goux, Didier; Chajra, Hanane; Poulain, Laurent; Hartmann, Daniel; Vivien, Denis; Shridhar, Vijayalakshmi; Baldi, Alfonso; Mallein-Gerin, Frédéric; Boumediene, Karim; Demoor, Magali; Galera, Philippe

    2015-02-01

    Osteoarthritis (OA) is an irreversible pathology that causes a decrease in articular cartilage thickness, leading finally to the complete degradation of the affected joint. The low spontaneous repair capacity of cartilage prevents any restoration of the joint surface, making OA a major public health issue. Here, we developed an innovative combination of treatment conditions to improve the human chondrocyte phenotype before autologous chondrocyte implantation. First, we seeded human dedifferentiated chondrocytes into a collagen sponge as a scaffold, cultured them in hypoxia in the presence of a bone morphogenetic protein (BMP), BMP-2, and transfected them with small interfering RNAs targeting two markers overexpressed in OA dedifferentiated chondrocytes, that is, type I collagen and/or HtrA1 serine protease. This strategy significantly decreased mRNA and protein expression of type I collagen and HtrA1, and led to an improvement in the chondrocyte phenotype index of differentiation. The effectiveness of our in vitro culture process was also demonstrated in the nude mouse model in vivo after subcutaneous implantation. We, thus, provide here a new protocol able to favor human hyaline chondrocyte phenotype in primarily dedifferentiated cells, both in vitro and in vivo. Our study also offers an innovative strategy for chondrocyte redifferentiation and opens new opportunities for developing therapeutic targets.

  2. Regulation of Axolotl (Ambystoma mexicanum) Limb Blastema Cell Proliferation by Nerves and BMP2 in Organotypic Slice Culture.

    Science.gov (United States)

    Lehrberg, Jeffrey; Gardiner, David M

    2015-01-01

    We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was possible to test the response of blastema cells to signaling molecules present in serum, as well as those produced by nerves. We also were able to investigate the response of blastema cells to experimentally regulated changes in BMP signaling. Blastema cells responded to all of these signals by increasing the rate of proliferation and the level of expression of the blastema marker gene, Prrx-1. The organotypic slice culture model provides the opportunity to identify and characterize the spatial and temporal co-regulation of pathways in order to induce and enhance a regenerative response.

  3. Regulation of Axolotl (Ambystoma mexicanum Limb Blastema Cell Proliferation by Nerves and BMP2 in Organotypic Slice Culture.

    Directory of Open Access Journals (Sweden)

    Jeffrey Lehrberg

    Full Text Available We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was possible to test the response of blastema cells to signaling molecules present in serum, as well as those produced by nerves. We also were able to investigate the response of blastema cells to experimentally regulated changes in BMP signaling. Blastema cells responded to all of these signals by increasing the rate of proliferation and the level of expression of the blastema marker gene, Prrx-1. The organotypic slice culture model provides the opportunity to identify and characterize the spatial and temporal co-regulation of pathways in order to induce and enhance a regenerative response.

  4. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.

    Science.gov (United States)

    Lee, Sang Jin; Lee, Donghyun; Yoon, Taek Rim; Kim, Hyung Keun; Jo, Ha Hyeon; Park, Ji Sun; Lee, Jun Hee; Kim, Wan Doo; Kwon, Il Keun; Park, Su A

    2016-08-01

    For tissue engineering, a bio-porous scaffold which is applied to bone-tissue regeneration should provide the hydrophilicity for cell attachment as well as provide for the capability to bind a bioactive molecule such as a growth factor in order to improve cell differentiation. In this work, we prepared a three-dimensional (3D) printed polycaprolactone scaffold (PCLS) grafted with recombinant human bone morphogenic protein-2 (rhBMP2) attached via polydopamine (DOPA) chemistry. The DOPA coated PCL scaffold was characterized by contact angle, water uptake, and X-ray photoelectron spectroscopy (XPS) in order to certify that the surface was successfully coated with DOPA. In order to test the loading and release of rhBMP2, we examined the release rate for 28days. For the In vitro cell study, pre-osteoblast MC3T3-E1 cells were seeded onto PCL scaffolds (PCLSs), DOPA coated PCL scaffold (PCLSD), and scaffolds with varying concentrations of rhBMP2 grafted onto the PCLSD 100 and PCLSD 500 (100 and 500ng/ml loaded), respectively. These scaffolds were evaluated by cell proliferation, alkaline phosphatase activity, and real time polymerase chain reaction with immunochemistry in order to verify their osteogenic activity. Through these studies, we demonstrated that our fabricated scaffolds were well coated with DOPA as well as grafted with rhBMP2 at a quantity of 22.7±5ng when treatment with 100ng/ml rhBMP2 and 153.3±2.4ng when treated with 500ng/ml rhBMP2. This grafting enables rhBMP2 to be released in a sustained pattern. In the in vitro results, the cell proliferation and an osteoconductivity of PCLSD 500 groups was greater than any other group. All of these results suggest that our manufactured 3D printed porous scaffold would be a useful construct for application to the bone tissue engineering field. Tissue-engineered scaffolds are not only extremely complex and cumbersome, but also use organic solvents which can negatively influence cellular function. Thus, a rapid

  5. Histological and radiographic evaluation of the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a scaffold of inorganic bone and after stimulation with low-power laser light

    Directory of Open Access Journals (Sweden)

    Bengtson Antonio

    2010-01-01

    Full Text Available Objective: The present study histologically and radiologically evaluates the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a natural inorganic bone mineral scaffold from a bull calf femur and irradiation with low-power light laser. Materials and Methods: The right and left hind limbs of 16 rats were shaved and an incision was made in the muscle on the face corresponding to the median portion of the tibia, into which rhBMP-2 in a scaffold of inorganic bone was implanted. Two groups of limbs were formed: control (G1 and laser irradiation (G2. G2 received diode laser light applied in the direction of the implant, at a dose of 8 J/cm2 for three minutes. On the 7th, 21st, 40th and 112th days after implantation, hind limbs of 4 animals were radiographed and their implants removed together with the surrounding tissue for study under the microscope. The histological results were graded as 0=absence, 1=slight presence, 2=representative and 3=very representative, with regard to the following events: formation of osteoid structure, acute inflammation, chronic inflammation, fibrin deposition, neovascularization, foreign-body granuloma and fibrosis. Results: There were no statistically significant differences in these events at each evaluation times, between the two groups (P > 0.05; Mann-Whitney test. Nevertheless, it could be concluded that the natural inorganic bone matrix with rhBMP-2, from the femur of a bull calf, is a biocompatible combination. Conclusions: Under these conditions, the inductive capacity of rhBMP-2 for cell differentiation was inhibited. There was a slight acceleration in tissue healing in the group that received irradiation with low-power laser light.

  6. A heterozygous microdeletion of 20p12.2-3 encompassing PROKR2 and BMP2 in a patient with congenital hypopituitarism and growth hormone deficiency.

    Science.gov (United States)

    Parsons, Samuel J H; Wright, Neville B; Burkitt-Wright, Emma; Skae, Mars S; Murray, Phillip G

    2017-08-01

    Congenital growth hormone deficiency is a rare disorder with an incidence of approximately 1 in 4,000 live births. Pituitary development is under the control of a multitude of spatiotemporally regulated signaling molecules and transcription factors. Mutations in the genes encoding these molecules can result in hypopituitarism but for the majority of children with congenital hypopituitarism, the aetiology of their disease remains unknown. The proband is a 5-year-old girl who presented with neonatal hypoglycaemia and prolonged jaundice. No definitive endocrine cause of hypoglycaemia was identified in the neonatal period. She was born of normal size at 42 weeks but demonstrated growth failure with a progressive reduction in height to -3.2 SD by age 4.5 years and failed a growth hormone stimulation test with a peak growth hormone of 4.2 mcg/L. MRI of the pituitary gland demonstrated a hypoplastic anterior lobe and ectopic posterior lobe. Array CGH demonstrated an inherited 0.2 Mb gain at 1q21.1 and a de novo 4.8 Mb heterozygous deletion at 20p12.2-3. The deletion contained 17 protein coding genes including PROKR2 and BMP2, both of which are expressed during embryological development of the pituitary gland. PROKR2 mutations have been associated with hypopituitarism but a heterozygous deletion of this gene with hypopituitarism is a novel observation. In conclusion, congenital hypopituitarism can be present in individuals with a 20p12.3 deletion, observed with incomplete penetrance. Array CGH may be a useful investigation in select cases of early onset growth hormone deficiency, and patients with deletions within this region should be evaluated for pituitary hormone deficiencies. © 2017 Wiley Periodicals, Inc.

  7. Activation of the PI3K/Akt pathway mediates bone morphogenetic protein 2-induced invasion of pancreatic cancer cells Panc-1.

    Science.gov (United States)

    Chen, Xiong; Liao, Jie; Lu, YeBin; Duan, XiaoHui; Sun, WeiJia

    2011-06-01

    Bone morphogenetic proteins (BMPs) signaling has an emerging role in pancreatic cancer. However, because of the multiple effects of different BMPs, no final conclusions have been made as to the role of BMPs in pancreatic cancer. In our studies, we have focused on bone morphogenetic protein 2(BMP-2) because it induces an epithelial to mesenchymal transition (EMT) and accelerates invasion in the human pancreatic cancer cell line Panc-1. It has been reported that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates invasion of gastric and colon cancer cells, which is unrevealed in pancreatic cancer cells. The objective of our study was to investigate whether BMP-2 mediated invasion might pass through the PI3K/Akt pathway. Our results show that expression of phosphorylation of Akt was increased by treatment with BMP-2, but not Noggin, a BMP-2 antagonist. Then pretreatment of Panc-1 cells with LY294002, an inhibitor of the PI3K/AKT pathway, significantly inhibited BMP-2-induced EMT and invasiveness. The data suggest that BMP-2 accelerates invasion of panc-1 cells via the PI3K/AKT pathway in panc-1 cells, which gives clues to searching new therapy targets in advanced pancreatic cancer.

  8. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo.

    Science.gov (United States)

    Zara, Janette N; Siu, Ronald K; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M; Ting, Kang; Soo, Chia

    2011-05-01

    The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL.

  9. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    International Nuclear Information System (INIS)

    Kadouchi, Ichiro; Sakamoto, Kei; Tangjiao, Liu; Murakami, Takashi; Kobayashi, Eiji; Hoshino, Yuichi; Yamaguchi, Akira

    2009-01-01

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  10. Effects of simulated weightlessness on the kinase activity of MEK1 induced by bone morphogenetic protein-2 in rat osteosarcoma cells

    Science.gov (United States)

    Zhang, S.; Wang, B.; Cao, X. S.; Yang, Z.

    Objective The mRNA expression of alpha 1 chain of type I collagen COL-I alpha 1 in rat osteosarcoma ROS17 2 8 cells induced by bone morphogenetic protein-2 BMP-2 was reduced under simulated microgravity The protein kinase MEK1 of MAPK signal pathway plays an important role in the expression of COL-I alpha 1 mRNA The purpose of this study is to investigate the effects of simulated weightlessness on the activity of MEK1 induced by BMP-2 in ROS17 2 8 cells Methods ROS17 2 8 cells were cultured in 1G control and rotating clinostat simulated weightlessness for 24 h 48 h and 72 h BMP-2 500 ng ml was added into the medium 1 h before the culture ended There was a control group in which ROS17 2 8 cells were cultured in 1G condition without BMP-2 Then the total protein of cells was extracted and the expression of phosphated-ERK1 2 p-ERK1 2 protein was detected by means of Western Blotting to show the kinase activity of MEK1 Results There were no significant differences in the expression of total ERK1 2 among all groups The expression of p-ERK1 2 was unconspicuous in the control group without BMP-2 but increased significantly when BMP-2 was added P 0 01 The level of p-ERK1 2 in simulated weightlessness group was much more lower than that in 1G group in every time point P 0 01 The expression of p-ERK1 2 gradually decreased along with the time of weightlessness simulation P 0 01 Conclusions The kinase activity of MEK1 induced by BMP-2 in rat osteosarcoma cells was reduced under simulated weightlessness

  11. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.

    Science.gov (United States)

    Ishack, Stephanie; Mediero, Aranzazu; Wilder, Tuere; Ricci, John L; Cronstein, Bruce N

    2017-02-01

    Bone defects resulting from trauma or infection need timely and effective treatments to restore damaged bone. Using specialized three-dimensional (3D) printing technology we have created custom 3D scaffolds of hydroxyapatite (HA)/beta-tri-calcium phosphate (β-TCP) to promote bone repair. To further enhance bone regeneration we have coated the scaffolds with dipyridamole, an agent that increases local adenosine levels by blocking cellular uptake of adenosine. Nearly 15% HA:85% β-TCP scaffolds were designed using Robocad software, fabricated using a 3D Robocasting system, and sintered at 1100°C for 4 h. Scaffolds were coated with BMP-2 (200 ng mL -1 ), dypiridamole 100 µM or saline and implanted in C57B6 and adenosine A2A receptor knockout (A2AKO) mice with 3 mm cranial critical bone defects for 2-8 weeks. Dipyridamole release from scaffold was assayed spectrophotometrically. MicroCT and histological analysis were performed. Micro-computed tomography (microCT) showed significant bone formation and remodeling in HA/β-TCP-dipyridamole and HA/β-TCP-BMP-2 scaffolds when compared to scaffolds immersed in vehicle at 2, 4, and 8 weeks (n = 5 per group; p ≤ 0.05, p ≤ 0.05, and p ≤ 0.01, respectively). Histological analysis showed increased bone formation and a trend toward increased remodeling in HA/β-TCP- dipyridamole and HA/β-TCP-BMP-2 scaffolds. Coating scaffolds with dipyridamole did not enhance bone regeneration in A2AKO mice. In conclusion, scaffolds printed with HA/β-TCP promote bone regeneration in critical bone defects and coating these scaffolds with agents that stimulate A2A receptors and growth factors can further enhance bone regeneration. These coated scaffolds may be very useful for treating critical bone defects due to trauma, infection or other causes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 366-375, 2017. © 2015 Wiley Periodicals, Inc.

  12. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    Directory of Open Access Journals (Sweden)

    Boos AM

    2014-11-01

    Full Text Available Anja M Boos,1,* Annika Weigand,1,* Gloria Deschler,1 Thomas Gerber,2 Andreas Arkudas,1 Ulrich Kneser,1 Raymund E Horch,1 Justus P Beier11Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg FAU, Erlangen, 2Institute of Physics, University of Rostock, Rostock, Germany *These authors contributed equally to this work Abstract: New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2, and different carrier materials (fibrin, cell culture medium, autologous serum was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 µg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin. Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly

  13. Conformational co-dependence between Plasmodium berghei LCCL proteins promotes complex formation and stability.

    Science.gov (United States)

    Saeed, Sadia; Tremp, Annie Z; Dessens, Johannes T

    2012-10-01

    Malaria parasites express a conserved family of LCCL-lectin adhesive-like domain proteins (LAPs) that have essential functions in sporozoite transmission. In Plasmodium falciparum all six family members are expressed in gametocytes and form a multi-protein complex. Intriguingly, knockout of P. falciparum LCCL proteins adversely affects expression of other family members at protein, but not at mRNA level, a phenomenon termed co-dependent expression. Here, we investigate this in Plasmodium berghei by crossing a PbLAP1 null mutant parasite with a parasite line expressing GFP-tagged PbLAP3 that displays strong fluorescence in gametocytes. Selected and validated double mutants show normal synthesis and subcellular localization of PbLAP3::GFP. However, GFP-based fluorescence is dramatically reduced without PbLAP1 present, indicating that PbLAP1 and PbLAP3 interact. Moreover, absence of PbLAP1 markedly reduces the half-life of PbLAP3, consistent with a scenario of misfolding. These findings unveil a potential mechanism of conformational interdependence that facilitates assembly and stability of the functional LCCL protein complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. [Family factors associated with co-dependency in nurses at a hospital in Cancun, Quintana Roo, México].

    Science.gov (United States)

    Ramírez-Amaro, Margarita; Martínez-Torres, Jorge; Ureña Bogarín, Enrique Leobardo

    2014-05-01

    Identifying family factors associated with the presence of co-dependency in nurses of a regional hospital in Cancún, Quintana Roo, Mexico. Cross-sectional, comparative study. City of Cancun (México). A random sample of 200nurses who met the inclusion criteria (having a partner for over a year, to be at work on the day of the interview), and who gave informed consent, completed three questionnaires during different shifts. Age, educational level, socioeconomic status, type of family structure, life cycle stage, co-dependency and family functioning. A total of 200nurses, with mean age of 36±8years, took part. The most common socioeconomic status was high (48%), and 47.5% had graduate studies. A co-dependency level of 20.5% (95%CI: 15-26.5) was found. Family factors associated with the presence of co-dependency were; family dysfunction, prevalence ratio (PR)=9.62 (95%CI: 3.47-27.3), stage of independence, PR=3.41 (95%CI: 1.44-7.86), single parent, PR=6.35 (95%CI: 2.41-16.68), and time with partner less than 5 years, PR=3.41 (95%CI: 1.54-7.85). It was found that family dysfunction and being a single parent were significantly associated with co-dependency in hospital nurses, therefore, on being able to identify these factors, family physicians can improve their dynamics and functioning by family study, and improving effective communication with nursing staff and their families. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  15. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    Science.gov (United States)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  16. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  17. Adenovirus-mediated siRNA targeting TNF-α and overexpression of bone morphogenetic protein-2 promotes early osteoblast differentiation on a cell model of Ti particle-induced inflammatory response in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.H.; Yu, C.C.; Sun, S.X. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China); Ma, X.J. [Ningxia Medical Autonomous Region of the First People' s Hospital, Department of Orthopedic Surgery, Yinchuan (China); Yang, X.C.; Sun, K.N.; Jin, Q.H. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China)

    2013-10-02

    Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.

  18. Antisense targeting of TGF-β1 augments BMP-induced upregulation of osteopontin, type I collagen and Cbfa1 in human Saos-2 cells

    International Nuclear Information System (INIS)

    Shen, Zhong-Jian; Kook Kim, Sang; Youn Jun, Do; Park, Wan; Ho Kim, Young; Malter, James S.; Jo Moon, Byung

    2007-01-01

    Despite commonalities in signal transduction in osteoblasts from different species, the role of TGF-β1 on bone formation remains elusive. In particular, the role of autocrine TGF-β1 on human osteoblasts is largely unknown. Here we show the effect of TGF-β1 knock-down on the proliferation and differentiation of osteoblasts induced by BMP2. Treatment with antisense TGF-β1 moderately increased the rate of cell proliferation, which was completely reversed by the exogenous addition of TGF-β1. Notably, TGF-β1 blockade significantly enhanced BMP2-induced upregulation of mRNAs encoding osteopontin, type I collagen and Cbfa1, which was suppressed by exogenous TGF-β1. Moreover, TGF-β1 knock-down increased BMP2-induced phosphorylation of Smad1/5 as well as their nuclear import, which paralleled a reduction of inhibitory Smad6. These data suggest autocrine TGF-β1 antagonizes BMP signaling through modulation of inducible Smad6 and the activity of BMP specific Smad1/5

  19. Mechanical stress-induced apoptosis of nucleus pulposus cells: an in vitro and in vivo rat model.

    Science.gov (United States)

    Kuo, Yi-Jie; Wu, Lien-Chen; Sun, Jui-Sheng; Chen, Ming-Hong; Sun, Man-Ger; Tsuang, Yang-Hwei

    2014-03-01

    Un-physiological loads play an important role in the degenerative process of inter-vertebral discs (IVD). In this study, we used an in vitro and in vivo rat model to investigate the mechanism of nucleus pulposus (NP) cells apoptosis induced by mechanical stress. Static compressive load to IVDs of rat tails was used as the in vivo model. For the in vitro model, NP cells were tested under the physiological and un-physiological loading. For histological examination, apoptotic index study, and apoptotic gene expression, we also selected cytokines [bone morphogenetic protein (BMP)-2/7, insulin-like growth factor (IGF)-1, platelet-derived growth factor (PDGF)] to be analyzed. Under mechanical loading, cellular density was significantly decreased, but there was an increase of TUNEL positive cells and apoptosis index. In a dose-dependent manner; the necrosis became apparent in the un-physiologic strain. The selected cytokines (BMP-2/7, IGF-1, PDGF) can significantly reduce the percentage of apoptotic and necrotic cells. We conclude that the intrinsic (mitochondrial) apoptotic pathway plays an important role in the compressive load-induced apoptosis of NP cells. Combination therapy reducing the mechanical load and selected cytokines (BMP-2/7, IGF-1 and PDGF) may have considerable promise in the treatment of spine disc degeneration.

  20. Pharmacological activation of aldehyde dehydrogenase 2 promotes osteoblast differentiation via bone morphogenetic protein-2 and induces bone anabolic effect

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Monika; Pal, Subhashis; China, Shyamsundar Pal; Porwal, Konica [Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031 (India); Dev, Kapil [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Shrivastava, Richa [Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Raju, Kanumuri Siva Rama; Rashid, Mamunur [Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Trivedi, Arun Kumar; Sanyal, Sabyasachi [Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Wahajuddin, Muhammad [Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Bhaduria, Smrati [Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Maurya, Rakesh [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Chattopadhyay, Naibedya, E-mail: n_chattopadhyay@cdri.res.in [Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031 (India)

    2017-02-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes involved in detoxifying aldehydes. Previously, we reported that an ALDH inhibitor, disulfiram caused bone loss in rats and among ALDHs, osteoblast expressed only ALDH2. Loss-of-function mutation in ALDH2 gene is reported to cause bone loss in humans which suggested its importance in skeletal homeostasis. We thus studied whether activating ALDH2 by N-(1, 3-benzodioxol-5-ylmethyl)-2, 6-dichlorobenzamide (alda-1) had osteogenic effect. We found that alda-1 increased and acetaldehyde decreased the differentiation of rat primary osteoblasts and expressions of ALDH2 and bone morphogenetic protein-2 (BMP-2). Silencing ALDH2 in osteoblasts abolished the alda-1 effects. Further, alda-1 attenuated the acetaldehyde-induced lipid-peroxidation and oxidative stress. BMP-2 is essential for bone regeneration and alda-1 increased its expression in osteoblasts. We then showed that alda-1 (40 mg/kg dose) augmented bone regeneration at the fracture site with concomitant increase in BMP-2 protein compared with control. The osteogenic dose (40 mg/kg) of alda-1 attained a bone marrow concentration that was stimulatory for osteoblast differentiation, suggesting that the tissue concentration of alda-1 matched its pharmacologic effect. In addition, alda-1 promoted modeling-directed bone growth and peak bone mass achievement, and increased bone mass in adult rats which reiterated its osteogenic effect. In osteopenic ovariectomized (OVX) rats, alda-1 reversed trabecular osteopenia with attendant increase in serum osteogenic marker (procollagen type I N-terminal peptide) and decrease in oxidative stress. Alda-1 has no effect on liver and kidney function. We conclude that activating ALDH2 by alda-1 had an osteoanabolic effect involving increased osteoblastic BMP-2 production and decreased OVX-induced oxidative stress. - Highlights: • Alda-1 induced osteoblast differentiation that involved upregulation of ALDH2 and BMP-2 • Alda-1

  1. Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model.

    Science.gov (United States)

    Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2011-06-01

    Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29(+), CD44(+) and CD166(+) after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. © 2011

  2. Palmitic Acid Induces Osteoblastic Differentiation in Vascular Smooth Muscle Cells through ACSL3 and NF-κB, Novel Targets of Eicosapentaenoic Acid

    Science.gov (United States)

    Kageyama, Aiko; Matsui, Hiroki; Ohta, Masahiko; Sambuichi, Keisuke; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Yokoyama, Tomoyuki; Kurabayashi, Masahiko

    2013-01-01

    Free fatty acids (FFAs), elevated in metabolic syndrome and diabetes, play a crucial role in the development of atherosclerotic cardiovascular disease, and eicosapentaenoic acid (EPA) counteracts many aspects of FFA-induced vascular pathology. Although vascular calcification is invariably associated with atherosclerosis, the mechanisms involved are not completely elucidated. In this study, we tested the hypothesis that EPA prevents the osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC) induced by palmitic acid (PA), the most abundant long-chain saturated fatty acid in plasma. PA increased and EPA abolished the expression of the genes for bone-related proteins, including bone morphogenetic protein (BMP)-2, Msx2 and osteopontin in human aortic smooth muscle cells (HASMC). Among the long-chain acyl-CoA synthetase (ACSL) subfamily, ACSL3 expression was predominant in HASMC, and PA robustly increased and EPA efficiently inhibited ACSL3 expression. Importantly, PA-induced osteoblastic differentiation was mediated, at least in part, by ACSL3 activation because acyl-CoA synthetase (ACS) inhibitor or siRNA targeted to ACSL3 completely prevented the PA induction of both BMP-2 and Msx2. Conversely, adenovirus-mediated ACSL3 overexpression enhanced PA-induced BMP-2 and Msx2 expression. In addition, EPA, ACSL3 siRNA and ACS inhibitor attenuated calcium deposition and caspase activation induced by PA. Notably, PA induced activation of NF-κB, and NF-κB inhibitor prevented PA-induction of osteoblastic gene expression and calcium deposition. Immunohistochemistry revealed the prominent expression of ACSL3 in VSMC and macrophages in human non-calcifying and calcifying atherosclerotic plaques from the carotid arteries. These results identify ACSL3 and NF-κB as mediators of PA-induced osteoblastic differentiation and calcium deposition in VSMC and suggest that EPA prevents vascular calcification by inhibiting such a new molecular pathway elicited

  3. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes

    International Nuclear Information System (INIS)

    Li Xiaoming; Uo, Motohiro; Akasaka, Tsukasa; Abe, Shigeaki; Watari, Fumio; Gao Hong; Sato, Yoshinori; Feng Qingling; Cui Fuzhai

    2009-01-01

    Osteogenic maturation of the osteoblast is crucial for bone formation. In this study, multi-walled carbon nanotubes (MWCNTs) and graphite (GP) were pressed as compacts. The greater ability of carbon nanotubes to adsorb proteins, compared with graphite, was shown. Human osteoblast-like SaoS2 cells were cultured and the cell response to the two kinds of compacts was compared in vitro. Meanwhile, we used cell culture on the culture plate as a control. Assays for osteonectin, osteopontin and osteocalcin gene expression, total protein (TP) amount, alkaline phosphatase activity (ALP) and DNA of cells cultured on the samples were done. During the conventional culture, significantly higher osteonectin, osteopontin and osteocalcin gene expression level, ALP/DNA and TP/DNA on carbon nanotubes were found. To confirm the hypothesis that the larger amount of specific proteins adsorbed on the carbon nanotubes was crucial for this, the compacts were pre-soaked in culture medium having additional recombinant human bone morphogenetic protein-2 (rhBMP-2) before cell culture. Compared with GP, osteonectin, osteopontin and osteocalcin gene expression level, ALP/DNA and TP/DNA of the cells tested increased more on the MWCNTs after the compacts were pre-soaked in the culture medium with rhBMP-2. The results indicated that the carbon nanotubes might induce osteogenic maturation of the osteoblast by adsorbing more specific proteins.

  4. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    Science.gov (United States)

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  5. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.

    Science.gov (United States)

    Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura

    2017-11-16

    Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3

  6. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration

    Directory of Open Access Journals (Sweden)

    Rubén Aquino-Martínez

    2017-11-01

    Full Text Available Abstract Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO4 on MSC migration. In addition, to evaluate the influence of CaSO4 on MSC differentiation and the potential molecular mechanisms involved. Methods A circular calvarial bone defect (5 mm diameter was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO4 treatment was also evaluated by qPCR. Results CaSO4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO4 effects on MSC migration. Conclusions Specific CaSO4 concentrations induce bone regeneration of calvarial defects in part by acting on the host’s undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO4 regulates BMP-2-induced

  7. Pre-announcement of symbiotic guests: transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1.

    Science.gov (United States)

    Hohnjec, Natalija; Czaja-Hasse, Lisa F; Hogekamp, Claudia; Küster, Helge

    2015-11-23

    More than 80 % of all terrestrial plant species establish an arbuscular mycorrhiza (AM) symbiosis with Glomeromycota fungi. This plant-microbe interaction primarily improves phosphate uptake, but also supports nitrogen, mineral, and water aquisition. During the pre-contact stage, the AM symbiosis is controled by an exchange of diffusible factors from either partner. Amongst others, fungal signals were identified as a mix of sulfated and non-sulfated lipochitooligosaccharides (LCOs), being structurally related to rhizobial nodulation (Nod)-factor LCOs that in legumes induce the formation of nitrogen-fixing root nodules. LCO signals are transduced via a common symbiotic signaling pathway (CSSP) that activates a group of GRAS transcription factors (TFs). Using complex gene expression fingerprints as molecular phenotypes, this study primarily intended to shed light on the importance of the GRAS TFs NSP1 and RAM1 for LCO-activated gene expression during pre-symbiotic signaling. We investigated the genome-wide transcriptional responses in 5 days old primary roots of the Medicago truncatula wild type and four symbiotic mutants to a 6 h challenge with LCO signals supplied at 10(-7/-8) M. We were able to show that during the pre-symbiotic stage, sulfated Myc-, non-sulfated Myc-, and Nod-LCO-activated gene expression almost exclusively depends on the LysM receptor kinase NFP and is largely controled by the CSSP, although responses independent of this pathway exist. Our results show that downstream of the CSSP, gene expression activation by Myc-LCOs supplied at 10(-7/-8) M strictly required both the GRAS transcription factors RAM1 and NSP1, whereas those genes either co- or specifically activated by Nod-LCOs displayed a preferential NSP1-dependency. RAM1, a central regulator of root colonization by AM fungi, controled genes activated by non-sulfated Myc-LCOs during the pre-symbiotic stage that are also up-regulated in areas with early physical contact, e.g. hyphopodia and

  8. TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways.

    Directory of Open Access Journals (Sweden)

    Fátima Guerrero

    Full Text Available BACKGROUND: Transforming growth factor-β (TGF-β is a key cytokine during differentiation of mesenchymal stem cells (MSC into vascular smooth muscle cells (VSMC. High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. RESULTS: Our results showed that TGF-β induced nuclear translocation of Smad3 as well as the expression of vascular smooth muscle markers, such as smooth muscle alpha actin, SM22α, myocardin, and smooth muscle-myosin heavy chain. The addition of high phosphate to MSC promoted nuclear translocation of Smad1/5/8 and the activation of canonical Wnt/β-catenin in addition to an increase in BMP-2 expression, calcium deposition and alkaline phosphatase activity. The administration of TGF-β to MSC treated with high phosphate abolished all these effects by inhibiting canonical Wnt, BMP and TGF-β pathways. A similar outcome was observed in high phosphate-treated cells after the inhibition of canonical Wnt signaling with Dkk-1. Conversely, addition of both Wnt/β-catenin activators CHIR98014 and lithium chloride enhanced the effect of high phosphate on BMP-2, calcium deposition and alkaline phosphatase activity. CONCLUSIONS: Full VSMC differentiation induced by TGF-β may not be achieved when extracellular phosphate levels are high. Moreover, TGF-β prevents high phosphate-induced osteogenesis by decreasing the nuclear translocation of Smad 1/5/8 and avoiding the activation of Wnt/β-catenin pathway.

  9. Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells

    Science.gov (United States)

    2012-01-01

    Introduction To date, no single most-appropriate factor or delivery method has been identified for the purpose of mesenchymal stem cell (MSC)-based treatment of cartilage injury. Therefore, in this study we tested whether gene delivery of the growth factor Indian hedgehog (IHH) was able to induce chondrogenesis in human primary MSCs, and whether it was possible by such an approach to modulate the appearance of chondrogenic hypertrophy in pellet cultures in vitro. Methods First-generation adenoviral vectors encoding the cDNA of the human IHH gene were created by cre-lox recombination and used alone or in combination with adenoviral vectors, bone morphogenetic protein-2 (Ad.BMP-2), or transforming growth factor beta-1 (Ad.TGF-β1) to transduce human bone-marrow derived MSCs at 5 × 102 infectious particles/cell. Thereafter, 3 × 105 cells were seeded into aggregates and cultured for 3 weeks in serum-free medium, with untransduced or marker gene transduced cultures as controls. Transgene expressions were determined by ELISA, and aggregates were analysed histologically, immunohistochemically, biochemically and by RT-PCR for chondrogenesis and hypertrophy. Results IHH, TGF-β1 and BMP-2 genes were equipotent inducers of chondrogenesis in primary MSCs, as evidenced by strong staining for proteoglycans, collagen type II, increased levels of glycosaminoglycan synthesis, and expression of mRNAs associated with chondrogenesis. IHH-modified aggregates, alone or in combination, also showed a tendency to progress towards hypertrophy, as judged by the expression of alkaline phosphatase and stainings for collagen type X and Annexin 5. Conclusion As this study provides evidence for chondrogenic induction of MSC aggregates in vitro via IHH gene delivery, this technology may be efficiently employed for generating cartilaginous repair tissues in vivo. PMID:22817660

  10. Mineral trioxide aggregate induces osteoblastogenesis via Atf6

    Directory of Open Access Journals (Sweden)

    Toyonobu Maeda

    2015-06-01

    Full Text Available Mineral trioxide aggregate (MTA has been recommended for various uses in endodontics. To understand the effects of MTA on alveolar bone, we examined whether MTA induces osteoblastic differentiation using MC3T3-E1 cells. MTA enhanced mineralization concomitant with alkaline phosphatase activity in a dose- and time-dependent manner. MTA increased production of collagens (Type I and Type III and matrix metalloproteinases (MMP-9 and MMP-13, suggesting that MTA affects bone matrix remodeling. MTA also induced Bglap (osteocalcin but not Bmp2 (bone morphogenetic protein-2 mRNA expression. We observed induction of Atf6 (activating transcription factor 6, an endoplasmic reticulum (ER stress response transcription factor mRNA expression and activation of Atf6 by MTA treatment. Forced expression of p50Atf6 (active form of Atf6 markedly enhanced Bglap mRNA expression. Chromatin immunoprecipitation assay was performed to investigate the increase in p50Atf6 binding to the Bglap promoter region by MTA treatment. Furthermore, knockdown of Atf6 gene expression by introduction of Tet-on Atf6 shRNA expression vector abrogated MTA-induced mineralization. These results suggest that MTA induces in vitro osteoblastogenesis through the Atf6–osteocalcin axis as ER stress signaling. Therefore, MTA in endodontic treatment may affect alveolar bone healing in the resorbed region caused by pulpal infection.

  11. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Song, Yuanhui; Ju, Yang; Morita, Yasuyuki; Xu, Baiyao; Song, Guanbin

    2014-01-01

    Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering. - Highlights: • BMP2 was immobilized onto nanoporous alumina substrates with different pore sizes. • BMP2-immobilized substrates were able to promote adhesion and spreading of MSCs. • BMP2-immobilized substrates were favorable for cell growth of MSCs. • BMP2-immobilized substrates promoted osteogenic

  12. Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of BMP receptor IA and bioactivity of bone morphogenetic protein-2.

    Science.gov (United States)

    Huang, Baolin; Yuan, Yuan; Ding, Sai; Li, Jianbo; Ren, Jie; Feng, Bo; Li, Tong; Gu, Yuantong; Liu, Changsheng

    2015-11-01

    Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sinuses of rhBMP-2 in clinical applications and arouse broad interests among researchers in the fields of nano-biotechnology, biomaterials and bone tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Synthetic triterpenoids, CDDO-Imidazolide and CDDO-Ethyl amide, induce chondrogenesis.

    Science.gov (United States)

    Suh, N; Paul, S; Lee, H J; Yoon, T; Shah, N; Son, A I; Reddi, A H; Medici, D; Sporn, M B

    2012-05-01

    Novel methods for inducing chondrogenesis are critical for cartilage tissue engineering and regeneration. Here we show that the synthetic oleanane triterpenoids, CDDO-Imidazolide (CDDO-Im) and CDDO-Ethyl amide (CDDO-EA), at concentrations as low as 200 nM, induce chondrogenesis in organ cultures of newborn mouse calvaria. The cartilage phenotype was measured histologically with metachromatic toluidine blue staining for proteoglycans and by immunohistochemical staining for type II collagen. Furthermore, real-time polymerase chain reaction (PCR) analysis using mRNA from calvaria after 7-day treatment with CDDO-Im and CDDO-EA showed up-regulation of the chondrocyte markers SOX9 and type II collagen (alpha1). In addition, TGF-β; BMPs 2 and 4; Smads 3, 4, 6, and 7; and TIMPs-1 and -2 were increased. In contrast, MMP-9 was strongly down-regulated. Treatment of human bone marrow-derived mesenchymal stem cells with CDDO-Im and CDDO-EA (100 nM) induced expression of SOX9, collagen IIα1, and aggrecan, as well as BMP-2 and phospho-Smad5, confirming that the above triterpenoids induce chondrogenic differentiation. This is the first report of the use of these drugs for induction of chondrogenesis. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. The role of kaempferol-induced autophagy on differentiation and mineralization of osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Kim, In-Ryoung; Kim, Seong-Eon; Baek, Hyun-Su; Kim, Bok-Joo; Kim, Chul-Hoon; Chung, In-Kyo; Park, Bong-Soo; Shin, Sang-Hun

    2016-08-31

    Kaempferol, a kind of flavonol, has been reported to possess various osteogenic biological activities, such as inhibiting bone resorption of osteoclasts and promoting the differentiation and mineralization of preosteoblasts. However, the precise cellular mechanism of action of kaempferol in osteogenesis is elusive. Autophagy is a major intracellular degradation system, which plays an important role in cell growth, survival, differentiation and homeostasis in mammals. Recent studies showed that autophagy appeared to be involved in the degradation of osteoclasts, osteoblasts and osteocytes, potentially pointing to a new pathogenic mechanism of bone homeostasis and bone marrow disease. The potential correlation between autophagy, osteogenesis and flavonoids is unclear. The present study verified that kaempferol promoted osteogenic differentiation and mineralization and that it elevated osteogenic gene expression based on alkaline phosphatase (ALP) activity, alizarin red staining and quantitative PCR. And then we found that kaempferol induced autophagy by acridine orange (AO) and monodansylcadaverine (MDC) staining and autophagy-related protein expression. The correlation between kaempferol-induced autophagy and the osteogenic process was confirmed by the autophagy inhibitor 3-methyladenine (3-MA). Kaempferol promoted the proliferation, differentiation and mineralization of osteoblasts at a concentration of 10 μM. Kaempferol showed cytotoxic properties at concentrations above 50 μM. Concentrations above 10 μM decreased ALP activity, whereas those up to 10 μM increased ALP activity. Kaempferol at concentrations up to 10 μM also increased the expression of the osteoblast- activated factors RUNX-2, osterix, BMP-2 and collagen I according to RT-PCR analyses. 10 μM or less, the higher of the concentration and over time, kaempferol promoted the activity of osteoblasts. Kaempferol induced autophagy. It also increased the expression of the autophagy-related factors

  15. Gremlin-1 induces BMP-independent tumor cell proliferation, migration, and invasion.

    Directory of Open Access Journals (Sweden)

    Minsoo Kim

    Full Text Available Gremlin-1, a bone morphogenetic protein (BMP antagonist, is overexpressed in various cancerous tissues but its role in carcinogenesis has not been established. Here, we report that gremlin-1 binds various cancer cell lines and this interaction is inhibited by our newly developed gremlin-1 antibody, GRE1. Gremlin-1 binding to cancer cells was unaffected by the presence of BMP-2, BMP-4, and BMP-7. In addition, the binding was independent of vascular endothelial growth factor receptor-2 (VEGFR2 expression on the cell surface. Addition of gremlin-1 to A549 cells induced a fibroblast-like morphology and decreased E-cadherin expression. In a scratch wound healing assay, A549 cells incubated with gremlin-1 or transfected with gremlin-1 showed increased migration, which was inhibited in the presence of the GRE1 antibody. Gremlin-1 transfected A549 cells also exhibited increased invasiveness as well as an increased growth rate. These effects were also inhibited by the addition of the GRE1 antibody. In conclusion, this study demonstrates that gremlin-1 directly interacts with cancer cells in a BMP- and VEGFR2-independent manner and can induce cell migration, invasion, and proliferation.

  16. Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos

    DEFF Research Database (Denmark)

    Dunworth, William P; Cardona-Costa, Jose; Bozkulak, Esra Cagavi

    2014-01-01

    : Our aim was to delineate the role of bone morphogenetic protein (BMP) 2 signaling in lymphatic development. METHODS AND RESULTS: BMP2 signaling negatively regulates the formation of LECs. Developing LECs lack any detectable BMP signaling activity in both zebrafish and mouse embryos, and excess BMP2...... signaling in zebrafish embryos and mouse embryonic stem cell-derived embryoid bodies substantially decrease the emergence of LECs. Mechanistically, BMP2 signaling induces expression of miR-31 and miR-181a in a SMAD-dependent mechanism, which in turn results in attenuated expression of prospero homeobox...

  17. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery.

    Science.gov (United States)

    Yang, Hee Seok; La, Wan-Geun; Bhang, Suk Ho; Kim, Hak-Jun; Im, Gun-Il; Lee, Haeshin; Park, Jung-Ho; Kim, Byung-Soo

    2011-07-01

    Microfracture of cartilage induces migration of bone-marrow-derived mesenchymal stem cells. However, this treatment often results in fibrocartilage regeneration. Growth factors such as bone morphogenetic protein (BMP)-2 induce the differentiation of bone-marrow-derived mesenchymal stem cells into chondrocytes, which can be used for hyaline cartilage regeneration. Here, we tested the hypothesis that long-term delivery of BMP-2 to cartilage defects subjected to microfracture results in regeneration of high-quality hyaline-like cartilage, as opposed to short-term delivery of BMP-2 or no BMP-2 delivery. Heparin-conjugated fibrin (HCF) and normal fibrin were used as carriers for the long- and short-term delivery of BMP-2, respectively. Rabbit articular cartilage defects were treated with microfracture combined with one of the following: no treatment, fibrin, short-term delivery of BMP-2, HCF, or long-term delivery of BMP-2. Eight weeks after treatment, histological analysis revealed that the long-term delivery of BMP-2 group (microfracture + HCF + BMP-2) showed the most staining with alcian blue. A biochemical assay, real-time polymerase chain reaction assay and Western blot analysis all revealed that the long-term delivery of BMP-2 group had the highest glucosaminoglycan content as well as the highest expression level of collagen type II. Taken together, the long-term delivery of BMP-2 to cartilage defects subjected to microfracture resulted in regeneration of hyaline-like cartilage, as opposed to short-term delivery or no BMP-2 delivery. Therefore, this method could be more convenient for hyaline cartilage regeneration than autologous chondrocyte implantation due to its less invasive nature and lack of cell implantation.

  18. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    International Nuclear Information System (INIS)

    Kawano, Michinao; Ariyoshi, Wataru; Iwanaga, Kenjiro; Okinaga, Toshinori; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2011-01-01

    Research highlights: → In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. → MG63 cells were incubated with BMP-2 and HA for various time periods. → Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. → HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and nuclear translocation

  19. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  20. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells.

    Directory of Open Access Journals (Sweden)

    Zhenya Gao

    Full Text Available All-trans retinoic acid (ATRA plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2 and matrix metalloproteinase 2 (MMP-2 and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19 cells.The effects of ATRA (concentrations from 10-9 to 10-5 mol/l on the expression of retinoic acid receptors (RARs in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10-9 to 10-5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR and enzyme-linked immunosorbent assay (ELISA. The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ.RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10-9 to 10-5 mol/l with a maximum effect observed at 10-6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10-6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135.ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated these cells to secrete BMP-2 and MMP-2.

  1. Dose reduction of bone morphogenetic protein-2 for bone regeneration using a delivery system based on lyophilization with trehalose

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-01-01

    Full Text Available Xiaochen Zhang,1,* Quan Yu,2,* Yan-an Wang,1 Jun Zhao2 1Department of Oral and Maxillofacial-Head and Neck Oncology, 2Department of Orthodontics, College of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China *These authors contributed equally to this work Introduction: To induce sufficient new bone formation, high doses of bone morphogenetic protein-2 (BMP-2 are applied in regenerative medicine that often induce serious side effects. Therefore, improved treatment strategies are required. Here, we investigate whether the delivery of BMP-2 lyophilized in the presence of trehalose reduced the dose of BMP-2 required for bone regeneration. Materials and methods: A new growth factor delivery system was fabricated using BMP-2-loaded TiO2 nanotubes by lyophilization with trehalose (TiO2-Lyo-Tre-BMP-2. We measured BMP-2 release characteristics, bioactivity, and stability, and determined the effects on the osteogenic differentiation of bone marrow stromal cells in vitro. Additionally, we evaluated the ability of this formulation to regenerate new bone around implants in rat femur defects by micro-computed tomography (micro-CT, sequential fluorescent labelling, and histological analysis. Results: Compared with absorbed BMP-2-loaded TiO2 nanotubes (TiO2-BMP-2, TiO2-Lyo-Tre-BMP-2 exhibited sustained release, consistent bioactivity, and higher stability of BMP-2, and resulted in greater osteogenic differentiation of BMSCs. Eight weeks post-operation, TiO2-Lyo-Tre-BMP-2 nanotubes, with various dosages of BMP-2, regenerated larger amounts of new bone than TiO2-BMP-2 nanotubes. Conclusion: Our findings indicate that delivery of BMP-2 lyophilized with trehalose may be a promising method to reduce the dose of BMP-2 and avoid the associated side effects. Keywords: bone morphogenetic protein-2, dose reduction, delivery system, trehalose, lyophilization, TiO2 nanotubes, BMP-2, regenerative medicine, surface

  2. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    Science.gov (United States)

    Jin, Han; Zhang, Kai; Qiao, Chunyan; Yuan, Anliang; Li, Daowei; Zhao, Liang; Shi, Ce; Xu, Xiaowei; Ni, Shilei; Zheng, Changyu; Liu, Xiaohua; Yang, Bai; Sun, Hongchen

    2014-01-01

    Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI–al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration. PMID:24855355

  3. Deregulation of arginase induces bone complications in high-fat/high-sucrose diet diabetic mouse model.

    Science.gov (United States)

    Bhatta, Anil; Sangani, Rajnikumar; Kolhe, Ravindra; Toque, Haroldo A; Cain, Michael; Wong, Abby; Howie, Nicole; Shinde, Rahul; Elsalanty, Mohammed; Yao, Lin; Chutkan, Norman; Hunter, Monty; Caldwell, Ruth B; Isales, Carlos; Caldwell, R William; Fulzele, Sadanand

    2016-02-15

    A balanced diet is crucial for healthy development and prevention of musculoskeletal related diseases. Diets high in fat content are known to cause obesity, diabetes and a number of other disease states. Our group and others have previously reported that activity of the urea cycle enzyme arginase is involved in diabetes-induced dysregulation of vascular function due to decreases in nitric oxide formation. We hypothesized that diabetes may also elevate arginase activity in bone and bone marrow, which could lead to bone-related complications. To test this we determined the effects of diabetes on expression and activity of arginase, in bone and bone marrow stromal cells (BMSCs). We demonstrated that arginase 1 is abundantly present in the bone and BMSCs. We also demonstrated that arginase activity and expression in bone and bone marrow is up-regulated in models of diabetes induced by HFHS diet and streptozotocin (STZ). HFHS diet down-regulated expression of healthy bone metabolism markers (BMP2, COL-1, ALP, and RUNX2) and reduced bone mineral density, bone volume and trabecular thickness. However, treatment with an arginase inhibitor (ABH) prevented these bone-related complications of diabetes. In-vitro study of BMSCs showed that high glucose treatment increased arginase activity and decreased nitric oxide production. These effects were reversed by treatment with an arginase inhibitor (ABH). Our study provides evidence that deregulation of l-arginine metabolism plays a vital role in HFHS diet-induced diabetic complications and that these complications can be prevented by treatment with arginase inhibitors. The modulation of l-arginine metabolism in disease could offer a novel therapeutic approach for osteoporosis and other musculoskeletal related diseases. Published by Elsevier Ireland Ltd.

  4. The Protective Effect of Cordycepin On Alcohol-Induced Osteonecrosis of the Femoral Head

    Directory of Open Access Journals (Sweden)

    Yi-Xuan Chen

    2017-08-01

    Full Text Available Background: Alcohol abuse is known to be a leading risk factor for atraumatic osteonecrosis of the femoral head (ONFH, in which the suppression of osteogenesis plays a critical role. Cordycepin benefits bone metabolism; however, there has been no study to determine its effect on osteonecrosis. Methods: Human bone mesenchymal stem cells (hBMSCs were identified by multi-lineage differentiation. Alkaline phosphatase (ALP activity, RT-PCR, western blots, immunofluorescent assay and Alizarin red staining of BMSCs were evaluated. A rat model of alcohol-induced ONFH was established to investigate the protective role of cordycepin against ethanol. Hematoxylin & eosin (H&E staining and micro-computerized tomography (micro-CT were performed to observe ONFH. Apoptosis was assessed by TdT-mediated dUTP nick end labeling (TUNEL. Immunohistochemical staining was carried out to detect OCN and COL1. Results: Ethanol significantly suppressed ALP activity, decreased gene expression of OCN and BMP2, lowered levels of RUNX2 protein, and reduced immunofluorescence staining of OCN and COL1 and calcium formation of hBMSCs. However, these inhibitory effects were attenuated by cordycepin co-treatment at concentrations of 1 and 10 µg/mL Moreover, it was revealed that the osteo-protective effect of cordycepin was associated with modulation of the Wnt/β-catenin pathway. In vivo, by micro-CT, TUNEL and immunohistochemical staining of OCN and COL1, we found that cordycepin administration prevented alcohol-induced ONFH. Conclusion: Cordycepin treatment to enhance osteogenesis may be considered a potential therapeutic approach to prevent the development of alcohol-induced ONFH.

  5. Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription.

    Science.gov (United States)

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-12-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22alpha and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription.

  6. Bone Morphogenetic Protein-Induced Msx1 and Msx2 Inhibit Myocardin-Dependent Smooth Muscle Gene Transcription▿

    Science.gov (United States)

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-01-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22α and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription. PMID:17030628

  7. Calcitonin protects chondrocytes from lipopolysaccharide-induced apoptosis and inflammatory response through MAPK/Wnt/NF-κB pathways.

    Science.gov (United States)

    Zhang, Lai-Bo; Man, Zhen-Tao; Li, Wei; Zhang, Wei; Wang, Xian-Quan; Sun, Shui

    2017-07-01

    Calcitonin (CT) is an anti-absorbent, which has long been used for treatment of osteoporosis. However, little information is available about the effects of CT on osteoarthritis (OA). This study was mainly aimed to explore the effects of CT on the treatment of OA, as well as the underlying mechanisms. Chondrocytes were isolated from immature mice and then were incubated with lipopolysaccharide (LPS), CT, small interfering (si) RNA against bone morphogenetic protein (BMP)-2, and/or the inhibitors of MAPK/Wnt/NF-κB pathway. Thereafter, cell viability, apoptosis, nitric oxide (NO) and inflammatory factors productions, and expression levels of cartilage synthesis protein key factors, cartilage-derived morphogenetic protein (CDMP) 1, SRY (sex-determining region Y)-box 9 protein (SOX9), and MAPK/Wnt/NF-κB pathways key factors were determined. CT significantly reversed LPS-induced cell viability decrease, apoptosis increase, the inflammatory factors and NO secretion, the abnormally expression of cartilage synthesis proteins and the activation of MAPK/Wnt/NF-κB pathways (Ppathways statistically further increased the levels of CDMP1 and SOX9 (Ppathways, and could partially abolish CT-modulated the expression changes in CDMP1 and SOX9, and MAPK/Wnt/NF-κB pathways key factors (Ppathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Comparative proteome approach demonstrates that platelet-derived growth factor C and D efficiently induce proliferation while maintaining multipotency of hMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Sotoca, Ana M., E-mail: a.sotoca@science.ru.nl [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Roelofs-Hendriks, Jose [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Boeren, Sjef [Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen (Netherlands); Kraan, Peter M. van der [Department of Rheumatology Research and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Vervoort, Jacques [Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen (Netherlands); Zoelen, Everardus J.J. van; Piek, Ester [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2013-10-15

    This is the first study that comprehensively describes the effects of the platelet-derived growth factor (PDGF) isoforms C and D during in vitro expansion of human mesenchymal stem cells (hMSCs). Our results show that PDGFs can enhance proliferation of hMSCs without affecting their multipotency. It is of great value to culture and expand hMSCs in a safe and effective manner without losing their multipotency for manipulation and further development of cell-based therapies. Moreover, differential effects of PDGF isoforms have been observed on lineage-specific differentiation induced by BMP2 and Vitamin D3. Based on label-free LC-based quantitative proteomics approach we have furthermore identified specific pathways induced by PDGFs during the proliferation process, showing the importance of bioinformatics tools to study cell function. - Highlights: • PDGFs (C and D) significantly increased the number of multipotent undifferentiated hMSCs. • Enhanced proliferation did not impair the ability to undergo lineage-specific differentiation. • Proteomic analysis confirmed the overall signatures of the ‘intact’ cells.

  9. Induced Abortion

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Induced Abortion Home For Patients Search FAQs Induced Abortion Page ... Induced Abortion FAQ043, May 2015 PDF Format Induced Abortion Special Procedures What is an induced abortion? What ...

  10. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2

    NARCIS (Netherlands)

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M.; Cai, Chen-Leng

    2011-01-01

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is

  11. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling.

    Science.gov (United States)

    Sharmin, Farzana; McDermott, Casey; Lieberman, Jay; Sanjay, Archana; Khan, Yusuf

    2017-05-01

    Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may enhance allograft incorporation, and thus mitigate long-term clinical complications. © 2017 Orthopedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1086-1095, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. E. coli-Produced BMP-2 as a Chemopreventive Strategy for Colon Cancer : A Proof-of-Concept Study

    NARCIS (Netherlands)

    Yuvaraj, Saravanan; Al-Lahham, Sa'ad H.; Somasundaram, Rajesh; Figaroa, Patrick A.; Peppelenbosch, Maikel P.; Bos, Nicolaas A.

    2012-01-01

    Colon cancer is a serious health problem, and novel preventive and therapeutical avenues are urgently called for. Delivery of proteins with anticancer activity through genetically modified bacteria provides an interesting, potentially specific, economic and effective approach here. Interestingly,

  13. In Vitro Evaluation of an Injectable Chitosan Gel for Sustained Local Delivery of BMP-2 for Osteoblastic Differentiation

    Science.gov (United States)

    2011-11-01

    In vitro cellular responses to scaffolds containing two microencapsulated growth factors. Biomaterials 2009;30:5215–5224. 16. Park KH, Kim H, Moon S...applications. Eur. J Pharm Biopharm 2004;57:19–34. 32. Ren D, Yi H, Wang W, Ma X. The enzymatic degradation and swelling properties of chitosan

  14. Methods to Analyze Bone Regenerative Response to Different rhBMP-2 Doses in Rabbit Craniofacial Defects

    Science.gov (United States)

    2014-02-28

    Ruggiero, S., Fantasia, J., Burakoff, R., Moorji, S.M., Paric, E., et al. Sonic hedgehog gene enhanced tissue engineering for bone regeneration. Gene Ther...discectomy and fusion: a case study. Spine J 7, 235, 2007. 8. Zara, J.N., Siu, R.K., Zhang, X., Shen, J., Ngo, R., Lee, M., et al. High doses of bone

  15. O uso de rhBMP-2 para aumento ósseo maxilar: relato de caso clínico

    OpenAIRE

    Freitas, Rubens; Spin Neto, Rubens; Marcantonio, Claudio [UNESP; Marcantonio, Rosemary Adriana Chierici [UNESP; Pereira, Luis Antonio Violin Dias; Marcantonio Júnior, Elcio [UNESP

    2012-01-01

    The bone resorption in the anterior maxilla, due to its aesthetic importance, can be considered one of the challenges in implant dentistry. Autogenous bone graft is the most indicated bone augmentation procedure, aiming an implant supported rehabilitation.. Alternatively, some other graft procedures can be done with homogenous and xenogenous bone graft, biomaterials and different associations. Additionally to the mentioned biomaterials, the bone morphogenetic protein (BMP), specially the rhBM...

  16. Radiographic Assessment of Bone Formation Using rhBMP2 at Maxillary Periapical Surgical Defects: A Case Series.

    Science.gov (United States)

    Kumar, M Siva; Kumar, M Hari; Vishalakshi, K; Sabitha, H

    2016-04-01

    Periapical cysts are the most common inflammatory odontogenic cysts arising from untreated dental caries with pulp necrosis and periapical infection. The choice of treatment is often influenced by various factors like size, extension of the lesion, proximity to vital structures, systemic condition and compliance of the patient too. The treatment protocol for management of periapical cysts is still under discussion and options vary from conservative treatment by means of endodontic technique to surgical treatment like decompression or a marsupialisation or even to enucleation. Large bony defect secondary to periapical surgery compromising the tooth integrity often requires bone graft to enhance bone formation and thus restoring function at the earliest. The present case series included 10 patients who had established periapical pathology secondary to history of trauma on upper anterior teeth as well patients with history of carious teeth with an apparent failure in root canal therapy. All ten patients were treated with cyst enucleation and apiceotomy along with 1.4cc Recombinant Human Bone Morphogenetic Protein-2 soaked Absorbable Collagen Sponge implantation at surgical defect. Radiographs and clinical examinations were done upto 3 months to evaluate healing. Radiographic and clinical assessments revealed bone regeneration and restoration of the maxillary surgical defects in all 10 patients. No evidence of graft failure was noted. The Recombinant Human Bone Morphogenetic Protein-2 soaked Absorbable Collagen Sponge carrier is thus proved to be a viable option for the treatment of maxillary periapical surgical defects.

  17. Effect of gingival fibroblasts and ultrasound on dogs′ root resorption during orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Jacqueline Crossman

    2017-01-01

    Conclusion: OIGFs, LIPUS, and BMP-2 can be potential treatments for orthodontically induced root resorption, however, improvements in experimental design and treatment parameters are required to further investigate these repair modalities.

  18. Lead induces chondrogenesis and alters transforming growth factor-beta and bone morphogenetic protein signaling in mesenchymal cell populations.

    Science.gov (United States)

    Zuscik, Michael J; Ma, Lin; Buckley, Taylor; Puzas, J Edward; Drissi, Hicham; Schwarz, Edward M; O'Keefe, Regis J

    2007-09-01

    It has been established that skeletal growth is stunted in lead-exposed children. Because chondrogenesis is a seminal step during skeletal development, elucidating the impact of Pb on this process is the first step toward understanding the mechanism of Pb toxicity in the skeleton. The aim of this study was to test the hypothesis that Pb alters chondrogenic commitment of mesenchymal cells and to assess the effects of Pb on various signaling pathways. We assessed the influence of Pb on chondrogenesis in murine limb bud mesenchymal cells (MSCs) using nodule formation assays and gene analyses. The effects of Pb on transforming growth factor-beta (TGF-beta) and bone morphogenetic protein (BMP) signaling was studied using luciferase-based reporters and Western analyses, and luciferase-based assays were used to study cyclic adenosine monophosphate response element binding protein (CREB), beta-catenin, AP-1, and nuclear factor-kappa B (NF-kappaB) signaling. We also used an ectopic bone formation assay to determine how Pb affects chondrogenesis in vivo. Pb-exposed MSCs showed enhanced basal and TGF-beta/BMP induction of chondrogenesis, evidenced by enhanced nodule formation and up-regulation of Sox-9, type 2 collagen, and aggrecan, all key markers of chondrogenesis. We observed enhanced chondrogenesis during ectopic bone formation in mice preexposed to Pb via drinking water. In MSCs, Pb enhanced TGF-beta but inhibited BMP-2 signaling, as measured by luciferase reporter assays and Western analyses of Smad phosphorylation. Although Pb had no effect on basal CREB or Wnt/beta-catenin pathway activity, it induced NFkappaB signaling and inhibited AP-1 signaling. The in vitro and in vivo induction of chondrogenesis by Pb likely involves modulation and integration of multiple signaling pathways including TGF-beta, BMP, AP-1, and NFkappaB.

  19. Vitamin K2 Ameliorates Damage of Blood Vessels by Glucocorticoid: a Potential Mechanism for Its Protective Effects in Glucocorticoid-induced Osteonecrosis of the Femoral Head in a Rat Model.

    Science.gov (United States)

    Zhang, Yuelei; Yin, Junhui; Ding, Hao; Zhang, Changqing; Gao, You-Shui

    2016-01-01

    Glucocorticoid has been reported to decrease blood vessel number and harm the blood supply in the femoral head, which is recognized to be an important mechanism of glucocorticoid-induced osteonecrosis of the femoral head (ONFH). To prevent glucocorticoid-induced ONFH, medication that promotes both bone formation and angiogenesis would be ideal. Vitamin K2 has been revealed to play an important role in bone metabolism; however, few studies have focused on the effect of Vitamin K2 on new vascular formation. Thus, this study aimed to investigate whether Vitamin K2 promoted new blood vessel formation in the presence of glucocorticoids, both in vitro and in vivo. The effect of Vitamin K2 on viability, migration, in vitro tube formation, and VEGF, vWF, CD31, KDR, Flt and PDGFB in EAhy926 incubated with or without dexamethasone were elucidated. VEGF, TGF-β and BMP-2, angiogenesis-related proteins secreted by osteoblasts, were also detected in the osteoblast-like cell line of MG63. In addition, blood vessels of the femoral head in rats administered with or without methylprednisolone and Vitamin K2 were evaluated using angiography and CD31 staining. In vitro studies showed that Vitamin K2 significantly protected endothelial cells from dexamethasone-induced apoptosis, promoted endothelial cell migration and in vitro tube formation. Angiogenesis-related proteins both in EAhy926 and MG63 were also upregulated by Vitamin K2 when cotreated with dexamethasone. In vivo studies showed enhanced blood vessel volume and CD31-positive staining cells in rats cotreated with VK2 and methylprednisolone compared to rats treated with methylprednisolone only. Collectively, Vitamin K2 has the ability to promote angiogenesis in vitro and to ameliorate vessels of the femoral head in glucocorticoid-treated rats in vivo, indicating that Vitamin K2 is a promising drug that may be used to prevent steroid-induced ONFH.

  20. Form-deprivation myopia induces decreased expression of bone morphogenetic protein-2, 5 in guinea pig sclera

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2015-02-01

    Full Text Available AIM: To identify the presence of various bone morphogenetic proteins (BMPs and their receptors in normal sclera of human, rat and guinea pigs, and to determine whether their expression changed with form-deprivation myopia (FDM in guinea pig sclera. METHODS: The expression of BMPs and BMP receptors were detected using reverse transcription polymerase chain reaction (RT-PCR and immunofluorescence. Two-week-old guinea pigs were monocularly form-deprived with a translucent lens. After fourteen days induction of FDM, total RNA was isolated and subjected to RT-PCR to examine the changes of BMPs and BMP receptors in tissues from the posterior sclera. Western blotting analysis was used to investigate their changes in protein levels. RESULTS: Human sclera expressed mRNAs for BMP-2, -4, -5, -7, -RIA, -RIB and BMP-RII. Conversely, rat sclera only expressed mRNA for BMP-7 and BMP-RIB, while the expression of BMPs and BMP receptors in guinea pigs were similar to that of humans. Human sclera also expresses BMP-2, -4, -5,-7 in protein level. Fourteen days after the induction of myopia, significant decreased expressions for BMP-2 and BMP-5 in the posterior sclera of FDM-affected eyes (PCONCLUSION: Various BMPs were expressed in human and guinea pig sclera. In the posterior sclera, expressions of BMP-2 and BMP-5 significantly decreased in FDM eyes. This finding indicates that various BMPs as components of the scleral cytokines regulating tissue homeostasis and provide evidence that alterations in the expression of BMP-2 and BMP-5 are associated with sclera remodeling during myopia induction.

  1. Induced Seismicity

    Science.gov (United States)

    Keranen, Katie M.; Weingarten, Matthew

    2018-05-01

    The ability of fluid-generated subsurface stress changes to trigger earthquakes has long been recognized. However, the dramatic rise in the rate of human-induced earthquakes in the past decade has created abundant opportunities to study induced earthquakes and triggering processes. This review briefly summarizes early studies but focuses on results from induced earthquakes during the past 10 years related to fluid injection in petroleum fields. Study of these earthquakes has resulted in insights into physical processes and has identified knowledge gaps and future research directions. Induced earthquakes are challenging to identify using seismological methods, and faults and reefs strongly modulate spatial and temporal patterns of induced seismicity. However, the similarity of induced and natural seismicity provides an effective tool for studying earthquake processes. With continuing development of energy resources, increased interest in carbon sequestration, and construction of large dams, induced seismicity will continue to pose a hazard in coming years.

  2. [Use of the induced membrane technique for the treatment of bone defects in the hand or wrist, in emergency].

    Science.gov (United States)

    Flamans, B; Pauchot, J; Petite, H; Blanchet, N; Rochet, S; Garbuio, P; Tropet, Y; Obert, L

    2010-10-01

    A prospective study is reported concerning 11 cases of bone defect of the hand and wrist treated by the induced membrane technique. Ten men and one woman with an average age of 49 yrs (17-72) sustained a high-energy trauma with severe mutilation of digit and hand but with intact pulp. Eight cases of open finger fractures with composite loss of substance and three cases of bone and joint infection (thumb, wrist, fifth finger) were included. All cases were treated by the induced membrane technique which consists in stable fixation, flap if necessary, and in filling the bone defect by a cement methyl methacrylate polymere (PMMA) spacer. A secondary procedure at two months is needed where the cement is removed and the void is filled by cancellous bone. The key point of this induced membrane technique is to respect the foreign body membrane which formed around the cement spacer creating a biologic chamber. Bone union was evaluated prospectively by X-ray and CT scan by a surgeon not involved in the treatment. Failure was defined as non-union at one year, or uncontrolled sepsis at one month. Two cases failed to achieve bone union. No septic complications occurred and all septic cases were controlled. In nine cases, bone union was achieved within four months (three to 12). Evidence of osteoid formation was determined by a bone biopsy in one case. Masquelet first reported 35 cases of large tibial non-union defects treated by the induced membrane technique. The cement spacer promotes foreign body membrane induction constituting a biological chamber. Works on animal models reported by Pellissier and Viateau demonstrated membrane properties: secretion of growths factors (VEGF, TGF beta1, BMP2) and osteoinductive cellular activity. The induced membrane seems to mimic a neoperiosteum. This technique is useful in emergency or septic conditions where bone defects cannot be treated by shortening. It avoids microsurgery and is limited by availability of cancellous bone. Copyright

  3. Site-Directed Immobilization of Bone Morphogenetic Protein 2 to Solid Surfaces by Click Chemistry.

    Science.gov (United States)

    Siverino, Claudia; Tabisz, Barbara; Lühmann, Tessa; Meinel, Lorenz; Müller, Thomas; Walles, Heike; Nickel, Joachim

    2018-03-29

    Different therapeutic strategies for the treatment of non-healing long bone defects have been intensively investigated. Currently used treatments present several limitations that have led to the use of biomaterials in combination with osteogenic growth factors, such as bone morphogenetic proteins (BMPs). Commonly used absorption or encapsulation methods require supra-physiological amounts of BMP2, typically resulting in a so-called initial burst release effect that provokes several severe adverse side effects. A possible strategy to overcome these problems would be to covalently couple the protein to the scaffold. Moreover, coupling should be performed in a site-specific manner in order to guarantee a reproducible product outcome. Therefore, we created a BMP2 variant, in which an artificial amino acid (propargyl-L-lysine) was introduced into the mature part of the BMP2 protein by codon usage expansion (BMP2-K3Plk). BMP2-K3Plk was coupled to functionalized beads through copper catalyzed azide-alkyne cycloaddition (CuAAC). The biological activity of the coupled BMP2-K3Plk was proven in vitro and the osteogenic activity of the BMP2-K3Plk-functionalized beads was proven in cell based assays. The functionalized beads in contact with C2C12 cells were able to induce alkaline phosphatase (ALP) expression in locally restricted proximity of the bead. Thus, by this technique, functionalized scaffolds can be produced that can trigger cell differentiation towards an osteogenic lineage. Additionally, lower BMP2 doses are sufficient due to the controlled orientation of site-directed coupled BMP2. With this method, BMPs are always exposed to their receptors on the cell surface in the appropriate orientation, which is not the case if the factors are coupled via non-site-directed coupling techniques. The product outcome is highly controllable and, thus, results in materials with homogeneous properties, improving their applicability for the repair of critical size bone defects.

  4. Effects of exogenous carbon monoxide on radiation-induced bystander effect in zebrafish embryos in vivo

    International Nuclear Information System (INIS)

    Choi, V.W.Y.; Wong, M.Y.P.; Cheng, S.H.; Yu, K.N.

    2012-01-01

    In the present work, the influence of a low concentration of exogenous carbon monoxide (CO) liberated from tricarbonylchloro(glycinato)ruthenium (II) (CORM-3) on the radiation induced bystander effect (RIBE) in vivo between embryos of the zebrafish was studied. RIBE was assessed through the number of apoptotic signals revealed on embryos at 25 h post fertilization (hpf). A significant attenuation of apoptosis on the bystander embryos induced by RIBE in a CO concentration dependent manner was observed. - Highlights: ► RIBE between zebrafish embryos in vivo was assessed by the level of apoptosis. ► CO from 10 and 20 μM CORM-3 entirely suppressed the RIBE. ► CO from 5 μM CORM-3 significantly attenuated the level of apoptosis. ► Inactive CORM-3 did not lead to suppression of RIBE. ► Suppression of RIBE by CO depended on the concentration of CORM-3.

  5. Intermittent Hypoxia Influences Alveolar Bone Proper Microstructure via Hypoxia-Inducible Factor and VEGF Expression in Periodontal Ligaments of Growing Rats

    Directory of Open Access Journals (Sweden)

    Shuji Oishi

    2016-09-01

    Full Text Available Intermittent hypoxia (IH recapitulates morphological changes in the maxillofacial bones in children with obstructive sleep apnea (OSA. Recently, we found that IH increased bone mineral density (BMD in the inter-radicular alveolar bone (reflecting enhanced osteogenesis in the mandibular first molar (M1 region in the growing rats, but the underlying mechanism remains unknown. In this study, we focused on the hypoxia-inducible factor (HIF pathway to assess the effect of IH by testing the null hypothesis of no significant differences in the mRNA-expression levels of relevant factors associated with the HIF pathway, between control rats and growing rats with IH. To test the null hypothesis, we investigated how IH enhances mandibular osteogenesis in the alveolar bone proper with respect to HIF-1α and vascular endothelial growth factor (VEGF in periodontal ligament (PDL tissues. Seven-week-old male Sprague–Dawley rats were exposed to IH for 3 weeks. The microstructure and BMD in the alveolar bone proper of the distal root of the mandibular M1 were evaluated using micro-computed tomography (micro-CT. Expression of HIF-1α and VEGF mRNA in PDL tissues were measured, whereas osteogenesis was evaluated by measuring mRNA levels for alkaline phosphatase (ALP and bone morphogenetic protein-2 (BMP-2. The null hypothesis was rejected: we found an increase in the expression of all of these markers after IH exposure. The results provided the first indication that IH enhanced osteogenesis of the mandibular M1 region in association with PDL angiogenesis during growth via HIF-1α in an animal model.

  6. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    Science.gov (United States)

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone

  7. Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2

    Directory of Open Access Journals (Sweden)

    A Mehrkens

    2012-09-01

    Full Text Available Engineered osteogenic constructs for bone repair typically involve complex and costly processes for cell expansion. Adipose tissue includes mesenchymal precursors in large amounts, in principle allowing for an intraoperative production of osteogenic grafts and their immediate implantation. However, stromal vascular fraction (SVF cells from adipose tissue were reported to require a molecular trigger to differentiate into functional osteoblasts. The present study tested whether physiological doses of recombinant human BMP-2 (rhBMP-2 could induce freshly harvested human SVF cells to generate ectopic bone tissue. Enzymatically dissociated SVF cells from 7 healthy donors (1 x 106 or 4 x 106 were immediately embedded in a fibrin gel with or without 250 ng rhBMP-2, mixed with porous silicated calcium-phosphate granules (Actifuse®, Apatech (final construct size: 0.1 cm3 and implanted ectopically for eight weeks in nude mice. In the presence of rhBMP-2, SVF cells not only supported but directly contributed to the formation of bone ossicles, which were not observed in control cell-free, rhBMP-2 loaded implants. In vitro analysis indicated that rhBMP-2 did not involve an increase in the percentage of SVF cells recruited to the osteogenic lineage, but rather induced a stimulation of the osteoblastic differentiation of the committed progenitors. These findings confirm the feasibility of generating fully osteogenic grafts using an easily accessible autologous cell source and low amounts of rhBMP-2, in a timing compatible with an intraoperative schedule. The study warrants further investigation at an orthotopic site of implantation, where the delivery of rhBMP-2 could be bypassed thanks to the properties of the local milieu.

  8. Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.

    Science.gov (United States)

    McCarthy, Bryce; Yuan, Yuan; Koria, Piyush

    2016-07-08

    Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.

  9. Effect of Coadministration of Vancomycin and BMP-2 on Cocultured Staphylococcus aureus and W-20-17 Mouse Bone Marrow Stromal Cells in Vitro

    Science.gov (United States)

    2012-07-01

    and maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS), a 1% antibiotic/antimycotic mixture, 5 ml of L...osteoblastic differen- tiation when cells are challenged with the parasitic S. aureus bac- teria in coculture. ALP-specific activities in the...release of vancomycin and tobramycin from impregnated human and bovine bone grafts. J. Antimicrob. Chemother. 46:423– 428. 48. Younger EM, Chapman MW

  10. Effect of Calcium Phosphate Coating and rhBMP-2 on Bone Regeneration in Rabbit Calvaria Using Poly(propylene fumarate) Scaffolds

    Science.gov (United States)

    2015-01-07

    13,14], dental implants [15,16] and screws for fracture fixation [17,18]. These coatings provide a bone-like mineral matrix that simulates the in... calculus formation. Am J Dent 1999;12:65–71. [27] Bouler J-M, LeGeros RZ, Daculsi G. Biphasic calcium phosphates: influence of three synthesis

  11. Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep

    NARCIS (Netherlands)

    Liu, T.; Wu, G.; Wismeijer, D.; Gu, Z.; Liu, Y.

    2013-01-01

    As an alternative to an autologous bone graft, deproteinized bovine bone (DBB) is widely used in the clinical dentistry. Although DBB provides an osteoconductive scaffold, it is not capable of enhancing bone regeneration because it is not osteoinductive. In order to render DBB osteoinductive, bone

  12. Calcium Supplement Derived from Gallus gallus domesticus Promotes BMP-2/RUNX2/SMAD5 and Suppresses TRAP/RANK Expression through MAPK Signaling Activation

    Directory of Open Access Journals (Sweden)

    Han Seok Yoo

    2017-05-01

    Full Text Available The present study evaluated the effects of a calcium (Ca supplement derived from Gallus gallus domesticus (GD on breaking force, microarchitecture, osteogenic differentiation and osteoclast differentiation factor expression in vivo in Ca-deficient ovariectomized (OVX rats. One percent of Ca supplement significantly improved Ca content and bone strength of the tibia. In micro-computed tomography analysis, 1% Ca supplement attenuated OVX- and low Ca-associated changes in bone mineral density, trabecular thickness, spacing and number. Moreover, 1% Ca-supplemented diet increased the expression of osteoblast differentiation marker genes, such as bone morphogenetic protein-2, Wnt3a, small mothers against decapentaplegic 1/5/8, runt-related transcription factor 2, osteocalcin and collagenase-1, while it decreased the expression of osteoclast differentiation genes, such as thrombospondin-related anonymous protein, cathepsin K and receptor activator of nuclear factor kappa B. Furthermore, 1% Ca-supplemented diet increased the levels of phosphorylated extracellular signal-regulated kinase and c-Jun N-terminal kinase. The increased expression of osteoblast differentiation marker genes and activation of mitogen-activated protein kinase signaling were associated with significant increases in trabecular bone volume, which plays an important role in the overall skeletal strength. Our results demonstrated that 1% Ca supplement inhibited osteoclastogenesis, stimulated osteoblastogenesis and restored bone loss in OVX rats.

  13. Functionalization of deproteinized bovine bone with a coating-incorporated depot of BMP-2 renders the material efficienctly osteoinductive and suppresses foreign-body reactivity

    NARCIS (Netherlands)

    Wu, G.; Hunziker, E.B.; Zheng, Y.; Wismeijer, D.; Liu, Y.

    2011-01-01

    The repair of critical-sized bony defects remains a challenge in the fields of implantology, maxillofacial surgery and orthopaedics. As an alternative bone-defect filler to autologous bone grafts, deproteinized bovine bone (DBB) is highly osteoconductive and clinically now widely used. However, this

  14. Inducing autophagy

    DEFF Research Database (Denmark)

    Harder, Lea M; Bunkenborg, Jakob; Andersen, Jens S.

    2014-01-01

    catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used...... as a reference treatment to emphasize the differences between an MTOR-dependent and -independent autophagy-induction. By this means 5901 phosphosites were identified of which 626 were treatment-specific regulated and 175 were coregulated. Investigation of the ammonia-specific regulated sites supported that MTOR...

  15. MSX2 stimulates chondrocyte maturation by controlling Ihh expression.

    Science.gov (United States)

    Amano, Katsuhiko; Ichida, Fumitaka; Sugita, Atsushi; Hata, Kenji; Wada, Masahiro; Takigawa, Yoko; Nakanishi, Masako; Kogo, Mikihiko; Nishimura, Riko; Yoneda, Toshiyuki

    2008-10-24

    Several studies indicated that a homeobox gene, Msx2, is implicated in regulation of skeletal development by controlling enchondral ossification as well as membranous ossification. However, the molecular basis by which Msx2 conducts chondrogenesis is currently unclear. In this study, we examined the role of Msx2 in chondrocyte differentiation using mouse primary chondrocytes and embryonic metatarsal explants. Treatment with BMP2 up-regulated the expression of Msx2 mRNA along with chondrocyte differentiation in murine primary chondrocytes. Overexpression of wild-type Msx2 stimulated calcification of primary chondrocytes in the presence of BMP2. We also found that constitutively active Msx2 (caMsx2) enhanced BMP2-dependent calcification more efficiently than wild-type Msx2. Consistently, caMsx2 overexpression up-regulated the expression of alkaline phosphatase and collagen type X induced by BMP2. Furthermore, organ culture experiments using mouse embryonic metatarsals indicated that caMsx2 clearly stimulated the maturation of chondrocytes into the prehypertrophic and hypertrophic stages in the presence of BMP2. In contrast, knockdown of Msx2 inhibited maturation of primary chondrocytes. The stimulatory effect of Msx2 on chondrocyte maturation was enhanced by overexpression of Smad1 and Smad4 but inhibited by Smad6, an inhibitory Smad for BMP2 signaling. These data suggest that Msx2 requires BMP2/Smad signaling for its chondrogenic action. In addition, caMsx2 overexpression induced Ihh (Indian hedgehog) expression in mouse primary chondrocytes. Importantly, treatment with cyclopamine, a specific inhibitor for hedgehogs, blocked Msx2-induced chondrogenesis. Collectively, our results indicated that Msx2 promotes the maturation of chondrocytes, at least in part, through up-regulating Ihh expression.

  16. The evaluation of lyophilized polymer matrices for administering recombinant human bone morphogenetic protein-2.

    Science.gov (United States)

    Duggirala, S S; Rodgers, J B; DeLuca, P P

    1996-07-01

    Novel unitary devices, prepared by lyophilization of viscous solutions of sodium carboxymethylcellulose (CMC) and methylcellulose (MC), were evaluated as sustained-release delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). In vitro characterization of the unitary devices, which contained rhBMP-2-loaded poly (d,l lactide-co-glycolide) (PLGA) bioerodible particles (BEPs), was conducted over a 2-month period. Determinations included buffer uptake, mass and molecular weight loss and rhBMP-2 release from the unitary devices. CMC devices imbibed approximately 16 times their weight of buffer, while with MC, equilibrium uptake was approximately 6 times the dry weight of the devices. Overall mass loss percentages were approximately 55 and 35%, respectively, for CMC and MC devices. rhBMP-2 release from the devices was essentially a triphasic process: an initial phase during which "free" protein (rhBMP-2 present on the surface and within the pores of the PLGA BEPs) was released, a lag period during which no release was discerned, and then release of "bound" rhBMP-2 (protein adsorbed to the BEPs). The release of bound protein correlated with the mass loss of the polymer which began after 3 weeks. Release from the unitary devices was lower than that from the BEPs alone, due to a retardation effect of the gelled CMC/MC polymers. In rabbits in which full-thickness cranial bone defects were created, the implants were well tolerated and induced significant new bone growth during an 8-week evaluation period. The CMC devices appear to have induced bone earlier (at 2 weeks), but this did not affect eventual 8-week results. CMC devices without rhBMP-2 appeared to provide some bone conduction, in contrast to the blank MC devices.

  17. The ventralizing activity of Radar, a maternally expressed bone morphogenetic protein, reveals complex bone morphogenetic protein interactions controlling dorso-ventral patterning in zebrafish.

    Science.gov (United States)

    Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F

    2000-12-01

    In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.

  18. Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling

    Directory of Open Access Journals (Sweden)

    Moriyama Mariko

    2012-08-01

    Full Text Available Abstract Background Adipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative stress on human adipose-derived multilineage progenitor cells (hADMPCs in neurite outgrowth in cells of the rat pheochromocytoma cell line (PC12. Results We found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO, resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein 2 (BMP2 and fibroblast growth factor 2 (FGF2 transcription in, and secretion from, hADMPCs. Addition of N-acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38 MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK. Conclusions Our results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus, transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.

  19. 3D printed hyperelastic "bone" scaffolds and regional gene therapy: A novel approach to bone healing.

    Science.gov (United States)

    Alluri, Ram; Jakus, Adam; Bougioukli, Sofia; Pannell, William; Sugiyama, Osamu; Tang, Amy; Shah, Ramille; Lieberman, Jay R

    2018-04-01

    The purpose of this study was to evaluate the viability of human adipose-derived stem cells (ADSCs) transduced with a lentiviral (LV) vector to overexpress bone morphogenetic protein-2 (BMP-2) loaded onto a novel 3D printed scaffold. Human ADSCs were transduced with a LV vector carrying the cDNA for BMP-2. The transduced cells were loaded onto a 3D printed Hyperelastic "Bone" (HB) scaffold. In vitro BMP-2 production was assessed using enzyme-linked immunosorbent assay analysis. The ability of ADSCs loaded on the HB scaffold to induce in vivo bone formation in a hind limb muscle pouch model was assessed in the following groups: ADSCs transduced with LV-BMP-2, LV-green fluorescent protein, ADSCs alone, and empty HB scaffolds. Bone formation was assessed using radiographs, histology and histomorphometry. Transduced ADSCs BMP-2 production on the HB scaffold at 24 hours was similar on 3D printed HB scaffolds versus control wells with transduced cells alone, and continued to increase after 1 and 2 weeks of culture. Bone formation was noted in LV-BMP-2 animals on plain radiographs at 2 and 4 weeks after implantation; no bone formation was noted in the other groups. Histology demonstrated that the LV-BMP-2 group was the only group that formed woven bone and the mean bone area/tissue area was significantly greater when compared with the other groups. 3D printed HB scaffolds are effective carriers for transduced ADSCs to promote bone repair. The combination of gene therapy and tissue engineered scaffolds is a promising multidisciplinary approach to bone repair with significant clinical potential. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1104-1110, 2018. © 2018 Wiley Periodicals, Inc.

  20. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells.

    Science.gov (United States)

    Sugimoto, Asuna; Miyazaki, Aya; Kawarabayashi, Keita; Shono, Masayuki; Akazawa, Yuki; Hasegawa, Tomokazu; Ueda-Yamaguchi, Kimiko; Kitamura, Takamasa; Yoshizaki, Keigo; Fukumoto, Satoshi; Iwamoto, Tsutomu

    2017-12-18

    The extracellular environment regulates the dynamic behaviors of cells. However, the effects of hydrostatic pressure (HP) on cell fate determination of mesenchymal stem cells (MSCs) are not clearly understood. Here, we established a cell culture chamber to control HP. Using this system, we found that the promotion of osteogenic differentiation by HP is depend on bone morphogenetic protein 2 (BMP2) expression regulated by Piezo type mechanosensitive ion channel component 1 (PIEZO1) in MSCs. The PIEZO1 was expressed and induced after HP loading in primary MSCs and MSC lines, UE7T-13 and SDP11. HP and Yoda1, an activator of PIEZO1, promoted BMP2 expression and osteoblast differentiation, whereas inhibits adipocyte differentiation. Conversely, PIEZO1 inhibition reduced osteoblast differentiation and BMP2 expression. Furthermore, Blocking of BMP2 function by noggin inhibits HP induced osteogenic maker genes expression. In addition, in an in vivo model of medaka with HP loading, HP promoted caudal fin ray development whereas inhibition of piezo1 using GsMTx4 suppressed its development. Thus, our results suggested that PIEZO1 is responsible for HP and could functions as a factor for cell fate determination of MSCs by regulating BMP2 expression.

  1. Exercise-Induced Asthma

    Science.gov (United States)

    ... Videos for Educators Search English Español Exercise-Induced Asthma KidsHealth / For Parents / Exercise-Induced Asthma What's in ... Exercise-Induced Asthma Print What Is Exercise-Induced Asthma? Most kids and teens with asthma have symptoms ...

  2. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development.

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    Full Text Available Endocardial to mesenchymal transformation (EMT is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1 show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.

  3. Effects of exogenous carbon monoxide on radiation-induced bystander effect in zebrafish embryos in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Choi, V.W.Y.; Wong, M.Y.P. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: appetery@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2012-07-15

    In the present work, the influence of a low concentration of exogenous carbon monoxide (CO) liberated from tricarbonylchloro(glycinato)ruthenium (II) (CORM-3) on the radiation induced bystander effect (RIBE) in vivo between embryos of the zebrafish was studied. RIBE was assessed through the number of apoptotic signals revealed on embryos at 25 h post fertilization (hpf). A significant attenuation of apoptosis on the bystander embryos induced by RIBE in a CO concentration dependent manner was observed. - Highlights: Black-Right-Pointing-Pointer RIBE between zebrafish embryos in vivo was assessed by the level of apoptosis. Black-Right-Pointing-Pointer CO from 10 and 20 {mu}M CORM-3 entirely suppressed the RIBE. Black-Right-Pointing-Pointer CO from 5 {mu}M CORM-3 significantly attenuated the level of apoptosis. Black-Right-Pointing-Pointer Inactive CORM-3 did not lead to suppression of RIBE. Black-Right-Pointing-Pointer Suppression of RIBE by CO depended on the concentration of CORM-3.

  4. Combined EGFR- and notch inhibition display additive inhibitory effect on glioblastoma cell viability and glioblastoma-induced endothelial cell sprouting in vitro

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Michaelsen, Signe Regner; Olsen, Louise Stobbe

    2016-01-01

    BACKGROUND: For Glioblastoma (GBM) patients, a number of anti-neoplastic strategies using specifically targeting drugs have been tested; however, the effects on survival have been limited. One explanation could be treatment resistance due to redundant signaling pathways, which substantiates...... the need for combination therapies. In GBM, both the epidermal growth factor receptor (EGFR) and the notch signaling pathways are often deregulated and linked to cellular growth, invasion and angiogenesis. Several studies have confirmed cross-talk and co-dependence of these pathways. Therefore, this study....... In order to determine angiogenic processes, we used an endothelial spheroid sprouting assay. For assessment of secreted VEGF from GBM cells we performed a VEGF-quantikine ELISA. RESULTS: GBM cells were confirmed to express EGFR and Notch and to have the capacity to induce endothelial cell sprouting...

  5. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    Directory of Open Access Journals (Sweden)

    Jin H

    2014-05-01

    Full Text Available Han Jin,1 Kai Zhang,2 Chunyan Qiao,1 Anliang Yuan,1 Daowei Li,1 Liang Zhao,1 Ce Shi,1 Xiaowei Xu,1 Shilei Ni,1 Changyu Zheng,3 Xiaohua Liu,4 Bai Yang,2 Hongchen Sun11Department of Pathology, School of Stomatology, Jilin University, Changchun, People’s Republic of China; 2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People’s Republic of China; 3Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA; 4Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USAAbstract: Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2 gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al nanocomposites plus human BMP-2 complementary(cDNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI

  6. Breast Cancer Research Program (BCRP) - Predoctoral Traineeship - Elucidating the Role of the Type III Transforming Growth Factor-beta Receptor in Bone Morphogenetic Signaling in Breast Cancer

    Science.gov (United States)

    2008-03-01

    phosphorylation in the pancreatic cancer cell model, Panc -1 (data not shown). This data emphasize that TβRIII’s role in BMP signaling is likely to be cell... Panc -1 cells were adenovirally infected with TβRIII, followed by BMP-4-induced EMT. The cells were then plated in Matrigel invasion chambers. A...BMP-2, while loss of TβRIII in Panc -1 (pancreatic cancer cells) increased cell sensitivity to BMP-2 and had no effect on MDA-MB-231 (breast cancer

  7. Drug-induced thrombocytopenia

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, U; Andersen, M; Hansen, P B

    1997-01-01

    induced by non-cytotoxic drugs is characterised by heterogeneous clinical picture and recovery is generally rapid. Although corticosteroids seem inefficient, we still recommend that severe symptomatic cases of drug-induced thrombocytopenia are treated as idiopathic thrombocytopenic purpura due...

  8. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering.

    Science.gov (United States)

    Yao, Qingqing; Liu, Yangxi; Selvaratnam, Balaranjan; Koodali, Ranjit T; Sun, Hongli

    2018-04-09

    Controlled delivery systems play a critical role in the success of bone morphogenetic proteins (i.e., BMP2 and BMP7) for challenged bone repair. Instead of single-drug release that is currently and commonly prevalent, dual-drug delivery strategies are highly desired to achieve effective bone regeneration because natural bone repair process is driven by multiple factors. Particularly, angiogenesis is essential for osteogenesis and requires more than just one factor (e.g., Vascular Endothelial Growth Factor, VEGF). Therefore, we developed a novel mesoporous silicate nanoparticles (MSNs) incorporated-3D nanofibrous gelatin (GF) scaffold for dual-delivery of BMP2 and deferoxamine (DFO). DFO is a hypoxia-mimetic drug that can activate hypoxia-inducible factor-1 alpha (HIF-1α), and trigger subsequent angiogenesis. Sustained BMP2 release system was achieved through encapsulation into large-pored MSNs, while the relative short-term release of DFO was engineered through covalent conjugation with chitosan to reduce its cytotoxicity and elongate its half-life. Both MSNs and DFO were incorporated onto a porous 3D GF scaffold to serve as a biomimetic osteogenic microenvironment. Our data indicated that DFO and BMP2 were released from a scaffold at different release rates (10 vs 28 days) yet maintained their angiogenic and osteogenic ability, respectively. Importantly, our data indicated that the released DFO significantly improved BMP2-induced osteogenic differentiation where the dose/duration was important for its effects in both mouse and human stem cell models. Thus, we developed a novel and tunable MSNs/GF 3D scaffold-mediated dual-drug delivery system and studied the potential application of the both FDA-approved DFO and BMP2 for bone tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Exercise-Induced Bronchoconstriction (EIB)

    Science.gov (United States)

    ... Conditions & Treatments ▸ Conditions Dictionary ▸ Exercise-Induced Bronchoconstriction Share | Exercise-Induced Bronchoconstriction (EIB) « Back to A to Z Listing Exercise-Induced Bronchoconstriction, (EIB), often known as exercise-induced ...

  10. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    DEFF Research Database (Denmark)

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner

    2016-01-01

    -the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay...

  11. Non-viral gene therapy for bone tissue engineering

    NARCIS (Netherlands)

    Wegman, F.

    2013-01-01

    In bone tissue engineering bone morphogentic protein-2 (BMP-2) is one of the most commonly used growth factors. It induces stem cells to differentiate into the osteogenic lineage to form new bone. Clinically however, high dosages of protein are administered due to fast degradation, which is

  12. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  13. Association between two polymorphisms of the bone morpho-genetic protein-2 gene with genetic susceptibility to ossification of the posterior longitudinal ligament of the cervical spine and its severity

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; YANG Zhao-hui; LIU Dong-mei; WANG Ling; MENG Xiang-long; TIAN Bao-peng

    2008-01-01

    Background Ossification of the posterior longitudinal ligament (OPLL) has a strong genetic background. Previous studies have shown that bone morphogenetic protein-2 (BMP2) and BMP2 mRNA are expressed in ossifying matrix and chondrocytes adjacent to cartilaginous areas of OPLL tissues and mesenchymal cells with fibroblastic features in the immediate vicinity of the cartilaginous areas. It is suggested that BMP2 plays different roles in the different stages of development of OPLL. However, it remains unknown which factors induce ligament cells to produce BMP2.Methods OPLL patients (n=192) and non-OPLL controls (n=304) were studied. Radiographs of the cervical spine were analyzed for extent of OPLL. We investigated whether single nucleotide polymorphisms of exons 3(-726) TIC and 3(-583) A/G in the BMP2 gene are statistically associated with genetic susceptibility to OPLL in Chinese Han subjects.Results There was no statistical difference between the occurrence of exons 3(-726) TIC and 3(-583) A/G and the occurrence of OPLL in the cervical spine. However, there was a significant association between occurrence of exon 3(-726) TIC polymorphism and occurrence of OPLL in males of cases and controls in the cervical spine. In addition, no significant association was found between the exons 3(-726) TIC and 3(-583) A/G with number of ossified cervical vertebrae in OPLL patients.Conclusions Exon 3(-583) A/G polymorphism in BMP2 gene is not associated with the occurrence and the extent of OPLL in the cervical spine. Chinese Han male patients with TC and CC genotypes in exon 3(-726) T/C have genetic susceptibility to OPLL but not to more extensive OPLL in the cervical spine.

  14. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan

    International Nuclear Information System (INIS)

    Li, Jingfeng; Jin, Lin; Zhu, Shaobo; Wang, Mingbo; Xu, Shuyun

    2015-01-01

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP 2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP 2 /PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP 2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP 2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP 2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation. (paper)

  15. Induced pluripotency with endogenous and inducible genes

    International Nuclear Information System (INIS)

    Duinsbergen, Dirk; Eriksson, Malin; Hoen, Peter A.C. 't; Frisen, Jonas; Mikkers, Harald

    2008-01-01

    The recent discovery that two partly overlapping sets of four genes induce nuclear reprogramming of mouse and even human cells has opened up new possibilities for cell replacement therapies. Although the combination of genes that induce pluripotency differs to some extent, Oct4 and Sox2 appear to be a prerequisite. The introduction of four genes, several of which been linked with cancer, using retroviral approaches is however unlikely to be suitable for future clinical applications. Towards developing a safer reprogramming protocol, we investigated whether cell types that express one of the most critical reprogramming genes endogenously are predisposed to reprogramming. We show here that three of the original four pluripotency transcription factors (Oct4, Klf4 and c-Myc or MYCER TAM ) induced reprogramming of mouse neural stem (NS) cells exploiting endogenous SoxB1 protein levels in these cells. The reprogrammed neural stem cells differentiated into cells of each germ layer in vitro and in vivo, and contributed to mouse development in vivo. Thus a combinatorial approach taking advantage of endogenously expressed genes and inducible transgenes may contribute to the development of improved reprogramming protocols

  16. Diet induced thermogenesis

    Directory of Open Access Journals (Sweden)

    Westerterp KR

    2004-08-01

    Full Text Available Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Results Most studies measure diet-induced thermogenesis as the increase in energy expenditure above basal metabolic rate. Generally, the hierarchy in macronutrient oxidation in the postprandial state is reflected similarly in diet-induced thermogenesis, with the sequence alcohol, protein, carbohydrate, and fat. A mixed diet consumed at energy balance results in a diet induced energy expenditure of 5 to 15 % of daily energy expenditure. Values are higher at a relatively high protein and alcohol consumption and lower at a high fat consumption. Protein induced thermogenesis has an important effect on satiety. In conclusion, the main determinants of diet-induced thermogenesis are the energy content and the protein- and alcohol fraction of the diet. Protein plays a key role in body weight regulation through satiety related to diet-induced thermogenesis.

  17. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  18. Induced radioactivity at CERN

    CERN Multimedia

    1970-01-01

    A description of some of the problems and some of the advantages associated with the phenomenon of induced radioactivity at accelerator centres such as CERN. The author has worked in this field for several years and has recently written a book 'Induced Radioactivity' published by North-Holland.

  19. Diet induced thermogenesis

    NARCIS (Netherlands)

    Westerterp, K.R.

    2004-01-01

    OBJECTIVE: Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. METHODS: Measuring

  20. Bleomycin-induced pneumonitis

    NARCIS (Netherlands)

    S. Sleijfer (Stefan)

    2001-01-01

    textabstractThe cytotoxic agent bleomycin is feared for its induction of sometimes fatal pulmonary toxicity, also known as bleomycin-induced pneumonitis (BIP). The central event in the development of BIP is endothelial damage of the lung vasculature due to bleomycin-induced

  1. A high concentration of recombinant human bone morphogenetic protein-2 induces low-efficacy bone regeneration in sinus augmentation: a histomorphometric analysis in rabbits.

    Science.gov (United States)

    Hong, Ji-Youn; Kim, Min-Soo; Lim, Hyun-Chang; Lee, Jung-Seok; Choi, Seong-Ho; Jung, Ui-Won

    2016-12-01

    The aim of the study was to elucidate the efficacy of bone regeneration at the early stage of healing in rabbit sinuses grafted with a biphasic calcium phosphate (BCP) carrier soaked in a high concentration of recombinant human bone morphogenetic protein-2 (rhBMP-2). Both maxillary sinuses of eight male rabbits were used. The sinus on one side (assigned randomly) was grafted with BCP loaded with rhBMP-2 (1.5 mg/ml; test group) using a soaking method, while the other was grafted with saline-soaked BCP (control group). After a 2-week healing period, the sinuses were analyzed by micro-computed tomography and histomorphometry. The total augmented area and soft tissue space were significantly larger in the test group than in the control group, whereas the opposite was true for the area of residual material and newly formed bone. Most of the new bone in the test group was localized to the Schneiderian membrane (SM), while very little bone formation was observed in the window and center regions of the sinus. New bone was distributed evenly in the control group sinuses. Within the limitations of this study, it appeared that application of a high concentration of rhBMP-2 soaked onto a BCP carrier inhibited bone regeneration from the pristine bone and increased soft tissue swelling and inflammatory response at the early healing stage of sinus augmentation, although osteoinductive potential was found along the SM. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Induced abortion in Taiwan.

    Science.gov (United States)

    Wang, P D; Lin, R S

    1995-04-01

    Induced abortion is widely practised in Taiwan; however, it had been illegal until 1985. It was of interest to investigate induced abortion practices in Taiwan after its legalization in 1985 in order to calculate the prevalence rate and ratio of induced abortion to live births and to pregnancies in Taiwan. A study using questionnaires through personal interviews was conducted on more than seventeen thousand women who attended a family planning service in Taipei metropolitan areas between 1991 and 1992. The reproductive history and sexual behaviour of the subjects were especially focused on during the interviews. Preliminary findings showed that 46% of the women had a history of having had an induced abortion. Among them, 54.8% had had one abortion, 29.7% had had two, and 15.5% had had three or more. The abortion ratio was 379 induced abortions per 1,000 live births and 255 per 1,000 pregnancies. The abortion ratio was highest for women younger than 20 years of age, for aboriginal women and for nulliparous women. When logistic regression was used to control for confounding variables, we found that the number of previous live births is the strongest predictor relating to women seeking induced abortion. In addition, a significant positive association exists between increasing number of induced abortions and cervical dysplasia.

  3. Photon induced reactions

    International Nuclear Information System (INIS)

    Mecking, B.A.

    1982-04-01

    Various aspects of medium energy nuclear reactions induced by real photons are reviewed. Special emphasis is put on high accuracy experiments that will become possible with the next generation of electron accelerators. (orig.)

  4. Induced Noise Control

    National Research Council Canada - National Science Library

    Maidanik, G

    2002-01-01

    The induced noise control parameter is defined in terms of the ratio of the stored energy in a master dynamic system, when it is coupled to an adjunct dynamic system, to that stored energy when the coupling is absent...

  5. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  6. Vitiligo, drug induced (image)

    Science.gov (United States)

    ... this person's face have resulted from drug-induced vitiligo. Loss of melanin, the primary skin pigment, occasionally ... is the case with this individual. The typical vitiligo lesion is flat and depigmented, but maintains the ...

  7. Terahertz Induced Electromigration

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2014-01-01

    We report the first observation of THz-field-induced electromigration in subwavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm.......We report the first observation of THz-field-induced electromigration in subwavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm....

  8. Diet induced thermogenesis

    OpenAIRE

    Westerterp KR

    2004-01-01

    Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Resu...

  9. Laser-induced interactions

    International Nuclear Information System (INIS)

    Green, W.R.

    1979-01-01

    This dissertation discusses some of the new ways that lasers can be used to control the energy flow in a medium. Experimental and theoretical considerations of the laser-induced collision are discussed. The laser-induced collision is a process in which a laser is used to selectively transfer energy from a state in one atomic or molecular species to another state in a different species. The first experimental demonstration of this process is described, along with later experiments in which lasers were used to create collisional cross sections as large as 10 - 13 cm 2 . Laser-induced collisions utilizing both a dipole-dipole interaction and dipole-quadrupole interaction have been experimentally demonstrated. The theoretical aspects of other related processes such as laser-induced spin-exchange, collision induced Raman emission, and laser-induced charge transfer are discussed. Experimental systems that could be used to demonstrate these various processes are presented. An experiment which produced an inversion of the resonance line of an ion by optical pumping of the neutral atom is described. This type of scheme has been proposed as a possible method for constructing VUV and x-ray lasers

  10. Radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  11. Chemical-induced Vitiligo

    Science.gov (United States)

    Harris, John E.

    2016-01-01

    Synopsis Chemical-induced depigmentation of the skin has been recognized for over 75 years, first as an occupational hazard but then extending to those using household commercial products as common as hair dyes. Since their discovery, these chemicals have been used therapeutically in patients with severe vitiligo to depigment their remaining skin and improve their appearance. The importance of recognizing this phenomenon was highlighted during an outbreak of vitiligo in Japan during the summer of 2013, when over 16,000 users of a new skin lightening cosmetic cream developed skin depigmentation at the site of contact with the cream and many in remote areas as well. Depigmenting chemicals appear to be analogs of the amino acid tyrosine that disrupt melanogenesis and result in autoimmunity and melanocyte destruction. Because chemical-induced depigmentation is clinically and histologically indistinguishable from non-chemically induced vitiligo, and because these chemicals appear to induce melanocyte autoimmunity, this phenomenon should be known as “chemical-induced vitiligo”, rather than less accurate terms that have been previously used. PMID:28317525

  12. Can a Biodegradable Implanted Bilayered Drug Delivery System Loaded with BMP-2/BMP-12 Take an Effective Role in the Biological Repair Process of Bone–Tendon Injuries? A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Baran Komur

    2017-01-01

    Full Text Available Background. Use of biodegradable and biocompatible materials in the orthopedic surgery is gaining popularity. In this research, the rate of controlled release of a bilayered prototype biomaterial designed to promote osteoblastic and tenoblastic activity was calculated using pharmacochemical methods. Methods. The first part of the design, composed of a sodium tetraborate, polyvinyl alcohol, and starch based hydrogel, was loaded with bone morphogenic protein-2. The second part which was composed of a sodium tetraborate, polyvinyl alcohol, and chitosan based hydrogel was loaded with bone morphogenic protein-12. Osteochondral and tendon tissue specimens were obtained from patients with a diagnosis of gonarthrosis and primary bone cells and tendon cells cultures were prepared following treatment with collagenase enzyme. Cell samples were collected from the groups by means of an invert light microscope and environmental scanning electron microscope underwent at the 1st and 21st days. The level of osteogenic differentiation was measured by the activity of alkaline phosphatase. For the statistical evaluation of the obtained data, groups were compared with post hoc Tukey test following analysis of variance. Level of significance was accepted to be <0,01. Results. Both osteogenic and tenogenic stimulation were observed in the cultured specimens. In comparison to the control groups, the rate of proliferation of healthy cells was found to be higher in the groups to which the design was added (p<0.01. Conclusions. Our research is a preliminary report that describes a study conducted in an in vitro experimental setting. We believe that such prototype systems may be pioneers in targeted drug therapies after reconstructional surgeries.

  13. The combined use of rhBMP-2/ACS, autogenous bone graft, a bovine bone mineral biomaterial, platelet-rich plasma, and guided bone regeneration at nonsubmerged implant placement for supracrestal bone augmentation. A case report.

    Science.gov (United States)

    Sclar, Anthony G; Best, Steven P

    2013-01-01

    This case report presents the clinical application and outcomes of the use of a combined approach to treat a patient with a severe alveolar defect. Recombinant human bone morphogenetic protein-2 in an absorbable collagen sponge carrier, along with autogenous bone graft, bovine bone mineral, platelet-rich plasma, and guided bone regeneration, were used simultaneous with nonsubmerged implant placement. At 1 year postsurgery, healthy peri-implant soft tissues and radiographically stable peri-implant crestal bone levels were observed along with locally increased radiographic bone density. In addition, a cone beam computed tomography (CBCT) scan demonstrated apparent supracrestal peri-implant bone augmentation with the appearance of normal alveolar ridge contours, including the facial bone wall.

  14. [Drug induced diarrhea].

    Science.gov (United States)

    Morard, Isabelle; Hadengue, Antoine

    2008-09-03

    Diarrhea is a frequent adverse event involving the most frequently antibiotics, laxatives and NSAI. Drug induced diarrhea may be acute or chronic. It may be due to expected, dose dependant properties of the drug, to immuno-allergic or bio-genomic mechanisms. Several pathophysiological mechanisms have been described resulting in osmotic, secretory or inflammatory diarrhea, shortened transit time, or malabsorption. Histopathological lesions sometimes associated with drug induced diarrhea are usually non specific and include ulcerations, inflammatory or ischemic lesions, fibrous diaphragms, microscopic colitis and apoptosis. The diagnosis of drug induced diarrhea, sometimes difficult to assess, relies on the absence of other obvious causes and on the rapid disappearance of the symptoms after withdrawal of the suspected drug.

  15. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    Science.gov (United States)

    Das, Anusuya; Barker, Daniel A; Wang, Tiffany; Lau, Cheryl M; Lin, Yong; Botchwey, Edward A

    2014-01-01

    In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  16. Plasma Surface Modification for Immobilization of Bone Morphogenic Protein-2 on Polycaprolactone Scaffolds

    Science.gov (United States)

    Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu

    2013-11-01

    The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.

  17. Multi-protein delivery by nanodiamonds promotes bone formation.

    Science.gov (United States)

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.

  18. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    International Nuclear Information System (INIS)

    Otsuru, Satoru; Tamai, Katsuto; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-01-01

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood

  19. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    Directory of Open Access Journals (Sweden)

    Anusuya Das

    Full Text Available In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid (PLAGA microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2 improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3 via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1 mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  20. Impact of TGF-β family-related growth factors on chondrogenic differentiation of adipose-derived stem cells isolated from lipoaspirates and infrapatellar fat pads of osteoarthritic patients

    Directory of Open Access Journals (Sweden)

    E López-Ruiz

    2018-04-01

    Full Text Available The success of cell-based approaches for the treatment of cartilage defects requires an optimal autologous cell source with chondrogenic differentiation ability that maintains its differentiated properties and stability following implantation. The objective of this study was to compare the chondrogenic capacity of mesenchymal stem cells (MSCs isolated from lipoaspirates (ASCs and the infrapatellar fat pad (IFPSCs of osteoarthritic patients and treated with transforming growth factor (TGF-β family-related growth factors. Cells were cultured for 6 weeks in a 3D pellet culture system with the chimeric activin A/bone morphogenic protein (BMP-2 ligand (AB235, the chimeric nodal/BMP-2 ligand (NB260 or BMP-2. To investigate the stability of the new cartilage, ASCs-treated pellets were transplanted subcutaneously into severe combined immunodeficiency (SCID mice. Histological and immunohistochemical assessment confirmed that the growth factors induced cartilage differentiation in both isolated cell types. However, reverse transcription-quantitative PCR results showed that ASCs presented a higher chondrogenic potential than IFPSCs. In vivo results revealed that AB235-treated ASCs pellets were larger in size and could form stable cartilage-like tissue as compared to NB260-treated pellets, while BMP-2-treated pellets underwent calcification. The chondrogenic induction of ASCs by AB235 treatment was mediated by SMAD2/3 activation, as proved by immunofluorescence analysis. The results of this study indicated that the combination of ASCs and AB235 might lead to a cell-based cartilage regeneration treatment.

  1. Rosuvastatin-induced pemphigoid.

    LENUS (Irish Health Repository)

    Murad, Aizuri A

    2012-01-01

    Statins are widely prescribed medications and very well tolerated. Rosuvastatin is another member of this drug used to treat dyslipidaemia. It is a competitive inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase. Immunobullous disease is usually idiopathic but can be drug-induced. Both idiopathic and iatrogenic forms share common clinical and immunohistological features. The authors report a case of pemphigoid induced by rosuvastatin, a commonly prescribed medication. To our knowledge, there is limited report on rosuvastatin associated with pemphigoid in the literature.

  2. Cervical osteophyte induced dysphagia

    International Nuclear Information System (INIS)

    Davies, R.P.; Sage, M.R.; Brophy, B.P.

    1989-01-01

    Although cervical spondylosis is a common disorder, dysphagia induced by osteophyte formation is uncommon. Fewer than one hundred cases of cervical osteophyte induced dysphagia have been reported, with little attention to the diagnosis by barium swallow. The radiological features of two cases treated surgically with good results are described. Both cases complained of dysphagia while one had associated respiratory obstruction on forward flexion of his neck. The features on barium study of cervical osteophytes causing dysphagia include deformity at the level of osteophyte formation, in both AP and lateral projections. Tracheal aspirations due to deformity at the laryngeal inlet and interference with epiglottic retroversion may be present. 8 refs., 3 figs

  3. Exercise-induced rhabdomyolysis.

    Science.gov (United States)

    Lee, George

    2014-11-03

    Exercise-induced rhabdomyolysis, or exertional rhabdomyolysis (ER), is a clinical entity typically considered when someone presents with muscle stiffness, swelling, and pain out of proportion to the expected fatigue post exercise. The diagnosis is confirmed by myoglobinuria, and an elevated serum Creatinine Phosphokinase (CPK) level, usually 10 times the normal range. However, an elevation in CPK is seen in most forms of strenuous exercise, up to 20 times the upper normal range. Therefore, there is no definitive pathologic CPK cut-off. Fortunately the dreaded complication of acute renal failure is rare compared to other forms rhabdomyolysis. We review the risks, diagnosis, clinical course and treatment for exercise- induced rhabdomyolysis.

  4. Migraine induced by hypoxia

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Schytz, Henrik Winther; Britze, Josefine

    2016-01-01

    in the visual cortex were measured by proton magnetic resonance spectroscopy. The circumference of cranial arteries was measured by 3 T high-resolution magnetic resonance angiography. Hypoxia induced migraine-like attacks in eight patients compared to one patient after sham (P = 0.039), aura in three...... and possible aura in 4 of 15 patients. Hypoxia did not change glutamate concentration in the visual cortex compared to sham, but increased lactate concentration (P = 0.028) and circumference of the cranial arteries (P ... suggests that hypoxia may provoke migraine headache and aura symptoms in some patients. The mechanisms behind the migraine-inducing effect of hypoxia should be further investigated....

  5. Airbag induced corneal ectasia.

    Science.gov (United States)

    Mearza, Ali A; Koufaki, Fedra N; Aslanides, Ioannis M

    2008-02-01

    To report a case of airbag induced corneal ectasia. Case report. A patient 3 years post-LASIK developed bilateral corneal ectasia worse in the right eye following airbag deployment in a road traffic accident. At last follow up, best corrected vision was 20/40 with -4.00/-4.00 x 25 in the right eye and 20/25 with -1.25/-0.50 x 135 in the left eye. This is a rare presentation of trauma induced ectasia in a patient post-LASIK. It is possible that reduction in biomechanical integrity of the cornea from prior refractive surgery contributed to this presentation.

  6. Sleep-inducing factors.

    Science.gov (United States)

    García-García, Fabio; Acosta-Peña, Eva; Venebra-Muñoz, Arturo; Murillo-Rodríguez, Eric

    2009-08-01

    Kuniomi Ishimori and Henri Piéron were the first researchers to introduce the concept and experimental evidence for a chemical factor that would presumably accumulate in the brain during waking and eventually induce sleep. This substance was named hypnotoxin. Currently, the variety of substances which have been shown to alter sleep includes peptides, cytokines, neurotransmitters and some substances of lipidic nature, many of which are well known for their involvement in other biological activities. In this chapter, we describe the sleep-inducing properties of the vasoactive intestinal peptide, prolactin, adenosine and anandamide.

  7. Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells.

    Science.gov (United States)

    Cheng, Xiaoxin; Wang, Yaping; He, Qian; Qiu, Mengsheng; Whittemore, Scott R; Cao, Qilin

    2007-12-01

    Promotion of remyelination is an important therapeutic strategy for the treatment of the demyelinating neurological disorders. Adult oligodendrocyte precursor cells (OPCs), which normally reside quiescently in the adult central nervous system (CNS), become activated and proliferative after demyelinating lesions. However, the extent of endogenous remyelination is limited because of the failure of adult OPCs to mature into myelinating oligodendrocytes (OLs) in the demyelinated CNS. Understanding the molecular mechanisms that regulate the differentiation of adult OPCs could lead to new therapeutic strategies to treat these disorders. In this study, we established a stable culture of adult spinal cord OPCs and developed a reliable in vitro protocol to induce their sequential differentiation. Adult OPCs expressed bone morphogenetic protein (BMP) type Ia, Ib, and II receptor subunits, which are required for BMP signal transduction. BMP2 and 4 promoted dose-dependent astrocyte differentiation of adult OPCs with concurrent suppression of OL differentiation. Treatment of OPCs with BMP2 and 4 increased ID4 expression and decreased the expression of olig1 and olig2. Overexpression of olig1 or olig2 blocked the astrocyte differentiation of adult OPCs induced by BMP2 and 4. Furthermore, overexpression of both olig1 and olig2, but not olig1 or olig2 alone, rescued OL differentiation from inhibition by BMP2 and 4. Our results demonstrated that downregulation of olig1 and olig2 is an important mechanism by which BMP2 and 4 inhibit OL differentiation of adult OPCs. These data suggest that blocking BMP signaling combined with olig1/2 overexpression could be a useful therapeutic strategy to enhance endogenous remyelination and facilitate functional recovery in CNS demyelinated disorders. Disclosure of potential conflicts of interest is found at the end of this article.

  8. Inducible laryngeal obstruction

    DEFF Research Database (Denmark)

    Halvorsen, Thomas; Walsted, Emil Schwarz; Bucca, Caterina

    2017-01-01

    Inducible laryngeal obstruction (ILO) describes an inappropriate, transient, reversible narrowing of the larynx in response to external triggers. ILO is an important cause of a variety of respiratory symptoms and can mimic asthma. Current understanding of ILO has been hampered by imprecise nomenc...

  9. Drug-induced apnea.

    Science.gov (United States)

    Boutroy, M J

    1994-01-01

    Drugs have been in the past and will in the future still be liable to induce apnea in neonates, infants and older children. At these different stages of development, the child may be abnormally vulnerable to respiratory disorders and apnea, and doses of drugs, without any abnormal side effects in adult patients, can be harmful in younger subjects. Drugs responsible for apnea during development are numerous, but more than half of the problems are induced by sedatives and hypnotics, among which phenothiazines, barbiturates, benzodiazepines (included transplacentally acquired) and general anesthetics are a few. Other pharmacological families are apnea inducers in the neonatal period and childhood: analgesics and opioid narcotics, agents acting at the levels of neuromuscular function and autonomic ganglia, and cardiovascular agents. The pathogenesis of these apneas depends on the disturbance of any mechanism responsible for the respiratory activity: medullary centers and brain stem structures, afferent influx to CNS, sleep stages, upper airways, lungs and respiratory muscles. At key stages such as birth and infancy, drugs may emphasize the particular sensitivity of the mechanisms responsible for inducing apnea. This might explain unexpected respiratory disorders during development.

  10. Metronidazole-Induced Pancreatitis

    Directory of Open Access Journals (Sweden)

    E. O'Halloran

    2010-01-01

    Conclusion. This case provides the eighth report of Metronidazole induced pancreatitis. All of the cases were reported in females and ran a benign course.Early diagnosis, discontinuation of the drug and supportive care will lead to a successful recovery in the majority of cases.

  11. XTC-induced hepatitis

    NARCIS (Netherlands)

    Oranje, W.A.; van Pol, V.; van der Wurff, A.A.; Zeijen, R.N.; Stockbrügger, R.W.; Arends, J.W.

    1994-01-01

    XTC-induced hepatitis. Oranje WA, von Pol P, vd Wurff A, Zeijen RN, Stockbrugger RW, Arends JW. Department of Internal Medicine, University Hospital, Maastricht, Netherlands. An increasing number of severe complications associated with the use of XTC is being reported. After 11 earlier case reports

  12. Bowthruster-induced damage

    NARCIS (Netherlands)

    Schokking, L.A.; Janssen, P.C.; Verhagen, H.J.

    2003-01-01

    The stability of stones in propeller-induced jet wash is still difficult to predict. Especially the trend of bowthrusters increasing in size and power in sea going ships (especially ferries) over the last years may be a reason for concern when dealing with the protection of slopes and beds. But also

  13. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  14. Calotropis procera -induced keratitis

    Directory of Open Access Journals (Sweden)

    Pandey Nidhi

    2009-01-01

    Full Text Available Calotropis procera produces copious amounts of latex, which has been shown to possess several pharmacological properities. Its local application produces intense inflammatory response. In the 10 cases of Calotropis procera -induced keratitis reported here, the clinical picture showed corneal edema with striate keratopathy without any evidence of intraocular inflammation. The inflammation was reversed by the local application of steroid drops.

  15. Induced nuclear beta decay

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1986-01-01

    Certain nuclear beta decay transitions normally inhibited by angular momentum or parity considerations can be induced to occur by the application of an electromagnetic field. Such decays can be useful in the controlled production of power, and in fission waste disposal

  16. Hyperthermia-induced apoptosis

    NARCIS (Netherlands)

    Nijhuis, E.H.A.

    2008-01-01

    This thesis describes a number of studies that investigated several aspects of heat-induced apoptosis in human lymphoid malignancies. Cells harbour both pro- and anti-apoptotic proteins and the balance between these proteins determines whether a cell is susceptible to undergo apoptosis. In this

  17. Drug induced aseptic meningitis

    African Journals Online (AJOL)

    PROF. EZECHUKWU

    2013-09-29

    Sep 29, 2013 ... Abstract. Drug-induced aseptic meningitis (DIAM) is a rare but important and often challenging diagnosis for the physician. Intake of antimicrobials, steroids, anal- gesics amongst others has been implicated. Signs and symptoms generally develop within 24-48 hours of drug ingestion. The pa- tient often ...

  18. Contrast induced nephropathy

    DEFF Research Database (Denmark)

    Stacul, Fulvio; van der Molen, Aart J; Reimer, Peter

    2011-01-01

    PURPOSE: The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 1999 guidelines on contrast medium-induced nephropathy (CIN). AREAS COVERED: Topics reviewed include the definition of CIN, the choice of contrast medium, the prophylactic me...

  19. Radiation-induced pneumothorax

    International Nuclear Information System (INIS)

    Epstein, D.M.; Littman, P.; Gefter, W.B.; Miller, W.T.; Raney, R.B. Jr.

    1983-01-01

    Pneumothorax is an uncommon complication of radiation therapy to the chest. The proposed pathogenesis is radiation-induced fibrosis promoting subpleural bleb formation that ruptures resulting in pneumothorax. We report on two young patients with primary sarcomas without pulmonary metastases who developed spontaneous pneumothorax after irradiation. Neither patient had antecedent radiographic evidence of pulmonary fibrosis

  20. Irradiation-Induced Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  1. Lupus induced by medicaments

    International Nuclear Information System (INIS)

    Canas D, Carlos Alberto; Perafan B, Pablo Eduardo

    2001-01-01

    We describe a 55 years old female patient who consulted by fever syndrome, artralgias and the presence of high tittles positives antinuclear antibodies. She had arterial hypertension in treatment with captopril. We suspected the clinical diagnoses of drug-induced lupus; the withdraw of captopril was associated with the remission of the clinical and laboratory manifestations

  2. Glucocorticoid-induced hyperglycaemia

    NARCIS (Netherlands)

    Gerards, M.C.

    2018-01-01

    This thesis contains studies on current practice, clinical implications and treatment of excess glucocorticoid receptor (GCR) stimulation, with a focus on glucocorticoid-induced hyperglycaemia (GCIH). Chapter 1 is a general introduction to the glucocorticoid hormone. In chapter 2 , we have

  3. Understanding induced seismicity

    NARCIS (Netherlands)

    Elsworth, Derek; Spiers, Christopher J.|info:eu-repo/dai/nl/304829323; Niemeijer, Andre R.|info:eu-repo/dai/nl/370832132

    2016-01-01

    Fluid injection–induced seismicity has become increasingly widespread in oil- and gas-producing areas of the United States (1–3) and western Canada. It has shelved deep geothermal energy projects in Switzerland and the United States (4), and its effects are especially acute in Oklahoma, where

  4. Geomagnetism and Induced Voltage

    Science.gov (United States)

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it…

  5. INDUCED ABORTION IN NIGERIA

    African Journals Online (AJOL)

    2014-06-01

    Jun 1, 2014 ... 95% of women would have had an induced abortion. (10), which ... who were fluent in both English and the local language were chosen ... the woman and society. The Muslims ... that “traditional methods are only effective at the early stages of ... modern and traditional family planning services. However ...

  6. Advertising-Induced Embarrassment

    NARCIS (Netherlands)

    Puntoni, S.; Hooge, de I.E.; Verbeke, W.J.M.I.

    2015-01-01

    Abstract Consumer embarrassment is a concern for many advertisers. Yet little is known about ad-induced embarrassment. The authors investigate when and why consumers experience embarrassment as a result of exposure to socially sensitive advertisements. The theory distinguishes between viewing

  7. Uterine contraction induced by Tanzanian plants used to induce abortion

    DEFF Research Database (Denmark)

    Nikolajsen, Tine; Nielsen, Frank; Rasch, Vibeke

    2011-01-01

    Women in Tanzania use plants to induce abortion. It is not known whether the plants have an effect.......Women in Tanzania use plants to induce abortion. It is not known whether the plants have an effect....

  8. Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Handley, KM [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL); Sharon, I [University of California, Berkeley; Williams, Ken [Lawrence Berkeley National Laboratory (LBNL); Miller, CS [University of California, Berkeley; Frischkorn, Kyle C [University of California, Berkeley; Chourey, Karuna [ORNL; Thomas, Brian [University of California, Berkeley; Shah, Manesh B [ORNL; Long, Phil [Pacific Northwest National Laboratory (PNNL); Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2013-01-01

    Stimulation of subsurface microorganisms to induce reductive immobilization of metals is a promising approach for bioremediation, yet the overall microbial community response is typically poorly understood. Here we used community proteogenomics to test the hypothesis that excess input of acetate activates syntrophic interactions among autotrophs and heterotrophs. A flow-through sediment column was incubated in a groundwater well of an acetate-amended aquifer. Genomic sequences from the community recovered during microbial sulfate reduction were used to econstruct, de novo, near-complete genomes for Desulfobacter (Deltaproteobacteria) and relatives of Sulfurovum and Sulfurimonas (Epsilonproteobacteria), and Bacteroidetes. Partial genomes were obtained for Clostridiales (Firmicutes) and Desulfuromonadales-like Deltaproteobacteria. The majority of proteins identified by mass spectrometry corresponded to Desulfobacter-like species, and demonstrate the role of this organism in sulfate reduction (Dsr and APS), nitrogen-fixation (Nif) and acetate oxidation to CO2 during amendment. Results suggest less abundant Desulfuromonadales and Bacteroidetes also actively contributed to CO2 production via the TCA cycle. Proteomic data indicate that sulfide was partially re-oxidized by Epsilonproteobacteria through nitrate-dependent sulfide oxidation (using Nap, Nir, Nos, SQR and Sox), with CO2 fixed using the reverse TCA cycle. Modeling shows that this reaction was thermodynamically possible, and kinetically favorable relative to acetate-dependent denitrification. We conclude that high-levels of carbon amendment aimed to stimulate anaerobic heterotrophy led to carbon fixation in co-dependent chemoautotrophs. These results have implications for understanding complex ecosystem behavior, and show that high levels of organic carbon supplementation can expand the range of microbial functionalities accessible for ecosystem manipulation.

  9. [Hydroxyurea-induced pneumonia].

    Science.gov (United States)

    Girard, A; Ricordel, C; Poullot, E; Claeyssen, V; Decaux, O; Desrues, B; Delaval, P; Jouneau, S

    2014-05-01

    Hydroxyurea is an antimetabolite drug used in the treatment of myeloproliferative disorders. Common adverse effects include haematological, gastrointestinal cutaneous manifestations, and fever. Hydroxyurea-induced pneumonitis is unusual. A female patient was treated with hydroxyurea for polycythemia vera. She was admitted 20 days after commencing treatment with a high fever, productive cough, clear sputum and nausea. A chest CT-scan showed diffuse ground-glass opacities. Microbiological investigations were negative. The symptoms disappeared a few days after discontinuation of the drug and rechallenge led to a relapse of symptoms. Our case and 15 earlier cases of hydroxyurea-induced pneumonitis are reviewed. Two patterns of this disease may exist: an acute febrile form occurring within 1 month of introduction of hydroxyurea and a subacute form without fever. Even if uncommon, one should be aware of this complication of hydroxyurea. Copyright © 2013. Published by Elsevier Masson SAS.

  10. Hydroxychloroquine-induced erythroderma.

    Science.gov (United States)

    Pai, Sunil B; Sudershan, Bhuvaneshwari; Kuruvilla, Maria; Kamath, Ashwin; Suresh, Pooja K

    2017-01-01

    Erythroderma is characterized by diffuse erythema and scaling of the skin involving more than 90% of the total body skin surface area. Drug-induced erythroderma has rarely been reported with hydroxychloroquine. We report a case of a 50-year-old female patient, with systemic lupus erythematosus, who developed itchy lesions all over the body 1 month after starting treatment with hydroxychloroquine. Drug-induced erythroderma was suspected. Hydroxychloroquine was withdrawn and the patient was treated with emollients, mid-potency corticosteroids, and oral antihistamines. A biopsy was done which confirmed the diagnosis of erythroderma. She recovered with treatment and was discharged. A careful history and clinical examination to search for potential causative factors will help prevent disabling sequelae in erythroderma.

  11. Mild induced hypothermia

    DEFF Research Database (Denmark)

    Johansen, Maria E; Jensen, Jens-Ulrik; Bestle, Morten H

    2014-01-01

    INTRODUCTION: Coagulopathy associates with poor outcome in sepsis. Mild induced hypothermia has been proposed as treatment in sepsis but it is not known whether this intervention worsens functional coagulopathy. MATERIALS AND METHODS: Interim analysis data from an ongoing randomized controlled...... trial; The Cooling And Surviving Septic shock (CASS) study. Patients suffering severe sepsis/septic shock are allocated to either mild induced hypothermia (cooling to 32-34°C for 24hours) or control (uncontrolled temperature). TRIAL REGISTRATION: NCT01455116. Thrombelastography (TEG) is performed three....... At enrollment, 3%, 38%, and 59% had a hypocoagulable, normocoagulable, and hypercoagulable TEG clot strength (MA), respectively. In the hypothermia group, functional coagulopathy improved during the hypothermia phase, measured by R and MA, in patients with hypercoagulation as well as in patients...

  12. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......, to reconstruct the distribution of the Cole-Cole parameters of the earth. The accurate modeling of the transmitter waveform had a strong influence on the forward response, and we showed that the difference between a solution using a step response and a solution using the accurate modeling often is above 100...

  13. Topiramate Induced Excessive Sialorrhea

    Directory of Open Access Journals (Sweden)

    Ersel Dag

    2015-11-01

    Full Text Available It is well-known that drugs such as clozapine and lithium can cause sialorrhea. On the other hand, topiramate has not been reported to induce sialorrhea. We report a case of a patient aged 26 who was given antiepileptic and antipsychotic drugs due to severe mental retardation and intractable epilepsy and developed excessive sialorrhea complaint after the addition of topiramate for the control of seizures. His complaints continued for 1,5 years and ended after giving up topiramate. We presented this case since it was a rare sialorrhea case induced by topiramate. Clinicians should be aware of the possibility of sialorrhea development which causes serious hygiene and social problems when they want to give topiramate to the patients using multiple drugs.

  14. Noise-Induced Hearing Loss

    Science.gov (United States)

    ... Home » Health Info » Hearing, Ear Infections, and Deafness Noise-Induced Hearing Loss On this page: What is ... I find additional information about NIHL? What is noise-induced hearing loss? Every day, we experience sound ...

  15. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    International Nuclear Information System (INIS)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-01-01

    Highlights: ► Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. ► Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. ► Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. ► Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  16. Mesenchymal stem cells-seeded bio-ceramic construct for bone regeneration in large critical-size bone defect in rabbit

    Directory of Open Access Journals (Sweden)

    Maiti SK

    2016-11-01

    Full Text Available Bone marrow derived mesenchymal stem cells (BMSC represent an attractive cell population for tissue engineering purpose. The objective of this study was to determine whether the addition of recombinant human bone morphogenetic protein (rhBMP-2 and insulin-like growth factor (IGF-1 to a silica-coated calcium hydroxyapatite (HASi - rabbit bone marrow derived mesenchymal stem cell (rBMSC construct promoted bone healing in a large segmental bone defect beyond standard critical -size radial defects (15mm in rabbits. An extensively large 30mm long radial ostectomy was performed unilaterally in thirty rabbits divided equally in five groups. Defects were filled with a HASi scaffold only (group B; HASi scaffold seeded with rBMSC (group C; HASi scaffold seeded with rBMSC along with rhBMP-2 and IGF-1 in groups D and E respectively. The same number of rBMSC (five million cells and concentration of growth factors rhBMP-2 (50µg and IGF-1 (50µg was again injected at the site of bone defect after 15 days of surgery in their respective groups. An empty defect served as the control group (group A. Radiographically, bone healing was evaluated at 7, 15, 30, 45, 60 and 90 days post implantation. Histological qualitative analysis with microCT (µ-CT, haematoxylin and eosin (H & E and Masson’s trichrome staining were performed 90 days after implantation. All rhBMP-2-added constructs induced the formation of well-differentiated mineralized woven bone surrounding the HASi scaffolds and bridging bone/implant interfaces as early as eight weeks after surgery. Bone regeneration appeared to develop earlier with the rhBMP-2 constructs than with the IGF-1 added construct. Constructs without any rhBMP-2 or IGF-1 showed osteoconductive properties limited to the bone junctions without bone ingrowths within the implantation site. In conclusion, the addition of rhBMP-2 to a HASi scaffold could promote bone generation in a large critical-size-defect.

  17. Osteogenic potential of the human bone morphogenetic protein 2 gene activated nanobone putty.

    Science.gov (United States)

    Tian, Xiao-bin; Sun, Li; Yang, Shu-hua; Zhang, Yu-kun; Hu, Ru-yin; Fu, De-hao

    2008-04-20

    Nanobone putty is an injectable and bioresorbable bone substitute. The neutral-pH putty resembles hard bone tissue, does not contain polymers or plasticizers, and is self-setting and nearly isothermic, properties which are helpful for the adhesion, proliferation, and function of bone cells. The aim of this study was to investigate the osteogenic potential of human bone morphogenetic protein 2 (hBMP2) gene activated nanobone putty in inducing ectopic bone formation, and the effects of the hBMP2 gene activated nanobone putty on repairing bone defects. Twenty four Kunming mice were randomly divided into two groups. The nanobone putty + hBMP2 plasmid was injected into the right thigh muscle pouches of the mice (experiment side). The nanobone putty + blank plasmid or nanobone putty was injected into the left thigh muscle pouches of the group 1 (control side 1) or group 2 (control side 2), respectively. The effects of ectopic bone formation were evaluated by radiography, histology, and molecular biology analysis at 2 and 4 weeks after operation. Bilateral 15 mm radial defects were made in forty-eight rabbits. These rabbits were randomly divided into three groups: Group A, nanobone putty + hBMP2 plasmid; Group B, putty + blank plasmid; Group C, nanobone putty only. Six rabbits with left radial defects served as blank controls. The effect of bone repairing was evaluated by radiography, histology, molecular biology, and biomechanical analysis at 4, 8, and 12 weeks after operation. The tissue from the experimental side of the mice expressed hBMP2. Obvious cartilage and island-distributed immature bone formation in implants of the experiment side were observed at 2 weeks after operation, and massive mature bone observed at 4 weeks. No bone formation was observed in the control side of the mice. The ALP activity in the experiment side of the mice was higher than that in the control side. The tissue of Group A rabbits expressed hBMP2 protein and higher ALP level. The new bone

  18. Induced quantum torsion

    International Nuclear Information System (INIS)

    Denardo, G.; Spallucci, E.

    1985-07-01

    We study pregeometry in the framework of a Poincare gauge field theory. The Riemann-Cartan space-time is shown to be an ''effective geometry'' for this model in the low energy limit. By using Heat Kernel techniques we find the induced action for curvature and torsion. We obtain in this way the usual Einstein-Hilbert action plus an axial Maxwell term describing the propagation of a massless, axial vector torsion field. (author)

  19. Cisplatin Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Seyed Seifollah Beladi Mousavi

    2014-02-01

    The standard approach to prevent cisplatin-induced nephrotoxicity is the administration of lower doses of cisplatin in combination with the administration of full intravenous isotonic saline before and after cisplatin administration. Although a number of pharmacologic agents including sodium thiosulfate, N-acetylcysteine, theophylline and glycine have been evaluated for prevention of nephrotoxicity, none have proved to have an established role, thus, additional clinical studies will be required to confirm their probable effects.

  20. Amitriptyline induced cervical dystonia

    Directory of Open Access Journals (Sweden)

    Shivanand B Hiremath

    2016-01-01

    Full Text Available Tricyclic antidepressants (TCAs, such as amitriptyline, have many side effects. But extrapyramidal tract symptom is an uncommon side effect of these drugs. Here, we report a case of a 28-year-old male who is suffering from amitriptyline induced cervical dystonia. Though rare, this side effect is an uncomfortable condition and may influence drug compliance. So clinicians should be aware of this side effect while treating a patient with amitriptyline.

  1. Polycation induced actin bundles

    OpenAIRE

    Muhlrad, Andras; Grintsevich, Elena E.; Reisler, Emil

    2011-01-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations an...

  2. Induced current heating probe

    International Nuclear Information System (INIS)

    Thatcher, G.; Ferguson, B.G.; Winstanley, J.P.

    1984-01-01

    An induced current heating probe is of thimble form and has an outer conducting sheath and a water flooded flux-generating unit formed from a stack of ferrite rings coaxially disposed in the sheath. The energising coil is made of solid wire which connects at one end with a coaxial water current tube and at the other end with the sheath. The stack of ferrite rings may include non-magnetic insulating rings which help to shape the flux. (author)

  3. Induced QCD I: theory

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)

    2016-11-14

    We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.

  4. Laser induced energy transfer

    International Nuclear Information System (INIS)

    Falcone, R.W.

    1979-01-01

    Two related methods of rapidly transferring stored energy from one excited chemical species to another are described. The first of these, called a laser induced collision, involves a reaction in which the energy balance is met by photons from an intense laser beam. A collision cross section of ca 10 - 17 cm 2 was induced in an experiment which demonstrated the predicted dependence of the cross section on wavelength and power density of the applied laser. A second type of laser induced energy transfer involves the inelastic scattering of laser radiation from energetically excited atoms, and subsequent absorption of the scattered light by a second species. The technique of producing the light, ''anti-Stokes Raman'' scattering of visible and infrared wavelength laser photons, is shown to be an efficient source of narrow bandwidth, high brightness, tunable radiation at vacuum ultraviolet wavelengths by using it to excite a rare gas transition at 583.7 A. In addition, this light source was used to make the first measurement of the isotopic shift of the helium metastable level at 601 A. Applications in laser controlled chemistry and spectroscopy, and proposals for new types of lasers using these two energy transfer methods are discussed

  5. Radiation-induced myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Gaenshirt, H [Heidelberg Univ. (F.R. Germany). Neurologische Klinik

    1975-10-01

    12 cases of radiation-induced myelopathy after /sup 60/Co teletherapy are reported on. Among these were 10 thoracal lesions, one cerviothoracal lesion, and one lesion of the medulla oblongata. In 9 cases, Hodgkin's disease had been the primary disease, tow patients had been irradiated because of suspected vertebral metastases of cancer of the breast, and one patient had suffered from a glomus tumour of the petrous bone. The spinal doses had exceeded the tolerance doses recommended in the relevant literature. There was no close correlation between the radiation dose and the course of the disease. The latency periods between the end of the radiotherapy and the onset of the neurological symptons varied from 6 to 16 mouths and were very constant in 7 cases with 6 to 9 months. The segmental height of the lesion corresponded to the level of irradiation. The presenting symptons of radiation-induced myelopathy are buruing dysaesthesias and Brown-Sequard's paralysis which may develop into transverse lesion of the cord with paraplegia still accompanied by dissociated perception disorders. The disease developed intermittently. Disturbances of the bladder function are frequent. The fluid is normal in most cases. Myelographic examinations were made in 8 cases. 3 cases developed into stationary cases exhibiting. Brown-Sequard syndrome, while 9 patients developed transverse lesion of the cord with paraplegia. 3 patients have died; antopsy findings are given for two of these. In the pathogenesis of radiation-induced myelopathy, the vascular factor is assumed to be of decisive importance.

  6. Baby universes with induced gravity

    International Nuclear Information System (INIS)

    Gao Yihong; Gao Hongbo

    1989-01-01

    In this paper some quantum effects of baby universes with induced gravity are discussed. It is proved that the interactions between the baby-parent universes are non-local, and argue that the induced low-energy cosmological constant is zero. This argument does not depend on the detail of the induced potential

  7. Polycation induced actin bundles.

    Science.gov (United States)

    Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil

    2011-04-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Induced mutations in citrus

    International Nuclear Information System (INIS)

    Spiegel-Roy, P.; Vardi, Aliza

    1990-01-01

    Full text: Parthenocarpic tendency is an important prerequisite for successful induction of seedlessness in breeding and especially in mutation breeding. A gene for asynapsis and accompanying seedless fruit has been found by us in inbred progeny of cv. 'Wilking'. Using budwood irradiation by gamma rays, seedless mutants of 'Eureka' and 'Villafranca' lemon (original clone of the latter has 25 seeds) and 'Minneola' tangelo have been obtained. Ovule sterility of the three mutants is nearly complete, with some pollen fertility still remaining. A semi-compact mutant of Shamouti orange has been obtained by irradiation. A programme for inducing seedlessness in easy peeling citrus varieties and selections has been initiated. (author)

  9. Shear-induced chaos

    International Nuclear Information System (INIS)

    Lin, Kevin K; Young, Lai-Sang

    2008-01-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed

  10. Shear-induced chaos

    Science.gov (United States)

    Lin, Kevin K.; Young, Lai-Sang

    2008-05-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.

  11. Xerostomia induced by radiotherapy

    Directory of Open Access Journals (Sweden)

    Alimi D

    2015-08-01

    Full Text Available David Alimi Department of Anesthesiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USAWe read with great interest the excellent review on xerostomia induced by radiotherapy, by Pinna et al.1 The authors should be congratulated for a very detailed review of the physiopathology, clinical symptoms, and therapeutic management of an extremely difficult condition. Although we agree that the use of anticholinergic medication represents treatment, it requires the patient to have residual salivary gland function. Unfortunately, it is well established that in most cases radiotherapy destroys most of the salivary gland and associated salivary secretions.     

  12. Cannabis induced asystole.

    Science.gov (United States)

    Brancheau, Daniel; Blanco, Jessica; Gholkar, Gunjan; Patel, Brijesh; Machado, Christian

    2016-01-01

    Cannabis or marijuana is the most used recreational, and until recently illegal, drug in the United States. Although cannabis has medicinal use, its consumption has been linked to motor vehicle accidents in dose dependent fashion. Marijuana and other cannabinoids produce a multitude of effects on the human body that may result in these motor vehicle accidents. Some of the effects that marijuana has been known to cause include altered sensorium, diminished reflexes, and increased vagal tone. We present a case of cannabis induced asystole from hypervagotonia. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Pacing-induced Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Alex Koo

    2017-10-01

    Full Text Available We present a case of pacing-induced cardiomyopathy. The patient presented with clinical symptoms of dyspnea, leg swelling, and orthopnea several months after a dual-chambered pacemaker was placed for third-degree heart block. The echocardiogram demonstrated a depressed ejection fraction. Coronary angiography was performed, which showed widely patent vessels. Single- and dual-chambered pacemakers create ventricular dyssynchrony, which in turn can cause structural, molecular changes leading to cardiomyopathy. With early intervention of biventricular pacemaker replacement, these changes can be reversible; thus, a timely diagnosis and awareness is warranted.

  14. Induced skeletal mutations

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    This paper describes a large-scale experiment that, by means of breeding tests, confirmed that many dominant skeletal mutations are induced by large-dose radiation exposure. The author also discusses: (1) the major advantages and disadvantages of the skeletal method in improving estimates of genetic hazard to man; (2) future uses of the skeletal method; (3) direct estimation of risk beyond the first generation using the skeletal method; and (4) the possibility of using the skeletal method as a quick and easy screen for chemical mutagens

  15. Trauma Induced Coagulopathy

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Johansson, Per; Meyer, Martin Abild Stengaard

    2013-01-01

    It remains debated whether traumatic brain injury (TBI) induces a different coagulopathy compared to non-TBI. This study investigated traditional coagulation tests, biomarkers of coagulopathy and endothelial damage in trauma patients with and without TBI. Blood from 80 adult trauma patients were...... sampled (median of 68 min (IQR 48-88) post-injury) upon admission to our trauma centre. Plasma/serum were retrospectively analysed for biomarkers reflecting sympathoadrenal activation (adrenaline, noradrenaline), coagulation activation/inhibition and fibrinolysis (protein C, activated protein C, tissue...

  16. Trastuzumab-induced cardiomyopathy.

    Science.gov (United States)

    Guglin, Maya; Cutro, Raymond; Mishkin, Joseph D

    2008-06-01

    Trastuzumab is a recombinant humanized monoclonal antibody used for the treatment of advanced breast cancer. It improves survival and increases response to chemotherapy. The major side effect of trastuzumab is cardiotoxicity manifesting as a reduction in left ventricular systolic function, either asymptomatic or with signs and symptoms of heart failure. Although reversible in most cases, cardiotoxicity frequently results in the discontinuation of trastuzumab. The objective of this review is to summarize facts about trastuzumab-induced cardiotoxicity and to highlight the areas of future investigations. We searched PubMed for trials involving trastuzumab used as an adjuvant therapy for breast cancer, including the metastatic breast cancer setting, and focused on cardiotoxicity.

  17. Docetaxel-induced neuropathy

    DEFF Research Database (Denmark)

    Eckhoff, Lise; Feddersen, Søren; Knoop, Ann

    2015-01-01

    Background. Docetaxel is a highly effective treatment of a wide range of malignancies but is often associated with peripheral neuropathy. The genetic variability of genes involved in the transportation or metabolism of docetaxel may be responsible for the variation in docetaxel-induced peripheral...... neuropathy (DIPN). The main purpose of this study was to investigate the impact of genetic variants in GSTP1 and ABCB1 on DIPN. Material and methods. DNA was extracted from whole blood from 150 patients with early-stage breast cancer who had received adjuvant docetaxel from February 2011 to May 2012. Two...

  18. Chemotherapy-induced polyneuropathy

    DEFF Research Database (Denmark)

    Zedan, Ahmed; Vilholm, Ole Jakob

    2014-01-01

    Chemotherapy-induced polyneuropathy (CIPN) is a common, but underestimated, clinical challenge. Incidence varies depending on many factors that are equally as important as the type of chemotherapeutic agent itself. Moreover, the assessment of CIPN is still uncertain, as several of the most...... frequently used scales do not rely on a formal neurological evaluation and depend on patients' reports and examiners' interpretations. Therefore, the aim of this MiniReview was to introduce the most common chemotherapies that cause neuropathy, and in addition to this, highlight the most significant...

  19. Contrast induced nephropathy

    DEFF Research Database (Denmark)

    Stacul, Fulvio; van der Molen, Aart J; Reimer, Peter

    2011-01-01

    PURPOSE: The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 1999 guidelines on contrast medium-induced nephropathy (CIN). AREAS COVERED: Topics reviewed include the definition of CIN, the choice of contrast medium, the prophylactic me....../min/1.73 m (2) is CIN risk threshold for intravenous contrast medium. • Hydration with either saline or sodium bicarbonate reduces CIN incidence. • Patients with eGFR = 60 ml/min/1.73 m (2) receiving contrast medium can continue metformin normally....

  20. Ion induced Auger spectroscopy

    International Nuclear Information System (INIS)

    Thomas, E.W.; Legg, K.O.; Metz, W.A.

    1980-01-01

    Auger electron spectra are induced by impact of heavy ions (e.g. Ar + ) on surfaces; it has been suggested that analysis of such spectra would be a useful technique for surface analysis. We have examined the Auger spectra for various projectile-target combinations and present as representative data the spectra for 100 keV Ar + impact on Al, Cr, Mn, Fe and Co. For a projectile incident on a species of higher nuclear charge the spectrum is dominated by Auger lines from the projectile, broadened considerably by the Doppler effect due to the projectile's motion. The spectra are not characteristic of the target and therefore offer no opportunity for surface analysis. For a projectile incident on a target of lower nuclear charge the spectrum is that of the target species but the spectrum is consistent with the source being sputtered excited atoms; the Auger electrons do not come from the surface. We conclude that the ion induced Auger spectra are in general not a convenient method for surface analysis. (orig.)

  1. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  2. Traffic forecasts ignoring induced demand

    DEFF Research Database (Denmark)

    Næss, Petter; Nicolaisen, Morten Skou; Strand, Arvid

    2012-01-01

    the model calculations included only a part of the induced traffic, the difference in cost-benefit results compared to the model excluding all induced traffic was substantial. The results show lower travel time savings, more adverse environmental impacts and a considerably lower benefitcost ratio when...... induced traffic is partly accounted for than when it is ignored. By exaggerating the economic benefits of road capacity increase and underestimating its negative effects, omission of induced traffic can result in over-allocation of public money on road construction and correspondingly less focus on other...... performance of a proposed road project in Copenhagen with and without short-term induced traffic included in the transport model. The available transport model was not able to include long-term induced traffic resulting from changes in land use and in the level of service of public transport. Even though...

  3. Paliperidone palmitate-induced sialorrhoea

    Directory of Open Access Journals (Sweden)

    Cengiz Cengisiz

    2016-03-01

    Full Text Available Extrapyramidal, metabolic, and cardiac side effects were reported for atypical antipsychotics; although a few resources show paliperidone-induced sialorrhea, there are no resources that show paliperidone palmitate-induced sialorrhea. In this paper, we present the paliperidone palmitate-induced sialorrhea side effects of a patient who applied on our clinic [Cukurova Med J 2016; 41(0.100: 8-13

  4. Radiation-induced cancer

    International Nuclear Information System (INIS)

    Dutrillaux, B.; CEA Fontenay-aux-Roses, 92

    1998-01-01

    The induction of malignant diseases is one of the most concerning late effects of ionising radiation. A large amount of information has been collected form atomic bomb survivors, patients after therapeutic irradiation, occupational follow-up and accidentally exposed populations. Major uncertainties persist in the (very) low range i.e, population and workers radioprotection. A review of the biological mechanisms leading to cancer strongly suggests that the vast majority of radiation-induced malignancies arise as a consequence of recessive mutations can be unveiled by ageing, this process being possibly furthered by constitutional or acquired genomic instability. The individual risk is likely to be very low, probably because of the usual dose level. However, the magnitude of medical exposure and the reliance of our societies on nuclear industry are so high that irreproachable decision-making processes and standards for practice are inescapable. (author)

  5. Radiation-induced nondisjunction

    International Nuclear Information System (INIS)

    Uchida, I.A.

    1979-01-01

    The methodology and results of epidemiological studies of the effects of preconception diagnostic x-rays of the abdomen on chromosome segregation in humans are described. The vast majority of studies show the same positive, though not significant, trend to increased nondisjunction among the offspring of irradiated women. The results of the various studies, however, cannot be pooled because of differing methodologies used. Abnormal chromosome segregation during mitotic division has been inducted experimentally by the in vitro exposure of human lymphocytes to a low dose of 50 R gamma irradiation. First meiotic nondisjunction has been successfully induced by whole body exposure of female mice to a low dose of radiation. The question of time-related repair of the mechanism involved in chromosome segregation is raised

  6. Radiation induced oral mucositis

    Directory of Open Access Journals (Sweden)

    P S Satheesh Kumar

    2009-01-01

    Full Text Available Patients receiving radiotherapy or chemotherapy will receive some degree of oral mucositis The incidence of oral mucositis was especially high in patients: (i With primary tumors in the oral cavity, oropharynx, or nasopharynx; (ii who also received concomitant chemotherapy; (iii who received a total dose over 5,000 cGy; and (iv who were treated with altered fractionation radiation schedules. Radiation-induced oral mucositis affects the quality of life of the patients and the family concerned. The present day management of oral mucositis is mostly palliative and or supportive care. The newer guidelines are suggesting Palifermin, which is the first active mucositis drug as well as Amifostine, for radiation protection and cryotherapy. The current management should focus more on palliative measures, such as pain management, nutritional support, and maintenance, of good oral hygiene

  7. Laser induced nuclear reactions

    International Nuclear Information System (INIS)

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-01-01

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10 19 W/cm 2 . In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that μCi of 62 Cu can be generated via the (γ,n) reaction by a laser with an intensity of about 10 19 Wcm -2

  8. Radiation induced pesticidal microbes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants.

  9. Radiation induced microbial pesticide

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Young Keun; Kim, Jae Sung; Kim, Jin Kyu; Lee, Sang Jae

    2000-01-01

    To control plant pathogenic fungi, 4 strains of bacteria (K1, K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 13 kinds of fungi. Mutants of K1 and YS1 strains were induced by gamma-ray radiation and showed promising antifungal activities. These wild type and mutants showed resistant against more than 27 kinds of commercial pesticides among 30 kinds of commercial pesticides test particularly, YS1-1006 mutant strain showed resistant against hydrogen oxide. And mutants had increased antifungal activity against Botryoshaeria dothidea. These results suggested that radiation could be an useful method for the induction of functional mutants. (author)

  10. Aripiprazole-induced priapism

    Directory of Open Access Journals (Sweden)

    Satya K Trivedi

    2016-01-01

    Full Text Available Priapism is a urologic emergency representing a true disorder of penile erection that persists beyond or is unrelated to sexual interest or stimulation. A variety of psychotropic drugs are known to produce priapism, albeit rarely, through their antagonistic action on alpha-1 adrenergic receptors. We report such a case of priapism induced by a single oral dose of 10 mg aripiprazole, a drug with the least affinity to adrenergic receptors among all atypical antipsychotics. Polymorphism of alpha-2A adrenergic receptor gene in schizophrenia patients is known to be associated with sialorrhea while on clozapine treatment. Probably, similar polymorphism of alpha-1 adrenergic receptor gene could contribute to its altered sensitivity and resultant priapism. In future, pharmacogenomics-based approach may help in personalizing the treatment and effectively prevent the emergence of such side effects.

  11. [Cannabis-induced disorders].

    Science.gov (United States)

    Soyka, M; Preuss, U; Hoch, E

    2017-03-01

    Use and misuse of cannabis and marihuana are frequent. About 5% of the adult population are current users but only 1.2% are dependent. The medical use of cannabis is controversial but there is some evidence for improvement of chronic pain and spasticity. The somatic toxicity of cannabis is well proven but limited and psychiatric disorders induced by cannabis are of more relevance, e.g. cognitive disorders, amotivational syndrome, psychoses and delusional disorders as well as physical and psychological dependence. The withdrawal symptoms are usually mild and do not require pharmacological interventions. To date there is no established pharmacotherapy for relapse prevention. Psychosocial interventions include psychoeducation, behavioral therapy and motivational enhancement. The CANDIS protocol is the best established German intervention among abstinence-oriented therapies.

  12. Induced seismicity. Final report

    International Nuclear Information System (INIS)

    Segall, P.

    1997-01-01

    The objective of this project has been to develop a fundamental understanding of seismicity associated with energy production. Earthquakes are known to be associated with oil, gas, and geothermal energy production. The intent is to develop physical models that predict when seismicity is likely to occur, and to determine to what extent these earthquakes can be used to infer conditions within energy reservoirs. Early work focused on earthquakes induced by oil and gas extraction. Just completed research has addressed earthquakes within geothermal fields, such as The Geysers in northern California, as well as the interactions of dilatancy, friction, and shear heating, on the generation of earthquakes. The former has involved modeling thermo- and poro-elastic effects of geothermal production and water injection. Global Positioning System (GPS) receivers are used to measure deformation associated with geothermal activity, and these measurements along with seismic data are used to test and constrain thermo-mechanical models

  13. Macroscopic Optomechanically Induced Transparency

    Science.gov (United States)

    Pate, Jacob; Castelli, Alessandro; Martinez, Luis; Thompson, Johnathon; Chiao, Ray; Sharping, Jay

    Optomechanically induced transparency (OMIT) is an effect wherein the spectrum of a cavity resonance is modified through interference between coupled excitation pathways. In this work we investigate a macroscopic, 3D microwave, superconducting radio frequency (SRF) cavity incorporating a niobium-coated, silicon-nitride membrane as the flexible boundary. The boundary supports acoustic vibrational resonances, which lead to coupling with the microwave resonances of the SRF cavity. The theoretical development and physical understanding of OMIT for our macroscopic SRF cavity is the same as that for other recently-reported OMIT systems despite vastly different optomechanical coupling factors and device sizes. Our mechanical oscillator has a coupling factor of g0 = 2 π . 1 ×10-5 Hz and is roughly 38 mm in diameter. The Q = 5 ×107 for the SRF cavity allows probing of optomechanical effects in the resolved sideband regime.

  14. [Glucocorticoid induced osteoporosis].

    Science.gov (United States)

    Anić, Branimir; Mayer, Miroslav

    2014-01-01

    Secondary osteoporosis most often develops due to glucocorticoid therapy. Glucocorticoids affect all stages of the bone remodeling cycle, its formation and resorption. Osteoblasts are primarily affected, decreasing their activity and enhancing apoptosis. Patients treated with glucocorticoids have lower bone mineral density and increased fracture risk. Glucocorticoid-induced osteoporosis can be prevented by administering the minimal effective dose of glucocorticoids, calcium and vitamin D supplementation or, if possible, by hormone replace- ment therapy. Moreover, appropriate physical activity should be encouraged. Patients who are at higher risk for low-energy fractures (for example post-menopausal women) have to be actively treated, usually with antiresorptive drugs among which bisphosphonates are currently the first line therapy.

  15. Radiation induced genomic instability

    International Nuclear Information System (INIS)

    Morgan, W.

    2003-01-01

    This presentation will focus on delayed genetic effects occurring in the progeny of cells after exposure to ionizing radiation. We have developed a model system for investigating those genetic effects occurring multiple generations after radiation exposure. The presentation will describe some of the delayed effects observed after radiation exposures including delayed chromosomal rearrangements, and recombination events as determined by a plasmid based assay system. We will present new data on how changes in gene expression as measured by differential display and DNA microarray analysis provides a mechanism by which cells display a memory of irradiation, and introduce candidate genes that may play a role in initiating and perpetuation the unstable phenotype. These results will be discussed in terms of the recently described non-targeted Death Inducing Effect (DIE) where by secreted factors from clones of unstable cells can elicit effects in non irradiated cells and may serve to perpetuate the unstable phenotype in cells that themselves were not irradiated

  16. Radiation induced pesticidal microbes

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S.

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants

  17. Alcohol-Induced Blackout

    Directory of Open Access Journals (Sweden)

    Dai Jin Kim

    2009-11-01

    Full Text Available For a long time, alcohol was thought to exert a general depressant effect on the central nervous system (CNS. However, currently the consensus is that specific regions of the brain are selectively vulnerable to the acute effects of alcohol. An alcohol-induced blackout is the classic example; the subject is temporarily unable to form new long-term memories while relatively maintaining other skills such as talking or even driving. A recent study showed that alcohol can cause retrograde memory impairment, that is, blackouts due to retrieval impairments as well as those due to deficits in encoding. Alcoholic blackouts may be complete (en bloc or partial (fragmentary depending on severity of memory impairment. In fragmentary blackouts, cueing often aids recall. Memory impairment during acute intoxication involves dysfunction of episodic memory, a type of memory encoded with spatial and social context. Recent studies have shown that there are multiple memory systems supported by discrete brain regions, and the acute effects of alcohol on learning and memory may result from alteration of the hippocampus and related structures on a cellular level. A rapid increase in blood alcohol concentration (BAC is most consistently associated with the likelihood of a blackout. However, not all subjects experience blackouts, implying that genetic factors play a role in determining CNS vulnerability to the effects of alcohol. This factor may predispose an individual to alcoholism, as altered memory function during intoxication may affect an individual‟s alcohol expectancy; one may perceive positive aspects of intoxication while unintentionally ignoring the negative aspects. Extensive research on memory and learning as well as findings related to the acute effects of alcohol on the brain may elucidate the mechanisms and impact associated with the alcohol- induced blackout.

  18. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  19. Prolactin induces adrenal hypertrophy

    Directory of Open Access Journals (Sweden)

    E.J. Silva

    2004-02-01

    Full Text Available Although adrenocorticotropic hormone is generally considered to play a major role in the regulation of adrenal glucocorticoid secretion, several reports have suggested that other pituitary hormones (e.g., prolactin also play a significant role in the regulation of adrenal function. The aim of the present study was to measure the adrenocortical cell area and to determine the effects of the transition from the prepubertal to the postpubertal period on the hyperprolactinemic state induced by domperidone (4.0 mg kg-1 day-1, sc. In hyperprolactinemic adult and young rats, the adrenals were heavier, as determined at necropsy, than in the respective controls: adults (30 days: 0.16 ± 0.008 and 0.11 ± 0.007; 46 days: 0.17 ± 0.006 and 0.12 ± 0.008, and 61 days: 0.17 ± 0.008 and 0.10 ± 0.004 mg for treated and control animals, respectively; P < 0.05, and young rats (30 days: 0.19 ± 0.003 and 0.16 ± 0.007, and 60 days: 0.16 ± 0.006 and 0.13 ± 0.009 mg; P < 0.05. We selected randomly a circular area in which we counted the nuclei of adrenocortical cells. The area of zona fasciculata cells was increased in hyperprolactinemic adult and young rats compared to controls: adults: (61 days: 524.90 ± 47.85 and 244.84 ± 9.03 µm² for treated and control animals, respectively; P < 0.05, and young rats: (15 days: 462.30 ± 16.24 and 414.28 ± 18.19; 60 days: 640.51 ± 12.91 and 480.24 ± 22.79 µm²; P < 0.05. Based on these data we conclude that the increase in adrenal weight observed in the hyperprolactinemic animals may be due to prolactin-induced adrenocortical cell hypertrophy.

  20. Congruence properties of induced representations

    DEFF Research Database (Denmark)

    Mayer, Dieter; Momeni, Arash; Venkov, Alexei

    In this paper we study representations of the projective modular group induced from the Hecke congruence group of level 4 with Selberg's character. We show that the well known congruence properties of Selberg's character are equivalent to the congruence properties of the induced representations...

  1. Laser-induced nuclear fusion

    International Nuclear Information System (INIS)

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  2. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  3. Chemotherapy-induced hypocalcemia.

    Science.gov (United States)

    Ajero, Pia Marie E; Belsky, Joseph L; Prawius, Herbert D; Rella, Vincent

    2010-01-01

    To present a unique case of transient, asymptomatic chemotherapy-induced hypocalcemia not attributable to hypomagnesemia or tumor lysis syndrome and review causes of hypocalcemia related to cancer with and without use of chemotherapy. We present a case detailing the clinical and laboratory findings of a patient who had severe hypocalcemia during chemotherapy and discuss causes of hypocalcemia with an extensive literature review of chemotherapeutic agents associated with this biochemical abnormality. In a 90-year-old man, hypocalcemia developed during 2 courses of chemotherapy for Hodgkin lymphoma, with partial recovery between courses and normal serum calcium 10 months after completion of treatment. Magnesium, vitamin D, and parathyroid hormone levels were low normal. There was no evidence of tumor lysis syndrome. Of the various agents administered, vinca alkaloids seemed the most likely cause. Serial testing suggested that the underlying mechanism may have been acquired, reversible hypoparathyroidism. No other similar case was found in the published literature. The severe hypocalcemia in our patient could not be attributed to hypomagnesemia or tumor lysis syndrome, and it was clearly associated with the timing of his chemotherapeutic regimen. Possibilities include direct parathyroid hormone suppression or alteration of calcium sensing by the chemotherapeutic drugs. Serum calcium surveillance before and during chemotherapeutic management of cancer patients may reveal more instances and provide insight into the exact mechanism of this lesser known yet striking complication.

  4. Collision-induced coherence

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1985-01-01

    Collision-induced coherence is based on the elimination of phase correlations between coherent Feynman-type pathways which happen to interfere destructively in the absence of damping for certain nonlinear processes. One consequence is the appearance of the extra resonances in four-wave light mixing experiments, for which the intensity increases with increasing buffer gas pressure. These resonances may occur between a pair of initially unpopulated excited states, or between a pair of initially equally populated ground states. The pair of levels may be Zeeman substrates which became degenerate in zero magnetic field. The resulting collision-enhanced Hanle resonances can lead to very sharp variations in the four-wave light mixing signal as the external magnetic field passes through zero. The theoretical description in terms of a coherence grating between Zeeman substrates is equivalent to a description in terms of a spin polarization grating obtained by collision-enhanced transverse optical pumping. The axis of quantization in the former case is taken perpendicular to the direction of the light beams; in the latter case is taken parallel to this direction

  5. Linezolid induced retinopathy.

    Science.gov (United States)

    Park, Dae Hyun; Park, Tae Kwann; Ohn, Young-Hoon; Park, Jong Sook; Chang, Jee Ho

    2015-12-01

    While optic neuropathy is a well-known cause of visual disturbances in linezolid-treated patients, the possibility of linezolid-related retinopathy has not been investigated. Here, we report a case of retinopathy demonstrated by multifocal electroretinogram (mfERG) in a linezolid-treated patient. A 61-year-old man with extensively drug-resistant pulmonary tuberculosis treated with linezolid for 5 months presented with painless loss of vision in both eyes. The patient's best corrected visual acuity was 20/50 in the right eye and 20/100 in the left eye. Fundus examination revealed mild disc edema, and color vision was defective in both eyes. Humphrey visual field tests showed a superotemporal field defect in the right eye and central and pericentral field defect in the left eye. Optical coherence tomography (OCT) revealed only mild optic disc swelling. In mfERG, central amplitudes were depressed in both eyes. Four months after the cessation of linezolid, visual acuity was restored to 20/20 right eye and 20/25 left eye. The color vision and visual field had improved. The OCT and mfEFG findings improved as well. Although the clinical features were similar to linezolid-induced optic neuropathy, the mfERG findings suggest the possibility of a retinopathy through cone dysfunction.

  6. Food-induced anaphylaxis.

    Science.gov (United States)

    Järvinen, Kirsi M

    2011-06-01

    Food-induced anaphylaxis is the leading single cause of anaphylaxis treated in emergency departments and increasing in prevalence. Food allergy is an increasing problem in westernized countries around the world, with a cumulative prevalence of 3-6%. Peanut, tree nuts, and shellfish are the most commonly implicated foods in anaphylaxis, although milk is a common trigger in children. Asthmatics, adolescents, and those with a prior reaction are at increased risk for more severe reactions. Most first reactions and reactions in children most commonly occur at home, whereas most subsequent reactions and reactions in adults occur outside home. Studies on schools have identified inadequate management plans and symptom recognition whereas those on restaurants report lack of prior notification by allergic individuals and lack in staff education. Epinephrine, although underutilized is the drug of choice with multiple doses needed in up to one-fifth of reactions. Diagnosis is currently based on convincing history and allergy testing supported by elevated serum tryptase, if available. Long-term management includes strict avoidance and emergency action plan. With a growing population of food-allergic children and adults, markers to predict which individuals are at increased risk for anaphylaxis as well as new therapies are vigorously sought.

  7. Methaemoglobinemia Induced by MDMA?

    Directory of Open Access Journals (Sweden)

    L. L. W. Verhaert

    2011-01-01

    Full Text Available Case. A 45-year-old man with a blank medical history presented at the emergency room with dizziness and cyanosis. Physical examination showed cyanosis with a peripheral saturation (SpO2 of 85%, he did not respond to supplemental oxygen. Arterial blood gas analysis showed a striking chocolate brown colour. Based on these data, we determined the arterial methaemoglobin concentration. This was 32%. We gave 100% oxygen and observed the patient in a medium care unit. The next day, patient could be discharged in good condition. Further inquiry about exhibitions and extensive history revealed that the patient used MDMA (3,4- methylenedioxymethamphetamine, the active ingredient of ecstasy. Conclusion. Acquired methaemoglobinemia is a condition that occurs infrequently, but is potentially life threatening. Different nutrients, medications, and chemicals can induce methaemoglobinemia by oxidation of haemoglobin. The clinical presentation of a patient with methaemoglobinemia is due to the impossibility of O2 binding and transport, resulting in tissue hypoxia. Important is to think about methaemoglobin in a patient who presents with cyanosis, a peripheral saturation of 85% that fails to respond properly to the administration of O2. Because methaemoglobin can be reduced physiologically, it is usually sufficient to remove the causative agent, to give O2, and to observe the patient.

  8. Induced mutations in castor

    International Nuclear Information System (INIS)

    Ganesan, K.; Javad Hussain, H.S.; Vindhiyavarman, P.

    2001-01-01

    Castor (Ricinus communis L.) is an important oilseed crop in India. To create variability mutations were induced in two cultivars 'TMV5' (maturing in 130-140 days) and 'CO1' (perennial type). Gamma rays and diethyl sulphate and ethidium bromide were used for seed treatment. Ten doses, from 100 to 1000 Gy were employed. For chemical mutagenesis five concentrations of mutagenes from 10 to 50 mM were tried. No economic mutants could be isolated after treatment with the chemical mutagens. The following economic mutants were identified in the dose 300 Gy of gamma rays. Annual types from perennial CO 1 castor CO 1 is a perennial variety (8-10 years) with bold seeds (100 seed weight 90 g) and high oil content (57%). Twenty-one lines were isolated with annual types (160-180 days) with high yield potential as well as bold seeds and high oil content. These mutants, identified in M 3 generation were bred true in subsequent generations up to M 8 generation. Critical evaluation of the mutants in yield evaluation trials is in progress

  9. Laughter-induced syncope.

    Science.gov (United States)

    Kim, Alexander J; Frishman, William H

    2012-01-01

    Reported cases of syncope caused directly by laughter are rare. The common scenario described in a few reports involved episodes of fortuitous laughter, sometimes followed by a short prodrome of lightheadedness, facial flushing, and dizziness, followed by an episode of definite syncope. There were no seizure-like movements, automatisms, or bladder or bowel incontinence. After the syncopal episodes that were seconds in length, the patients regained consciousness, and at that point were fully oriented. These episodes could recur in a similar situation with such laughter. Many of these patients subsequently underwent full syncope workups, without elucidating a primary cardiac or neurologic cause. In this review of laughter-induced syncope, we describe a patient of ours who fit these descriptions. This phenomenon is likely a subtype of benign Valsalva-related syncope, with autonomic reflex arcs coming into play that ultimately result in global cerebral hypoperfusion. Besides the Valsalva produced by a great fit of laughter, laughter itself has its own neuroendocrine and vasculature effects that may play a role.

  10. Radiation-induced cerebrovasculopathy

    International Nuclear Information System (INIS)

    Ikeyama, Yukihide; Abiko, Seisho; Kurokawa, Yasushi; Okamura, Tomomi; Watanabe, Kohsaku; Inoue, Shinichi; Fujii, Yasuhiro.

    1993-01-01

    We reported a patient who suffered from cerebrovasculopathy after irradiation therapy for astrocytoma located at the left temporal lobe. An eleven year-old boy who presented with headache and vomiting received partial removal of a tumor. Histological diagnosis of the tumor was astrocytoma (grade II). His preoperative cerebral angiograms showed mass sign solely, without stenosis or occlusion of the cerebral vessel. Postoperatively, he was treated with irradiation therapy involving the whole brain with a total of 30 Gy, and gamma knife therapy. Six months after irradiation, he started suffering from frequent cerebral ischemic attacks, but there was no regrowth of the tumor visible on CT scans. Cerebral angiograms were made again, and revealed multifocal stenoses in the bilateral internal carotid arteries, middle cerebral arteries, and the anterior cerebral artery. His symptoms did not improve after conservative treatment with steroids, calcium antagonist, or low molecular weight dextran. Although he received a superficial temporal artery-middle cerebral artery (STA-MCA) anastomoses bilaterally, multiple cerebral infarctions appeared. Although irradiation therapy is acceptable in patients with brain tumor, cerebrovasculopathy after irradiation should be considered as one of the most important complications, and the risk incurred by irradiation therapy should lead to more careful consideration and caution when treating intracranial brain tumors, especially in children. From our experience, the usefulness of bypass surgery for radiation-induced cerebrovasculopathy is still controversial. (author)

  11. Temozolomide-Induced Myelodysplasia

    Directory of Open Access Journals (Sweden)

    Ethan A. Natelson

    2010-01-01

    Full Text Available A patient who had received temozolomide (TMZ as a single agent in treatment of malignant glioma developed therapy-induced myelodysplasia (T-MDS. TMZ is an orally active imidazotetrazine which methylates guanine residues in DNA, ultimately causing single and double-strand DNA breaks leading to apoptotic cell death. TMZ does not chemically cross-link DNA and is considered a nonclassical alkylating agent, similar in structure and activity to dacarbazine. Observations on this patient, and on similarly treated others, suggest that the cumulative dose threshold (CDT for TMZ that predisposes to T-MDS and which may potentially lead to acute myeloid leukemia (T-AML is around 18000 to 20000 mg/sq m. Although the incidence of T-MDS and the predisposing CDT of TMZ may differ from that of other potentially leukemogenic compounds currently and formerly used as chemotherapeutic agents, all alkylating agents, including TMZ, should be considered potentially leukemogenic when administered long term.

  12. Microbiologically induced corrosion

    International Nuclear Information System (INIS)

    Stein, A.A.

    1988-01-01

    Biological attack is a problem that can affect all metallic materials in a variety of environments and systems. In the power industry, corrosion studies have focused on condensers and service water systems where slime, barnacles, clams, and other macro-organisms are easily detected. Efforts have been made to eliminate the effect of these organisms through the use of chlorination, backflushing, organic coating, or thermal shock. The objective is to maintain component performance by eliminating biofouling and reducing metallic corrosion. Recently, corrosion of power plant components by micro-organisms (bacteria) has been identified even in very clean systems. A system's first exposure to microbiologically induced corrosion (MIC) occurs during its first exposure to an aqueous environment, such as during hydrotest or wet layup. Corrosion of buried pipelines by sulfate-reducing bacteria has been studied by the petrochemical industry for years. This paper discusses various methods of diagnosing, monitoring, and controlling MIC in a variety of systems, as well as indicates areas where further study is needed

  13. Doxycycline induced Esophagitis

    Directory of Open Access Journals (Sweden)

    Banu Karakus Yilmaz

    2014-02-01

    Full Text Available Esophagitis is a hazardous condition such as acid reflux of esophageal mucosa, infection, systemic diseases, radiation, drugs and trauma. Drug- induced esophagial injury (DIEI is a disease with the use of variety of drugs that caused serious damage and ulcer in the mucosa of the esophagus. The most commonly implicated drugs are non-steroidal anti-inflammatory drugs (NSAIDs, chloride and especially antibiotics. Thirty-six year-old female patient presented to the emergency department with odynophagia during swallowing and complaining of retrosternal pain. One week before 100 mg doxycycline (2x1 PO for therapeutic abortion were prescribed. It was learned that in the third day of the initiation of medication, the patient\\'s symptoms began and stopped using drug by the fourth day due to advers effect of drugs, but her symptoms didn’t regressed although she didn’t use them. Endoscopy appointment was taken, proton pump inhibitor and antiacid treatment was given, than patient was discharged from the emergency department. In the endoscopy, 20 mm segment esophageal ulcer was seen approximately in the 30.th cm of the esophagius. DIEI is a relatively common, although under-recognized, so this case was presented for remainding DIEI to emergency medicine personals and reweiving its diagnosis, treatment and follow-up.

  14. Ceftazidime-induced thrombocytopenia.

    Science.gov (United States)

    Domingo-Chiva, E; Díaz-Rangel, M; Monsalve-Naharro, J Á; Cuesta-Montero, P; Catalá-Ripoll, J V; García-Martínez, E M

    2017-12-01

    Ceftazidime is an antibiotic belonging to the group of third generation cephalosporins, frequently used in clinical practice for its broad antibacterial spectrum. A case report is presented on a 78-year-old man who entered the intensive care unit due to respiratory failure secondary to nosocomial pneumonia in the postoperative period of a laparoscopic hepatic bisegmentectomy for a hepatocarcinoma. It required invasive mechanical ventilation and was treated with ceftazidime, developing a progressive decrease in platelet count after the onset of this drug and after re-exposure to it, not coinciding with the introduction of other drugs. The adverse reaction was reported to the Spanish pharmacosurveillance system and according to the Naranjo algorithm the causal relationship was probable. Since no case of ceftazidime-induced thrombocytopenia was found in the literature, we consider knowledge of it relevant as an adverse effect to be taken into account given its potential severity, especially when it cannot be explained by other causes. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Neutron induced electron radiography

    International Nuclear Information System (INIS)

    Andrade, Marcos Leandro Garcia

    2008-01-01

    In the present paper a new radiography technique, the 'Neutron Induced Electron Radiography' - NIER, to inspect low thickness samples on the order of micra, has been developed. This technique makes use of low energy electrons as penetrating radiation generated from metallic gadolinium screens when irradiated by thermal neutrons. The conditions to obtain the best image for the conventional X-ray film Kodak-AA were determined by using a digital system to quantify the darkening level of the film. The irradiations have been performed at a radiography equipment installed at the beam-hole no. 8 of the 5 MW IEA-R1 nuclear research reactor of IPEN-CNEN/SP. The irradiation time to obtain the best radiography was 100 seconds and for such condition the technique was able to discern 1 μm in 24 μm of aluminum at a resolution of 32 μm. By visual comparison the images obtained by the NIER shown a higher quality when compared with the ones from other usual techniques the make use of electrons a penetrating radiation and films for image registration. Furthermore the use of the digital system has provided a smaller time for data acquisition and data analysis as well as an improvement in the image visualization. (author)

  16. Ion-induced sputtering

    International Nuclear Information System (INIS)

    Yamamura, Yasumichi; Shimizu, Ryuichi; Shimizu, Hazime; Ito, Noriaki.

    1983-01-01

    The research on ion-induced sputtering has been continued for a long time, since a hundred or more years ago. However, it was only in 1969 by Sigmund that the sputtering phenomena were theoretically arranged into the present form. The reason why the importance of sputtering phenomena have been given a new look recently is the application over wide range. This paper is a review centering around the mechanism of causing sputtering and its characteristics. Sputtering is such a phenomenon that the atoms in the vicinity of a solid surface are emitted into vacuum by receiving a part of ion energy, or in other words, it is a kind of irradiation damage in the vicinity of a solid surface. In this meaning, it can be considered that the sputtering based on the ions located on the clean surface of a single element metal is simple, and has already been basically understood. On the contrary, the phenomena can not be considered to be fully understood in the case of alloys and compounds, because these surface conditions under irradiation are not always clear due to segregation and others. In the paper, the physical of sputtering, single element sputtering, the sputtering in alloys and compounds, and the behaviour of emitted particles are explained. Finally, some recent topics of the sputtering measurement by laser resonant excitation, the sputtering by electron excitation, chemical sputtering, and the sputtering in nuclear fusion reactors are described. (Wakatsuki, Y.)

  17. Tumor-induced osteomalacia

    Science.gov (United States)

    Chong, William H; Molinolo, Alfredo A; Chen, Clara C; Collins, Michael T

    2012-01-01

    Tumor-induced osteomalacia (TIO) is a rare and fascinating paraneoplastic syndrome in which patients present with bone pain, fractures, and muscle weakness. The cause is high blood levels of the recently identified phosphate and vitamin D-regulating hormone, fibroblast growth factor 23 (FGF23). In TIO, FGF23 is secreted by mesenchymal tumors that are usually benign, but are typically very small and difficult to locate. FGF23 acts primarily at the renal tubule and impairs phosphate reabsorption and 1α-hydroxylation of 25-hydroxyvitamin D, leading to hypophosphatemia and low levels of 1,25-dihydroxy vitamin D. A step-wise approach utilizing functional imaging (F-18 fluorodeoxyglucose positron emission tomography and octreotide scintigraphy) followed by anatomical imaging (computed tomography and/or magnetic resonance imaging), and, if needed, selective venous sampling with measurement of FGF23 is usually successful in locating the tumors. For tumors that cannot be located, medical treatment with phosphate supplements and active vitamin D (calcitriol or alphacalcidiol) is usually successful; however, the medical regimen can be cumbersome and associated with complications. This review summarizes the current understanding of the pathophysiology of the disease and provides guidance in evaluating and treating these patients. Novel imaging modalities and medical treatments, which hold promise for the future, are also reviewed. PMID:21490240

  18. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Henry F., E-mail: Hal.Duncan@dental.tcd.ie [Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2 (Ireland); Smith, Anthony J. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom); Fleming, Garry J.P. [Material Science Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Trinity College Dublin, Dublin (Ireland); Cooper, Paul R. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom)

    2013-06-10

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.

  19. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    International Nuclear Information System (INIS)

    Duncan, Henry F.; Smith, Anthony J.; Fleming, Garry J.P.; Cooper, Paul R.

    2013-01-01

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2

  20. An Injectable Method for Posterior Lateral Spine Fusion

    Science.gov (United States)

    2015-09-01

    osteoclast selective protease site which allows for removal of the biomaterial during bone remodeling. 2. KEY WORDS: BMP2, Spine Fusion, PEG hydrogel...desired fusion site. During the course of this grant application we observed that in the rat model, we were unable to induce the heterotopic bone ...the site of HO is active. Additionally, we confirmed that the lack of bone formation after delivery of the microspheres to larger animal models

  1. Laxative-induced rhabdomyolysis

    Directory of Open Access Journals (Sweden)

    Alfonso Merante

    2010-03-01

    Full Text Available Alfonso Merante1, Pietro Gareri2,3, Norma Maria Marigliano2, Salvatore De Fazio2, Elvira Bonacci1, Carlo Torchia1, Gaetano Russo1, Pasquale Lacroce1, Roberto Lacava3, Alberto Castagna3, Giovambattista De Sarro2, Giovanni Ruotolo11Geriatrist, Geriatric Unit “Pugliese-Ciaccio” Hospital, Catanzaro, Italy; 2Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, University Magna Graecia of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini University Hospital, Catanzaro, Italy; 3Geriatrist, Operative Unit Elderly Health Care, Catanzaro, ItalyAbstract: The present study describes a case of laxative-induced rhabdomyolysis in an elderly patient. An 87-year-old woman was hospitalized for the onset of confusion, tremors, an inability to walk, and a fever that she had been experiencing for 36 hours. She often took high dosages of lactulose and sorbitol syrup as a laxative (about 70 g/day. During her physical examination, the patient was confused, drowsy, and she presented hyposthenia in her upper and lower limbs, symmetric and diffuse moderate hyporeflexia, and her temperature was 37.8°C. Laboratory tests revealed severe hyponatremia with hypokalemia, hypocalcemia, hypochloremia, and metabolic alkalosis. Moreover, rhabdomyolysis markers were found. The correction of hydroelectrolytic imbalances with saline, potassium and sodium chlorure, calcium gluconate was the first treatment. During her hospitalization the patient presented acute delirium, treated with haloperidol and prometazine chloridrate intramuscularly. She was discharged 12 days later, after resolution of symptoms, and normalized laboratory tests. Over-the-counter drugs such as laxatives are usually not considered dangerous; on the other hand, they may cause serum electrolytic imbalance and rhabdomyolysis. A careful monitoring of all the drugs taken by the elderly is one of the most important duties of a physician since drug interactions and

  2. Tumour-induced osteomalacia.

    Science.gov (United States)

    Minisola, Salvatore; Peacock, Munro; Fukumoto, Seijii; Cipriani, Cristiana; Pepe, Jessica; Tella, Sri Harsha; Collins, Michael T

    2017-07-13

    Tumour-induced osteomalacia (TIO), also known as oncogenic osteomalacia, is a rare paraneoplastic disorder caused by tumours that secrete fibroblast growth factor 23 (FGF23). Owing to the role of FGF23 in renal phosphate handling and vitamin D synthesis, TIO is characterized by decreased renal tubular reabsorption of phosphate, by hypophosphataemia and by low levels of active vitamin D. Chronic hypophosphataemia ultimately results in osteomalacia (that is, inadequate bone mineralization). The diagnosis of TIO is usually suspected when serum phosphate levels are chronically low in the setting of bone pain, fragility fractures and muscle weakness. Locating the offending tumour can be very difficult, as the tumour is often very small and can be anywhere in the body. Surgical removal of the tumour is the only definitive treatment. When the tumour cannot be located or when complete resection is not possible, medical treatment with phosphate salts or active vitamin D is necessary. One of the most promising emerging treatments for unresectable tumours that cause TIO is the anti-FGF23 monoclonal antibody KRN23. The recent identification of a fusion of fibronectin and fibroblast growth factor receptor 1 (FGFR1) as a molecular driver in some tumours not only sheds light on the pathophysiology of TIO but also opens the door to a better understanding of the transcription, translocation, post-translational modification and secretion of FGF23, as well as suggesting approaches to targeted therapy. Further study will reveal if the FGFR1 pathway is also involved in tumours that do not harbour the translocation.

  3. Catecholamine induced cardiomyopathy in pheochromocytoma

    Directory of Open Access Journals (Sweden)

    Ron Thomas Varghese

    2013-01-01

    Full Text Available Catecholamine induced cardiomyopathy in the setting of pheochromocytoma is an unusual clinical entity. Earlier studies have reported left ventricular dysfunction in around 10% of subjects with pheochromocytoma. [1] Catecholamine induced vasoconstriction, direct toxic effect of byproducts of catecholamine degradation and direct receptor-mediated mechanisms are thought to contribute to cardiomyopathy in subjects with pheochromocytoma. The presentation remains a diagnostic challenge as patients may already have hypertensive heart disease and acute coronary syndrome on account of uncontrolled secondary hypertension. We report a case of a 42-year-old male, who presented with features of pheochromocytoma induced cardiomyopathy.

  4. Cisplatin-Induced Eosinophilic Pneumonia

    Directory of Open Access Journals (Sweden)

    Hideharu Ideguchi

    2014-01-01

    Full Text Available A 67-year-old man suffering from esophageal cancer was admitted to our hospital complaining of dyspnea and hypoxemia. He had been treated with cisplatin, docetaxel, and fluorouracil combined with radiotherapy. Chest computed tomography revealed bilateral ground-glass opacity, and bronchoalveolar lavage fluid showed increased eosinophils. Two episodes of transient eosinophilia in peripheral blood were observed after serial administration of anticancer drugs before the admission, and drug-induced lymphocyte stimulation test to cisplatin was positive. Thus cisplatin-induced eosinophilic pneumonia was suspected, and corticosteroid was effectively administered. To our knowledge, this is the first reported case of cisplatin-induced eosinophilic pneumonia.

  5. Cuscuta chinensis extract promotes osteoblast differentiation and mineralization in human osteoblast-like MG-63 cells.

    Science.gov (United States)

    Yang, Hyun Mo; Shin, Hyun-Kyung; Kang, Young-Hee; Kim, Jin-Kyung

    2009-02-01

    The aim of the present study was to investigate whether the aqueous extract of To-Sa-Za (TSZ-AE), the seed of Cuscuta chinensis Lam., which is a traditional medicinal herb commonly used in Korea and other oriental countries, could induce osteogenic activity in human osteoblast-like MG-63 cells. TSZ-AE treatment mildly promoted the proliferation of MG-63 cells at doses of 500 and 1,000 microg/mL in the 24-hour culture period. Dose-dependent increases in alkaline phosphatase (ALP) activity and collagen synthesis were shown at 48 and 72 hours of incubation. The release of bone morphogenetic protein (BMP)-2 but not osteocalcin in the MG-63 cells was induced by TSZ-AE at 72 hours (100-1,000 microg/mL). In addition, TSZ-AE markedly increased mRNA expression of ALP, collagen, and BMP-2 in the MG-63 cells in a dose-dependent manner. Mineralization in the culture of MG-63 cells was significantly induced at 500 and 1,000 microg/mL TSZ-AE treatment. In conclusion, this study shows that TSZ-AE enhanced ALP activity, collagen synthesis, BMP-2 expression, and mineralization in MG-63 cells. These results strongly suggest that C. chinensis can play an important role in osteoblastic bone formation and may possibly lead to the development of bone-forming drugs.

  6. Effect of gingival fibroblasts and ultrasound on dogs' root resorption during orthodontic treatment.

    Science.gov (United States)

    Crossman, Jacqueline; Hassan, Ali H; Saleem, Ali; Felemban, Nayef; Aldaghreer, Saleh; Fawzi, Elham; Farid, Mamdouh; Abdel-Ghaffar, Khaled; Gargoum, Ausama; El-Bialy, Tarek

    2017-01-01

    To investigate the effect of using osteogenic induced gingival fibroblasts (OIGFs) and low intensity pulsed ultrasound (LIPUS) on root resorption lacunae volume and cementum thickness in beagle dogs that received orthodontic tooth movement. Seven beagle dogs were used, from which gingival cells (GCs) were obtained and were induced osteogenically to produce OIGFs. Each third and fourth premolar was randomly assigned to one of the five groups, namely, LIPUS, OIGFs, bone morphogenetic protein-2 (BMP-2), OIGFs + LIPUS, and control. All groups received 4 weeks of bodily tooth movement, then LIPUS-treated groups received LIPUS for 20 min/day for 4 weeks, and OIGFs groups received an injection of OIGFs near the root apex. Microcomputed tomography analysis was used to calculate root resorption lacunae volume and histomorphometric analysis was performed to measure the cementum thickness of each root at 3 root levels on compression and tension sides. There was no significant difference in resorption volume between the treatment groups. OIGFs + LIPUS increased cementum thickness ( P > 0.05) in third premolars near the apex, and LIPUS increased cementum thickness ( P > 0.05) in fourth premolars near the apex. Furthermore, BMP2 increased cementum thickness at the coronal third at the compression side. OIGFs, LIPUS, and BMP-2 can be potential treatments for orthodontically induced root resorption, however, improvements in experimental design and treatment parameters are required to further investigate these repair modalities.

  7. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean,

  8. Tumor-induced osteomalacia

    Directory of Open Access Journals (Sweden)

    Pablo Florenzano

    2017-12-01

    Full Text Available Tumor-induced osteomalacia (TIO is a rare paraneoplastic syndrome clinically characterized by bone pain, fractures and muscle weakness. It is caused by tumoral overproduction of fibroblast growth factor 23 (FGF23 that acts primarily at the proximal renal tubule, decreasing phosphate reabsorption and 1α-hydroxylation of 25 hydroxyvitamin D, thus producing hypophosphatemia and osteomalacia. Lesions are typically small, benign mesenchymal tumors that may be found in bone or soft tissue, anywhere in the body. In up to 60% of these tumors, a fibronectin-1(FN1 and fibroblast growth factor receptor-1 (FGFR1 fusion gene has been identified that may serve as a tumoral driver. The diagnosis is established by the finding of acquired chronic hypophosphatemia due to isolated renal phosphate wasting with concomitant elevated or inappropriately normal blood levels of FGF23 and decreased or inappropriately normal 1,25-OH2-Vitamin D (1,25(OH2D. Locating the tumor is critical, as complete removal is curative. For this purpose, a step-wise approach is recommended, starting with a thorough medical history and physical examination, followed by functional imaging. Suspicious lesions should be confirmed by anatomical imaging, and if needed, selective venous sampling with measurement of FGF23. If the tumor is not localized, or surgical resection is not possible, medical therapy with phosphate and active vitamin D is usually successful in healing the osteomalacia and reducing symptoms. However, compliance is often poor due to the frequent dosing regimen and side effects. Furthermore, careful monitoring is needed to avoid complications such us secondary/tertiary hyperparathyroidism, hypercalciuria, and nephrocalcinosis. Novel therapeutical approaches are being developed for TIO patients, such as image-guided tumor ablation and medical treatment with the anti-FGF23 monoclonal antibody KRN23 or anti FGFR medications. The case of a patient with TIO is presented to

  9. Infrasonic induced ground motions

    Science.gov (United States)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  10. [Medical induced abortion].

    Science.gov (United States)

    Bettahar, K; Pinton, A; Boisramé, T; Cavillon, V; Wylomanski, S; Nisand, I; Hassoun, D

    2016-12-01

    Updated clinical recommendations for medical induced abortion procedure. A systematic review of French and English literature, reviewing the evidence relating to the provision of medical induced abortion was carried out on PubMed, Cochrane Library and international scientific societies recommendations. The effectiveness of medical abortion is higher than 95% when the protocols are adjusted to gestational age (EL1). Misoprostol alone is less effective than a combination of mifepristone and misoprostol (EL1). Gemeprost is less effective than misoprostol (EL2). The dose of 200mg of mifepristone should be preferred to 600mg (NP1, Rank A). Mifepristone can be taken at home (professional agreement). The optimum interval between mifepristone and misoprostol intake should be 24 to 48 hours (EL1, grade A). Before 7 weeks LMP, the dose of 400μg misoprostol should be given orally (EL1, grade A) eventually repeated after 3hours if no bleeding occurs. For optimal effectiveness between 7 and 14 LMP, the interval between mifepristone and misoprostol should not be shortened to less than 8hours (grade 1). An interval of 24 to 48hours will not affect the effectiveness of the method provided misoprostol dosage is 800μg (EL1). Vaginal, sublingual or buccal routes of administration are more effective and better tolerated than the oral route, which should be abandoned (EL1). An amount of 800μg sublingual or buccal misoprostol route has the same effectiveness than the vaginal route but more gastrointestinal side effects (EL1, grade A). Between 7 and 9 LMP, it does not seem necessary to repeat misoprostol dose whereas it should be repeated beyond 9 SA (grade B). Between 9 and 14 LMP, the dose of 400μg misoprostol given either vaginally, buccally or sublingually should be repeated every 3hours if needed (with a maximum of 5 doses) (EL2, grade B). There is no strong evidence supporting routine antibiotic prophylaxis for medical abortion (professional agreement). Rare contraindications

  11. Mutations induced in plant breeding

    International Nuclear Information System (INIS)

    Barriga B, P.

    1984-01-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented. (Author)

  12. Mutations induced in plant breeding

    Energy Technology Data Exchange (ETDEWEB)

    Barriga B, P. (Universidad Austral de Chile, Valdivia. Inst. de Produccion y Sanidad Vegetal)

    1984-10-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented.

  13. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  14. Mitochondrial Swelling Induced by Glutathione

    Science.gov (United States)

    Lehninger, Albert L.; Schneider, Marion

    1959-01-01

    Reduced glutathione, in concentrations approximating those occurring in intact rat liver, causes swelling of rat liver mitochondria in vitro which is different in kinetics and extent from that yielded by L-thyroxine. The effect is also given by cysteine, which is more active, and reduced coenzyme A, but not by L-ascorbate, cystine, or oxidized glutathione. The optimum pH is 6.5, whereas thyroxine-induced swelling is optimal at pH 7.5. The GSH-induced swelling is not inhibited by DNP or dicumarol, nor by high concentrations of sucrose, serum albumin, or polyvinylpyrrolidone, in contrast to thyroxine-induced swelling. ATP inhibits the GSH swelling, but ADP and AMP are ineffective. Mn-+ is a very potent inhibitor, but Mg++ is ineffective. Ethylenediaminetetraacetate is also an effective inhibitor of GSH-induced swelling. The respiratory inhibitors amytal and antimycin A do not inhibit the swelling action of GSH, but cyanide does; these findings are consistent with the view that the oxidation-reduction state of the respiratory chain between cytochrome c and oxygen is a determinant of GSH-induced swelling. Reversal of GSH-induced swelling by osmotic means or by ATP in KCl media could not be observed. Large losses of nucleotides and protein occur during the swelling by GSH, suggesting that the action is irreversible. The characteristically drastic swelling action of GSH could be prevented if L-thyroxine was also present in the medium. PMID:13630941

  15. Induced mutations in sesame breeding

    International Nuclear Information System (INIS)

    Ashri, A.

    2001-01-01

    The scope of induced mutations in sesame (Sesamum indicum L.) breeding is reviewed. So far in Egypt, India, Iraq, Rep. of Korea, and Sri Lanka, 14 officially released varieties have been developed through induced mutations: 12 directly and 2 through cross breeding (one using the 'dt45' induced mutant from Israel). For another variety released in China there are no details. The induced mutations approach was adopted primarily in order to obtain genetic variability that was not available in the germplasm collection. The mutagens commonly applied have been gamma rays, EMS and sodium azide. Sesame seeds can withstand high mutagen doses, and there are genotypic differences in sensitivity between varieties. The mutants induced in the above named countries and others include better yield, improved seed retention, determinate habit, modified plant architecture and size, more uniform and shorter maturation period, earliness, resistance to diseases, genic male sterility, seed coat color, higher oil content and modified fatty acids composition. Some of the induced mutants have already given rise to improved varieties, the breeding value of other mutants is now being assessed and still others can serve as useful markers in genetic studies and breeding programmes. (author)

  16. Victim-induced criminality.

    Science.gov (United States)

    Fooner, M

    1966-09-02

    about the probable effects on the administration of criminal justice. These are pragmatic problems; there is a third problem which may at this time seem speculative, but is, nevertheless, quite important. 3) To what extent will a particular proposal for victim compensation contribute to a temptation-opportunity pattern in victim behavior? In previous studies it has been pointed out that large numbers of our fellow Americans have tended to acquire casual money-handling habits-generically designated "carelessness"-which contribute to the national growth of criminality. How the victim helps the criminal was sketched in reports of those studies (10). It was made abundantly clear that human beings in our affluent society cannot be assumed to be prudent or self-protective against the hazards of crime. Even when the "victim" is not overtly acting to commit a crime-as in the case of the property owner who hires an arsonist-he often tempts the offender. Among the victims of burglary-statistically the most prevalent crime in the United States-are a substantial number of Americans who keep cash, jewelry, and other valuables carelessly at home or in hotel rooms to which the burglar has easy access through door or window. Victims of automobile theft-one of the fastest growing classes of crime-include drivers who leave the vehicle or its contents invitingly accessible to thieves. And so on with other classes of crime. As pointed out in previous studies, when victim behavior follows a temptation-opportunity pattern, it (i) contributes to a "climate of criminal inducements," (ii) adds to the economic resources available to criminal societies, and (iii) detracts from the ability of lawenforcement agencies to suppress the growth of crime.

  17. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Zhao, Cancan; Wang, Xiaoya; Gao, Long; Jing, Linguo; Zhou, Quan; Chang, Jiang

    2018-06-01

    The micro/nano hybrid structure is considered to be a biomaterial characteristic to stimulate osteogenesis by mimicking the three-dimensional structure of the bone matrix. However, the mechanism of the hybrid structure induced osteogenic differentiation of stem cells is still unknown. For elucidating the mechanisms, one of the challenge is to directly fabricate micro/nano hybrid structure on bioceramics because of its brittleness. In this study, hydroxyapatite (HA) bioceramics with the micro/nano hybrid structure were firstly fabricated via a hydrothermal treatment and template method, and the effect of the different surface structures on the expression of integrins, BMP2 signaling pathways and cell-cell communication was investigated. Interestingly, the results suggested that the osteogenic differentiation induced by micro/nano structures was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, while activated BMP2 could in turn activate integrins and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect. The micro/nano hybrid structure has been found to have synergistic bioactivity on osteogenesis. However, it is still a challenge

  18. Trauma-Induced Heterotopic Ossification Regulates the Blood-Nerve Barrier

    Directory of Open Access Journals (Sweden)

    Zbigniew Gugala

    2018-06-01

    Full Text Available De novo bone formation can occur in soft tissues as a result of traumatic injury. This process, known as heterotopic ossification (HO, has recently been linked to the peripheral nervous system. Studies suggest that HO may resemble neural crest-derived bone formation and is activated through the release of key bone matrix proteins leading to opening of the blood-nerve barrier (BNB. One of the first steps in this process is the activation of a neuro-inflammatory cascade, which results in migration of chondro-osseous progenitors, and other cells from both the endoneurial and perineurial regions of the peripheral nerves. The perineurial cells undergo brown adipogenesis, to form essential support cells, which regulate expression and activation of matrix metallopeptidase 9 (MMP9 an essential regulatory protein involved in opening the BNB. However, recent studies suggest that, in mice, a key bone matrix protein, bone morphogenetic protein 2 (BMP2 is able to immediately cross the BNB to activate signaling in specific cells within the endoneurial compartment. BMP signaling correlates with bone formation and appears critical for the induction of HO. Surprisingly, several other bone matrix proteins have also been reported to regulate the BNB, leading us to question whether these matrix proteins are important in regulating the BNB. However, this temporary regulation of the BNB does not appear to result in degeneration of the peripheral nerve, but rather may represent one of the first steps in innervation of the newly forming bone.

  19. Cordyceps sinensis health supplement enhances recovery from taxol-induced leukopenia.

    Science.gov (United States)

    Liu, Wei-Chung; Chuang, Wei-Ling; Tsai, Min-Lung; Hong, Ji-Hong; McBride, William H; Chiang, Chi-Shiun

    2008-04-01

    This study aimed to evaluate the ability of the health food supplement Cordyceps sinensis (CS) to ameliorate suppressive effects of chemotherapy on bone marrow function as a model for cancer treatment. Mice were treated with Taxol (17 mg/kg body wt) one day before oral administration of a hot-water extract of CS (50 mg/kg daily) that was given daily for 3 weeks. White blood cell counts in peripheral blood of mice receiving Taxol were at 50% of normal levels on day 28 but had recovered completely in mice treated with CS. In vitro assays showed that CS enhanced the colony-forming ability of both granulocyte macrophage colony forming unit (GM-CFU) and osteogenic cells from bone marrow preparations and promoted the differentiation of bone marrow mesenchymal stromal cells into adipocytes, alkaline phosphatase-positive osteoblasts, and bone tissue. This result could be attributed to enhanced expression of Cbfa1 (core binding factor a) and BMP-2 (bone morphogenetic protein) with concurrent suppression of ODF (osteoclast differentiation factor/RANK [receptor activator of NF-kappaB]) ligand. In summary, CS enhances recovery of mice from leukopenia caused by Taxol treatment. It appears to do so by protecting both hematopoietic progenitor cells directly and the bone marrow stem cell niche through its effects on osteoblast differentiation.

  20. Diet-induced obesity attenuates fasting-induced hyperphagia.

    Science.gov (United States)

    Briggs, D I; Lemus, M B; Kua, E; Andrews, Z B

    2011-07-01

    Obesity impairs arcuate (ARC) neuropeptide Y (NPY)/agouti-releated peptide (AgRP) neuronal function and renders these homeostatic neurones unresponsive to the orexigenic hormone ghrelin. In the present study, we investigated the effect of diet-induced obesity (DIO) on feeding behaviour, ARC neuronal activation and mRNA expression following another orexigenic stimulus, an overnight fast. We show that 9 weeks of high-fat feeding attenuates fasting-induced hyperphagia by suppressing ARC neuronal activation and hypothalamic NPY/AgRP mRNA expression. Thus, the lack of appropriate feeding responses in DIO mice to a fast is caused by failure ARC neurones to recognise and/or respond to orexigenic cues. We propose that fasting-induced hyperphagia is regulated not by homeostatic control of appetite in DIO mice, but rather by changes in the reward circuitry. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.

  1. Sociocultural determinants of induced abortion.

    Science.gov (United States)

    Korejo, Razia; Noorani, Khurshid Jehan; Bhutta, Shereen

    2003-05-01

    To determine the frequency of induced abortion and identify the role of sociocultural factors contributing to termination of pregnancy and associated morbidity and mortality in hospital setting. Prospective observational study. The study was conducted in the Department of Obstetrics and Gynaecology, Jinnah Postgraduate Medical Centre, Karachi from January 1999 to June 2001. The patients who were admitted for induced abortion were interviewed in privacy. On condition of anonymity they were asked about the age, parity, family setup and relationships, with particular emphasis on sociocultural reasons and factors contributing to induction of abortion. Details of status of abortionist and methods used for termination of pregnancy, the resulting complications and their severity were recorded. Out of total admissions, 57(2.35%) gave history of induced abortion. All women belonged to low socioeconomic class and 59.6% of them were illiterate. Forty-three (75.5%) of these women had never practiced contraception. Twenty-four (42%) were grandmultiparae and did not want more children. In 29 women (50.9%) the decision for abortion had been supported by the husband. In 25 women (43.8%) abortion was carried out by Daiyan (traditional midwives). Serious complications like uterine perforation with or without bowel injury were encountered in 25 (43.8%) of these women. During the study period illegally induced abortion accounted for 6 (10.5%) maternal deaths. Prevalence of poverty, illiteracy, grand multiparity and non-practice of contraception are strong determinants of induced abortion.

  2. Sociocultural determinants of induced abortion

    International Nuclear Information System (INIS)

    Korejo, R.; Noorani, K.J.; Bhutta, S.

    2003-01-01

    Objective: To determine the frequency of induced abortion and identity the role of sociocultural factors contributing to termination of pregnancy and associated morbidity and mortality in hospital setting. Subjects and Methods: The patients who were admitted for induced abortion were interviewed in privacy. On condition of anonymity they were asked about the age, parity, family setup and relationships, with particular emphasis on sociocultural reasons and factors contributing to induction of abortion. Details of status of abortionist and methods used for termination of pregnancy, the resulting complications and their severity were recorded. Results: Out of total admissions, 57(2.35%) gave history of induced abortion. All women belonged to low socioeconomic class and 59.6% of them were illiterate. Forty-three (75.5%) of these women had never practiced concentration. Twenty-four (42%) were grandmultiparae and did not want more children. In 29 women (50.9%) the decision for abortion had been supported by the husband. In 25 (43.8%) abortion was carried out by Daiyan (traditional midwives). Serious complications like uterine perforation with or without bowel injury were encouraged in 25 (43.8%) of these women. During the study period illegally induced abortion accounted for 6 (10.5%) maternal deaths. Conclusion: Prevalence of poverty, illiteracy, grand multiparity and non-practice of contraception are strong determinants of induced abortion. (author)

  3. Hydroxyurea-Induced Replication Stress

    Directory of Open Access Journals (Sweden)

    Kenza Lahkim Bennani-Belhaj

    2010-01-01

    Full Text Available Bloom's syndrome (BS displays one of the strongest known correlations between chromosomal instability and a high risk of cancer at an early age. BS cells combine a reduced average fork velocity with constitutive endogenous replication stress. However, the response of BS cells to replication stress induced by hydroxyurea (HU, which strongly slows the progression of replication forks, remains unclear due to publication of conflicting results. Using two different cellular models of BS, we showed that BLM deficiency is not associated with sensitivity to HU, in terms of clonogenic survival, DSB generation, and SCE induction. We suggest that surviving BLM-deficient cells are selected on the basis of their ability to deal with an endogenous replication stress induced by replication fork slowing, resulting in insensitivity to HU-induced replication stress.

  4. Uterine contraction induced by Ghanaian plants used to induce abortion

    DEFF Research Database (Denmark)

    Larsen, Birgitte HV; Soelberg, Jens; Kristiansen, Uffe

    2016-01-01

    Ethnomedicinal observations from the time of the Atlantic slave trade show women in Ghana historically used plants as emmenagogues (menstruation stimulants) and to induce abortion. This study investigates the effect of four of these plants on uterine contraction. The historically used plants were...

  5. Pump cavitation and inducer design

    International Nuclear Information System (INIS)

    Heslenfeld, M.W.; Hes, M. de

    2002-01-01

    Details of past work on sodium pump development and cavitation studies executed mainly for SNR 300 were reported earlier. Among the requirements for large sodium pumps are long life (200000 hours up to 300000 hours) and small size of impeller and pump, fully meeting the process and design criteria. These criteria are the required 'Q, H, r characteristics' in combination with a low NPSH value and the avoidance of cavitation damage to the pump. The pump designer has to develop a sound hydraulic combination consisting of suction arrangement, impeller design and diffuser. On the other hand the designer is free to choose an optimal pump speed. The pump speed in its turn influences the rotor dynamic pump design and the pump drive. The introduction of the inducer as an integral part of the pump design is based on following advantages: no tip cavitation; (possible) cavitation bubbles move to the open centre due to centrifugal forces on the fluid; the head of the inducer improves the inlet conditions of the impeller. The aim of an inducer is the increase in the suction specific speed (SA value) of a pump whereby the inducer functions as a pressure source improving the impeller inlet conditions. With inducer-impeller combinations values up to SA=15000 are realistic. With the use of an inducer the overall pump sizes can be reduced with Ca. 30%. Pumps commonly available have SA values up to a maximum of ca. 10000. A development programme was executed for SNR 300 in order to reach an increase of the suction specific speed of the impeller from SA 8200 to SA 11000. Further studies to optimize pumps design for the follow up line introduced the 'inducer acting as a pre-impeller' development. This programme was executed in the period 1979-1981. At the FDO premises a scale 1 2.8 inducer impeller combination with a suction specific speed SA=15000 was developed, constructed and tested at the water test rig. This water test rig is equipped with a perspex pipe allowing also visualisation

  6. Induced piezoelectricity in isotropic biomaterial.

    Science.gov (United States)

    Zimmerman, R L

    1976-01-01

    Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers.Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389

  7. Drug-induced hair loss.

    Science.gov (United States)

    2016-05-01

    Hair loss can have major psychological consequences. It can be due to a wide variety of causes, including hormonal disorders, dietary factors, infections, inflammation, trauma, emotional factors, and cancer. Drugs can also induce hair loss, by interacting with the hair growth cycle. Drug-induced hair loss may be immediate or delayed, sudden or gradual, and diffuse or localised. It is usually reversible after drug discontinuation. The drugs most often implicated in hair loss are anticancer agents, interferon, azole antifungals, lithium, immunosuppressants, and many other drugs belonging to a variety of pharmacological classes.

  8. Induced radioactivity in LDEF components

    Science.gov (United States)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1992-01-01

    A systematic study of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is being carried out in order to gather information about the low earth orbit radiation environment and its effects on materials. The large mass of the LDEF spacecraft, its stabilized configuration, and long mission duration have presented an opportunity to determine space radiation-induced radioactivities with a precision not possible before. Data presented include preliminary activities for steel and aluminum structural samples, and activation subexperiment foils. Effects seen in the data show a clear indication of the trapped proton anisotropy in the South Atlantic Anomaly and suggest contributions from different sources of external radiation fluxes.

  9. Cyclophosphamide-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Siemann, D.W.; Macler, L.; Penney, D.P.

    1986-01-01

    Unlike radiation effects, pulmonary toxicity following drug treatments may develop soon after exposure. The dose-response relationship between Cyclophosphamide and lung toxicity was investigated using increased breathing frequency assays used successfully for radiation induced injury. The data indicate that release of protein into the alveolus may play a significant role in Cy induced pulmonary toxicity. Although the mechanism responsible for the increased alveolar protein is as yet not identified, the present findings suggest that therapeutic intervention to inhibit protein release may be an approach to protect the lungs from toxic effects. (UK)

  10. Induced modules over group algebras

    CERN Document Server

    Karpilovsky, Gregory

    1990-01-01

    In 1898 Frobenius discovered a construction which, in present terminology, associates with every module of a subgroup the induced module of a group. This construction proved to be of fundamental importance and is one of the basic tools in the entire theory of group representations.This monograph is designed for research mathematicians and advanced graduate students and gives a picture of the general theory of induced modules as it exists at present. Much of the material has until now been available only in research articles. The approach is not intended to be encyclopedic, rather each topic is

  11. Exorcising ghosts in induced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Narain, Gaurav [Chinese Academy of Sciences (CAS), Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Beijing (China)

    2017-10-15

    Unitarity of the scale-invariant coupled theory of higher-derivative gravity and matter is investigated. A scalar field coupled with a Dirac fermion is taken as the matter sector. Following the idea of induced gravity the Einstein-Hilbert term is generated via dynamical symmetry breaking of scale invariance. The renormalisation group flows are computed and one-loop RG improved effective potential of scalar is calculated. The scalar field develops a new minimum via the Coleman-Weinberg procedure inducing the Newton constant and masses in the matter sector. The spin-2 problematic ghost and the spin-0 mode of the metric fluctuation get a mass in the broken phase of the theory. The energy dependence of the vacuum expectation value in the RG improved scenario implies a running for the induced parameters. This sets up platform to ask whether it is possible to evade the spin-2 ghost by keeping its mass always above the running energy scale? In broken phase this question is satisfactorily answered for a large domain of coupling parameter space where the ghost is evaded. The spin-0 mode can be made physically realisable or not depending upon the choice of the initial parameters. The induced Newton constant is seen to vanish in the ultraviolet case. By properly choosing parameters it is possible to make the matter fields physically unrealisable. (orig.)

  12. Eye changes induced by radium

    International Nuclear Information System (INIS)

    Taylor, G.N.; Lloyd, R.D.; Shabestari, Lorraine; Angus, Walter; Muggenburg, B.A.

    1989-01-01

    This report presents some features of the radium induced eye syndrome observed in beagles, including the prominence of intraocular pigmentary lesions and compares these with the results of rodent studies (Onychomys leucogaster) featuring a heavily pigmented uvea, and with the radiation syndrome reported in humans. (author)

  13. On condensation-induced waves

    NARCIS (Netherlands)

    Cheng, W.; Luo, X.; Dongen, van M.E.H.

    2010-01-01

    Complex wave patterns caused by unsteady heat release due to cloud formation in confined compressible flows are discussed. Two detailed numerical studies of condensation-induced waves are carried out. First, the response of a flow of nitrogen in a slender Laval nozzle to a sudden addition of water

  14. Hydralazine-induced constrictive pericarditis

    NARCIS (Netherlands)

    Franssen, CFC; ElGamal, MIH; Gans, ROB; Hoorntje, SJ

    A 59-year-old man was diagnosed as having constrictive pericarditis 17 months after a typical hydralazine-induced autoimmune syndrome, This late complication of hydralazine has been reported only once. Ten years later the patient was found to have anti-neutrophil cytoplasmic antibodies directed

  15. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  16. Food-Induced Acute Pancreatitis.

    Science.gov (United States)

    Manohar, Murli; Verma, Alok K; Upparahalli Venkateshaiah, Sathisha; Goyal, Hemant; Mishra, Anil

    2017-12-01

    Food allergy, a commonly increasing problem worldwide, defined as an adverse immune response to food. A variety of immune-related effector cells such as mast cells, eosinophils, neutrophils, and T cells are involved in food-related allergic responses categorized as IgE mediated, non-IgE mediated, and mixed (IgE and non-IgE) depending upon underlying immunological mechanisms. The dietary antigens mainly target the gastrointestinal tract including pancreas that gets inflamed due to food allergy and leads acute pancreatitis. Reports indicate several food proteins induce pancreatitis; however, detailed underlying mechanism of food-induced pancreatitis is unexplored. The aim of the review is to understand and update the current scenario of food-induced pancreatitis. A comprehensive literature search of relevant research articles has been performed through PubMed, and articles were chosen based on their relevance to food allergen-mediated pancreatitis. Several cases in the literature indicate that acute pancreatitis has been provoked after the consumption of mustard, milk, egg, banana, fish, and kiwi fruits. Food-induced pancreatitis is an ignored and unexplored area of research. The review highlights the significance of food in the development of pancreatitis and draws the attention of physicians and scientists to consider food allergies as a possible cause for initiation of pancreatitis pathogenesis.

  17. Local Anesthetic-Induced Neurotoxicity

    NARCIS (Netherlands)

    Verlinde, Mark; Hollmann, Markus W.; Stevens, Markus F.; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-01-01

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk

  18. Ventilator and viral induced inflammation

    NARCIS (Netherlands)

    Hennus, M.P.

    2013-01-01

    This thesis expands current knowledge on ventilator induced lung injury and provides insights on the immunological effects of mechanical ventilation during viral respiratory infections. The experimental studies in the first part of this thesis improve our understanding of how mechanical ventilation

  19. UV-induced skin damage

    International Nuclear Information System (INIS)

    Ichihashi, M.; Ueda, M.; Budiyanto, A.; Bito, T.; Oka, M.; Fukunaga, M.; Tsuru, K.; Horikawa, T.

    2003-01-01

    Solar radiation induces acute and chronic reactions in human and animal skin. Chronic repeated exposures are the primary cause of benign and malignant skin tumors, including malignant melanoma. Among types of solar radiation, ultraviolet B (290-320 nm) radiation is highly mutagenic and carcinogenic in animal experiments compared to ultraviolet A (320-400 nm) radiation. Epidemiological studies suggest that solar UV radiation is responsible for skin tumor development via gene mutations and immunosuppression, and possibly for photoaging. In this review, recent understanding of DNA damage caused by direct UV radiation and by indirect stress via reactive oxygen species (ROS) and DNA repair mechanisms, particularly nucleotide excision repair of human cells, are discussed. In addition, mutations induced by solar UV radiation in p53, ras and patched genes of non-melanoma skin cancer cells, and the role of ROS as both a promoter in UV-carcinogenesis and an inducer of UV-apoptosis, are described based primarily on the findings reported during the last decade. Furthermore, the effect of UV on immunological reaction in the skin is discussed. Finally, possible prevention of UV-induced skin cancer by feeding or topical use of antioxidants, such as polyphenols, vitamin C, and vitamin E, is discussed

  20. Spaceflight-Induced Intracranial Hypertension.

    Science.gov (United States)

    Michael, Alex P; Marshall-Bowman, Karina

    2015-06-01

    Although once a widely speculated about and largely theoretical topic, spaceflight-induced intracranial hypertension has gained acceptance as a distinct clinical phenomenon, yet the underlying physiological mechanisms are still poorly understood. In the past, many terms were used to describe the symptoms of malaise, nausea, vomiting, and vertigo, though longer duration spaceflights have increased the prevalence of overlapping symptoms of headache and visual disturbance. Spaceflight-induced visual pathology is thought to be a manifestation of increased intracranial pressure (ICP) because of its similar presentation to cases of known intracranial hypertension on Earth as well as the documentation of increased ICP by lumbar puncture in symptomatic astronauts upon return to gravity. The most likely mechanisms of spaceflight-induced increased ICP include a cephalad shift of body fluids, venous outflow obstruction, blood-brain barrier breakdown, and disruption to CSF flow. The relative contribution of increased ICP to the symptoms experienced during spaceflight is currently unknown, though other factors recently posited to contribute include local effects on ocular structures, individual differences in metabolism, and the vasodilator effects of carbon dioxide. This review article attempts to consolidate the literature regarding spaceflight-induced intracranial hypertension and distinguish it from other pathologies with similar symptomatology. It discusses the proposed physiological causes and the pathological manifestations of increased ICP in the spaceflight environment and provides considerations for future long-term space travel. In the future, it will be critical to develop countermeasures so that astronauts can participate at their peak potential and return safely to Earth.

  1. Isolating highly connected induced subgraphs

    DEFF Research Database (Denmark)

    Penev, Irena; Thomasse, Stephan; Trotignon, Nicolas

    2016-01-01

    We prove that any graph G of minimum degree greater than 2k(2) - 1 has a (k + 1)-connected induced subgraph H such that the number of vertices of H that have neighbors outside of H is at most 2k(2) - 1. This generalizes a classical result of Mader, which states that a high minimum degree implies ...

  2. Ultrasound-induced radical polymerization

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; Kemmere, M.F.; Keurentjes, J.T.F.

    2004-01-01

    Sonochemistry comprises all chemical effects that are induced by ultrasound. Most of these effects are caused by cavitations, ie, the collapse of microscopic bubbles in a liquid. The chemical effects of ultrasound include the formation of radicals and the enhancement of reaction rates at ambient

  3. Transdermal hyoscine induced unilateral mydriasis.

    LENUS (Irish Health Repository)

    Hannon, Breffni

    2012-03-20

    The authors present a case of unilateral mydriasis in a teenager prescribed transdermal hyoscine hydrobromide (scopolamine) for chemotherapy induced nausea and vomiting. The authors discuss the ocular side-effects associated with this particular drug and delivery system and the potential use of transdermal hyoscine as an antiemetic agent in this group.

  4. Late onset startle induced tics

    NARCIS (Netherlands)

    Tijssen, MAJ; Brown, P; Morris, HR; Lees, A

    1999-01-01

    Three cases of late onset Gilles de la Tourette's syndrome are presented. The motor ties were mainly induced by an unexpected startling stimulus, but the startle reflex was not exaggerated. The ties developed after physical trauma or a period of undue emotional stress. Reflex ties may occur in

  5. Late onset startle induced tics

    NARCIS (Netherlands)

    Tijssen, M. A.; Brown, P.; Morris, H. R.; Lees, A.

    1999-01-01

    Three cases of late onset Gilles de la Tourette's syndrome are presented. The motor tics were mainly induced by an unexpected startling stimulus, but the startle reflex was not exaggerated. The tics developed after physical trauma or a period of undue emotional stress. Reflex tics may occur in

  6. Visualization of induced electric fields

    NARCIS (Netherlands)

    Deursen, van A.P.J.

    2005-01-01

    A cylindrical electrolytic tank between a set of Helmholtz coils provides a classroom demonstration of induced, nonconservative electric fields. The field strength is measured by a sensor consisting of a pair of tiny spheres immersed in the liquid. The sensor signal depends on position, frequency,

  7. Lithium-induced downbeat nystagmus.

    Science.gov (United States)

    Schein, Flora; Manoli, Pierre; Cathébras, Pascal

    2017-09-01

    We report the case of a 76-year old lady under lithium carbonate for a bipolar disorder who presented with a suspected optic neuritis. A typical lithium-induced downbeat nystagmus was observed. Discontinuation of lithium therapy resulted in frank improvement in visual acuity and disappearance of the nystagmus.

  8. A BMP responsive transcriptional region in the chicken type X collagen gene.

    Science.gov (United States)

    Volk, S W; Luvalle, P; Leask, T; Leboy, P S

    1998-10-01

    Bone morphogenetic proteins (BMPs) were originally identified by their ability to induce ectopic bone formation and have been shown to promote both chondrogenesis and chondrocyte hypertrophy. BMPs have recently been found to activate a membrane serine/threonine kinase signaling mechanism in a variety of cell types, but the downstream effectors of BMP signaling in chondrocyte differentiation remain unidentified. We have previously reported that BMP-2 markedly stimulates type X collagen expression in prehypertrophic chick sternal chondrocytes, and that type X collagen mRNA levels in chondrocytes cultured under serum-free (SF) conditions are elevated 3- to 5-fold within 24 h. To better define the molecular mechanisms of induction of chondrocyte hypertrophy by BMPs, we examined the effect of BMPs on type X collagen production by 15-day chick embryo sternal chondrocytes cultured under SF conditions in the presence or absence of 30 ng/ml BMP-2, BMP-4, or BMP-7. Two populations of chondrocytes were used: one representing resting cartilage isolated from the caudal third of the sterna and the second representing prehypertrophic cartilage from the cephalic third of the sterna. BMP-2, BMP-4, and BMP-7 all effectively promoted chondrocyte maturation of cephalic sternal chondrocytes as measured by high levels of alkaline phosphatase, diminished levels of type II collagen, and induction of the hypertrophic chondrocyte-specific marker, type X collagen. To test whether BMP control of type X collagen expression occurs at the transcriptional level, we utilized plasmid constructs containing the chicken collagen X promoter and 5' flanking regions fused to a reporter gene. Constructs were transiently transfected into sternal chondrocytes cultured under SF conditions in the presence or absence of 30 ng/ml BMP-2, BMP-4, or BMP-7. A 533 bp region located 2.4-2.9 kb upstream from the type X collagen transcriptional start site was both necessary and sufficient for strong BMP responsiveness

  9. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering.

    Science.gov (United States)

    Wang, Ping; Song, Yang; Weir, Michael D; Sun, Jinyu; Zhao, Liang; Simon, Carl G; Xu, Hockin H K

    2016-02-01

    Calcium phosphate cements (CPCs) are promising for dental and craniofacial repairs. The objectives of this study were to: (1) develop an injectable cell delivery system based on encapsulation of induced pluripotent stem cell-derived mesenchymal stem cells (iPSMSCs) in microbeads; (2) develop a novel tissue engineered construct by dispersing iPSMSC-microbeads in CPC to investigate bone regeneration in an animal model for the first time. iPSMSCs were pre-osteoinduced for 2 weeks (OS-iPSMSCs), or transduced with bone morphogenetic protein-2 (BMP2-iPSMSCs). Cells were encapsulated in fast-degradable alginate microbeads. Microbeads were mixed with CPC paste and filled into cranial defects in nude rats. Four groups were tested: (1) CPC-microbeads without cells (CPC control); (2) CPC-microbeads-iPSMSCs (CPC-iPSMSCs); (3) CPC-microbeads-OS-iPSMSCs (CPC-OS-iPSMSCs); (4) CPC-microbeads-BMP2-iPSMSCs (CPC-BMP2-iPSMSCs). Cells maintained good viability inside microbeads after injection. The microbeads were able to release the cells which had more than 10-fold increase in live cell density from 1 to 14 days. The cells exhibited up-regulation of osteogenic markers and deposition of minerals. In vivo, new bone area fraction (mean±SD; n=5) for CPC-iPSMSCs group was (22.5±7.6)%. New bone area fractions were (38.9±18.4)% and (44.7±22.8)% for CPC-OS-iPSMSCs group and CPC-BMP2-iPSMSCs group, respectively, 2-3 times the (15.6±11.2)% in CPC control at 12 weeks (pdental and craniofacial bone regenerations. Published by Elsevier Ltd.

  10. Would Be Prophylactic Administrations of Low Concentration of Alendronate an Alternative for Improving the Craniofacial Bone Repair? A Preliminary Study Focused in the Period of Cellular Differentiation and Tissue Organization.

    Science.gov (United States)

    Göhringer, Isabella; Muller, Carmem L Storrer; Cunha, Emanuelle Juliana; Passoni, Giuliene Nunes De Souza; Vieira, Juliana Souza; Zielak, João Cesar; Scariot, Rafaela; Deliberador, Tatiana Miranda; Giovanini, Allan Fernando

    2017-10-01

    Alendronate (ALN) is a nitrogen-bisphosphonate that may induce an anabolic effect on craniofacial bone repair when administrated in low doses. Based on this premise, this study analyzed the influence of prophylactic low doses of ALN on bone healing in defects created in rabbit mandible. A 5 × 2-mm diameter deep defect was created in the calvaria of 28 rabbits. Fourteen of these rabbits received previously 50 μg/kg of 1% sodium ALN for 4 weeks, while the other rabbits received only 0.9% physiological saline solution (control). Animals were euthanized at 15 and 60 days postsurgery (n = 7), and the data were analyzed using histomorphometry and immunohistochemistry using the anti-CD34, bone morphogenetic protein -2 (BMP-2), and transforming growth factor (TGF)-β1 antibodies. On the 15th day postsurgery, the specimens that received previous treatment with ALN demonstrated large vascular lumen and intense positivity to CD34 either concentrated in endothelium or cells spread among the reparative tissue. These results coincided with intense positivity for BMP-2+ cells and TGF-β1 that was concentrated in both cells and perivascular area. In contrast, the control group revealed scarce cells that exhibited CD34, BMP-2+, and the TGF-β1 was restricted for perivascular area on well-formed granulation tissue. These patterns of immunohistochemical result, especially found on the 15th day of analysis, seem to be responsible for the development of larger quantities of bone matrix in the specimens that receive ALN on the 60th day postsurgery. These preliminary results showed that the prophylactic administration of low doses of ALN might be an alternative to craniofacial bone craniofacial bone repair because it increases the immunopositivity for TGF-β1 and consequently improves the CD34+ and BMP-2+ cells on reparative sites.

  11. Influence of cell culture media conditions on the osteogenic differentiation of cord blood-derived mesenchymal stem cells.

    Science.gov (United States)

    Hildebrandt, Cornelia; Büth, Heiko; Thielecke, Hagen

    2009-01-01

    In this study the critical parameters directing osteogenic differentiation of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) were investigated, key factors and conditions identified and improved protocols for a more cell-type adapted differentiation developed. Today only little information about the specific conditions directing osteogenic development is available and current protocols for cultivation and differentiation of UCB-MSCs are based mainly on experience with bone marrow-derived MSCs (BM-MSCs) without further adaptation. Thus, protocols for improved osteoinduction are of particular interest. The goal of this study was to investigate the influence of three different culture media (A) alpha MEM, 15% FBS, (B) DMEM, 15% FBS and (C) MSCGM, 10% SingleQuot growth supplement on the osteogenic differentiation of UCB-MSCs. Moreover, a systematic analysis of two concentrations of dexamethasone (10(-8)M/10(-7)M) in combination with or without BMP-2 (10(-7)M) was carried out by detecting the expression of alkaline phosphatase (ALP), collagen-1 and the mineralization of ECM. We found that MSCGM, 10% SingleQuot had a supportive effect on the osteogenic differentiation of UCB-MSCs. In case of treatment with 10(-8)M dexamethasone, mineralization occurred in combination with BMP-2 exclusively, while a concentration of 10(-7)M dexamethasone led to a high amount of mineralized ECM and the expression of collagen-1 independent of BMP-2 addition. According to this data dexamethasone is the leading osteoinductive factor, but BMP-2 seems to have supportive properties in UCB-MSCs. In conclusion, MSCGM supplemented with 10% SingleQuot and 10(-7)M dexamethasone was the condition identified to be best for inducing the osteogenic differentiation of UCB-MSCs.

  12. Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration

    Directory of Open Access Journals (Sweden)

    La WG

    2014-05-01

    Full Text Available Wan-Geun La,1 Min Jin,1 Saibom Park,1,2 Hee-Hun Yoon,1 Gun-Jae Jeong,1 Suk Ho Bhang,1 Hoyoung Park,1,2 Kookheon Char,1,2 Byung-Soo Kim1,31School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea; 2The National Creative Research Initiative Center for Intelligent Hybrids, Seoul National University, Seoul, Republic of Korea; 3Institute of Bioengineering, Institute of Chemical Processes, Engineering Research Institute, Seoul National University, Seoul, Republic of KoreaAbstract: In this study, we demonstrate that graphene oxide (GO can be used for the delivery of bone morphogenetic protein-2 (BMP-2 and substance P (SP, and that this delivery promotes bone formation on titanium (Ti implants that are coated with GO. GO coating on Ti substrate enabled a sustained release of BMP-2. BMP-2 delivery using GO-coated Ti exhibited a higher alkaline phosphatase activity in bone-forming cells in vitro compared with bare Ti. SP, which is known to recruit mesenchymal stem cells (MSCs, was co-delivered using Ti or GO-coated Ti to further promote bone formation. SP induced the migration of MSCs in vitro. The dual delivery of BMP-2 and SP using GO-coated Ti showed the greatest new bone formation on Ti implanted in the mouse calvaria compared with other groups. This approach may be useful to improve osteointegration of Ti in dental or orthopedic implants.Keywords: bone morphogenetic protein-2, bone regeneration, graphene oxides, stem cell recruitment, substance P

  13. [Mechanism of losartan suppressing vascular calcification in rat aortic artery].

    Science.gov (United States)

    Shao, Juan; Wu, Panfeng; Wu, Jiliang; Li, Mincai

    2016-08-01

    Objective To investigate the effect of the angiotensin II receptor 1 (AT1R) blocker losartan on vascular calcification in rat aortic artery and explore the underlying mechanisms. Methods SD rats were divided randomly into control group, vascular calcification model group and treatment group. Vascular calcification models were made by subcutaneous injection of warfarin plus vitamin K1 for two weeks. Rats in the treatment group were subcutaneously injected with losartan (10 mg/kg) at the end of the first week and consecutively for one week. We observed the morphological changes by HE staining and the calcium deposition by Alizarin red staining in the artery vascular wall. The mRNA expressions of bone morphogenetic protein 2 (BMP2) and Runt-related transcription factor 2 (RUNX2) were analyzed by reverse transcription PCR. The BMP2 and RUNX2 protein expressions were determined by Western blotting. The apoptosis of smooth muscle cells (SMCs) were detected by TUNEL. The AT1R expression was tested by fluorescent immunohistochemistry. Results The aortic vascular calcification was induced by warfarin and vitamin K1. Compared with the vascular calcification model group, the mRNA and protein expressions of BMP2 and RUNX2 were significantly downregulated in the aorta in the losartan treatment group. Furthermore, the apoptosis of SMCs and the AT1R expression obviously decreased. Conclusion AT1R blocker losartan inhibits the apoptosis of SMCs and reduces AT1R expression; it downregulates the BMP2 and RUNX2 expressions in the vascular calcification process.

  14. Significance of soluble growth factors in the chondrogenic response of human umbilical cord matrix stem cells in a porous three dimensional scaffold

    Directory of Open Access Journals (Sweden)

    RS Nirmal

    2013-11-01

    Full Text Available Stem cell based tissue engineering has emerged as a promising strategy for articular cartilage regeneration. Foetal derived mesenchymal stem cells (MSCs with their ease of availability, pluripotency and high expansion potential have been demonstrated to be an attractive cell source over adult MSCs. However, there is a need for optimisation of chondrogenic signals to direct the differentiation of these multipotent MSCs to chondrogenic lineage. In this study we have demonstrated the in vitro chondrogenesis of human umbilical cord matrix MSCs in three dimensional PVA-PCL (polyvinyl alcohol-polycaprolactone scaffolds in the presence of the individual growth factors TGFβ1, TGFβ3, IGF, BMP2 and their combination with BMP2. Gene expression, histology and immunohistology were evaluated after 28 d culture. The induced cells showed the feature of chondrocytes in their morphology and expression of typical chondrogenic extracellular matrix molecules. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, SOX9, collagen type II and aggrecan. The expression of collagen type I and collagen type X was also evaluated. This study has demonstrated the successful chondrogenic induction of human umbilical cord MSCs in 3D scaffolds. Interestingly, the growth factor combination of TGF-β3 and BMP-2 was found to be more effective for chondrogenesis as shown by the real-time PCR studies. The findings of this study suggest the importance of using growth factor combinations for successful chondrogenic differentiation of umbilical cord MSCs.

  15. Msx-1 is suppressed in bisphosphonate-exposed jaw bone analysis of bone turnover-related cell signalling after bisphosphonate treatment.

    Science.gov (United States)

    Wehrhan, F; Hyckel, P; Amann, K; Ries, J; Stockmann, P; Schlegel, Ka; Neukam, Fw; Nkenke, E

    2011-05-01

    Bone-destructive disease treatments include bisphosphonates and antibodies against receptor activator for nuclear factor κB ligand (aRANKL). Osteonecrosis of the jaw (ONJ) is a side-effect. Aetiopathology models failed to explain their restriction to the jaw. The osteoproliferative transcription factor Msx-1 is expressed constitutively only in mature jaw bone. Msx-1 expression might be impaired in bisphosphonate-related ONJ. This study compared the expression of Msx-1, Bone Morphogenetic Protein (BMP)-2 and RANKL, in ONJ-affected and healthy jaw bone. An automated immunohistochemistry-based alkaline phosphatase-anti-alkaline phosphatase method was used on ONJ-affected and healthy jaw bone samples (n = 20 each): cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed to quantitatively compare Msx-1, BMP-2, RANKL and GAPDH mRNA levels. Labelling indices were significantly lower for Msx-1 (P Msx-1, 22-fold lower (P Msx-1, RANKL suppression and BMP-2 induction were consistent with the bisphosphonate-associated osteopetrosis and impaired bone remodelling in BP- and aRANKL-induced ONJ. Msx-1 suppression suggested a possible explanation of the exclusivity of ONJ in jaw bone. Functional analyses of Msx-1- RANKL interaction during bone remodelling should be performed in the future. © 2011 John Wiley & Sons A/S.

  16. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    International Nuclear Information System (INIS)

    Cai, Yurong; Yu, Juhong; Kundu, Subhas C.; Yao, Juming

    2016-01-01

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  17. Diverse bone morphogenetic protein expression profiles and smad pathway activation in different phenotypes of experimental canine mammary tumors.

    Directory of Open Access Journals (Sweden)

    Helena Wensman

    Full Text Available BACKGROUND: BMPs are currently receiving attention for their role in tumorigenesis and tumor progression. Currently, most BMP expression studies are performed on carcinomas, and not much is known about the situation in sarcomas. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the BMP expression profiles and Smad activation in clones from different spontaneous canine mammary tumors. Spindle cell tumor and osteosarcoma clones expressed high levels of BMPs, in particular BMP-2, -4 and -6. Clones from a scirrhous carcinoma expressed much lower BMP levels. The various clones formed different tumor types in nude mice but only clones that expressed high levels of BMP-6 gave bone formation. Phosphorylated Smad-1/5, located in the nucleus, was detected in tumors derived from clones expressing high levels of BMPs, indicating an active BMP signaling pathway and BMP-2 stimulation of mammary tumor cell clones in vitro resulted in activation of the Smad-1/5 pathway. In contrast BMP-2 stimulation did not induce phosphorylation of the non-Smad pathway p38 MAPK. Interestingly, an increased level of the BMP-antagonist chordin-like 1 was detected after BMP stimulation of non-bone forming clones. CONCLUSIONS/SIGNIFICANCE: We conclude that the specific BMP expression repertoire differs substantially between different types of mammary tumors and that BMP-6 expression most probably has a biological role in bone formation of canine mammary tumors.

  18. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yurong; Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kundu, Subhas C. [Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, West Bengal 721302 (India); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-15

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

    <