WorldWideScience

Sample records for bmp signaling mediates

  1. BMP signaling mediates effects of exercise on hippocampal neurogenesis and cognition in mice.

    Directory of Open Access Journals (Sweden)

    Kevin T Gobeske

    Full Text Available Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone morphogenetic protein (BMP signaling mediates the effects of exercise on neurogenesis and cognition in the adult hippocampus. Elective exercise reduces levels of hippocampal BMP signaling before and during its promotion of neurogenesis and learning. Transgenic mice with decreased BMP signaling or wild type mice infused with a BMP inhibitor both exhibit remarkable gains in hippocampal cognitive performance and neurogenesis, mirroring the effects of exercise. Conversely, transgenic mice with increased BMP signaling have diminished hippocampal neurogenesis and impaired cognition. Exercise exposure does not rescue these deficits, suggesting that reduced BMP signaling is required for environmental effects on neurogenesis and learning. Together, these observations show that BMP signaling is a fundamental mechanism linking environmental exposure with changes in cognitive function and cellular properties in the hippocampus.

  2. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish.

    Science.gov (United States)

    Lovely, C Ben; Swartz, Mary E; McCarthy, Neil; Norrie, Jacqueline L; Eberhart, Johann K

    2016-06-01

    The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. PMID:27122171

  3. Matrix-immobilized BMP-2 on microcontact printed fibronectin as in vitro tool to study BMP-mediated signaling and cell migration

    Directory of Open Access Journals (Sweden)

    Kristin eHauff

    2015-05-01

    Full Text Available During development, bone morphogenetic proteins (BMPs exert important functions in several tissues by regulating signaling for cell differentiation and migration. In vivo the extracellular matrix (ECM not only provides a support for adherent cells, but also presents a reservoir of growth factors (GFs. Several constituents of the ECM provide adhesive cues, which serve as binding sites for cell transmembrane receptors, such as integrins, which convey adhesion-mediated signaling to the intracellular compartment. Integrins do not function alone but rather crosstalk and cooperate with other receptors, such as GF receptors, in regulating cell responses to extracellular signals. To this, we present here the immobilization of BMP-2 onto cellular fibronectin (cFN, a key protein of the ECM, to investigate their impact on GF-mediated signaling and migration.Following biotinylation, BMP-2 was linked to biotinylated cFN using NeutrAvidin (NA as cross-linker. Characterization with QCM-D and ELISA confirmed the efficient immobilization of BMP-2 on cFN over a period of 24 h.To validate the bioactivity of matrix-immobilized BMP-2 (iBMP-2 we investigated short- and long-term responses of C2C12 myoblasts in comparison to soluble BMP-2 (sBMP-2 or in absence of GFs. Similarly to sBMP-2, iBMP-2 triggered Smad 1/5 phosphorylation and translocation into the nucleus corresponding to the activation of BMP-mediated Smad-dependent pathway. Additionally, successful suppression of myotube formation was observed after six days.We next implemented this approach to fabricate cFN micro patterned stripes by soft lithography. These stripes only allowed cell-surface interaction on the pattern due to passivation of the surface in between, thus serving as platform for studies on directed cell migration. During a 10 h-period, cells showed an increased migratory activity upon BMP-2 exposure.Thus, this versatile tool retains the GF's bioactivity and allows the presentation of ECM

  4. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    Science.gov (United States)

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration.

  5. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    Science.gov (United States)

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. PMID:25609845

  6. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice.

    Science.gov (United States)

    Nai, Antonella; Rubio, Aude; Campanella, Alessandro; Gourbeyre, Ophélie; Artuso, Irene; Bordini, Jessica; Gineste, Aurélie; Latour, Chloé; Besson-Fournier, Céline; Lin, Herbert Y; Coppin, Hélène; Roth, Marie-Paule; Camaschella, Clara; Silvestri, Laura; Meynard, Delphine

    2016-05-12

    Hepcidin, the main regulator of iron homeostasis, is repressed when erythropoiesis is acutely stimulated by erythropoietin (EPO) to favor iron supply to maturing erythroblasts. Erythroferrone (ERFE) has been identified as the erythroid regulator that inhibits hepcidin in stress erythropoiesis. A powerful hepcidin inhibitor is the serine protease matriptase-2, encoded by TMPRSS6, whose mutations cause iron refractory iron deficiency anemia. Because this condition has inappropriately elevated hepcidin in the presence of high EPO levels, a role is suggested for matriptase-2 in EPO-mediated hepcidin repression. To investigate the relationship between EPO/ERFE and matriptase-2, we show that EPO injection induces Erfe messenger RNA expression but does not suppress hepcidin in Tmprss6 knockout (KO) mice. Similarly, wild-type (WT) animals, in which the bone morphogenetic protein-mothers against decapentaplegic homolog (Bmp-Smad) pathway is upregulated by iron treatment, fail to suppress hepcidin in response to EPO. To further investigate whether the high level of Bmp-Smad signaling of Tmprss6 KO mice counteracts hepcidin suppression by EPO, we generated double KO Bmp6-Tmprss6 KO mice. Despite having Bmp-Smad signaling and hepcidin levels that are similar to WT mice under basal conditions, double KO mice do not suppress hepcidin in response to EPO. However, pharmacologic downstream inhibition of the Bmp-Smad pathway by dorsomorphin, which targets the BMP receptors, improves the hepcidin responsiveness to EPO in Tmprss6 KO mice. We concluded that the function of matriptase-2 is dominant over that of ERFE and is essential in facilitating hepcidin suppression by attenuating the BMP-SMAD signaling. PMID:26755707

  7. β3 integrin-mediated spreading induced by matrix-bound BMP-2 controls Smad signaling in a stiffness-independent manner.

    Science.gov (United States)

    Fourel, Laure; Valat, Anne; Faurobert, Eva; Guillot, Raphael; Bourrin-Reynard, Ingrid; Ren, Kefeng; Lafanechère, Laurence; Planus, Emmanuelle; Picart, Catherine; Albiges-Rizo, Corinne

    2016-03-14

    Understanding how cells integrate multiple signaling pathways to achieve specific cell differentiation is a challenging question in cell biology. We have explored the physiological presentation of BMP-2 by using a biomaterial that harbors tunable mechanical properties to promote localized BMP-2 signaling. We show that matrix-bound BMP-2 is sufficient to induce β3 integrin-dependent C2C12 cell spreading by overriding the soft signal of the biomaterial and impacting actin organization and adhesion site dynamics. In turn, αvβ3 integrin is required to mediate BMP-2-induced Smad signaling through a Cdc42-Src-FAK-ILK pathway. β3 integrin regulates a multistep process to control first BMP-2 receptor activity and second the inhibitory role of GSK3 on Smad signaling. Overall, our results show that BMP receptors and β3 integrin work together to control Smad signaling and tensional homeostasis, thereby coupling cell adhesion and fate commitment, two fundamental aspects of developmental biology and regenerative medicine.

  8. β3 integrin–mediated spreading induced by matrix-bound BMP-2 controls Smad signaling in a stiffness-independent manner

    Science.gov (United States)

    Fourel, Laure; Valat, Anne; Faurobert, Eva; Guillot, Raphael; Bourrin-Reynard, Ingrid; Ren, Kefeng; Lafanechère, Laurence; Planus, Emmanuelle; Albiges-Rizo, Corinne

    2016-01-01

    Understanding how cells integrate multiple signaling pathways to achieve specific cell differentiation is a challenging question in cell biology. We have explored the physiological presentation of BMP-2 by using a biomaterial that harbors tunable mechanical properties to promote localized BMP-2 signaling. We show that matrix-bound BMP-2 is sufficient to induce β3 integrin–dependent C2C12 cell spreading by overriding the soft signal of the biomaterial and impacting actin organization and adhesion site dynamics. In turn, αvβ3 integrin is required to mediate BMP-2–induced Smad signaling through a Cdc42–Src–FAK–ILK pathway. β3 integrin regulates a multistep process to control first BMP-2 receptor activity and second the inhibitory role of GSK3 on Smad signaling. Overall, our results show that BMP receptors and β3 integrin work together to control Smad signaling and tensional homeostasis, thereby coupling cell adhesion and fate commitment, two fundamental aspects of developmental biology and regenerative medicine. PMID:26953352

  9. Augmented noncanonical BMP type II receptor signaling mediates the synaptic abnormality of fragile X syndrome.

    Science.gov (United States)

    Kashima, Risa; Roy, Sougata; Ascano, Manuel; Martinez-Cerdeno, Veronica; Ariza-Torres, Jeanelle; Kim, Sunghwan; Louie, Justin; Lu, Yao; Leyton, Patricio; Bloch, Kenneth D; Kornberg, Thomas B; Hagerman, Paul J; Hagerman, Randi; Lagna, Giorgio; Hata, Akiko

    2016-01-01

    Epigenetic silencing of fragile X mental retardation 1 (FMR1) causes fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. FXS correlates with abnormal synapse and dendritic spine development, but the molecular link between the absence of the FMR1 product FMRP, an RNA binding protein, and the neuropathology is unclear. We found that the messenger RNA encoding bone morphogenetic protein type II receptor (BMPR2) is a target of FMRP. Depletion of FMRP increased BMPR2 abundance, especially that of the full-length isoform that bound and activated LIM domain kinase 1 (LIMK1), a component of the noncanonical BMP signal transduction pathway that stimulates actin reorganization to promote neurite outgrowth and synapse formation. Heterozygosity for BMPR2 rescued the morphological abnormalities in neurons both in Drosophila and in mouse models of FXS, as did the postnatal pharmacological inhibition of LIMK1 activity. Compared with postmortem prefrontal cortex tissue from healthy subjects, the amount of full-length BMPR2 and of a marker of LIMK1 activity was increased in this brain region from FXS patients. These findings suggest that increased BMPR2 signal transduction is linked to FXS and that the BMPR2-LIMK1 pathway is a putative therapeutic target in patients with FXS and possibly other forms of autism. PMID:27273096

  10. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Si, Lina; Shi, Jin; Gao, Wenqun [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Zheng, Min [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Liu, Lingjuan; Zhu, Jing [Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Tian, Jie, E-mail: jietian@cqmu.edu.cn [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China)

    2014-07-18

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  11. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    International Nuclear Information System (INIS)

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  12. BMP signaling requires retromer-dependent recycling of the type I receptor

    OpenAIRE

    Gleason, Ryan J; Akintobi, Adenrele M.; Barth D Grant; Padgett, Richard W.

    2014-01-01

    The mechanisms that mediate bone morphogenetic protein (BMP) receptor recycling, and the importance of such recycling for signaling in vivo, have remained poorly understood. We find that the retromer complex functions as a linchpin in the recycling of the BMP type I receptor SMA-6 (small-6). In the absence of retromer-dependent recycling, retromer mutants result in the missorting of SMA-6 to lysosomes and a loss of BMP-mediated signaling. Surprisingly, we find that the BMP type II receptor, D...

  13. N-cadherin mediated distribution of beta-catenin alters MAP kinase and BMP-2 signaling on chondrogenesis-related gene expression.

    Science.gov (United States)

    Modarresi, Rozbeh; Lafond, Toulouse; Roman-Blas, Jorge A; Danielson, Keith G; Tuan, Rocky S; Seghatoleslami, M Reza

    2005-05-01

    We have examined the effect of calcium-dependent adhesion, mediated by N-cadherin, on cell signaling during chondrogenesis of multipotential embryonic mouse C3H10T1/2 cells. The activity of chondrogenic genes, type II collagen, aggrecan, and Sox9 were examined in monolayer (non-chondrogenic), and micromass (chondrogenic) cultures of parental C3H10T1/2 cells and altered C3H10T1/2 cell lines that express a dominant negative form of N-cadherin (delta390-T1/2) or overexpress normal N-cadherin (MNCD2-T1/2). Our findings show that missexpression or inhibition of N-cadherin in C3H10T1/2 cells results in temporal and spatial changes in expression of the chondrogenic genes Sox9, aggrecan, and collagen type II. We have also analyzed activity of the serum response factor (SRF), a nuclear target of MAP kinase signaling implicated in chondrogenesis. In semi-confluent monolayer cultures (minimum cell-cell contact) of C3H10T1/2, MNCD2-T1/2, or delta390-T1/2 cells, there was no significant change in the pattern of MAP kinase or bone morphogenetic protein-2 (BMP-2) regulation of SRF. However, in micromass cultures, the effect of MAP kinase and BMP-2 on SRF activity was proportional to the nuclear localization of beta-catenin, a Wnt stabilized cytoplasmic factor that can associate with lymphoid enhancer-binding factor (LEF) to serve as a transcription factor. Our findings suggest that the extent of adherens junction formation mediated by N-cadherin can modulate the potential Wnt-induced nuclear activity of beta-catenin. PMID:15723280

  14. BMP signaling in the nephron progenitor niche

    OpenAIRE

    Oxburgh, Leif; Brown, Aaron C.; Fetting, Jennifer; Hill, Beth

    2011-01-01

    Bone morphogenic proteins (BMPs) play diverse roles in embryonic kidney development, regulating essential aspects of both ureteric bud and nephron development. In this review, we provide an overview of reported expression patterns and functions of BMP signaling components within the nephrogenic zone or nephron progenitor niche of the developing kidney. Reported in situ hybridization results are relatively challenging to interpret and sometimes conflicting. Comparing these with high-resolution...

  15. TGF-b/BMP signaling and other molecular events:regulation of osteoblastogenesis and bone formation

    Institute of Scientific and Technical Information of China (English)

    Md Shaifur Rahman; Naznin Akhtar; Hossen Mohammad Jamil; Rajat Suvra Banik; Sikder M Asaduzzaman

    2015-01-01

    Transforming growth factor-beta (TGF-b)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-b/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-b (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-b/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-b/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and b-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-b/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics.

  16. Signaling Crosstalk between PPARγ and BMP2 in Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Ichiro Takada

    2012-01-01

    Full Text Available Recent studies have revealed that PPARγ’s transactivation function is regulated by extracellular signals. In particular, cytokines and Wnt family proteins suppress the ligand-inducible transactivation function of PPARγ and attenuate adipogenesis/osteoblastogenesis switching in mesenchymal stem cells (MSCs. For example, Wnt5a suppresses PPARγ transcriptional activity through the NLK/SETDB1/CHD7 pathway. Among these factors, BMP2 strongly induces bone formation, but the effect of BMP2 on PPARγ function remains unclear. We examined the effect of BMP2 and PPARγ in ST2 cells and found that PPARγ activation affected BMP2’s signaling pathway through epigenetic regulation. Although BMP2 did not interfere with PPARγ-mediated adipogenesis, BMP2 increased mRNA expression levels of PPARγ target genes (such as Fabp4 and Nr1h3 when cells were first treated with troglitazone (TRO. Moreover, PPARγ activation affected BMP2 through enhancement of histone activation markers (acetylated histone H3 and trimethylated Lys4 of histone H3 on the Runx2 promoter. After TRO treatment for three hours, BMP2 enhanced the levels of active histone marks on the promoter of a PPARγ target gene. These results suggest that the order of treatment with BMP2 and a PPARγ ligand is critical for adipogenesis and osteoblastogenesis switching in MSCs.

  17. BMP2 Transfer to Neighboring Cells and Activation of Signaling.

    Science.gov (United States)

    Alborzinia, Hamed; Shaikhkarami, Marjan; Hortschansky, Peter; Wölfl, Stefan

    2016-09-01

    Morphogen gradients and concentration are critical features during early embryonic development and cellular differentiation. Previously we reported the preparation of biologically active, fluorescently labeled BMP2 and quantitatively analyzed their binding to the cell surface and followed BMP2 endocytosis over time on the level of single endosomes. Here we show that this internalized BMP2 can be transferred to neighboring cells and, moreover, also activates downstream BMP signaling in adjacent cells, indicated by Smad1/5/8 phosphorylation and activation of the downstream target gene id1. Using a 3D matrix to modulate cell-cell contacts in culture we could show that direct cell-cell contact significantly increased BMP2 transfer. Using inhibitors of vesicular transport, transfer was strongly inhibited. Interestingly, cotreatment with the physiological BMP inhibitor Noggin increased BMP2 uptake and transfer, albeit activation of Smad signaling in neighboring cells was completely suppressed. Our findings present a novel and interesting mechanism by which morphogens such as BMP2 can be transferred between cells and how this is modulated by BMP antagonists such as Noggin, and how this influences activation of Smad signaling by BMP2 in neighboring cells. PMID:27306974

  18. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors.

    Directory of Open Access Journals (Sweden)

    Ana Boulanger

    Full Text Available Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment and received by the motor neuron (presynaptic compartment resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.

  19. Arsenite suppression of BMP signaling in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Marjorie A.; Qin, Qin [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States); Hu, Qin; Zhao, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Rice, Robert H., E-mail: rhrice@ucdavis.edu [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States)

    2013-06-15

    Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte

  20. Inhibition of Histone Deacetylases Potentiates BMP9-Induced Osteogenic Signaling in Mouse Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Ning Hu

    2013-08-01

    Full Text Available Background/Aims: We have demonstrated that bone morphogenetic protein 9 (BMP9 is one of the most potent BMPs in regulating osteoblast differentiation of mesenchymal stem cells (MSCs although the molecular mechanism underlying BMP9-induced osteogenesis remains to be fully elucidated. It is known that epigenetic regulations play an important role in regulating the stem cell potency and lineage commitment. Here, we investigate if the inhibition of histone deacetylases (Hdacs affects BMP9-induced osteogenic differentiation of MSCs. Methods: Using the Hdac inhibitor trichostatin A (TSA, we assess that TSA enhances BMP9-mediated osteogenic markers and matrix mineralization in MSCs, and bone formation in mouse embryonic limb explants. Results: We find that the endogenous expression of most of the 11 Hdacs is readily detectable in MSCs. BMP9 is shown to induce most Hdacs in MSCs. We demonstrate that TSA potentiates BMP9-induced early osteogenic marker alkaline phosphatase (ALP activity in MSCs, as well as late osteogenic markers osteopontin (OPN and osteocalcin (OCN and matrix mineralization. Fetal limb explant culture studies reveal that TSA potentiates BMP9-induced endochondral bone formation, possibly by expanding hypertrophic chondrocyte zone of growth plate. Conclusion: Our findings strongly suggest histone deacetylases may play an important role in fine-tuning BMP9-mediated osteogenic signaling through a negative feedback network in MSCs. Thus, Hdac inhibitors may be used as novel therapeutics for bone fracture healing.

  1. Identification of small molecule activators of BMP signaling.

    Directory of Open Access Journals (Sweden)

    Karen Vrijens

    Full Text Available Bone Morphogenetic Proteins (BMPs are morphogens that play a major role in regulating development and homeostasis. Although BMPs are used for the treatment of bone and kidney disorders, their clinical use is limited due to the supra-physiological doses required for therapeutic efficacy causing severe side effects. Because recombinant BMPs are expensive to produce, small molecule activators of BMP signaling would be a cost-effective alternative with the added benefit of being potentially more easily deliverable. Here, we report our efforts to identify small molecule activators of BMP signaling. We have developed a cell-based assay to monitor BMP signaling by stably transfecting a BMP-responsive human cervical carcinoma cell line (C33A with a reporter construct in which the expression of luciferase is driven by a multimerized BMP-responsive element from the Id1 promoter. A BMP-responsive clone C33A-2D2 was used to screen a bioactive library containing ∼5,600 small molecules. We identified four small molecules of the family of flavonoids all of which induced luciferase activity in a dose-dependent manner and ventralized zebrafish embryos. Two of the identified compounds induced Smad1, 5 phosphorylation (P-Smad, Id1 and Id2 expression in a dose-dependent manner demonstrating that our assays identified small molecule activators of BMP signaling.

  2. Transforming growth factor β1 inhibits bone morphogenic protein (BMP-2 and BMP-7 signaling via upregulation of Ski-related novel protein N (SnoN: possible mechanism for the failure of BMP therapy?

    Directory of Open Access Journals (Sweden)

    Ehnert Sabrina

    2012-09-01

    Full Text Available Abstract Background Bone morphogenic proteins (BMPs play a key role in bone formation. Consequently, it was expected that topical application of recombinant human (rhBMP-2 and rhBMP-7 would improve the healing of complex fractures. However, up to 36% of fracture patients do not respond to this therapy. There are hints that a systemic increase in transforming growth factor β1 (TGFβ1 interferes with beneficial BMP effects. Therefore, in the present work we investigated the influence of rhTGFβ1 on rhBMP signaling in primary human osteoblasts, with the aim of more specifically delineating the underlying regulatory mechanisms. Methods BMP signaling was detected by adenoviral Smad-binding-element-reporter assays. Gene expression was determined by reverse transcription polymerase chain reaction (RT-PCR and confirmed at the protein level by western blot. Histone deacetylase (HDAC activity was determined using a test kit. Data sets were compared by one-way analysis of variance. Results Our findings showed that Smad1/5/8-mediated rhBMP-2 and rhBMP-7 signaling is completely blocked by rhTGFβ1. We then investigated expression levels of genes involved in BMP signaling and regulation (for example, Smad1/5/8, TGFβ receptors type I and II, noggin, sclerostin, BMP and activin receptor membrane bound inhibitor (BAMBI, v-ski sarcoma viral oncogene homolog (Ski, Ski-related novel protein N (SnoN and Smad ubiquitination regulatory factors (Smurfs and confirmed the expression of regulated genes at the protein level. Smad7 and SnoN were significantly induced by rhTGFβ1 treatment while expression of Smad1, Smad6, TGFβRII and activin receptor-like kinase 1 (Alk1 was reduced. Elevated SnoN expression was accompanied by increased HDAC activity. Addition of an HDAC inhibitor, namely valproic acid, fully abolished the inhibitory effect of rhTGFβ1 on rhBMP-2 and rhBMP-7 signaling. Conclusions rhTGFβ1 effectively blocks rhBMP signaling in osteoblasts. As possible

  3. Villification in the mouse: Bmp signals control intestinal villus patterning.

    Science.gov (United States)

    Walton, Katherine D; Whidden, Mark; Kolterud, Åsa; Shoffner, Suzanne K; Czerwinski, Michael J; Kushwaha, Juhi; Parmar, Nishita; Chandhrasekhar, Deepa; Freddo, Andrew M; Schnell, Santiago; Gumucio, Deborah L

    2016-02-01

    In the intestine, finger-like villi provide abundant surface area for nutrient absorption. During murine villus development, epithelial Hedgehog (Hh) signals promote aggregation of subepithelial mesenchymal clusters that drive villus emergence. Clusters arise first dorsally and proximally and spread over the entire intestine within 24 h, but the mechanism driving this pattern in the murine intestine is unknown. In chick, the driver of cluster pattern is tensile force from developing smooth muscle, which generates deep longitudinal epithelial folds that locally concentrate the Hh signal, promoting localized expression of cluster genes. By contrast, we show that in mouse, muscle-induced epithelial folding does not occur and artificial deformation of the epithelium does not determine the pattern of clusters or villi. In intestinal explants, modulation of Bmp signaling alters the spatial distribution of clusters and changes the pattern of emerging villi. Increasing Bmp signaling abolishes cluster formation, whereas inhibiting Bmp signaling leads to merged clusters. These dynamic changes in cluster pattern are faithfully simulated by a mathematical model of a Turing field in which an inhibitor of Bmp signaling acts as the Turing activator. In vivo, genetic interruption of Bmp signal reception in either epithelium or mesenchyme reveals that Bmp signaling in Hh-responsive mesenchymal cells controls cluster pattern. Thus, unlike in chick, the murine villus patterning system is independent of muscle-induced epithelial deformation. Rather, a complex cocktail of Bmps and Bmp signal modulators secreted from mesenchymal clusters determines the pattern of villi in a manner that mimics the spread of a self-organizing Turing field. PMID:26721501

  4. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  5. Hepcidin regulation by BMP signaling in macrophages is lipopolysaccharide dependent.

    Directory of Open Access Journals (Sweden)

    Xinggang Wu

    Full Text Available Hepcidin is an antimicrobial peptide, which also negatively regulates iron in circulation by controlling iron absorption from dietary sources and iron release from macrophages. Hepcidin is synthesized mainly in the liver, where hepcidin is regulated by iron loading, inflammation and hypoxia. Recently, we have demonstrated that bone morphogenetic protein (BMP-hemojuvelin (HJV-SMAD signaling is central for hepcidin regulation in hepatocytes. Hepcidin is also expressed by macrophages. Studies have shown that hepcidin expression by macrophages increases following bacterial infection, and that hepcidin decreases iron release from macrophages in an autocrine and/or paracrine manner. Although previous studies have shown that lipopolysaccharide (LPS can induce hepcidin expression in macrophages, whether hepcidin is also regulated by BMPs in macrophages is still unknown. Therefore, we examined the effects of BMP signaling on hepcidin expression in RAW 264.7 and J774 macrophage cell lines, and in primary peritoneal macrophages. We found that BMP4 or BMP6 alone did not have any effect on hepcidin expression in macrophages although they stimulated Smad1/5/8 phosphorylation and Id1 expression. In the presence of LPS, however, BMP4 and BMP6 were able to stimulate hepcidin expression in macrophages, and this stimulation was abolished by the NF-κB inhibitor Ro1069920. These results suggest that hepcidin expression is regulated differently in macrophages than in hepatocytes, and that BMPs regulate hepcidin expression in macrophages in a LPS-NF-κB dependent manner.

  6. A new class of small molecule inhibitor of BMP signaling.

    Directory of Open Access Journals (Sweden)

    Caroline E Sanvitale

    Full Text Available Growth factor signaling pathways are tightly regulated by phosphorylation and include many important kinase targets of interest for drug discovery. Small molecule inhibitors of the bone morphogenetic protein (BMP receptor kinase ALK2 (ACVR1 are needed urgently to treat the progressively debilitating musculoskeletal disease fibrodysplasia ossificans progressiva (FOP. Dorsomorphin analogues, first identified in zebrafish, remain the only BMP inhibitor chemotype reported to date. By screening an assay panel of 250 recombinant human kinases we identified a highly selective 2-aminopyridine-based inhibitor K02288 with in vitro activity against ALK2 at low nanomolar concentrations similar to the current lead compound LDN-193189. K02288 specifically inhibited the BMP-induced Smad pathway without affecting TGF-β signaling and induced dorsalization of zebrafish embryos. Comparison of the crystal structures of ALK2 with K02288 and LDN-193189 revealed additional contacts in the K02288 complex affording improved shape complementarity and identified the exposed phenol group for further optimization of pharmacokinetics. The discovery of a new chemical series provides an independent pharmacological tool to investigate BMP signaling and offers multiple opportunities for pre-clinical development.

  7. The Balance of Cell Surface and Soluble Type III TGF-β Receptor Regulates BMP Signaling in Normal and Cancerous Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Catherine E. Gatza

    2014-06-01

    Full Text Available Bone morphogenetic proteins (BMPs are members of the TGF-β superfamily that are over-expressed in breast cancer, with context dependent effects on breast cancer pathogenesis. The type III TGF-β receptor (TβRIII mediates BMP signaling. While TβRIII expression is lost during breast cancer progression, the role of TβRIII in regulating BMP signaling in normal mammary epithelium and breast cancer cells has not been examined. Restoring TβRIII expression in a 4T1 murine syngeneic model of breast cancer suppressed Smad1/5/8 phosphorylation and inhibited the expression of the BMP transcriptional targets, Id1 and Smad6, in vivo. Similarly, restoring TβRIII expression in human breast cancer cell lines or treatment with sTβRIII inhibited BMP-induced Smad1/5/8 phosphorylation and BMP-stimulated migration and invasion. In normal mammary epithelial cells, shRNA-mediated silencing of TβRIII, TβRIII over-expression, or treatment with sTβRIII inhibited BMP-mediated phosphorylation of Smad1/5/8 and BMP induced migration. Inhibition of TβRIII shedding through treatment with TAPI-2 or expression of a non-shedding TβRIII mutant rescued TβRIII mediated inhibition of BMP induced Smad1/5/8 phosphorylation and BMP induced migration and/or invasion in both in normal mammary epithelial cells and breast cancer cells. Conversely, expression of a TβRIII mutant, which exhibited increased shedding, significantly reduced BMP-mediated Smad1/5/8 phosphorylation, migration, and invasion. These data demonstrate that TβRIII regulates BMP-mediated signaling and biological effects, primarily through the ligand sequestration effects of sTβRIII in normal and cancerous mammary epithelial cells and suggest that the ratio of membrane bound versus sTβRIII plays an important role in mediating these effects.

  8. Hepcidin Regulation by BMP Signaling in Macrophages Is Lipopolysaccharide Dependent

    OpenAIRE

    Wu, Xinggang; Yung, Lai-Ming; Cheng, Wai-Hang; Yu, Paul B.; Babitt, Jodie L.; Lin, Herbert Yih-Fuu; Xia, Yin

    2012-01-01

    Hepcidin is an antimicrobial peptide, which also negatively regulates iron in circulation by controlling iron absorption from dietary sources and iron release from macrophages. Hepcidin is synthesized mainly in the liver, where hepcidin is regulated by iron loading, inflammation and hypoxia. Recently, we have demonstrated that bone morphogenetic protein (BMP)-hemojuvelin (HJV)-SMAD signaling is central for hepcidin regulation in hepatocytes. Hepcidin is also expressed by macrophages. Studies ...

  9. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo.

    Science.gov (United States)

    Deignan, Lisa; Pinheiro, Marco T; Sutcliffe, Catherine; Saunders, Abbie; Wilcockson, Scott G; Zeef, Leo A H; Donaldson, Ian J; Ashe, Hilary L

    2016-07-01

    The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates. PMID:27379389

  10. BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs

    Directory of Open Access Journals (Sweden)

    Finnson Kenneth

    2010-02-01

    Full Text Available Abstract Background Axolotls have the unique ability, among vertebrates, to perfectly regenerate complex body parts, such as limbs, after amputation. In addition, axolotls pattern developing and regenerating autopods from the anterior to posterior axis instead of posterior to anterior like all tetrapods studied to date. Sonic hedgehog is important in establishing this anterior-posterior axis of limbs in all tetrapods including axolotls. Interestingly, its expression is conserved (to the posterior side of limb buds and blastemas in axolotl limbs as in other tetrapods. It has been suggested that BMP-2 may be the secondary mediator of sonic hedgehog, although there is mounting evidence to the contrary in mice. Since BMP-2 expression is on the anterior portion of developing and regenerating limbs prior to digit patterning, opposite to the expression of sonic hedgehog, we examined whether BMP-2 expression was dependent on sonic hedgehog signaling and whether it affects patterning of the autopod during regeneration. Results The expression of BMP-2 and SOX-9 in developing and regenerating axolotl limbs corresponded to the first digits forming in the anterior portion of the autopods. The inhibition of sonic hedgehog signaling with cyclopamine caused hypomorphic limbs (during development and regeneration but did not affect the expression of BMP-2 and SOX-9. Overexpression of BMP-2 in regenerating limbs caused a loss of digits. Overexpression of Noggin (BMP inhibitor in regenerating limbs also resulted in a loss of digits. Histological analysis indicated that the loss due to BMP-2 overexpression was the result of increased cell condensation and apoptosis while the loss caused by Noggin was due to a decrease in cell division. Conclusion The expression of BMP-2 and its target SOX-9 was independent of sonic hedgehog signaling in developing and regenerating limbs. Their expression correlated with chondrogenesis and the appearance of skeletal elements has

  11. EMBRYO DEVELOPMENT. BMP gradients: A paradigm for morphogen-mediated developmental patterning.

    Science.gov (United States)

    Bier, Ethan; De Robertis, Edward M

    2015-06-26

    Bone morphogenetic proteins (BMPs) act in dose-dependent fashion to regulate cell fate choices in a myriad of developmental contexts. In early vertebrate and invertebrate embryos, BMPs and their antagonists establish epidermal versus central nervous system domains. In this highly conserved system, BMP antagonists mediate the neural-inductive activities proposed by Hans Spemann and Hilde Mangold nearly a century ago. BMPs distributed in gradients subsequently function as morphogens to subdivide the three germ layers into distinct territories and act to organize body axes, regulate growth, maintain stem cell niches, or signal inductively across germ layers. In this Review, we summarize the variety of mechanisms that contribute to generating reliable developmental responses to BMP gradients and other morphogen systems. PMID:26113727

  12. BMP-2-enhanced chondrogenesis involves p38 MAPK-mediated down-regulation of Wnt-7a pathway.

    Science.gov (United States)

    Jin, Eun-Jung; Lee, Sun-Young; Choi, Young-Ae; Jung, Jae-Chang; Bang, Ok-Sun; Kang, Shin-Sung

    2006-12-31

    The bone morphogenetic protein (BMP) family has been implicated in control of cartilage development. Here, we demonstrate that BMP-2 promotes chondrogenesis by activating p38 mitogen-activated protein kinase (MAPK), which in turn downregulates Wnt-7a/b-catenin signaling responsible for proteasomal degradation of Sox9. Exposure of mesenchymal cells to BMP-2 resulted in upregulation of Sox9 protein and a concomitant decrease in the level of b-catenin protein and Wnt-7a signaling. In agreement with this, the interaction of Sox9 with b-catenin was inhibited in the presence of BMP-2. Inhibition of the p38 MAPK pathway using a dominant negative mutant led to sustained Wnt-7a signaling and decreased Sox9 expression, with consequent inhibition of precartilage condensation and chondrogenic differentiation. Moreover, overexpression of b-catenin caused degradation of Sox9 via the ubiquitin/26S proteasome pathway. Our results collectively indicate that the increase in Sox9 protein resulting from downregulation of b-catenin/Wnt-7a signaling is mediated by p38 MAPK during BMP-2 induced chondrogenesis in chick wing bud mesenchymal cells. PMID:17202865

  13. TGF-βand BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    Institute of Scientific and Technical Information of China (English)

    Mengrui Wu; Guiqian Chen; and Yi-Ping Li

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-βand BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-βand BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-βand BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.

  14. Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts.

    Directory of Open Access Journals (Sweden)

    Yongjuan Chen

    Full Text Available Zirconium (Zr is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2 or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV oxynitrate (ZrO(NO32 at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling.

  15. Analysis of BMP4 and BMP7 signaling in breast cancer cells unveils time-dependent transcription patterns and highlights a common synexpression group of genes

    Directory of Open Access Journals (Sweden)

    Rodriguez-Martinez Alejandra

    2011-11-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs are members of the TGF-beta superfamily of growth factors. They are known for their roles in regulation of osteogenesis and developmental processes and, in recent years, evidence has accumulated of their crucial functions in tumor biology. BMP4 and BMP7, in particular, have been implicated in breast cancer. However, little is known about BMP target genes in the context of tumor. We explored the effects of BMP4 and BMP7 treatment on global gene transcription in seven breast cancer cell lines during a 6-point time series, using a whole-genome oligo microarray. Data analysis included hierarchical clustering of differentially expressed genes, gene ontology enrichment analyses and model based clustering of temporal data. Results Both ligands had a strong effect on gene expression, although the response to BMP4 treatment was more pronounced. The cellular functions most strongly affected by BMP signaling were regulation of transcription and development. The observed transcriptional response, as well as its functional outcome, followed a temporal sequence, with regulation of gene expression and signal transduction leading to changes in metabolism and cell proliferation. Hierarchical clustering revealed distinct differences in the response of individual cell lines to BMPs, but also highlighted a synexpression group of genes for both ligands. Interestingly, the majority of the genes within these synexpression groups were shared by the two ligands, probably representing the core molecular responses common to BMP4 and BMP7 signaling pathways. Conclusions All in all, we show that BMP signaling has a remarkable effect on gene transcription in breast cancer cells and that the functions affected follow a logical temporal pattern. Our results also uncover components of the common cellular transcriptional response to BMP4 and BMP7. Most importantly, this study provides a list of potential novel BMP target

  16. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.

    Directory of Open Access Journals (Sweden)

    François Lapraz

    2009-11-01

    Full Text Available Formation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGFbeta Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood. In this paper, we provide evidence that the long-range organizing activity of Nodal is assured by a relay molecule synthesized in the ventral ectoderm, then translocated to the opposite side of the embryo. We identified this relay molecule as BMP2/4 based on the following arguments. First, blocking BMP2/4 function eliminated the long-range organizing activity of an activated Nodal receptor in an axis rescue assay. Second, we demonstrate that BMP2/4 and the corresponding type I receptor Alk3/6 functions are both essential for specification of the dorsal region of the embryo. Third, using anti-phospho-Smad1/5/8 immunostaining, we show that, despite its ventral transcription, the BMP2/4 ligand triggers receptor mediated signaling exclusively on the dorsal side of the embryo, one of the most extreme cases of BMP translocation described so far. We further report that the pattern of pSmad1/5/8 is graded along the dorsal-ventral axis and that two BMP2/4 target genes are expressed in nested patterns centered on the region with highest levels of pSmad1/5/8, strongly suggesting that BMP2/4 is acting as a morphogen. We also describe the very unusual ventral co-expression of chordin and bmp2/4 downstream of Nodal and demonstrate that Chordin is largely responsible for the spatial restriction of BMP2/4 signaling to the dorsal side. Thus, unlike in most organisms, in the sea urchin, a single ventral signaling centre is responsible for induction of ventral and dorsal cell fates. Finally

  17. Endoplasmic reticulum (ER stress inducible factor cysteine-rich with EGF-like domains 2 (Creld2 is an important mediator of BMP9-regulated osteogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Jiye Zhang

    Full Text Available Mesenchymal stem cells (MSCs are multipotent progenitors that can undergo osteogenic differentiation under proper stimuli. We demonstrated that BMP9 is one of the most osteogenic BMPs. However, the molecular mechanism underlying BMP9-initiated osteogenic signaling in MSCs remains unclear. Through gene expression profiling analysis we identified several candidate mediators of BMP9 osteogenic signaling. Here, we focus on one such signaling mediator and investigate the functional role of cysteine-rich with EGF-like domains 2 (Creld2 in BMP9-initiated osteogenic signaling. Creld2 was originally identified as an ER stress-inducible factor localized in the ER-Golgi apparatus. Our genomewide expression profiling analysis indicates that Creld2 is among the top up-regulated genes in BMP9-stimulated MSCs. We confirm that Creld2 is up-regulated by BMP9 in MSCs. ChIP analysis indicates that Smad1/5/8 directly binds to the Creld2 promoter in a BMP9-dependent fashion. Exogenous expression of Creld2 in MSCs potentiates BMP9-induced early and late osteogenic markers, and matrix mineralization. Conversely, silencing Creld2 expression inhibits BMP9-induced osteogenic differentiation. In vivo stem cell implantation assay reveals that exogenous Creld2 promotes BMP9-induced ectopic bone formation and matrix mineralization, whereas silencing Creld2 expression diminishes BMP9-induced bone formation and matrix mineralization. We further show that Creld2 is localized in ER and the ER stress inducers potentiate BMP9-induced osteogenic differentiation. Our results strongly suggest that Creld2 may be directly regulated by BMP9 and ER stress response may play an important role in regulating osteogenic differentiation.

  18. Integration of nodal and BMP signals in the heart requires FoxH1 to create left-right differences in cell migration rates that direct cardiac asymmetry.

    Directory of Open Access Journals (Sweden)

    Kari F Lenhart

    Full Text Available Failure to properly establish the left-right (L/R axis is a major cause of congenital heart defects in humans, but how L/R patterning of the embryo leads to asymmetric cardiac morphogenesis is still unclear. We find that asymmetric Nodal signaling on the left and Bmp signaling act in parallel to establish zebrafish cardiac laterality by modulating cell migration velocities across the L/R axis. Moreover, we demonstrate that Nodal plays the crucial role in generating asymmetry in the heart and that Bmp signaling via Bmp4 is dispensable in the presence of asymmetric Nodal signaling. In addition, we identify a previously unappreciated role for the Nodal-transcription factor FoxH1 in mediating cell responsiveness to Bmp, further linking the control of these two pathways in the heart. The interplay between these TGFβ pathways is complex, with Nodal signaling potentially acting to limit the response to Bmp pathway activation and the dosage of Bmp signals being critical to limit migration rates. These findings have implications for understanding the complex genetic interactions that lead to congenital heart disease in humans.

  19. BMP4 signaling is involved in the generation of inner ear sensory epithelia

    Directory of Open Access Journals (Sweden)

    Wang Yucheng

    2005-08-01

    Full Text Available Abstract Background The robust expression of BMP4 in the incipient sensory organs of the inner ear suggests possible roles for this signaling protein during induction and development of auditory and vestibular sensory epithelia. Homozygous BMP4-/- animals die before the inner ear's sensory organs develop, which precludes determining the role of BMP4 in these organs with simple gene knockout experiments. Results Here we use a chicken otocyst culture system to perform quantitative studies on the development of inner ear cell types and show that hair cell and supporting cell generation is remarkably reduced when BMP signaling is blocked, either with its antagonist noggin or by using soluble BMP receptors. Conversely, we observed an increase in the number of hair cells when cultured otocysts were treated with exogenous BMP4. BMP4 treatment additionally prompted down-regulation of Pax-2 protein in proliferating sensory epithelial progenitors, leading to reduced progenitor cell proliferation. Conclusion Our results implicate BMP4 in two events during chicken inner ear sensory epithelium formation: first, in inducing the switch from proliferative sensory epithelium progenitors to differentiating epithelial cells and secondly, in promoting the differentiation of hair cells within the developing sensory epithelia.

  20. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors.

    Science.gov (United States)

    Tadokoro, Tomomi; Gao, Xia; Hong, Charles C; Hotten, Danielle; Hogan, Brigid L M

    2016-03-01

    The pseudostratified epithelium of the lung contains ciliated and secretory luminal cells and basal stem/progenitor cells. To identify signals controlling basal cell behavior we screened factors that alter their self-renewal and differentiation in a clonal organoid (tracheosphere) assay. This revealed that inhibitors of the canonical BMP signaling pathway promote proliferation but do not affect lineage choice, whereas exogenous Bmp4 inhibits proliferation and differentiation. We therefore followed changes in BMP pathway components in vivo in the mouse trachea during epithelial regeneration from basal cells after injury. The findings suggest that BMP signaling normally constrains proliferation at steady state and this brake is released transiently during repair by the upregulation of endogenous BMP antagonists. Early in repair, the packing of epithelial cells along the basal lamina increases, but density is later restored by active extrusion of apoptotic cells. Systemic administration of the BMP antagonist LDN-193189 during repair initially increases epithelial cell number but, following the shedding phase, normal density is restored. Taken together, these results reveal crucial roles for both BMP signaling and cell shedding in homeostasis of the respiratory epithelium. PMID:26811382

  1. BMP signaling protects telencephalic fate by repressing eye identity and its Cxcr4-dependent morphogenesis.

    Science.gov (United States)

    Bielen, Holger; Houart, Corinne

    2012-10-16

    Depletion of Wnt signaling is a major requirement for the induction of the anterior prosencephalon. However, the molecular events driving the differential regionalization of this area into eye-field and telencephalon fates are still unknown. Here we show that the BMP pathway is active in the anterior neural ectoderm during late blastula to early gastrula stage in zebrafish. Bmp2b mutants and mosaic loss-of-function experiments reveal that BMP acts as a repressor of eye-field fate through inhibition of its key transcription factor Rx3, thereby protecting the future telencephalon from acquiring eye identity. This BMP-driven mechanism initiates the establishment of the telencephalon prior to the involvement of Wnt antagonists from the anterior neural border. Furthermore, we demonstrate that Rx3 and BMP are respectively required to maintain and restrict the chemokine receptor cxcr4a, which in turn contributes to the morphogenetic separation of eye-field and telencephalic cells during early neurulation.

  2. Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B

    DEFF Research Database (Denmark)

    Olsen, Oddrun Elise; Wader, Karin Fahl; Hella, Hanne;

    2015-01-01

    BACKGROUND: Activins are members of the TGF-β family of ligands that have multiple biological functions in embryonic stem cells as well as in differentiated tissue. Serum levels of activin A were found to be elevated in pathological conditions such as cachexia, osteoporosis and cancer. Signaling...... by activin A through canonical ALK4-ACVR2 receptor complexes activates the transcription factors SMAD2 and SMAD3. Activin A has a strong affinity to type 2 receptors, a feature that they share with some of the bone morphogenetic proteins (BMPs). Activin A is also elevated in myeloma patients with advanced...... disease and is involved in myeloma bone disease. RESULTS: In this study we investigated effects of activin A binding to receptors that are shared with BMPs using myeloma cell lines with well-characterized BMP-receptor expression and responses. Activin A antagonized BMP-6 and BMP-9, but not BMP-2 and BMP-4...

  3. BMP signaling turns up in fragile X syndrome: FMRP represses BMPR2.

    Science.gov (United States)

    Broihier, Heather T

    2016-01-01

    Fragile X syndrome is the most common inherited form of intellectual disability and results from a loss of function of the translational repressor FMRP. In this issue of Science Signaling, Kashima et al find that FMRP binds to and represses a specific isoform of BMPR2, a type II bone morphogenetic protein (BMP) receptor. Reducing signaling through this BMP pathway reverses neuroanatomical defects observed in fragile X models. PMID:27273094

  4. Cell-mediated BMP-2 liberation promotes bone formation in a mechanically unstable implant environment.

    Science.gov (United States)

    Hägi, Tobias T; Wu, Gang; Liu, Yuelian; Hunziker, Ernst B

    2010-05-01

    The flexible alloplastic materials that are used in bone-reconstruction surgery lack the mechanical stability that is necessary for sustained bone formation, even if this process is promoted by the application of an osteogenic agent, such as BMP-2. We hypothesize that if BMP-2 is delivered gradually, in a cell-mediated manner, to the surgical site, then the scaffolding material's lack of mechanical stability becomes a matter of indifference. Flexible discs of Ethisorb were functionalized with BMP-2, which was either adsorbed directly onto the material (rapid release kinetics) or incorporated into a calcium-phosphate coating (slow release kinetics). Unstabilized and titanium-plate-stabilized samples were implanted subcutaneously in rats and retrieved up to 14 days later for a histomorphometric analysis of bone and cartilage volumes. On day 14, the bone volume associated with titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2 was 10-fold higher than that associated with their mechanically unstabilized counterparts. The bone volume associated with discs bearing a coating-incorporated depot of BMP-2 was similar in the mechanically unstabilized and titanium-plate-stabilized groups, and comparable to that associated with the titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2. Hence, if an osteogenic agent is delivered in a cell-mediated manner (via coating degradation), ossification can be promoted even within a mechanically unstable environment.

  5. NOX4 mediates BMP4-induced upregulation of TRPC1 and 6 protein expressions in distal pulmonary arterial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Qian Jiang

    Full Text Available RATIONALE: Our previous studies demonstrated that bone morphogenetic protein 4 (BMP4 mediated, elevated expression of canonical transient receptor potential (TRPC largely accounts for the enhanced proliferation in pulmonary arterial smooth muscle cells (PASMCs. In the present study, we sought to determine the signaling pathway through which BMP4 up-regulates TRPC expression. METHODS: We employed recombinant human BMP4 (rhBMP4 to determine the effects of BMP4 on NADPH oxidase 4 (NOX4 and reactive oxygen species (ROS production in rat distal PASMCs. We also designed small interfering RNA targeting NOX4 (siNOX4 and detected whether NOX4 knockdown affects rhBMP4-induced ROS, TRPC1 and 6 expression, cell proliferation and intracellular Ca2+ determination in PASMCs. RESULTS: In rhBMP4 treated rat distal PASMCs, NOX4 expression was (226.73±11.13 %, and the mean ROS level was (123.65±1.62 % of that in untreated control cell. siNOX4 transfection significantly reduced rhBMP4-induced elevation of the mean ROS level in PASMCs. Moreover, siNOX4 transfection markedly reduced rhBMP4-induced elevation of TRPC1 and 6 proteins, basal [Ca2+]i and SOCE. Furthermore, compared with control group (0.21±0.001, the proliferation of rhBMP4 treated cells was significantly enhanced (0.41±0.001 (P<0.01. However, such increase was attenuated by knockdown of NOX4. Moreover, external ROS (H2O2 100 µM, 24 h rescued the effects of NOX4 knockdown, which included the declining of TRPC1 and 6 expression, basal intracellular calcium concentration ([Ca2+]i and store-operated calcium entry (SOCE, suggesting that NOX4 plays as an important mediator in BMP4-induced proliferation and intracellular calcium homeostasis. CONCLUSION: These results suggest that BMP4 may increase ROS level, enhance TRPC1 and 6 expression and proliferation by up-regulating NOX4 expression in PASMCs.

  6. Mouse bone marrow stromal cells differentiate to neuron-like cells upon inhibition of BMP signaling.

    Science.gov (United States)

    Saxena, Monika; Prashar, Paritosh; Yadav, Prem Swaroop; Sen, Jonaki

    2016-01-01

    Bone marrow stromal cells (BMSCs) are a source of autologous stem cells that have the potential for undergoing differentiation into multiple cell types including neurons. Although the neuronal differentiation of mesenchymal stem cells has been studied for a long time, the molecular players involved are still not defined. Here we report that the genetic deletion of two members of the bone morphogenetic protein (Bmp) family, Bmp2 and Bmp4 in mouse BMSCs causes their differentiation into cells with neuron-like morphology. Surprisingly these cells expressed certain markers characteristic of both neuronal and glial cells. Based on this observation, we inhibited BMP signaling in mouse BMSCs through a brief exposure to Noggin protein which also led to their differentiation into cells expressing both neuronal and glial markers. Such cells seem to have the potential for further differentiation into subtypes of neuronal and glial cells and thus could be utilized for cell-based therapeutic applications.

  7. Mediation as Signal

    NARCIS (Netherlands)

    Holler, M.J.; Lindner, I.

    2004-01-01

    This paper analyzes mediation as a signal. Starting from a stylized case, a game theoretical model of one-sided incomplete information, taken from Cho and Kreps (1987), is applied to discuss strategic effects of mediation. It turns out that to reject mediation can be interpreted as a ”negative signa

  8. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.

    Science.gov (United States)

    Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming

    2008-01-17

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug

  9. Mediation as Signal

    OpenAIRE

    Holler, M.J.; Lindner, I.

    2004-01-01

    This paper analyzes mediation as a signal. Starting from a stylized case, a game theoretical model of one-sided incomplete information, taken from Cho and Kreps (1987), is applied to discuss strategic effects of mediation. It turns out that to reject mediation can be interpreted as a ”negative signal” while the interpretation of accepting or proposing mediation is ambiguous and does not necessarily change the prior beliefs of the uninformed party. This asymmetry suggests that, in equilibrium,...

  10. Circadian period integrates network information through activation of the BMP signaling pathway.

    Directory of Open Access Journals (Sweden)

    Esteban J Beckwith

    2013-12-01

    Full Text Available Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands.

  11. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    Directory of Open Access Journals (Sweden)

    Matthew J Anderson

    2016-05-01

    Full Text Available During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM. Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3

  12. BMP signaling is essential in neonatal surfactant production during respiratory adaptation.

    Science.gov (United States)

    Luo, Yongfeng; Chen, Hui; Ren, Siying; Li, Nan; Mishina, Yuji; Shi, Wei

    2016-07-01

    Deficiency in pulmonary surfactant results in neonatal respiratory distress, and the known genetic mutations in key components of surfactant only account for a small number of cases. Therefore, determining the regulatory mechanisms of surfactant production and secretion, particularly during the transition from prenatal to neonatal stages, is essential for better understanding of the pathogenesis of human neonatal respiratory distress. We have observed significant increase of bone morphogenetic protein (BMP) signaling in neonatal mouse lungs immediately after birth. Using genetically manipulated mice, we then studied the relationship between BMP signaling and surfactant production in neonates. Blockade of endogenous BMP signaling by deleting Bmpr1a (Alk3) or Smad1 in embryonic day 18.5 in perinatal lung epithelial cells resulted in severe neonatal respiratory distress and death, accompanied by atelectasis in histopathology and significant reductions of surfactant protein B and C, as well as Abca3, whereas prenatal lung development was not significantly affected. We then identified a new BMP-Smad1 downstream target, Nfatc3, which is known as an important transcription activator for surfactant proteins and Abca3. Furthermore, activation of BMP signaling in cultured lung epithelial cells was able to promote endogenous Nfatc3 expression and also stimulate the activity of an Nfatc3 promoter that contains a Smad1-binding site. Therefore, our study suggests that the BMP-Alk3-Smad1-Nfatc3 regulatory loop plays an important role in enhancing surfactant production in neonates, possibly helping neonatal respiratory adaptation from prenatal amniotic fluid environment to neonatal air breathing. PMID:27190064

  13. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    Science.gov (United States)

    Sengle, Gerhard; Carlberg, Valerie; Tufa, Sara F; Charbonneau, Noe L; Smaldone, Silvia; Carlson, Eric J; Ramirez, Francesco; Keene, Douglas R; Sakai, Lynn Y

    2015-06-01

    Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background) are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that fibrillin-2 can

  14. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    Directory of Open Access Journals (Sweden)

    Gerhard Sengle

    2015-06-01

    Full Text Available Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that

  15. Angelman Syndrome Protein Ube3a Regulates Synaptic Growth and Endocytosis by Inhibiting BMP Signaling in Drosophila.

    Science.gov (United States)

    Li, Wenhua; Yao, Aiyu; Zhi, Hui; Kaur, Kuldeep; Zhu, Yong-Chuan; Jia, Mingyue; Zhao, Hui; Wang, Qifu; Jin, Shan; Zhao, Guoli; Xiong, Zhi-Qi; Zhang, Yong Q

    2016-05-01

    Altered expression of the E3 ubiquitin ligase UBE3A, which is involved in protein degradation through the proteasome-mediated pathway, is associated with neurodevelopmental and behavioral defects observed in Angelman syndrome (AS) and autism. However, little is known about the neuronal function of UBE3A and the pathogenesis of UBE3A-associated disorders. To understand the in vivo function of UBE3A in the nervous system, we generated multiple mutations of ube3a, the Drosophila ortholog of UBE3A. We found a significantly increased number of total boutons and satellite boutons in conjunction with compromised endocytosis in the neuromuscular junctions (NMJs) of ube3a mutants compared to the wild type. Genetic and biochemical analysis showed upregulation of bone morphogenetic protein (BMP) signaling in the nervous system of ube3a mutants. An immunochemical study revealed a specific increase in the protein level of Thickveins (Tkv), a type I BMP receptor, but not other BMP receptors Wishful thinking (Wit) and Saxophone (Sax), in ube3a mutants. Ube3a was associated with and specifically ubiquitinated lysine 227 within the cytoplasmic tail of Tkv, and promoted its proteasomal degradation in Schneider 2 cells. Negative regulation of Tkv by Ube3a was conserved in mammalian cells. These results reveal a critical role for Ube3a in regulating NMJ synapse development by repressing BMP signaling. This study sheds new light onto the neuronal functions of UBE3A and provides novel perspectives for understanding the pathogenesis of UBE3A-associated disorders. PMID:27232889

  16. Smad1 and its target gene Wif1 coordinate BMP and Wnt signaling activities to regulate fetal lung development

    OpenAIRE

    Xu, Bing; Chen, Cheng; Chen, Hui; Zheng, Song-Guo; Bringas, Pablo; Xu, Min; Zhou, Xianghong; Chen, Di; Umans, Lieve; Zwijsen, An; SHI, Wei

    2011-01-01

    Bone morphogenetic protein 4 (Bmp4) is essential for lung development. To define the intracellular signaling mechanisms by which Bmp4 regulates lung development, BMP-specific Smad1 or Smad5 was selectively knocked out in fetal mouse lung epithelial cells. Abrogation of lung epithelial-specific Smad1, but not Smad5, resulted in retardation of lung branching morphogenesis and reduced sacculation, accompanied by altered distal lung epithelial cell proliferation and differentiation and, consequen...

  17. Signaling cross-talk between TGF-β/BMP and other path-ways

    Institute of Scientific and Technical Information of China (English)

    Xing Guo; Xiao-Fan Wang

    2009-01-01

    Transforming growth factor-beta(TGF-β)/bone morphogenic protein(BMP)signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of alI metazoans.Deregulation of TGF-β/BMP activity almost invariably leads to developmental defects and/or diseases.including cancer.The proper functioning of the TGF-β/BMP pathway depends on its constitutive and extensive communication with other signaling pathways,leading to synergistic or antagonistic effects and eventually desirable biological outcomes.The nature of such signaling cross-talk iS overwhelmingly complex and highly context-dependent.Here we review the difierent modes of cross-talk between TGF-β/BMP and the signaling pathways of Mitogen-activated protein kinase,phosphatidyIinositoI-3 kinase/Akt,Wnt,Hedgehog,Notch,and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines,with an emphasis on the underlying molecular mechanisms.

  18. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Wong

    2015-03-01

    Full Text Available Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We determined the effect of these treatments on retina formation using the Animal Cap Transplant (ACT assay; in which treated pluripotent cells were transplanted into the eye field of host embryos. We found that inhibition of Activin signaling, in the presence of BMP signaling inhibition, promotes efficient retinal specification in Xenopus tissue, mimicking the affect of adding Noggin alone. In whole embryos, we found that the eye field marker, rax, expanded when adding both dominant-negative Smad1 and Smad2, as did treating the cells with both dorsomorphin and SB431542. Future studies could translate these findings to a mammalian culture assay, in order to more efficiently produce retinal cells in culture.

  19. A New Subtype of Multiple Synostoses Syndrome Is Caused by a Mutation in GDF6 That Decreases Its Sensitivity to Noggin and Enhances Its Potency as a BMP Signal.

    Science.gov (United States)

    Wang, Jian; Yu, Tingting; Wang, Zhigang; Ohte, Satoshi; Yao, Ru-En; Zheng, Zhaojing; Geng, Juan; Cai, Haiqing; Ge, Yihua; Li, Yuchan; Xu, Yunlan; Zhang, Qinghua; Gusella, James F; Fu, Qihua; Pregizer, Steven; Rosen, Vicki; Shen, Yiping

    2016-04-01

    Growth and differentiation factors (GDFs) are secreted signaling molecules within the BMP family that have critical roles in joint morphogenesis during skeletal development in mice and humans. Using genetic data obtained from a six-generation Chinese family, we identified a missense variant in GDF6 (NP_001001557.1; p.Y444N) that fully segregates with a novel autosomal dominant synostoses (SYNS) phenotype, which we designate as SYNS4. Affected individuals display bilateral wrist and ankle deformities at birth and progressive conductive deafness after age 40 years. We find that the Y444N variant affects a highly conserved residue of GDF6 in a region critical for binding of GDF6 to its receptor(s) and to the BMP antagonist NOG, and show that this mutant GDF6 is a more potent stimulator of the canonical BMP signaling pathway compared with wild-type GDF6. Further, we determine that the enhanced BMP activity exhibited by mutant GDF6 is attributable to resistance to NOG-mediated antagonism. Collectively, our findings indicate that increased BMP signaling owing to a GDF6 gain-of-function mutation is responsible for loss of joint formation and profound functional impairment in patients with SYNS4. More broadly, our study highlights the delicate balance of BMP signaling required for proper joint morphogenesis and reinforces the critical role of BMP signaling in skeletal development. PMID:26643732

  20. Reduced BMP signaling results in hindlimb fusion with lethal pelvic/urogenital organ aplasia: a new mouse model of sirenomelia.

    Directory of Open Access Journals (Sweden)

    Kentaro Suzuki

    Full Text Available Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body characterized by leg fusion and associated anomalies of pelvic/urogenital organs including bladder, kidney, rectum and external genitalia. Most affected infants are stillborn, and the few born alive rarely survive beyond the neonatal period. Despite the many clinical studies of sirenomelia in humans, little is known about the pathogenic developmental mechanisms that cause the complex array of phenotypes observed. Here, we provide new evidences that reduced BMP (Bone Morphogenetic Protein signaling disrupts caudal body formation in mice and phenocopies sirenomelia. Bmp4 is strongly expressed in the developing caudal body structures including the peri-cloacal region and hindlimb field. In order to address the function of Bmp4 in caudal body formation, we utilized a conditional Bmp4 mouse allele (Bmp4(flox/flox and the Isl1 (Islet1-Cre mouse line. Isl1-Cre is expressed in the peri-cloacal region and the developing hindimb field. Isl1Cre;Bmp4(flox/flox conditional mutant mice displayed sirenomelia phenotypes including hindlimb fusion and pelvic/urogenital organ dysgenesis. Genetic lineage analyses indicate that Isl1-expressing cells contribute to both the aPCM (anterior Peri-Cloacal Mesenchyme and the hindlimb bud. We show Bmp4 is essential for the aPCM formation independently with Shh signaling. Furthermore, we show Bmp4 is a major BMP ligand for caudal body formation as shown by compound genetic analyses of Bmp4 and Bmp7. Taken together, this study reveals coordinated development of caudal body structures including pelvic/urogenital organs and hindlimb orchestrated by BMP signaling in Isl1-expressing cells. Our study offers new insights into the pathogenesis of sirenomelia.

  1. Histone deacetylases control neurogenesis in embryonic brain by inhibition of BMP2/4 signaling.

    Directory of Open Access Journals (Sweden)

    Maya Shakèd

    Full Text Available BACKGROUND: Histone-modifying enzymes are essential for a wide variety of cellular processes dependent upon changes in gene expression. Histone deacetylases (HDACs lead to the compaction of chromatin and subsequent silencing of gene transcription, and they have recently been implicated in a diversity of functions and dysfunctions in the postnatal and adult brain including ocular dominance plasticity, memory consolidation, drug addiction, and depression. Here we investigate the role of HDACs in the generation of neurons and astrocytes in the embryonic brain. PRINCIPAL FINDINGS: As a variety of HDACs are expressed in differentiating neural progenitor cells, we have taken a pharmacological approach to inhibit multiple family members. Inhibition of class I and II HDACs in developing mouse embryos with trichostatin A resulted in a dramatic reduction in neurogenesis in the ganglionic eminences and a modest increase in neurogenesis in the cortex. An identical effect was observed upon pharmacological inhibition of HDACs in in vitro-differentiating neural precursors derived from the same brain regions. A reduction in neurogenesis in ganglionic eminence-derived neural precursors was accompanied by an increase in the production of immature astrocytes. We show that HDACs control neurogenesis by inhibition of the bone morphogenetic protein BMP2/4 signaling pathway in radial glial cells. HDACs function at the transcriptional level by inhibiting and promoting, respectively, the expression of Bmp2 and Smad7, an intracellular inhibitor of BMP signaling. Inhibition of the BMP2/4 signaling pathway restored normal levels of neurogenesis and astrogliogenesis to both ganglionic eminence- and cortex-derived cultures in which HDACs were inhibited. CONCLUSIONS: Our results demonstrate a transcriptionally-based regulation of BMP2/4 signaling by HDACs both in vivo and in vitro that is critical for neurogenesis in the ganglionic eminences and that modulates cortical

  2. The BMP signaling pathway at the Drosophila neuromuscular junction and its links to neurodegenerative diseases

    OpenAIRE

    Bayat, Vafa; Jaiswal, Manish; Bellen, Hugo J

    2010-01-01

    The Drosophila neuromuscular junction (NMJ) has recently provided new insights into the roles of various proteins in neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS), Spinal Muscular Atrophy (SMA), Multiple Sclerosis (MS) Hereditary Spastic Paraplegia (HSP), and Huntington’s Disease (HD). Several developmental signaling pathways including WNT, MAPK and BMP/TGF-β signaling play important roles in the formation and growth of the Drosophila NMJ. Studies of the fly homolog...

  3. PARM-1 promotes cardiomyogenic differentiation through regulating the BMP/Smad signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Naohiko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Takahashi, Tomosaburo, E-mail: ttaka@koto.kpu-m.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ogata, Takehiro; Adachi, Atsuo; Imoto-Tsubakimoto, Hiroko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ueyama, Tomomi, E-mail: toueyama-circ@umin.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Matsubara, Hiroaki [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer PARM-1 expression is induced during cardiomyogenesis. Black-Right-Pointing-Pointer PARM-1 expression precedes Nkx2.5 and Tbx5 during cardiomyogenesis. Black-Right-Pointing-Pointer PARM-1 activates BMP/Smad signaling. Black-Right-Pointing-Pointer PARM-1 enhances cardiac specification, resulting in promoted cardiomyogenesis. -- Abstract: PARM-1, prostatic androgen repressed message-1, is an endoplasmic reticulum (ER) molecule that is involved in ER stress-induced apoptosis in cardiomyocytes. In this study, we assessed whether PARM-1 plays a role in the differentiation of stem cells into cardiomyocytes. While PARM-1 was not expressed in undifferentiated P19CL6 embryonic carcinoma cells, PARM-1 expression was induced during cardiomyogenic differentiation. This expression followed expression of mesodermal markers, and preceded expression of cardiac transcription factors. PARM-1 overexpression did not alter the expression of undifferentiated markers and the proliferative property in undifferentiated P19CL6 cells. Expression of cardiac transcription factors during cardiomyogenesis was markedly enhanced by overexpression of PARM-1, while expression of mesodermal markers was not altered, suggesting that PARM-1 is involved in the differentiation from the mesodermal lineage to cardiomyocytes. Furthermore, overexpression of PARM-1 induced BMP2 mRNA expression in undifferentiated P19CL6 cells and enhanced both BMP2 and BMP4 mRNA expression in the early phase of cardiomyogenesis. PARM-1 overexpression also enhanced phosphorylation of Smads1/5/8. Thus, PARM-1 plays an important role in the cardiomyogenic differentiation of P19CL6 cells through regulating BMP/Smad signaling pathways, demonstrating a novel role of PARM-1 in the cardiomyogenic differentiation of stem cells.

  4. Apc bridges Wnt/{beta}-catenin and BMP signaling during osteoblast differentiation of KS483 cells

    Energy Technology Data Exchange (ETDEWEB)

    Miclea, Razvan L., E-mail: R.L.Miclea@lumc.nl [Department of Pediatrics, Leiden University Medical Centre (LUMC), Leiden (Netherlands); Horst, Geertje van der, E-mail: G.van_der_Horst@lumc.nl [Department of Urology, LUMC, Leiden (Netherlands); Robanus-Maandag, Els C., E-mail: E.C.Robanus@lumc.nl [Department of Human Genetics, LUMC, Leiden (Netherlands); Loewik, Clemens W.G.M., E-mail: C.W.G.M.Lowik@lumc.nl [Department of Endocrinology and Metabolic Diseases, LUMC, Leiden (Netherlands); Oostdijk, Wilma, E-mail: W.Oostdijk@lumc.nl [Department of Pediatrics, Leiden University Medical Centre (LUMC), Leiden (Netherlands); Wit, Jan M., E-mail: J.M.Wit@lumc.nl [Department of Pediatrics, Leiden University Medical Centre (LUMC), Leiden (Netherlands); Karperien, Marcel, E-mail: H.B.J.Karperien@tnw.utwente.nl [MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Zuidhorst Room ZH 144, Drienerlolaan 5, 7522 NB Enschede (Netherlands)

    2011-06-10

    The canonical Wnt signaling pathway influences the differentiation of mesenchymal cell lineages in a quantitative and qualitative fashion depending on the dose of {beta}-catenin signaling. Adenomatous polyposis coli (Apc) is the critical intracellular regulator of {beta}-catenin turnover. To better understand the molecular mechanisms underlying the role of Apc in regulating the differentiation capacity of skeletal progenitor cells, we have knocked down Apc in the murine mesenchymal stem cell-like KS483 cells by stable expression of Apc-specific small interfering RNA. In routine culture, KSFrt-Apc{sub si} cells displayed a mesenchymal-like spindle shape morphology, exhibited markedly decreased proliferation and increased apoptosis. Apc knockdown resulted in upregulation of the Wnt/{beta}-catenin and the BMP/Smad signaling pathways, but osteogenic differentiation was completely inhibited. This effect could be rescued by adding high concentrations of BMP-7 to the differentiation medium. Furthermore, KSFrt-Apc{sub si} cells showed no potential to differentiate into chondrocytes or adipocytes. These results demonstrate that Apc is essential for the proliferation, survival and differentiation of KS483 cells. Apc knockdown blocks the osteogenic differentiation of skeletal progenitor cells, a process that can be overruled by high BMP signaling.

  5. Apc bridges Wnt/β-catenin and BMP signaling during osteoblast differentiation of KS483 cells

    International Nuclear Information System (INIS)

    The canonical Wnt signaling pathway influences the differentiation of mesenchymal cell lineages in a quantitative and qualitative fashion depending on the dose of β-catenin signaling. Adenomatous polyposis coli (Apc) is the critical intracellular regulator of β-catenin turnover. To better understand the molecular mechanisms underlying the role of Apc in regulating the differentiation capacity of skeletal progenitor cells, we have knocked down Apc in the murine mesenchymal stem cell-like KS483 cells by stable expression of Apc-specific small interfering RNA. In routine culture, KSFrt-Apcsi cells displayed a mesenchymal-like spindle shape morphology, exhibited markedly decreased proliferation and increased apoptosis. Apc knockdown resulted in upregulation of the Wnt/β-catenin and the BMP/Smad signaling pathways, but osteogenic differentiation was completely inhibited. This effect could be rescued by adding high concentrations of BMP-7 to the differentiation medium. Furthermore, KSFrt-Apcsi cells showed no potential to differentiate into chondrocytes or adipocytes. These results demonstrate that Apc is essential for the proliferation, survival and differentiation of KS483 cells. Apc knockdown blocks the osteogenic differentiation of skeletal progenitor cells, a process that can be overruled by high BMP signaling.

  6. The Wnt and BMP Families of Signaling Morphogens at the Vertebrate Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Juan P. Henríquez

    2011-12-01

    Full Text Available The neuromuscular junction has been extensively employed in order to identify crucial determinants of synaptogenesis. At the vertebrate neuromuscular synapse, extracellular matrix and signaling proteins play stimulatory and inhibitory roles on the assembly of functional synapses. Studies in invertebrate species have revealed crucial functions of early morphogens during the assembly and maturation of the neuromuscular junction. Here, we discuss growing evidence addressing the function of Wnt and Bone morphogenetic protein (BMP signaling pathways at the vertebrate neuromuscular synapse. We focus on the emerging role of Wnt proteins as positive and negative regulators of postsynaptic differentiation. We also address the possible involvement of BMP pathways on motor neuron behavior for the assembly and/or regeneration of the neuromuscular junction.

  7. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis.

    Science.gov (United States)

    Qian, Shu-Wen; Tang, Yan; Li, Xi; Liu, Yuan; Zhang, You-You; Huang, Hai-Yan; Xue, Rui-Dan; Yu, Hao-Yong; Guo, Liang; Gao, Hui-Di; Liu, Yan; Sun, Xia; Li, Yi-Ming; Jia, Wei-Ping; Tang, Qi-Qun

    2013-02-26

    Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces "white adipocytes" with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP4 transgene in white adipocytes of mice gives rise to reduced WAT mass and white adipocyte size along with an increased number of a white adipocyte cell types with brown adipocyte characteristics comparable to those of beige or brite adipocytes. These changes correlate closely with increased energy expenditure, improved insulin sensitivity, and protection against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology and impaired insulin sensitivity. We identify peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) as the target of BMP signaling required for these brown fat-like changes in WAT. This effect of BMP4 on WAT appears to extend to human adipose tissue, because the level of expression of BMP4 in WAT correlates inversely with body mass index. These findings provide a genetic and metabolic basis for BMP4's role in altering insulin sensitivity by affecting WAT development.

  8. Endothelial follistatin-like 1 regulates the maturation of the pulmonary vasculature by modulating BMP/SMAD signaling

    NARCIS (Netherlands)

    Tania, Navessa Padma; Maarsingh, Harm; Bos, Sophie T.; Mattiotti, Andrea; Prakash, Stuti; Timens, Wim; Schmidt, Martina; Van Den Hoff, Maurice; Gosens, Reinoud

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a progressive disease that is characterized by vascular remodeling and sustained vasoconstriction which consequently lead to high blood pressure in the pulmonary vasculature and right ventricle remodeling. Altered bone morphogenetic protein (BMP) signaling ha

  9. Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration.

    Science.gov (United States)

    Wu, Chi-Chung; Kruse, Fabian; Vasudevarao, Mohankrishna Dalvoy; Junker, Jan Philipp; Zebrowski, David C; Fischer, Kristin; Noël, Emily S; Grün, Dominic; Berezikov, Eugene; Engel, Felix B; van Oudenaarden, Alexander; Weidinger, Gilbert; Bakkers, Jeroen

    2016-01-11

    In contrast to mammals, zebrafish regenerate heart injuries via proliferation of cardiomyocytes located near the wound border. To identify regulators of cardiomyocyte proliferation, we used spatially resolved RNA sequencing (tomo-seq) and generated a high-resolution genome-wide atlas of gene expression in the regenerating zebrafish heart. Interestingly, we identified two wound border zones with distinct expression profiles, including the re-expression of embryonic cardiac genes and targets of bone morphogenetic protein (BMP) signaling. Endogenous BMP signaling has been reported to be detrimental to mammalian cardiac repair. In contrast, we find that genetic or chemical inhibition of BMP signaling in zebrafish reduces cardiomyocyte dedifferentiation and proliferation, ultimately compromising myocardial regeneration, while bmp2b overexpression is sufficient to enhance it. Our results provide a resource for further studies on the molecular regulation of cardiac regeneration and reveal intriguing differential cellular responses of cardiomyocytes to a conserved signaling pathway in regenerative versus non-regenerative hearts.

  10. Constitutive activation of BMP signalling abrogates experimental metastasis of OVCA429 cells via reduced cell adhesion

    Directory of Open Access Journals (Sweden)

    Shepherd Trevor G

    2010-02-01

    Full Text Available Abstract Background Activation of bone morphogenetic protein (BMP4 signalling in human ovarian cancer cells induces a number of phenotypic changes in vitro, including altered cell morphology, adhesion, motility and invasion, relative to normal human ovarian surface epithelial cells. From these in vitro analyses, we had hypothesized that active BMP signalling promotes the metastatic potential of ovarian cancer. Methods To test this directly, we engineered OVCA429 human ovarian cancer cells possessing doxycycline-inducible expression of a constitutively-active mutant BMP receptor, ALK3QD, and administered these cells to immunocompromised mice. Further characterization was performed in vitro to address the role of activated BMP signalling on the EOC phenotype, with particular emphasis on epithelial-mesenchymal transition (EMT and cell adhesion. Results Unexpectedly, doxycycline-induced ALK3QD expression in OVCA429 cells reduced tumour implantation on peritoneal surfaces and ascites formation when xenografted into immunocompromised mice by intraperitoneal injection. To determine the potential mechanisms controlling this in vivo observation, we followed with several cell culture experiments. Doxycycline-induced ALK3QD expression enhanced the refractile, spindle-shaped morphology of cultured OVCA429 cells eliciting an EMT-like response. Using in vitro wound healing assays, we observed that ALK3QD-expressing cells migrated with long, cytoplasmic projections extending into the wound space. The phenotypic alterations of ALK3QD-expressing cells correlated with changes in specific gene expression patterns of EMT, including increased Snail and Slug and reduced E-cadherin mRNA expression. In addition, ALK3QD signalling reduced β1- and β3-integrin expression, critical molecules involved in ovarian cancer cell adhesion. The combination of reduced E-cadherin and β-integrin expression correlates directly with the reduced EOC cell cohesion in spheroids and

  11. Tsukushi modulates Xnr2, FGF and BMP signaling: regulation of Xenopus germ layer formation.

    Directory of Open Access Journals (Sweden)

    Samantha A Morris

    Full Text Available BACKGROUND: Cell-cell communication is essential in tissue patterning. In early amphibian development, mesoderm is formed in the blastula-stage embryo through inductive interactions in which vegetal cells act on overlying equatorial cells. Members of the TGF-beta family such as activin B, Vg1, derrière and Xenopus nodal-related proteins (Xnrs are candidate mesoderm inducing factors, with further activity to induce endoderm of the vegetal region. TGF-beta-like ligands, including BMP, are also responsible for patterning of germ layers. In addition, FGF signaling is essential for mesoderm formation whereas FGF signal inhibition has been implicated in endoderm induction. Clearly, several signaling pathways are coordinated to produce an appropriate developmental output; although intracellular crosstalk is known to integrate multiple pathways, relatively little is known about extracellular coordination. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that Xenopus Tsukushi (X-TSK, a member of the secreted small leucine rich repeat proteoglycan (SLRP family, is expressed in ectoderm, endoderm, and the organizer during early development. We have previously reported that X-TSK binds to and inhibits BMP signaling in cooperation with chordin. We now demonstrate two novel interactions: X-TSK binds to and inhibits signaling by FGF8b, in addition to binding to and enhancement of Xnr2 signaling. This signal integration by X-TSK at the extracellular level has an important role in germ layer formation and patterning. Vegetally localized X-TSK potentiates endoderm formation through coordination of BMP, FGF and Xnr2 signaling. In contrast, X-TSK inhibition of FGF-MAPK signaling blocks ventrolateral mesoderm formation, while BMP inhibition enhances organizer formation. These actions of X-TSK are reliant upon its expression in endoderm and dorsal mesoderm, with relative exclusion from ventrolateral mesoderm, in a pattern shaped by FGF signals. CONCLUSIONS

  12. BMP Signaling Modulates Hepcidin Expression in Zebrafish Embryos Independent of Hemojuvelin

    Science.gov (United States)

    Gibert, Yann; Lattanzi, Victoria J.; Zhen, Aileen W.; Vedder, Lea; Brunet, Frédéric; Faasse, Sarah A.; Babitt, Jodie L.; Lin, Herbert Y.; Hammerschmidt, Matthias; Fraenkel, Paula G.

    2011-01-01

    Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv. PMID:21283739

  13. Efficient differentiation of embryonic stem cells into mesodermal precursors by BMP, retinoic acid and Notch signalling.

    Directory of Open Access Journals (Sweden)

    Josema Torres

    Full Text Available The ability to direct differentiation of mouse embryonic stem (ES cells into specific lineages not only provides new insights into the pathways that regulate lineage selection but also has translational applications, for example in drug discovery. We set out to develop a method of differentiating ES cells into mesodermal cells at high efficiency without first having to induce embryoid body formation. ES cells were plated on a feeder layer of PA6 cells, which have membrane-associated stromal-derived inducing activity (SDIA, the molecular basis of which is currently unknown. Stimulation of ES/PA6 co-cultures with Bone Morphogenetic Protein 4 (BMP4 both favoured self-renewal of ES cells and induced differentiation into a Desmin and Nestin double positive cell population. Combined stimulation with BMP4 and all-trans Retinoic Acid (RA inhibited self-renewal and resulted in 90% of cells expressing Desmin and Nestin. Quantitative reverse transcription-polymerase chain reaction (qPCR analysis confirmed that the cells were of mesodermal origin and expressed markers of mesenchymal and smooth muscle cells. BMP4 activation of a MAD-homolog (Smad-dependent reporter in undifferentiated ES cells was attenuated by co-stimulation with RA and co-culture with PA6 cells. The Notch ligand Jag1 was expressed in PA6 cells and inhibition of Notch signalling blocked the differentiation inducing activity of PA6 cells. Our data suggest that mesodermal differentiation is regulated by the level of Smad activity as a result of inputs from BMP4, RA and the Notch pathway.

  14. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition.

    Science.gov (United States)

    Burstyn-Cohen, Tal; Stanleigh, Jonathan; Sela-Donenfeld, Dalit; Kalcheim, Chaya

    2004-11-01

    Delamination of premigratory neural crest cells depends on a balance between BMP/noggin and on successful G1/S transition. Here, we report that BMP regulates G1/S transition and consequent crest delamination through canonical Wnt signaling. Noggin overexpression inhibits G1/S transition and blocking G1/S abrogates BMP-induced delamination; moreover, transcription of Wnt1 is stimulated by BMP and by the developing somites, which concomitantly inhibit noggin production. Interfering with beta-catenin and LEF/TCF inhibits G1/S transition, neural crest delamination and transcription of various BMP-dependent genes, which include Cad6B, Pax3 and Msx1, but not that of Slug, Sox9 or FoxD3. Hence, we propose that developing somites inhibit noggin transcription in the dorsal tube, resulting in activation of BMP and consequent Wnt1 production. Canonical Wnt signaling in turn stimulates G1/S transition and generation of neural crest cell motility independently of its proposed role in earlier neural crest specification. PMID:15456730

  15. Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Robbie D Schultz

    Full Text Available In mammals, Bone Morphogenetic Protein (BMP pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle.

  16. Delta-like 1/fetal antigen 1(DLK1/FA1) inhibits BMP2 induced osteoblast differentiation through modulation of NFκB signaling pathway

    DEFF Research Database (Denmark)

    Qiu, Weimin; Abdallah, Basem; Kassem, Moustapha

    as assessed by reduced Alp activity and osteogenic gene expression including Alp, Col1a1, Runx2 and Bglap. In addition, DLK1/FA1 inhibited BMP signaling as demonstrated by reduced gene expression of BMP-responsive genes: Junb and Id1, reduced BMP2 induced luciferase activity in C2C12 BMP luciferase reporter....... Besides, we observed that DLK1/FA1 induced strong NFκB activity evidenced by NFκB responsive luciferase reporter assay and real-time RT-PCR analysis of NFκB target genes. The inhibitory effect of NFκB signaling on BMP signaling was confirmed by luciferase assay in C2C12 BMP luciferase reporter cells...

  17. SMAD-PI3K-Akt-mTOR pathway mediates BMP-7 polarization of monocytes into M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Crystal Rocher

    Full Text Available Previously we demonstrated that bone morphogenetic protein-7 (BMP-7 treatment polarizes monocytes into M2 macrophages and increases the expression of anti-inflammatory cytokines. Despite these findings, the mechanisms for the observed BMP-7 induced monocyte polarization into M2 macrophages are completely unknown. In this study, we demonstrate the mechanisms involved in the polarization of monocytes into M2 macrophages. Apoptotic conditioned media (ACM was generated to mimic the stressed conditions, inducing monocyte polarization. Monocytes were treated with ACM along with BMP-7 and/or its inhibitor, follistatin, for 48 hours. Furthermore, an inhibitor of the PI3K pathway, LY-294002, was also studied. Our data show that BMP-7 induces polarization of monocytes into M2 macrophages while significantly increasing the expression of anti-inflammatory markers, arginase-1 and IL-10, and significantly (p<0.05 decreasing the expression of pro-inflammatory markers iNOS, IL-6, TNF-α and MCP-1; (p<0.05. Moreover, addition of the PI3K inhibitor, LY-294002, significantly (p<0.05 decreases upregulation of IL-10 and arginase-1, suggesting involvement of the PI3K pathway in M2 macrophage polarization. Next, following BMP-7 treatment, a significant (p<0.05 increase in p-SMAD1/5/8 and p-PI3K expression resulting in downstream activation of p-Akt and p-mTOR was observed. Furthermore, expression of p-PTEN, an inhibitor of the PI3K pathway, was significantly (p<0.05 increased in the ACM group. However, BMP-7 treatment inhibited its expression, suggesting involvement of the PI3K-Akt-mTOR pathway. In conclusion, we demonstrate that BMP-7 polarizes monocytes into M2 macrophages and enhances anti-inflammatory cytokine expression which is mediated by the activated SMAD-PI3K-Akt-mTOR pathway.

  18. Transferrin receptor facilitates TGF-β and BMP signaling activation to control craniofacial morphogenesis.

    Science.gov (United States)

    Lei, R; Zhang, K; Liu, K; Shao, X; Ding, Z; Wang, F; Hong, Y; Zhu, M; Li, H; Li, H

    2016-01-01

    The Pierre Robin Sequence (PRS), consisting of cleft palate, glossoptosis and micrognathia, is a common human birth defect. However, how this abnormality occurs remains largely unknown. Here we report that neural crest cell (NCC)-specific knockout of transferrin receptor (Tfrc), a well known transferrin transporter protein, caused micrognathia, cleft palate, severe respiratory distress and inability to suckle in mice, which highly resemble human PRS. Histological and anatomical analysis revealed that the cleft palate is due to the failure of palatal shelves elevation that resulted from a retarded extension of Meckel's cartilage. Interestingly, Tfrc deletion dramatically suppressed both transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in cranial NCCs-derived mandibular tissues, suggesting that Tfrc may act as a facilitator of these two signaling pathways during craniofacial morphogenesis. Together, our study uncovers an unknown function of Tfrc in craniofacial development and provides novel insight into the etiology of PRS. PMID:27362800

  19. Single-molecule imaging of BMP4 dimerization on human periodontal ligament cells.

    Science.gov (United States)

    Mi, H-W; Lee, M-C; Chiang, Y-C; Chow, L-P; Lin, C-P

    2011-11-01

    We expressed bone morphogenetic protein 4 (BMP4) fused with enhanced green fluorescent protein (BMP4-EGFP) in the secretory pathways of producer cells. Fluorescent EGFP was acquired only after we interrupted the transport of BMP4-EGFP by culturing cells at a lower temperature (20°C), and the dynamics of BMP4-EGFP could be monitored by single-molecule microscopy. Western blotting analysis confirmed that exposure to low temperature helped the integrated formation of BMP4-EGFP fusion proteins. In this study, for the first time, we could image the fluorescently labeled BMP4 molecules localized on the plasma membrane of living hPDL cells. The one-step photobleaching with EGFP and the "blinking" behavior of quantum dots suggest that the fluorescent spots represent the events of single BMP4 molecules. Single-molecule tracking showed that the BMP receptors (BMPR) dimerize after BMP4 stimulation, or that a complex of one BMP4 molecule and a pre-formed BMPR dimer develops first, followed by the binding of the second BMP4 molecule. Furthermore, BMP4-EGFP enhanced the osteogenic differentiation of hPDL cells via signal transduction involving BMP receptors. This single-molecule imaging technique might be a valuable tool for the future development of BMP4 gene therapy and regenerative medicine mediated by hPDLs. PMID:21841042

  20. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis.

    Science.gov (United States)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-06-15

    Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  1. Sprouty2 regulates endochondral bone formation by modulation of RTK and BMP signaling.

    Science.gov (United States)

    Joo, Adriane; Long, Roger; Cheng, Zhiqiang; Alexander, Courtney; Chang, Wenhan; Klein, Ophir D

    2016-07-01

    Skeletal development is regulated by the coordinated activity of signaling molecules that are both produced locally by cartilage and bone cells and also circulate systemically. During embryonic development and postnatal bone remodeling, receptor tyrosine kinase (RTK) superfamily members play critical roles in the proliferation, survival, and differentiation of chondrocytes, osteoblasts, osteoclasts, and other bone cells. Recently, several molecules that regulate RTK signaling have been identified, including the four members of the Sprouty (Spry) family (Spry1-4). We report that Spry2 plays an important role in regulation of endochondral bone formation. Mice in which the Spry2 gene has been deleted have defective chondrogenesis and endochondral bone formation, with a postnatal decrease in skeletal size and trabecular bone mass. In these constitutive Spry2 mutants, both chondrocytes and osteoblasts undergo increased cell proliferation and impaired terminal differentiation. Tissue-specific Spry2 deletion by either osteoblast- (Col1-Cre) or chondrocyte- (Col2-Cre) specific drivers led to decreased relative bone mass, demonstrating the critical role of Spry2 in both cell types. Molecular analyses of signaling pathways in Spry2(-/-) mice revealed an unexpected upregulation of BMP signaling and decrease in RTK signaling. These results identify Spry2 as a critical regulator of endochondral bone formation that modulates signaling in both osteoblast and chondrocyte lineages. PMID:27130872

  2. Traf2 interacts with Smad4 and regulates BMP signaling pathway in MC3T3-E1 osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Koichi, E-mail: shimada-ki@dent.nihon-u.ac.jp [Department of Periodontology, Nihon University School of Dentistry, Tokyo (Japan); Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo (Japan); Ikeda, Kyoko [Department of Periodontology, Nihon University School of Dentistry, Tokyo (Japan); Ito, Koichi [Department of Periodontology, Nihon University School of Dentistry, Tokyo (Japan); Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo (Japan)

    2009-12-18

    Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate in the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from bone marrow, to indentify the proteins interacting with Smad4. cDNA clones for Tumor necrosis factor (TNF) receptor-associated factor 2 (Traf2) were identified, and the interaction between the endogenous proteins was confirmed in the mouse osteoblast cell line MC3T3-E1. To investigate the function of Traf2, we silenced it with siRNA. The level of BMP-2 protein in the medium, the expression levels of the Bmp2 gene and BMP-induced transcription factor genes, including Runx2, Dlx5, Msx2, and Sp7, and the phosphorylated-Smad1 protein level were increased in cells transfected with Traf2 siRNA. The nuclear accumulation of Smad1 increased with TNF-{alpha} stimulation for 30 min at Traf2 silencing. These results suggest that the TNF-{alpha}-stimulated nuclear accumulation of Smad1 may be dependent on Traf2. Thus, the interaction between Traf2 and Smad4 may play a role in the cross-talk between TNF-{alpha} and BMP signaling pathways.

  3. Traf2 interacts with Smad4 and regulates BMP signaling pathway in MC3T3-E1 osteoblasts

    International Nuclear Information System (INIS)

    Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate in the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from bone marrow, to indentify the proteins interacting with Smad4. cDNA clones for Tumor necrosis factor (TNF) receptor-associated factor 2 (Traf2) were identified, and the interaction between the endogenous proteins was confirmed in the mouse osteoblast cell line MC3T3-E1. To investigate the function of Traf2, we silenced it with siRNA. The level of BMP-2 protein in the medium, the expression levels of the Bmp2 gene and BMP-induced transcription factor genes, including Runx2, Dlx5, Msx2, and Sp7, and the phosphorylated-Smad1 protein level were increased in cells transfected with Traf2 siRNA. The nuclear accumulation of Smad1 increased with TNF-α stimulation for 30 min at Traf2 silencing. These results suggest that the TNF-α-stimulated nuclear accumulation of Smad1 may be dependent on Traf2. Thus, the interaction between Traf2 and Smad4 may play a role in the cross-talk between TNF-α and BMP signaling pathways.

  4. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Ebe, Yukari; Kanaya, Sousuke [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  5. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    International Nuclear Information System (INIS)

    Highlights: ► Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. ► Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. ► Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. ► Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  6. Calycosin-7-O-β-d-glucopyranoside stimulates osteoblast differentiation through regulating the BMP/WNT signaling pathways

    Directory of Open Access Journals (Sweden)

    Jing Jian

    2015-09-01

    Full Text Available The isoflavone calycosin-7-O-β-d-glucopyranoside (CG is a principal constituent of Astragalus membranaceus (AR and has been reported to inhibit osteoclast development in vitro and bone loss in vivo. The aim of this study was to investigate the osteogenic effects of CG and its underlying mechanism in ST2 cells. The results show that exposure of cells to CG in osteogenic differentiation medium increases ALP activity, osteocalcin (Ocal mRNA expression and the osteoblastic mineralization process. Mechanistically, CG treatment increased the expression of bone morphogenetic protein 2 (BMP-2, p-Smad 1/5/8, β-catenin and Runx2, all of which are regulators of the BMP- or wingless-type MMTV integration site family (WNT/β-catenin-signaling pathways. Moreover, the osteogenic effects of CG were inhibited by Noggin and DKK-1 which are classical inhibitors of the BMP and WNT/β-catenin-signaling pathways, respectively. Taken together, the results indicate that CG promotes the osteoblastic differentiation of ST2 cells through regulating the BMP/WNT signaling pathways. On this basis, CG may be a useful lead compound for improving the treatment of bone-decreasing diseases and enhancing bone regeneration.

  7. Retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2 in mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Zhang Yingang; Guo Xiong; Liu Zheng; Wang Shijie

    2007-01-01

    Objective To develop retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2 in mesenchymal stem cells. Methods Mesenchymal stem cells from New Zealand white rabbits were transduced with retroviral pLEGFP-BMP2 vector by the optimized retroviral transduction protocol. Fluorescent microscopy's examination was to evaluate the results of the transduction, flow cytometer's analysis was to evaluate the transduction efficiency and the Fluorescence-activated cell sorting method was to sort the transduced cells. Bioactivity test from C2C12K4 cells was to show the expression and bio-activity of the fusion gene. Results Fluorescent microscopy showed the success of the transduction. By flow cytometer's analysis, the mean efficiency of the transduction with EGFP was (42.8±6.1)% SD. Transduced cells were sorted efficiently by the fluorescence-activated cell sorting method and after sorting, almost of those showed the expression of BMP2. Fluorescently and strongly bioactivity test for C2C12K4 cells demonstrated that fluorescent materials were located the surface of cells and the activity of luciferase increased compared with the control. Analysis of long-term expression showed there was no difference between 2 week-time point and 3 month-time point of culture post-sorting. Conclusion Mesenchymal stem cells can be transduced efficiently by retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2, the highly pure transduced cells are obtained by the fluorescence-activated cell sorting technique, the expressed chimeric protein embraced the double bioactivity of EGFP and BMP2, and moreover, the expression had not attenuated over time.

  8. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish.

    Science.gov (United States)

    Sarmah, Swapnalee; Muralidharan, Pooja; Marrs, James A

    2016-01-01

    Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3-24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish. PMID:27556898

  9. Wnt signaling interacts with bmp and edn1 to regulate dorsal-ventral patterning and growth of the craniofacial skeleton.

    Directory of Open Access Journals (Sweden)

    Courtney Alexander

    2014-07-01

    Full Text Available Craniofacial development requires signals from epithelia to pattern skeletogenic neural crest (NC cells, such as the subdivision of each pharyngeal arch into distinct dorsal (D and ventral (V elements. Wnt signaling has been implicated in many aspects of NC and craniofacial development, but its roles in D-V arch patterning remain unclear. To address this we blocked Wnt signaling in zebrafish embryos in a temporally-controlled manner, using transgenics to overexpress a dominant negative Tcf3, (dntcf3, (Tg(hsp70I:tcf3-GFP, or the canonical Wnt inhibitor dickkopf1 (dkk1, (Tg(hsp70i:dkk1-GFP after NC migration. In dntcf3 transgenics, NC cells in the ventral arches of heat-shocked embryos show reduced proliferation, expression of ventral patterning genes (hand2, dlx3b, dlx5a, msxe, and ventral cartilage differentiation (e.g. lower jaws. These D-V patterning defects resemble the phenotypes of zebrafish embryos lacking Bmp or Edn1 signaling, and overexpression of dntcf3 dramatically reduces expression of a subset of Bmp receptors in the arches. Addition of ectopic BMP (or EDN1 protein partially rescues ventral development and expression of dlx3b, dlx5a, and msxe in Wnt signaling-deficient embryos, but surprisingly does not rescue hand2 expression. Thus Wnt signaling provides ventralizing patterning cues to arch NC cells, in part through regulation of Bmp and Edn1 signaling, but independently regulates hand2. Similarly, heat-shocked dkk1+ embryos exhibit ventral arch reductions, but also have mandibular clefts at the ventral midline not seen in dntcf3+ embryos. Dkk1 is expressed in pharyngeal endoderm, and cell transplantation experiments reveal that dntcf3 must be overexpressed in pharyngeal endoderm to disrupt D-V arch patterning, suggesting that distinct endodermal roles for Wnts and Wnt antagonists pattern the developing skeleton.

  10. A targeted glycan-related gene screen reveals heparan sulfate proteoglycan sulfation regulates WNT and BMP trans-synaptic signaling.

    Directory of Open Access Journals (Sweden)

    Neil Dani

    Full Text Available A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS 6-O-sulfotransferase (hs6st and sulfatase (sulf1, which bidirectionally control HS proteoglycan (HSPG sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st and increased (sulf1 neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg and BMP (Glass Bottom Boat; Gbb ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.

  11. Increased iron loading induces Bmp6 expression in the non-parenchymal cells of the liver independent of the BMP-signaling pathway.

    Directory of Open Access Journals (Sweden)

    Caroline A Enns

    Full Text Available Bone morphogenetic protein 6 (BMP6 is an essential cytokine for the expression of hepcidin, an iron regulatory hormone secreted predominantly by hepatocytes. Bmp6 expression is upregulated by increased iron-levels in the liver. Both hepatocytes and non-parenchymal liver cells have detectable Bmp6 mRNA. Here we showed that induction of hepcidin expression in hepatocytes by dietary iron is associated with an elevation of Bmp6 mRNA in the non-parenchymal cells of the liver. Consistently, incubation with iron-saturated transferrin induces Bmp6 mRNA expression in isolated hepatic stellate cells, but not in hepatocytes. These observations suggest an important role of the non-parenchymal liver cells in regulating iron-homeostasis by acting as a source of Bmp6.

  12. Threshold-dependent BMP-mediated repression: a model for a conserved mechanism that patterns the neuroectoderm.

    Directory of Open Access Journals (Sweden)

    Claudia Mieko Mizutani

    2006-10-01

    Full Text Available Subdivision of the neuroectoderm into three rows of cells along the dorsal-ventral axis by neural identity genes is a highly conserved developmental process. While neural identity genes are expressed in remarkably similar patterns in vertebrates and invertebrates, previous work suggests that these patterns may be regulated by distinct upstream genetic pathways. Here we ask whether a potential conserved source of positional information provided by the BMP signaling contributes to patterning the neuroectoderm. We have addressed this question in two ways: First, we asked whether BMPs can act as bona fide morphogens to pattern the Drosophila neuroectoderm in a dose-dependent fashion, and second, we examined whether BMPs might act in a similar fashion in patterning the vertebrate neuroectoderm. In this study, we show that graded BMP signaling participates in organizing the neural axis in Drosophila by repressing expression of neural identity genes in a threshold-dependent fashion. We also provide evidence for a similar organizing activity of BMP signaling in chick neural plate explants, which may operate by the same double negative mechanism that acts earlier during neural induction. We propose that BMPs played an ancestral role in patterning the metazoan neuroectoderm by threshold-dependent repression of neural identity genes.

  13. Bmp indicator mice reveal dynamic regulation of transcriptional response.

    Directory of Open Access Journals (Sweden)

    Anna L Javier

    Full Text Available Cellular responses to Bmp ligands are regulated at multiple levels, both extracellularly and intracellularly. Therefore, the presence of these growth factors is not an accurate indicator of Bmp signaling activity. While a common approach to detect Bmp signaling activity is to determine the presence of phosphorylated forms of Smad1, 5 and 8 by immunostaining, this approach is time consuming and not quantitative. In order to provide a simpler readout system to examine the presence of Bmp signaling in developing animals, we developed BRE-gal mouse embryonic stem cells and a transgenic mouse line that specifically respond to Bmp ligand stimulation. Our reporter identifies specific transcriptional responses that are mediated by Smad1 and Smad4 with the Schnurri transcription factor complex binding to a conserved Bmp-Responsive Element (BRE, originally identified among Drosophila, Xenopus and human Bmp targets. Our BRE-gal mES cells specifically respond to Bmp ligands at concentrations as low as 5 ng/ml; and BRE-gal reporter mice, derived from the BRE-gal mES cells, show dynamic activity in many cellular sites, including extraembryonic structures and mammary glands, thereby making this a useful scientific tool.

  14. Integrins mediating bone signal transduction

    Institute of Scientific and Technical Information of China (English)

    HE Chuanglong; WANG Yuanliang; YANG Lihua; ZHANG Jun

    2004-01-01

    Integrin-mediated adhesions play critical roles in diverse cell functions. Integrins offers a platform on which mechanical stimuli, cytoskeletal organization, biochemical signals can concentrate. Mechanical stimuli transmitted by integrins influence the cytoskeleton, in turn, the cytoskeleton influences cell adhesion via integrins, then cell adhesion results in a series of signal transduction cascades. In skeleton, integrins also have a key role for bone resoption by osteoclasts and reformation by osteoblasts. In present review, the proteins involved in integrin signal transduction and integrin signal transduction pathways were discussed, mainly on the basic mechanisms of integrin signaling and the roles of integrins in bone signal transduction, which may give insight into new therapeutic agents to all kinds of skeletal diseases and new strategies for bone tissue engineering.

  15. Intestinal Mucosal Barrier Is Injured by BMP2/4 via Activation of NF-κB Signals after Ischemic Reperfusion

    Directory of Open Access Journals (Sweden)

    Kang Chen

    2014-01-01

    Full Text Available Intestinal ischemic reperfusion (I/R can cause dysfunction of the intestinal mucosal barrier; however, the mechanism of the intestinal mucosal barrier dysfunction caused by I/R remains unclear. In this study, using intestinal epithelial cells under anaerobic cultivation and an in vivo rat intestinal I/R model, we found that hypoxia and I/R increased the expression of BMP2/4 and upregulated BMP type Ia receptor and BMP type II receptor expression. We also found that exogenous BMP2/4 can activate the ERK and AKT signaling pathways in rat small intestine (IEC-6 cells, thereby activating NF-κB signaling, which leads to increased levels of inflammatory factors, such as TNF-α and IL-6. Furthermore, recombinant BMP2/4 decreased the expression of the tight junction protein occludin via the activation of the NF-κB pathway; these effects were abolished by treatment with the BMP-specific antagonist noggin or the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC. All these factors can destroy the intestinal mucosal barrier, thereby leading to weaker barrier function. On the basis of these data, we conclude that BMP2/4 may act as the pathogenic basis for intestinal mucosal barrier dysfunction when the intestines suffer an I/R injury. Our results provide background for the development pharmacologic interventions in the management of I/R injury.

  16. Cooperative inputs of Bmp and Fgf signaling induce tail regeneration in urodele amphibians.

    Science.gov (United States)

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2016-02-01

    Urodele amphibians have remarkable organ regeneration ability. They can regenerate not only limbs but also a tail throughout their life. It has been demonstrated that the regeneration of some organs are governed by the presence of neural tissues. For instance, limb regeneration cannot be induced without nerves. Thus, identifying the nerve factors has been the primary focus in amphibian organ regeneration research. Recently, substitute molecules for nerves in limb regeneration, Bmp and Fgfs, were identified. Cooperative inputs of Bmp and Fgfs can induce limb regeneration in the absence of nerves. In the present study, we investigated whether similar or same regeneration mechanisms control another neural tissue governed organ regeneration, i.e., tail regeneration, in Ambystoma mexicanum. Neural tissues in a tail, which is the spinal cord, could transform wound healing responses into organ regeneration responses, similar to nerves in limb regeneration. Furthermore, the identified regeneration inducer Fgf2+Fgf8+Bmp7 showed similar inductive effects. However, further analysis revealed that the blastema cells induced by Fgf2+Fgf8+Bmp7 could participate in the regeneration of several tissues, but could not organize a patterned tail. Regeneration inductive ability of Fgf2+Fgf8+Bmp7 was confirmed in another urodele, Pleurodeles waltl. These results suggest that the organ regeneration ability in urodele amphibians is controlled by a common mechanism. PMID:26703427

  17. Cooperative inputs of Bmp and Fgf signaling induce tail regeneration in urodele amphibians.

    Science.gov (United States)

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2016-02-01

    Urodele amphibians have remarkable organ regeneration ability. They can regenerate not only limbs but also a tail throughout their life. It has been demonstrated that the regeneration of some organs are governed by the presence of neural tissues. For instance, limb regeneration cannot be induced without nerves. Thus, identifying the nerve factors has been the primary focus in amphibian organ regeneration research. Recently, substitute molecules for nerves in limb regeneration, Bmp and Fgfs, were identified. Cooperative inputs of Bmp and Fgfs can induce limb regeneration in the absence of nerves. In the present study, we investigated whether similar or same regeneration mechanisms control another neural tissue governed organ regeneration, i.e., tail regeneration, in Ambystoma mexicanum. Neural tissues in a tail, which is the spinal cord, could transform wound healing responses into organ regeneration responses, similar to nerves in limb regeneration. Furthermore, the identified regeneration inducer Fgf2+Fgf8+Bmp7 showed similar inductive effects. However, further analysis revealed that the blastema cells induced by Fgf2+Fgf8+Bmp7 could participate in the regeneration of several tissues, but could not organize a patterned tail. Regeneration inductive ability of Fgf2+Fgf8+Bmp7 was confirmed in another urodele, Pleurodeles waltl. These results suggest that the organ regeneration ability in urodele amphibians is controlled by a common mechanism.

  18. Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model.

    Science.gov (United States)

    Keeney, Michael; Chung, Michael T; Zielins, Elizabeth R; Paik, Kevin J; McArdle, Adrian; Morrison, Shane D; Ransom, Ryan C; Barbhaiya, Namrata; Atashroo, David; Jacobson, Gunilla; Zare, Richard N; Longaker, Michael T; Wan, Derrick C; Yang, Fan

    2016-08-01

    Scaffold-mediated gene delivery holds great promise for tissue regeneration. However, previous attempts to induce bone regeneration using scaffold-mediated non-viral gene delivery rarely resulted in satisfactory healing. We report a novel platform with sustained release of minicircle DNA (MC) from PLGA scaffolds to accelerate bone repair. MC was encapsulated inside PLGA scaffolds using supercritical CO2 , which showed prolonged release of MC. Skull-derived osteoblasts transfected with BMP-2 MC in vitro result in higher osteocalcin gene expression and mineralized bone formation. When implanted in a critical-size mouse calvarial defect, scaffolds containing luciferase MC lead to robust in situ protein production up to at least 60 days. Scaffold-mediated BMP-2 MC delivery leads to substantially accelerated bone repair as early as two weeks, which continues to progress over 12 weeks. This platform represents an efficient, long-term nonviral gene delivery system, and may be applicable for enhancing repair of a broad range of tissues types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2099-2107, 2016. PMID:27059085

  19. Ror2 signaling is required for local upregulation of GFD6 and activation of BMP signaling at the neural plate border.

    Science.gov (United States)

    Schille, Carolin; Bayerlová, Michaela; Bleckmann, Annalen; Schambony, Alexandra

    2016-09-01

    The receptor tyrosine kinase Ror2 is a major Wnt receptor that activates β-catenin-independent signaling and plays a conserved role in the regulation of convergent extension movements and planar cell polarity in vertebrates. Mutations in the ROR2 gene cause recessive Robinow syndrome in humans, a short-limbed dwarfism associated with craniofacial malformations. Here, we show that Ror2 is required for local upregulation of gdf6 at the neural plate border in Xenopus embryos. Ror2 morphant embryos fail to upregulate neural plate border genes and show defects in the induction of neural crest cell fate. These embryos lack the spatially restricted activation of BMP signaling at the neural plate border at early neurula stages, which is required for neural crest induction. Ror2-dependent planar cell polarity signaling is required in the dorsolateral marginal zone during gastrulation indirectly to upregulate the BMP ligand Gdf6 at the neural plate border and Gdf6 is sufficient to rescue neural plate border specification in Ror2 morphant embryos. Thereby, Ror2 links Wnt/planar cell polarity signaling to BMP signaling in neural plate border specification and neural crest induction. PMID:27578181

  20. Genetic analysis reveals an unexpected role of BMP7 in initiation of ureteric bud outgrowth in mouse embryos.

    Directory of Open Access Journals (Sweden)

    Alexandre Gonçalves

    Full Text Available BACKGROUND: Genetic analysis in the mouse revealed that GREMLIN1 (GREM1-mediated antagonism of BMP4 is essential for ureteric epithelial branching as the disruption of ureteric bud outgrowth and renal agenesis in Grem1-deficient embryos is restored by additional inactivation of one Bmp4 allele. Another BMP ligand, BMP7, was shown to control the proliferative expansion of nephrogenic progenitors and its requirement for nephrogenesis can be genetically substituted by Bmp4. Therefore, we investigated whether BMP7 in turn also participates in inhibiting ureteric bud outgrowth during the initiation of metanephric kidney development. METHODOLOGY/PRINCIPAL FINDINGS: Genetic inactivation of one Bmp7 allele in Grem1-deficient mouse embryos does not alleviate the bilateral renal agenesis, while complete inactivation of Bmp7 restores ureteric bud outgrowth and branching. In mouse embryos lacking both Grem1 and Bmp7, GDNF/WNT11 feedback signaling and the expression of the Etv4 target gene, which regulates formation of the invading ureteric bud tip, are restored. In contrast to the restoration of ureteric bud outgrowth and branching, nephrogenesis remains aberrant as revealed by the premature loss of Six2 expressing nephrogenic progenitor cells. Therefore, very few nephrons develop in kidneys lacking both Grem1 and Bmp7 and the resulting dysplastic phenotype is indistinguishable from the one of Bmp7-deficient mouse embryos. CONCLUSIONS/SIGNIFICANCE: Our study reveals an unexpected inhibitory role of BMP7 during the onset of ureteric bud outgrowth. As BMP4, BMP7 and GREM1 are expressed in distinct mesenchymal and epithelial domains, the localized antagonistic interactions of GREM1 with BMPs could restrict and guide ureteric bud outgrowth and branching. The robustness and likely significant redundancy of the underlying signaling system is evidenced by the fact that global reduction of Bmp4 or inactivation of Bmp7 are both able to restore ureteric bud outgrowth

  1. The level of BMP4 signaling is critical for the regulation of distinct T-box gene expression domains and growth along the dorso-ventral axis of the optic cup

    Directory of Open Access Journals (Sweden)

    Sowden Jane C

    2006-12-01

    Full Text Available Abstract Background Polarised gene expression is thought to lead to the graded distribution of signaling molecules providing a patterning mechanism across the embryonic eye. Bone morphogenetic protein 4 (Bmp4 is expressed in the dorsal optic vesicle as it transforms into the optic cup. Bmp4 deletions in human and mouse result in failure of eye development, but little attempt has been made to investigate mammalian targets of BMP4 signaling. In chick, retroviral gene overexpression studies indicate that Bmp4 activates the dorsally expressed Tbx5 gene, which represses ventrally expressed cVax. It is not known whether the Tbx5 related genes, Tbx2 and Tbx3, are BMP4 targets in the mammalian retina and whether BMP4 acts at a distance from its site of expression. Although it is established that Drosophila Dpp (homologue of vertebrate Bmp4 acts as a morphogen, there is little evidence that BMP4 gradients are interpreted to create domains of BMP4 target gene expression in the mouse. Results Our data show that the level of BMP4 signaling is critical for the regulation of distinct Tbx2, Tbx3, Tbx5 and Vax2 gene expression domains along the dorso-ventral axis of the mouse optic cup. BMP4 signaling gradients were manipulated in whole mouse embryo cultures during optic cup development, by implantation of beads soaked in BMP4, or the BMP antagonist Noggin, to provide a local signaling source. Tbx2, Tbx3 and Tbx5, showed a differential response to alterations in the level of BMP4 along the entire dorso-ventral axis of the optic cup, suggesting that BMP4 acts across a distance. Increased levels of BMP4 caused expansion of Tbx2 and Tbx3, but not Tbx5, into the ventral retina and repression of the ventral marker Vax2. Conversely, Noggin abolished Tbx5 expression but only shifted Tbx2 expression dorsally. Increased levels of BMP4 signaling caused decreased proliferation, reduced retinal volume and altered the shape of the optic cup. Conclusion Our findings suggest

  2. BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2

    Science.gov (United States)

    Bayne, Rosemary A.; Donnachie, Douglas J.; Kinnell, Hazel L.; Childs, Andrew J.; Anderson, Richard A.

    2016-01-01

    STUDY QUESTION Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? STUDY FINDING BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. WHAT IS KNOWN ALREADY Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrate that the

  3. Laminin and integrin expression in the ventral ectodermal ridge of the mouse embryo: implications for regulation of BMP signalling

    Science.gov (United States)

    Lopez-Escobar, Beatriz; de Felipe, Beatriz; Sanchez-Alcazar, Jose Antonio; Sasaki, Takako; Copp, Andrew J.; Ybot-Gonzalez, Patricia

    2013-01-01

    Background The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear. Results We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, β and γ laminin chains and their mRNAs in the early tail bud. We identified an apparently novel laminin variant, comprising α5, β3 and γ2 chains, as a major component of the VER basement membrane at E9.5. Strikingly, only the mRNAs for these chains were co-expressed in VER cells, suggesting that lamin532 may be the sole basement membrane laminin at this stage. Since α6 integrin was also expressed in VER cells, this raises the possibility of cell-matrix interactions regulating BMP signalling at this site of caudal morphogenesis. Conclusions Laminin532 could interact with α6-containing integrin to direct differentiation of the specialised VER cells from surface ectoderm. PMID:22911573

  4. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling.

    Science.gov (United States)

    Zhou, Shufeng; Flamier, Anthony; Abdouh, Mohamed; Tétreault, Nicolas; Barabino, Andrea; Wadhwa, Shashi; Bernier, Gilbert

    2015-10-01

    Cone photoreceptors are required for color discrimination and high-resolution central vision and are lost in macular degenerations, cone and cone/rod dystrophies. Cone transplantation could represent a therapeutic solution. However, an abundant source of human cones remains difficult to obtain. Work performed in model organisms suggests that anterior neural cell fate is induced 'by default' if BMP, TGFβ and Wnt activities are blocked, and that photoreceptor genesis operates through an S-cone default pathway. We report here that Coco (Dand5), a member of the Cerberus gene family, is expressed in the developing and adult mouse retina. Upon exposure to recombinant COCO, human embryonic stem cells (hESCs) differentiated into S-cone photoreceptors, developed an inner segment-like protrusion, and could degrade cGMP when exposed to light. Addition of thyroid hormone resulted in a transition from a unique S-cone population toward a mixed M/S-cone population. When cultured at confluence for a prolonged period of time, COCO-exposed hESCs spontaneously developed into a cellular sheet composed of polarized cone photoreceptors. COCO showed dose-dependent and synergistic activity with IGF1 at blocking BMP/TGFβ/Wnt signaling, while its cone-inducing activity was blocked in a dose-dependent manner by exposure to BMP, TGFβ or Wnt-related proteins. Our work thus provides a unique platform to produce human cones for developmental, biochemical and therapeutic studies and supports the hypothesis that photoreceptor differentiation operates through an S-cone default pathway during human retinal development. PMID:26443633

  5. BMP and TGFbeta pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors

    International Nuclear Information System (INIS)

    As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma. Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis. The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other. The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells

  6. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  7. Inhibition of BMP signaling reduces MMP-2 and MMP-9 expression and obstructs wound healing in regenerating fin of teleost fish Poecilia latipinna.

    Science.gov (United States)

    Rajaram, Shailja; Murawala, Hiral; Buch, Pranav; Patel, Sonam; Balakrishnan, Suresh

    2016-04-01

    The tail fin of teleost fish responds to amputation by expressing few putative factors that promote scar-free wound healing, which paves the way for restoration of the lost part. Among the factors playing a role in this initial response, bone morphogenetic proteins (BMPs) are crucial. In the current study, we have analyzed the effect of BMP inhibition on wound healing in sailfin molly Poecilia latipinna. The study involved histological assessment of wound epithelium formation, an expression profile of proteins, and gelatinase activity as well as expression in response to BMP signal inhibition. LDN193189, a pharmacological inhibitor of BMP receptor, was administered to experimental fish. Our observations include incomplete wound healing and a significant reduction in the expression of a number of proteins as a result of LDN treatment at 24 h post-amputation. A pronounced effect was also seen on the gelatinases MMP-9 and MMP-2, which showed significantly reduced activities on a zymogram. Reduced expression of these MMPs after inhibitor treatment was also confirmed by western blot and real-time PCR analyses. In view of these results, we confirm that BMP signaling has a definitive role in the early stages of fin regeneration in P. latipinna. The effect of BMP inhibition is especially seen on the expression of MMP-9 and MMP-2, which are very important effectors of tissue remodeling immediately following amputation. PMID:26614502

  8. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis

    OpenAIRE

    Qian, Shu-Wen; Tang, Yan; Li, Xi; Liu, Yuan; Zhang, You-you; Huang, Hai-yan; Xue, Rui-Dan; Yu, Hao-Yong; Guo, Liang; Gao, Hui-Di; Liu, Yan; Sun, Xia; Li, Yi-ming; Jia, Wei-Ping; Tang, Qi-Qun

    2013-01-01

    Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces “white adipocytes” with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP...

  9. Icariin Augments Bone Formation and Reverses the Phenotypes of Osteoprotegerin-Deficient Mice through the Activation of Wnt/β-Catenin-BMP Signaling

    Directory of Open Access Journals (Sweden)

    Xiao-Feng Li

    2013-01-01

    Full Text Available Icariin has been mostly reported to enhance bone fracture healing and treat postmenopausal osteoporosis in ovariectomized animal model. As another novel animal model of osteoporosis, there is few publication about the effect of Icariin on osteoprotegerin-deficient mice. Therefore, the goal of this study is to find the effect on bone formation and underlying mechanisms of Icariin in osteoprotegerin (OPG knockout (KO mice. We found that Icariin significantly stimulated new bone formation after local injection over the surface of calvaria at the dose of 5 mg/kg per day. With this dose, Icariin was also capable of significantly reversing OPG-deficient-induced bone loss and bone strength reduction. Real-time PCR analysis showed that Icariin significantly upregulated the expression of BMP2, BMP4, RUNX2, OC, Wnt1, and Wnt3a in OPG KO mice. Icariin also significantly increased the expression of AXIN2, DKK1, TCF1, and LEF1, which are the direct target genes of β-catenin signaling. The in vitro studies showed that Icariin induced osteoblast differentiation through the activation of Wnt/β-catenin-BMP signaling by in vitro deletion of the β-catenin gene using β-cateninfx/fx mice. Together, our findings demonstrate that Icariin significantly reverses the phenotypes of OPG-deficient mice through the activation of Wnt/β-catenin-BMP signaling.

  10. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development.

    Science.gov (United States)

    Foppiano, Silvia; Hu, Diane; Marcucio, Ralph S

    2007-12-01

    We previously described a signaling center, the Frontonasal Ectodermal Zone (FEZ) that regulates growth and patterning of the frontonasal process (FNP). The FEZ is comprised of FNP ectoderm flanking a boundary between Sonic hedgehog (Shh) and Fibroblast growth factor 8 (Fgf8) expression domains. Our objective was to examine BMP signaling during formation of the FEZ. We blocked BMP signaling throughout the FNP prior to FEZ formation by infecting chick embryos at stage 10 (HH10) with a replication-competent avian retrovirus encoding the BMP antagonist Noggin. We assessed gene expression patterns in the FNP 72 h after infection (approximately HH22) and observed that Shh expression was reduced or absent. In the mesenchyme, we observed that Bmp2 transcripts were absent while the Bmp4 expression domain was expanded proximally. In addition to the molecular changes, infected embryos also exhibited facial malformations at 72 and 96 h after infection suggesting that the FEZ did not form. Our data indicate that reduced cell proliferation, but not apoptosis, in the mesenchyme contributed to the phenotype that we observed. Additionally, adding exogenous SHH into the mesenchyme of RCAS-Noggin-infected embryos did not restore Bmp2 and Bmp4 to a normal pattern of expression. These data indicate that BMP signaling mediates interactions between tissues in the FNP that regulate FEZ formation; and that the correct pattern of Bmp2 and Bmp4, but not Bmp7, expression in the FNP mesenchyme requires signaling by the BMP pathway.

  11. Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse

    Directory of Open Access Journals (Sweden)

    James M. Halstead

    2014-08-01

    Full Text Available Synaptic plasticity involves the modulation of synaptic connections in response to neuronal activity via multiple pathways. One mechanism modulates synaptic transmission by retrograde signals from the post-synapse that influence the probability of vesicle release in the pre-synapse. Despite its importance, very few factors required for the expression of retrograde signals, and proper synaptic transmission, have been identified. Here, we identify the conserved RNA binding protein Syncrip as a new factor that modulates the efficiency of vesicle release from the motoneuron and is required for correct synapse structure. We show that syncrip is required genetically and its protein product is detected only in the muscle and not in the motoneuron itself. This unexpected non-autonomy is at least partly explained by the fact that Syncrip modulates retrograde BMP signals from the muscle back to the motoneuron. We show that Syncrip influences the levels of the Bone Morphogenic Protein ligand Glass Bottom Boat from the post-synapse and regulates the pre-synapse. Our results highlight the RNA-binding protein Syncrip as a novel regulator of synaptic output. Given its known role in regulating translation, we propose that Syncrip is important for maintaining a balance between the strength of presynaptic vesicle release and postsynaptic translation.

  12. Canonical BMP Signaling Pathway And Mammalian Lung Development%经典BMP信号通路与哺乳动物肺器官发育

    Institute of Scientific and Technical Information of China (English)

    肖爱平; 滕鸿琦; 李小兵; 张明凤

    2012-01-01

      肺器官发育是上皮和间充质相互作用的过程,由多条信号通路共同调控。已知经典BMP信号通路调控了细胞的增殖、凋亡及分化过程,对哺乳动物肺器官形态发生极为重要。在小鼠等模式生物上研究发现,它参与了哺乳动物肺器官发育的调控过程。本文综合了近年来经典BMP信号通路成员在哺乳动物肺器官发育过程中的表达变化、作用功能及表达异常可能诱发的肺部疾病,以期为研究经典BMP信号通路调控人类肺器官发育的分子机制及相关肺部疾病的诊治奠定基础。%  Lung development is a consequence of interaction between epithelium and mesenchyme,which is regulated by several sig-naling pathways. It is well known that the canonical BMP signal pathway plays an important role in the regulation of cell proliferation, apoptosis and differentiation. They are also found to play pivotal roles in morphogenesis of mammalian lung. Recent studies on model organisms,such as mouse and rat,verified that the canonical BMP signal pathway participated in the regulation of mammalian lung development. This review has summarized the main recent research findings on the role of canonical BMP signaling components in the regulation of mammalian lung development. The gene expression and function in all members of canonical BMP signaling pathway, and the possible lung diseases induced by abnormal expression of canonical BMP signaling components during the mammalian lung development were emphasized to state. It’s anticipated to provide valuable information for further illustration of the molecular mecha-nisms of BMP signals in the regulation of human lung development,as well as will be in favor of finding the way to diagnose and cure human lung diseases.

  13. The p38/MK2/Hsp25 pathway is required for BMP-2-induced cell migration.

    Directory of Open Access Journals (Sweden)

    Cristina Gamell

    Full Text Available BACKGROUND: Bone morphogenetic proteins (BMPs have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. METHODOLOGY/PRINCIPAL FINDINGS: Activation of p38 MAPK has been shown to be relevant for a number of BMP-2's physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38α or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. CONCLUSIONS: These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration.

  14. USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling.

    Science.gov (United States)

    Herhaus, Lina; Al-Salihi, Mazin A; Dingwell, Kevin S; Cummins, Timothy D; Wasmus, Lize; Vogt, Janis; Ewan, Richard; Bruce, David; Macartney, Thomas; Weidlich, Simone; Smith, James C; Sapkota, Gopal P

    2014-05-01

    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis. PMID:24850914

  15. Expressional and functional analyses of transcription factors activated by BMP-4s signaling in early xenopus embryo; BMP-4 shigunaru dentatsu kiko to sono hyoteki kakunai tensha inshi ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Maeno, Mitsugu [Niigata University, Niigata (Japan). Faculty of Science

    1998-12-16

    The expression and physiological function of two transcription factors, GATA-2 and Xmsx-1, in amphibian embryos has been analyzed. The expression of these mRNAs in embryonic cells were firmly regulated by the BMP-4 signaling, that plays a central role in the formation of ventral tissues. The microinjection studies of GATA-2 RNA into embryonic cells suggested that this factor functions in two adjacent germ layers, mesoderm and ectoderm, to participate in blood cell formation in ventral area of embryo. Embryos injected with Xmsx-1 RNA, but not with GATA-2, in dorsal blastomeres exhibited a ventralized phenotype, with microcephaly and swollen abdomen. Thus, Xmsx-1 is a ventralizing agent. However, on the basis of molecular marker analyses, Xmsx-1 did not promote erythropoietic differentiation, but promoted muscle tissue formation. It has been concluded that Xmsx-1 si a target transcription factor of the BMP-4 signaling, but possesses a distinct activity on dorso-ventral patterning of mesodermal tissues. (author)

  16. BMP antagonists enhance myogenic differentiation and ameliorate the dystrophic phenotype in a DMD mouse model.

    Science.gov (United States)

    Shi, SongTing; Hoogaars, Willem M H; de Gorter, David J J; van Heiningen, Sandra H; Lin, Herbert Y; Hong, Charles C; Kemaladewi, Dwi U; Aartsma-Rus, Annemieke; ten Dijke, Peter; 't Hoen, Peter A C

    2011-02-01

    Duchenne Muscular Dystrophy (DMD) is an X-linked lethal muscle wasting disease characterized by muscle fiber degeneration and necrosis. The progressive pathology of DMD can be explained by an insufficient regenerative response resulting in fibrosis and adipose tissue formation. BMPs are known to inhibit myogenic differentiation and in a previous study we found an increased expression of a BMP family member BMP4 in DMD myoblasts. The aim of the current study was therefore to investigate whether inhibition of BMP signaling could be beneficial for myoblast differentiation and muscle regeneration processes in a DMD context. All tested BMP inhibitors, Noggin, dorsomorphin and LDN-193189, were able to accelerate and enhance myogenic differentiation. However, dorsomorphin repressed both BMP and TGFβ signaling and was found to be toxic to primary myoblast cell cultures. In contrast, Noggin was found to be a potent and selective BMP inhibitor and was therefore tested in vivo in a DMD mouse model. Local adenoviral-mediated overexpression of Noggin in muscle resulted in an increased expression of the myogenic regulatory genes Myog and Myod1 and improved muscle histology. In conclusion, our results suggest that repression of BMP signaling may constitute an attractive adjunctive therapy for DMD patients. PMID:20940052

  17. Manipulation of Fgf and Bmp signaling in teleost fishes suggests potential pathways for the evolutionary origin of multicuspid teeth.

    Science.gov (United States)

    Jackman, William R; Davies, Shelby H; Lyons, David B; Stauder, Caitlin K; Denton-Schneider, Benjamin R; Jowdry, Andrea; Aigler, Sharon R; Vogel, Scott A; Stock, David W

    2013-01-01

    Teeth with two or more cusps have arisen independently from an ancestral unicuspid condition in a variety of vertebrate lineages, including sharks, teleost fishes, amphibians, lizards, and mammals. One potential explanation for the repeated origins of multicuspid teeth is the existence of multiple adaptive pathways leading to them, as suggested by their different uses in these lineages. Another is that the addition of cusps required only minor changes in genetic pathways regulating tooth development. Here we provide support for the latter hypothesis by demonstrating that manipulation of the levels of Fibroblast growth factor (Fgf) or Bone morphogenetic protein (Bmp) signaling produces bicuspid teeth in the zebrafish (Danio rerio), a species lacking multicuspid teeth in its ancestry. The generality of these results for teleosts is suggested by the conversion of unicuspid pharyngeal teeth into bicuspid teeth by similar manipulations of the Mexican Tetra (Astyanax mexicanus). That these manipulations also produced supernumerary teeth in both species supports previous suggestions of similarities in the molecular control of tooth and cusp number. We conclude that despite their apparent complexity, the evolutionary origin of multicuspid teeth is positively constrained, likely requiring only slight modifications of a pre-existing mechanism for patterning the number and spacing of individual teeth.

  18. Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage.

    Science.gov (United States)

    St Amand, T R; Zhang, Y; Semina, E V; Zhao, X; Hu, Y; Nguyen, L; Murray, J C; Chen, Y

    2000-01-15

    Members of the Pitx/RIEG family of homeodomain-containing transcription factors have been implicated in vertebrate organogenesis. In this study, we examined the expression and regulation of Pitx1 and Pitx2 during mouse tooth development. Pitx1 expression is detected in early development in a widespread pattern, in both epithelium and mesenchyme, covering the tooth-forming region in the mandible, and is then maintained in the dental epithelium from the bud stage to the late bell stage. Pitx2 expression, on the other hand, is restricted to the dental epithelium throughout odontogenesis. Interestingly, from E9.5 to E10.5, the expression domains of Pitx1 and Pitx2, in the developing mandible, overlap with that of Fgf8 but are exclusive to the zone of Bmp4 expression. Bead implantation experiments demonstrate that ectopic expression of Fgf8 can induce/maintain the expression of both Pitx1 and Pitx2 at E9.5. In contrast, Bmp4-expressing tissues and BMP4-soaked beads were able to repress Pitx1 expression in mandibular mesenchyme and Pitx2 expression in the presumptive dental epithelium, respectively. However, the effects of FGF8 and BMP4 are transient. It thus appears that the early expression patterns of Pitx1 and Pitx2 in the developing mandible are regulated by the antagonistic effects of FGF8 and BMP4 such that the Pitx1 and Pitx2 expression patterns are defined. These results indicate that the epithelial-derived signaling molecules are responsible not only for restricting specific gene expression in the dental mesenchyme, but also for defining gene expression in the dental epithelium.

  19. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Fukada

    Full Text Available BACKGROUND: Zinc (Zn is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS. The Slc39a13 knockout (Slc39a13-KO mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP and TGF-beta signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. CONCLUSIONS/SIGNIFICANCE: Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-beta signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-beta signaling and connective tissue dysfunction.

  20. P38 MAPK信号通路参与BMP-13诱导C3H10T1/2细胞向心肌样细胞分化%P38 MAPK signaling pathway is involved in BMP-13-induced cardiomyocyte-like differentiation from C3H10T1/2 cells

    Institute of Scientific and Technical Information of China (English)

    孙文静; 陈沅; 张芬; 陈露; 陈妙月; 耿雪静; 朱高慧

    2013-01-01

    interference group and C3H10 blank group. The t-P38 MAPK was detected by Western blot. 3) The influence of BMP-13 induced differentiation after Ad-si-P38 blocking P38 MAPK signal pathway;si-P38 + Ad-BMP-13 transfec-tion group,si-NC + Ad-BMP-13 transfection group,si-NC + Ad-GFP transfection group and C3H10 blank group. cTnT and Cx43 were detected by Western blot and the GATA-4 and MEF-2C were detected by fluorescent quantitative PCR. 4)The influence of BMP-13 induced differentiation after SB203580 blocking P38 MAPK signal pathway; DMSO + Ad-BMP-13 transfection group, SB203580 (2,5 and 10 μmol/L) + Ad-BMP-13 transfection group. The GATA-4 and MEF-2C were detected by by fluorescent quantitative PCR. Results BMP-13 promoted P38 MAPK phosphorylation. Ad-si-P38 effectively inhibited the P38 MAPK expression. Ad-si-P38 which blocked P38 MAPK signal pathway significantly inhibited the BMP-13-induced expression of cTnT, Cx43 (P 〈 0. 05) and GATA4, MEF-2C(P〈0.05). With the increased concentration of P38 MAPK specific inhibitor SB203580, expression of GATA-4 ,MEF-2C was significantly reduced. Conclusion P38 MAPK signal pathway can be activated by Ad-BMP-13 to promote cardiomyocyte-like cells differentiation from C3H10T1/2 cells.

  1. Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells.

    Science.gov (United States)

    Souilhol, Céline; Gonneau, Christèle; Lendinez, Javier G; Batsivari, Antoniana; Rybtsov, Stanislav; Wilson, Heather; Morgado-Palacin, Lucia; Hills, David; Taoudi, Samir; Antonchuk, Jennifer; Zhao, Suling; Medvinsky, Alexander

    2016-01-01

    During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta-gonad-mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso-ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs. PMID:26952187

  2. ROS and ROS-Mediated Cellular Signaling

    Directory of Open Access Journals (Sweden)

    Jixiang Zhang

    2016-01-01

    Full Text Available It has long been recognized that an increase of reactive oxygen species (ROS can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt, ion channels and transporters (Ca2+ and mPTP, and modifying protein kinase and Ubiquitination/Proteasome System.

  3. Differential expression of Bmp2, Bmp4 and Bmp3 in embryonic development of mouse anterior and posterior palate

    Institute of Scientific and Technical Information of China (English)

    NIE Xu-guang

    2005-01-01

    Background The palate is differently regulated and developed along the anterior-posterior axis. The Bmp signal pathway plays a crucial role in palatogenesis. Conditioned-inactivation of Bmp type I receptor Alk2 or Alk3 in the neural crest or craniofacial region leads to palatal cleft in mice. However, how different Bmp members are involved in palatogenesis remains to be elucidated. In the present study, mRNA expression patterns of Bmp2, Bmp3 and Bmp4 in the developing anterior and posterior palates were examined and compared, focusing on the fusion stage. Methods To detect the expression of Bmp mRNA, antisense riboprobes were synthesized by in vitro transcription. Radioactive in situ hybridization was performed on sagital and coronal sections of mice head from E13 to E18. Results The expression of these Bmps were developmentally regulated in the anterior and posterior palates prior to, during and after palatal fusion. During palatal fusion, Bmp4 expression shifted from the anterior to the posterior palate, Bmp2 was highly expressed in both the anterior and posterior palates in this process, whereas Bmp3 was only localized in the posterior palate. They showed generally non-overlapping pattern in their expression domains. Thereafter, their expression was detected in both the anterior and posterior palates regulating osteogenesis and myogenesis respectively. Conclusions Bmp signalling is involved in palatogenesis in multiple stages and has multiple roles in regulating anterior and posterior palatal development. Disturbances of Bmp signalling during palatogenesis might be a possible mechanism of cleft palate.

  4. Retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP_2 in mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bone marrow mesenchymal stemcells(MSCs)are pluripotential stemcells that have the capacitytodifferentiate into chondrocytes and osteoblasts[1].Ithas been well documented that bone morphogeneticproteins(BMPs),a group of proteins belonging tothe TGF-βsuperfamily,can induce bone for mationbothin vivoandin vitroas well as promote osteo-blastic differentiation of MSC[2].HeterologousBMP2is successfully transferred to MSCs and genetherapy is employed based on repairing bony andcartilage defects,spinal fusion[3-5]....

  5. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Directory of Open Access Journals (Sweden)

    Courtney M Tate

    Full Text Available Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  6. A feed-forward loop coupling extracellular BMP transport and morphogenesis in Drosophila wing.

    Directory of Open Access Journals (Sweden)

    Shinya Matsuda

    2013-03-01

    Full Text Available A variety of extracellular factors regulate morphogenesis during development. However, coordination between extracellular signaling and dynamic morphogenesis is largely unexplored. We address the fundamental question by studying posterior crossvein (PCV development in Drosophila as a model, in which long-range BMP transport from the longitudinal veins plays a critical role during the pupal stages. Here, we show that RhoGAP Crossveinless-C (Cv-C is induced at the PCV primordial cells by BMP signaling and mediates PCV morphogenesis cell-autonomously by inactivating members of the Rho-type small GTPases. Intriguingly, we find that Cv-C is also required non-cell-autonomously for BMP transport into the PCV region, while a long-range BMP transport is guided toward ectopic wing vein regions by loss of the Rho-type small GTPases. We present evidence that low level of ß-integrin accumulation at the basal side of PCV epithelial cells regulated by Cv-C provides an optimal extracellular environment for guiding BMP transport. These data suggest that BMP transport and PCV morphogenesis are tightly coupled. Our study reveals a feed-forward mechanism that coordinates the spatial distribution of extracellular instructive cues and morphogenesis. The coupling mechanism may be widely utilized to achieve precise morphogenesis during development and homeostasis.

  7. Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells.

    Science.gov (United States)

    Kuo, Po-Lin; Hsu, Ya-Ling; Chang, Cheng-Hsiung; Chang, Jiunn-Kae

    2005-09-01

    The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients. Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. By means of alkaline phosphatase (ALP) activity, osteocalcin, osteopontin, and type I collagen, enzyme-linked immunosorbent assay, we have shown that osthole exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Induction of differentiation by osthole was associated with increased bone morphogenetic protein (BMP)-2 production and the activations of SMAD1/5/8 and p38 and extracellular signal-regulated kinase (ERK) 1/2 kinases. Addition of purified BMP-2 protein did not increase the up-regulation of ALP activity and osteocalcin by osthole, whereas the BMP-2 antagonist noggin blocked both osthole and BMP-2-mediated ALP activity enhancement, indicating that BMP-2 production is required in osthole-mediated osteoblast maturation. Pretreatment of osteoblast cells with noggin abrogated p38 activation but only partially decreased ERK1/2 activation, suggesting that BMP-2 signaling is required in p38 activation and is partially involved in ERK1/2 activation in osthole-treated osteoblast cells. Cotreatment of p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] or p38 small interfering RNA (siRNA) expression inhibited osthole-mediated activation of ALP but only slightly affected osteocalcin production. In contrast, the production of osteocalcin induced by osthole was inhibited by the mitogen-activated protein kinase kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) or by expression of an ERK2 siRNA. These data suggest that BMP-2/p38 pathway links to the early phase, whereas ERK1/2 pathway is associated with the later phase in osthole-mediated differentiation of osteoblast cells. In this study, we demonstrate that osthole is a promising agent for treating osteoporosis

  8. Co-operative Bmp- and Fgf-signaling inputs convert skin wound healing to limb formation in urodele amphibians.

    Science.gov (United States)

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2014-12-01

    Urodele amphibians have remarkable organ regeneration capability, and their limb regeneration capability has been investigated as a representative phenomenon. In the early 19th century, nerves were reported to be an essential tissue for the successful induction of limb regeneration. Nerve substances that function in the induction of limb regeneration responses have long been sought. A new experimental system called the accessory limb model (ALM) has been established to identify the nerve factors. Skin wounding in urodele amphibians results in skin wound healing but never in limb induction. However, nerve deviation to the wounded skin induces limb formation in ALM. Thus, nerves can be considered to have the ability to transform skin wound healing to limb formation. In the present study, co-operative Bmp and Fgf application, instead of nerve deviation, to wounded skin transformed skin wound healing to limb formation in two urodele amphibians, axolotl (Ambystoma mexicanum) and newt (Pleurodeles waltl). Our findings demonstrate that defined factors can induce homeotic transformation in postembryonic bodies of urodele amphibians. The combination of Bmp and Fgf(s) may contribute to the development of novel treatments for organ regeneration. PMID:25286122

  9. A secreted BMP antagonist, Cer1, fine tunes the spatial organization of the ureteric bud tree during mouse kidney development.

    Directory of Open Access Journals (Sweden)

    Lijun Chi

    Full Text Available The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1 fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching.

  10. BMP-mediated functional cooperation between Dlx5;Dlx6 and Msx1;Msx2 during mammalian limb development.

    Directory of Open Access Journals (Sweden)

    Maxence Vieux-Rochas

    Full Text Available The Dlx and Msx homeodomain transcription factors play important roles in the control of limb development. The combined disruption of Msx1 and Msx2, as well as that of Dlx5 and Dlx6, lead to limb patterning defects with anomalies in digit number and shape. Msx1;Msx2 double mutants are characterized by the loss of derivatives of the anterior limb mesoderm which is not observed in either of the simple mutants. Dlx5;Dlx6 double mutants exhibit hindlimb ectrodactyly. While the morphogenetic action of Msx genes seems to involve the BMP molecules, the mode of action of Dlx genes still remains elusive. Here, examining the limb phenotypes of combined Dlx and Msx mutants we reveal a new Dlx-Msx regulatory loop directly involving BMPs. In Msx1;Dlx5;Dlx6 triple mutant mice (TKO, beside the expected ectrodactyly, we also observe the hallmark morphological anomalies of Msx1;Msx2 double mutants suggesting an epistatic role of Dlx5 and Dlx6 over Msx2. In Msx2;Dlx5;Dlx6 TKO mice we only observe an aggravation of the ectrodactyly defect without changes in the number of the individual components of the limb. Using a combination of qPCR, ChIP and bioinformatic analyses, we identify two Dlx/Msx regulatory pathways: 1 in the anterior limb mesoderm a non-cell autonomous Msx-Dlx regulatory loop involves BMP molecules through the AER and 2 in AER cells and, at later stages, in the limb mesoderm the regulation of Msx2 by Dlx5 and Dlx6 occurs also cell autonomously. These data bring new elements to decipher the complex AER-mesoderm dialogue that takes place during limb development and provide clues to understanding the etiology of congenital limb malformations.

  11. BMP-mediated functional cooperation between Dlx5;Dlx6 and Msx1;Msx2 during mammalian limb development.

    Science.gov (United States)

    Vieux-Rochas, Maxence; Bouhali, Kamal; Mantero, Stefano; Garaffo, Giulia; Provero, Paolo; Astigiano, Simonetta; Barbieri, Ottavia; Caratozzolo, Mariano F; Tullo, Apollonia; Guerrini, Luisa; Lallemand, Yvan; Robert, Benoît; Levi, Giovanni; Merlo, Giorgio R

    2013-01-01

    The Dlx and Msx homeodomain transcription factors play important roles in the control of limb development. The combined disruption of Msx1 and Msx2, as well as that of Dlx5 and Dlx6, lead to limb patterning defects with anomalies in digit number and shape. Msx1;Msx2 double mutants are characterized by the loss of derivatives of the anterior limb mesoderm which is not observed in either of the simple mutants. Dlx5;Dlx6 double mutants exhibit hindlimb ectrodactyly. While the morphogenetic action of Msx genes seems to involve the BMP molecules, the mode of action of Dlx genes still remains elusive. Here, examining the limb phenotypes of combined Dlx and Msx mutants we reveal a new Dlx-Msx regulatory loop directly involving BMPs. In Msx1;Dlx5;Dlx6 triple mutant mice (TKO), beside the expected ectrodactyly, we also observe the hallmark morphological anomalies of Msx1;Msx2 double mutants suggesting an epistatic role of Dlx5 and Dlx6 over Msx2. In Msx2;Dlx5;Dlx6 TKO mice we only observe an aggravation of the ectrodactyly defect without changes in the number of the individual components of the limb. Using a combination of qPCR, ChIP and bioinformatic analyses, we identify two Dlx/Msx regulatory pathways: 1) in the anterior limb mesoderm a non-cell autonomous Msx-Dlx regulatory loop involves BMP molecules through the AER and 2) in AER cells and, at later stages, in the limb mesoderm the regulation of Msx2 by Dlx5 and Dlx6 occurs also cell autonomously. These data bring new elements to decipher the complex AER-mesoderm dialogue that takes place during limb development and provide clues to understanding the etiology of congenital limb malformations. PMID:23382810

  12. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  13. Insulin signaling mediates sexual attractiveness in Drosophila.

    Directory of Open Access Journals (Sweden)

    Tsung-Han Kuo

    Full Text Available Sexually attractive characteristics are often thought to reflect an individual's condition or reproductive potential, but the underlying molecular mechanisms through which they do so are generally unknown. Insulin/insulin-like growth factor signaling (IIS is known to modulate aging, reproduction, and stress resistance in several species and to contribute to variability of these traits in natural populations. Here we show that IIS determines sexual attractiveness in Drosophila through transcriptional regulation of genes involved in the production of cuticular hydrocarbons (CHC, many of which function as pheromones. Using traditional gas chromatography/mass spectrometry (GC/MS together with newly introduced laser desorption/ionization orthogonal time-of-flight mass spectrometry (LDI-MS we establish that CHC profiles are significantly affected by genetic manipulations that target IIS. Manipulations that reduce IIS also reduce attractiveness, while females with increased IIS are significantly more attractive than wild-type animals. IIS effects on attractiveness are mediated by changes in CHC profiles. Insulin signaling influences CHC through pathways that are likely independent of dFOXO and that may involve the nutrient-sensing Target of Rapamycin (TOR pathway. These results suggest that the activity of conserved molecular regulators of longevity and reproductive output may manifest in different species as external characteristics that are perceived as honest indicators of fitness potential.

  14. Twisted gastrulation, a BMP antagonist, exacerbates podocyte injury.

    Directory of Open Access Journals (Sweden)

    Sachiko Yamada

    Full Text Available Podocyte injury is the first step in the progression of glomerulosclerosis. Previous studies have demonstrated the beneficial effect of bone morphogenetic protein 7 (Bmp7 in podocyte injury and the existence of native Bmp signaling in podocytes. Local activity of Bmp7 is controlled by cell-type specific Bmp antagonists, which inhibit the binding of Bmp7 to its receptors. Here we show that the product of Twisted gastrulation (Twsg1, a Bmp antagonist, is the central negative regulator of Bmp function in podocytes and that Twsg1 null mice are resistant to podocyte injury. Twsg1 was the most abundant Bmp antagonist in murine cultured podocytes. The administration of Bmp induced podocyte differentiation through Smad signaling, whereas the simultaneous administration of Twsg1 antagonized the effect. The administration of Bmp also inhibited podocyte proliferation, whereas simultaneous administration of Twsg1 antagonized the effect. Twsg1 was expressed in the glomerular parietal cells (PECs and distal nephron of the healthy kidney, and additionally in damaged glomerular cells in a murine model of podocyte injury. Twsg1 null mice exhibited milder hypoalbuminemia and hyperlipidemia, and milder histological changes while maintaining the expression of podocyte markers during podocyte injury model. Taken together, our results show that Twsg1 plays a critical role in the modulation of protective action of Bmp7 on podocytes, and that inhibition of Twsg1 is a promising means of development of novel treatment for podocyte injury.

  15. Identification of the role of bone morphogenetic protein (BMP) and transforming growth factor-β (TGF-β) signaling in the trajectory of serotonergic differentiation in a rapid assay in mouse embryonic stem cells in vitro.

    Science.gov (United States)

    Yamasaki, Atsushi; Kasai, Atsushi; Toi, Akihiro; Kurita, Maki; Kimoto, Saki; Hayata-Takano, Atsuko; Nakazawa, Takanobu; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Ito, Akira; Meltzer, Herbert Y; Ago, Yukio; Waschek, James A; Onaka, Yusuke; Matsuda, Toshio; Baba, Akemichi; Hashimoto, Hitoshi

    2015-02-01

    The mechanism by which extracellular molecules control serotonergic cell fate remains elusive. Recently, we showed that noggin, which inactivates bone morphogenetic proteins (BMPs), induces serotonergic differentiation of mouse embryonic (ES) and induced pluripotent stem cells with coordinated gene expression along the serotonergic lineage. Here, we created a rapid assay for serotonergic induction by generating knock-in ES cells expressing a naturally secreted Gaussia luciferase driven by the enhancer of Pet-1/Fev, a landmark of serotonergic differentiation. Using these cells, we performed candidate-based screening and identified BMP type I receptor kinase inhibitors LDN-193189 and DMH1 as activators of luciferase. LDN-193189 induced ES cells to express the genes encoding Pet-1, tryptophan hydroxylase 2, and the serotonin transporter, and increased serotonin release without altering dopamine release. In contrast, TGF-β receptor inhibitor SB-431542 selectively inhibited serotonergic differentiation, without changing overall neuronal differentiation. LDN-193189 inhibited expression of the BMP signaling target gene Id, and induced the TGF-β target gene Lefty, whereas the opposite effect was observed with SB-431542. This study thus provides a new tool to investigate serotonergic differentiation and suggests that inhibition of BMP type I receptors and concomitant activation of TGF-β receptor signaling are implicated in serotonergic differentiation. Candidate-based screening for serotonergic induction using a rapid assay in mouse embryonic stem cells revealed that the bone morphogenetic protein (BMP) type I receptor kinase inhibitors selectively induce serotonergic differentiation, whereas the TGF-β receptor inhibitor SB-431542 inhibits the differentiation. These results suggest that inhibition of BMP type I receptors and concomitant activation of transforming growth factor-β (TGF-β) receptor signaling are involved in the early trajectory of serotonergic

  16. Notch signaling mediates the age-associated decrease in adhesion of germline stem cells to the niche.

    Directory of Open Access Journals (Sweden)

    Chen-Yuan Tseng

    2014-12-01

    Full Text Available Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs, and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion.

  17. Mechanical Loading Synergistically Increases Trabecular Bone Volume and Improves Mechanical Properties in the Mouse when BMP Signaling Is Specifically Ablated in Osteoblasts.

    Directory of Open Access Journals (Sweden)

    Ayaka Iura

    Full Text Available Bone homeostasis is affected by several factors, particularly mechanical loading and growth factor signaling pathways. There is overwhelming evidence to validate the importance of these signaling pathways, however, whether these signals work synergistically or independently to contribute to proper bone maintenance is poorly understood. Weight-bearing exercise increases mechanical load on the skeletal system and can improves bone quality. We previously reported that conditional knockout (cKO of Bmpr1a, which encodes one of the type 1 receptors for Bone Morphogenetic Proteins (BMPs, in an osteoblast-specific manner increased trabecular bone mass by suppressing osteoclastogenesis. The cKO bones also showed increased cortical porosity, which is expected to impair bone mechanical properties. Here, we evaluated the impact of weight-bearing exercise on the cKO bone phenotype to understand interactions between mechanical loading and BMP signaling through BMPR1A. Male mice with disruption of Bmpr1a induced at 9 weeks of age, exercised 5 days per week on a motor-driven treadmill from 11 to 16 weeks of age. Trabecular bone volume in cKO tibia was further increased by exercise, whereas exercise did not affect the trabecular bone in the control genotype group. This finding was supported by decreased levels of osteoclasts in the cKO tibiae. The cortical porosity in the cKO bones showed a marginally significant decrease with exercise and approached normal levels. Exercise increased ductility and toughness in the cKO bones. Taken together, reduction in BMPR1A signaling may sensitize osteoblasts for mechanical loading to improve bone mechanical properties.

  18. Negative and positive auto-regulation of BMP expression in early eye development.

    Science.gov (United States)

    Huang, Jie; Liu, Ying; Filas, Benjamen; Gunhaga, Lena; Beebe, David C

    2015-11-15

    Previous results have shown that Bone Morphogenetic Protein (BMP) signaling is essential for lens specification and differentiation. How BMP signals are regulated in the prospective lens ectoderm is not well defined. To address this issue we have modulated BMP activity in a chicken embryo pre-lens ectoderm explant assay, and also studied transgenic mice, in which the type I BMP receptors, Bmpr1a and Acvr1, are deleted from the prospective lens ectoderm. Our results show that chicken embryo pre-lens ectoderm cells express BMPs and require BMP signaling for lens specification in vitro, and that in vivo inhibition of BMP signals in the mouse prospective lens ectoderm interrupts lens placode formation and prevents lens invagination. Furthermore, our results provide evidence that BMP expression is negatively auto-regulated in the lens-forming ectoderm, decreasing when the tissue is exposed to exogenous BMPs and increasing when BMP signaling is prevented. In addition, eyes lacking BMP receptors in the prospective lens placode develop coloboma in the adjacent wild type optic cup. In these eyes, Bmp7 expression increases in the ventral optic cup and the normal dorsal-ventral gradient of BMP signaling in the optic cup is disrupted. Pax2 becomes undetectable and expression of Sfrp2 increases in the ventral optic cup, suggesting that increased BMP signaling alter their expression, resulting in failure to close the optic fissure. In summary, our results suggest that negative and positive auto-regulation of BMP expression is important to regulate early eye development.

  19. Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia

    Directory of Open Access Journals (Sweden)

    Emmanuelle eTillet

    2015-01-01

    Full Text Available Rendu-Osler-Weber syndrome, also known as hereditary hemorrhagic telangiectasia (HHT, is an autosomal dominant vascular disorder. Three genes are causally related to HHT: the ENG gene encoding endoglin, a co-receptor of the TGFß family (HHT1, the ACVRL1 gene encoding ALK1 (activin receptor-like kinase 1, a type I receptor of the TGFß family (HHT2, and the SMAD4 gene, encoding a transcription factor critical for this signaling pathway. Bone morphogenetic proteins (BMPs are growth factors of the TGFß family. Among them, BMP9 and BMP10 have been shown to bind directly with high affinity to ALK1 and endoglin, and BMP9 mutations have recently been linked to a vascular-anomaly syndrome that has phenotypic overlap with HHT. BMP9 and BMP10 are both circulating cytokines in blood, and the current working model is that BMP9 and BMP10 maintain a quiescent endothelial state that is dependent on the level of ALK1/endoglin activation on endothelial cells. In accordance with this model, to explain the etiology of HHT we hypothesize that a deficient BMP9/BMP10/ALK1/endoglin pathway may lead to re-activation of angiogenesis or a greater sensitivity to an angiogenic stimulus. Resulting endothelial hyperproliferation and hypermigration may lead to vasodilatation and formation of arteriovenous malformation (AVM. HHT would thus result from a defect in the angiogenic balance. This review will focus on the emerging role played by BMP9 and BMP10 in the development of this disease and the therapeutic approaches that this opens.

  20. Mechanical strain promotes osteoblastic differentiation through integrin-β1-mediated β-catenin signaling.

    Science.gov (United States)

    Yan, Yuxian; Sun, Haoyang; Gong, Yuanwei; Yan, Zhixiong; Zhang, Xizheng; Guo, Yong; Wang, Yang

    2016-08-01

    As integrins are mechanoresponsive, there exists an intimate relationship between integrins and mechanical strain. Integrin-β1 mediates the impact of mechanical strain on bone. Mechanical strain induces bone formation through the activation of β-catenin pathways, which suggests that integrin-β1 mediates β-catenin signaling in osteoblasts in response to mechanical strain. In the present study, we examined the role of integrin-β1 in Wnt/β-catenin signal transduction in mechanically strained osteoblasts. MC3T3-E1 osteoblastic cells were transfected with integrin-β1 small interfering RNA (si-Itgβ1), and exposed to mechanical tensile strain of 2,500 microstrain (µε) using a four-point bending device. The mechanical strain enhanced the mRNA expression of integrin-β1, the protein levels of phosphorylated (p-) glycogen synthase kinase-3β (GSK‑3β) and β-catenin, simultaneously increased the mRNA levels of runt-related transcriptional factor 2 (Runx2) and osteocalcin (OCN), the protein levels of bone morphogenetic protein (BMP)-2 and -4 and enhanced the alkaline phosphatase (ALP) activity of the ME3T3-E1 cells. The elevations were inhibited by si-Itgβ1. Additionally, the mechanical strain induced the nuclear translocation of β-catenin into the nucleus, which was also inhibited by si-Itgβ1. These findings indicated that mechanical strain promoted osteoblastic differentiation through integrin‑β1‑mediated β-catenin signaling.

  1. Increased Mitochondrial Activity in BMP7-Treated Brown Adipocytes, Due to Increased CPT1- and CD36-Mediated Fatty Acid Uptake

    OpenAIRE

    Townsend, Kristy L.; An, Ding; Lynes, Matthew D.; Huang, Tian Lian; Zhang, Hongbin; Goodyear, Laurie J.; Tseng, Yu-Hua

    2013-01-01

    Aims: Brown adipose tissue dissipates chemical energy in the form of heat and regulates triglyceride and glucose metabolism in the body. Factors that regulate fatty acid uptake and oxidation in brown adipocytes have not yet been fully elucidated. Bone morphogenetic protein 7 (BMP7) is a growth factor capable of inducing brown fat mitochondrial biogenesis during differentiation from adipocyte progenitors. Administration of BMP7 to mice also results in increased energy expenditure. To determine...

  2. BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage

    OpenAIRE

    Huang, Haiyan; Song, Tan-Jing; Li, Xi; Hu, Lingling; He, Qun; Liu, Mei; Lane, M. Daniel; Tang, Qi-Qun

    2009-01-01

    Obesity is accompanied by an increase in both adipocyte number and size. The increase in adipocyte number is the result of recruitment to the adipocyte lineage of pluripotent stem cells present in the vascular stroma of adipose tissue. These pluripotent cells have the potential to undergo commitment and then differentiate into adipocytes, as well as myocytes, osteocytes, and chondrocytes. In this article, we show that both bone morphogenetic protein (BMP)2 and BMP4 can induce commitment of C3...

  3. Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling.

    Science.gov (United States)

    Liu, Jessica A J; Wu, Ming-Hoi; Yan, Carol H; Chau, Bolton K H; So, Henry; Ng, Alvis; Chan, Alan; Cheah, Kathryn S E; Briscoe, James; Cheung, Martin

    2013-02-19

    Coordination of neural crest cell (NCC) induction and delamination is orchestrated by several transcription factors. Among these, Sry-related HMG box-9 (Sox9) and Snail2 have been implicated in both the induction of NCC identity and, together with phoshorylation, NCC delamination. How phosphorylation effects this function has not been clear. Here we show, in the developing chick neural tube, that phosphorylation of Sox9 on S64 and S181 facilitates its SUMOylation, and the phosphorylated forms of Sox9 are essential for trunk neural crest delamination. Both phosphorylation and to a lesser extent SUMOylation, of Sox9 are required to cooperate with Snail2 to promote delamination. Moreover, bone morphogenetic protein and canonical Wnt signaling induce phosphorylation of Sox9, thereby connecting extracellular signals with the delamination of NCCs. Together the data suggest a model in which extracellular signals initiate phosphorylation of Sox9 and its cooperation with Snail2 to induce NCC delamination. PMID:23382206

  4. Extraembryonic signals under the control of MGA, Max, and Smad4 are required for dorsoventral patterning.

    Science.gov (United States)

    Sun, Yuhua; Tseng, Wei-Chia; Fan, Xiang; Ball, Rebecca; Dougan, Scott T

    2014-02-10

    In vertebrates, extraembryonic tissues can act as signaling centers that impose a reproducible pattern of cell types upon the embryo. Here, we show that the zebrafish yolk syncytial layer (YSL) secretes a ventralizing signal during gastrulation. This activity is mediated by Bmp2b/Swirl (Swr) expressed under the control of Max's giant associated protein (MGA) and its binding partners, Max and Smad4. MGA coimmunoprecipitates with both Max and Smad4 in embryo extracts, and the three proteins form a complex in vitro. Furthermore, all three proteins bind to a DNA fragment upstream of the bmp2b transcription start site. Targeted depletion of MGA, its binding partners, or Bmp2b/Swr from the YSL reduces BMP signaling throughout the embryo, resulting in a mildly dorsalized phenotype. We conclude that MGA, Max, and Smad4 act in the extraembryonic YSL to initiate a positive feedback loop of Bmp signaling within the embryo. PMID:24525188

  5. Target genes of Dpp/BMP signaling pathway revealed by transcriptome profiling in the early D.melanogaster embryo.

    Science.gov (United States)

    Dominguez, Calixto; Zuñiga, Alejandro; Hanna, Patricia; Hodar, Christian; Gonzalez, Mauricio; Cambiazo, Verónica

    2016-10-10

    In the early Drosophila melanogaster embryo, the gene regulatory network controlled by Dpp signaling is involved in the subdivision of dorsal ectoderm into the presumptive dorsal epidermis and amnioserosa. In this work, we aimed to identify new Dpp downstream targets involved in dorsal ectoderm patterning. We used oligonucleotide D. melanogaster microarrays to identify the set of genes that are differential expressed between wild type embryos and embryos that overexpress Dpp (nos-Gal4>UAS-dpp) during early stages of embryo development. By using this approach, we identified 358 genes whose relative abundance significantly increased in response to Dpp overexpression. Among them, we found the entire set of known Dpp target genes that function in dorsal ectoderm patterning (zen, doc, hnt, pnr, ush, tup, and others) in addition to several up-regulated genes of unknown functions. Spatial expression pattern of up-regulated genes in response to Dpp overexpression as well as their opposing transcriptional responses to Dpp loss- and gain-of-function indicated that they are new candidate target genes of Dpp signaling pathway. We further analyse one of the candidate genes, CG13653, which is expressed at the dorsal-most cells of the embryo during a restricted period of time. CG13653 orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa. We characterized the enhancer region of CG13653 and revealed that CG13653 is directly regulated by Dpp signaling pathway. PMID:27397649

  6. Reconstitution of TGFBR2-Mediated Signaling Causes Upregulation of GDF-15 in HCT116 Colorectal Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Lee

    Full Text Available Although inactivating frameshift mutations in the Transforming growth factor beta receptor type 2 (TGFBR2 gene are considered as drivers of microsatellite unstable (MSI colorectal tumorigenesis, consequential alterations of the downstream target proteome are not resolved completely. Applying a click-it chemistry protein labeling approach combined with mass spectrometry in a MSI colorectal cancer model cell line, we identified 21 de novo synthesized proteins differentially expressed upon reconstituted TGFBR2 expression. One candidate gene, the TGF-ß family member Growth differentiation factor-15 (GDF-15, exhibited TGFBR2-dependent transcriptional upregulation causing increased intracellular and extracellular protein levels. As a new TGFBR2 target gene it may provide a link between the TGF-ß branch and the BMP/GDF branch of SMAD-mediated signaling.

  7. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    Science.gov (United States)

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis. PMID:26873969

  8. Function of BMP-7/Smad6 signaling pathway in the rat model of alcoholic liver disease%BMP -7/Smad6信号通路在酒精性肝损伤大鼠模型中的调节作用

    Institute of Scientific and Technical Information of China (English)

    何培元; 王明娟; 张聪; 马立新; 侯志平; 李炳庆

    2014-01-01

    目的:探讨 BMP -7/ Smad6信号传导通路在酒精性肝病发病机制中的作用并检测其在酒精性肝病大鼠模型中的基因水平和蛋白水平。方法以自由摄取白酒加高脂饲料诱导酒精性肝纤维化大鼠模型,并比较普通饲料与高脂饲料对酒精性肝病的影响。实验结束后取各实验组肝组织观察病理学变化,用生化检测仪检测大鼠血浆 ALT、AST变化。用实时 RCR 检测肝的骨形成蛋白7(BMP -7)和 Smad6 mRNA 水平变化,并用 Western Blot 检测蛋白水平变化。结果肝脏组织形态学改变显示正常饲料组肝组织出现脂肪肝表现,高脂饲料组脂肪变性程度加重并出现了肝炎及胶原纤维增生,而对照组大鼠肝脏组织结构正常。生化分析仪检测 ALT、AST 结果显示:至实验结束时,实验组比对照组转氨酶活性明显升高( P ﹤0.05)。BMP 和 Smad6这两个基因的蛋白丰度与它们各自的 mRNA 表达水平呈正相关,与对照组比较两个实验组 BMP -7表达水平降低,并与肝脏病理损伤程度呈负相关,两个实验组 Smad6表达水平较对照组升高,但与肝脏病理变化严重程度无相关性。结论饮用白酒水溶液结合高脂饲料的方法可以成功建立酒精性肝损伤的大鼠模型,BMP -7/ Smad6信号通路的失活促进了肝纤维化的形成。%Objective To investigate the function of BMP - 7 / Smad6 signaling pathway in alcoholic liver disease rat model and detect the two genes in both mRNA and protein levels. Methods Rats were fed with alcohol and high fat diet to establish alcoholic liver disease model. In the end of the experiment,liver of rats were dissected for histological studies whereas plasma obtained from rats was taken for biochemical testing to detect the levels of alanine aminotransferase(ALT)and aspartate aminotransferase(AST). mRNA was extracted from the liver to perform real- time PCR in order to detect the mRNA level of

  9. A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians

    OpenAIRE

    Gaviño, Michael A; Reddien, Peter W.

    2011-01-01

    Animal embryos have diverse anatomy and vary greatly in size. It is therefore remarkable that a common signaling pathway – BMP signaling – controls development of the dorsoventral (DV) axis throughout the Bilateria [1-8]. In vertebrates, spatially opposed expression of the BMP-family signaling proteins Bmp4 and Admp (anti-dorsalizing morphogenetic protein) can promote restoration of DV pattern following tissue removal [9-11]. bmp4 orthologs have been identified in all three groups of the Bila...

  10. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  11. LHC Signals of Pure Gravity Mediation

    Directory of Open Access Journals (Sweden)

    Feldstein Brian

    2013-05-01

    Full Text Available Evidence is mounting that natural supersymmetry at the weak scale is not realized in nature. This evidence comes from collider searches, a lack of new flavor changing neutral current effects, and now also the size of the measured Higgs mass. On the other hand, string theory suggests that supersymmetry might be present at some energy scale, and gauge coupling unification and dark matter imply that that energy scale may be relatively low. The simplest model to address all of these hints is arguably “pure gravity mediation”, in which the scalar superpartner masses are taken to be perhaps 100 TeV, with gauginos automatically acquiring loop factor suppressed masses of order TeV. The gauginos might then be the only superpartners accessible to the LHC. Unification and LSP dark matter are maintained (with a wino LSP at the cost of a 10−5 or 10−6 fine tuning. Here I will discuss the structure and LHC phenomenology of pure gravity mediation.

  12. Evolutionarilv Conserved DELLA-mediated Gibberellin Signaling in Plants

    Institute of Scientific and Technical Information of China (English)

    Xiu-Hua Gao; Xian-Zhong Huang; Sen-Lin Xiao; Xiang-Dong Fu

    2008-01-01

    Gibberellins (GAs) play important roles in many essential plant growth and development processes. A family of nuclear growth-repressing DELLA proteins is the key component in GA signaling. GA perception is mediated by GID1, and the key event of GA signaling is the degradation of DELLA proteins via the 26S proteasome pathway. DELLA proteins integrating other plant hormones signaling and environmental cue modulating plant growth and development have been revealed. GA turning on the de-DELLA-repressing system is conserved, and independently establishes step-by-step recruitment of GAstimulated GID1-DELLA interaction and DELLA growth-repression functions during land plant evolution. These discoveries open new prospects for the understanding of GA action and DELLA-mediated signaling in plants.

  13. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Debashis; Mukhopadhyay, Debabrata, E-mail: mukhopadhyay.debabrata@mayo.edu [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Guggenheim 1321C, Rochester, MN 55905 (United States)

    2011-02-24

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.

  14. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    International Nuclear Information System (INIS)

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed

  15. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...csml) Show Signalling pathways mediating type I interferon gene expression. PubmedID 17904888 Title Signalling pathways media

  16. DMPD: IRAK1: a critical signaling mediator of innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17890055 IRAK1: a critical signaling mediator of innate immunity. Gottipati S, Rao ...IRAK1: a critical signaling mediator of innate immunity. PubmedID 17890055 Title IRAK1: a critical signaling media

  17. A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border.

    Science.gov (United States)

    Reichert, Sabine; Randall, Rebecca A; Hill, Caroline S

    2013-11-01

    During ectodermal patterning the neural crest and preplacodal ectoderm are specified in adjacent domains at the neural plate border. BMP signalling is required for specification of both tissues, but how it is spatially and temporally regulated to achieve this is not understood. Here, using a transgenic zebrafish BMP reporter line in conjunction with double-fluorescent in situ hybridisation, we show that, at the beginning of neurulation, the ventral-to-dorsal gradient of BMP activity evolves into two distinct domains at the neural plate border: one coinciding with the neural crest and the other abutting the epidermis. In between is a region devoid of BMP activity, which is specified as the preplacodal ectoderm. We identify the ligands required for these domains of BMP activity. We show that the BMP-interacting protein Crossveinless 2 is expressed in the BMP activity domains and is under the control of BMP signalling. We establish that Crossveinless 2 functions at this time in a positive-feedback loop to locally enhance BMP activity, and show that it is required for neural crest fate. We further demonstrate that the Distal-less transcription factors Dlx3b and Dlx4b, which are expressed in the preplacodal ectoderm, are required for the expression of a cell-autonomous BMP inhibitor, Bambi-b, which can explain the specific absence of BMP activity in the preplacodal ectoderm. Taken together, our data define a BMP regulatory network that controls cell fate decisions at the neural plate border.

  18. BMP-2 and titanium particles synergistically activate osteoclast formation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, S.X. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedics, Yinchuan, Ningxia Hui Autonomous Region, China, Department of Orthopedics, Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Guo, H.H. [Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Zhang, J. [Institute of Pathology, Xi' an Jiaotong University, Xi' an Shaanxi, China, Institute of Pathology, Xi' an Jiaotong University, Xi' an Shaanxi (China); Yu, B. [Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Sun, K.N.; Jin, Q.H. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedics, Yinchuan, Ningxia Hui Autonomous Region, China, Department of Orthopedics, Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China)

    2014-05-09

    A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation.

  19. Gap junction signalling mediated through connexin-43 is required for chick limb development.

    Science.gov (United States)

    Makarenkova, H; Patel, K

    1999-03-15

    During chick limb development the gap junction protein Connexin-43 (Cx43) is expressed in discrete spatially restricted domains in the apical ectodermal ridge (AER) and mesenchyme of the zone of polarising activity. Antisense oligonucleotides (ODNs) were used to investigate the role of Connexin-43 (Cx43) in the development of the chick limb bud. We have used unmodified ODNs in Pluronic F-127 gel, which is liquid at low temperature but sets at room temperature and so remains situated at the point of application. As a mild surfactant, the gel increases antisense ODN penetration and supplies ODNs to the embryo continually for 12-18 h. We have shown a strong decrease in Cx43 protein expression after application of specific antisense oligonucleotides but the abundance of a closely related protein, Connexin-32 (Cx32), was not affected. Application of antisense Cx43 ODNs at stages 8-15 HH before limb outgrowth resulted in dramatic limb phenotypes. About 40% of treated embryos exhibited defects such as truncation of the limb bud, fragmentation into two or more domains, or complete splitting of the limb bud into two or three branches. Molecular analysis of antisense treated embryos failed to detect Shh or Bmp-2 in anterior structures and suggested that extra lobes seen in nicked and split limbs were not a result of establishment of new signalling centres as found after the application of FGF to the flank. However, examination of markers for the AER showed a number of abnormalities. In severely truncated specimens we were unable to detect the expression of either Fgf-4 or Fgf-8. In both nicked and split limbs the expression of these genes was discontinuous. Down-regulation of Cx43 after the antisense application could be comparable to AER removal and results in distal truncation of the limb bud. Taken together these data suggest the existence of a feedback loop between the FGFs and signalling mediated by Cx43.

  20. Perspective: Adhesion Mediated Signal Transduction in Bacterial Pathogens

    Science.gov (United States)

    Moorthy, Sudha; Keklak, Julia; Klein, Eric A.

    2016-01-01

    During the infection process, pathogenic bacteria undergo large-scale transcriptional changes to promote virulence and increase intrahost survival. While much of this reprogramming occurs in response to changes in chemical environment, such as nutrient availability and pH, there is increasing evidence that adhesion to host-tissue can also trigger signal transduction pathways resulting in differential gene expression. Determining the molecular mechanisms of adhesion-mediated signaling requires disentangling the contributions of chemical and mechanical stimuli. Here we highlight recent work demonstrating that surface attachment drives a transcriptional response in bacterial pathogens, including uropathogenic Escherichia coli (E. coli), and discuss the complexity of experimental design when dissecting the specific role of adhesion-mediated signaling during infection. PMID:26901228

  1. BMP is an important regulator of proepicardial identity in the chick embryo.

    Science.gov (United States)

    Schlueter, Jan; Männer, Jörg; Brand, Thomas

    2006-07-15

    The proepicardium (PE) is a transient structure formed by pericardial coelomic mesothelium at the venous pole of the embryonic heart and gives rise to several cell types of the mature heart. In order to study PE development in chick embryos, we have analyzed the expression pattern of the marker genes Tbx18, Wt1, and Cfc. During PE induction, the three marker genes displayed a left-right asymmetric expression pattern. In each case, expression on the right side was stronger than on the left side. The left-right asymmetric gene expression observed here is in accord with the asymmetric formation of the proepicardium in the chick embryo. While initially the marker genes were expressed in the primitive sinus horn, subsequently, expression became confined to the PE mesothelium. In order to search for signaling factors involved in PE development, we studied Bmp2 and Bmp4 expression. Bmp2 was bilaterally expressed in the sinus venosus. In contrast, Bmp4 expression was initially expressed unilaterally in the right sinus horn and subsequently in the PE. In order to assess its functional role, BMP signaling was experimentally modulated by supplying exogenous BMP2 and by inhibiting endogenous BMP signaling through the addition of Noggin. Both supplying BMP and blocking BMP signaling resulted in a loss of PE marker gene expression. Surprisingly, both experimental situations lead to cardiac myocyte formation in the PE cultures. Careful titration experiments with exogenously added BMP2 or Noggin revealed that PE-specific marker gene expression depends on a low level of BMP signaling. Implantation of BMP2-secreting cells or beads filled with Noggin protein into the right sinus horn of HH stage 11 embryos resulted in downregulation of Tbx18 expression, corresponding to the results of the explant assay. Thus, a distinct level of BMP signaling is required for PE formation in the chick embryo. PMID:16677627

  2. Fundamental Issues of Melatonin-Mediated Stress Signaling in Plants.

    Science.gov (United States)

    Shi, Haitao; Chen, Keli; Wei, Yunxie; He, Chaozu

    2016-01-01

    As a widely known hormone in animals, melatonin (N-acetyl-5-methoxytryptamine) has been more and more popular research topic in various aspects of plants. To summarize the these recent advances, this review focuses on the regulatory effects of melatonin in plant response to multiple abiotic stresses including salt, drought, cold, heat and oxidative stresses and biotic stress such as pathogen infection. We highlight the changes of endogenous melatonin levels under stress conditions, and the extensive metabolome, transcriptome, and proteome reprogramming by exogenous melatonin application. Moreover, melatonin-mediated stress signaling and underlying mechanism in plants are extensively discussed. Much more is needed to further study in detail the mechanisms of melatonin-mediated stress signaling in plants. PMID:27512404

  3. DNA-mediated Charge Transport in Redox Sensing and Signaling

    OpenAIRE

    Genereux, Joseph C.; Boal, Amie K.; Barton, Jacqueline K.

    2010-01-01

    The transport of charge through the DNA base pair stack offers a route to carry out redox chemistry at a distance. Here we describe characteristics of this chemistry that have been elucidated and how this chemistry may be utilized within the cell. The shallow distance dependence associated with these redox reactions permits DNA-mediated signaling over long molecular distances in the genome and facilitates the activation of redox-sensitive transcription factors globally in response to oxidativ...

  4. Tgfβ2 and 3 are coexpressed with their extracellular regulator Ltbp1 in the early limb bud and modulate mesodermal outgrowth and BMP signaling in chicken embryos

    Directory of Open Access Journals (Sweden)

    Garcia-Porrero Juan A

    2010-06-01

    Full Text Available Abstract Background Transforming growth factor β proteins (Tgfβs are secreted cytokines with well-defined functions in the differentiation of the musculoskeletal system of the developing limb. Here we have studied in chicken embryos, whether these cytokines are implicated in the development of the embryonic limb bud at stages preceding tissue differentiation. Results Immunohistochemical detection of phosphorylated Smad2 and Smad3 indicates that signaling by this pathway is active in the undifferentiated mesoderm and AER. Gene expression analysis shows that transcripts of tgfβ2 and tgfβ3 but not tgfβ1 are abundant in the growing undifferentiated limb mesoderm. Transcripts of tgfβ2 are also found in the AER, which is the signaling center responsible for limb outgrowth. Furthermore, we show that Latent Tgfβ Binding protein 1 (LTBP1, which is a key extracellular modulator of Tgfβ ligand bioavailability, is coexpressed with Tgfβs in the early limb bud. Administration of exogenous Tgfβs to limb buds growing in explant cultures provides evidence of these cytokines playing a role in the regulation of mesodermal limb proliferation. In addition, analysis of gene regulation in these experiments revealed that Tgfβ signaling has no effect on the expression of master genes of musculoskeletal tissue differentiation but negatively regulates the expression of the BMP-antagonist Gremlin. Conclusion We propose the occurrence of an interplay between Tgfβ and BMP signaling functionally associated with the regulation of early limb outgrowth by modulating limb mesenchymal cell proliferation.

  5. Smad8/9 Is Regulated Through the BMP Pathway.

    Science.gov (United States)

    Katakawa, Yuko; Funaba, Masayuki; Murakami, Masaru

    2016-08-01

    Members of the transforming growth factor-β (TGF-β) family function through Smad-dependent and Smad-independent pathways. The Smad-dependent pathway is stimulated through the phosphorylation of receptor-regulated Smad (R-Smad) and inhibited through the dephosphorylation of R-Smad or the gene induction of inhibitory Smad (I-Smad). Little information is available on the regulation of R-Smad gene expression. BMP4 potentiated the up-regulation of Smad8/9 expression in C2C12, H9c2, 3T3-L1, HepG2, B16, and primary fibroblasts. BMP4-induced Smad8/9 expression was cycloheximide-insensitive and LDN-193189-sensitive, suggesting a direct event mediated through BMP type I receptors. BMP4 transcriptionally stimulated the Smad8/9 gene, and BMP-responsive elements (BREs) spanning nt -121 to nt -44 are involved in the up-regulation of Smad8/9 expression in response to BMP4. Phosphorylated Smad1/5/8/9 specifically bound to the BREs of Smad8/9 gene. The present study reveals that Smad8/9 is a unique R-Smad regulated through the BMP pathway at the mRNA level. J. Cell. Biochem. 117: 1788-1796, 2016. © 2016 Wiley Periodicals, Inc. PMID:26748560

  6. Root signals that mediate mutualistic interactions in the rhizosphere.

    Science.gov (United States)

    Rasmann, Sergio; Turlings, Ted Cj

    2016-08-01

    A recent boom in research on belowground ecology is rapidly revealing a multitude of fascinating interactions, in particular in the rhizosphere. Many of these interactions are mediated by photo-assimilates that are excreted by plant roots. Root exudates are not mere waste products, but serve numerous functions to control abiotic and biotic processes. These functions range from changing the chemical and physical properties of the soil, inhibiting the growth of competing plants, combatting herbivores, and regulating the microbial community. Particularly intriguing are root-released compounds that have evolved to serve mutualistic interactions with soil-dwelling organisms. These mutually beneficial plant-mediated signals are not only of fundamental ecological interest, but also exceedingly important from an agronomical perspective. Here, we attempt to provide an overview of the plant-produced compounds that have so far been implicated in mutualistic interactions. We propose that these mutualistic signals may have evolved from chemical defenses and we point out that they can be (mis)used by specialized pathogens and herbivores. We speculate that many more signals and interactions remain to be uncovered and that a good understanding of the mechanisms and ecological implications can be the basis for exploitation and manipulation of the signals for crop improvement and protection. PMID:27393937

  7. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis.

    Science.gov (United States)

    Zhou, Jing; Gao, Yang; Lan, Yu; Jia, Shihai; Jiang, Rulang

    2013-12-01

    Cleft palate is one of the most common birth defects in humans. Whereas gene knockout studies in mice have shown that both the Osr2 and Pax9 transcription factors are essential regulators of palatogenesis, little is known about the molecular mechanisms involving these transcription factors in palate development. We report here that Pax9 plays a crucial role in patterning the anterior-posterior axis and outgrowth of the developing palatal shelves. We found that tissue-specific deletion of Pax9 in the palatal mesenchyme affected Shh expression in palatal epithelial cells, indicating that Pax9 plays a crucial role in the mesenchyme-epithelium interactions during palate development. We found that expression of the Bmp4, Fgf10, Msx1 and Osr2 genes is significantly downregulated in the developing palatal mesenchyme in Pax9 mutant embryos. Remarkably, restoration of Osr2 expression in the early palatal mesenchyme through a Pax9(Osr2KI) allele rescued posterior palate morphogenesis in the absence of Pax9 protein function. Our data indicate that Pax9 regulates a molecular network involving the Bmp4, Fgf10, Shh and Osr2 pathways to control palatal shelf patterning and morphogenesis.

  8. Targeted disruption of BMP signaling through type IA receptor (BMPR1A) in osteocyte suppresses SOST and RANKL, leading to dramatic increase in bone mass, bone mineral density and mechanical strength.

    Science.gov (United States)

    Kamiya, Nobuhiro; Shuxian, Lin; Yamaguchi, Ryosuke; Phipps, Matthew; Aruwajoye, Olumide; Adapala, Naga Suresh; Yuan, Hui; Kim, Harry K W; Feng, Jian Q

    2016-10-01

    Recent studies suggest a critical role of osteocytes in controlling skeletal development and bone remodeling although the molecular mechanism is largely unknown. This study investigated BMP signaling in osteocytes by disrupting Bmpr1a under the Dmp1-promoter. The conditional knockout (cKO) mice displayed a striking osteosclerotic phenotype with increased trabecular bone volume, thickness, number, and mineral density as assessed by X-ray and micro-CT. The bone histomorphometry, H&E, and TRAP staining revealed a dramatic increase in trabecular and cortical bone masses but a sharp reduction in osteoclast number. Moreover, there was an increase in BrdU positive osteocytes (2-5-fold) and osteoid volume (~4-fold) but a decrease in the bone formation rate (~85%) in the cKO bones, indicating a defective mineralization. The SEM analysis revealed poorly formed osteocytes: a sharp increase in cell numbers, a great reduction in cell dendrites, and a remarkable change in the cell distribution pattern. Molecular studies demonstrated a significant decrease in the Sost mRNA levels in bone (>95%), and the SOST protein levels in serum (~85%) and bone matrices. There was a significant increase in the β-catenin (>3-fold) mRNA levels as well as its target genes Tcf1 (>6-fold) and Tcf3 (~2-fold) in the cKO bones. We also showed a significant decrease in the RANKL levels of serum proteins (~65%) and bone mRNA (~57%), and a significant increase in the Opg mRNA levels (>20-fold) together with a significant reduction in the Rankl/Opg ratio (>95%), which are responsible for a sharp reduction in the cKO osteoclasts. The values of mechanical strength were higher in cKO femora (i.e. max force, displacement, and work failure). These results suggest that loss of BMP signaling specifically in osteocytes dramatically increases bone mass presumably through simultaneous inhibition of RANKL and SOST, leading to osteoclast inhibition and Wnt activation together. Finally, a working hypothesis is

  9. The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model.

    Science.gov (United States)

    Zwingenberger, Stefan; Langanke, Robert; Vater, Corina; Lee, Geoffrey; Niederlohmann, Eik; Sensenschmidt, Markus; Jacobi, Angela; Bernhardt, Ricardo; Muders, Michael; Rammelt, Stefan; Knaack, Sven; Gelinsky, Michael; Günther, Klaus-Peter; Goodman, Stuart B; Stiehler, Maik

    2016-09-01

    The treatment of critical size bone defects represents a challenge. The growth factor bone morphogenetic protein 2 (BMP-2) is clinically established but has potentially adverse effects when used at high doses. The aim of this study was to evaluate if stromal derived factor-1 alpha (SDF-1α) and BMP-2 released from heparinized mineralized collagen type I matrix (MCM) scaffolds have a cumulative effect on bone regeneration. MCM scaffolds were functionalized with heparin, loaded with BMP-2 and/or SDF-1α and implanted into a murine critical size femoral bone defect (control group, low dose BMP-2 group, low dose BMP-2 + SDF-1α group, and high dose BMP-2 group). After 6 weeks, both the low dose BMP-2 + SDF-1α group (5.8 ± 0.6 mm³, p = 0.0479) and the high dose BMP-2 group (6.5 ± 0.7 mm³, p = 0.008) had a significantly increased regenerated bone volume compared to the control group (4.2 ± 0.5 mm³). There was a higher healing score in the low dose BMP-2 + SDF-1α group (median grade 8; Q1-Q3 7-9; p = 0.0357) than in the low dose BMP-2 group (7; Q1-Q3 5-9) histologically. This study showed that release of BMP-2 and SDF-1α from heparinized MCM scaffolds allows for the reduction of the applied BMP-2 concentration since SDF-1α seems to enhance the osteoinductive potential of BMP-2. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2126-2134, 2016. PMID:27060915

  10. DMPD: Negative regulation of cytoplasmic RNA-mediated antiviral signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18703349 Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Komur...Show Negative regulation of cytoplasmic RNA-mediated antiviral signaling. PubmedID 18703349 Title Negative r...egulation of cytoplasmic RNA-mediated antiviral signaling. Authors Komuro A, Bamm

  11. DMH1, a small molecule inhibitor of BMP type i receptors, suppresses growth and invasion of lung cancer.

    Directory of Open Access Journals (Sweden)

    Jijun Hao

    Full Text Available The bone morphogenetic protein (BMP signaling cascade is aberrantly activated in human non-small cell lung cancer (NSCLC but not in normal lung epithelial cells, suggesting that blocking BMP signaling may be an effective therapeutic approach for lung cancer. Previous studies demonstrated that some BMP antagonists, which bind to extracellular BMP ligands and prevent their association with BMP receptors, dramatically reduced lung tumor growth. However, clinical application of protein-based BMP antagonists is limited by short half-lives, poor intra-tumor delivery as well as resistance caused by potential gain-of-function mutations in the downstream of the BMP pathway. Small molecule BMP inhibitors which target the intracellular BMP cascades would be ideal for anticancer drug development. In a zebrafish embryo-based structure and activity study, we previously identified a group of highly selective small molecule inhibitors specifically antagonizing the intracellular kinase domain of BMP type I receptors. In the present study, we demonstrated that DMH1, one of such inhibitors, potently reduced lung cell proliferation, promoted cell death, and decreased cell migration and invasion in NSCLC cells by blocking BMP signaling, as indicated by suppression of Smad 1/5/8 phosphorylation and gene expression of Id1, Id2 and Id3. Additionally, DMH1 treatment significantly reduced the tumor growth in human lung cancer xenograft model. In conclusion, our study indicates that small molecule inhibitors of BMP type I receptors may offer a promising novel strategy for lung cancer treatment.

  12. Reactive oxygen species mediate insulin signal transduction in mouse hypothalamus.

    Science.gov (United States)

    Onoue, Takeshi; Goto, Motomitsu; Tominaga, Takashi; Sugiyama, Mariko; Tsunekawa, Taku; Hagiwara, Daisuke; Banno, Ryoichi; Suga, Hidetaka; Sugimura, Yoshihisa; Arima, Hiroshi

    2016-04-21

    In the hypothalamus, several reports have implied that ROS mediate physiological effects of insulin. In this study, we investigated the mechanisms of insulin-induced ROS production and the effect of ROS on insulin signal transduction in mouse hypothalamic organotypic cultures. Insulin increased intracellular ROS, which were suppressed by NADPH oxidase inhibitor. H2O2 increased phospho-insulin receptor β (p-IRβ) and phospho-Akt (p-Akt) levels. Insulin-induced increases in p-IRβ and p-Akt levels were attenuated by ROS scavenger or NADPH oxidase inhibitor. Our data suggest that insulin-induced phosphorylation of IRβ and Akt is mediated via ROS which are predominantly produced by NADPH oxidase in mouse hypothalamus.

  13. A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling.

    Science.gov (United States)

    Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vögtle, Nora F; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E; Huang, Cher X; Harden, Mark Michael; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D; Stokes, Matthew P; Silva, Jeffrey C; Bell, George W; MacArthur, Daniel G; Ruland, Jürgen; Meisinger, Chris; Lodish, Harvey F

    2015-10-20

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells.

  14. Gremlin-2 is a BMP antagonist that is regulated by the circadian clock

    DEFF Research Database (Denmark)

    Yeung, Ching-Yan Chloé; Gossan, Nicole; Lu, Yinhui;

    2014-01-01

    of human tenocytes in vitro. We observed dampened Grem2 expression, deregulated BMP signaling, and spontaneously calcifying tendons in young CLOCKΔ19 arrhythmic mice and aged wild-type mice. Thus, disruption of circadian control, through mutations or aging, of Grem2/BMP signaling becomes a new focus...

  15. Molecular Signaling Pathways Mediating Osteoclastogenesis Induced by Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Advanced prostate cancer commonly metastasizes to bone leading to osteoblastic and osteolytic lesions. Although an osteolytic component governed by activation of bone resorbing osteoclasts is prominent in prostate cancer metastasis, the molecular mechanisms of prostate cancer-induced osteoclastogenesis are not well-understood. We studied the effect of soluble mediators released from human prostate carcinoma cells on osteoclast formation from mouse bone marrow and RAW 264.7 monocytes. Soluble factors released from human prostate carcinoma cells significantly increased viability of naïve bone marrow monocytes, as well as osteoclastogenesis from precursors primed with receptor activator of nuclear factor κ-B ligand (RANKL). The prostate cancer-induced osteoclastogenesis was not mediated by RANKL as it was not inhibited by osteoprotegerin (OPG). However inhibition of TGFβ receptor I (TβRI), or macrophage-colony stimulating factor (MCSF) resulted in attenuation of prostate cancer-induced osteoclastogenesis. We characterized the signaling pathways induced in osteoclast precursors by soluble mediators released from human prostate carcinoma cells. Prostate cancer factors increased basal calcium levels and calcium fluctuations, induced nuclear localization of nuclear factor of activated t-cells (NFAT)c1, and activated prolonged phosphorylation of ERK1/2 in RANKL-primed osteoclast precursors. Inhibition of calcium signaling, NFATc1 activation, and ERK1/2 phosphorylation significantly reduced the ability of prostate cancer mediators to stimulate osteoclastogenesis. This study reveals the molecular mechanisms underlying the direct osteoclastogenic effect of prostate cancer derived factors, which may be beneficial in developing novel osteoclast-targeting therapeutic approaches

  16. Signal Transduction Model of Magnetic Sensing in Cryptochrome Mediated Photoreception

    Science.gov (United States)

    Todd, Phillise Tiffeny

    While migratory birds have long been known to use the Earth's magnetic field for navigation, the precise biophysical mechanism behind this magnetic sense remains unconfirmed. A leading theory of magnetoreception suggests a chemical compass model with a yet undetermined molecular reaction site and unknown magnetically sensitive reactants. The cryptochrome photoreceptor has emerged as a promising candidate site. This investigation numerically models the first order kinetics of cryptochrome mediated photoreception, in order to evaluate its ability to function as a magnetic sensor and transduce orientation information along a neural pathway. A signal-to-noise ratio is defined to quantify the threshold for the functioning of a cryptochrome-based chemical compass. The model suggests that a flavin-superoxide radical pair in cryptochrome functions as the chemical reactants for magnetoreception. Such a cryptochrome-based signal transduction model reasonably predicts the general light intensity and wavelength effects that have been experimentally observed in migratory birds.

  17. Calcium signaling mediates cold sensing in insect tissues.

    Science.gov (United States)

    Teets, Nicholas M; Yi, Shu-Xia; Lee, Richard E; Denlinger, David L

    2013-05-28

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms.

  18. Proposed glucocorticoid-mediated zinc signaling in the hippocampus.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna

    2012-07-01

    Corticosteroid hormones are secreted from the adrenal glands in hourly pulses and signal the hippocampus for the development and function. In contrast, the stress-induced rise in corticosteroid concentrations has a profound effect on emotional arousal, motivational processes and cognitive performance. This rise is required as the stress response to maintain homeostasis in the living body or restore it. However, abnormal rise in corticosteroid concentrations is a disadvantage to the hippocampus. Corticosteroid-glutamatergic interactions during information processing are proposed as a potential model to explain many of the diverse actions of corticosteroids in synaptic plasticity such as long-term potentiation and cognition. Because zincergic neurons are a subtype of glutamatergic neurons and release Zn(2+) and glutamate into the synaptic cleft, it is possible that homeostasis of synaptic Zn(2+), in addition to homeostasis of glutamate, is modified by glucocorticoids, followed by the changes in cognitive function and stress response. Zn(2+) signal participates in cognitive and emotional behavior in cooperation with signaling of glucocorticoids and glutamate, while can disadvantageously act on the hippocampus under sever stress circumstances. This paper analyzes the actions of glucocorticoid-mediated Zn(2+) signal in the hippocampus under stressful circumstances and its significance in both hippocampal function and dysfunction.

  19. Rat aortic smooth muscle cells cultured on hydroxyapatite differentiate into osteoblast-like cells via BMP-2-SMAD-5 pathway.

    Science.gov (United States)

    Nahar-Gohad, Pranjal; Gohad, Neeraj; Tsai, Chen-Chih; Bordia, Rajendra; Vyavahare, Naren

    2015-04-01

    Vascular calcification is an important pathological condition associated with increased risk of cardiovascular mortality. Hydroxyapatite (HA) found in such deposits is the same polymorph of calcium (Ca) found in bone, indicating calcification may involve mechanisms akin to bone formation. Vascular smooth muscle cells (Vsmcs) have been shown to undergo phenotypic change to osteoblast-like cells. However, the mechanisms underlying this phenotypic change are unclear, and whether the stimulus to become osteogenic is a result of loss of mineralization inhibitors or early mineral deposits is not known. Our aim in this study is to identify mechanisms and signal transduction pathways that cause differentiation of Vsmcs into osteoblast-like cells in the presence of HA. We first characterized vascular origin of Vsmcs by studying the expression of smooth muscle cell markers: myosin heavy chain and smooth muscle actin along with SM22α at both mRNA and protein levels. Vsmcs grown on HA exhibited progressive change in cellular morphology at 3-, 7-, and 14-day time points. Culturing of Vsmcs on HA disc resulted in decrease in media Ca levels and increased expression of Ca-sensing receptor (CaSR) on Vsmcs resulting in upregulation of intracellular CaSR signaling leading to increased BMP-2 secretion. BMP-2 pathway mediated differentiation of Vsmcs to osteoblast-like cells shown by expression of osteogenic markers like runt-related transcription factor 2, osteocalcin, and alkaline phosphatase at mRNA and protein levels. Blocking CaSR by NPS-2143 reduced BMP-2 secretion and blocking the BMP-2 pathway by LDN-193189, a BMP inhibitor, modulated expression of osteogenic markers confirming their role in osteogenesis of Vsmcs. PMID:25725805

  20. Mitotic lamin disassembly is triggered by lipid-mediated signaling.

    Science.gov (United States)

    Mall, Moritz; Walter, Thomas; Gorjánácz, Mátyás; Davidson, Iain F; Nga Ly-Hartig, Thi Bach; Ellenberg, Jan; Mattaj, Iain W

    2012-09-17

    Disassembly of the nuclear lamina is a key step during open mitosis in higher eukaryotes. The activity of several kinases, including CDK1 (cyclin-dependent kinase 1) and protein kinase C (PKC), has been shown to trigger mitotic lamin disassembly, yet their precise contributions are unclear. In this study, we develop a quantitative imaging assay to study mitotic lamin B1 disassembly in living cells. We find that CDK1 and PKC act in concert to mediate phosphorylation-dependent lamin B1 disassembly during mitosis. Using ribonucleic acid interference (RNAi), we showed that diacylglycerol (DAG)-dependent PKCs triggered rate-limiting steps of lamin disassembly. RNAi-mediated depletion or chemical inhibition of lipins, enzymes that produce DAG, delayed lamin disassembly to a similar extent as does PKC inhibition/depletion. Furthermore, the delay of lamin B1 disassembly after lipin depletion could be rescued by the addition of DAG. These findings suggest that lipins activate a PKC-dependent pathway during mitotic lamin disassembly and provide evidence for a lipid-mediated mitotic signaling event.

  1. Smad5 determines murine amnion fate through the control of bone morphogenetic protein expression and signalling levels.

    Science.gov (United States)

    Bosman, Erika A; Lawson, Kirstie A; Debruyn, Joke; Beek, Lisette; Francis, Annick; Schoonjans, Luc; Huylebroeck, Danny; Zwijsen, An

    2006-09-01

    Smad5 is an intracellular mediator of bone morphogenetic protein (Bmp) signalling. It is essential for primordial germ cell (PGC) development, for the development of the allantois and for amnion closure, as demonstrated by loss of Bmp signalling. By contrast, the appearance of ectopic PGC-like cells and regionalized ectopic vasculogenesis and haematopoiesis in thickened Smad5(m1/m1) amnion are amnion defects that have not been associated with loss of Bmp signalling components. We show that defects in amnion and allantois can already be detected at embryonic day (E) 7.5 in Smad5 mutant mice. However, ectopic Oct4-positive (Oct4(+)) and alkaline phosphatase-positive (AP(+)) cells appear suddenly in thickened amnion at E8.5, and at a remote distance from the allantois and posterior primitive streak, suggesting a change of fate in situ. These ectopic Oct4(+), AP(+) cells appear to be Stella negative and hence cannot be called bona fide PGCs. We demonstrate a robust upregulation of Bmp2 and Bmp4 expression, as well as of Erk and Smad activity, in the Smad5 mutant amnion. The ectopic expression of several Bmp target genes in different domains and the regionalized presence of cells of several Bmp-sensitive lineages in the mutant amnion suggest that different levels of Bmp signalling may determine cell fate. Injection of rBMP4 in the exocoelom of wild-type embryos can induce thickening of amnion, mimicking the early amnion phenotype in Smad5 mutants. These results support a model in which loss of Smad5 results paradoxically in gain of Bmp function defects in the amnion. PMID:16887830

  2. Dominant negative Bmp5 mutation reveals key role of BMPs in skeletal response to mechanical stimulation

    Directory of Open Access Journals (Sweden)

    Kingsley David M

    2008-04-01

    Full Text Available Abstract Background Over a hundred years ago, Wolff originally observed that bone growth and remodeling are exquisitely sensitive to mechanical forces acting on the skeleton. Clinical studies have noted that the size and the strength of bone increase with weight bearing and muscular activity and decrease with bed rest and disuse. Although the processes of mechanotransduction and functional response of bone to mechanical strain have been extensively studied, the molecular signaling mechanisms that mediate the response of bone cells to mechanical stimulation remain unclear. Results Here, we identify a novel germline mutation at the mouse Bone morphogenetic protein 5 (Bmp5 locus. Genetic analysis shows that the mutation occurs at a site encoding the proteolytic processing sequence of the BMP5 protein and blocks proper processing of BMP5. Anatomic studies reveal that this mutation affects the formation of multiple skeletal features including several muscle-induced skeletal sites in vivo. Biomechanical studies of osteoblasts from these anatomic sites show that the mutation inhibits the proper response of bone cells to mechanical stimulation. Conclusion The results from these genetic, biochemical, and biomechanical studies suggest that BMPs are required not only for skeletal patterning during embryonic development, but also for bone response and remodeling to mechanical stimulation at specific anatomic sites in the skeleton.

  3. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression

    Science.gov (United States)

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H.; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-01-01

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2f/f;Bmp4f/fameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling. PMID:27146352

  4. A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians.

    Science.gov (United States)

    Gaviño, Michael A; Reddien, Peter W

    2011-02-22

    Animal embryos have diverse anatomy and vary greatly in size. It is therefore remarkable that a common signaling pathway, BMP signaling, controls development of the dorsoventral (DV) axis throughout the Bilateria. In vertebrates, spatially opposed expression of the BMP family proteins Bmp4 and Admp (antidorsalizing morphogenetic protein) can promote restoration of DV pattern following tissue removal. bmp4 orthologs have been identified in all three groups of the Bilateria (deuterostomes, ecdysozoans, and lophotrochozoans). By contrast, the absence of admp orthologs in ecdysozoans such as Drosophila and C. elegans has suggested that a regulatory circuit of oppositely expressed bmp4 and admp genes represents a deuterostome-specific innovation. Here we describe the existence of spatially opposed bmp and admp expression in a protostome. An admp ortholog (Smed-admp) is expressed ventrally and laterally in adult Schmidtea mediterranea planarians, opposing the dorsal-pole expression of Smed-bmp4. Smed-admp is required for regeneration following parasagittal amputation. Furthermore, Smed-admp promotes Smed-bmp4 expression and Smed-bmp4 inhibits Smed-admp expression, generating a regulatory circuit that buffers against perturbations of Bmp signaling. These results suggest that a Bmp/Admp regulatory circuit is a central feature of the Bilateria, used broadly for the establishment, maintenance, and regeneration of the DV axis. PMID:21295483

  5. Dual Inhibition of Activin/Nodal/TGF-β and BMP Signaling Pathways by SB431542 and Dorsomorphin Induces Neuronal Differentiation of Human Adipose Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Vedavathi Madhu

    2016-01-01

    Full Text Available Damage to the nervous system can cause devastating diseases or musculoskeletal dysfunctions and transplantation of progenitor stem cells can be an excellent treatment option in this regard. Preclinical studies demonstrate that untreated stem cells, unlike stem cells activated to differentiate into neuronal lineage, do not survive in the neuronal tissues. Conventional methods of inducing neuronal differentiation of stem cells are complex and expensive. We therefore sought to determine if a simple, one-step, and cost effective method, previously reported to induce neuronal differentiation of embryonic stem cells and induced-pluripotent stem cells, can be applied to adult stem cells. Indeed, dual inhibition of activin/nodal/TGF-β and BMP pathways using SB431542 and dorsomorphin, respectively, induced neuronal differentiation of human adipose derived stem cells (hADSCs as evidenced by formation of neurite extensions, protein expression of neuron-specific gamma enolase, and mRNA expression of neuron-specific transcription factors Sox1 and Pax6 and matured neuronal marker NF200. This process correlated with enhanced phosphorylation of p38, Erk1/2, PI3K, and Akt1/3. Additionally, in vitro subcutaneous implants of SB431542 and dorsomorphin treated hADSCs displayed significantly higher expression of active-axonal-growth-specific marker GAP43. Our data offers novel insights into cell-based therapies for the nervous system repair.

  6. Intracellular Signaling Mediators in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2013-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to phenomenological models of nano- and microscopic events in a corrector scheme of regulated mechanisms when the vessel lumen caliber varies markedly. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volume 4 is devoted to major sets of intracellular mediators that transmit signals upon stimulation of cell-surface receptors.  Activation of...

  7. Multilepton signals of gauge mediated supersymmetry breaking at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    D' Hondt, Jorgen [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); De Causmaecker, Karen [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Fuks, Benjamin [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques, Université de Strasbourg/CNRS-IN2P3, 23 Rue du Loess, F-67037 Strasbourg (France); Mariotti, Alberto [Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE (United Kingdom); Mawatari, Kentarou [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); Petersson, Christoffer [International Solvay Institutes, Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles, C.P. 231, B-1050 Brussels (Belgium); Department of Fundamental Physics, Chalmers University of Technology, 412 96 Göteborg (Sweden); Redigolo, Diego [International Solvay Institutes, Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles, C.P. 231, B-1050 Brussels (Belgium)

    2014-04-04

    We investigate multilepton LHC signals arising from electroweak processes involving sleptons. We consider the framework of general gauge mediated supersymmetry breaking, focusing on models where the low mass region of the superpartner spectrum consists of the three generations of charged sleptons and the nearly massless gravitino. We demonstrate how such models can provide an explanation for the anomalous four lepton events recently observed by the CMS Collaboration, while satisfying other existing experimental constraints. The best fit to the CMS data is obtained for a selectron/smuon mass of around 145 GeV and a stau mass of around 90 GeV. These models also give rise to final states with more than four leptons, offering alternative channels in which they can be probed and we estimate the corresponding production rates at the LHC.

  8. Bmp2 and Bmp4 accelerate alveolar bone development.

    Science.gov (United States)

    Ou, Mingming; Zhao, Yibing; Zhang, Fangming; Huang, Xiaofeng

    2015-06-01

    Alveolar bone remodeling is a continuous process that takes place during development and in response to various physiological and pathological stimuli. However, detailed knowledge regarding the underlying mechanisms involved in alveolar bone development is still lacking. This study aims at improving our understanding of alveolar bone formation and the role of bone morphogenetic proteins (Bmps) in this process. Mice at embryonic (E) day 13.5 to postnatal (PN) day 15.5 were selected to observe the process of alveolar bone development. Alveolar bone development was found to be morphologically observable at E14.5. Molar teeth isolated from mice at PN7.5 were pretreated with Bmp2, Bmp4, Noggin, or BSA, and grafted subcutaneously into mice. The subcutaneously implanted tooth germs formed alveolar bone indicating the role of the dental follicle in alveolar bone development. Alveolar bone formation was increased after pretreatment with Bmp2 and Bmp4, but not with Noggin. Gene expression levels in dental follicle cells from murine molars were also determined by real-time RT-PCR. The expression levels of Runx2, Bsp, and Ocn were significantly higher in dental follicle cells cultured with Bmp2 or Bmp4, and significantly lower in those cultured with Noggin when compared with that of the BSA controls. Our results suggest that the dental follicle participates in alveolar bone formation and Bmp2/4 appears to accelerate alveolar bone development.

  9. Activation of PERK signaling attenuates Abeta-mediated ER stress.

    Directory of Open Access Journals (Sweden)

    Do Yeon Lee

    Full Text Available Alzheimer's disease (AD is characterized by the deposition of aggregated beta-amyloid (Abeta, which triggers a cellular stress response called the unfolded protein response (UPR. The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER stress is prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of ER stress-mediated Abeta neurotoxicity still remain unknown. Here, we show that treatment of Abeta triggers the UPR in the SK-N-SH human neuroblastoma cells. Abeta mediated UPR pathway accompanies the activation of protective pathways such as Grp78/Bip and PERK-eIF2alpha pathway, as well as the apoptotic pathways of the UPR such as CHOP and caspase-4. Knockdown of PERK enhances Abeta neurotoxicity through reducing the activation of eIF2alpha and Grp8/Bip in neurons. Salubrinal, an activator of the eIF2alpha pathway, significantly increased the Grp78/Bip ER chaperone resulted in attenuating caspase-4 dependent apoptosis in Abeta treated neurons. These results indicate that PERK-eIF2alpha pathway is a potential target for therapeutic applications in neurodegenerative diseases including AD.

  10. High-performance scaffolds on titanium surfaces: Osteoblast differentiation and mineralization promoted by a globular fibrinogen layer through cell-autonomous BMP signaling

    Energy Technology Data Exchange (ETDEWEB)

    Horasawa, Noriko, E-mail: horasawa@po.mdu.ac.jp [Department of Dental Materials, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399-0781 (Japan); Yamashita, Teruhito [Institute for Oral Science, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399-0781 (Japan); Uehara, Shunsuke; Udagawa, Nobuyuki [Department of Biochemistry, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399-0781 (Japan)

    2015-01-01

    Titanium has been widely used as a dental implant material. However, it takes several months for the implant body to bind with the jawbone. To develop new bioactive modification on titanium surfaces to achieve full osseointegration expeditiously, we used fibrinogen and fibronectin as bioactive scaffolds on the titanium plate, which are common extracellular matrix (ECM) proteins. We analyzed the features of the surface of ECM-modified titanium plates by atomic force microscopy and Fourier transform infrared spectrophotometry. We also evaluated the effect of ECM modification on promoting the differentiation and mineralization of osteoblasts on these surfaces. Fibrinogen had excellent adsorption on titanium surfaces even at low concentrations, due to the binding ability of fibrinogen via its RGD motif. The surface was composed of a fibrinogen monolayer, in which the ratio of β-sheets was decreased. Osteoblast proliferation on ECM-modified titanium surface was significantly promoted compared with titanium alone. Calcification on the modified surface was also accelerated. These ECM-promoting effects correlated with increased expression of bone morphogenetic proteins (BMPs) by the osteoblasts themselves and were inhibited by Noggin, a BMP inhibitor. These results suggest that the fibrinogen monolayer-modified titanium surface is recognized as bioactive scaffolds and promotes bone formation, resulting in the acceleration of osseointegration. - Highlights: • Fibrinogen had an excellent adsorption on titanium at low concentrations. • Fibrinogen on titanium formed composite layer with a decrease in β-sheet structure. • Osteoblast proliferation and calcification on the ECM-modified titanium plates were significant. • These effects of fibrinogen were increased of BMPs by osteoblasts themselves. • The scaffolds of fibrinogen on titanium might accelerate osseointegration.

  11. Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo.

    Science.gov (United States)

    Piacentino, Michael L; Chung, Oliver; Ramachandran, Janani; Zuch, Daniel T; Yu, Jia; Conaway, Evan A; Reyna, Arlene E; Bradham, Cynthia A

    2016-04-01

    Skeletal patterning in the sea urchin embryo requires coordinated signaling between the pattern-dictating ectoderm and the skeletogenic primary mesenchyme cells (PMCs); recent studies have begun to uncover the molecular basis for this process. Using an unbiased RNA-Seq-based screen, we have previously identified the TGF-ß superfamily ligand, LvBMP5-8, as a skeletal patterning gene in Lytechinus variegatus embryos. This result is surprising, since both BMP5-8 and BMP2/4 ligands have been implicated in sea urchin dorsal-ventral (DV) and left-right (LR) axis specification. Here, we demonstrate that zygotic LvBMP5-8 is required for normal skeletal patterning on the left side, as well as for normal PMC positioning during gastrulation. Zygotic LvBMP5-8 is required for expression of the left-side marker soxE, suggesting that LvBMP5-8 is required for left-side specification. Interestingly, we also find that LvBMP5-8 knockdown suppresses serotonergic neurogenesis on the left side. While LvBMP5-8 overexpression is sufficient to dorsalize embryos, we find that zygotic LvBMP5-8 is not required for normal DV specification or development. In addition, ectopic LvBMP5-8 does not dorsalize LvBMP2/4 morphant embryos, indicating that, in the absence of BMP2/4, BMP5-8 is insufficient to specify dorsal. Taken together, our data demonstrate that zygotic LvBMP5-8 signaling is essential for left-side specification, and for normal left-side skeletal and neural patterning, but not for DV specification. Thus, while both BMP2/4 and BMP5-8 regulate LR axis specification, BMP2/4 but not zygotic BMP5-8 regulates DV axis specification in sea urchin embryos.

  12. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells.

    Science.gov (United States)

    Liu, Xiaoyu; Zhao, Yahong; Peng, Su; Zhang, Shuqiang; Wang, Meihong; Chen, Yeyue; Zhang, Shan; Yang, Yumin; Sun, Cheng

    2016-01-01

    Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process. PMID:27491681

  13. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo, E-mail: innks@khu.ac.kr

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  14. Characterization of NAADP-mediated calcium signaling in human spermatozoa

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Tusie, A.A. [Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos (Mexico); Vasudevan, S.R.; Churchill, G.C. [Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England (United Kingdom); Nishigaki, T. [Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos (Mexico); Treviño, C.L., E-mail: ctrevino@ibt.unam.mx [Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos (Mexico)

    2014-01-10

    Highlights: •Human sperm cells synthesize NAADP. •NAADP-AM mediates [Ca{sup 2+}]{sub i} increases in human sperm in the absence of [Ca{sup 2+}]{sub o}. •Human sperm have two acidic compartments located in the head and midpiece. -- Abstract: Ca{sup 2+} signaling in spermatozoa plays a crucial role during processes such as capacitation and release of the acrosome, but the underlying molecular mechanisms still remain unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca{sup 2+}-releasing second messenger in a variety of cellular processes. The presence of a NAADP synthesizing enzyme in sea urchin sperm has been previously reported, suggesting a possible role of NAADP in sperm Ca{sup 2+} signaling. In this work we used in vitro enzyme assays to show the presence of a novel NAADP synthesizing enzyme in human sperm, and to characterize its sensitivity to Ca{sup 2+} and pH. Ca{sup 2+} fluorescence imaging studies demonstrated that the permeable form of NAADP (NAADP-AM) induces intracellular [Ca{sup 2+}] increases in human sperm even in the absence of extracellular Ca{sup 2+}. Using LysoTracker®, a fluorescent probe that selectively accumulates in acidic compartments, we identified two such stores in human sperm cells. Their acidic nature was further confirmed by the reduction in staining intensity observed upon inhibition of the endo-lysosomal proton pump with Bafilomycin, or after lysosomal bursting with glycyl-L-phenylalanine-2-naphthylamide. The selective fluorescent NAADP analog, Ned-19, stained the same subcellular regions as LysoTracker®, suggesting that these stores are the targets of NAADP action.

  15. Characterization of NAADP-mediated calcium signaling in human spermatozoa

    International Nuclear Information System (INIS)

    Highlights: •Human sperm cells synthesize NAADP. •NAADP-AM mediates [Ca2+]i increases in human sperm in the absence of [Ca2+]o. •Human sperm have two acidic compartments located in the head and midpiece. -- Abstract: Ca2+ signaling in spermatozoa plays a crucial role during processes such as capacitation and release of the acrosome, but the underlying molecular mechanisms still remain unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+-releasing second messenger in a variety of cellular processes. The presence of a NAADP synthesizing enzyme in sea urchin sperm has been previously reported, suggesting a possible role of NAADP in sperm Ca2+ signaling. In this work we used in vitro enzyme assays to show the presence of a novel NAADP synthesizing enzyme in human sperm, and to characterize its sensitivity to Ca2+ and pH. Ca2+ fluorescence imaging studies demonstrated that the permeable form of NAADP (NAADP-AM) induces intracellular [Ca2+] increases in human sperm even in the absence of extracellular Ca2+. Using LysoTracker®, a fluorescent probe that selectively accumulates in acidic compartments, we identified two such stores in human sperm cells. Their acidic nature was further confirmed by the reduction in staining intensity observed upon inhibition of the endo-lysosomal proton pump with Bafilomycin, or after lysosomal bursting with glycyl-L-phenylalanine-2-naphthylamide. The selective fluorescent NAADP analog, Ned-19, stained the same subcellular regions as LysoTracker®, suggesting that these stores are the targets of NAADP action

  16. Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.

    Science.gov (United States)

    Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-08-01

    Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo.

  17. Bmp7 functions via a polarity mechanism to promote cloacal septation.

    Directory of Open Access Journals (Sweden)

    Kun Xu

    Full Text Available BACKGROUND: During normal development in human and other placental mammals, the embryonic cloacal cavity separates along the axial longitudinal plane to give rise to the urethral system, ventrally, and the rectum, dorsally. Defects in cloacal development are very common and present clinically as a rectourethral fistula in about 1 in 5,000 live human births. Yet, the cellular mechanisms of cloacal septation remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We previously detected Bone morphogenetic protein 7 (Bmp7 expression in the urorectal mesenchyme (URM, and have shown that loss of Bmp7 function results in the arrest of cloacal septation. Here, we present evidence that cloacal partitioning is driven by Bmp7 signaling in the cloacal endoderm. We performed TUNEL and immunofluorescent analysis on cloacal sections from Bmp7 null and control littermate embryos. We found that loss of Bmp7 results in a dramatic decrease in the endoderm survival and a delay in differentiation. We used immunological methods to show that Bmp7 functions by activating the c-Jun N-terminal kinase (JNK pathway. We carried out confocal and 3D imaging analysis of mitotic chromosome bundles to show that during normal septation cells in the cloacal endoderm divide predominantly in the apical-basal direction. Loss of Bmp7/JNK signaling results in randomization of mitotic angles in the cloacal endoderm. We also conducted immunohistochemical analysis of human fetal sections to show that BMP/phospho-SMAD and JNK pathways function in the human cloacal region similar as in the mouse. CONCLUSION/SIGNIFICANCE: Our results strongly indicate that Bmp7/JNK signaling regulates remodeling of the cloacal endoderm resulting in a topological separation of the urinary and digestive systems. Our study points to the importance of Bmp and JNK signaling in cloacal development and rectourethral malformations.

  18. GDF11/BMP11 activates both smad1/5/8 and smad2/3 signals but shows no significant effect on proliferation and migration of human umbilical vein endothelial cells

    Science.gov (United States)

    Zhang, Yong-Hui; Cheng, Feng; Du, Xue-Ting; Gao, Jin-Lai; Xiao, Xiao-Lin; Li, Na; Li, Shan-Liang; Dong, De-Li

    2016-01-01

    GDF11/BMP11, a member of TGF-β superfamily, was reported to rejuvenate heart, skeletal muscle and blood vessel architecture in aged mice. However, the rejuvenative effects of GDF11 were questioned recently. Here, we investigated the effects of GDF11 on smad and non-smad signals in human umbilical vein endothelial cells (HUVECs) and the effects of GDF11 on proliferation and migration of HUVECs and primary rat aortic endothelial cells (RAECs). GDF11 factor purchased from two different companies (PeproTech and R&D Systems) was comparatively studied. Western blot was used to detect the protein expressions. The cell viability and migration were examined by using MTT and wound healing assays. Results showed that GDF11 activated both smad1/5/8 and smad2/3 signals in HUVECs. GDF11 increased protein expression of NADPH oxidase 4(NOX4) in HUVECs. GDF11 showed no significant effect on the protein level of p38, p-p38, ERK, p-ERK, Akt, p-Akt (Ser473) and p-Akt(Thr308), but increased the protein level of p-JNK and p-AMPK in HUVECs, and these increases were inhibited by antioxidant mitoTEMPO treatment. GDF11 slightly increased cell viability after short-term treatment and slightly decreased cell viability after long-term treatment. GDF11 showed no significant effect on cell proliferation and migration. These data indicated that the notion of GDF11 as a rejuvenation-related factor for endothelial cells needs to be cautious. PMID:26919250

  19. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development.

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    Full Text Available Endocardial to mesenchymal transformation (EMT is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1 show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.

  20. Interactions between BMP-7 and USAG-1 (uterine sensitization-associated gene-1 regulate supernumerary organ formations.

    Directory of Open Access Journals (Sweden)

    Honoka Kiso

    Full Text Available Bone morphogenetic proteins (BMPs are highly conserved signaling molecules that are part of the transforming growth factor (TGF-beta superfamily, and function in the patterning and morphogenesis of many organs including development of the dentition. The functions of the BMPs are controlled by certain classes of molecules that are recognized as BMP antagonists that inhibit BMP binding to their cognate receptors. In this study we tested the hypothesis that USAG-1 (uterine sensitization-associated gene-1 suppresses deciduous incisors by inhibition of BMP-7 function. We learned that USAG-1 and BMP-7 were expressed within odontogenic epithelium as well as mesenchyme during the late bud and early cap stages of tooth development. USAG-1 is a BMP antagonist, and also modulates Wnt signaling. USAG-1 abrogation rescued apoptotic elimination of odontogenic mesenchymal cells. BMP signaling in the rudimentary maxillary incisor, assessed by expressions of Msx1 and Dlx2 and the phosphorylation of Smad protein, was significantly enhanced. Using explant culture and subsequent subrenal capsule transplantation of E15 USAG-1 mutant maxillary incisor tooth primordia supplemented with BMP-7 demonstrated in USAG-1+/- as well as USAG-1-/- rescue and supernumerary tooth development. Based upon these results, we conclude that USAG-1 functions as an antagonist of BMP-7 in this model system. These results further suggest that the phenotypes of USAG-1 and BMP-7 mutant mice reported provide opportunities for regenerative medicine and dentistry.

  1. Advanced BMP Gene Therapies for Temporal and Spatial Control of Bone Regeneration

    OpenAIRE

    Wilson, C.G.; Martín-Saavedra, F.M.; Vilaboa, N.; Franceschi, R.T.

    2013-01-01

    Spatial and temporal patterns of bone morphogenetic protein (BMP) signaling are crucial to the assembly of appropriately positioned and shaped bones of the face and head. This review advances the hypothesis that reconstitution of such patterns with cutting-edge gene therapies will transform the clinical management of craniofacial bone defects attributed to trauma, disease, or surgical resection. Gradients in BMP signaling within developing limbs and orofacial primordia regulate proliferation ...

  2. Delayed BMP4 exposure increases germ cell differentiation in mouse embryonic stem cells.

    Science.gov (United States)

    Talaei-Khozani, Tahereh; Zarei Fard, Nehleh; Bahmanpour, Soghra; Jaberipour, Mansoureh; Hosseini, Ahmah; Esmaeilpour, Tahereh

    2014-01-01

    Fate mapping studies have revealed that bone morphogenetic protein 4 (BMP4) signaling has a key role in segregation of primordial germ cells from proximal epiblast. Adding BMP4 to the culture media of embryonic stem (ES) cells could induce expression of germ cell markers; however, to provide a desired number of germ cells has remained a challenge. In the current study, we intended to establish an in vitro system to obtain reliable germ cells derived from ES cells. Differentiation was induced in ES cells via embryoid body (EB) and monolayer culture system. Cells were cultured with BMP4 from the beginning (++BMP4) or after 48 hours (+BMP4) of culturing for five days. The cultures were assessed for alkaline phosphatase (ALP) activity, expression of Oct4, Mvh and c-kit. In EB culture protocol, the expression of Mvh, Oct4 and ALP activity significantly increased in +BMP4 culture condition, but a significant down-regulation in the expression of germ cell markers was shown in ++BMP4 condition compared with the control group. Parallel differentiation experiments using monolayer culture system indicated the number of putative germ cells did not change. In the current study, we compared two differentiation methods (EB and monolayer) to achieve an optimal germ cell production. The EBs with a short exposure time period to BMP4, showing typical characteristics of germ cells. Therefore, our approach provides a strategy for the production of germline cells from ES cells. PMID:24969978

  3. Decreased body fat, elevated plasma transforming growth factor-β levels, and impaired BMP4-like signaling in biglycan-deficient mice.

    Science.gov (United States)

    Tang, Tao; Thompson, Joel C; Wilson, Patricia G; Nelson, Christina; Williams, Kevin Jon; Tannock, Lisa R

    2013-01-01

    Biglycan (BGN), a small leucine-rich proteoglycan, binds the pro-fibrotic cytokine transforming growth factor β (TGFβ) and inhibits its bioactivity in vitro. Nevertheless, it is controversial whether BGN plays an inhibitory role in vivo. Therefore, the purpose of this study was to evaluate the effect of BGN deficiency on TGFβ activity in vivo by studying 1-year-old Bgn null and wild-type (WT) mice on an Ldlr-null background. Phenotypic and metabolic characterization showed that the Bgn null mice had lower body weight, shorter body length, and shorter femur length (all p kidney histology. Overall, we propose that this unexpected phenotype arises from the effects of BGN deficiency in vivo to elevate TGFβ levels while decreasing bone morphogenetic protein 4-like signaling.

  4. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    OpenAIRE

    Jung-Bo Huh; June-Jip Yang; Kyung-Hee Choi; Ji Hyeon Bae; Jeong-Yeol Lee; Sung-Eun Kim; Sang-Wan Shin

    2015-01-01

    Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were fo...

  5. Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways.

    Science.gov (United States)

    Lim, Hyun-Chang; Nam, Ok Hyung; Kim, Mi-Joo; El-Fiqi, Ahmed; Yun, Hyung-Mun; Lee, Yoo-Mi; Jin, Guang-Zhen; Lee, Hae-Hyoung; Kim, Hae-Won; Kim, Eun-Cheol

    2016-01-01

    Therapeutically relevant design of scaffolds is of special importance in the repair and regeneration of tissues including dentin and pulp. Here we exploit nanofiber matrices that incorporate bioactive glass nanoparticles (BGNs) and deliver the odontogenic drug dexamethasone (DEX) to stimulate the odontogenic differentiation of human dental pulp cells (HDPCs). DEX molecules were first loaded onto the BGN, and then the DEX-BGN complex was incorporated within the biopolymer nanofiber matrix through electrospinning. The release of DEX continued over a month, showing a slow releasing profile. HDPCs cultured on the DEX-releasing BGN matrices were viable, proliferating well up to 14 days. The odontogenic differentiation, as assessed by alkaline phosphatase activity, mRNA expression of genes, and mineralization, was significantly stimulated on the matrices incorporating BGN and further on those releasing DEX. The DEX-releasing BGN matrices highly upregulated the expression of the integrin subsets α1, α5, and β3 as well as integrin downstream signaling molecules, including focal adhesion kinase (FAK), Paxillin, and RhoA, and activated bone morphogenetic protein mRNA and phosphorylation of Smad1/5/8. Furthermore, the DEX-releasing BGN-matrices stimulated Akt and mammalian target of rapamycin (mTOR), which was proven by the inhibition study. Collectively, the designed therapeutic nanofiber matrices that incorporate BGN and deliver DEX were demonstrated to promote odontogenesis of HDPCs, and the integrins, bone morphogenetic protein, and mTOR signaling pathways are proposed to be the possible molecular mechanisms. While further in vivo studies are still needed, the DEX-releasing bioactive scaffolds are considered as a potential therapeutic nanomatrix for regenerative endodontics and tissue engineering. PMID:27354790

  6. Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways

    Science.gov (United States)

    Lim, Hyun-Chang; Nam, Ok Hyung; Kim, Mi-joo; El-Fiqi, Ahmed; Yun, Hyung-Mun; Lee, Yoo-Mi; Jin, Guang-Zhen; Lee, Hae-Hyoung; Kim, Hae-Won; Kim, Eun-Cheol

    2016-01-01

    Therapeutically relevant design of scaffolds is of special importance in the repair and regeneration of tissues including dentin and pulp. Here we exploit nanofiber matrices that incorporate bioactive glass nanoparticles (BGNs) and deliver the odontogenic drug dexamethasone (DEX) to stimulate the odontogenic differentiation of human dental pulp cells (HDPCs). DEX molecules were first loaded onto the BGN, and then the DEX-BGN complex was incorporated within the biopolymer nanofiber matrix through electrospinning. The release of DEX continued over a month, showing a slow releasing profile. HDPCs cultured on the DEX-releasing BGN matrices were viable, proliferating well up to 14 days. The odontogenic differentiation, as assessed by alkaline phosphatase activity, mRNA expression of genes, and mineralization, was significantly stimulated on the matrices incorporating BGN and further on those releasing DEX. The DEX-releasing BGN matrices highly upregulated the expression of the integrin subsets α1, α5, and β3 as well as integrin downstream signaling molecules, including focal adhesion kinase (FAK), Paxillin, and RhoA, and activated bone morphogenetic protein mRNA and phosphorylation of Smad1/5/8. Furthermore, the DEX-releasing BGN-matrices stimulated Akt and mammalian target of rapamycin (mTOR), which was proven by the inhibition study. Collectively, the designed therapeutic nanofiber matrices that incorporate BGN and deliver DEX were demonstrated to promote odontogenesis of HDPCs, and the integrins, bone morphogenetic protein, and mTOR signaling pathways are proposed to be the possible molecular mechanisms. While further in vivo studies are still needed, the DEX-releasing bioactive scaffolds are considered as a potential therapeutic nanomatrix for regenerative endodontics and tissue engineering. PMID:27354790

  7. Systemin/Jasmonate-Mediated Systemic Defense Signaling in Tomato

    Institute of Scientific and Technical Information of China (English)

    Jia-Qiang Sun; Hong-Ling Jiang; Chuan-You Li

    2011-01-01

    Wound-inducible proteinase inhibitors (Pis)in tomato plants provide a useful model system to elucidate the signal transduction pathways that regulate systemic defense response. Among the proposed intercellular signals for wound-induced Pis expression are the peptide systemin and the oxylipin-derived phytohormone jasmonic acid (JA).An increasing body of evidence indicates that systemin and JA work in the same signaling pathway to activate the ex-pression of Pis and other defense-related genes. However, relatively less is known about how these signals interact to promote cell-to-cell communication over long distances. Genetic analysis of the systemin/JA signaling pathway in tomato plants provides a unique opportunity to study, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate systemic expression of defense-related genes. Previously, it has been proposed that systemin is the long-distance mobile signal for defense gene expression. Recently, grafting experiments with tomato mutants defective in JA biosynthesis and signaling provide new evidence that JA, rather than systemin, functions as the systemic wound signal, and that the biosynthesis of JA is regulated by the peptide systemin. Further understanding of the systemin/JA signaling pathway promises to provide new insights into the basic mechanisms governing plant de-fense to biotic stress.

  8. Transmateriality: Toward an Energetics of Signal in Contemporary Mediatic Assemblages

    Directory of Open Access Journals (Sweden)

    Anna Munster

    2014-03-01

    Full Text Available This article focuses on signal as an aspect of modern technicity that precedes—or supersedes—codification. Examining DIY drone videos found on YouTube and the video art of Nam June Paik, among other sources, the article explores how each tests the flow of signal and signal processing as forms of transmateriality and transduction. the author draws particularly on the work of Gilbert Simondon and Adrian Mackenzie.

  9. Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways

    Directory of Open Access Journals (Sweden)

    Lim HC

    2016-06-01

    Full Text Available Hyun-Chang Lim,1,* Ok Hyung Nam,2,* Mi-joo Kim,3 Ahmed El-Fiqi,4,5 Hyung-Mun Yun,3 Yoo-Mi Lee,3 Guang-Zhen Jin,4,5 Hae-Hyoung Lee,5,6 Hae-Won Kim,4–6 Eun-Cheol Kim3 1Department of Periodontology, 2Department of Pediatric Dentistry, 3Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC, School of Dentistry, Kyung Hee University, Seoul, 4Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, 5Institute of Tissue Regeneration Engineering, 6Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea *These authors contributed equally to this work as first authors Abstract: Therapeutically relevant design of scaffolds is of special importance in the repair and regeneration of tissues including dentin and pulp. Here we exploit nanofiber matrices that incorporate bioactive glass nanoparticles (BGNs and deliver the odontogenic drug dexamethasone (DEX to stimulate the odontogenic differentiation of human dental pulp cells (HDPCs. DEX molecules were first loaded onto the BGN, and then the DEX-BGN complex was incorporated within the biopolymer nanofiber matrix through electrospinning. The release of DEX continued over a month, showing a slow releasing profile. HDPCs cultured on the DEX-releasing BGN matrices were viable, proliferating well up to 14 days. The odontogenic differentiation, as assessed by alkaline phosphatase activity, mRNA expression of genes, and mineralization, was significantly stimulated on the matrices incorporating BGN and further on those releasing DEX. The DEX-releasing BGN matrices highly upregulated the expression of the integrin subsets α1, α5, and β3 as well as integrin downstream signaling molecules, including focal adhesion kinase (FAK, Paxillin, and RhoA, and activated bone morphogenetic protein mRNA and phosphorylation of Smad1/5/8. Furthermore, the DEX-releasing BGN

  10. ATP–stimulated DNA–mediated Redox Signaling by XPD, a DNA Repair and Transcription Helicase

    OpenAIRE

    Mui, Timothy P.; Fuss, Jill O.; Ishida, Justin P.; Tainer, John A.; Barton, Jacqueline K.

    2011-01-01

    Using DNA-modified electrodes, we show DNA-mediated signaling by XPD, a helicase that contains a [4Fe-4S] cluster and is critical for nucleotide excision repair and transcription. The DNA-mediated redox signal resembles that of base excision repair proteins, with a DNA-bound redox potential of ~80 mV versus NHE. Significantly, this signal increases with ATP hydrolysis. Moreover, the redox signal is substrate-dependent, reports on the DNA conformational changes associated with enzymatic functi...

  11. Calcium-Mediated Abiotic Stress Signaling in Roots.

    Science.gov (United States)

    Wilkins, Katie A; Matthus, Elsa; Swarbreck, Stéphanie M; Davies, Julia M

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  12. Inhibitory Smads and bone morphogenetic protein (BMP) modulate anterior photoreceptor cell number during planarian eye regeneration.

    Science.gov (United States)

    González-Sastre, Alejandro; Molina, Ma Dolores; Saló, Emili

    2012-01-01

    Planarians represent an excellent model to study the processes of body axis and organ re-specification during regeneration. Previous studies have revealed a conserved role for the bone morphogenetic protein (BMP) pathway and its intracellular mediators Smad1/5/8 and Smad4 in planarian dorsoventral (DV) axis re-establishment. In an attempt to gain further insight into the role of this signalling pathway in planarians, we have isolated and functionally characte-rized the inhibitory Smads (I-Smads) in Schmidtea mediterranea. Two I-Smad homologues have been identified: Smed-smad6/7-1 and Smed-smad6/7-2. Expression of smad6/7-1 was detected in the parenchyma, while smad6/7-2 was found to be ex-pressed in the central nervous system and the eyes. Neither single smad6/7-1 and smad6/7-2 nor double smad6/7-1,-2 silencing gave rise to any apparent disruption of the DV axis. However, both regenerating and intact smad6/7-2 (RNAi) planarians showed defects in eye morphogenesis and displayed small, rounded eyes that lacked the anterior subpopulation of photoreceptor cells. The number of pigment cells was also reduced in these animals at later stages of regeneration. In contrast, after low doses of Smed-bmp(RNAi), planarians regenerated larger eyes in which the anterior subpopulation of photoreceptor cells was expanded. Our results suggest that Smed-smad6/7-2 and Smed-bmp control the re-specification and maintenance of anterior photoreceptor cell number in S. mediterranea. PMID:22451003

  13. Discovering mechanisms of signaling-mediated cysteine oxidation

    OpenAIRE

    Poole, Leslie B.; Kimberly J Nelson

    2008-01-01

    Accumulating evidence reveals hydrogen peroxide as a key player both as a damaging agent and, from emerging evidence over the last decade, as a second messenger in intracellular signaling. This rather mild oxidant acts upon downstream targets within signaling cascades to modulate the activity of a host of enzymes (e.g. phosphatases and kinases) and transcriptional regulators through chemoselective oxidation of cysteine residues. With the recent development of specific detection reagents for h...

  14. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jung-Bo Huh

    2015-07-01

    Full Text Available Anorganic bovine bone matrix (Bio-Oss® has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2 has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter were formed in a white rabbit model and then implanted or not (controls with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6 had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6 at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration.

  15. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration.

    Science.gov (United States)

    Huh, Jung-Bo; Yang, June-Jip; Choi, Kyung-Hee; Bae, Ji Hyeon; Lee, Jeong-Yeol; Kim, Sung-Eun; Shin, Sang-Wan

    2015-01-01

    Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were formed in a white rabbit model and then implanted or not (controls) with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas) than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6)) had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6)) at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration. PMID:26184187

  16. DMPD: Modulation of Toll-interleukin 1 receptor mediated signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15662540 Modulation of Toll-interleukin 1 receptor mediated signaling. Li X, Qin J....iated signaling. PubmedID 15662540 Title Modulation of Toll-interleukin 1 receptor media... J Mol Med. 2005 Apr;83(4):258-66. Epub 2005 Jan 21. (.png) (.svg) (.html) (.csml) Show Modulation of Toll-interleukin 1 receptor med

  17. Chronic exposure to paclitaxel diminishes phosphoinositide signaling by calpain-mediated neuronal calcium sensor-1 degradation.

    Science.gov (United States)

    Boehmerle, Wolfgang; Zhang, Kun; Sivula, Michael; Heidrich, Felix M; Lee, Yashang; Jordt, Sven-Eric; Ehrlich, Barbara E

    2007-06-26

    Paclitaxel (Taxol) is a well established chemotherapeutic agent for the treatment of solid tumors, but it is limited in its usefulness by the frequent induction of peripheral neuropathy. We found that prolonged exposure of a neuroblastoma cell line and primary rat dorsal root ganglia with therapeutic concentrations of Taxol leads to a reduction in inositol trisphosphate (InsP(3))-mediated Ca(2+) signaling. We also observed a Taxol-specific reduction in neuronal calcium sensor 1 (NCS-1) protein levels, a known modulator of InsP(3) receptor (InsP(3)R) activity. This reduction was also found in peripheral neuronal tissue from Taxol treated animals. We further observed that short hairpin RNA-mediated NCS-1 knockdown had a similar effect on phosphoinositide-mediated Ca(2+) signaling. When NCS-1 protein levels recovered, so did InsP(3)-mediated Ca(2+) signaling. Inhibition of the Ca(2+)-activated protease mu-calpain prevented alterations in phosphoinositide-mediated Ca(2+) signaling and NCS-1 protein levels. We also found that NCS-1 is readily degraded by mu-calpain in vitro and that mu-calpain activity is increased in Taxol but not vehicle-treated cells. From these results, we conclude that prolonged exposure to Taxol activates mu-calpain, which leads to the degradation of NCS-1, which, in turn, attenuates InsP(3)mediated Ca(2+) signaling. These findings provide a previously undescribed approach to understanding and treating Taxol-induced peripheral neuropathy. PMID:17581879

  18. Discovering mechanisms of signaling-mediated cysteine oxidation.

    Science.gov (United States)

    Poole, Leslie B; Nelson, Kimberly J

    2008-02-01

    Accumulating evidence reveals hydrogen peroxide as a key player both as a damaging agent and, from emerging evidence over the past decade, as a second messenger in intracellular signaling. This rather mild oxidant acts upon downstream targets within signaling cascades to modulate the activity of a host of enzymes (e.g. phosphatases and kinases) and transcriptional regulators through chemoselective oxidation of cysteine residues. With the recent development of specific detection reagents for hydrogen peroxide and new chemical tools to detect the generation of the initial oxidation product, sulfenic acid, on reactive cysteines within target proteins, the scene is set to gain a better understanding of the mechanisms through which hydrogen peroxide acts as a second messenger in cell signaling.

  19. Notch signalling mediates reproductive constraint in the adult worker honeybee

    Science.gov (United States)

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  20. PHLPP phosphatase:a key mediator integrating multiple signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Hui ZHONG

    2010-01-01

    @@ Cellular responses to bacterial or viral infections and to stress require rapid and accurate transmission of signals from cell-surface receptors to the nucleus (Karin and Hunter, 1995).These signaling pathways, relying on extensive protein phosphorylation events, lead to the activation of specific transcription factors that induce the expression of appropriate target genes.Among the activated transcription factors, nuclear factor KB (NF-KB)is essential for inflammation, immunity, cell proliferation and apoptosis.NF-KB requires a signaling pathway for activation.Such NF-KB-activating pathways can be triggered by a variety of extracellular stimuli, which lead to the phosphorylation and subsequent proteasomemediated degradation of inhibitory molecules, the inhibitor of NF-KB (hcB) proteins (Karin and Ben-Neriah, 2000).Activated NF-KB migrates into the nucleus to regulate the expression of multiple target genes.

  1. Calcium signaling as a mediator of cell energy demand and a trigger to cell death.

    Science.gov (United States)

    Bhosale, Gauri; Sharpe, Jenny A; Sundier, Stephanie Y; Duchen, Michael R

    2015-09-01

    Calcium signaling is pivotal to a host of physiological pathways. A rise in calcium concentration almost invariably signals an increased cellular energy demand. Consistent with this, calcium signals mediate a number of pathways that together serve to balance energy supply and demand. In pathological states, calcium signals can precipitate mitochondrial injury and cell death, especially when coupled to energy depletion and oxidative or nitrosative stress. This review explores the mechanisms that couple cell signaling pathways to metabolic regulation or to cell death. The significance of these pathways is exemplified by pathological case studies, such as those showing loss of mitochondrial calcium uptake 1 in patients and ischemia/reperfusion injury.

  2. AIP1-mediated stress signaling in atherosclerosis and arteriosclerosis.

    Science.gov (United States)

    Zhang, Jiqin; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang

    2015-05-01

    AIP1 (ASK1-interacting protein-1; encoded by the DAB2IP gene), a signaling scaffolding protein, is abundantly expressed in vascular endothelial cells (EC). While it was initially discovered as an apoptosis signal-regulating kinase 1 (ASK1)-interacting protein, AIP1 broadly suppresses inflammatory responses triggered by cytokines and stresses such as TNF, LPS, VEGF, and endoplasmic reticulum (ER) stress in EC (therefore, AIP1 is an anti-inflammatory protein). Human genome-wide association study (GWAS) has identified DAB2IP gene variants conferring susceptibility to cardiovascular diseases. Consistently, a global or vascular EC-specific deletion of DAB2IP in mice strongly enhances inflammatory responses and exacerbates atherosclerosis and graft arteriosclerosis progression in mouse models. Mechanisms for AIP1 function and regulation associated with human cardiovascular diseases need further investigations.

  3. BMP12 induces tenogenic differentiation of adipose-derived stromal cells.

    Directory of Open Access Journals (Sweden)

    Hua Shen

    Full Text Available Adipose-derived stromal cells (ASCs are pluripotent cells that have the capacity to differentiate into tendon fibroblasts (TFs. They are abundant in adults, easy to access, and are therefore an ideal cell source for tendon tissue engineering. Despite this potential, the molecular cues necessary for tenogenic differentiation of ASCs are unknown. Unlike other bone morphogenetic proteins (BMPs, BMP12, BMP13, and BMP14 have been reported to be less osteo-chondrogenic and to induce tendon rather than bone formation in vivo. This study investigated the effects of BMP12 and BMP14 on ASC differentiation in vitro. In canine ASCs, BMP12 effectively increased the expression of the tendon markers scleraxis and tenomodulin at both mRNA and protein levels. Consistent with these results, BMP12 induced scleraxis promoter driven-GFP and tenomodulin protein expression in mouse ASCs. Although BMP12 also enhanced the expression of the cartilage matrix gene aggrecan in ASCs, the resulting levels remained considerably lower than those detected in tendon fibroblasts. In addition, BMP12 reduced expression of the bone marker osteocalcin, but not the osteogenic transcription factor runx-2. BMP14 exhibited similar, but marginally less potent and selective effects, compared to BMP12. BMPs are known to signal through the canonical Smad pathway and the non-canonical mitogen-activated protein kinase (MAPK pathway. BMP12 triggered robust phosphorylation of Smad1/5/8 but not Smad2/3 or p38 MAPK in ASCs. The effect was likely conveyed by type I receptors ALK2/3/6, as phosphorylation of Smad1/5/8 was blocked by the ALK2/3/6 inhibitor LDN-193189 but not by the ALK4/5/7 inhibitor SB-505124. Moreover, ALK6 was found to be the most abundant type I receptor in ASCs, with mRNA expression 100 to 10,000 times that of any other type I receptor. Collectively, results support the conclusion that BMP12 induces tenogenic differentiation of ASCs via the Smad1/5/8 pathway.

  4. New insights into Reelin-mediated signaling pathways

    Directory of Open Access Journals (Sweden)

    Gum Hwa eLee

    2016-05-01

    Full Text Available Reelin, a multifunctional extracellular protein that is important for mammalian brain development and function, is secreted by different cell types in the prenatal or postnatal brain. The spatiotemporal regulation of Reelin expression and distribution during development relates to its multifaceted function in the brain. Prenatally Reelin controls neuronal radial migration and proper positioning in cortical layers, whereas postnatally Reelin promotes neuronal maturation, synaptic formation and plasticity. The molecular mechanisms underlying the distinct biological functions of Reelin during and after brain development involve unique and overlapping signaling pathways that are activated following Reelin binding to its cell surface receptors. Distinct Reelin ligand isoforms, such as the full-length protein or fragments generated by proteolytic cleavage differentially affect the activity of downstream signaling pathways. In this review, we discuss recent advances in our understanding of the signaling transduction pathways activated by Reelin that regulate different aspects of brain development and function. A core signaling machinery, including ApoER2/VLDLR receptors, Src/Fyn kinases, and the adaptor protein Dab1, participates in all known aspects of Reelin biology. However, distinct downstream mechanisms, such as the Crk/Rap1 pathway and cell adhesion molecules, play crucial roles in the control of neuronal migration, whereas the PI3K/Akt/mTOR pathway appears to be more important for dendrite and spine development. Finally, the NMDAR and an unidentified receptor contribute to the activation of the MEK/Erk1/2 pathway leading to the upregulation of genes involved in synaptic plasticity and learning. This knowledge may provide new insight into neurodevelopmental or neurodegenerative disorders that are associated with Reelin dysfunction.

  5. β1 Integrins Mediate Mechanosensitive Signaling Pathways in Osteocytes

    OpenAIRE

    Litzenberger, Julie B.; Tummala, Padmaja; Kim, Jae-Beom; Jacobs, Christopher R.

    2010-01-01

    Integrins are cell-substrate adhesion proteins that initiate intracellular signaling and may serve as mechanosensors in bone. MLO-Y4 cells were stably transfected with a dominant negative form of the β1 integrin subunit (β1DN) containing the transmembrane domain and cytoplasmic tail of β1 integrin. Cells expressing β1DN had reduced vinculin localization to focal contacts but no change in intracellular actin organization. When exposed to oscillatory fluid flow, β1DN cells exhibited a significa...

  6. Physiological stress mediates the honesty of social signals.

    Directory of Open Access Journals (Sweden)

    Gary R Bortolotti

    Full Text Available BACKGROUND: Extravagant ornaments used as social signals evolved to advertise their bearers' quality. The Immunocompetence Handicap Hypothesis proposes that testosterone-dependent ornaments reliably signal health and parasite resistance; however, empirical studies have shown mixed support. Alternatively, immune function and parasite resistance may be indirectly or directly related to glucocorticoid stress hormones. We propose that an understanding of the interplay between the individual and its environment, particularly how they cope with stressors, is crucial for understanding the honesty of social signals. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed corticosterone deposited in growing feathers as an integrated measure of hypothalamic-pituitary-adrenal activity in a wild territorial bird, the red grouse Lagopus lagopus scoticus. We manipulated two key, interrelated components, parasites and testosterone, which influence both ornamentation and fitness. Birds were initially purged of parasites, and later challenged with parasites or not, while at the same time being given testosterone or control implants, using a factorial experimental design. At the treatment level, testosterone enhanced ornamentation, while parasites reduced it, but only in males not implanted with testosterone. Among individuals, the degree to which both parasites and testosterone had an effect was strongly dependent on the amount of corticosterone in the feather grown during the experiment. The more stressors birds had experienced (i.e., higher corticosterone, the more parasites developed, and the less testosterone enhanced ornamentation. CONCLUSIONS/SIGNIFICANCE: With this unique focus on the individual, and a novel, integrative, measure of response to stressors, we show that ornamentation is ultimately a product of the cumulative physiological response to environmental challenges. These findings lead toward a more realistic concept of honesty in signaling as well as a

  7. Structural basis for angiopoietin-1–mediated signaling initiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xuehong [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Seegar, Tom C. M. [Virginia Commonwealth Univ., Richmond, VA (United States); Dalton, Annamarie C. [Virginia Commonwealth Univ., Richmond, VA (United States); Tzvetkova-Robev, Dorothea [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Goldgur, Yehuda [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Rajashankar, Kanagalaghatta R. [Argonne National Lab. (ANL), Argonne, IL (United States); Nikolov, Dimitar B. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Barton, William A. [Virginia Commonwealth Univ., Richmond, VA (United States)

    2013-04-30

    Angiogenesis is a complex cellular process involving multiple regulatory growth factors and growth factor receptors. Among them, the ligands for the endothelial-specific tunica intima endothelial receptor tyrosine kinase 2 (Tie2) receptor kinase, angiopoietin-1 (Ang1) and Ang2, play essential roles in balancing vessel stability and regression during both developmental and tumor-induced angiogenesis. Despite possessing a high degree of sequence identity, Ang1 and Ang2 have distinct functional roles and cell-signaling characteristics. Here, we present the crystal structures of Ang1 both unbound and in complex with the Tie2 ectodomain. Comparison of the Ang1-containing structures with their Ang2-containing counterparts provide insight into the mechanism of receptor activation and reveal molecular surfaces important for interactions with Tie2 coreceptors and associated signaling proteins. Using structure-based mutagenesis, we identify a loop within the angiopoietin P domain, adjacent to the receptor-binding interface, which confers the specific agonist/antagonist properties of the molecule. We demonstrate using cell-based assays that an Ang2 chimera containing the Ang1 loop sequence behaves functionally similarly to Ang1 as a constitutive Tie2 agonist, able to efficiently dissociate the inhibitory Tie1/Tie2 complex and elicit Tie2 clustering and downstream signaling.

  8. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  9. BILF1 Mediated Transformation Correlates with Constitutive Signaling

    DEFF Research Database (Denmark)

    Lyngaa, Rikke Birgitte

    2009-01-01

    BIFL1 is a G protein-coupled receptor encoded by human EBV. It signals constitutively through G_alpha_i and is an orphan receptor known to down regulate MHCI expression. BILF1 also engage in dimerization with several chemokine receptors and it induced the activity of NF-kappa beta and inhibits th...... as BILF1. In this thesis BILF1 is revealed as a potential oncogene, inducing transformation of NIH 3T3 cells and tumors in vivo, and this ability is clearly correlated to the constitutive activity through G_alpha_I....

  10. Cigarette smoke regulates VEGFR2-mediated survival signaling in rat lungs

    Directory of Open Access Journals (Sweden)

    Stevenson Christopher S

    2010-02-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF and VEGF receptor 2 (VEGFR2-mediated survival signaling is critical to endothelial cell survival, maintenance of the vasculature and alveolar structure and regeneration of lung tissue. Reduced VEGF and VEGFR2 expression in emphysematous lungs has been linked to increased endothelial cell death and vascular regression. Previously, we have shown that CS down-regulated the VEGFR2 and its downstream signaling in mouse lungs. However, the VEGFR2-mediated survival signaling in response to oxidants/cigarette smoke (CS is not known. We hypothesized that CS exposure leads to disruption of VEGFR2-mediated endothelial survival signaling in rat lungs. Methods Adult male Sprague-Dawley rats were exposed CS for 3 days, 8 weeks and 6 months to investigate the effect of CS on VEGFR2-mediated survival signaling by measuring the Akt/PI3-kinase/eNOS downstream signaling in rat lungs. Results and Discussion We show that CS disrupts VEGFR2/PI3-kinase association leading to decreased Akt and eNOS phosphorylation. This may further alter the phosphorylation of the pro-apoptotic protein Bad and increase the Bad/Bcl-xl association. However, this was not associated with a significant lung cell death as evidenced by active caspase-3 levels. These data suggest that although CS altered the VEGFR2-mediated survival signaling in the rat lungs, but it was not sufficient to cause lung cell death. Conclusion The rat lungs exposed to CS in acute, sub-chronic and chronic levels may be representative of smokers where survival signaling is altered but was not associated with lung cell death whereas emphysema is known to be associated with lung cell apoptosis.

  11. The polycystin complex mediates Wnt/Ca(2+) signalling.

    Science.gov (United States)

    Kim, Seokho; Nie, Hongguang; Nesin, Vasyl; Tran, Uyen; Outeda, Patricia; Bai, Chang-Xi; Keeling, Jacob; Maskey, Dipak; Watnick, Terry; Wessely, Oliver; Tsiokas, Leonidas

    2016-07-01

    WNT ligands induce Ca(2+) signalling on target cells. PKD1 (polycystin 1) is considered an orphan, atypical G-protein-coupled receptor complexed with TRPP2 (polycystin 2 or PKD2), a Ca(2+)-permeable ion channel. Inactivating mutations in their genes cause autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases. Here, we show that WNTs bind to the extracellular domain of PKD1 and induce whole-cell currents and Ca(2+) influx dependent on TRPP2. Pathogenic PKD1 or PKD2 mutations that abrogate complex formation, compromise cell surface expression of PKD1, or reduce TRPP2 channel activity suppress activation by WNTs. Pkd2(-/-) fibroblasts lack WNT-induced Ca(2+) currents and are unable to polarize during directed cell migration. In Xenopus embryos, pkd1, Dishevelled 2 (dvl2) and wnt9a act within the same pathway to preserve normal tubulogenesis. These data define PKD1 as a WNT (co)receptor and implicate defective WNT/Ca(2+) signalling as one of the causes of ADPKD. PMID:27214281

  12. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA.

    Science.gov (United States)

    Kobielak, Krzysztof; Pasolli, H Amalia; Alonso, Laura; Polak, Lisa; Fuchs, Elaine

    2003-11-10

    Using conditional gene targeting in mice, we show that BMP receptor IA is essential for the differentiation of progenitor cells of the inner root sheath and hair shaft. Without BMPRIA activation, GATA-3 is down-regulated and its regulated control of IRS differentiation is compromised. In contrast, Lef1 is up-regulated, but its regulated control of hair differentiation is still blocked, and BMPRIA-null follicles fail to activate Lef1/beta-catenin-regulated genes, including keratin genes. Wnt-mediated transcriptional activation can be restored by transfecting BMPRIA-null keratinocytes with a constitutively activated beta-catenin. This places the block downstream from Lef1 expression but upstream from beta-catenin stabilization. Because mice lacking the BMP inhibitor Noggin fail to express Lef1, our findings support a model, whereby a sequential inhibition and then activation of BMPRIA is necessary to define a band of hair progenitor cells, which possess enough Lef1 and stabilized beta-catenin to activate the hair specific keratin genes and generate the hair shaft.

  13. Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction

    DEFF Research Database (Denmark)

    Kringelbach, Tina M.; Aslan, Derya; Novak, Ivana;

    2015-01-01

    effects on bone remodeling. Therefore, we hypothesized that ATP signaling is also applied by osteocytes in mechanotransduction. We applied a short fluid pulse on MLO-Y4 osteocyte-like cells during real-time detection of ATP and demonstrated that mechanical stimulation activates the acute release of ATP...... concentrations of nucleotides by increasing intracellular calcium concentration. These results indicate that in osteocytes, vesicular ATP release is an acute mediator of mechanical signals and the magnitude of loading. These and previous results, therefore, implicate purinergic signaling as an early signaling...

  14. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression.

    Science.gov (United States)

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-05-26

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA-RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits.

  15. Fibrin Hydrogel Based Bone Substitute Tethered with BMP-2 and BMP-2/7 Heterodimers

    Directory of Open Access Journals (Sweden)

    Lindsay S. Karfeld-Sulzer

    2015-03-01

    Full Text Available Current clinically used delivery methods for bone morphogenetic proteins (BMPs are collagen based and require large concentrations that can lead to dangerous side effects. Fibrin hydrogels can serve as osteoinductive bone substitute materials in non-load bearing bone defects in combination with BMPs. Two strategies to even further optimize such a fibrin based system include employing more potent BMP heterodimers and engineering growth factors that can be covalently tethered to and slowly released from a fibrin matrix. Here we present an engineered BMP-2/BMP-7 heterodimer where an N-terminal transglutaminase substrate domain in the BMP-2 portion provides covalent attachment to fibrin together with a central plasmin substrate domain, a cleavage site for local release of the attached BMP-2/BMP-7 heterodimer under the influence of cell-activated plasmin. In vitro and in vivo results revealed that the engineered BMP-2/BMP-7 heterodimer induces significantly more alkaline phosphatase activity in pluripotent cells and bone formation in a rat calvarial model than the engineered BMP-2 homodimer. Therefore, the engineered BMP-2/BMP-7 heterodimer could be used to reduce the amount of BMP needed for clinical effect.

  16. BMP7 Activates Brown Adipose Tissue and Reduces Diet-Induced Obesity Only at Subthermoneutrality

    Science.gov (United States)

    Boon, Mariëtte R.; van den Berg, Sjoerd A. A.; Wang, Yanan; van den Bossche, Jan; Karkampouna, Sofia; Bauwens, Matthias; De Saint-Hubert, Marijke; van der Horst, Geertje; Vukicevic, Slobodan; de Winther, Menno P. J.; Havekes, Louis M.; Jukema, J. Wouter; Tamsma, Jouke T.; van der Pluijm, Gabri; van Dijk, Ko Willems; Rensen, Patrick C. N.

    2013-01-01

    Background/Aims Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP-1 and is a promising target to combat hyperlipidemia and obesity. BAT is densely innervated by the sympathetic nervous system, which increases BAT differentiation and activity upon cold exposure. Recently, Bone Morphogenetic Protein 7 (BMP7) was identified as an inducer of BAT differentiation. We aimed to elucidate the role of sympathetic activation in the effect of BMP7 on BAT by treating mice with BMP7 at varying ambient temperature, and assessed the therapeutic potential of BMP7 in combating obesity. Methods and Results High-fat diet fed lean C57Bl6/J mice were treated with BMP7 via subcutaneous osmotic minipumps for 4 weeks at 21°C or 28°C, the latter being a thermoneutral temperature in which sympathetic activation of BAT is largely diminished. At 21°C, BMP7 increased BAT weight, increased the expression of Ucp1, Cd36 and hormone-sensitive lipase in BAT, and increased total energy expenditure. BMP7 treatment markedly increased food intake without affecting physical activity. Despite that, BMP7 diminished white adipose tissue (WAT) mass, accompanied by increased expression of genes related to intracellular lipolysis in WAT. All these effects were blunted at 28°C. Additionally, BMP7 resulted in extensive ‘browning’ of WAT, as evidenced by increased expression of BAT markers and the appearance of whole clusters of brown adipocytes via immunohistochemistry, independent of environmental temperature. Treatment of diet-induced obese C57Bl6/J mice with BMP7 led to an improved metabolic phenotype, consisting of a decreased fat mass and liver lipids as well as attenuated dyslipidemia and hyperglycemia. Conclusion Together, these data show that BMP7-mediated recruitment and activation of BAT only occurs at subthermoneutral temperature, and is thus likely dependent on sympathetic activation of BAT, and that BMP7 may be a promising tool to

  17. Signals mediating Klotho-induced neuroprotection in hippocampal neuronal cells.

    Science.gov (United States)

    Cheng, Meng-Fu; Chen, Li-Jen; Niu, Ho-Shan; Yang, Ting-Ting; Lin, Kao-Chang; Cheng, Juei-Tang

    2015-01-01

    The erythropoietin (Epo) receptor (EpoR) is expressed in the brain and was shown to have neuroprotective effects against brain damage in animal models. A recent study indicated that EpoR and its activity are the downstream effectors of Klotho for cytoprotection in the kidney. Thus, we propose that Klotho can stimulate the expression of EpoR in neuronal cells to enhance Epo-mediated protection. H19-7 hippocampal neuronal cells were treated with recombinant Klotho. In H19-7 cells, Klotho increased the expression of both the EpoR protein and mRNA. Klotho also enhanced the transcription activity of the EpoR promoter in H19-7 cells. Moreover, Klotho augmented the Epo-triggered phosphorylation of Jak2 and Stat5 and protected H19-7 cells from hydrogen peroxide cytotoxicity. The silencing of EpoR abolished the protective effect of Klotho against peroxide-induced cytotoxicity. Finally, the silencing of GATA1 diminished the Klotho-induced increase in EpoR protein and mRNA expression as well as its promoter activity. In conclusion, Klotho increased EpoR expression in neuronal cells through GATA1, thereby enabling EpoR to function as a cytoprotective protein against oxidative injury. PMID:25856523

  18. Staphylococcal Superantigens Spark Host-Mediated Danger Signals

    Directory of Open Access Journals (Sweden)

    Terry eKrakauer

    2016-02-01

    Full Text Available Staphylococcal enterotoxin B (SEB of Staphylococcus aureus, and related superantigenic toxins produced by myriad microbes, are potent stimulators of the immune system causing a variety of human diseases from transient food poisoning to lethal toxic shock. These protein toxins bind directly to specific V regions of T-cell receptors (TCR and major histocompatibility complex (MHC class II on antigen-presenting cells, resulting in hyperactivation of T lymphocytes and monocytes / macrophages. Activated host cells produce excessive amounts of proinflammatory cytokines and chemokines, especially tumor necrosis factor α, interleukin 1 (IL-1, IL-2, interferon γ (IFNγ, and macrophage chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. Because of superantigen-induced T cells skewed towards TH1 helper cells, and the induction of proinflammatory cytokines, superantigens can exacerbate autoimmune diseases. Upon TCR / MHC ligation, pathways induced by superantigens include the mitogen-activated protein kinase cascades and cytokine receptor signaling, resulting in activation of NFκB and the phosphoinositide 3-kinase / mammalian target of rapamycin pathways. Various mouse models exist to study SEB-induced shock including those with potentiating agents, transgenic mice and an SEB-only model. However, therapeutics to treat toxic shock remain elusive as host response genes central to pathogenesis of superantigens have only been identified recently. Gene profiling of a murine model for SEB-induced shock reveals novel molecules upregulated in multiple organs not previously associated with SEB-induced responses. The pivotal genes include intracellular DNA / RNA sensors, apoptosis / DNA damage-related molecules, immunoproteasome components, as well as anti-viral and IFN-stimulated genes. The host-wide induction of these, and other, anti-microbial defense genes provide evidence that SEB elicits danger signals resulting in multi

  19. Supramolecular Nanofibers Enhance Growth Factor Signaling by Increasing Lipid Raft Mobility.

    Science.gov (United States)

    Newcomb, Christina J; Sur, Shantanu; Lee, Sungsoo S; Yu, Jeong Min; Zhou, Yan; Snead, Malcolm L; Stupp, Samuel I

    2016-05-11

    The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.

  20. Supramolecular Nanofibers Enhance Growth Factor Signaling by Increasing Lipid Raft Mobility.

    Science.gov (United States)

    Newcomb, Christina J; Sur, Shantanu; Lee, Sungsoo S; Yu, Jeong Min; Zhou, Yan; Snead, Malcolm L; Stupp, Samuel I

    2016-05-11

    The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets. PMID:27070195

  1. Establishment of Immortalized Mouse Bmp2 Knock-Out Dental Papilla Mesenchymal Cells Necessary for Study of Odontoblastic Differentiation and Odontogenesis.

    Science.gov (United States)

    Wu, Lian; Wang, Feng; Donly, Kevin J; Wan, Chunyan; Luo, Daoshu; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-11-01

    Bmp2 is essential for dentin formation. Bmp2 cKO mice exhibited similar phenotype to dentinogenesis imperfecta, showing dental pulp exposure, hypomineralized dentin, and delayed odontoblast differentiation. As it is relatively difficult to obtain lot of primary Bmp2 cKO dental papilla mesenchymal cells and to maintain a long-term culture of these primary cells, availability of immortalized deleted Bmp2 dental papilla mesenchymal cells is critical for studying the underlying mechanism of Bmp2 signal in odontogenesis. In this study, our goal was to generate an immortalized deleted Bmp2 dental papilla mesenchymal (iBmp2(ko/ko)dp) cell line by introducing Cre recombinase and green fluorescent protein (GFP) into the immortalized mouse floxed Bmp2 dental papilla mesenchymal (iBmp2(fx/fx)dp) cells. iBmp2(ko/ko)dp cells were confirmed by GFP and PCR. The deleted Bmp2 cells exhibited slow cell proliferation rate and cell growth was arrested in G2 phase. Expression of tooth-related marker genes and cell differentiation were decreased in the deleted cells. Importantly, extracellular matrix remodeling was impaired in the iBmp2(ko/ko)dp cells as reflected by the decreased Mmp-9 expression. In addition, with exogenous Bmp2 induction, these cell differentiation and mineralization were rescued as well as extracellular matrix remodeling was enhanced. Therefore, we for the first time described establishment of iBmp(ko/ko) cells that are useful for study of mechanisms in regulating dental papilla mesenchymal cell lineages. PMID:26037045

  2. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling.

    Science.gov (United States)

    Zhong, Jun; Sharma, Jyoti; Raju, Rajesh; Palapetta, Shyam Mohan; Prasad, T S Keshava; Huang, Tai-Chung; Yoda, Akinori; Tyner, Jeffrey W; van Bodegom, Diederik; Weinstock, David M; Ziegler, Steven F; Pandey, Akhilesh

    2014-01-01

    Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24. PMID:24573880

  3. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis.

    Science.gov (United States)

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  4. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Nivedita Roy

    Full Text Available Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA and Sarco/endoplasmic reticulum calcium ATPase (SERCA which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis.

  5. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma

    OpenAIRE

    Mu, Xiaodong; Agarwal, Rashmi; March, Daniel; Rothenberg, Adam; Voigt, Clifford; Tebbets, Jessica; Huard, Johnny; Weiss, Kurt

    2016-01-01

    Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notc...

  6. Repressive BMP2 gene regulatory elements near the BMP2 promoter

    International Nuclear Information System (INIS)

    The level of bone morphogenetic protein 2 (BMP2) profoundly influences essential cell behaviors such as proliferation, differentiation, apoptosis, and migration. The spatial and temporal pattern of BMP2 synthesis, particular in diverse embryonic cells, is highly varied and dynamic. We have identified GC-rich sequences within the BMP2 promoter region that strongly repress gene expression. These elements block the activity of a highly conserved, osteoblast enhancer in response to FGF2 treatment. Both positive and negative gene regulatory elements control BMP2 synthesis. Detecting and mapping the repressive motifs is essential because they impede the identification of developmentally regulated enhancers necessary for normal BMP2 patterns and concentration.

  7. Repressive BMP2 gene regulatory elements near the BMP2 promoter

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shan [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Chandler, Ronald L. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Fritz, David T. [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Mortlock, Douglas P. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Rogers, Melissa B., E-mail: rogersmb@umdnj.edu [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States)

    2010-02-05

    The level of bone morphogenetic protein 2 (BMP2) profoundly influences essential cell behaviors such as proliferation, differentiation, apoptosis, and migration. The spatial and temporal pattern of BMP2 synthesis, particular in diverse embryonic cells, is highly varied and dynamic. We have identified GC-rich sequences within the BMP2 promoter region that strongly repress gene expression. These elements block the activity of a highly conserved, osteoblast enhancer in response to FGF2 treatment. Both positive and negative gene regulatory elements control BMP2 synthesis. Detecting and mapping the repressive motifs is essential because they impede the identification of developmentally regulated enhancers necessary for normal BMP2 patterns and concentration.

  8. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  9. Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs.

    Science.gov (United States)

    Scholz, Paul; Mohrhardt, Julia; Jansen, Fabian; Kalbe, Benjamin; Haering, Claudia; Klasen, Katharina; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner. PMID:27065801

  10. Identification of a novel Gnao-mediated alternate olfactory signaling pathway in murine OSNs

    Directory of Open Access Journals (Sweden)

    Paul eScholz

    2016-03-01

    Full Text Available It is generally agreed that in olfactory sensory neurons (OSNs, the binding of odorant molecules to their specific olfactory receptor (OR triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG and at least one other known weak Olfr73 agonist (Raspberry Ketone trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl- efflux; however, the activation of adenylyl cyclase III (ACIII, the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  11. Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs.

    Science.gov (United States)

    Scholz, Paul; Mohrhardt, Julia; Jansen, Fabian; Kalbe, Benjamin; Haering, Claudia; Klasen, Katharina; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  12. The Bucket System – A computer mediated signaling system for group improvisation

    DEFF Research Database (Denmark)

    Dahlstedt, Palle; Nilsson, Per Anders; Robair, Gino

    2015-01-01

    The Bucket System is a new system for computer-mediated ensemble improvisation, designed by improvisers for improvisers. Coming from a tradition of structured free ensemble improvisation practices (comprovisation), influenced by post-WW2 experimental music practices, it is a signaling system...

  13. Platelet-derived growth factor (PDGF)-induced activation of Erk5 MAP-kinase is dependent on Mekk2, Mek1/2, PKC and PI3-kinase, and affects BMP signaling.

    Science.gov (United States)

    Tsioumpekou, Maria; Papadopoulos, Natalia; Burovic, Fatima; Heldin, Carl-Henrik; Lennartsson, Johan

    2016-09-01

    Platelet-derived growth factor-BB (PDGF-BB) binds to its tyrosine kinase receptors (PDGFRs) and stimulates mitogenicity and survival of cells of mesenchymal origin. Activation of PDGFRs initiates a number of downstream signaling pathways, including phosphatidyl 3'-inositol kinase (PI3-kinase), phospholipase Cγ and MAP kinase pathways. In this report, we show that Erk5 MAP kinase is activated in response to PDGF-BB in the smooth muscle cell line MOVAS in a manner dependent on Mekk2, Mek1/2, Mek5, PI3-kinase and protein kinase C (PKC). The co-operation of Mek1/2 and Mekk2 in the activation of Erk5, suggests a close co-regulation between the Erk1/2 and Erk5 MAP kinase pathways. Furthermore, we found that classical PKCs are important for Erk5 activation. In addition, we found that PKCζ interacts with Erk5 and may exert a negative feed-back effect. We observed no nuclear accumulation of Erk5 in response to PDGF-BB stimulation, however, we identified a mechanism by which cytoplasmic Erk5 influences gene expression; Erk5 was essential for PDGF-BB-mediated Smad1/5/8 signaling by stimulating release and/or activation of bone morphogenetic protein(s) (BMPs). Thus, PDGF-BB-induced Erk5 activation involves parallel stimulatory and inhibitory pathways and promotes Smad1/5/8 signaling. PMID:27339033

  14. Peroxide-Dependent MGL Sulfenylation Regulates 2-AG-Mediated Endocannabinoid Signaling in Brain Neurons.

    Science.gov (United States)

    Dotsey, Emmanuel Y; Jung, Kwang-Mook; Basit, Abdul; Wei, Don; Daglian, Jennifer; Vacondio, Federica; Armirotti, Andrea; Mor, Marco; Piomelli, Daniele

    2015-05-21

    The second messenger hydrogen peroxide transduces changes in the cellular redox state by reversibly oxidizing protein cysteine residues to sulfenic acid. This signaling event regulates many cellular processes but has never been shown to occur in the brain. Here, we report that hydrogen peroxide heightens endocannabinoid signaling in brain neurons through sulfenylation of cysteines C201 and C208 in monoacylglycerol lipase (MGL), a serine hydrolase that deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) in nerve terminals. The results suggest that MGL sulfenylation may provide a presynaptic control point for 2-AG-mediated endocannabinoid signaling.

  15. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma.

    Science.gov (United States)

    Mu, Xiaodong; Agarwal, Rashmi; March, Daniel; Rothenberg, Adam; Voigt, Clifford; Tebbets, Jessica; Huard, Johnny; Weiss, Kurt

    2016-01-01

    Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notch signaling was evaluated. Skeletal muscle atrophy was observed in the sarcoma-bearing mice, and Notch signaling was highly active in both tumor tissues and the atrophic skeletal muscles. Systemic inhibition of Notch signaling reduced muscle atrophy. In vitro coculture of osteosarcoma cells with muscle-derived stem cells (MDSCs) isolated from normal mice resulted in decreased myogenic potential of MDSCs, while the application of Notch inhibitor was able to rescue this repressed myogenic potential. We further observed that Notch-activating factors reside in the exosomes of osteosarcoma cells, which activate Notch signaling in MDSCs and subsequently repress myogenesis. Our results revealed that signaling between tumor and muscle via the Notch pathway may play an important role in mediating the skeletal muscle atrophy seen in cancer cachexia. PMID:27378829

  16. Dopaminergic signaling mediates the motivational response underlying the opponent process to chronic but not acute nicotine.

    Science.gov (United States)

    Grieder, Taryn E; Sellings, Laurie H; Vargas-Perez, Hector; Ting-A-Kee, Ryan; Siu, Eric C; Tyndale, Rachel F; van der Kooy, Derek

    2010-03-01

    The mesolimbic dopamine (DA) system is implicated in the processing of the positive reinforcing effect of all drugs of abuse, including nicotine. It has been suggested that the dopaminergic system is also involved in the aversive motivational response to drug withdrawal, particularly for opiates, however, the role for dopaminergic signaling in the processing of the negative motivational properties of nicotine withdrawal is largely unknown. We hypothesized that signaling at dopaminergic receptors mediates chronic nicotine withdrawal aversions and that dopaminergic signaling would differentially mediate acute vs dependent nicotine motivation. We report that nicotine-dependent rats and mice showed conditioned place aversions to an environment paired with abstinence from chronic nicotine that were blocked by the DA receptor antagonist alpha-flupenthixol (alpha-flu) and in DA D(2) receptor knockout mice. Conversely, alpha-flu pretreatment had no effect on preferences for an environment paired with abstinence from acute nicotine. Taken together, these results suggest that dopaminergic signaling is necessary for the opponent motivational response to nicotine in dependent, but not non-dependent, rodents. Further, signaling at the DA D(2) receptor is critical in mediating withdrawal aversions in nicotine-dependent animals. We suggest that the alleviation of nicotine withdrawal primarily may be driving nicotine motivation in dependent animals. PMID:20032966

  17. Dopaminergic signaling mediates the motivational response underlying the opponent process to chronic but not acute nicotine.

    Science.gov (United States)

    Grieder, Taryn E; Sellings, Laurie H; Vargas-Perez, Hector; Ting-A-Kee, Ryan; Siu, Eric C; Tyndale, Rachel F; van der Kooy, Derek

    2010-03-01

    The mesolimbic dopamine (DA) system is implicated in the processing of the positive reinforcing effect of all drugs of abuse, including nicotine. It has been suggested that the dopaminergic system is also involved in the aversive motivational response to drug withdrawal, particularly for opiates, however, the role for dopaminergic signaling in the processing of the negative motivational properties of nicotine withdrawal is largely unknown. We hypothesized that signaling at dopaminergic receptors mediates chronic nicotine withdrawal aversions and that dopaminergic signaling would differentially mediate acute vs dependent nicotine motivation. We report that nicotine-dependent rats and mice showed conditioned place aversions to an environment paired with abstinence from chronic nicotine that were blocked by the DA receptor antagonist alpha-flupenthixol (alpha-flu) and in DA D(2) receptor knockout mice. Conversely, alpha-flu pretreatment had no effect on preferences for an environment paired with abstinence from acute nicotine. Taken together, these results suggest that dopaminergic signaling is necessary for the opponent motivational response to nicotine in dependent, but not non-dependent, rodents. Further, signaling at the DA D(2) receptor is critical in mediating withdrawal aversions in nicotine-dependent animals. We suggest that the alleviation of nicotine withdrawal primarily may be driving nicotine motivation in dependent animals.

  18. Establishment of Immortalized Mouse Bmp2 Knock-Out Dental Papilla Mesenchymal Cells Necessary for Study of Odontoblastic Differentiation and Odontogenesis

    Science.gov (United States)

    Wu, Lian; Wang, Feng; Donly, Kevin J.; Wan, Chunyan; Luo, Daoshu; Harris, Stephen E.; Macdougall, Mary; Chen, Shuo

    2016-01-01

    Bmp2 is essential for dentin formation. Bmp2 cKO mice exhibited similar phenotype to dentinogenesis imperfecta, showing dental pulp exposure, hypomineralized dentin, and delayed odontoblast differentiation. As it is relatively difficult to obtain lot of primary Bmp2 cKO dental papilla mesenchymal cells and to maintain a long-term culture of these primary cells, availability of immortalized deleted Bmp2 dental papilla mesenchymal cells is critical for studying the underlying mechanism of Bmp2 signal in odontogenesis. In this study, our goal was to generate an immortalized deleted Bmp2 dental papilla mesenchymal (iBmp2ko/ko dp) cell line by introducing Cre fluorescent protein (GFP) into the immortalized mouse floxed Bmp2 dental papilla mesenchymal (iBmp2fx/fx dp) cells. iBmp2ko/ko dp cells were confirmed by GFP and PCR. The deleted Bmp2 cells exhibited slow cell proliferation rate and cell growth was arrested in G2 phase. Expression of tooth-related marker genes and cell differentiation were decreased in the deleted cells. Importantly, extracellular matrix remodeling was impaired in the iBmp2ko/ko dp cells as reflected by the decreased Mmp-9 expression. In addition, with exogenous Bmp2 induction, these cell differentiation and mineralization were rescued as well as extracellular matrix remodeling was enhanced. Therefore, we for the first time described establishment of iBmpko/ko cells that are useful for study of mechanisms in regulating dental papilla mesenchymal cell lineages. PMID:26037045

  19. Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor.

    Science.gov (United States)

    Luo, Xiaoxia; Chen, Ling; Huang, Qiong; Zheng, Jinshui; Zhou, Wei; Peng, Donghai; Ruan, Lifang; Sun, Ming

    2013-01-01

    Some Bacillus thuringiensis strains have high toxicity to nematodes. Nematicidal activity has been found in several families of crystal proteins, such as Cry5, Cry6, and Cry55. The B. thuringiensis strain YBT-1518 has three cry genes that have high nematicidal activity. The whole genome sequence of this strain contains multiple potential virulence factors. To evaluate the pathogenic potential of virulence factors, we focused on a metalloproteinase called Bmp1. It encompasses a consecutive N-terminal signal peptide, an FTP superfamily domain, an M4 neutral protease GluZincin superfamily, two Big-3 superfamily motifs, and a Gram-positive anchor superfamily motif as a C-terminal domain. Here, we showed that purified Bmp1 protein showed metalloproteinase activity and toxicity against Caenorhabditis elegans (the 50% lethal concentration is 610 ± 9.37 μg/ml). In addition, mixing Cry5Ba with Bmp1 protein enhanced the toxicity 7.9-fold (the expected toxicity of the two proteins calculated from their separate toxicities) against C. elegans. Confocal microscopic observation revealed that Bmp1 protein was detected from around the mouth and esophagus to the intestine. Striking microscopic images revealed that Bmp1 degrades intestine tissues, and the Cry5Ba causes intestinal shrinkage from the body wall. Thus, the B. thuringiensis Bmp1 metalloproteinase is a nematicidal virulence factor. These findings give a new insight into the relationship between B. thuringiensis and its host nematodes.

  20. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    Science.gov (United States)

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  1. The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation.

    Science.gov (United States)

    Brasier, Allan R

    2010-05-01

    Vascular inflammation is a common pathophysiological response to diverse cardiovascular disease processes, including atherosclerosis, myocardial infarction, congestive heart failure, and aortic aneurysms/dissection. Inflammation is an ordered process initiated by vascular injury that produces enhanced leucocyte adherence, chemotaxis, and finally activation in situ. This process is coordinated by local secretion of adhesion molecules, chemotactic factors, and cytokines whose expression is the result of vascular injury-induced signal transduction networks. A wide variety of mediators of the vascular injury response have been identified; these factors include vasoactive peptides (angiotensin II, Ang II), CD40 ligands, oxidized cholesterol, and advanced glycation end-products. Downstream, the nuclear factor-kappaB (NF-kappaB) transcription factor performs an important signal integration step, responding to mediators of vascular injury in a stimulus-dependent and cell type-specific manner. The ultimate consequence of NF-kappaB signalling is the activation of inflammatory genes including adhesion molecules and chemotaxins. However, clinically, the hallmark of vascular NF-kappaB activation is the production of interleukin-6 (IL-6), whose local role in vascular inflammation is relatively unknown. The recent elucidation for the role of the IL-6 signalling pathway in Ang II-induced vascular inflammation as one that controls monocyte activation as well as its diverse signalling mechanism will be reviewed. These new discoveries further our understanding for the important role of the NF-kappaB-IL-6 signalling pathway in the process of vascular inflammation. PMID:20202975

  2. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling

    Directory of Open Access Journals (Sweden)

    Ishihama Nobuaki

    2010-05-01

    Full Text Available Abstract Background Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable. Results To investigate the roles CPKs play in a herbivore response-signaling pathway, we screened the characteristics of Arabidopsis CPK mutants damaged by a feeding generalist herbivore, Spodoptera littoralis. Following insect attack, the cpk3 and cpk13 mutants showed lower transcript levels of plant defensin gene PDF1.2 compared to wild-type plants. The CPK cascade was not directly linked to the herbivory-induced signaling pathways that were mediated by defense-related phytohormones such as jasmonic acid and ethylene. CPK3 was also suggested to be involved in a negative feedback regulation of the cytosolic Ca2+ levels after herbivory and wounding damage. In vitro kinase assays of CPK3 protein with a suite of substrates demonstrated that the protein phosphorylates transcription factors (including ERF1, HsfB2a and CZF1/ZFAR1 in the presence of Ca2+. CPK13 strongly phosphorylated only HsfB2a, irrespective of the presence of Ca2+. Furthermore, in vivo agroinfiltration assays showed that CPK3-or CPK13-derived phosphorylation of a heat shock factor (HsfB2a promotes PDF1.2 transcriptional activation in the defense response. Conclusions These results reveal the involvement of two Arabidopsis CPKs (CPK3 and CPK13 in the herbivory-induced signaling network via HsfB2a-mediated regulation of the defense-related transcriptional machinery. This cascade is not involved in the phytohormone-related signaling pathways, but rather directly impacts transcription factors for defense responses.

  3. Vibrio cholerae porin OmpU induces LPS tolerance by attenuating TLR-mediated signaling.

    Science.gov (United States)

    Sakharwade, Sanica C; Mukhopadhaya, Arunika

    2015-12-01

    Porins can act as pathogen-associated molecular patterns, can be recognized by the host immune system and modulate immune responses. Vibrio choleraeporin OmpU aids in bacterial survival in the human gut by increasing resistance against bile acids and anti-microbial peptides. V. choleraeOmpU is pro-inflammatory in nature. However, interestingly, it can also down-regulate LPS-mediated pro-inflammatory responses. In this study, we have explored how OmpU-pretreatment affects LPS-mediated responses. Our study indicates that OmpU-pretreatment followed by LPS-activation does not induce M2-polarization of macrophages/monocytes. Further, OmpU attenuates LPS-mediated TLR2/TLR6 signaling by decreasing the association of TLRs along with recruitment of MyD88 and IRAKs to the receptor complex. This results in decreased translocation of NFκB in the nucleus. Additionally, OmpU-pretreatment up-regulates expression of IRAK-M, a negative regulator of TLR signaling, in RAW 264.7 mouse macrophage cells upon LPS-stimulation. Suppressor cytokine IL-10 is partially involved in OmpU-induced down-regulation of LPS-mediated TNFα production in human PBMCs. Furthermore, OmpU-pretreatment also affects macrophage function, by enhancing phagocytosis in LPS-treated RAW 264.7 cells, and down-regulates LPS-induced cell surface expression of co-stimulatory molecules. Altogether, OmpU causes suppression of LPS-mediated responses by attenuating the LPS-mediated TLR signaling pathway.

  4. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system

    Institute of Scientific and Technical Information of China (English)

    Jian-xin SHEN; Jerrel L YAKEL

    2009-01-01

    Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-tors. The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.

  5. A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protien-mediated kinetic scaffolding.

    Science.gov (United States)

    Zhong, Huailing; Wade, Susan M; Woolf, Peter J; Linderman, Jennifer J; Traynor, John R; Neubig, Richard R

    2003-02-28

    Regulators of G protein signaling (RGS) are GTPase-accelerating proteins (GAPs), which can inhibit heterotrimeric G protein pathways. In this study, we provide experimental and theoretical evidence that high concentrations of receptors (as at a synapse) can lead to saturation of GDP-GTP exchange making GTP hydrolysis rate-limiting. This results in local depletion of inactive heterotrimeric G-GDP, which is reversed by RGS GAP activity. Thus, RGS enhances receptor-mediated G protein activation even as it deactivates the G protein. Evidence supporting this model includes a GTP-dependent enhancement of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding to G(i) by RGS. The RGS domain of RGS4 is sufficient for this, not requiring the NH(2)- or COOH-terminal extensions. Furthermore, a kinetic model including only the GAP activity of RGS replicates the GTP-dependent enhancement of GTPgammaS binding observed experimentally. Finally in a Monte Carlo model, this mechanism results in a dramatic "spatial focusing" of active G protein. Near the receptor, G protein activity is maintained even with RGS due to the ability of RGS to reduce depletion of local Galpha-GDP levels permitting rapid recoupling to receptor and maintained G protein activation near the receptor. In contrast, distant signals are suppressed by the RGS, since Galpha-GDP is not depleted there. Thus, a novel RGS-mediated "kinetic scaffolding" mechanism is proposed which narrows the spatial range of active G protein around a cluster of receptors limiting the spill-over of G protein signals to more distant effector molecules, thus enhancing the specificity of G(i) protein signals.

  6. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling

    OpenAIRE

    Zhong, Jun; Sharma, Jyoti; Raju, Rajesh; Palapetta, Shyam Mohan; Prasad, T. S. Keshava; Huang, Tai-Chung; Yoda, Akinori; Tyner, Jeffrey W; van Bodegom, Diederik; Weinstock, David M.; Ziegler, Steven F.; Pandey, Akhilesh

    2014-01-01

    Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T ce...

  7. Role of CD137 signaling in dengue virus-mediated apoptosis

    International Nuclear Information System (INIS)

    Highlights: → For the first time the role of CD137 in dengue virus (DENV) infection. → Induction of DENV-mediated apoptosis by CD137 signaling. → Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). → Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  8. Role of CD137 signaling in dengue virus-mediated apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nagila, Amar [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Srisawat, Chatchawan [Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Morchang, Atthapan; Yasamut, Umpa [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Puttikhunt, Chunya [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Kasinrerk, Watchara [Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai (Thailand); Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at Chiang Mai University, Chiang Mai (Thailand); and others

    2011-07-08

    Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  9. 人骨形态发生蛋白-2基因的真核表达载体构建%Construction of the Eukaryotic Expression Vector for hBMP-gene

    Institute of Scientific and Technical Information of China (English)

    沈伟; 郭善一; 鲍秋野; 梁东春; 张镜宇

    2001-01-01

    Objective:To construct the recombinant bacmid DNA of human bone morpbogenetic protein-2 (hBMP-2) gene and ex press hBMP-2 by transfecting the insect cell line (Sf 9). Methods:The full-length coding region (1188 bp) for hBMP-2 in cluding signal peptide,inter pro-peptide and mature peptide was inserted to the multi-cloning sites of baculovirus vector pFastBacl which was controlled by the promoter pPolh, the recombinant plasmid (pFBBMP) was constructed, and pF- BBMP was transformed into E. coli DH 10 Bac. After transposition, the positive colonies were selected and the bacmid DNA was extracted. Confirmed by PCR,Sf 9 was transfected with recombinant bacmid DNA by liposome-mediated gene transfer method. Results: The recombinant bacmid DNA which can directly transfect Sf 9 was produced,and the expression produc tion (hBMP-2) was of 35.6% of total insect cell protein. Conclusion: The recombinant bacmid DNA is successfully con structed by baculovirus vector,and hBMP-2 highly expresses in insect cells.%目的:利用杆状病毒载体,构建可直接转染昆虫细胞Sf 9 的含人骨形态发生蛋白-2(hBMP-2)基因的重 组穿梭载体(bacmid DNA),最终获得重组蛋白。方法:将编码包含hBMP-2 N-端信号肽,中间前肽以及C-端成熟肽 共1188bp的cDNA片断,插入真核表达载体pFastBacl的多克隆位点,受控于pPolh启动子,构建成pFastBacl/ hBMP-2重组转移载体。重组子转化大肠杆菌DH10Bac。转座后,挑选阳性菌落,提取bacmid DNA,经PCR鉴定 后,以重组bacmid DNA转染Sf9细胞。收集重组病毒,扩大转染Sf9,表达产物行SDS-PAGE初步鉴定。结果:获 得了含hBMP-2全长cDNA片段的重组bacmid DNA和重组病毒,经SDS-PAGE证实在昆虫细胞中表达了分泌型 hBMP-2蛋白,经激光密度扫描仪扫描显示分泌性蛋白表达量占细胞蛋白总量的35.6%。结论:利用杆状病毒载 体成功构建了可用于直接转染昆虫细胞而

  10. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Deshu Lin; Huibo Ren; Ying Fu

    2015-01-01

    In multicel ular plant organs, cel shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cel‐to‐cel communi-cation. Plants have a specific subfamily of the Rho GTPase family, usual y cal ed Rho of Plants (ROP), which serve as a critical signal transducer involved in many cel ular processes. In the last decade, important advances in the ROP‐mediated regulation of plant cel morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cel s. Especial y, the auxin‐ROP signaling networks have been demonstrated to control interdigitated growth of pavement cel s to form jigsaw‐puzzle shapes. Here, we review findings related to the discovery of this novel auxin‐signaling mecha-nism at the cel surface. This signaling pathway is to a large extent independent of the wel‐known Transport Inhibitor Response (TIR)–Auxin Signaling F‐Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane‐localized, transmembrane kinase (TMK) receptor‐like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self‐organizing feature al owing ROP proteins to serve as a bustling signal decoder and integrator for plant cel morphogenesis.

  11. Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction.

    Science.gov (United States)

    Kringelbach, Tina M; Aslan, Derya; Novak, Ivana; Ellegaard, Maria; Syberg, Susanne; Andersen, Christina K B; Kristiansen, Kim A; Vang, Ole; Schwarz, Peter; Jørgensen, Niklas R

    2015-12-01

    Osteocytes are considered the primary mechanosensors of bone, but the signaling pathways they apply in mechanotransduction are still incompletely investigated and characterized. A growing body of data strongly indicates that P2 receptor signaling among osteoblasts and osteoclasts has regulatory effects on bone remodeling. Therefore, we hypothesized that ATP signaling is also applied by osteocytes in mechanotransduction. We applied a short fluid pulse on MLO-Y4 osteocyte-like cells during real-time detection of ATP and demonstrated that mechanical stimulation activates the acute release of ATP and that these acute ATP signals are fine-tuned according to the magnitude of loading. ATP release was then challenged by pharmacological inhibitors, which indicated a vesicular release pathway for acute ATP signals. Finally, we showed that osteocytes express functional P2X2 and P2X7 receptors and respond to even low concentrations of nucleotides by increasing intracellular calcium concentration. These results indicate that in osteocytes, vesicular ATP release is an acute mediator of mechanical signals and the magnitude of loading. These and previous results, therefore, implicate purinergic signaling as an early signaling pathway in osteocyte mechanotransduction. PMID:26327582

  12. SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer

    DEFF Research Database (Denmark)

    Iglesias Gato, Diego; Chuan, Yin Choy; Wikström, Pernilla;

    2014-01-01

    ) as mediator of the cross talk between androgens and GH signals in the prostate and its potential role as tumor suppressor in prostate cancer (PCa). We observed that SOCS2 protein levels assayed by immunohistochemistry are elevated in hormone therapy-naive localized prostatic adenocarcinoma in comparison...... with benign tissue. In contrast, however, castration-resistant bone metastases exhibit reduced levels of SOCS2 in comparison with localized or hormone naive, untreated metastatic tumors. In PCa cells, SOCS2 expression is induced by androgens through a mechanism that requires signal transducer and activator...... to GH. Our results suggest that the use of GH-signaling inhibitors could be of value as a complementary treatment for castration-resistant PCa.Summary: Androgen induced SOCS2 ubiquitin ligase expression and inhibited GH signaling as well as cell proliferation and invasion in PCa, whereas reduced SOCS2...

  13. Methods for the Analysis of Protein Phosphorylation–Mediated Cellular Signaling Networks

    Science.gov (United States)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation–mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  14. Dynamics of ubiquitin-mediated signalling: insights from mathematical modelling and experimental studies.

    Science.gov (United States)

    Nguyen, Lan K

    2016-05-01

    Post-translational modification of cellular proteins by ubiquitin is a pivotal regulatory event that controls not only protein degradation, but also a variety of non-proteolytic functions. Ubiquitination is involved in a broad array of physiological processes, and its dysregulation has been associated with many human diseases, including neuronal disorders and cancers. Ubiquitin-mediated signalling has thus come to the forefront of biomedical research. It is increasingly apparent that ubiquitination is a highly complex and dynamic process, evidenced by a myriad of ways of ubiquitin chain formation, tightly regulatory mechanisms involving E3 ligases and deubiquitinating enzymes and extensive crosstalk with other post-translational modifications. To unravel the complexity of ubiquitination and understand the dynamic properties of ubiquitin-mediated signalling are challenging, but critical topics in ubiquitin research, which will undoubtedly benefit our effort in developing strategies that could target ubiquitin signalling for therapeutics. Computational modelling and model-based approaches are emerging as promising tools that help tackle the complexity and provide useful frameworks for quantitative and dynamical analysis of ubiquitin signalling. In this article, I will discuss recent advances in our understanding of the dynamic behaviour of ubiquitination from both theoretical and experimental studies, and aspects of ubiquitin signalling that may have major dynamical consequences. It is expected the discussed issues will be of relevant interest to both the ubiquitin and systems biology fields.

  15. Fibronectin-integrin mediated signaling in human cervical cancer cells (SiHa).

    Science.gov (United States)

    Maity, Gargi; Fahreen, Shabana; Banerji, Aniruddha; Roy Choudhury, Paromita; Sen, Triparna; Dutta, Anindita; Chatterjee, Amitava

    2010-03-01

    Interaction between cell surface integrin receptors and extracellular matrix (ECM) components plays an important role in cell survival, proliferation, and migration, including tumor development and invasion of tumor cells. Matrix metalloproteinases (MMPs) are a family of metalloproteinases capable of digesting ECM components and are important molecules for cell migration. Binding of ECM to integrins initiates cascades of cell signaling events modulating expression and activity of different MMPs. The aim of this study is to investigate fibronectin-integrin-mediated signaling and modulation of MMPs. Our findings indicated that culture of human cervical cancer cell (SiHa) on fibronectin-coated surface perhaps sends signals via fibronectin-integrin-mediated signaling pathways recruiting focal adhesion kinase (FAK) extracellular signal regulated kinase (ERK), phosphatidyl inositol 3 kinase (PI-3K), integrin-linked kinase (ILK), nuclear factor-kappa B (NF-kappaB), and modulates expression and activation of mainly pro-MMP-9, and moderately pro-MMP-2 in serum-free culture medium.

  16. Methoxychlor enhances degranulation of murine mast cells by regulating FcεRI-mediated signal transduction.

    Science.gov (United States)

    Yasunaga, Sho; Nishi, Kosuke; Nishimoto, Sogo; Sugahara, Takuya

    2015-01-01

    Methoxychlor, an organochlorine insecticide developed to replace DDT (dichlorodiphenyltrichloroethane), has been reported to induce mast cell degranulation and to enhance IgE-mediated allergic responses. However, the mechanisms underlying these effects are not clear. To clarify potential mechanisms, the effects of methoxychlor on degranulation of mast cells were examined. Degranulation responses were evaluated using RBL-2H3 cells and mouse bone marrow-derived mast cells with either the antigen-induced or calcium ionophore-induced stimulation. Phosphorylation of enzymes related to signaling events associated with mast cell degranulation was analyzed by immunoblotting. Effects on vascular permeability in the passive cutaneous anaphylaxis reaction were evaluated following oral administration of methoxychlor to BALB/c mice. The results indicated that methoxychlor caused increased mast cell degranulation in the presence of antigen, whereas it had no effect on calcium ionophore-induced degranulation of RBL-2H3 cells. Immunoblot analyses demonstrated that the phosphorylation level of phosphoinositide 3-kinase (which plays a central role in mast cell signaling) was increased by methoxychlor during antigen-induced degranulation. In addition, methoxychlor activated the signaling pathway via the high-affinity IgE receptor by inducing phosphorylation of Syk and PLCγ1/2, which transfer the signal for degranulation downstream. Lastly, oral administration of methoxychlor exhibited a tendency to promote vascular permeability in passive cutaneous anaphylaxis model mice. Taken together, the results here suggested that methoxychlor enhanced degranulation through FcεRI-mediated signaling and promoted allergenic symptoms involved in mast cell degranulation.

  17. Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification

    Directory of Open Access Journals (Sweden)

    Brase Jan C

    2010-06-01

    Full Text Available Abstract Background Reverse phase protein arrays (RPPA emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level. Results A new antibody-mediated signal amplification (AMSA strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89 between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins. Conclusions Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range.

  18. Overexpression of constitutively active BMP-receptor-IB in mouse skin causes an ichthyosis-vulgaris-like disease.

    Science.gov (United States)

    Yu, Xueyan; Espinoza-Lewis, Ramón A; Sun, Cheng; Lin, Lisong; He, Fenglei; Xiong, Wei; Yang, Jing; Wang, Alun; Chen, Yiping

    2010-12-01

    The skin is the outer layer of protection against the environment. The development and formation of the skin is regulated by several genetic cascades including the bone morphogenetic protein (BMP) signaling pathway, which has been suggested to play an important role during embryonic organ development. Several skin defects and diseases are caused by genetic mutations or disorders. Ichthyosis is a common genetic skin disorder characterized by dry scaly skin. Loss-of-function mutations in the filaggrin (FLG) gene have been identified as the cause of the ichthyosis vulgaris (IV) phenotype; however, the direct regulation of filaggrin expression in vivo is unknown. We present evidence that BMP signaling regulates filaggrin expression in the epidermis. Mice expressing a constitutively active form of BMP-receptor-IB in the developing epidermis exhibit a phenotype resembling IV in humans, including dry flaky skin, compact hyperkeratosis, and an attenuated granular layer associated with a significantly downregulated expression of filaggrin. Regulation of filaggrin expression by BMP signaling has been further confirmed by the application of exogenous BMP2 in skin explants and by a transgenic model overexpressing Noggin in the epidermis. Our results demonstrate that aberrant BMP signaling in the epidermis causes overproliferation and hyperkeratinization, leading to an IV-like skin disease.

  19. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct

    DEFF Research Database (Denmark)

    Svenningsen, Per; Burford, James L; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells...... by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption....

  20. Charge-signal multiplication mediated by urea wires inside Y-shaped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Mei; Liu, Zengrong [Department of Mathematics, and Institute of Systems Biology, Shanghai University, Shanghai 200444 (China); He, Bing [School of Computer Engineering and Science, Shanghai University, Shanghai 200444 (China); Xiu, Peng, E-mail: xiupeng2011@zju.edu.cn, E-mail: ystu@shu.edu.cn [Department of Engineering Mechanics, and Soft Matter Research Center, Zhejiang University, Hangzhou 310027 (China); Tu, Yusong, E-mail: xiupeng2011@zju.edu.cn, E-mail: ystu@shu.edu.cn [Department of Mathematics, and Institute of Systems Biology, Shanghai University, Shanghai 200444 (China); College of Physics Science and Technology, Yangzhou University, Yangzhou 225009 (China)

    2014-07-28

    In previous studies, we reported molecular dynamics (MD) simulations showing that single-file water wires confined inside Y-shaped single-walled carbon nanotubes (Y-SWNTs) held strong and robust capability to convert and multiply charge signals [Y. S. Tu, P. Xiu, R. Z. Wan, J. Hu, R. H. Zhou, and H. P. Fang, Proc. Natl. Acad. Sci. U.S.A. 106, 18120 (2009); Y. Tu, H. Lu, Y. Zhang, T. Huynh, and R. Zhou, J. Chem. Phys. 138, 015104 (2013)]. It is fascinating to see whether the signal multiplication can be realized by other kinds of polar molecules with larger dipole moments (which make the experimental realization easier). In this article, we use MD simulations to study the urea-mediated signal conversion and multiplication with Y-SWNTs. We observe that when a Y-SWNT with an external charge of magnitude 1.0 e (the model of a signal at the single-electron level) is solvated in 1 M urea solutions, urea can induce drying of the Y-SWNT and fill its interiors in single-file, forming Y-shaped urea wires. The external charge can effectively control the dipole orientation of the urea wire inside the main channel (i.e., the signal can be readily converted), and this signal can further be multiplied into 2 (or more) output signals by modulating dipole orientations of urea wires in bifurcated branch channels of the Y-SWNT. This remarkable signal transduction capability arises from the strong dipole-induced ordering of urea wires under extreme confinement. We also discuss the advantage of urea as compared with water in the signal multiplication, as well as the robustness and biological implications of our findings. This study provides the possibility for multiplying signals by using urea molecules (or other polar organic molecules) with Y-shaped nanochannels and might also help understand the mechanism behind signal conduction in both physical and biological systems.

  1. Regulation of VH replacement by B cell receptor-mediated signaling in human immature B cells.

    Science.gov (United States)

    Liu, Jing; Lange, Miles D; Hong, Sang Yong; Xie, Wanqin; Xu, Kerui; Huang, Lin; Yu, Yangsheng; Ehrhardt, Götz R A; Zemlin, Michael; Burrows, Peter D; Su, Kaihong; Carter, Robert H; Zhang, Zhixin

    2013-06-01

    VH replacement provides a unique RAG-mediated recombination mechanism to edit nonfunctional IgH genes or IgH genes encoding self-reactive BCRs and contributes to the diversification of Ab repertoire in the mouse and human. Currently, it is not clear how VH replacement is regulated during early B lineage cell development. In this article, we show that cross-linking BCRs induces VH replacement in human EU12 μHC(+) cells and in the newly emigrated immature B cells purified from peripheral blood of healthy donors or tonsillar samples. BCR signaling-induced VH replacement is dependent on the activation of Syk and Src kinases but is inhibited by CD19 costimulation, presumably through activation of the PI3K pathway. These results show that VH replacement is regulated by BCR-mediated signaling in human immature B cells, which can be modulated by physiological and pharmacological treatments.

  2. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  3. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Takayuki [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Lee, Ji-Won [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hibino, Ayaka; Asai, Midori [Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hojo, Hironori [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Cha, Byung-Yoon [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Teruya, Toshiaki [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Nagai, Kazuo [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Chung, Ung-Il [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yagasaki, Kazumi [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo Noko University, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509 (Japan); and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  4. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis

    OpenAIRE

    Winter, Peter S.; Sarosiek, Kristopher A.; Lin, Kevin H.; Meggendorfer, Manja; Schnittger, Susanne; Letai, Anthony; Wood, Kris C.

    2014-01-01

    Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2V617F mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplasti...

  5. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    OpenAIRE

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J

    2013-01-01

    JNK signaling mediates metabolic stress responses caused by a high-fat diet. Vernia et al. find that mice lacking Jnk genes in the anterior pituitary gland exhibit increased pituitary expression of TSH, increased blood concentration of thyroid hormone (T4), increased energy expenditure, and reduced obesity. The increase in pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2). These results provide a mechanism through which JNK regulates energy expenditure a...

  6. Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling

    OpenAIRE

    Hines, D J; Schmitt, L I; Hines, R. M.; Moss, S J; Haydon, P. G.

    2013-01-01

    Major depressive disorder is a debilitating condition with a lifetime risk of ten percent. Most treatments take several weeks to achieve clinical efficacy, limiting the ability to bring instant relief needed in psychiatric emergencies. One intervention that rapidly alleviates depressive symptoms is sleep deprivation; however, its mechanism of action is unknown. Astrocytes regulate responses to sleep deprivation, raising the possibility that glial signaling mediates antidepressive-like actions...

  7. Characteristic slepton signal in anomaly mediated SUSY breaking models via gauge boson fusion at the LHC

    CERN Document Server

    Datta, A; Datta, Anindya; Huitu, Katri

    2003-01-01

    We point out that slepton pairs produced via gauge boson fusion in anomaly mediated supersymmetry breaking (AMSB) model have very characteristic and almost clean signal at the Large Hadron Collider. In this letter, we discuss how one lepton associated with missing energy and produced in between two high-$p_T$ and high-mass forward jets can explore quite heavy sleptons in this scenario.

  8. Simultaneous gene transfer of bone morphogenetic protein (BMP -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    Directory of Open Access Journals (Sweden)

    Miyazaki Jun-ichi

    2006-08-01

    Full Text Available Abstract Background Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS. Methods First, an in vitro study was carried out to confirm the expression of BMP-2 and BMP-7 following the double-gene transfer. Next, the individual BMP-2 and BMP-7 plasmids or both together were injected into rat calf muscles, and transcutaneous electroporation was applied 8 times at 100 V, 50 msec. Results In the culture system, the simultaneous transfer of the BMP-2 and BMP-7 genes led to a much higher ALP activity in C2C12 cells than did the transfer of either gene alone. In vivo, ten days after the treatment, soft X-ray analysis showed that muscles that received both pCAGGS-BMP-2 and pCAGGS-BMP-7 had better-defined opacities than those receiving a single gene. Histological examination showed advanced ossification in calf muscles that received the double-gene transfer. BMP-4 mRNA was also expressed, and RT-PCR showed that its level increased for 3 days in a time-dependent manner in the double-gene transfer group. Immunohistochemistry confirmed that BMP-4-expressing cells resided in the matrix between muscle fibers. Conclusion The simultaneous transfer of BMP-2 and BMP-7 genes using in vivo electroporation induces more rapid bone formation than the transfer of either gene alone, and the increased expression of endogenous BMP-4 suggests that the rapid ossification is related to the induction of BMP-4.

  9. Induction of chronic pancreatitis by pancreatic duct ligation activates BMP2, apelin, and PTHrP expression in mice.

    Science.gov (United States)

    Rastellini, Cristiana; Han, Song; Bhatia, Vandanajay; Cao, Yanna; Liu, Ka; Gao, Xuxia; Ko, Tien C; Greeley, George H; Falzon, Miriam

    2015-10-01

    Chronic pancreatitis (CP) is a devastating disease with no treatments. Experimental models have been developed to reproduce the parenchyma and inflammatory responses typical of human CP. For the present study, one objective was to assess and compare the effects of pancreatic duct ligation (PDL) to those of repetitive cerulein (Cer)-induced CP in mice on pancreatic production of bone morphogenetic protein-2 (BMP2), apelin, and parathyroid hormone-related protein (PTHrP). A second objective was to determine the extent of cross talk among pancreatic BMP2, apelin, and PTHrP signaling systems. We focused on BMP2, apelin, and PTHrP since these factors regulate the inflammation-fibrosis cascade during pancreatitis. Findings showed that PDL- and Cer-induced CP resulted in significant elevations in expression and peptide/protein levels of pancreatic BMP2, apelin, and PTHrP. In vivo mouse and in vitro pancreatic cell culture experiments demonstrated that BMP2 stimulated pancreatic apelin expression whereas apelin expression was inhibited by PTHrP exposure. Apelin or BMP2 exposure inhibited PTHrP expression, and PTHrP stimulated upregulation of gremlin, an endogenous inhibitor of BMP2 activity. Transforming growth factor-β (TGF-β) stimulated PTHrP expression. Together, findings demonstrated that PDL- and Cer-induced CP resulted in increased production of the pancreatic BMP2, apelin, and PTHrP signaling systems and that significant cross talk occurred among pancreatic BMP2, apelin, and PTHrP. These results together with previous findings imply that these factors interact via a pancreatic network to regulate the inflammation-fibrosis cascade during CP. More importantly, this network communicated with TGF-β, a key effector of pancreatic pathophysiology. This novel network may be amenable to pharmacologic manipulations during CP in humans. PMID:26229008

  10. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways

    Science.gov (United States)

    Zhu, Bing; Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Deng, Ning

    2016-04-01

    Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis.

  11. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways.

    Science.gov (United States)

    Zhu, Bing; Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Deng, Ning

    2016-12-01

    Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis. PMID:27075340

  12. Regulating the osteogenic function of rhBMP 2 by different titanium surface properties.

    Science.gov (United States)

    Xiao, Ming; Biao, Meina; Chen, Yangmei; Xie, Meiju; Yang, Bangcheng

    2016-08-01

    Bone morphogenetic protein 2 (BMP-2) is important for regulating the osteogenic differentiation of mesenchymal stem cells and the response of bone tissue. It adsorbs on the surface of biomedical implants immediately and plays a role of mediator between the materials surfaces and the host cells. Studies usually connect the material surface properties and the new bone formation directly. However, interaction between the adsorbed BMP-2 on the implant surface and the cells in the tissue is the key to explaining the osteogenic properties of the material. So, in this article, we investigated the conformational and functional changes induced by the surface modified titanium metals. We found that the α-helix and β-sheet structure of rhBMP-2 can be well maintained on the anodic oxidation treated titanium surface. The osteogenic function of rhBMP-2 can sustain for a relatively long time even though there is less amount adhere to the surface compared with that on the acid alkali treated titanium. Surface properties, especially the morphology enable a larger amount of rhBMP-2 to adsorb to the surface of the acid alkali treated titanium, but the conformation of the protein is severely influenced. The percentage of α-helix structure is also significantly decreased so that the efficacy of rhBMP-2 is only maintained in the early time. This study indicated that different surface modification of the surface could regulate the structure of rhBMP-2 and then further influence its osteogenic function. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1882-1893, 2016. PMID:26991341

  13. Heterozygous Mutations in BMP6 Pro-peptide Lead to Inappropriate Hepcidin Synthesis and Moderate Iron Overload in Humans

    OpenAIRE

    Daher, Raed; Kannengiesser, Caroline; Houamel, Dounia; Lefebvre, Thibaud; Bardou-Jacquet, Edouard; Ducrot, Nicolas; Kerguenec, Caroline,; Jouanolle, Anne-Marie; Robreau, Anne-Marie; Oudin, Claire; Le Gac, Gerald; Moulouel, Boualem; Loustaud-Ratti, Véronique; Bedossa, Pierre; Valla, Dominique

    2015-01-01

    Background & Aims Hereditary hemochromatosis is a heterogeneous group of genetic disorders characterized by parenchymal iron overload. It is caused by defective expression of liver hepcidin, the main regulator of iron homeostasis. Iron stimulates the gene encoding (HAMP) hepcidin via the BMP6 signaling to SMAD. Although several genetic factors have been found to cause late-onset hemochromatosis, many patients have unexplained signs of iron overload. We investigated BMP6 function in these indi...

  14. Molecular characterization, expression and methylation status analysis of BMP4 gene in skin tissue of Liaoning cashmere goat during hair follicle cycle.

    Science.gov (United States)

    Bai, Wen L; Dang, Yun L; Wang, Jiao J; Yin, Rong H; Wang, Ze Y; Zhu, Yu B; Cong, Yu Y; Xue, Hui L; Deng, Liang; Guo, Dan; Wang, Shi Q; Yang, Shu H

    2016-08-01

    Bone morphogenetic protein 4 (BMP4) is a member of the bone morphogenetic protein family (BMPs). It is involved in the development and cycle of hair follicle, as well as, is thought to be a potential candidate gene for cashmere traits in goats. In the present study, we isolated and characterized a full-length open reading frame (ORF) of BMP4 cDNA from the skin tissue of Liaoning cashmere goat, and investigated the transcriptional pattern and methylation status of BMP4 gene in skin tissue of this breed during different stages of hair follicle cycle. The sequence analysis indicated that the isolated cDNA was 1264-bp in length containing a complete ORF of 1230-bp. It encoded a precursor peptide of 409 amino acids with a signal peptide of 19 amino acids. The structural analysis indicated that goat BMP4 contains typical TGF-β propeptide and TGF-β domains. In skin tissue, BMP4 is generally transcribed in an ascendant pattern from anagen to telogen. The methylation level of 5' flanking regulatory region of BMP4 gene might be involved in its mRNA expression in skin tissue: a higher BMP4 methylation level in skin coincides with a lower expression of BMP4 mRNA. These results from the present work provided a foundation for further insight into the functional and regulatory characteristics of BMP4 in the development and cycle of hair follicle in Liaoning Cashmere goat. PMID:27406581

  15. Molecular characterization, expression and methylation status analysis of BMP4 gene in skin tissue of Liaoning cashmere goat during hair follicle cycle.

    Science.gov (United States)

    Bai, Wen L; Dang, Yun L; Wang, Jiao J; Yin, Rong H; Wang, Ze Y; Zhu, Yu B; Cong, Yu Y; Xue, Hui L; Deng, Liang; Guo, Dan; Wang, Shi Q; Yang, Shu H

    2016-08-01

    Bone morphogenetic protein 4 (BMP4) is a member of the bone morphogenetic protein family (BMPs). It is involved in the development and cycle of hair follicle, as well as, is thought to be a potential candidate gene for cashmere traits in goats. In the present study, we isolated and characterized a full-length open reading frame (ORF) of BMP4 cDNA from the skin tissue of Liaoning cashmere goat, and investigated the transcriptional pattern and methylation status of BMP4 gene in skin tissue of this breed during different stages of hair follicle cycle. The sequence analysis indicated that the isolated cDNA was 1264-bp in length containing a complete ORF of 1230-bp. It encoded a precursor peptide of 409 amino acids with a signal peptide of 19 amino acids. The structural analysis indicated that goat BMP4 contains typical TGF-β propeptide and TGF-β domains. In skin tissue, BMP4 is generally transcribed in an ascendant pattern from anagen to telogen. The methylation level of 5' flanking regulatory region of BMP4 gene might be involved in its mRNA expression in skin tissue: a higher BMP4 methylation level in skin coincides with a lower expression of BMP4 mRNA. These results from the present work provided a foundation for further insight into the functional and regulatory characteristics of BMP4 in the development and cycle of hair follicle in Liaoning Cashmere goat.

  16. Biochemicalmethane potential (BMP) of solid organic substrates

    DEFF Research Database (Denmark)

    Raposo, F.; Fernández-Cegrí, V.; de la Rubia, M.A.;

    2011-01-01

    BACKGROUND: This paper describes results obtained for different participating research groups in an interlaboratory study related to biochemical methane potential (BMP). In this research work, all experimental conditions influencing the test such as inoculum, substrate characteristics and experim......BACKGROUND: This paper describes results obtained for different participating research groups in an interlaboratory study related to biochemical methane potential (BMP). In this research work, all experimental conditions influencing the test such as inoculum, substrate characteristics...

  17. Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters.

    Science.gov (United States)

    Zhou, Yong; Liang, Hong; Rodkey, Travis; Ariotti, Nicholas; Parton, Robert G; Hancock, John F

    2014-03-01

    Lipid-anchored Ras GTPases form transient, spatially segregated nanoclusters on the plasma membrane that are essential for high-fidelity signal transmission. The lipid composition of Ras nanoclusters, however, has not previously been investigated. High-resolution spatial mapping shows that different Ras nanoclusters have distinct lipid compositions, indicating that Ras proteins engage in isoform-selective lipid sorting and accounting for different signal outputs from different Ras isoforms. Phosphatidylserine is a common constituent of all Ras nanoclusters but is only an obligate structural component of K-Ras nanoclusters. Segregation of K-Ras and H-Ras into spatially and compositionally distinct lipid assemblies is exquisitely sensitive to plasma membrane phosphatidylserine levels. Phosphatidylserine spatial organization is also modified by Ras nanocluster formation. In consequence, Ras nanoclusters engage in remote lipid-mediated communication, whereby activated H-Ras disrupts the assembly and operation of spatially segregated K-Ras nanoclusters. Computational modeling and experimentation reveal that complex effects of caveolin and cortical actin on Ras nanoclustering are similarly mediated through regulation of phosphatidylserine spatiotemporal dynamics. We conclude that phosphatidylserine maintains the lateral segregation of diverse lipid-based assemblies on the plasma membrane and that lateral connectivity between spatially remote lipid assemblies offers important previously unexplored opportunities for signal integration and signal processing.

  18. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    International Nuclear Information System (INIS)

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrPc), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrPc with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr Pc and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrPc:hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr Pc143-153 beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrPc. Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr Pc143-153 beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr Pc, and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr Pc:hop/STI 1 interaction, consistent with the hypothesis that Pr Pc scaffolds multiprotein signaling complexes at the cell surface. (author)

  19. Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz.

    Directory of Open Access Journals (Sweden)

    Julie Hull-Thompson

    2009-04-01

    Full Text Available Metabolic homeostasis in metazoans is regulated by endocrine control of insulin/IGF signaling (IIS activity. Stress and inflammatory signaling pathways--such as Jun-N-terminal Kinase (JNK signaling--repress IIS, curtailing anabolic processes to promote stress tolerance and extend lifespan. While this interaction constitutes an adaptive response that allows managing energy resources under stress conditions, excessive JNK activity in adipose tissue of vertebrates has been found to cause insulin resistance, promoting type II diabetes. Thus, the interaction between JNK and IIS has to be tightly regulated to ensure proper metabolic adaptation to environmental challenges. Here, we identify a new regulatory mechanism by which JNK influences metabolism systemically. We show that JNK signaling is required for metabolic homeostasis in flies and that this function is mediated by the Drosophila Lipocalin family member Neural Lazarillo (NLaz, a homologue of vertebrate Apolipoprotein D (ApoD and Retinol Binding Protein 4 (RBP4. Lipocalins are emerging as central regulators of peripheral insulin sensitivity and have been implicated in metabolic diseases. NLaz is transcriptionally regulated by JNK signaling and is required for JNK-mediated stress and starvation tolerance. Loss of NLaz function reduces stress resistance and lifespan, while its over-expression represses growth, promotes stress tolerance and extends lifespan--phenotypes that are consistent with reduced IIS activity. Accordingly, we find that NLaz represses IIS activity in larvae and adult flies. Our results show that JNK-NLaz signaling antagonizes IIS and is critical for metabolic adaptation of the organism to environmental challenges. The JNK pathway and Lipocalins are structurally and functionally conserved, suggesting that similar interactions represent an evolutionarily conserved system for the control of metabolic homeostasis.

  20. Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz.

    Science.gov (United States)

    Hull-Thompson, Julie; Muffat, Julien; Sanchez, Diego; Walker, David W; Benzer, Seymour; Ganfornina, Maria D; Jasper, Heinrich

    2009-04-01

    Metabolic homeostasis in metazoans is regulated by endocrine control of insulin/IGF signaling (IIS) activity. Stress and inflammatory signaling pathways--such as Jun-N-terminal Kinase (JNK) signaling--repress IIS, curtailing anabolic processes to promote stress tolerance and extend lifespan. While this interaction constitutes an adaptive response that allows managing energy resources under stress conditions, excessive JNK activity in adipose tissue of vertebrates has been found to cause insulin resistance, promoting type II diabetes. Thus, the interaction between JNK and IIS has to be tightly regulated to ensure proper metabolic adaptation to environmental challenges. Here, we identify a new regulatory mechanism by which JNK influences metabolism systemically. We show that JNK signaling is required for metabolic homeostasis in flies and that this function is mediated by the Drosophila Lipocalin family member Neural Lazarillo (NLaz), a homologue of vertebrate Apolipoprotein D (ApoD) and Retinol Binding Protein 4 (RBP4). Lipocalins are emerging as central regulators of peripheral insulin sensitivity and have been implicated in metabolic diseases. NLaz is transcriptionally regulated by JNK signaling and is required for JNK-mediated stress and starvation tolerance. Loss of NLaz function reduces stress resistance and lifespan, while its over-expression represses growth, promotes stress tolerance and extends lifespan--phenotypes that are consistent with reduced IIS activity. Accordingly, we find that NLaz represses IIS activity in larvae and adult flies. Our results show that JNK-NLaz signaling antagonizes IIS and is critical for metabolic adaptation of the organism to environmental challenges. The JNK pathway and Lipocalins are structurally and functionally conserved, suggesting that similar interactions represent an evolutionarily conserved system for the control of metabolic homeostasis.

  1. Simultaneous gene transfer of bone morphogenetic protein (BMP) -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    OpenAIRE

    Kawai, Mariko; Bessho, Kazuhisa; Maruyama, Hiroki; Miyazaki, Jun-ichi; Yamamoto, Toshio

    2006-01-01

    Background: Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS.

  2. Delineation of downstream signalling components during acrosome reaction mediated by heat solubilized human zona pellucida

    Directory of Open Access Journals (Sweden)

    Talwar Pankaj

    2010-01-01

    Full Text Available Abstract Background Human egg is enveloped by a glycoproteinaceous matrix, zona pellucida (ZP, responsible for binding of the human spermatozoa to the egg and induction of acrosomal exocytosis in the spermatozoon bound to ZP. In the present manuscript, attempts have been made to delineate the downstream signalling components employed by human ZP to induce acrosome reaction. Methods Heat-solubilized human ZP (SIZP was used to study the induction of acrosome reaction in capacitated human spermatozoa using tetramethylrhodamine isothiocyanate conjugated Pisum sativum agglutinin (TRITC-PSA in absence or presence of various pharmacological inhibitors. In addition, intracellular calcium ([Ca2+]i levels in sperm using Fluo-3 acetoxymethyl ester as fluorescent probe were also estimated in response to SIZP. Results SIZP induces acrosomal exocytosis in capacitated human sperm in a dose dependent manner accompanied by an increase in [Ca2+]i. Human SIZP mediated induction of acrosome reaction depends on extracellular Ca2+ and involves activation of Gi protein-coupled receptor, tyrosine kinase, protein kinases A & C and phosphoinositide 3 (PI3- kinase. In addition, T-type voltage operated calcium channels and GABA-A receptor associated chloride (Cl- channels play an important role in SIZP mediated induction of acrosome reaction. Conclusions Results described in the present study provide a comprehensive account of the various downstream signalling components associated with human ZP mediated acrosome reaction.

  3. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  4. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  5. Measurement of the formation of complexes in tyrosine kinase-mediated signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Ladbury, John E., E-mail: j.ladbury@biochem.ucl.ac.uk [Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2007-01-01

    The use of isothermal titration calorimetry (ITC) provides a full thermodynamic characterization of an interaction in one experiment. The determination of the affinity is an important value; however, the additional layer of information provided by the change in enthalpy and entropy can help in understanding the biology. This is demonstrated with respect to tyrosine kinase-mediated signal transduction. Isothermal titration calorimetry (ITC) provides highly complementary data to high-resolution structural detail. An overview of the methodology of the technique is provided. Ultimately, the correlation of the thermodynamic parameters determined by ITC with structural perturbation observed on going from the free to the bound state should be possible at an atomic level. Currently, thermodynamic data provide some insight as to potential changes occurring on complex formation. Here, this is demonstrated in the context of in vitro quantification of intracellular tyrosine kinase-mediated signal transduction and the issue of specificity of the important interactions. The apparent lack of specificity in the interactions of domains of proteins involved in early signalling from membrane-bound receptors is demonstrated using data from ITC.

  6. Signaling pathways involved in megakaryocyte-mediated proliferation of osteoblast lineage cells.

    Science.gov (United States)

    Cheng, Ying-Hua; Streicher, Drew A; Waning, David L; Chitteti, Brahmananda R; Gerard-O'Riley, Rita; Horowitz, Mark C; Bidwell, Joseph P; Pavalko, Fredrick M; Srour, Edward F; Mayo, Lindsey D; Kacena, Melissa A

    2015-03-01

    Recent studies suggest that megakaryocytes (MKs) may play a significant role in skeletal homeostasis, as evident by the occurrence of osteosclerosis in multiple MK related diseases (Lennert et al., 1975; Thiele et al., 1999; Chagraoui et al., 2006). We previously reported a novel interaction whereby MKs enhanced proliferation of osteoblast lineage/osteoprogenitor cells (OBs) by a mechanism requiring direct cell-cell contact. However, the signal transduction pathways and the downstream effector molecules involved in this process have not been characterized. Here we show that MKs contact with OBs, via beta1 integrin, activate the p38/MAPKAPK2/p90RSK kinase cascade in the bone cells, which causes Mdm2 to neutralizes p53/Rb-mediated check point and allows progression through the G1/S. Interestingly, activation of MAPK (ERK1/2) and AKT, collateral pathways that regulate the cell cycle, remained unchanged with MK stimulation of OBs. The MK-to-OB signaling ultimately results in significant increases in the expression of c-fos and cyclin A, necessary for sustaining the OB proliferation. Overall, our findings show that OBs respond to the presence of MKs, in part, via an integrin-mediated signaling mechanism, activating a novel response axis that de-represses cell cycle activity. Understanding the mechanisms by which MKs enhance OB proliferation will facilitate the development of novel anabolic therapies to treat bone loss associated with osteoporosis and other bone-related diseases. PMID:25160801

  7. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Srivathsa C Venugopal

    2009-07-01

    Full Text Available Resistance (R protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1, non-race-specific disease resistance 1 (NDR1, phytoalexin deficient 4 (PAD4, senescence associated gene 101 (SAG101, and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.

  8. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling.

    Science.gov (United States)

    Venugopal, Srivathsa C; Jeong, Rae-Dong; Mandal, Mihir K; Zhu, Shifeng; Chandra-Shekara, A C; Xia, Ye; Hersh, Matthew; Stromberg, Arnold J; Navarre, DuRoy; Kachroo, Aardra; Kachroo, Pradeep

    2009-07-01

    Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.

  9. Interplay between Dioxin-Mediated Signaling and Circadian Clock: A Possible Determinant in Metabolic Homeostasis

    Directory of Open Access Journals (Sweden)

    Chun Wang

    2014-07-01

    Full Text Available The rotation of the earth on its axis creates the environment of a 24 h solar day, which organisms on earth have used to their evolutionary advantage by integrating this timing information into their genetic make-up in the form of a circadian clock. This intrinsic molecular clock is pivotal for maintenance of synchronized homeostasis between the individual organism and the external environment to allow coordinated rhythmic physiological and behavioral function. Aryl hydrocarbon receptor (AhR is a master regulator of dioxin-mediated toxic effects, and is, therefore, critical in maintaining adaptive responses through regulating the expression of phase I/II drug metabolism enzymes. AhR expression is robustly rhythmic, and physiological cross-talk between AhR signaling and circadian rhythms has been established. Increasing evidence raises a compelling argument that disruption of endogenous circadian rhythms contributes to the development of disease, including sleep disorders, metabolic disorders and cancers. Similarly, exposure to environmental pollutants through air, water and food, is increasingly cited as contributory to these same problems. Thus, a better understanding of interactions between AhR signaling and the circadian clock regulatory network can provide critical new insights into environmentally regulated disease processes. This review highlights recent advances in the understanding of the reciprocal interactions between dioxin-mediated AhR signaling and the circadian clock including how these pathways relate to health and disease, with emphasis on the control of metabolic function.

  10. Recombinant kringle 5 from plasminogen antagonises hepatocyte growth factor-mediated signalling.

    Science.gov (United States)

    Ansell, Peter J; Zhang, Haiying; Davidson, Don J; Harlan, John E; Xue, John; Brodjian, Sevan; Lesniewski, Rick; McKeegan, Evelyn

    2010-03-01

    The blood protein plasminogen is proteolytically cleaved to produce angiostatin and kringle 5 (K5), both of which are known angiogenesis inhibitors. A common structural element between K5, angiostatin and other endogenous angiogenesis inhibitors is the presence of the kringle protein-interacting domain. Another kringle domain-containing protein, hepatocyte growth factor (HGF), promotes angiogenesis by binding to and stimulating the tyrosine kinase receptor Met. HGF binding to Met is dependent on the kringle domains of HGF. Because both K5 and HGF contain kringle motifs and because these proteins have opposite effects on angiogenesis, we hypothesised that K5 can antagonise HGF-mediated signalling in a Met-dependent manner. We determined that K5 binding to H1299 cells is competed by HGF suggesting that these two proteins bind to the same protein. Purified K5 immunoprecipitates with Met and this interaction is abolished by increasing doses of HGF. Using proliferation, phosphorylation of Met and Akt as markers of HGF activity, we determined that K5 inhibits HGF-mediated signalling. Taken together, these data support a model by which K5 binds to Met and functions as a competitive antagonist of HGF signalling and presents a novel mechanism of action of K5. PMID:20061137

  11. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  12. Lentiviral-Mediated Transgene Expression Can Potentiate Intestinal Mesenchymal-Epithelial Signaling

    Directory of Open Access Journals (Sweden)

    Kohn Aimee

    2009-01-01

    Full Text Available Abstract Mesenchymal-epithelial signaling is essential for the development of many organs and is often disrupted in disease. In this study, we demonstrate the use of lentiviral-mediated transgene delivery as an effective approach for ectopic transgene expression and an alternative to generation of transgenic animals. One benefit to this approach is that it can be used independently or in conjunction with established transgenic or knockout animals for studying modulation of mesenchymal-epithelial interactions. To display the power of this approach, we explored ectopic expression of a Wnt ligand in the mouse intestinal mesenchyme and demonstrate its functional influence on the adjacent epithelium. Our findings highlight the efficient use of lentiviral-mediated transgene expression for modulating mesenchymal-epithelial interactions in vivo.

  13. Ca2+ channels as integrators of G protein-mediated signaling in neurons.

    Science.gov (United States)

    Strock, Jesse; Diversé-Pierluissi, María A

    2004-11-01

    The observations from Dunlap and Fischbach that transmitter-mediated shortening of the duration of action potentials could be caused by a decrease in calcium conductance led to numerous studies of the mechanisms of modulation of voltage-dependent calcium channels. Calcium channels are well known targets for inhibition by receptor-G protein pathways, and multiple forms of inhibition have been described. Inhibition of Ca(2+) channels can be mediated by G protein betagamma-subunits or by kinases, such as protein kinase C and tyrosine kinases. In the last few years, it has been shown that integration of G protein signaling can take place at the level of the calcium channel by regulation of the interaction of the channel pore-forming subunit with different cellular proteins.

  14. Gamma-ray Signals from Dark Matter Annihilation Via Charged Mediators

    CERN Document Server

    Kumar, Jason; Teng, Fei; Yamamoto, Takahiro

    2016-01-01

    We consider a simplified model in which Majorana fermion dark matter annihilates to charged fermions through exchange of charged mediators. We consider the gamma-ray signals arising from the processes $XX \\rightarrow \\bar f f \\gamma$, $\\gamma \\gamma$, and $\\gamma Z$ in the most general case, including non-trivial fermion mass and non-trivial left-right mixing and $CP$-violating phase for the charged mediators. In particular, we find the most general spectrum for internal bremsstrahlung, which interpolates between the regimes dominated by virtual internal bremsstrahlung and by final state radiation. We also examine the variation in the ratio $\\sigma(\\gamma \\gamma) / \\sigma (\\gamma Z)$ and the helicity asymmetry in the $XX \\rightarrow \\gamma \\gamma$ process, each as a function of mixing angle and $CP$-violating phase. As an application, we apply these results to searches for a class of MSSM models.

  15. Gamma-ray signals from dark matter annihilation via charged mediators

    Science.gov (United States)

    Kumar, Jason; Sandick, Pearl; Teng, Fei; Yamamoto, Takahiro

    2016-07-01

    We consider a simplified model in which Majorana fermion dark matter annihilates to charged fermions through the exchange of charged mediators. We consider the gamma-ray signals arising from the processes X X →f ¯ f γ , γ γ , and γ Z in the most general case, including nontrivial fermion mass and nontrivial left-right mixing and the C P -violating phase for the charged mediators. In particular, we find the most general spectrum for internal bremsstrahlung, which interpolates between the regimes dominated by virtual internal bremsstrahlung and by final state radiation. We also examine the variation in the ratio σ (γ γ )/σ (γ Z ) and the helicity asymmetry in the X X →γ γ process, each as a function of the mixing angle and C P -violating phase. As an application, we apply these results to searches for a class of minimal supersymmetric Standard Model models.

  16. Lentiviral-Mediated Transgene Expression Can Potentiate Intestinal Mesenchymal-Epithelial Signaling

    Directory of Open Access Journals (Sweden)

    Dismuke Adria D

    2009-07-01

    Full Text Available Abstract Mesenchymal-epithelial signaling is essential for the development of many organs and is often disrupted in disease. In this study, we demonstrate the use of lentiviral-mediated transgene delivery as an effective approach for ectopic transgene expression and an alternative to generation of transgenic animals. One benefit to this approach is that it can be used independently or in conjunction with established transgenic or knockout animals for studying modulation of mesenchymal-epithelial interactions. To display the power of this approach, we explored ectopic expression of a Wnt ligand in the mouse intestinal mesenchyme and demonstrate its functional influence on the adjacent epithelium. Our findings highlight the efficient use of lentiviral-mediated transgene expression for modulating mesenchymal-epithelial interactions in vivo.

  17. Mediators, Receptors, and Signalling Pathways in the Anti-Inflammatory and Antihyperalgesic Effects of Acupuncture

    Directory of Open Access Journals (Sweden)

    John L. McDonald

    2015-01-01

    Full Text Available Acupuncture has been used for millennia to treat allergic diseases including both intermittent rhinitis and persistent rhinitis. Besides the research on the efficacy and safety of acupuncture treatment for allergic rhinitis, research has also investigated how acupuncture might modulate immune function to exert anti-inflammatory effects. A proposed model has previously hypothesized that acupuncture might downregulate proinflammatory neuropeptides, proinflammatory cytokines, and neurotrophins, modulating transient receptor potential vallinoid (TRPV1, a G-protein coupled receptor which plays a central role in allergic rhinitis. Recent research has been largely supportive of this model. New advances in research include the discovery of a novel cholinergic anti-inflammatory pathway activated by acupuncture. A chemokine-mediated proliferation of opioid-containing macrophages in inflamed tissues, in response to acupuncture, has also been demonstrated for the first time. Further research on the complex cross talk between receptors during inflammation is also helping to elucidate the mediators and signalling pathways activated by acupuncture.

  18. Disequilibrium of BMP2 Levels in the Breast Stem Cell Niche Launches Epithelial Transformation by Overamplifying BMPR1B Cell Response

    Directory of Open Access Journals (Sweden)

    Marion Chapellier

    2015-02-01

    Full Text Available Understanding the mechanisms of cancer initiation will help to prevent and manage the disease. At present, the role of the breast microenvironment in transformation remains unknown. As BMP2 and BMP4 are important regulators of stem cells and their niches in many tissues, we investigated their function in early phases of breast cancer. BMP2 production by tumor microenvironment appeared to be specifically upregulated in luminal tumors. Chronic exposure of immature human mammary epithelial cells to high BMP2 levels initiated transformation toward a luminal tumor-like phenotype, mediated by the receptor BMPR1B. Under physiological conditions, BMP2 controlled the maintenance and differentiation of early luminal progenitors, while BMP4 acted on stem cells/myoepithelial progenitors. Our data also suggest that microenvironment-induced overexpression of BMP2 may result from carcinogenic exposure. We reveal a role for BMP2 and the breast microenvironment in the initiation of stem cell transformation, thus providing insight into the etiology of luminal breast cancer.

  19. Disequilibrium of BMP2 Levels in the Breast Stem Cell Niche Launches Epithelial Transformation by Overamplifying BMPR1B Cell Response

    Science.gov (United States)

    Chapellier, Marion; Bachelard-Cascales, Elodie; Schmidt, Xenia; Clément, Flora; Treilleux, Isabelle; Delay, Emmanuel; Jammot, Alexandre; Ménétrier-Caux, Christine; Pochon, Gaëtan; Besançon, Roger; Voeltzel, Thibault; Caron de Fromentel, Claude; Caux, Christophe; Blay, Jean-Yves; Iggo, Richard; Maguer-Satta, Véronique

    2015-01-01

    Summary Understanding the mechanisms of cancer initiation will help to prevent and manage the disease. At present, the role of the breast microenvironment in transformation remains unknown. As BMP2 and BMP4 are important regulators of stem cells and their niches in many tissues, we investigated their function in early phases of breast cancer. BMP2 production by tumor microenvironment appeared to be specifically upregulated in luminal tumors. Chronic exposure of immature human mammary epithelial cells to high BMP2 levels initiated transformation toward a luminal tumor-like phenotype, mediated by the receptor BMPR1B. Under physiological conditions, BMP2 controlled the maintenance and differentiation of early luminal progenitors, while BMP4 acted on stem cells/myoepithelial progenitors. Our data also suggest that microenvironment-induced overexpression of BMP2 may result from carcinogenic exposure. We reveal a role for BMP2 and the breast microenvironment in the initiation of stem cell transformation, thus providing insight into the etiology of luminal breast cancer. PMID:25601208

  20. The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians.

    Science.gov (United States)

    Molina, M Dolores; Saló, Emili; Cebrià, Francesc

    2007-11-01

    The bone morphogenetic protein (BMP) pathway has been shown to play an important role in the establishment of the dorsoventral axis during development in both vertebrate and invertebrate species. In an attempt to unravel the role of BMPs in pattern formation during planarian regeneration, we studied this signaling pathway in Schmidtea mediterranea. Here, we functionally characterize planarian homologues of two key elements of the pathway: Smed-BMP and Smed-Smad1. Whole-mount in situ hybridization showed that Smed-BMP is expressed at the planarian dorsal midline, suggesting a role in dorsoventral patterning, while Smed-Smad1 is widely expressed throughout the mesenchyme and in the central nervous system. RNA interference (RNAi) knockdowns of Smed-BMP or Smed-Smad1 led to the disappearance of dorsal markers along with the ectopic expression of ventral markers on the dorsal side of the treated animals. In almost all cases, a duplicated central nervous system differentiated dorsally after Smed-BMP or Smed-Smad1 RNAi. These defects were observed not only during regeneration but also in intact non-regenerating animals. Our results suggest that the BMP signaling pathway is conserved in planarians and that it plays a key role in the regeneration and maintenance of the dorsoventral axis. PMID:17905225

  1. TGF-β1/SMAD SIGNALING PATHWAY MEDIATES p53-DEPENDENT APOPTOSIS IN HEPATOMA CELL LINES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To determine whether transforming growth factor betal ( TGF-β1 )/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines. Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, and Hep3B, were used in this study. TGF-β31-induced apoptosis in hepatic carcinoma cell lines was analyzed using TUNEL assay. For identifying the mechanism of apoptosis induced by TGF-β1, cell lines were transfected with a TGF-β1-inducible luciferase reportor plasmid containing Smad4 binding elements. After transfection, cells were treated with TGF-β1, then assayed for luciferase activity. Results The apoptosis rate of HepG2 cell lines (48.51% ± 8.21% ) was significantly higher than control (12. 72% ±2. 18%, P <0. 05 ). But TGF-β1 was not able to induce apoptosis of Huh-7 and Hep3B cell lines. The relative luciferase activity of TGF-β1-treated HepG2 cell lines (4. 38) was significantly higher than control (1.00, P <0. 05). But the relative luciferase activity of TGF-β1-treated Huh-7 and Hep3B cell lines less increased compared with control. Conclusions HepG2 cells seem to be highly susceptible to TGF-β1-induced apoptosis compared with Hep3B and Huh-7 cell lines. Smad4 is a central mediator of TGF-β1 signaling transdution pathway. TGF-β1/Smad signaling pathway might mediate p53-dependent apoptosis in hepatoma cell lines.

  2. Combinatorial signals by inflammatory cytokines and chemokines mediate leukocyte interactions with extracellular matrix.

    Science.gov (United States)

    Vaday, G G; Franitza, S; Schor, H; Hecht, I; Brill, A; Cahalon, L; Hershkoviz, R; Lider, O

    2001-06-01

    On their extravasation from the vascular system into inflamed tissues, leukocytes must maneuver through a complex insoluble network of molecules termed the extracellular matrix (ECM). Leukocytes navigate toward their target sites by adhering to ECM glycoproteins and secreting degradative enzymes, while constantly orienting themselves in response to specific signals in their surroundings. Cytokines and chemokines are key biological mediators that provide such signals for cell navigation. Although the individual effects of various cytokines have been well characterized, it is becoming increasingly evident that the mixture of cytokines encountered in the ECM provides important combinatorial signals that influence cell behavior. Herein, we present an overview of previous and ongoing studies that have examined how leukocytes integrate signals from different combinations of cytokines that they encounter either simultaneously or sequentially within the ECM, to dynamically alter their navigational activities. For example, we describe our findings that tumor necrosis factor (TNF)-alpha acts as an adhesion-strengthening and stop signal for T cells migrating toward stromal cell-derived factor-1alpha, while transforming growth factor-beta down-regulates TNF-alpha-induced matrix metalloproteinase-9 secretion by monocytes. These findings indicate the importance of how one cytokine, such as TNF-alpha, can transmit diverse signals to different subsets of leukocytes, depending on its combination with other cytokines, its concentration, and its time and sequence of exposure. The combinatorial effects of multiple cytokines thus affect leukocytes in a step-by-step manner, whereby cells react to cytokine signals in their immediate vicinity by altering their adhesiveness, directional movement, and remodeling of the ECM. PMID:11404372

  3. USP33, a new player in lung cancer, mediates Slit-Robo signaling

    OpenAIRE

    Wen, Pushuai; Kong, Ruirui; Liu, Jianghong; Zhu, Li; Chen, Xiaoping; Li, Xiaofei; Nie, Yongzhan; Wu, Kaichun; Jane Y Wu

    2014-01-01

    Ubiquitin specific protease 33 (USP33) is a multifunctional protein regulating diverse cellular processes. The expression and role of USP33 in lung cancer remain unexplored. In this study, we show that USP33 is down-regulated in multiple cohorts of lung cancer patients and that low expression of USP33 is associated with poor prognosis. USP33 mediates Slit-Robo signaling in lung cancer cell migration. Downregulation of USP33 reduces the protein stability of Robo1 in lung cancer cells, providin...

  4. Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Schulz, Tim J; Espinoza, Daniel O;

    2010-01-01

    Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and...... BMP7's suppressive effect on pref-1 transcription. Together, these data suggest cross talk between the insulin and BMP signaling systems by which BMP7 can rescue brown adipogenesis in cells with insulin resistance.......Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and...... BMP signaling systems in brown adipogenesis, we examined the effect of BMP7 in insulin receptor substrate 1 (IRS-1)-deficient brown preadipocytes, which exhibit a severe defect in differentiation. Treatment of these cells with BMP7 for 3 days prior to adipogenic induction restored differentiation and...

  5. BMP7 enhances the effect of BMSCs on extracellular matrix remodeling in a rabbit model of intervertebral disc degeneration.

    Science.gov (United States)

    Xu, Jun; E, Xiao-Qiang; Wang, Nan-Xiang; Wang, Mo-Nan; Xie, Huan-Xin; Cao, Yan-Hui; Sun, Li-Hua; Tian, Jun; Chen, Hua-Jiang; Yan, Jing-Long

    2016-05-01

    Intervertebral discs (IVDs) provide stability and flexibility to the spinal column; however, IVDs, and in particular the nucleus pulposus (NP), undergo a degenerative process characterized by changes in the disc extracellular matrix (ECM), decreased cell viability, and reduced synthesis of proteoglycan and type II collagen. Here, we investigated the efficacy and feasibility of stem cell therapy using bone marrow mesenchymal stem cells (BMSCs) over-expressing bone morphogenetic protein 7 (BMP7) to promote ECM remodeling of degenerated IVDs. Lentivirus-mediated BMP7 over-expression induced differentiation of BMSCs into an NP phenotype, as indicated by expression of the NP markers collagen type II, aggrecan, SOX9 and keratins 8 and 19, increased the content of glycosaminoglycan, and up-regulated β-1,3-glucuronosyl transferase 1, a regulator of chondroitin sulfate synthesis in NP cells. These effects were suppressed by Smad1 silencing, indicating that the effect of BMP7 on ECM remodeling was mediated by the Smad pathway. In vivo analysis in a rabbit model of disc degeneration showed that implantation of BMSCs over-expressing BMP7 promoted cell differentiation and proliferation in the NP, as well as their own survival, and these effects were mediated by the Smad pathway. The results of the present study indicate the beneficial effects of BMP7 on restoring ECM homeostasis in NP cells, and suggest potential strategies for improving cell therapy for the treatment of disc diseases. PMID:26929154

  6. Multi-organ Site Metastatic Reactivation Mediated by Non-canonical Discoidin Domain Receptor 1 Signaling.

    Science.gov (United States)

    Gao, Hua; Chakraborty, Goutam; Zhang, Zhanguo; Akalay, Intissar; Gadiya, Mayur; Gao, Yaquan; Sinha, Surajit; Hu, Jian; Jiang, Cizhong; Akram, Muzaffar; Brogi, Edi; Leitinger, Birgit; Giancotti, Filippo G

    2016-06-30

    Genetic screening identifies the atypical tetraspanin TM4SF1 as a strong mediator of metastatic reactivation of breast cancer. Intriguingly, TM4SF1 couples the collagen receptor tyrosine kinase DDR1 to the cortical adaptor syntenin 2 and, hence, to PKCα. The latter kinase phosphorylates and activates JAK2, leading to the activation of STAT3. This non-canonical mechanism of signaling induces the expression of SOX2 and NANOG; sustains the manifestation of cancer stem cell traits; and drives metastatic reactivation in the lung, bone, and brain. Bioinformatic analyses and pathological studies corroborate the clinical relevance of these findings. We conclude that non-canonical DDR1 signaling enables breast cancer cells to exploit the ubiquitous interstitial matrix component collagen I to undergo metastatic reactivation in multiple target organs. PMID:27368100

  7. PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development.

    Directory of Open Access Journals (Sweden)

    Juan de Dios Barajas-López

    Full Text Available The initiation of chloroplast development in the light is dependent on nuclear encoded components. The nuclear genes encoding key components in the photosynthetic machinery are regulated by signals originating in the plastids. These plastid signals play an essential role in the regulation of photosynthesis associated nuclear genes (PhANGs when proplastids develop into chloroplasts. One of the plastid signals is linked to the tetrapyrrole biosynthesis and accumulation of the intermediates the Mg-ProtoIX and its methyl ester Mg-ProtoIX-ME. Phytochrome-Associated Protein Phosphatase 5 (PAPP5 was isolated in a previous study as a putative Mg-ProtoIX interacting protein. In order to elucidate if there is a biological link between PAPP5 and the tetrapyrrole mediated signal we generated double mutants between the Arabidopsis papp5 and the crd mutants. The crd mutant over-accumulates Mg-ProtoIX and Mg-ProtoIX-ME and the tetrapyrrole accumulation triggers retrograde signalling. The crd mutant exhibits repression of PhANG expression, altered chloroplast morphology and a pale phenotype. However, in the papp5crd double mutant, the crd phenotype is restored and papp5crd accumulated wild type levels of chlorophyll, developed proper chloroplasts and showed normal induction of PhANG expression in response to light. Tetrapyrrole feeding experiments showed that PAPP5 is required to respond correctly to accumulation of tetrapyrroles in the cell and that PAPP5 is most likely a component in the plastid signalling pathway down stream of the tetrapyrrole Mg-ProtoIX/Mg-ProtoIX-ME. Inhibition of phosphatase activity phenocopied the papp5crd phenotype in the crd single mutant demonstrating that PAPP5 phosphatase activity is essential to mediate the retrograde signal and to suppress PhANG expression in the crd mutant. Thus, our results suggest that PAPP5 receives an inbalance in the tetrapyrrole biosynthesis through the accumulation of Mg-ProtoIX and acts as a negative

  8. Sam68 Mediates the Activation of Insulin and Leptin Signalling in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Antonio Pérez-Pérez

    Full Text Available Obesity is a well-known risk factor for breast cancer development in postmenopausal women. High insulin and leptin levels seem to have a role modulating the growth of these tumours. Sam68 is an RNA-binding protein with signalling functions that has been found to be overexpressed in breast cancer. Moreover, Sam68 may be recruited to insulin and leptin signalling pathways, mediating its effects on survival, growth and proliferation in different cellular types. We aimed to study the expression of Sam68 and its phosphorylation level upon insulin and leptin stimulation, and the role of Sam68 in the proliferative effect and signalling pathways that are activated by insulin or leptin in human breast adenocarcinoma cells. In the human breast adenocarcinoma cell lines MCF7, MDA-MB-231 and BT-474, Sam68 protein quantity and gene expression were increased upon leptin or insulin stimulation, as it was checked by qPCR and immunoblot. Moreover, both insulin and leptin stimulation promoted an increase in Sam68 tyrosine phosphorylation and negatively regulated its RNA binding capacity. siRNA was used to downregulate Sam68 expression, which resulted in lower proliferative effects of both insulin and leptin, as well as a lower activation of MAPK and PI3K pathways promoted by both hormones. These effects may be partly explained by the decrease in IRS-1 expression by down-regulation of Sam68. These results suggest the participation of Sam68 in both leptin and insulin receptor signaling in human breast cancer cells, mediating the trophic effects of these hormones in proliferation and cellular growth.

  9. Phospholipase D signaling mediates reactive oxygen species-induced lung endothelial barrier dysfunction.

    Science.gov (United States)

    Usatyuk, Peter V; Kotha, Sainath R; Parinandi, Narasimham L; Natarajan, Viswanathan

    2013-01-01

    Reactive oxygen species (ROS) have emerged as critical players in the pathophysiology of pulmonary disorders and diseases. Earlier, we have demonstrated that ROS stimulate lung endothelial cell (EC) phospholipase D (PLD) that generates phosphatidic acid (PA), a second messenger involved in signal transduction. In the current study, we investigated the role of PLD signaling in the ROS-induced lung vascular EC barrier dysfunction. Our results demonstrated that hydrogen peroxide (H2O2), a typical physiological ROS, induced PLD activation and altered the barrier function in bovine pulmonary artery ECs (BPAECs). 1-Butanol, the quencher of PLD, generated PA leading to the formation of physiologically inactive phosphatidyl butanol but not its biologically inactive analog, 2-butanol, blocked the H2O2-mediated barrier dysfunction. Furthermore, cell permeable C2 ceramide, an inhibitor of PLD but not the C2 dihydroceramide, attenuated the H2O2-induced PLD activation and enhancement of paracellular permeability of Evans blue conjugated albumin across the BPAEC monolayers. In addition, transfection of BPAECs with adenoviral constructs of hPLD1 and mPLD2 mutants attenuated the H2O2-induced barrier dysfunction, cytoskeletal reorganization and distribution of focal adhesion proteins. For the first time, this study demonstrated that the PLD-generated intracellular bioactive lipid signal mediator, PA, played a critical role in the ROS-induced barrier dysfunction in lung vascular ECs. This study also underscores the importance of PLD signaling in vascular leak and associated tissue injury in the etiology of lung diseases among critically ill patients encountering oxygen toxicity and excess ROS production during ventilator-assisted breathing.

  10. Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation.

    Directory of Open Access Journals (Sweden)

    Esra Cagavi

    Full Text Available As heart failure due to myocardial infarction remains a leading cause of morbidity worldwide, cell-based cardiac regenerative therapy using cardiac progenitor cells (CPCs could provide a potential treatment for the repair of injured myocardium. As adult CPCs may have limitations regarding tissue accessibility and proliferative ability, CPCs derived from embryonic stem cells (ESCs could serve as an unlimited source of cells with high proliferative ability. As one of the CPCs that can be derived from embryonic stem cells, Isl1 expressing cardiac progenitor cells (Isl1-CPCs may serve as a valuable source of cells for cardiac repair due to their high cardiac differentiation potential and authentic cardiac origin. In order to generate an unlimited number of Isl1-CPCs, we used a previously established an ESC line that allows for isolation of Isl1-CPCs by green fluorescent protein (GFP expression that is directed by the mef2c gene, specifically expressed in the Isl1 domain of the anterior heart field. To improve the efficiency of cardiac differentiation of Isl1-CPCs, we studied the role of Bmp4 in cardiogenesis of Isl1-CPCs. We show an inductive role of Bmp directly on cardiac progenitors and its enhancement on early cardiac differentiation of CPCs. Upon induction of Bmp4 to Isl1-CPCs during differentiation, the cTnT+ cardiomyocyte population was enhanced 2.8±0.4 fold for Bmp4 treated CPC cultures compared to that detected for vehicle treated cultures. Both Bmp4 treated and untreated cardiomyocytes exhibit proper electrophysiological and calcium signaling properties. In addition, we observed a significant increase in Tbx5 and Tbx20 expression in differentiation cultures treated with Bmp4 compared to the untreated control, suggesting a link between Bmp4 and Tbx genes which may contribute to the enhanced cardiac differentiation in Bmp4 treated cultures. Collectively these findings suggest a cardiomyogenic role for Bmp4 directly on a pure population of

  11. Influenza C virus NS1 protein counteracts RIG-I-mediated IFN signalling

    Directory of Open Access Journals (Sweden)

    Vlasak Reinhard

    2011-02-01

    Full Text Available Abstract The nonstructural proteins 1 (NS1 from influenza A and B viruses are known as the main viral factors antagonising the cellular interferon (IFN response, inter alia by inhibiting the retinoic acid-inducible gene I (RIG-I signalling. The cytosolic pattern-recognition receptor RIG-I senses double-stranded RNA and 5'-triphosphate RNA produced during RNA virus infections. Binding to these ligands activates RIG-I and in turn the IFN signalling. We now report that the influenza C virus NS1 protein also inhibits the RIG-I-mediated IFN signalling. Employing luciferase-reporter assays, we show that expression of NS1-C proteins of virus strains C/JJ/50 and C/JHB/1/66 considerably reduced the IFN-β promoter activity. Mapping of the regions from NS1-C of both strains involved in IFN-β promoter inhibition showed that the N-terminal 49 amino acids are dispensable, while the C-terminus is required for proper modulation of the IFN response. When a mutant RIG-I, which is constitutively active without ligand binding, was employed, NS1-C still inhibited the downstream signalling, indicating that IFN inhibitory properties of NS1-C are not necessarily linked to an RNA binding mechanism.

  12. Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress.

    Science.gov (United States)

    Evanson, Nathan K; Herman, James P

    2015-10-15

    Glutamate is an important neurotransmitter in the regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in the regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling.

  13. Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa.

    Science.gov (United States)

    Michel, Laurent; Bachelard, Aude; Reimmann, Cornelia

    2007-05-01

    In response to iron starvation, Pseudomonas aeruginosa produces the siderophore pyochelin. When secreted to the extracellular environment, pyochelin chelates iron and transports it to the bacterial cytoplasm via its specific outer-membrane receptor FptA and the inner-membrane permease FptX. Exogenously added pyochelin also acts as a signal which induces the expression of the pyochelin biosynthesis and uptake genes by activating PchR, a cytoplasmic regulatory protein of the AraC/XylS family. The importance of ferripyochelin uptake genes in this regulation was evaluated. The fptA and fptX genes were shown to be part of the fptABCX ferripyochelin transport operon, which is conserved in Burkholderia sp. and Rhodospirillum rubrum. The fptB and fptC genes were found to be dispensable for utilization of pyochelin as an iron source, for signalling and for pyochelin production. By contrast, mutations in fptA and fptX not only interfered with pyochelin utilization, but also affected signalling and diminished siderophore production. It is concluded from this that pyochelin-mediated signalling operates to a large extent via the ferripyochelin transport system.

  14. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Sebastian A.; Linden, Rafael [Universidade Federal do Rio de Janeiro (IBCCF/UFRl), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho; Cordeiro, Yraima; Rocha e Lima, Luis M.T. da [Universidade Federal do Rio de Janeiro (FF/UFRl), RJ (Brazil). Fac. de Farmacia; Lopes, Marilene H. [Instituto Ludwig de Pesquisa de Cancer, Sao Paulo, SP (Brazil); Silva, Jerson L.; Foguel, Debora [Universidade Federal do Rio de Janeiro (IBqM/UFRl), RJ (Brazil). Inst. de Bioquimica Medica

    2009-07-01

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrP{sup c}), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrP{sup c} with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr P{sup c} and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrP{sup c}:hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr P{sup c}{sub 143-153} beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrP{sup c}. Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr P{sup c}{sub 143-153} beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr P{sup c}, and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr P{sup c}:hop/STI 1 interaction, consistent with the hypothesis that Pr P{sup c} scaffolds multiprotein signaling complexes at the cell surface. (author)

  15. Are small GTPases signal hubs in sugar-mediated induction of fructan biosynthesis?

    Directory of Open Access Journals (Sweden)

    Tita Ritsema

    Full Text Available External sugar initiates biosynthesis of the reserve carbohydrate fructan, but the molecular processes mediating this response remain obscure. Previously it was shown that a phosphatase and a general kinase inhibitor hamper fructan accumulation. We use various phosphorylation inhibitors both in barley and in Arabidopsis and show that the expression of fructan biosynthetic genes is dependent on PP2A and different kinases such as Tyr-kinases and PI3-kinases. To further characterize the phosphorylation events involved, comprehensive analysis of kinase activities in the cell was performed using a PepChip, an array of >1000 kinase consensus substrate peptide substrates spotted on a chip. Comparison of kinase activities in sugar-stimulated and mock(sorbitol-treated Arabidopsis demonstrates the altered phosphorylation of many consensus substrates and documents the differences in plant kinase activity upon sucrose feeding. The different phosphorylation profiles obtained are consistent with sugar-mediated alterations in Tyr phosphorylation, cell cycling, and phosphoinositide signaling, and indicate cytoskeletal rearrangements. The results lead us to infer a central role for small GTPases in sugar signaling.

  16. Denbinobin suppresses breast cancer metastasis through the inhibition of Src-mediated signaling pathways.

    Science.gov (United States)

    Chen, Pei-Hsuan; Peng, Chieh-Yu; Pai, Hui-Chen; Teng, Che-Ming; Chen, Chien-Chih; Yang, Chia-Ron

    2011-08-01

    Denbinobin (5-hydroxy-3,7-dimethoxy- 1,4-phenanthraquinone), a biologically active chemical isolated from Ephemerantha lonchophylla, has been demonstrated to display anti-cancer activity. Breast cancer is the leading cause of female mortality, and the high mortality is mainly attributable to metastasis. Src kinase activity is elevated in many human cancers, including breast cancer, and is often associated with aggressive disease. In the present study, we examined the anti-metastatic effects of denbinobin through decreasing Src kinase activity in human and mouse breast cancer cells. Denbinobin caused significant block of Src kinase activity in both human and mouse breast cancer cells. Moreover, phosphorylation of the signaling molecules focal adhesion kinase, Crk-associated substrate and paxillin downstream of Src was also inhibited by denbinobin. Furthermore, denbinobin inhibited the in vitro migration, invasion and in vivo metastasis of breast cancers in a mouse metastatic model. The denbinobin-treated group showed a significant reduction in tumor metastasis, orthrotopic tumor volume, and spleen enlargement compared to the control group. In addition, transfection of breast cancer cells with a plasmid coding for a constitutively active Src prevented the denbinobin-mediated phosphorylation of Src and downstream molecules and cell migration. Our findings provide evidences that denbinobin inhibits Src-mediated signaling pathways involved in controlling breast cancer migration and metastasis, suggesting that it has therapeutic potential in breast cancer treatment. PMID:21062671

  17. Cullin-RING Ubiquitin Ligases in Salicylic Acid-Mediated Plant Immune Signaling

    Directory of Open Access Journals (Sweden)

    James J. Furniss

    2015-03-01

    Full Text Available Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA. SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e. the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs, which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing (NLR immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses.

  18. SET9-Mediated Regulation of TGF-β Signaling Links Protein Methylation to Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Maximilianos Elkouris

    2016-06-01

    Full Text Available TGF-β signaling regulates a variety of cellular processes, including proliferation, apoptosis, differentiation, immune responses, and fibrogenesis. Here, we describe a lysine methylation-mediated mechanism that controls the pro-fibrogenic activity of TGF-β. We find that the methyltransferase Set9 potentiates TGF-β signaling by targeting Smad7, an inhibitory downstream effector. Smad7 methylation promotes interaction with the E3 ligase Arkadia and, thus, ubiquitination-dependent degradation. Depletion or pharmacological inhibition of Set9 results in elevated Smad7 protein levels and inhibits TGF-β-dependent expression of genes encoding extracellular matrix components. The inhibitory effect of Set9 on TGF-β-mediated extracellular matrix production is further demonstrated in mouse models of pulmonary fibrosis. Lung fibrosis induced by bleomycin or Ad-TGF-β treatment was highly compromised in Set9-deficient mice. These results uncover a complex regulatory interplay among multiple Smad7 modifications and highlight the possibility that protein methyltransferases may represent promising therapeutic targets for treating lung fibrosis.

  19. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity

    Directory of Open Access Journals (Sweden)

    Rocha-Sanchez Sonia M

    2010-10-01

    Full Text Available Abstract Background The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental. Results Here we report that a point mutation at the phospholipase Cγ (PLCγ docking site in the mouse neurotrophin tyrosine kinase receptor TrkB (Ntrk2 specifically impairs fiber guidance inside the vestibular sensory epithelia, but has limited effects on the survival of vestibular sensory neurons and growth of afferent processes toward the sensory epithelia. We also show that expression of the TRPC3 cation calcium channel, whose activity is known to be required for nerve-growth cone guidance induced by brain-derived neurotrophic factor (BDNF, is altered in these animals. In addition, we find that absence of the PLCγ mediated TrkB signalling interferes with the transformation of bouton type afferent terminals of vestibular dendrites into calyces (the largest synaptic contact of dendrites known in the mammalian nervous system on type I vestibular hair cells; the latter are normally distributed in these mutants as revealed by an unaltered expression pattern of the potassium channel KCNQ4 in these cells. Conclusions These results demonstrate a crucial involvement of the TrkB/PLCγ-mediated intracellular signalling in structural aspects of sensory neuron plasticity.

  20. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    Science.gov (United States)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  1. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Xuemei Liao

    Full Text Available Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results show that tryptanthrin inhibited the in vitro proliferation, migration, and tube formation of the human microvascular endothelial cells (HMEC-1 in a concentration-dependent manner and significantly suppressed angiogenesis in Matrigel plugs in mice. Mechanistic studies indicated that tryptanthrin reduced the expression of several pro-angiogenic factors (Ang-1, PDGFB and MMP2. Tryptanthrin was also found to suppress the VEGFR2-mediated ERK1/2 signalling pathway in HMEC-1 cells and molecular docking simulation indicated that tryptanthrin could bound to the ATP-binding site of VEGFR2. Collectively, the present study demonstrated that tryptanthrin exhibited both in vitro and in vivo anti-angiogenic activities by targeting the VEGFR2-mediated ERK1/2 signalling pathway and might have therapeutic potential for the treatment of angiogenesis-related diseases.

  2. A novel role of sesamol in inhibiting NF-κB-mediated signaling in platelet activation

    Directory of Open Access Journals (Sweden)

    Chang Chao-Chien

    2011-12-01

    Full Text Available Abstract Background Platelet activation is relevant to a variety of coronary heart diseases. Our previous studies revealed that sesamol possesses potent antiplatelet activity through increasing cyclic AMP formation. Although platelets are anucleated cells, they also express the transcription factor, NF-κB, that may exert non-genomic functions in platelet activation. Therefore, we further investigated the inhibitory roles of sesamol in NF-κB-mediated platelet function. Methods Platelet aggregation, Fura 2-AM fluorescence, and immunoblotting analysis were used in this study. Results NF-κB signaling events, including IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation, were markedly activated by collagen (1 μg/ml in washed human platelets, and these signaling events were attenuated by sesamol (2.5~25 μM. Furthermore, SQ22536 and ODQ, inhibitors of adenylate cyclase and guanylate cyclase, respectively, strongly reversed the sesamol (25 μM-mediated inhibitory effects of IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation stimulated by collagen. The protein kinase A (PKA inhibitor, H89, also reversed sesamol-mediated inhibition of IκBα degradation. Moreover, BAY11-7082, an NF-κB inhibitor, abolished IκBα degradation, phospholipase C (PLCγ2 phosphorylation, protein kinase C (PKC activation, [Ca2+]i mobilization, and platelet aggregation stimulated by collagen. Preincubation of platelets with the inhibitors, SQ22536 and H89, both strongly reversed sesamol-mediated inhibition of platelet aggregation and [Ca2+]i mobilization. Conclusions Sesamol activates cAMP-PKA signaling, followed by inhibition of the NF-κB-PLC-PKC cascade, thereby leading to inhibition of [Ca2+]i mobilization and platelet aggregation. Because platelet activation is not only linked to hemostasis, but also has a relevant role in inflammation and metastasis, our data demonstrating that inhibition of NF-κB interferes with platelet function may

  3. Signalling mechanism for somatostatin receptor 5-mediated suppression of AMPA responses in rat retinal ganglion cells.

    Science.gov (United States)

    Deng, Qin-Qin; Sheng, Wen-Long; Zhang, Gong; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-08-01

    Somatostatin (SRIF) is involved in a variety of physiological functions via the activation of five subtypes of specific receptors (sst1-5). Here, we investigated the effects of SRIF on AMPA receptor (AMPAR)-mediated currents (AMPA currents) in isolated rat retinal ganglion cells (GCs) using patch-clamp techniques. Immunofluorescence double labelling demonstrated the expression of sst5 in rat GCs. Consistent to this, whole cell AMPA currents of GCs were dose-dependently suppressed by SRIF, and the effect was reversed by the sst5 antagonist BIM-23056. Intracellular dialysis of GDP-β-S or pre-incubation with the Gi/o inhibitor pertussis toxin (PTX) abolished the SRIF effect. The SRIF effect was mimicked by the administration of either 8-Br-cAMP or forskolin, but was eliminated by the protein kinase A (PKA) antagonists H-89/KT5720/Rp-cAMP. Moreover, SRIF increased intracellular Ca(2+) levels and did not suppress the AMPA currents when GCs were infused with an intracellular Ca(2+)-free solution or in the presence of ryanodine receptor modulators caffeine/ryanodine. Furthermore, the SRIF effect was eliminated when the activity of calmodulin (CaM), calcineurin and protein phosphatase 1 (PP1) was blocked with W-7, FK-506 and okadaic acid, respectively. SRIF persisted to suppress the AMPA currents when cGMP-protein kinase G (PKG) and phosphatidylinositol (PI)-/phosphatidylcholine (PC)-phospholipase C (PLC) signalling pathways were blocked. In rat flat-mount retinas, SRIF suppressed AMPAR-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) in GCs. We conclude that a distinct Gi/o/cAMP-PKA/ryanodine/Ca(2+)/CaM/calcineurin/PP1 signalling pathway comes into play due to the activation of sst5 to mediate the SRIF effect on GCs. PMID:26969240

  4. PINK1 positively regulates IL-1β-mediated signaling through Tollip and IRAK1 modulation

    Directory of Open Access Journals (Sweden)

    Lee Hyun Jung

    2012-12-01

    Full Text Available Abstract Background Parkinson disease (PD is characterized by a slow, progressive degeneration of dopaminergic neurons in the substantianigra. The cause of neuronal loss in PD is not well understood, but several genetic loci, including PTEN-induced putative kinase 1 (PINK1, have been linked to early-onset autosomal recessive forms of familial PD. Neuroinflammation greatly contributes to PD neuronal degeneration and pathogenesis. IL-1 is one of the principal cytokines that regulates various immune and inflammatory responses via the activation of the transcription factors NF-κB and activating protein-1. Despite the close relationship between PD and neuroinflammation, the functional roles of PD-linked genes during inflammatory processes remain poorly understood. Methods To explore the functional roles of PINK1 in response to IL-1β stimulation, HEK293 cells, mouse embryonic fibroblasts derived from PINK1-null (PINK1−/− and control (PINK1+/+ mice, and 293 IL-1RI cells stably expressing type 1 IL-1 receptor were used. Immunoprecipitation and western blot analysis were performed to detect protein–protein interaction and protein ubiquitination. To confirm the effect of PINK1 on NF-κB activation, NF-κB-dependent firefly luciferase reporter assay was conducted. Results PINK1 specifically binds two components of the IL-1-mediated signaling cascade, Toll-interacting protein (Tollip and IL-1 receptor-associated kinase 1 (IRAK1. The association of PINK1 with Tollip, a negative regulator of IL-1β signaling, increases upon IL-1β stimulation, which then facilitates the dissociation of Tollip from IRAK1 as well as the assembly of the IRAK1–TNF receptor-associated factor 6 (TRAF6 complex. PINK1 also enhances Lys63-linked polyubiquitination of IRAK1, an essential modification of recruitment of NF-κB essential modulator and subsequent IκB kinase activation, and increases formation of the intermediate signalosome including IRAK1, TRAF6, and

  5. Capsaicin mimics mechanical load-induced intracellular signaling events: involvement of TRPV1-mediated calcium signaling in induction of skeletal muscle hypertrophy.

    Science.gov (United States)

    Ito, Naoki; Ruegg, Urs T; Kudo, Akira; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2013-01-01

    Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca ( 2+) ]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca ( 2+) ]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.

  6. STAT3 interrupts ATR-Chk1 signaling to allow oncovirus-mediated cell proliferation.

    Science.gov (United States)

    Koganti, Siva; Hui-Yuen, Joyce; McAllister, Shane; Gardner, Benjamin; Grasser, Friedrich; Palendira, Umaimainthan; Tangye, Stuart G; Freeman, Alexandra F; Bhaduri-McIntosh, Sumita

    2014-04-01

    DNA damage response (DDR) is a signaling network that senses DNA damage and activates response pathways to coordinate cell-cycle progression and DNA repair. Thus, DDR is critical for maintenance of genome stability, and presents a powerful defense against tumorigenesis. Therefore, to drive cell-proliferation and transformation, viral and cellular oncogenes need to circumvent DDR-induced cell-cycle checkpoints. Unlike in hereditary cancers, mechanisms that attenuate DDR and disrupt cell-cycle checkpoints in sporadic cancers are not well understood. Using Epstein-Barr virus (EBV) as a source of oncogenes, we have previously shown that EBV-driven cell proliferation requires the cellular transcription factor STAT3. EBV infection is rapidly followed by activation and increased expression of STAT3, which mediates relaxation of the intra-S phase cell-cycle checkpoint; this facilitates viral oncogene-driven cell proliferation. We now show that replication stress-associated DNA damage, which results from EBV infection, is detected by DDR. However, signaling downstream of ATR is impaired by STAT3, leading to relaxation of the intra-S phase checkpoint. We find that STAT3 interrupts ATR-to-Chk1 signaling by promoting loss of Claspin, a protein that assists ATR to phosphorylate Chk1. This loss of Claspin which ultimately facilitates cell proliferation is mediated by caspase 7, a protein that typically promotes cell death. Our findings demonstrate how STAT3, which is constitutively active in many human cancers, suppresses DDR, fundamental to tumorigenesis. This newly recognized role for STAT3 in attenuation of DDR, discovered in the context of EBV infection, is of broad interest as the biology of cell proliferation is central to both health and disease.

  7. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction.

    Science.gov (United States)

    Keefer, Sara E; Cole, Sindy; Petrovich, Gorica D

    2016-08-01

    Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin

  8. Central mechanisms mediating the hypophagic effects of oleoylethanolamide and N-acylphosphatidylethanolamines: different lipid signals?

    Directory of Open Access Journals (Sweden)

    Adele eRomano

    2015-06-01

    Full Text Available The spread of ‘obesity epidemic’ and the poor efficacy of many anti-obesity therapies in the long-term highlight the need to develop novel efficacious therapy. This necessity stimulates a large research effort to find novel mechanisms controlling feeding and energy balance. Among these mechanisms a great deal of attention has been attracted by a family of phospholipid-derived signaling molecules that play an important role in the regulation of food-intake. They include N-acylethanolamines (NAEs and N-acylphosphatidylethanolamines (NAPEs. NAPEs have been considered for a long time simply as phospholipid precursors of the lipid mediator NAEs, but increasing body of evidence suggest a role in many physiological processes including the regulation of feeding behavior. Several observations demonstrated that among NAEs, oleoylethanolamide (OEA acts as a satiety signal, which is generated in the intestine, upon the ingestion of fat, and signals to the central nervous system. At this level different neuronal pathways, including oxytocinergic, noradrenergic, and histaminergic neurons, seem to mediate its hypophagic action. Similarly to NAEs, NAPEs (with particular reference to the N16:0 species levels were shown to be regulated by the fed state and this finding was initially interpreted as fluctuations of NAE precursors. However, the observation that exogenously administered NAPEs are able to inhibit food intake, not only in normal rats and mice but also in mice lacking the enzyme that converts NAPEs into NAEs, supported the hypothesis of a role of NAPE in the regulation of feeding behavior. Indirect observations suggest that the hypophagic action of NAPEs might involve central mechanisms, although the molecular target remains unknown. The present paper reviews the role that OEA and NAPEs play in the mechanisms that control food intake, further supporting this group of phospholipids as optimal candidate for the development of novel anti

  9. A Novel, Noncanonical BMP Pathway Modulates Synapse Maturation at the Drosophila Neuromuscular Junction

    OpenAIRE

    Sulkowski, Mikolaj J.; Tae Hee Han; Carolyn Ott; Qi Wang; Verheyen, Esther M.; Jennifer Lippincott-Schwartz; Mihaela Serpe

    2016-01-01

    Author Summary Synaptic activity and synapse development are intimately linked, but our understanding of the coupling mechanisms remains limited. Anterograde and retrograde signals together with trans-synaptic complexes enable intercellular communications. How synapse activity status is monitored and relayed across the synaptic cleft remains poorly understood. The Drosophila NMJ is a very powerful genetic system to study synapse development. BMP signaling modulates NMJ growth via a canonical,...

  10. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  11. Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice.

    Science.gov (United States)

    Liang, Hai Po H; Kerschen, Edward J; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; Jia, Shuang; Hessner, Martin J; Toso, Raffaella; Rezaie, Alireza R; Fernández, José A; Camire, Rodney M; Ruf, Wolfram; Griffin, John H; Weiler, Hartmut

    2015-11-19

    The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.

  12. Analysis of Human TAAR8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile

    Directory of Open Access Journals (Sweden)

    Jessica Mühlhaus

    2014-11-01

    Full Text Available The thyroid hormone derivative 3-iodothyronamine (3-T1AM exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1 agonist and activates Gs signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8. By RT-qPCR and locked-nucleic-acid (LNA in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of Gs and/or Gi/o signaling. Activation of G-proteins Gq/11 and G12/13 was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal Gi/o signaling activity, a so far unknown signaling pathway for TAARs.

  13. Bone Morphogenetic Protein-2-Induced Signaling and Osteogenesis Is Regulated by Cell Shape, RhoA/ROCK, and Cytoskeletal Tension

    OpenAIRE

    Wang, Yang-Kao; Yu, Xiang; Cohen, Daniel M.; Wozniak, Michele A.; Yang, Michael T.; Gao, Lin; Eyckmans, Jeroen; Chen, Christopher S.

    2011-01-01

    Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is classically thought to be mediated by different cytokines such as the bone morphogenetic proteins (BMPs). Here, we report that cell adhesion to extracellular matrix (ECM), and its effects on cell shape and cytoskeletal mechanics, regulates BMP-induced signaling and osteogenic differentiation of hMSCs. Using micropatterned substrates to progressively restrict cell spreading and flattening against ECM, we demonstrated that BM...

  14. Visualization and quantification of APP intracellular domain-mediated nuclear signaling by bimolecular fluorescence complementation.

    Directory of Open Access Journals (Sweden)

    Florian Riese

    Full Text Available BACKGROUND: The amyloid precursor protein (APP intracellular domain (AICD is released from full-length APP upon sequential cleavage by either α- or β-secretase followed by γ-secretase. Together with the adaptor protein Fe65 and the histone acetyltransferase Tip60, AICD forms nuclear multiprotein complexes (AFT complexes that function in transcriptional regulation. OBJECTIVE: To develop a medium-throughput machine-based assay for visualization and quantification of AFT complex formation in cultured cells. METHODS: We used cotransfection of bimolecular fluorescence complementation (BiFC fusion constructs of APP and Tip60 for analysis of subcellular localization by confocal microscopy and quantification by flow cytometry (FC. RESULTS: Our novel BiFC-constructs show a nuclear localization of AFT complexes that is identical to conventional fluorescence-tagged constructs. Production of the BiFC signal is dependent on the adaptor protein Fe65 resulting in fluorescence complementation only after Fe65-mediated nuclear translocation of AICD and interaction with Tip60. We applied the AFT-BiFC system to show that the Swedish APP familial Alzheimer's disease mutation increases AFT complex formation, consistent with the notion that AICD mediated nuclear signaling mainly occurs following APP processing through the amyloidogenic β-secretase pathway. Next, we studied the impact of posttranslational modifications of AICD on AFT complex formation. Mutation of tyrosine 682 in the YENPTY motif of AICD to phenylalanine prevents phosphorylation resulting in increased nuclear AFT-BiFC signals. This is consistent with the negative impact of tyrosine phosphorylation on Fe65 binding to AICD. Finally, we studied the effect of oxidative stress. Our data shows that oxidative stress, at a level that also causes cell death, leads to a reduction in AFT-BiFC signals. CONCLUSION: We established a new method for visualization and FC quantification of the interaction between

  15. Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro.

    Science.gov (United States)

    Muñoz-Félix, José M; Cuesta, Cristina; Perretta-Tejedor, Nuria; Subileau, Mariela; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-09-01

    Upregulated synthesis of extracellular matrix (ECM) proteins by myofibroblasts is a common phenomenon in the development of fibrosis. Although the role of TGF-β in fibrosis development has been extensively studied, the involvement of other members of this superfamily of cytokines, the bone morphogenetic proteins (BMPs) in organ fibrosis has given contradictory results. BMP9 is the main ligand for activin receptor-like kinase-1 (ALK1) TGF-β1 type I receptor and its effect on fibrosis development is unknown. Our purpose was to study the effect of BMP9 in ECM protein synthesis in fibroblasts, as well as the involved receptors and signaling pathways. In cultured mice fibroblasts, BMP9 induces an increase in collagen, fibronectin and connective tissue growth factor expression, associated with Smad1/5/8, Smad2/3 and Erk1/2 activation. ALK5 inhibition with SB431542 or ALK1/2/3/6 with dorsomorphin-1, inhibition of Smad3 activation with SIS3, and inhibition of the MAPK/Erk1/2 with U0126, demonstrates the involvement of these pathways in BMP9-induced ECM synthesis in MEFs. Whereas BMP9 induced Smad1/5/8 phosphorylation through ALK1, it also induces Smad2/3 phosphorylation through ALK5 but only in the presence of ALK1. Summarizing, this is the first study that accurately identifies BMP9 as a profibrotic factor in fibroblasts that promotes ECM protein expression through ALK1 and ALK5 receptors. PMID:27208502

  16. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  17. Distinct and overlapping gene regulatory networks in BMP- and HDAC-controlled cell fate determination in the embryonic forebrain

    Directory of Open Access Journals (Sweden)

    Scholl Catharina

    2012-07-01

    Full Text Available Abstract Background Both bone morphogenetic proteins (BMPs and histone deacetylases (HDACs have previously been established to play a role in the development of the three major cell types of the central nervous system: neurons, astrocytes, and oligodendrocytes. We have previously established a connection between these two protein families, showing that HDACs suppress BMP-promoted astrogliogenesis in the embryonic striatum. Since HDACs act in the nucleus to effect changes in transcription, an unbiased analysis of their transcriptional targets could shed light on their downstream effects on BMP-signaling. Results Using neurospheres from the embryonic striatum as an in vitro system to analyze this phenomenon, we have performed microarray expression profiling on BMP2- and TSA-treated cultures, followed by validation of the findings with quantitative RT-PCR and protein analysis. In BMP-treated cultures we first observed an upregulation of genes involved in cell-cell communication and developmental processes such as members of BMP and canonical Wnt signaling pathways. In contrast, in TSA-treated cultures we first observed an upregulation of genes involved in chromatin modification and transcription. Interestingly, we could not record direct changes in the protein levels of canonical members of BMP2 signaling, but we did observe an upregulation of both the transcription factor STAT3 and its active isoform phospho-STAT3 at the protein level. Conclusions STAT3 and SMAD1/5/8 interact synergistically to promote astrogliogenesis, and thus we show for the first time that HDACs act to suppress BMP-promoted astrogliogenesis by suppression of the crucial partner STAT3.

  18. GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling.

    Science.gov (United States)

    Thomsen, Alex R B; Plouffe, Bianca; Cahill, Thomas J; Shukla, Arun K; Tarrasch, Jeffrey T; Dosey, Annie M; Kahsai, Alem W; Strachan, Ryan T; Pani, Biswaranjan; Mahoney, Jacob P; Huang, Liyin; Breton, Billy; Heydenreich, Franziska M; Sunahara, Roger K; Skiniotis, Georgios; Bouvier, Michel; Lefkowitz, Robert J

    2016-08-11

    Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid β-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, β-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with β-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with β-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs. PMID:27499021

  19. Nrf2/ARE Signaling Pathway: Key Mediator in Oxidative Stress and Potential Therapeutic Target in ALS

    Directory of Open Access Journals (Sweden)

    Susanne Petri

    2012-01-01

    Full Text Available Nrf2 (nuclear erythroid 2-related factor 2 is a basic region leucine-zipper transcription factor which binds to the antioxidant response element (ARE and thereby regulates the expression of a large battery of genes involved in the cellular antioxidant and anti-inflammatory defence as well as mitochondrial protection. As oxidative stress, inflammation and mitochondrial dysfunctions have been identified as important pathomechanisms in amyotrophic lateral sclerosis (ALS, this signaling cascade has gained interest both with respect to ALS pathogenesis and therapy. Nrf2 and Keap1 expressions are reduced in motor neurons in postmortem ALS tissue. Nrf2-activating compounds have shown therapeutic efficacy in the ALS mouse model and other neurodegenerative disease models. Alterations in Nrf2 and Keap1 expression and dysregulation of the Nrf2/ARE signalling program could contribute to the chronic motor neuron degeneration in ALS and other neurodegenerative diseases. Therefore, Nrf2 emerges as a key neuroprotective molecule in neurodegenerative diseases. Our recent studies strongly support that the Nrf2/ARE signalling pathway is an important mediator of neuroprotection and therefore represents a promising target for development of novel therapies against ALS, Parkinson’s disease (PD, Huntington’s disease (HD, and Alzheimer’s disease (AD.

  20. TWEAK/Fn14 signaling axis mediates skeletal muscle atrophy and metabolic dysfunction

    Directory of Open Access Journals (Sweden)

    Shuichi eSato

    2014-01-01

    Full Text Available Tumor necrosis factor (TNF-like weak inducer of apoptosis (TWEAK through binding to its receptor fibroblast growth factor inducible 14 (Fn14 has been shown to regulate many cellular responses including proliferation, differentiation, apoptosis, inflammation, and fibrosis under both physiological and pathological conditions. Emerging evidence suggests that TWEAK is also a major muscle wasting cytokine. TWEAK activates nuclear factor-kappa B signaling and proteolytic pathways such as ubiquitin proteasome system, autophagy, and caspases to induce muscle proteolysis in cultured myotubes. Fn14 is dormant or expressed in minimal amounts in normal healthy muscle. However, specific atrophic conditions, such as denervation, immobilization, and starvation stimulate the expression of Fn14 leading to activation of TWEAK/Fn14 signaling and eventually skeletal muscle atrophy. TWEAK also causes slow-to-fast type fiber transition in skeletal muscle. Furthermore, recent studies suggest that TWEAK diminishes mitochondrial content and represses skeletal muscle oxidative phosphorylation capacity. TWEAK mediates these effects through affecting the expression of a number of genes and microRNAs. In this review article, we have discussed the recent advancements towards understanding the role and mechanisms of action of TWEAK/Fn14 signaling in skeletal muscle with particular reference to different models of atrophy and oxidative metabolism.

  1. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo.

    Science.gov (United States)

    Crisan, Mihaela; Solaimani Kartalaei, Parham; Neagu, Alex; Karkanpouna, Sofia; Yamada-Inagawa, Tomoko; Purini, Caterina; Vink, Chris S; van der Linden, Reinier; van Ijcken, Wilfred; Chuva de Sousa Lopes, Susana M; Monteiro, Rui; Mummery, Christine; Dzierzak, Elaine

    2016-03-01

    Hematopoietic stem cells (HSC), the self-renewing cells of the adult blood differentiation hierarchy, are generated during embryonic stages. The first HSCs are produced in the aorta-gonad-mesonephros (AGM) region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production and expansion, but it is unknown whether they act to affect the same HSCs. In this study using the BRE GFP reporter mouse strain that identifies BMP/Smad-activated cells, we find that the AGM harbors two types of adult-repopulating HSCs upon explant culture: One type is BMP-activated and the other is a non-BMP-activated HSC type that is indirectly controlled by Hedgehog signaling through the VEGF pathway. Transcriptomic analyses demonstrate that the two HSC types express distinct but overlapping genetic programs. These results revealing the bifurcation in HSC types at early embryonic stages in the AGM explant model suggest that their development is dependent upon the signaling molecules in the microenvironment. PMID:26923823

  2. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo

    Directory of Open Access Journals (Sweden)

    Mihaela Crisan

    2016-03-01

    Full Text Available Hematopoietic stem cells (HSC, the self-renewing cells of the adult blood differentiation hierarchy, are generated during embryonic stages. The first HSCs are produced in the aorta-gonad-mesonephros (AGM region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production and expansion, but it is unknown whether they act to affect the same HSCs. In this study using the BRE GFP reporter mouse strain that identifies BMP/Smad-activated cells, we find that the AGM harbors two types of adult-repopulating HSCs upon explant culture: One type is BMP-activated and the other is a non-BMP-activated HSC type that is indirectly controlled by Hedgehog signaling through the VEGF pathway. Transcriptomic analyses demonstrate that the two HSC types express distinct but overlapping genetic programs. These results revealing the bifurcation in HSC types at early embryonic stages in the AGM explant model suggest that their development is dependent upon the signaling molecules in the microenvironment.

  3. Discovery of a Small-Molecule BMP Sensitizer for Human Embryonic Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Lingling Feng

    2016-05-01

    Full Text Available Sorely missing from the “toolkit” for directed differentiation of stem/progenitor cells are agonists of the BMP-signaling pathway. Using a high-throughput chemical screen, we discovered that PD407824, a checkpoint kinase 1 (CHK1 inhibitor, increases the sensitivity of cells to sub-threshold amounts of BMP4. We show utility of the compound in the directed differentiation of human embryonic stem cells toward mesoderm or cytotrophoblast stem cells. Blocking CHK1 activity using pharmacological compounds or CHK1 knockout using single guide RNA (sgRNA confirmed that CHK1 inhibition increases the sensitivity to BMP4 treatment. Additional mechanistic studies indicate that CHK1 inhibition depletes p21 levels, thereby activating CDK8/9, which then phosphorylates the SMAD2/3 linker region, leading to decreased levels of SMAD2/3 protein and enhanced levels of nuclear SMAD1. This study provides insight into mechanisms controlling the BMP/transforming growth factor beta (TGF-β signaling pathways and a useful pharmacological reagent for directed differentiation of stem cells.

  4. Vergleich von BMP-4 versus BMP-2 für die osteogene Differenzierung von Periostzellen

    OpenAIRE

    Klumpp, Florian (Alexander Stephan)

    2010-01-01

    Es ist heute bekannt, dass humane periostale mesenchymale Stammzellen (PMSCs) eine aussichtsreiche Grundlage für ein erfolgreiches Knochen Tissue Engineering darstellen. Dennoch ist die osteogene Differenzierung noch nicht vollständig be-schrieben. Da BMP-2 und BMP-4 nachweislich Regulatoren der Osteogenese sind, bestand die Aufgabe der vorliegenden Arbeit darin, die Wirkung derer auf die osteo-gene Differenzierung humaner PMSCs zu untersuchen. Isolierte humane PMSCs wurden mit Hilfe von o...

  5. Effects of Cadmium on BMP Induced Bone Formation

    Institute of Scientific and Technical Information of China (English)

    陈秋生; 徐顺清

    2003-01-01

    To demonstrate the direct effects of cadmium on activities of bone morphogenetic protein (BMP), a complex containing BMP and cadmium chloride (CdCl2) was implanted beneath the abdominal skin of young male Wistar rats. The activity of BMP was studied by observing the histological changes, and measuring the activity of alkaline phosphatase (ALP) and acid phosphatase (ACP) and calcium content of the implants at different time points. Our results showed that during bone formation induced by BMP, cadmium inhibited the activities of osteoblasts and osteoclasts, and slowed the deposition of calcium. It is concluded that cadmium can directly affect biological activities of BMP directly.

  6. Mechanisms of KGF mediated signaling in pancreatic duct cell proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Benjamin Uzan

    Full Text Available BACKGROUND: Keratinocyte growth factor (KGF; palifermin is a growth factor with a high degree of specificity for epithelial cells. KGF is an important effector of epithelial growth and tissue homeostasis in various organs including the pancreas. Here we investigated the intracellular signaling pathways involved in the mediation of pancreatic ductal cell proliferation and differentiation induced by exogenous KGF during beta-cell regeneration in diabetic rat. METHODOLOGY AND RESULTS: In vitro and in vivo duct cell proliferation was measured by BrdU incorporation assay. The implication of MAPK-ERK1/2 in the mediation of KGF-induced cell proliferation was determined by inactivation of this pathway, using the pharmacological inhibitor or antisense morpholino-oligonucleotides against MEK1. In vivo KGF-induced duct cell differentiation was assessed by the immunolocalization of PDX1 and Glut2 in ductal cells and the implication of PI3K/AKT in this process was investigated. We showed that KGF exerted a potent mitogenic effect on ductal cells. Both in vitro and in vivo, its effect on cell proliferation was mediated through the activation of ERK1/2 as evidenced by the abolition of duct cell proliferation in the context of MEK/ERK inactivation. In vivo, KGF treatment triggered ductal cell differentiation as revealed by the expression of PDX1 and Glut2 in a subpopulation of ductal cells via a PI3K-dependent mechanism. CONCLUSION: Here we show that KGF promotes beta-cell regeneration by stimulating duct cell proliferation in vivo. Moreover, we demonstrated for the first time that KGF directly induces the expression of PDX1 in some ductal cells thus inducing beta-cell neogenesis. We further explored the molecular mechanisms involved in these processes and showed that the effects of KGF on duct cell proliferation are mediated by the MEK-ERK1/2 pathway, while the KGF-induced cell differentiation is mediated by the PI3K/AKT pathway. These findings might have

  7. CLONING AND SEQUENCING OF MATURE FRAGMENT OF HUMAN BMP4 GENE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To study the cloning and sequencing of mature fragment of human bone morphogenetic protein-4 gene. Methods The template DNA was obtained from the human osteosarcoma cell line U2OS. By using RT- PCR method, the cDNA coding for the mature fragment of BMP-4 was amplified, cloned into the vector pUC19, and sequenced by Sanger Dideoxy-mediated Chain Termination method. Results The mature fragment of BMP4 cDNA was obtained by RT-PCR and determined by sequencing. Through the computer search on Genebank, the analysis showed that the homology of nucleotides and amino acids between cDNA of rhBMP4 mature fragment of this study and the published sequence was 99%. Sequence analysis showed that there were two differences, one was at base 1154 (201): G→C, which had no influence on the corresponding amino acids (Val). Another was at basel222 (269):C→T, the mutation at the base 1222 had the change of Ala to Val. Conclusion The mature fragment of BMP4 gene has been cloned. The results will be of great significance in treatment of skeletal injuries and diseases.

  8. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Haanes, Kristian Agmund; Christensen, Nynne;

    2015-01-01

    BACKGROUND: In many cells, bile acids (BAs) have a multitude of effects, some of which may be mediated by specific receptors such the TGR5 or FXR receptors. In pancreas systemic BAs, as well as intra-ductal BAs from bile reflux, can affect pancreatic secretion. Extracellular ATP and purinergic......) and duct cells (Capan-1). Taurine and glycine conjugated forms of CDCA had smaller effects on ATP release in Capan-1 cells. In duct monolayers, CDCA stimulated ATP release mainly from the luminal membrane; the releasing mechanisms involved both vesicular and non-vesicular secretion pathways. Duct cells...... increase [Ca(2+)]i. The TGR5 receptor is not involved in these processes but can play a protective role at high intracellular Ca(2+) conditions. We propose that purinergic signalling could be taken into consideration in other cells/organs, and thereby potentially explain some of the multifaceted effects...

  9. Inflammatory Mediators and Insulin Resistance in Obesity: Role of Nuclear Receptor Signaling in Macrophages

    Directory of Open Access Journals (Sweden)

    Lucía Fuentes

    2010-01-01

    Full Text Available Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR. The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs, which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.

  10. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways media

  11. Low-power GaAlAs laser irradiation promotes the proliferation and osteogenic differentiation of stem cells via IGF1 and BMP2.

    Directory of Open Access Journals (Sweden)

    Jyun-Yi Wu

    Full Text Available Low-power laser irradiation (LPLI has been found to induce various biological effects and cellular processes. Also, LPLI has been shown to promote fracture repair. Until now, it has been unclear how LPLI promotes bone formation and fracture healing. The aim of this study was to investigate the potential mechanism of LPLI-mediated enhancement of bone formation using mouse bone marrow mesenchymal stem cells (D1 cells. D1 cells were irradiated daily with a gallium-aluminum-arsenide (GaAlAs laser at dose of 0, 1, 2, or 4 J/cm(2. The lactate dehydrogenase (LDH assay showed no cytotoxic effects of LPLI on D1 cells, and instead, LPLI at 4 J/cm(2 significantly promoted D1 cell proliferation. LPLI also enhanced osteogenic differentiation in a dose-dependent manner and moderately increased expression of osteogenic markers. The neutralization experiments indicated that LPLI regulated insulin-like growth factor 1 (IGF1 and bone morphogenetic protein 2 (BMP2 signaling to promote cell proliferation and/or osteogenic differentiation. In conclusion, our study suggests that LPLI may induce IGF1 expression to promote both the proliferation and osteogenic differentiation of D1 cells, whereas it may induce BMP2 expression primarily to enhance osteogenic differentiation.

  12. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis

    Directory of Open Access Journals (Sweden)

    DeCarlo Arthur A

    2012-09-01

    Full Text Available Abstract Background Many growth factors, such as bone morphogenetic protein (BMP-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS glycosaminoglycans (GAGs, which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS, regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1 expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™. Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid

  13. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets

    Science.gov (United States)

    Yue, Tongtao; Zhang, Xianren

    2012-01-01

    One key question in signal transduction is how the signal is relayed from the outer leaflet of a cellular membrane to the inner leaflet. Using a simulation model, a mechanism for the mediation of signal transduction is proposed here in which the coupling between membrane proteins in different leaflets can be achieved by the clustering of anchored proteins, without recruiting transmembrane proteins. Depending on the hydrophobic length of the anchored proteins, three coupling patterns, including face-to-face clustering, interdigitated clustering, and weak-coupled clustering, are observed in this work. This observation provides a possible explanation of how a particular downstream signaling pathway is selected.

  14. ER Stress-Mediated Signaling: Action Potential and Ca2+ as Key Players

    Science.gov (United States)

    Bahar, Entaz; Kim, Hyongsuk; Yoon, Hyonok

    2016-01-01

    The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca2+) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca2+ regulates cell death both at the early and late stages of apoptosis. Severe Ca2+ dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca2+ (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca2+ and action potential in ER stress-mediated apoptosis. PMID:27649160

  15. Ancient origin of the integrin-mediated adhesion and signaling machinery.

    Science.gov (United States)

    Sebé-Pedrós, Arnau; Roger, Andrew J; Lang, Franz B; King, Nicole; Ruiz-Trillo, Iñaki

    2010-06-01

    The evolution of animals (metazoans) from their unicellular ancestors required the emergence of novel mechanisms for cell adhesion and cell-cell communication. One of the most important cell adhesion mechanisms for metazoan development is integrin-mediated adhesion and signaling. The integrin adhesion complex mediates critical interactions between cells and the extracellular matrix, modulating several aspects of cell physiology. To date this machinery has been considered strictly metazoan specific. Here we report the results of a comparative genomic analysis of the integrin adhesion machinery, using genomic data from several unicellular relatives of Metazoa and Fungi. Unexpectedly, we found that core components of the integrin adhesion complex are encoded in the genome of the apusozoan protist Amastigomonas sp., and therefore their origins predate the divergence of Opisthokonta, the clade that includes metazoans and fungi. Furthermore, our analyses suggest that key components of this apparatus have been lost independently in fungi and choanoflagellates. Our data highlight the fact that many of the key genes that had formerly been cited as crucial for metazoan origins have a much earlier origin. This underscores the importance of gene cooption in the unicellular-to-multicellular transition that led to the emergence of the Metazoa.

  16. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-06-01

    Full Text Available Retinoic acid (RA, an active metabolite of vitamin A (VA, is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs and retinoid X receptors (RXRs. RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism.

  17. HIF-mediated innate immune responses: cell signaling and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Harris AJ

    2014-05-01

    Full Text Available Alison J Harris, AA Roger Thompson, Moira KB Whyte, Sarah R Walmsley Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Leukocytes recruited to infected, damaged, or inflamed tissues during an immune response must adapt to oxygen levels much lower than those in the circulation. Hypoxia inducible factors (HIFs are key mediators of cellular responses to hypoxia and, as in other cell types, HIFs are critical for the upregulation of glycolysis, which enables innate immune cells to produce adenosine triphosphate anaerobically. An increasing body of evidence demonstrates that hypoxia also regulates many other innate immunological functions, including cell migration, apoptosis, phagocytosis of pathogens, antigen presentation and production of cytokines, chemokines, and angiogenic and antimicrobial factors. Many of these functions are mediated by HIFs, which are not only stabilized posttranslationally by hypoxia, but also transcriptionally upregulated by inflammatory signals. Here, we review the role of HIFs in the responses of innate immune cells to hypoxia, both in vitro and in vivo, with a particular focus on myeloid cells, on which the majority of studies have so far been carried out. Keywords: hypoxia, neutrophils, monocytes, macrophages

  18. Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade.

    Science.gov (United States)

    Koyanagi, Mitsumasa; Takano, Kosuke; Tsukamoto, Hisao; Ohtsu, Kohzoh; Tokunaga, Fumio; Terakita, Akihisa

    2008-10-01

    Light sensing starts with phototransduction in photoreceptor cells. The phototransduction cascade has diverged in different species, such as those mediated by transducin in vertebrate rods and cones, by G(q)-type G protein in insect and molluscan rhabdomeric-type visual cells and vertebrate photosensitive retinal ganglion cells, and by G(o)-type G protein in scallop ciliary-type visual cells. Here, we investigated the phototransduction cascade of a prebilaterian box jellyfish, the most basal animal having eyes containing lens and ciliary-type visual cells similar to vertebrate eyes, to examine the similarity at the molecular level and to obtain an implication of the origin of the vertebrate phototransduction cascade. We showed that the opsin-based pigment functions as a green-sensitive visual pigment and triggers the G(s)-type G protein-mediated phototransduction cascade in the ciliary-type visual cells of the box jellyfish lens eyes. We also demonstrated the light-dependent cAMP increase in the jellyfish visual cells and HEK293S cells expressing the jellyfish opsin. The first identified prebilaterian cascade was distinct from known phototransduction cascades but exhibited significant partial similarity with those in vertebrate and molluscan ciliary-type visual cells, because all involved cyclic nucleotide signaling. These similarities imply a monophyletic origin of ciliary phototransduction cascades distributed from prebilaterian to vertebrate. PMID:18832159

  19. Chronic Restraint Stress Promotes Immune Suppression through Toll-like Receptor 4-Mediated Phosphoinositide 3-kinase Signaling

    OpenAIRE

    Zhang, Yi; Zhang, Ying; Miao, JunYing; Hanley, Gregory; Stuart, Charles; Sun, Xiuli; Chen, Tingting; Yin, Deling

    2008-01-01

    Stress, either psychological or physical, can have a dramatic impact on the immune system. Toll-like receptors (TLRs) play a pivotal role in the induction of innate and adaptive immune response. We have reported that stress modulates the immune response in a TLR4-dependent manner. However, the mechanisms underlying TLR4-mediated signaling in stress modulation of immune system have not been identified. Here, we demonstrate an essential role for the TLR4-mediated phosphoinositide 3-kinase (PI3K...

  20. MRI of transforaminal lumbar interbody fusion: imaging appearance with and without the use of human recombinant bone morphogenetic protein-2 (rhBMP-2)

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Michael G.; Goldberg, Judd M.; Gaskin, Cree M.; Barr, Michelle S.; Alford, Bennett [University of Virginia, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Patrie, James T. [University of Virginia, Department of Public Health Sciences, Charlottesville, VA (United States); Shen, Francis H. [University of Virginia, Department of Orthopedic Surgery, Charlottesville, VA (United States)

    2014-09-15

    To describe the vertebral endplate and intervertebral disc space MRI appearance following TLIF, with and without the use of rhBMP-2, and to determine if the appearance is concerning for discitis/osteomyelitis. After institutional review board approval, 116 TLIF assessments performed on 75 patients with rhBMP-2 were retrospectively and independently reviewed by five radiologists and compared to 73 TLIF assessments performed on 45 patients without rhBMP-2. MRIs were evaluated for endplate signal, disc space enhancement, disc space fluid, and abnormal paraspinal soft tissue. Endplate edema-like signal was reported when T1-weighted hypointensity, T2-weighted hyperintensity, and endplate enhancement were present. Subjective concern for discitis/osteomyelitis on MRI was graded on a five-point scale. Generalized estimating equation binomial regression model analysis was performed with findings correlated with rhBMP-2 use, TLIF level, graft type, and days between TLIF and MRI. The rhBMP-2 group demonstrated endplate edema-like signal (OR 5.66; 95 % CI [1.58, 20.24], p = 0.008) and disc space enhancement (OR 2.40; 95 % CI [1.20, 4.80], p = 0.013) more often after adjusting for the TLIF level, graft type, and the number of days following TLIF. Both groups had a similar temporal distribution for endplate edema-like signal but disc space enhancement peaked earlier in the rhBMP-2 group. Disc space fluid was only present in the rhBMP-2 group. Neither group demonstrated abnormal paraspinal soft tissue and discitis/osteomyelitis was not considered likely in any patient. Endplate edema-like signal and disc space enhancement were significantly more frequent and disc space enhancement developed more rapidly following TLIF when rhBMP-2 was utilized. The concern for discitis/osteomyelitis was similar and minimal in both groups. (orig.)

  1. MRI of transforaminal lumbar interbody fusion: imaging appearance with and without the use of human recombinant bone morphogenetic protein-2 (rhBMP-2)

    International Nuclear Information System (INIS)

    To describe the vertebral endplate and intervertebral disc space MRI appearance following TLIF, with and without the use of rhBMP-2, and to determine if the appearance is concerning for discitis/osteomyelitis. After institutional review board approval, 116 TLIF assessments performed on 75 patients with rhBMP-2 were retrospectively and independently reviewed by five radiologists and compared to 73 TLIF assessments performed on 45 patients without rhBMP-2. MRIs were evaluated for endplate signal, disc space enhancement, disc space fluid, and abnormal paraspinal soft tissue. Endplate edema-like signal was reported when T1-weighted hypointensity, T2-weighted hyperintensity, and endplate enhancement were present. Subjective concern for discitis/osteomyelitis on MRI was graded on a five-point scale. Generalized estimating equation binomial regression model analysis was performed with findings correlated with rhBMP-2 use, TLIF level, graft type, and days between TLIF and MRI. The rhBMP-2 group demonstrated endplate edema-like signal (OR 5.66; 95 % CI [1.58, 20.24], p = 0.008) and disc space enhancement (OR 2.40; 95 % CI [1.20, 4.80], p = 0.013) more often after adjusting for the TLIF level, graft type, and the number of days following TLIF. Both groups had a similar temporal distribution for endplate edema-like signal but disc space enhancement peaked earlier in the rhBMP-2 group. Disc space fluid was only present in the rhBMP-2 group. Neither group demonstrated abnormal paraspinal soft tissue and discitis/osteomyelitis was not considered likely in any patient. Endplate edema-like signal and disc space enhancement were significantly more frequent and disc space enhancement developed more rapidly following TLIF when rhBMP-2 was utilized. The concern for discitis/osteomyelitis was similar and minimal in both groups. (orig.)

  2. Communication of Ca(2+) signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions.

    Science.gov (United States)

    Lock, Jeffrey T; Parker, Ian; Smith, Ian F

    2016-10-01

    Tunneling membrane nanotubes (TNTs) are thin membrane projections linking cell bodies separated by many micrometers, which are proposed to mediate signaling and even transfer of cytosolic contents between distant cells. Several reports describe propagation of Ca(2+) signals between distant cells via TNTs, but the underlying mechanisms remain poorly understood. Utilizing a HeLa M-Sec cell line engineered to upregulate TNTs we replicated previous findings that mechanical stimulation elicits robust cytosolic Ca(2+) elevations that propagate to surrounding, physically separate cells. However, whereas this was previously interpreted to involve intercellular communication through TNTs, we found that Ca(2+) signal propagation was abolished - even in TNT-connected cells - after blocking ATP-mediated paracrine signaling with a cocktail of extracellular inhibitors. To then establish whether gap junctions may enable cell-cell signaling via TNTs under these conditions, we expressed sfGFP-tagged connexin-43 (Cx43) in HeLa M-Sec cells. We observed robust communication of mechanically-evoked Ca(2+) signals between distant but TNT-connected cells, but only when both cells expressed Cx43. Moreover, we also observed communication of Ca(2+) signals evoked in one cell by local photorelease of inositol 1,4,5-trisphosphate (IP3). Ca(2+) responses in connected cells began after long latencies at intracellular sites several microns from the TNT connection site, implicating intercellular transfer of IP3 and subsequent IP3-mediated Ca(2+) liberation, and not Ca(2+) itself, as the mediator between TNT-connected, Cx43-expressing cells. Our results emphasize the need to control for paracrine transmission in studies of cell-cell signaling via TNTs and indicate that, in this cell line, TNTs do not establish cytosolic continuity between connected cells but rather point to the crucial importance of connexins to enable communication of cytosolic Ca(2+) signals via TNTs.

  3. BMP delivery complements the guiding effect of scaffold architecture without altering bone microstructure in critical-sized long bone defects: A multiscale analysis.

    Science.gov (United States)

    Cipitria, A; Wagermaier, W; Zaslansky, P; Schell, H; Reichert, J C; Fratzl, P; Hutmacher, D W; Duda, G N

    2015-09-01

    Scaffold architecture guides bone formation. However, in critical-sized long bone defects additional BMP-mediated osteogenic stimulation is needed to form clinically relevant volumes of new bone. The hierarchical structure of bone determines its mechanical properties. Yet, the micro- and nanostructure of BMP-mediated fast-forming bone has not been compared with slower regenerating bone without BMP. We investigated the combined effects of scaffold architecture (physical cue) and BMP stimulation (biological cue) on bone regeneration. It was hypothesized that a structured scaffold directs tissue organization through structural guidance and load transfer, while BMP stimulation accelerates bone formation without altering the microstructure at different length scales. BMP-loaded medical grade polycaprolactone-tricalcium phosphate scaffolds were implanted in 30mm tibial defects in sheep. BMP-mediated bone formation after 3 and 12 months was compared with slower bone formation with a scaffold alone after 12 months. A multiscale analysis based on microcomputed tomography, histology, polarized light microscopy, backscattered electron microscopy, small angle X-ray scattering and nanoindentation was used to characterize bone volume, collagen fiber orientation, mineral particle thickness and orientation, and local mechanical properties. Despite different observed kinetics in bone formation, similar structural properties on a microscopic and sub-micron level seem to emerge in both BMP-treated and scaffold only groups. The guiding effect of the scaffold architecture is illustrated through structural differences in bone across different regions. In the vicinity of the scaffold increased tissue organization is observed at 3 months. Loading along the long bone axis transferred through the scaffold defines bone micro- and nanostructure after 12 months. PMID:26004222

  4. DNA-Mediated Signaling by Proteins with 4Fe−4S Clusters Is Necessary for Genomic Integrity

    OpenAIRE

    Grodick, Michael A.; Segal, Helen M.; Zwang, Theodore J.; Barton, Jacqueline K.

    2014-01-01

    Iron–sulfur clusters have increasingly been found to be associated with enzymes involved in DNA processing. Here we describe a role for these redox clusters in DNA-mediated charge-transport signaling in E. coli between DNA repair proteins from distinct pathways. DNA-modified electrochemistry shows that the 4Fe–4S cluster of DNA-bound DinG, an ATP-dependent helicase that repairs R-loops, is redox-active at cellular potentials and ATP hydrolysis increases DNA-mediated redox signaling. Atomic fo...

  5. PLZF mediates the PTEN/AKT/FOXO3a signaling in suppression of prostate tumorigenesis.

    Directory of Open Access Journals (Sweden)

    JingPing Cao

    Full Text Available Promyelocytic leukemia zinc finger (PLZF protein expression is closely related to the progression of human cancers, including prostate cancer (PCa. However, the according context of a signaling pathway for PLZF to suppress prostate tumorigenesis remains greatly unknown. Here we report that PLZF is a downstream mediator of the PTEN signaling pathway in PCa. We found that PLZF expression is closely correlated with PTEN expression in a cohort of prostate cancer specimens. Interestingly, both PTEN rescue and phosphoinositide 3-kinase (PI3K inhibitor LY294002 treatment increase the PLZF expression in prostate cancer cell lines. Further, luciferase reporter assay and chromatin immunoprecipitation assay demonstrate that FOXO3a, a transcriptional factor phosphorylated by PI3K/AKT, could directly bind to the promoter of PLZF gene. These results indicate that PTEN regulates PLZF expression by AKT/FOXO3a. Moreover, our animal experiments also demonstrate that PLZF is capable of inhibiting prostate tumorigenesis in vivo. Taken together, our study defines a PTEN/PLZF pathway and would shed new lights for developing therapeutic strategy of prostate cancer.

  6. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle

    Directory of Open Access Journals (Sweden)

    Ragoobirsingh Dalip

    2006-05-01

    Full Text Available Abstract Background Evidence demonstrates that exogenously administered nitric oxide (NO can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP and S-nitrosoglutathione (GSNO on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml in the presence or absence of glucose (25 mM and insulin (100 nM. Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO. Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.

  7. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling.

    Science.gov (United States)

    Sondag, Gregory R; Mbimba, Thomas S; Moussa, Fouad M; Novak, Kimberly; Yu, Bing; Jaber, Fatima A; Abdelmagid, Samir M; Geldenhuys, Werner J; Safadi, Fayez F

    2016-01-01

    Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation. PMID:27585719

  8. Insulin signalling mediates the response to male-induced harm in female Drosophila melanogaster.

    Science.gov (United States)

    Sepil, Irem; Carazo, Pau; Perry, Jennifer C; Wigby, Stuart

    2016-01-01

    Genetic manipulations in nutrient-sensing pathways are known to both extend lifespan and modify responses to environmental stressors (e.g., starvation, oxidative and thermal stresses), suggesting that similar mechanisms regulate lifespan and stress resistance. However, despite being a key factor reducing female lifespan and affecting female fitness, male-induced harm has rarely been considered as a stressor mediated by nutrient sensing pathways. We explored whether a lifespan-extending manipulation also modifies female resistance to male-induced harm. To do so, we used long-lived female Drosophila melanogaster that had their insulin signalling pathway downregulated by genetically ablating the median neurosecretory cells (mNSC). We varied the level of exposure to males for control and ablated females and tested for interacting effects on female lifespan and fitness. As expected, we found that lifespan significantly declined with exposure to males. However, mNSC-ablated females maintained significantly increased lifespan across all male exposure treatments. Furthermore, lifespan extension and relative fitness of mNSC-ablated females were maximized under intermediate exposure to males, and minimized under low and high exposure to males. Overall, our results suggest that wild-type levels of insulin signalling reduce female susceptibility to male-induced harm under intense sexual conflict, and may also protect females when mating opportunities are sub-optimally low. PMID:27457757

  9. Virus-induced gene silencing reveals signal transduction components required for the Pvr9-mediated hypersensitive response in Nicotiana benthamiana.

    Science.gov (United States)

    Tran, Phu-Tri; Choi, Hoseong; Choi, Doil; Kim, Kook-Hyung

    2016-08-01

    Resistance to pathogens mediated by plant resistance (R) proteins requires different signaling transduction components and pathways. Our previous studies revealed that a potyvirus resistance gene in pepper, Pvr9, confers a hypersensitive response (HR) to pepper mottle virus in Nicotiana benthamiana. Our results show that the Pvr9-mediated HR against pepper mottle virus infection requires HSP90, SGT1, NDR1, but not EDS1. These results suggest that the Pvr9-mediated HR is possibly related to the SA pathway but not the ET, JA, ROS or NO pathways.

  10. Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling.

    Science.gov (United States)

    Gajate, Consuelo; Mollinedo, Faustino

    2015-05-01

    Membrane lipid rafts are highly ordered membrane domains enriched in cholesterol, sphingolipids and gangliosides that have the property to segregate and concentrate proteins. Lipid and protein composition of lipid rafts differs from that of the surrounding membrane, thus providing sorting platforms and hubs for signal transduction molecules, including CD95 death receptor-mediated signaling. CD95 can be recruited to rafts in a reversible way through S-palmitoylation following activation of cells with its physiological cognate ligand as well as with a wide variety of inducers, including several antitumor drugs through ligand-independent intracellular mechanisms. CD95 translocation to rafts can be modulated pharmacologically, thus becoming a target for the treatment of apoptosis-defective diseases, such as cancer. CD95-mediated signaling largely depends on protein-protein interactions, and the recruitment and concentration of CD95 and distinct downstream apoptotic molecules in membrane raft domains, forming raft-based supramolecular entities that act as hubs for apoptotic signaling molecules, favors the generation and amplification of apoptotic signals. Efficient CD95-mediated apoptosis involves CD95 and raft internalization, as well as the involvement of different subcellular organelles. In this review, we briefly summarize and discuss the involvement of lipid rafts in the regulation of CD95-mediated apoptosis that may provide a new avenue for cancer therapy.

  11. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    Full Text Available BACKGROUND: Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation. CONCLUSIONS/SIGNIFICANCE: These results

  12. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia.

    Science.gov (United States)

    Takam Kamga, Paul; Bassi, Giulio; Cassaro, Adriana; Midolo, Martina; Di Trapani, Mariano; Gatti, Alessandro; Carusone, Roberta; Resci, Federica; Perbellini, Omar; Gottardi, Michele; Bonifacio, Massimiliano; Nwabo Kamdje, Armel Hervé; Ambrosetti, Achille; Krampera, Mauro

    2016-04-19

    Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB.These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML. PMID:26967055

  13. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    Brook T Chernet

    2015-01-01

    Full Text Available In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions – key mediators of cell-cell communication – in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors – significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host’s physiological parameters.

  14. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos.

    Science.gov (United States)

    Chernet, Brook T; Fields, Chris; Levin, Michael

    2014-01-01

    In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions-key mediators of cell-cell communication-in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC) is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host's physiological parameters. PMID:25646081

  15. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    Science.gov (United States)

    Chernet, Brook T.; Fields, Chris; Levin, Michael

    2015-01-01

    In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions—key mediators of cell-cell communication—in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC) is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host's physiological parameters. PMID:25646081

  16. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites.

    Science.gov (United States)

    Kentala, Henriikka; Weber-Boyvat, Marion; Olkkonen, Vesa M

    2016-01-01

    Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes. PMID:26811291

  17. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Simone ePelliciari

    2015-08-01

    Full Text Available The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress.Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur towards apo-operators, while the binding towards holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur towards the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to

  18. Xenin-induced feeding suppression is not mediated through the activation of central extracellular signal-regulated kinase signaling in mice.

    Science.gov (United States)

    Kim, Eun Ran; Lew, Pei San; Spirkina, Alexandra; Mizuno, Tooru M

    2016-10-01

    Xenin is a gut hormone that reduces food intake by partly acting through the hypothalamus via neurotensin receptor 1 (Ntsr1). However, specific signaling pathways that mediate xenin-induced feeding suppression are not fully understood. Activation of Ntsr1 leads to the activation of the extracellular signal-regulated kinase (ERK). Hypothalamic ERK participates in the regulation of food intake by mediating the effect of hormonal signals. Therefore, we hypothesized that the anorectic effect of xenin is mediated by hypothalamic ERK signaling. To address this hypothesis, we compared levels of phosphorylation of ERK1/2 (pERK1/2) in the hypothalamus of both control and xenin-treated mice. The effect of xenin on ERK1/2 phosphorylation was also examined in mouse hypothalamic neuronal cell lines with or without Ntsr1. We also examined the effect of the blockade of central ERK signaling on xenin-induced feeding suppression in mice. The intraperitoneal (i.p.) injection of xenin caused a significant increase in the number of pERK1/2-immunoreactive cells in the hypothalamic arcuate nucleus. The majority of pERK1/2-positive cells expressed neuronal nuclei (NeuN), a marker for neurons. Xenin treatment increased pERK1/2 levels in one cell line expressing Ntsr1 but not another line without Ntsr1 expression. Both i.p. and intracerebroventricular (i.c.v.) injections of xenin reduced food intake in mice. The i.c.v. pre-treatment with U0126, a selective inhibitor of ERK1/2 upstream kinases, did not affect xenin-induced reduction in food intake. These findings suggest that although xenin activates ERK signaling in subpopulations of hypothalamic neurons, xenin does not require the activation of hypothalamic ERK signaling pathway to elicit feeding suppression. PMID:27316340

  19. Slit2/Robo1 signaling promotes intestinal tumorigenesis through Src-mediated activation of the Wnt/β-catenin pathway.

    Science.gov (United States)

    Zhang, Qian-Qian; Zhou, Da-Lei; Lei, Yan; Zheng, Li; Chen, Sheng-Xia; Gou, Hong-Ju; Gu, Qu-Liang; He, Xiao-Dong; Lan, Tian; Qi, Cui-Ling; Li, Jiang-Chao; Ding, Yan-Qing; Qiao, Liang; Wang, Li-Jing

    2015-02-20

    Slit2 is often overexpressed in cancers. Slit2 is a secreted protein that binds to Roundabout (Robo) receptors to regulate cell growth and migration. Here, we employed several complementary mouse models of intestinal cancers, including the Slit2 transgenic mice, the ApcMin/+ spontaneous intestinal adenoma mouse model, and the DMH/DSS-induced colorectal carcinoma model to clarify function of Slit2/Robo1 signaling in intestinal tumorigenesis. We showed that Slit2 and Robo1 are overexpressed in intestinal tumors and may contribute to tumor generation. The Slit2/Robo1 signaling can induce precancerous lesions of the intestine and tumor progression. Ectopic expression of Slit2 activated Slit2/Robo1 signaling and promoted tumorigenesis and tumor growth. This was mediated in part through activation of the Src signaling, which then down-regulated E-cadherin, thereby activating Wnt/β-catenin signaling. Thus, Slit2/Robo1 signaling is oncogenic in intestinal tumorigenesis.

  20. Local Epidermal Growth Factor Receptor Signaling Mediates the Systemic Pathogenic Effects of Staphylococcus aureus Toxic Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Laura M Breshears

    Full Text Available Secreted factors of Staphylococcus aureus can activate host signaling from the epidermal growth factor receptor (EGFR. The superantigen toxic shock syndrome toxin-1 (TSST-1 contributes to mucosal cytokine production through a disintegrin and metalloproteinase (ADAM-mediated shedding of EGFR ligands and subsequent EGFR activation. The secreted hemolysin, α-toxin, can also induce EGFR signaling and directly interacts with ADAM10, a sheddase of EGFR ligands. The current work explores the role of EGFR signaling in menstrual toxic shock syndrome (mTSS, a disease mediated by TSST-1. The data presented show that TSST-1 and α-toxin induce ADAM- and EGFR-dependent cytokine production from human vaginal epithelial cells. TSST-1 and α-toxin also induce cytokine production from an ex vivo porcine vaginal mucosa (PVM model. EGFR signaling is responsible for the majority of IL-8 production from PVM in response to secreted toxins and live S. aureus. Finally, data are presented demonstrating that inhibition of EGFR signaling with the EGFR-specific tyrosine kinase inhibitor AG1478 significantly increases survival in a rabbit model of mTSS. These data indicate that EGFR signaling is critical for progression of an S. aureus exotoxin-mediated disease and may represent an attractive host target for therapeutics.

  1. Functional studies of signaling pathways in peri-implantation development of the mouse embryo by RNAi

    Directory of Open Access Journals (Sweden)

    Bell Graham

    2005-12-01

    Full Text Available Abstract Background Studies of gene function in the mouse have relied mainly on gene targeting via homologous recombination. However, this approach is difficult to apply in specific windows of time, and to simultaneously knock-down multiple genes. Here we report an efficient method for dsRNA-mediated gene silencing in late cleavage-stage mouse embryos that permits examination of phenotypes at post-implantation stages. Results We show that introduction of Bmp4 dsRNA into intact blastocysts by electroporation recapitulates the genetic Bmp4 null phenotype at gastrulation. It also reveals a novel role for Bmp4 in the regulation the anterior visceral endoderm specific gene expression and its positioning. We also show that RNAi can be used to simultaneously target several genes. When applied to the three murine isoforms of Dishevelled, it leads to earlier defects than previously observed in double knock-outs. These include severe delays in post-implantation development and defects in the anterior midline and neural folds at headfold stages. Conclusion Our results indicate that the BMP4 signalling pathway contributes to the development of the anterior visceral endoderm, and reveal an early functional redundancy between the products of the murine Dishevelled genes. The proposed approach constitutes a powerful tool to screen the functions of genes that govern the development of the mouse embryo.

  2. Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation

    Directory of Open Access Journals (Sweden)

    Mira Moussa

    2015-04-01

    Full Text Available Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8. Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3% and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%. These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.

  3. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Grassi Rici Rose

    2012-02-01

    Full Text Available Abstract Background The bone morphogenetic proteins (BMPs belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p

  4. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor.

    Science.gov (United States)

    Calandra, B; Portier, M; Kernéis, A; Delpech, M; Carillon, C; Le Fur, G; Ferrara, P; Shire, D

    1999-06-25

    It has long been established that the cannabinoid CB1 receptor transduces signals through a pertussis toxin-sensitive Gi/Go inhibitory pathway. Although there have been reports that the cannabinoid CB1 receptor can also mediate an increase in cyclic AMP levels, in most cases the presence of an adenylyl cyclase costimulant or the use of very high amounts of agonist was necessary. Here, we present evidence for dual coupling of the cannabinoid CB receptor to the classical pathway and to a pertussis toxin-insensitive adenylyl cyclase stimulatory pathway initiated with low quantities of agonist in the absence of any costimulant. Treatment of Chinese hamster ovary (CHO) cells expressing the cannabinoid CB1 receptor with the cannabinoid CP 55,940, {(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hyd roxypropyl) cyclohexan-1-ol} resulted in cyclic AMP accumulation in a dose-response manner, an accumulation blocked by the cannabinoid CB1 receptor-specific antagonist SR 141716A, {N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride}. In CHO cells coexpressing the cannabinoid CB1 receptor and a cyclic AMP response element (CRE)-luciferase reporter gene system, CP 55,940 induced luciferase expression by a pathway blocked by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89). Under the same conditions the peripheral cannabinoid CB2 receptor proved to be incapable of inducing cAMP accumulation or luciferase activity. This incapacity allowed us to study the luciferase activation mediated by CB /CB2 chimeric constructs, from which we determined that the first and second internal loop regions of the cannabinoid CB1 receptor were involved in transducing the pathway leading to luciferase gene expression. PMID:10422789

  5. Toll-Like Receptor 4 Signaling Pathway Mediates Inhalant Organic Dust-Induced Bone Loss.

    Science.gov (United States)

    Staab, Elizabeth; Thiele, Geoffrey M; Clarey, Dillon; Wyatt, Todd A; Romberger, Debra J; Wells, Adam D; Dusad, Anand; Wang, Dong; Klassen, Lynell W; Mikuls, Ted R; Duryee, Michael J; Poole, Jill A

    2016-01-01

    Agriculture workers have increased rates of airway and skeletal disease. Inhalant exposure to agricultural organic dust extract (ODE) induces bone deterioration in mice; yet, mechanisms underlying lung-bone crosstalk remain unclear. Because Toll-like receptor 2 (TLR2) and TLR4 are important in mediating the airway consequences of ODE, this study investigated their role in regulating bone responses. First, swine facility ODE stimulated wild-type (WT) bone marrow macrophages to form osteoclasts, and this finding was inhibited in TLR4 knock-out (KO), but not TLR2 KO cells. Next, using an established intranasal inhalation exposure model, WT, TLR2 KO and TLR4 KO mice were treated daily with ODE or saline for 3 weeks. ODE-induced airway neutrophil influx and cytokine/chemokine release were similarly reduced in TLR2 and TLR4 KO animals as compared to WT mice. Utilizing micro-computed tomography (CT), analysis of tibia showed loss of bone mineral density, volume and deterioration of bone micro-architecture and mechanical strength induced by ODE in WT mice were significantly reduced in TLR4 but not TLR2 KO animals. Bone marrow osteoclast precursor cell populations were analyzed by flow cytometry from exposed animals. In WT animals, exposure to inhalant ODE increased osteoclast precursor cell populations as compared to saline, an effect that was reduced in TLR4 but not TLR2 KO mice. These results show that TLR2 and TLR4 pathways mediate ODE-induced airway inflammation, but bone deterioration consequences following inhalant ODE treatment is strongly dependent upon TLR4. Thus, the TLR4 signaling pathway appears critical in regulating the lung-bone inflammatory axis to microbial component-enriched organic dust exposures. PMID:27479208

  6. Up-regulation of bradykinin receptors in rat bronchi via I kappa B kinase-mediated inflammatory signaling pathway

    DEFF Research Database (Denmark)

    Lei, Ying; Zhang, Yaping; Cao, Yongxiao;

    2010-01-01

    IkappaB kinase (IKK)-mediated intracellular signaling mechanisms may be involved in airway hyperresponsiveness through up-regulation of bradykinin receptors. This study was designed to examine if organ culture of rat bronchial segments induces airway hyperresponsiveness to bradykinin and if inhib...

  7. Blockade of IP[subscript 3]-Mediated SK Channel Signaling in the Rat Medial Prefrontal Cortex Improves Spatial Working Memory

    Science.gov (United States)

    Brennan, Avis R.; Dolinsky, Beth; Vu, Mai-Anh T.; Stanley, Marion; Yeckel, Mark F.; Arnsten, Amy F. T.

    2008-01-01

    Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP[subscript 3]-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP[subscript 3] receptor (IP[subscript…

  8. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling.

    Science.gov (United States)

    Suzuki, Maiko; Bandoski, Cheryl; Bartlett, John D

    2015-12-01

    Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These

  9. The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer

    OpenAIRE

    Melnik Bodo C; John Swen; Carrera-Bastos Pedro; Cordain Loren

    2012-01-01

    Abstract Prostate cancer (PCa) is dependent on androgen receptor signaling and aberrations of the PI3K-Akt-mTORC1 pathway mediating excessive and sustained growth signaling. The nutrient-sensitive kinase mTORC1 is upregulated in nearly 100% of advanced human PCas. Oncogenic mTORC1 signaling activates key subsets of mRNAs that cooperate in distinct steps of PCa initiation and progression. Epidemiological evidence points to increased dairy protein consumption as a major dietary risk factor for ...

  10. Specific blockade by CD54 and MHC II of CD40-mediated signaling for B cell proliferation and survival

    DEFF Research Database (Denmark)

    Doyle, I S; Hollmann, C A; Crispe, I N;

    2001-01-01

    Regulation of B lymphocyte proliferation is critical to maintenance of self-tolerance, and intercellular interactions are likely to signal such regulation. Here, we show that coligation of either the adhesion molecule ICAM-1/CD54 or MHC II with CD40 inhibited cell cycle progression and promoted...... these effects. Addition of BCR or IL-4 signals did not overcome the effect of ICAM-1 or MHC II on CD40-induced proliferation. FasL expression was not detected in B cell populations. These results show that MHC II and ICAM-1 specifically modulate CD40-mediated signaling, so inhibiting proliferation...

  11. Calcineurin signaling mediates activity-dependent relocation of the axon initial segment.

    Science.gov (United States)

    Evans, Mark D; Sammons, Rosanna P; Lebron, Sabrina; Dumitrescu, Adna S; Watkins, Thomas B K; Uebele, Victor N; Renger, John J; Grubb, Matthew S

    2013-04-17

    The axon initial segment (AIS) is a specialized neuronal subcompartment located at the beginning of the axon that is crucially involved in both the generation of action potentials and the regulation of neuronal polarity. We recently showed that prolonged neuronal depolarization produces a distal shift of the entire AIS structure away from the cell body, a change associated with a decrease in neuronal excitability. Here, we used dissociated rat hippocampal cultures, with a major focus on the dentate granule cell (DGC) population, to explore the signaling pathways underlying activity-dependent relocation of the AIS. First, a pharmacological screen of voltage-gated calcium channels (VGCCs) showed that AIS relocation is triggered by activation of L-type Cav1 VGCCs with negligible contribution from any other VGCC subtypes. Additional pharmacological analysis revealed that downstream signaling events are mediated by the calcium-sensitive phosphatase calcineurin; inhibition of calcineurin with either FK506 or cyclosporin A totally abolished both depolarization- and optogenetically-induced activity-dependent AIS relocation. Furthermore, calcineurin activation is sufficient for AIS plasticity, because expression of a constitutively active form of the phosphatase resulted in relocation of the AIS of DGCs without a depolarizing stimulus. Finally, we assessed the role of calcineurin in other forms of depolarization-induced plasticity. Neither membrane resistance changes nor spine density changes were affected by FK506 treatment, suggesting that calcineurin acts via a separate pathway to modulate AIS plasticity. Together, these results emphasize calcineurin as a vital player in the regulation of intrinsic plasticity as governed by the AIS. PMID:23595753

  12. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A) receptor-mediated signaling.

    Science.gov (United States)

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P(+)) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+) foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1), p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P(+) foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+) foci by activating GABA(A)R-mediated signaling. PMID:25419570

  13. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A receptor-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Anna Kakehashi

    Full Text Available Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA A receptor (GABA(AR system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(AR agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN. Formation of glutathione S-transferase placental form positive (GST-P(+ foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(AR alpha 1 subunit was observed in GST-P(+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+ foci by activating GABA(AR-mediated signaling.

  14. Convergent RANK- and c-Met-mediated signaling components predict survival of patients with prostate cancer: an interracial comparative study.

    Directory of Open Access Journals (Sweden)

    Peizhen Hu

    Full Text Available We reported (PLoS One 6 (12:e28670, 2011 that the activation of c-Met signaling in RANKL-overexpressing bone metastatic LNCaP cell and xenograft models increased expression of RANK, RANKL, c-Met, and phosphorylated c-Met, and mediated downstream signaling. We confirmed the significance of the RANK-mediated signaling network in castration resistant clinical human prostate cancer (PC tissues. In this report, we used a multispectral quantum dot labeling technique to label six RANK and c-Met convergent signaling pathway mediators simultaneously in formalin fixed paraffin embedded (FFPE tissue specimens, quantify the intensity of each expression at the sub-cellular level, and investigated their potential utility as predictors of patient survival in Caucasian-American, African-American and Chinese men. We found that RANKL and neuropilin-1 (NRP-1 expression predicts survival of Caucasian-Americans with PC. A Gleason score ≥ 8 combined with nuclear p-c-Met expression predicts survival in African-American PC patients. Neuropilin-1, p-NF-κB p65 and VEGF are predictors for the overall survival of Chinese men with PC. These results collectively support interracial differences in cell signaling networks that can predict the survival of PC patients.

  15. BMP4 and LGL1 are Down Regulated in an Ovine Model of Congenital Diaphragmatic Hernia

    Directory of Open Access Journals (Sweden)

    Heather eEmmerton-Coughlin

    2014-11-01

    Full Text Available Background/Purpose: The molecular pathophysiology of lung hypoplasia in congenital diaphragmatic hernia (CDH remains poorly understood. The Wnt signaling pathway and downstream targets, such as bone morphogenetic proteins (BMP 4 and other factors such as late gestation lung protein 1 (LGL1, are essential to normal lung development. Nitrofen-induced hypoplastic CDH rodent lungs demonstrate down regulation of the Wnt pathway including BMP4 and reduced LGL1 expression. The aim of the current study was to examine the molecular pathophysiology associated with a surgically induced CDH in an ovine model. Methods: Left thoracotomy was performed at 80 days in 14 fetal sheep; CDH was created in 7 experimental animals. Lungs were harvested at 136 days (term=145d. Lung weight and mean terminal bronchiole density (MTBD were measured to determine the degree of pulmonary hypoplasia. Quantitative real time PCR was undertaken to analyze Wnt2, Wnt7b, BMP4 and LGL1 mRNA expression. Results: Total lung weight was decreased while MTBD was increased in the CDH group (p<0.05, confirming pulmonary hypoplasia. BMP4 and LGL1 mRNA was significantly reduced in CDH lungs (p<0.05. Wnt2 mRNA was decreased, although not significantly (p<0.06. Conclusions: For the first time, down regulation of BMP4 and Lgl1 are reported in an ovine CDH model. In contrast to other animal models, these changes are persistent to near term. These findings suggest that mechanical compression from herniated viscera may play a more important role in causing pulmonary hypoplasia in CDH, rather than a primary defect in lung organogenesis.

  16. K-channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA-inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPI), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.

  17. Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina.

    Science.gov (United States)

    Borghuis, Bart G; Looger, Loren L; Tomita, Susumu; Demb, Jonathan B

    2014-04-30

    A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.

  18. Wnt-Signaling-Mediated Antiosteoporotic Activity of Porcine Placenta Hydrolysates in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Byoung-Seob Ko

    2012-01-01

    Full Text Available Anti-osteoporotic effects of two types of porcine placenta hydrolysates (PPH were evaluated in ovariectomized (OVX rats orally administered PPH without (WPPH or with (NPPH ovarian hormones (1 g/kg bw/day. PPH groups were compared with OVX rats with estrogen replacement (0.1 mg/kg bw conjugated estrogen; EST, or dextrose (placebo; OVX-control All rats received high-fat/calcium-deficient diets for 12 weeks. NPPH contained less estrogen and progesterone, but more essential amino acids, whereas the opposite was true for WPPH. NPPH decreased body weight and peri-uterine fat pads, and maintained uterus weight. NPPH rats had higher femur and lumbar spine bone mass density compared to controls; but less than those of EST rats. Serum phosphorus and urinary calcium and phosphorus levels were reduced in NPPH rats compared to OVX-controls. Serum bone-specific alkaline phosphatase, osteocalcin, and bone turnover marker levels were reduced NPPH rats compared to OVX-controls. WPPH produced results similar to those of NPPH, but less significant. Both NPPH and estrogen upregulated low-density lipoprotein receptor-related protein 5 and β-catenin in OVX rats, while the expression of dickkopf-related protein 1 was suppressed. In conclusion, NPPH exerted anti-osteoporotic effects by activating osteogenesis and stimulating Wnt signaling, possibly mediated by the various amino acids and not ovarian hormones.

  19. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade.

    Science.gov (United States)

    Jourdain, P; Allaman, I; Rothenfusser, K; Fiumelli, H; Marquet, P; Magistretti, P J

    2016-01-01

    Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade. PMID:26893204

  20. System theoretical investigation of human epidermal growth factor receptor-mediated signalling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Shankaran, Harish; Opresko, Lee; Resat, Haluk

    2008-09-01

    The partitioning of biological networks into coupled functional modules is gaining increasing attention in the biological sciences. This approach has the advantage that predicting a system level response does not require a mechanistic description of the internal dynamics of each module. Identification of the input-output characteristics of the network modules and the connectivity between the modules provide the necessary quantitative representation of system dynamics. However, determination of the input-output relationships of the modules is not trivial; it requires the controlled perturbation of module inputs and systematic analysis of experimental data. In this report, we apply a system theoretical analysis approach to derive the causal input-output relationships of the functional module for the human epidermal growth factor receptor (HER) mediated Erk and Akt signaling pathways. Using a library of cell lines expressing varying levels of EGFR and HER2, we show that a transfer function-based representation can be successfully applied to quantitatively characterize information transfer in this system.

  1. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade

    KAUST Repository

    Jourdain, P.

    2016-02-19

    Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade.

  2. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  3. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    Science.gov (United States)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  4. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  5. Hyperoxia accelerates Fas-mediated signaling and apoptosis in the lungs of Legionella pneumophila pneumonia

    Directory of Open Access Journals (Sweden)

    Tanabe Yoshinari

    2011-04-01

    Full Text Available Abstract Background Oxygen supplementation is commonly given to the patients with severe pneumonia including Legionella disease. Recent data suggested that apoptosis may play an important role, not only in the pathogenesis of Legionella pneumonia, but also in oxygen-induced tissue damage. In the present study, the lethal sensitivity to Legionella pneumonia were compared in the setting of hyperoxia between wild-type and Fas-deficient mice. Findings C57BL/6 mice and B6.MRL-Faslpr mice characterized with Fas-deficiency were used in this study. After intratracheal administration of L. pneumophila, mice were kept in hyperoxic conditions (85-90% O2 conc. in an airtight chamber for 3 days. Bone-marrow derived macrophages infected with L. pneumophila were also kept in hyperoxic conditions. Caspase activity and cytokine production were determined by using commercially available kits. Smaller increases of several apoptosis markers, such as caspase-3 and -8, were demonstrated in Fas-deficient mice, even though the bacterial burdens in Fas-deficient and wild type mice were similar. Bone-marrow derived macrophages from Fas-deficient mice were shown to be more resistant to Legionella-induced cytotoxicity than those from wild-type mice under hyperoxia. Conclusions These results demonstrated that Fas-mediated signaling and apoptosis may be a crucial factor in the pathogenesis of Legionella pneumonia in the setting of hyperoxia.

  6. Bmp2 Is Required for Odontoblast Differentiation and Pulp Vasculogenesis

    OpenAIRE

    Yang, W; Harris, M.A.; Y. Cui; Mishina, Y; Harris, S.E.; Gluhak-Heinrich, J.

    2012-01-01

    Using the Bmp2 floxed/3.6Col1a1-Cre (Bmp2-cKOod) mouse model, we have observed severe defects in odontogenesis and dentin formation with the removal of the Bmp2 gene in early-polarizing odontoblasts. The odontoblasts in the Bmp2-cKOod do not mature properly and fail to form proper dentin with normal dentinal tubules and activate terminal differentiation, as reflected by decreased Osterix, Col1a1, and Dspp expression. There is less dentin, and the dentin is hypomineralized and patchy. We also ...

  7. Regulation of Toll-like receptor 4-mediated immune responses through Pasteurella multocida toxin-induced G protein signalling

    Directory of Open Access Journals (Sweden)

    Hildebrand Dagmar

    2012-08-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS-triggered Toll-like receptor (TLR 4-signalling belongs to the key innate defence mechanisms upon infection with Gram-negative bacteria and triggers the subsequent activation of adaptive immunity. There is an active crosstalk between TLR4-mediated and other signalling cascades to secure an effective immune response, but also to prevent excessive inflammation. Many pathogens induce signalling cascades via secreted factors that interfere with TLR signalling to modify and presumably escape the host response. In this context heterotrimeric G proteins and their coupled receptors have been recognized as major cellular targets. Toxigenic strains of Gram-negative Pasteurella multocida produce a toxin (PMT that constitutively activates the heterotrimeric G proteins Gαq, Gα13 and Gαi independently of G protein-coupled receptors through deamidation. PMT is known to induce signalling events involved in cell proliferation, cell survival and cytoskeleton rearrangement. Results Here we show that the activation of heterotrimeric G proteins through PMT suppresses LPS-stimulated IL-12p40 production and eventually impairs the T cell-activating ability of LPS-treated monocytes. This inhibition of TLR4-induced IL-12p40 expression is mediated by Gαi-triggered signalling as well as by Gβγ-dependent activation of PI3kinase and JNK. Taken together we propose the following model: LPS stimulates TLR4-mediated activation of the NFĸB-pathway and thereby the production of TNF-α, IL-6 and IL-12p40. PMT inhibits the production of IL-12p40 by Gαi-mediated inhibition of adenylate cyclase and cAMP accumulation and by Gβγ-mediated activation of PI3kinase and JNK activation. Conclusions On the basis of the experiments with PMT this study gives an example of a pathogen-induced interaction between G protein-mediated and TLR4-triggered signalling and illustrates how a bacterial toxin is able to interfere with the host’s immune

  8. FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum.

    Science.gov (United States)

    Satoh, Akira; Makanae, Aki; Nishimoto, Yurie; Mitogawa, Kazumasa

    2016-09-01

    Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability. PMID:27432514

  9. FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum.

    Science.gov (United States)

    Satoh, Akira; Makanae, Aki; Nishimoto, Yurie; Mitogawa, Kazumasa

    2016-09-01

    Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability.

  10. Plasmodium-infected erythrocytes (pRBC induce endothelial cell apoptosis via a heme-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    Liu M

    2016-03-01

    Full Text Available Mingli Liu, Carmen Dickinson-Copeland, Salifu Hassana, Jonathan K Stiles Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA Abstract: Heme is cytotoxic to the plasmodium parasite, which converts it to an insoluble crystalline form called hemozoin (malaria pigment in erythrocytes during replication. The increased serum levels of free heme cause tissue damage, activation of microvascular endothelial and glial cells, focal inflammation, activation of apoptotic pathways, and neuronal tissue damage. Several hypotheses have been proposed to explain how these causative factors exacerbate fatal malaria. However, none of them fully explain the detailed mechanisms leading to the high morbidity and mortality associated with malaria. We have previously reported that heme-induced brain microvascular endothelial cell (HBVEC apoptosis is a major contributor to severe malaria pathogenesis. Here, we hypothesized that heme (at clinically relevant levels induces inflammation and apoptosis in HBVEC, a process that is mediated by independent proinflammatory and proapoptotic signaling pathways. In this study, we determined the key signaling molecules associated with heme-mediated apoptosis in HBVEC in vitro using RT2 profiler polymerase chain reaction array technology and confirmed results using immunostaining techniques. While several expressed genes in HBVEC were altered upon heme stimulation, we determined that the apoptotic effects of heme were mediated through p73 (tumor protein p73. The results provide an opportunity to target heme-mediated apoptosis therapeutically in malaria-infected individuals. Keywords: heme, endothelial cells, signaling pathways, cerebral malaria

  11. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor

    International Nuclear Information System (INIS)

    Research highlights: → GLI1, which play a central role in sonic hedgehog signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor-mediated transactivation. → GLI1 directly interacts with AR. → SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state. -- Abstract: Sonic hedgehog (SHH) signaling, acting in a combinatorial manner with androgen signaling, is essential for prostate patterning and development. Recently, elevated activation of SHH signaling has been shown to play important roles in proliferation, progression and metastasis of prostate cancer. In this report, we demonstrate for the first time, that GLI1, which has been shown to play a central role in SHH signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor (AR)-mediated transactivation, at least in part, by directly interacting with AR. Our observations suggest that the SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state by compensating, or even superseding androgen signaling.

  12. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guangchun; Goto, Yutaka; Sakamoto, Ryuichi; Tanaka, Kimitaka; Matsubara, Eri [Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Nakamura, Masafumi [Department of Cancer Therapy and Research, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Zheng, Hong [School of Pharmacy, Second Military Medical University, Shanghai 200433 (China); Lu, Jian [Department of Pathophysiology, Second Military Medical University, Shanghai 200433 (China); Takayanagi, Ryoichi [Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Nomura, Masatoshi, E-mail: nomura@med.kyushu-u.ac.jp [Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2011-01-21

    Research highlights: {yields} GLI1, which play a central role in sonic hedgehog signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor-mediated transactivation. {yields} GLI1 directly interacts with AR. {yields} SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state. -- Abstract: Sonic hedgehog (SHH) signaling, acting in a combinatorial manner with androgen signaling, is essential for prostate patterning and development. Recently, elevated activation of SHH signaling has been shown to play important roles in proliferation, progression and metastasis of prostate cancer. In this report, we demonstrate for the first time, that GLI1, which has been shown to play a central role in SHH signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor (AR)-mediated transactivation, at least in part, by directly interacting with AR. Our observations suggest that the SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state by compensating, or even superseding androgen signaling.

  13. Effects of differentiation on purinergic and neurotensin-mediated calcium signaling in human HT-29 colon cancer cells.

    Science.gov (United States)

    Chowdhury, Mohammad A; Peters, Amelia A; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2013-09-13

    Calcium signaling is a key regulator of processes important in differentiation. In colon cancer cells differentiation is associated with altered expression of specific isoforms of calcium pumps of the endoplasmic reticulum and the plasma membrane, suggesting that differentiation of colon cancer cells is associated with a major remodeling of calcium homeostasis. Purinergic and neurotensin receptor activation are known regulators of cytosolic free Ca(2+) levels in colon cancer cells. This study aimed to assess changes in cytosolic free Ca(2+) levels in response to ATP and neurotensin with differentiation induced by sodium butyrate or culturing post-confluence. Parameters assessed included peak cytosolic free Ca(2+) level after activation; time to reach peak cytosolic free Ca(2+) and the EC50 of dose response curves. Our results demonstrate that differentiation of HT-29 colon cancer cells is associated with a remodeling of both ATP and neurotensin mediated Ca(2+) signaling. Neurotensin-mediated calcium signaling appeared more sensitive to differentiation than ATP-mediated Ca(2+) signaling.

  14. Engineering the melanocortin-4 receptor to control constitutive and ligand-mediated G(S signaling in vivo.

    Directory of Open Access Journals (Sweden)

    Supriya Srinivasan

    Full Text Available The molecular and functional diversity of G protein-coupled receptors is essential to many physiological processes. However, this diversity presents a significant challenge to understanding the G protein-mediated signaling events that underlie a specific physiological response. To increase our understanding of these processes, we sought to gain control of the timing and specificity of G(s signaling in vivo. We used naturally occurring human mutations to develop two G(s-coupled engineered receptors that respond solely to a synthetic ligand (RASSLs. Our G(s-coupled RASSLs are based on the melanocortin-4 receptor, a centrally expressed receptor that plays an important role in the regulation of body weight. These RASSLs are not activated by the endogenous hormone alpha-melanocyte-stimulating hormone but respond potently to a selective synthetic ligand, tetrahydroisoquinoline. The RASSL variants reported here differ in their intrinsic basal activities, allowing the separation of the effects of basal signaling from ligand-mediated activation of the G(s pathway in vivo. These RASSLs can be used to activate G(s signaling in any tissue, but would be particularly useful for analyzing downstream events that mediate body weight regulation in mice. Our study also demonstrates the use of human genetic variation for protein engineering.

  15. Cytotoxic-T-Lymphocyte Antigen 4 Receptor Signaling for Lymphocyte Adhesion Is Mediated by C3G and Rap1

    OpenAIRE

    Kloog, Yoel; Mor, Adam

    2014-01-01

    T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed th...

  16. Hepatic ATGL mediates PPAR-α signaling and fatty acid channeling through an L-FABP independent mechanism

    OpenAIRE

    Ong, Kuok Teong; Mashek, Mara T.; Davidson, Nicholas O.; Mashek, Douglas G.

    2014-01-01

    Adipose TG lipase (ATGL) catalyzes the rate-limiting step in TG hydrolysis in most tissues. We have shown that hepatic ATGL preferentially channels hydrolyzed FAs to β-oxidation and induces PPAR-α signaling. Previous studies have suggested that liver FA binding protein (L-FABP) transports FAs from lipid droplets to the nucleus for ligand delivery and to the mitochondria for β-oxidation. To determine if L-FABP is involved in ATGL-mediated FA channeling, we used adenovirus-mediated suppression ...

  17. $\\gamma-$ray line signal in the 750 GeV-diphoton-excess-motivated gravity mediator dark matter model

    OpenAIRE

    Zhang, Cun; Cui, Ming-Yang; Feng, Lei; Fan, Yi-Zhong(Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008, China); Ren, Zhong-zhou

    2016-01-01

    The 750 GeV diphoton excess observed by LHC may indicate the existence of a new mediator particle. If intrinsic it will be a great revolution of the Standard Model and a new spin-0 or 2 particle should be included. In this work we discuss the spin-2 mediator model in which the new particle interacts with dark matter particles. The dark matter particles can annihilate into two photons and give rise to gamma-ray line signal that is widely believed to be the smoking-gun signature in the dark mat...

  18. Intracellular cytoplasm-specific delivery of SH3 and SH2 domains of SLAP inhibits TcR-mediated signaling.

    Science.gov (United States)

    Kim, Jung-Ho; Moon, Jae-Seung; Yu, JiSang; Lee, Sang-Kyou

    2015-05-01

    Signaling events triggered by T cell receptor (TcR) stimulation are important targets for the development of common therapeutics for various autoimmune diseases. SLAP is a negative regulator of TcR-mediated signaling cascade via targeting TcR zeta chain for degradation through recruiting the ubiquitin ligase c-Cbl. In this study, we generated a transducible form of SH3 and SH2 domains of SLAP (ctSLAPΔC) which can be specifically targeted to the cytoplasm of a cell. ctSLAPΔC inhibited tyrosine phosphorylation of signaling mediators such as ZAP-70 and LAT involved in T cell activation, and effectively suppressed transcriptional activity of NFAT and NFκB upon TcR stimulation. The transduced ctSLAPΔC in T cells blocked the secretion of T cell-specific cytokines such as IL-2, IFNγ, IL-17A, and IL-4 and induced the expression of CD69 and CD25 on effector T cells without influencing the cell viability. Inhibition of TcR-mediated signaling via SLAP blocked the differentiation of naïve T cells into Th1, Th2 or Treg cells with different sensitivity, suggesting that qualitative and quantitative intensity of TcR-mediated signaling in the context of polarizing cytokines environment may be a critical factor to determine the differentiation fate of naïve T cells. These results suggest that cytoplasm-specific transduction of the SH3 and SH2 domains of SLAP has a therapeutic potential of being an immunosuppressive reagent for the treatment of various autoimmune diseases.

  19. The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer

    Directory of Open Access Journals (Sweden)

    Melnik Bodo C

    2012-08-01

    Full Text Available Abstract Prostate cancer (PCa is dependent on androgen receptor signaling and aberrations of the PI3K-Akt-mTORC1 pathway mediating excessive and sustained growth signaling. The nutrient-sensitive kinase mTORC1 is upregulated in nearly 100% of advanced human PCas. Oncogenic mTORC1 signaling activates key subsets of mRNAs that cooperate in distinct steps of PCa initiation and progression. Epidemiological evidence points to increased dairy protein consumption as a major dietary risk factor for the development of PCa. mTORC1 is a master regulator of protein synthesis, lipid synthesis and autophagy pathways that couple nutrient sensing to cell growth and cancer. This review provides evidence that PCa initiation and progression are promoted by cow´s milk, but not human milk, stimulation of mTORC1 signaling. Mammalian milk is presented as an endocrine signaling system, which activates mTORC1, promotes cell growth and proliferation and suppresses autophagy. Naturally, milk-mediated mTORC1 signaling is restricted only to the postnatal growth phase of mammals. However, persistent consumption of cow´s milk proteins in humans provide highly insulinotropic branched-chain amino acids (BCAAs provided by milk´s fast hydrolysable whey proteins, which elevate postprandial plasma insulin levels, and increase hepatic IGF-1 plasma concentrations by casein-derived amino acids. BCAAs, insulin and IGF-1 are pivotal activating signals of mTORC1. Increased cow´s milk protein-mediated mTORC1 signaling along with constant exposure to commercial cow´s milk estrogens derived from pregnant cows may explain the observed association between high dairy consumption and increased risk of PCa in Westernized societies. As well-balanced mTORC1-signaling plays an important role in appropriate prostate morphogenesis and differentiation, exaggerated mTORC1-signaling by high cow´s milk consumption predominantly during critical growth phases of prostate development and

  20. Hedgehog signaling pathway mediates invasion and metastasis of hepatocellular carcinoma via ERK pathway

    Institute of Scientific and Technical Information of China (English)

    Jing-tao LU; Wen-di ZHAO; Wei HE; Wei WEI

    2012-01-01

    To investigate the role of Hedgehog (Hh) signaling pathway in the invasion and metastasis of human hepatocellular carcinoma (HCC).Methods:Eighty six HCC tissues samples and HCC cell line Bel-7402 were examined.The protein expression of sonic hedgehog (Shh),nuclear glioma-associated oncogene-1 (Gli1),MMP-9 and p-ERK1/2 in HCC was analyzed using immunohistochemistry and Western blot analysis.Boyden chamber assay and wound-healing assay were used to quantify the invasion and metastasis of Bel-7402 cells.Results:In 86 HCC tissue samples,the positive ratio of Shh and nucleus Gli1 was 67.44% (58/86) and 60.47% (52/86),respectively;the expression of nucleus Gli1 was correlated with the tumor pathological grade (P=0.034),and with the ability of the tumor to invade and metastasize (P=0.001); the expression of nucleus Gli1 was also correlated with p-ERK1/2 (P=0.031) and with MMP-9 (P=0.034).Neither Shh,nor nucleus Gli1 was observed in normal liver tissue.KAAD-cyclopamine (KAAD-cyc),a specific inhibitor of the Hh pathway,at the concentrations of 1 and 4 μmol/L inhibited the invasion and migration of Bel-7402 cells and decreased the expression of Gli1 in nucleus and MMP-9,p-ERK1/2 proteins in Bel-7402 cells,On the other hand,Shh,a ligand of the Hh pathway,at the concentration of 0.5 μg/mL produced opposite effects.The MAPK pathway inhibitors U0126 and PD98059 at the concentrations of 5 and 10μmol/L inhibited invasion and metastasis of Bel-7402 cells induced by Shh,and decreased the expression of p-ERK1/2 and MMP-9.However,U0126 and PD98059 had no effect on the expression of Gii1.Conclusion:Hh signaling pathway mediates invasion and metastasis of human HCC by up-regulating the protein expression of MMP-9via ERK pathway.

  1. Transcriptomic analysis of Nodal- and BMP-associated genes during juvenile development of the sea urchin Heliocidaris erythrogramma.

    Science.gov (United States)

    Byrne, Maria; Koop, Demian; Cisternas, Paula; Strbenac, Dario; Yang, Jean Yee Hwa; Wray, Gregory A

    2015-12-01

    Understanding the unusual radial body plan of echinoderms and its relationship to the bilateral plan of other deuterostomes remains a challenge. The molecular processes of embryonic and early larval development in sea urchins are well characterised, but those giving rise to the adult and its radial body remain poorly studied. We used the developmental transcriptome generated for Heliocidaris erythrogramma, a species that forms the juvenile soon after gastrulation, to investigate changes in gene expression underlying radial body development. As coelomogenesis is key to the development of pentamery and juvenile formation on the left side of the larva, we focussed on genes associated with the nodal and BMP2/4 network that pattern this asymmetry. We identified 46 genes associated with this Nodal and BMP2/4 signalling network, and determined their expression profiles from the gastrula, through to rudiment development, metamorphosis and the fully formed juvenile. Genes associated with Nodal signalling shared similar expression profiles, indicating that they may have a regulatory relationship in patterning morphogenesis of the juvenile sea urchin. Similarly, many genes associated with BMP2/4 signalling had similar expression profiles through juvenile development. Further examination of the roles of Nodal- and BMP2/4-associated genes is required to determine function and whether the gene expression profiles seen in H. erythrogramma are due to ongoing activity of gene networks established during early development, or to redeployment of regulatory cassettes to pattern the adult radial body plan.

  2. Role of Titanium Surface Topography and Surface Wettability on Focal Adhesion Kinase Mediated Signaling in Fibroblasts

    Directory of Open Access Journals (Sweden)

    Douglas W. Hamilton

    2011-05-01

    Full Text Available Changes of titanium surface roughness and surface free energy may influence protein absorption that increases cell differentiation through activation of focal adhesion kinase related pathways. However, the influence of titanium surface roughness and hydrophilicity on fibroblast behavior is not well understood. The aim of this study was to investigate the influence of topography and hydrophilicity on fibroblast attachment, spreading, morphology, intracellular signaling, proliferation, and collagen I mRNA levels. Using a cellular FAK knockout (FAK−/− model and wild-type (WT controls, we also investigated the contribution of adhesion in fibroblasts cultured on smooth (PT, sand-blasted, large grit, acid-etched (SLA and hydrophilic SLA topographies. Loss of FAK did not significantly affect fibroblast attachment to any surface, but SLA and hydrophilic SLA surface attenuated spreading of WT cells significantly more than FAK−/− fibroblasts. Both FAK−/− and WT cells formed numerous focal adhesions on PT surfaces, but significantly less on SLA and hydrophilic SLA surfaces. In WT cells, phosphorylation levels of FAK were lower on SLA and hydrophilic SLA in comparison with PT 24 h post seeding. Labeling of cells with antibodies to cortactin showed that FAK−/−cells contained significantly more cortactin-rich focal adhesion in comparison with WT cells on PT surfaces, but not on SLA or hydrophilic SLA. ERK 1/2 phosphorylation was highest in WT cells on all surfaces which correlated with collagen I expression levels. We conclude that fibroblasts are sensitive to changes in surface roughness and hydrophilicity, with adhesive interactions mediated through FAK, an important modulator of fibroblast response.

  3. Rice Rab11 is required for JA-mediated defense signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Ji [Department of Molecular Biotechnology, Dong-A University, Busan 604-714 (Korea, Republic of); BK21 Center for Silver-Bio Industrialization, Dong-A University, Busan 604-714 (Korea, Republic of); Lee, Yun mi [Department of Molecular Biotechnology, Dong-A University, Busan 604-714 (Korea, Republic of); Son, Young Sim [Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Im, Chak Han [Eco-Friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 660-360 (Korea, Republic of); Yi, Young Byung [Department of Molecular Biotechnology, Dong-A University, Busan 604-714 (Korea, Republic of); Rim, Yeong Gil [Systems and Synthetic Agrobiotech Center, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Bahk, Jeong Dong, E-mail: jdbahk@gnu.ac.kr [Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Heo, Jae Bok, E-mail: jbheo72@dau.ac.kr [Department of Molecular Biotechnology, Dong-A University, Busan 604-714 (Korea, Republic of); BK21 Center for Silver-Bio Industrialization, Dong-A University, Busan 604-714 (Korea, Republic of)

    2013-05-17

    Highlights: •OsRab11 interacts with OsOPR8. •OsOPR8 is localized in the cytosol and peroxisome. •OsRab11 enhances the NADPH consumption by OsOPR8. •Transgenic Arabidopsis overexpressing OsRab11 represents a pathogen-resistant phenotype. -- Abstract: Rab proteins play an essential role in regulating vesicular transport in eukaryotic cells. Previously, we characterized OsRab11, which in concert with OsGAP1 and OsGDI3 regulates vesicular trafficking from the trans-Golgi network (TGN) to the plasma membrane or vacuole. To further elucidate the physiological function of OsRab11 in plants, we performed yeast two-hybrid screens using OsRab11 as bait. OsOPR8 was isolated and shown to interact with OsRab11. A co-immunoprecipitation assay confirmed this interaction. The green fluorescent protein-OsOPR8 fusion product was targeted to the cytoplasm and peroxisomes of protoplasts from Arabidopsis thaliana. OsOPR8 exhibited NADPH-dependent reduction activity when 2-cyclohexen-1-one (CyHE) and 12-oxo-phytodienoic acid (OPDA) were supplied as possible substrates. Interestingly, NADPH oxidation by OsOPR8 was increased when wild-type OsRab11 or the constitutively active form of OsRab11 (Q78L) were included in the reaction mix, but not when the dominant negative form of OsRab11 (S28N) was included. OsRab11 was expressed broadly in plants and both OsRab11 and OsOPR8 were induced by jasmonic acid (JA) and elicitor treatments. Overexpressed OsRab11 transgenic plants showed resistance to pathogens through induced expression of JA-responsive genes. In conclusion, OsRab11 may be required for JA-mediated defense signaling by activating the reducing activity of OsOPR8.

  4. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation.

    Science.gov (United States)

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into disease-related isoforms (PrP(Sc)). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrP(C) in prion formation was examined using a cell painting technique. PrP(Sc) formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrP(C). In contrast, PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc). Furthermore, the presence of desialylated PrP(C) inhibited the production of PrP(Sc) within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrP(C) contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrP(C). Desialylated PrP(C) was less sensitive to cholesterol depletion than PrP(C) and was not released from cells by treatment with glimepiride. The presence of desialylated PrP(C) in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases.

  5. PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis1[OPEN

    Science.gov (United States)

    Valdés, Ana Elisa; Wang, Guodong

    2016-01-01

    Plant vascular tissues, xylem and phloem, differentiate in distinct patterns from procambial cells as an integral transport system for water, sugars, and signaling molecules. Procambium formation is promoted by high auxin levels activating class III homeodomain leucine zipper (HD-ZIP III) transcription factors (TFs). In the root of Arabidopsis (Arabidopsis thaliana), HD-ZIP III TFs dose-dependently govern the patterning of the xylem axis, with higher levels promoting metaxylem cell identity in the central axis and lower levels promoting protoxylem at its flanks. It is unclear, however, by what mechanisms the HD-ZIP III TFs control xylem axis patterning. Here, we present data suggesting that an important mechanism is their ability to moderate the auxin response. We found that changes in HD-ZIP III TF levels affect the expression of genes encoding core auxin response molecules. We show that one of the HD-ZIP III TFs, PHABULOSA, directly binds the promoter of both MONOPTEROS (MP)/AUXIN RESPONSE FACTOR5, a key factor in vascular formation, and IAA20, encoding an auxin/indole acetic acid protein that is stable in the presence of auxin and able to interact with and repress MP activity. The double mutant of IAA20 and its closest homolog IAA30 forms ectopic protoxylem, while overexpression of IAA30 causes discontinuous protoxylem and occasional ectopic metaxylem, similar to a weak loss-of-function mp mutant. Our results provide evidence that HD-ZIP III TFs directly affect the auxin response and mediate a feed-forward loop formed by MP and IAA20 that may focus and stabilize the auxin response during vascular patterning and the differentiation of xylem cell types. PMID:26637548

  6. Regulation of TGF-β signaling by Smad7

    Institute of Scientific and Technical Information of China (English)

    Xiaohua Yan; Ziying Liu; Yeguang Chen

    2009-01-01

    Transforming growth factor (TGF)-β is a pleiotropic cytokine regulating a variety of cellular processes such as cell growth, differentiation, apoptosis, migration, cell adhesion, and immune response, in the well-understood classical TGF-β signaling pathway, TGF-β activates Smad signalling via its two cell surface receptors such as TβRli and ALK5/TβRI, leading to Smad-mediated transcriptional regulation. In addition, TGF-β may also activate other signaling pathways like mitogen-activated protein kinase, PI3K, etc. The signaling of TGF-β is finely regulated at different levels. Inhibitory Smads,including Smad6 and Smad7, are key regulators of TGF-β/bone morphogenetic protein (BMP) signaling by negative feedback loops. They can form stable com-plexes with activated type I receptors and thereby blocking the phosphorylation of R-Smads, or recruit ubiquitin E3 ligases, such as Smurfl/2, resulting in the ubiquitination and degradation of the activated type I receptors. Besides, these inhibitory Smad proteins also inhibit TGF-β/BMP signaling in the nucleus by inter-acting with transcriptional repressors, such as histone deacetylases, Hoxc-8, and CtBP, or disrupting the for-marion of the TGF-β-induced functional Smad-DNA complexes. Smad7 is in turn regulated by different stimuli, including TGF-β, IFN-γ, TNF-α as well as ultraviolet and TPA, and mediates the crosstalk between TGF-β and other signaling pathways. Deregulation of Smad7 expression has been associated with various human diseases, such as tissue fibrosis, inflammatory disease as well as carcinogenesis. Overexpression of Smad7 has been shown to antagonize TGF-13-mediated fibrosis, carcinogenesis, and inflammation, suggesting a therapeutic potential of Smad7 to treat these diseases.

  7. Light signaling induces anthocyanin biosynthesis via AN3 mediated COP1 expression

    OpenAIRE

    Meng, Lai-Sheng; Liu, Aizhong

    2015-01-01

    Light signaling plays a pivotal role in controlling plant morphogenesis, metabolism, growth and development. The central process of light signaling pathway is to build the link between light signals and the expression of genes involved. Although studies focused on light signaling toward metabolism have been documented well in the past several decades, most regulation networks of light signaling in a specific metabolic production largely remained unknown. Anthocyanin accumulation in plant tiss...

  8. Intracellular mediators of transforming growth factor β superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo

    Directory of Open Access Journals (Sweden)

    Ishii Shunsuke

    2007-06-01

    Full Text Available Abstract Background Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Results Proteins that are downstream of the transforming growth factor-β superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFβ superfamily for their normal development. Phosphorylated Smad1 (pSmad1, pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Conclusion Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-β superfamily to endosomes is important for the regulation of growth factor signaling.

  9. Functional link between Rab GTPase-mediated membrane trafficking and PI4,5P2 signaling.

    Science.gov (United States)

    Li, Cuifang; Kita, Ayako; Hashimoto, Yuuka; Ihara, Misako; Kato, Ayaka; Ogura, Naoya; Doi, Akira; Oku, Masahide; Itoh, Toshiki; Sakai, Yasuyoshi; Sugiura, Reiko

    2014-03-01

    Fission yeast its3(+) encodes an essential phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) that regulates cell integrity and cytokinesis. We performed a genetic screen to identify genes that function in PI4P5K-mediated signaling, and identified gyp10(+) encoding a Rab GTPase-activating protein (GAP), a negative regulator for Rab GTPase signaling. Its3 overproduction caused growth defects and abnormal cytoplasmic accumulation of the Its3 protein, which can be stained by calcofluor. Notably, Its3 overproducing cells displayed abnormal membranous structures, multilamella Golgi and fragmented vacuoles showed by Electron microscopy. Furthermore, the excess cytoplasmic Its3 structure partly colocalized with the fluorescence of FM4-64. Gyp10 rescued both growth defects and abnormal Its3 localization when it was over-expressed. Gyp10 functionally interacted with the Rab GTPases Ypt3 and Ryh1, both of which regulate Golgi membrane trafficking. Consistently, mutation or deletion of Ypt3 and Ryh1 suppressed phenotypes associated with Its3 overproduction. Importantly, the plasma membrane localization of Its3 was also affected by the impairment of the Ypt3/Ryh1 Rab membrane trafficking, thus suggesting that membrane trafficking events regulated by two Rab GTPases functionally interacts with PI4,5P2 signaling. These results suggest a mechanism whereby PI4P5K signaling/localization is affected by Golgi membrane trafficking, thus provide a functional link between the PI4,5P2 signaling and Rab-mediated trafficking. PMID:24350606

  10. Reinforcement of integrin-mediated T-Lymphocyte adhesion by TNF-induced Inside-out Signaling

    Science.gov (United States)

    Li, Qian; Huth, Steven; Adam, Dieter; Selhuber-Unkel, Christine

    2016-07-01

    Integrin-mediated leukocyte adhesion to endothelial cells is a crucial step in immunity against pathogens. Whereas the outside-in signaling pathway in response to the pro-inflammatory cytokine tumour necrosis factor (TNF) has already been studied in detail, little knowledge exists about a supposed TNF-mediated inside-out signaling pathway. In contrast to the outside-in signaling pathway, which relies on the TNF-induced upregulation of surface molecules on endothelium, inside-out signaling should also be present in an endothelium-free environment. Using single-cell force spectroscopy, we show here that stimulating Jurkat cells with TNF significantly reinforces their adhesion to fibronectin in a biomimetic in vitro assay for cell-surface contact times of about 1.5 seconds, whereas for larger contact times the effect disappears. Analysis of single-molecule ruptures further demonstrates that TNF strengthens sub-cellular single rupture events at short cell-surface contact times. Hence, our results provide quantitative evidence for the significant impact of TNF-induced inside-out signaling in the T-lymphocyte initial adhesion machinery.

  11. Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Cho Hyunju

    2013-01-01

    Full Text Available Abstract Background Palmitic acid, the most common saturated free fatty acid, has been implicated in ER (endoplasmic reticulum stress-mediated apoptosis. This lipoapotosis is dependent, in part, on the upregulation of the activating transcription factor-4 (ATF4. To better understand the mechanisms by which palmitate upregulates the expression level of ATF4, we integrated literature information on palmitate-induced ER stress signaling into a discrete dynamic model. The model provides an in silico framework that enables simulations and predictions. The model predictions were confirmed through further experiments in human hepatocellular carcinoma (HepG2 cells and the results were used to update the model and our current understanding of the signaling induced by palmitate. Results The three key things from the in silico simulation and experimental results are: 1 palmitate induces different signaling pathways (PKR (double-stranded RNA-activated protein kinase, PERK (PKR-like ER kinase, PKA (cyclic AMP (cAMP-dependent protein kinase A in a time dependent-manner, 2 both ATF4 and CREB1 (cAMP-responsive element-binding protein 1 interact with the Atf4 promoter to contribute to a prolonged accumulation of ATF4, and 3 CREB1 is involved in ER-stress induced apoptosis upon palmitate treatment, by regulating ATF4 expression and possibly Ca2+ dependent-CaM (calmodulin signaling pathway. Conclusion The in silico model helped to delineate the essential signaling pathways in palmitate-mediated apoptosis.

  12. Calpain-mediated proteolysis of polycystin-1 C-terminus induces JAK2 and ERK signal alterations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, University of Maryland, Baltimore, MD (United States); Kang, Ah-Young [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, Program of Immunology, Graduate School, Seoul National University, Seoul (Korea, Republic of); Ko, Ah-ra [Clinical Research Center, Samsung Biomedical Research Institute, Seoul (Korea, Republic of); Park, Hayne Cho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); So, Insuk [Department of Physiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Park, Jong Hoon [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Cheong, Hae Il [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Pediatrics, Seoul National University Children’s Hospital, Seoul (Korea, Republic of); Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Hwang, Young-Hwan [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Internal Medicine, Eulji General Hospital, Eulji University College of Medicine, Seoul (Korea, Republic of); and others

    2014-01-01

    Autosomal dominant polycystic kidney disease (ADPKD), a hereditary renal disease caused by mutations in PKD1 (85%) or PKD2 (15%), is characterized by the development of gradually enlarging multiple renal cysts and progressive renal failure. Polycystin-1 (PC1), PKD1 gene product, is an integral membrane glycoprotein which regulates a number of different biological processes including cell proliferation, apoptosis, cell polarity, and tubulogenesis. PC1 is a target of various proteolytic cleavages and proteosomal degradations, but its role in intracellular signaling pathways remains poorly understood. Herein, we demonstrated that PC1 is a novel substrate for μ- and m-calpains, which are calcium-dependent cysteine proteases. Overexpression of PC1 altered both Janus-activated kinase 2 (JAK2) and extracellular signal-regulated kinase (ERK) signals, which were independ