WorldWideScience

Sample records for bm86 ortholog protein

  1. Vaccination against Bm86 Homologues in Rabbits Does Not Impair Ixodes ricinus Feeding or Oviposition.

    Directory of Open Access Journals (Sweden)

    Jeroen Coumou

    Full Text Available Human tick-borne diseases that are transmitted by Ixodes ricinus, such as Lyme borreliosis and tick borne encephalitis, are on the rise in Europe. Diminishing I. ricinus populations in nature can reduce tick exposure to humans, and one way to do so is by developing an anti-vector vaccine against tick antigens. Currently, there is only one anti-vector vaccine available against ticks, which is a veterinary vaccine based on the tick antigen Bm86 in the gut of Rhipicephalus microplus. Bm86 vaccine formulations cause a reduction in the number of Rhipicephalus microplus ticks that successfully feed, i.e. lower engorgement weights and a decrease in the number of oviposited eggs. Furthermore, Bm86 vaccines reduce transmission of bovine Babesia spp. Previously two conserved Bm86 homologues in I. ricinus ticks, designated as Ir86-1 and Ir86-2, were described. Here we investigated the effect of a vaccine against recombinant Ir86-1, Ir86-2 or a combination of both on Ixodes ricinus feeding. Recombinant Ixodes ricinus Bm86 homologues were expressed in a Drosophila expression system and rabbits were immunized with rIr86-1, rIr86-2, a combination of both or ovalbumin as a control. Each animal was infested with 50 female adults and 50 male adults Ixodes ricinus and tick mortality, engorgement weights and egg mass were analyzed. Although serum IgG titers against rIr86 proteins were elicited, no effect was found on tick feeding between the rIr86 vaccinated animals and ovalbumin vaccinated animals. We conclude that vaccination against Bm86 homologues in Ixodes ricinus is not an effective approach to control Ixodes ricinus populations, despite the clear effects of Bm86 vaccination against Rhipicephalus microplus.

  2. Rhipicephalus (Boophilus microplus: expression and characterization of Bm86-CG in Pichia pastoris Rhipicephalus (Boophilus microplus: expressão e caracterização da Bm86-CG em Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Rodrigo Casquero Cunha

    2011-06-01

    Full Text Available The cattle tick Rhipicephalus (Boophilus microplus is responsible for great economic losses. It is mainly controlled chemically, with limitations regarding development of resistance to the chemicals. Vaccines may help control this parasite, thereby reducing tick pesticide use. In this light, we performed subcloning of the gene of the protein Bm86-GC, the homologue protein that currently forms the basis of vaccines (GavacTM and TickGardPLUS that have been developed against cattle ticks. The subcloning was done in the pPIC9 expression vector, for transformation in the yeast Pichia pastoris. This protein was characterized by expression of the recombinant Mut+ strain, which expressed greater quantities of protein. The expressed protein (rBm86-CG was recognized in the Western-blot assay using anti-Gavac, anti-TickGard, anti-larval extract and anti-rBm86-CG polyclonal sera. The serum produced in cattle vaccinated with the antigen CG rBm86 presented high antibody titers and recognized the native protein. The rBm86-GC has potential relevance as an immunogen for vaccine formulation against cattle ticks.O carrapato-do-boi Rhipicephalus (Boophilus microplus é responsável por grandes perdas econômicas. Seu controle é principalmente químico e apresenta limitações quanto ao desenvolvimento de resistência aos princípios ativos. As vacinas podem auxiliar no controle deste parasita diminuindo as aplicações de carrapaticidas. Considerando isso, foi realizada a subclonagem do gene da proteína Bm86-CG, proteína homologa a que atualmente é a base das vacinas desenvolvidas (GavacTM e TickGardPLUS contra o carrapato-do-boi, no vetor de expressão pPIC9, para ser transformado em levedura, Pichia pastoris. Esta proteína foi caracterizada pela expressão da cepa recombinante Mut+ que expressou maior quantidade de proteína. A proteína expressa, rBm86-CG, foi reconhecida no ensaio de Western-blot pelos soros policlonais anti-Gavac, anti-TickGard, anti

  3. Bovine immunoprotection against Rhipicephalus (Boophilus microplus with recombinant Bm86-Campo Grande antigen Imunoproteção de bovinos contra Rhipicephalus (Boophilus microplus com antígeno recombinante Bm86-Campo Grande

    Directory of Open Access Journals (Sweden)

    Rodrigo Casquero Cunha

    2012-09-01

    Full Text Available The southern cattle fever tick, Rhipicephalus (Boophilus microplus, is no doubt the most economically important ectoparasite of cattle globally. The inappropriate use of chemical acaricides has driven the evolution of resistance in populations of R. (B. microplus. Anti-tick vaccines represent a technology that can be combined with acaricides in integrated control programs to mitigate the impact of R. (B. microplus. The recombinant form of Bm86 antigen from the Campo Grande (rBm86-CG strain of R. (B. microplus was produced using the Pichiapastoris expression system to test its ability to immunoprotect cattle against tick infestation. Secretion of rBm86-CG by P. pastoris through the bioprocess reported here simplified purification of the antigen. A specific humoral immune response was detected by ELISA in vaccinated cattle. Immunoblot results revealed that polyclonal antibodies from vaccinated cattle recognized a protein in larval extracts with a molecular weight corresponding to Bm86. The rBm86-CG antigen showed 31% efficacy against the Campo Grande strain of R. (B. microplus infesting vaccinated cattle. The rBm86-CG is an antigen that could be used in a polyvalent vaccine as part of an integrated program for the control of R. (B. microplus in the region that includes Mato Grosso do Sul.O carrapato Rhipicephalus (Boophilus microplus é, sem dúvidas, o ectoparasito economicamente mais importante para o gado a nível mundial. A utilização inadequada de acaricidas tem impulsionado a evolução da resistência em populações de R. (B. microplus. Vacinas contra o carrapato representam uma tecnologia que pode ser combinada com acaricidas em programas de controle integrado para diminuir o impacto de R. (B. microplus. A forma recombinante da Bm86 da cepa Campo Grande (rBm86-CG de R. (B. microplus foi produzido utilizando o sistema de expressão em Pichia pastoris para testar sua capacidade de imunoproteção ao gado contra a infestação de

  4. Selection of reference genes for quantitative RT-PCR studies in Rhipicephalus (Boophilus) microplus and Rhipicephalus appendiculatus ticks and determination of the expression profile of Bm86.

    Science.gov (United States)

    Nijhof, Ard M; Balk, Jesper A; Postigo, Milagros; Jongejan, Frans

    2009-12-29

    For accurate and reliable gene expression analysis, normalization of gene expression data against reference genes is essential. In most studies on ticks where (semi-)quantitative RT-PCR is employed, normalization occurs with a single reference gene, usually beta-actin, without validation of its presumed expression stability. The first goal of this study was to evaluate the expression stability of commonly used reference genes in Rhipicephalus appendiculatus and Rhipicephalus (Boophilus) microplus ticks. To demonstrate the usefulness of these results, an unresolved issue in tick vaccine development was examined. Commercial vaccines against R. microplus were developed based on the recombinant antigen Bm86, but despite a high degree of sequence homology, these vaccines are not effective against R. appendiculatus. In fact, Bm86-based vaccines give better protection against some tick species with lower Bm86 sequence homology. One possible explanation is the variation in Bm86 expression levels between R. microplus and R. appendiculatus. The most stable reference genes were therefore used for normalization of the Bm86 expression profile in all life stages of both species to examine whether antigen abundance plays a role in Bm86 vaccine susceptibility. The transcription levels of nine potential reference genes: beta-actin (ACTB), beta-tubulin (BTUB), elongation factor 1alpha (ELF1A), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glutathione S-transferase (GST), H3 histone family 3A (H3F3A), cyclophilin (PPIA), ribosomal protein L4 (RPL4) and TATA box binding protein (TBP) were measured in all life stages of R. microplus and R. appendiculatus. ELF1A was found to be the most stable expressed gene in both species following analysis by both geNorm and Normfinder software applications, GST showed the least stability. The expression profile of Bm86 in R. appendiculatus and R. microplus revealed a more continuous Bm86 antigen abundance in R. microplus throughout its one

  5. Selection of reference genes for quantitative RT-PCR studies in Rhipicephalus (Boophilus microplus and Rhipicephalus appendiculatus ticks and determination of the expression profile of Bm86

    Directory of Open Access Journals (Sweden)

    Jongejan Frans

    2009-12-01

    Full Text Available Abstract Background For accurate and reliable gene expression analysis, normalization of gene expression data against reference genes is essential. In most studies on ticks where (semi-quantitative RT-PCR is employed, normalization occurs with a single reference gene, usually β-actin, without validation of its presumed expression stability. The first goal of this study was to evaluate the expression stability of commonly used reference genes in Rhipicephalus appendiculatus and Rhipicephalus (Boophilus microplus ticks. To demonstrate the usefulness of these results, an unresolved issue in tick vaccine development was examined. Commercial vaccines against R. microplus were developed based on the recombinant antigen Bm86, but despite a high degree of sequence homology, these vaccines are not effective against R. appendiculatus. In fact, Bm86-based vaccines give better protection against some tick species with lower Bm86 sequence homology. One possible explanation is the variation in Bm86 expression levels between R. microplus and R. appendiculatus. The most stable reference genes were therefore used for normalization of the Bm86 expression profile in all life stages of both species to examine whether antigen abundance plays a role in Bm86 vaccine susceptibility. Results The transcription levels of nine potential reference genes: β-actin (ACTB, β-tubulin (BTUB, elongation factor 1α (ELF1A, glyceraldehyde 3-phosphate dehydrogenase (GAPDH, glutathione S-transferase (GST, H3 histone family 3A (H3F3A, cyclophilin (PPIA, ribosomal protein L4 (RPL4 and TATA box binding protein (TBP were measured in all life stages of R. microplus and R. appendiculatus. ELF1A was found to be the most stable expressed gene in both species following analysis by both geNorm and Normfinder software applications, GST showed the least stability. The expression profile of Bm86 in R. appendiculatus and R. microplus revealed a more continuous Bm86 antigen abundance in R

  6. Protein (Cyanobacteria): 500468482 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available othetical protein Synechococcus sp. RCC307 MRLLCFAVPLAGTLSLLASSSLFAAAKAHPNHHWQNRRAALQEMPVVRDYPDGYGTAAQLPVRRASLRNVARSGQLLDPQAAQRRCNIGRLIGGLAGGGLGYAASRQDGRAWAIPLGALLGSQVGCPVAQGQGPFGGLGY

  7. Protein (Cyanobacteria): 553734844 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Lyngbya aestuarii METEYQPHFSRHEYFWKIHSAFLAADFWLISKGSREQLGRPIQEYKKRELATWRFPSRAKFAREGCFGMLTPKCLDPKYSYYLCEFIWQSGLWQTYSCGAITWQHLRINDVRNVFKPGSYFLTTEGNAILIAPVKLQAATAFMD

  8. Protein (Cyanobacteria): 493031649 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Coleofasciculus chthonoplastes MNPFKRVLAFSRNFSSRLSARLSVYHQWFNIYSKDSATTNLTRHNINPFKRVLAFSRNFSSRLSARLS...VYHQWFNIYSKDSATTNLTGHNMNPFKRVLAFSRNFSSRLSARLSVYHQWFNIYSKDSATTNLTGHNMNPFKRVLAFSRNFSSRLSARLSVYHQWFNIYSKDSATTNLTGHNMNPFKRVLAFSRNFSSRLDARLSVYHQ

  9. Protein (Viridiplantae): 159472102 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 4474 predicted protein, partial Chlamydomonas reinhardtii PPSPAPPSPEPGSPPPSPAPPSPQPPSPAPPSPEPGSPPPSPAPPSPKPPSPAPPSPEQPGSPPPSPPPPRPQPPSPAPPSPEPGSPPPSPAPPSPQPPSPAPPSPEPGSPPPSPAPTQP ...

  10. Protein (Cyanobacteria): 652325626 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Fischerella sp. PCC 9431 MQRRCERNRKRSKRRAIYCPIHGCYLDSVSQKYPLFADRPGQLQQRGIGRQTALLLVAHKTAVPLEGEWLEAFWCDQCQEKKWYHLKKRDRVYEVSIAAPELWQQAMGVIYPEGNPSVGEFTRRHARMVGCKSSKDFGFIG

  11. Protein (Cyanobacteria): 129527 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ing protein Oscillatoriales cyanobacterium JSC-12 MLLIDTSVWISVFRDRTGQVRQKLETLIDARDIFLTRFTQLKLLQGSLNEKEWTLLSTYLETQDYVEPVGNSWRAAARIYYDLRRRGLTVRSPIDCCIAQAALENDLLLIHNDRDFETIAQVRSLQHFRFQP ...

  12. Protein (Cyanobacteria): 516358569 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available tical protein Scytonema hofmanni MEDIVPKQTTLCPSARPESADGVVFGIVGGTATVPRVAYLKQLLPVTNELMAKTGSVKPAEIFRTAASCVESGCQHFDGKDCRLSMRIVEKLPAVVEELPACSIRRNCRWWQQEGKAACMRCPQIVTDNYSSSEQLRQAADPSVYFQT

  13. Protein (Cyanobacteria): 515893735 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 379 ... hypothetical protein Synechococcus sp. PCC 7336 MITENYFEDLHFTECNIGEFSFSDKDLYVNIDSGLYIFGEHPLKGIIQPSDSCIAIFKNVIYSHRILALYSEDRKGFTGEKIVDKNIAQPSEGQNYKRFSIEGVSKNPPAWLTWDIDAASFMLETISS

  14. Protein (Cyanobacteria): 8763 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available e protein Chroococcidiopsis thermalis PCC 7203 MTDNLTPQDETCKPKDDEALAVCVQALGLPQIQRHVFICADQTLPQCCSKEASLESWDYLKKRLKQLKLDKPTSD...RPSCIFRTKANCLRVCTNGPILVVYPDGVWYRQATPEVIERIIQEHLIGNQIVREYAFLVHPLPEPTSDAIADDN ...

  15. Protein (Cyanobacteria): 432519 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available mal protein L18 Prochlorococcus marinus str. MIT 9211 MATLSKKQQTQKRHKRLRRHLNGTNHRPRLAVFRSNNHIYAQVIDDEAQSTICSASTLDKDLREKLKASGGSCDASMAVGALLAQRALAKGIEQVVFDRGGNLYHGRVKALAKSAREAGLKF ...

  16. Protein (Cyanobacteria): 497473866 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 313612:2918 ... hypothetical protein Lyngbya sp. PCC 8106 MQSEIKHFERHPYLWKIHSAFLAADFWLINKGTKEQLGKPIREYKKGCFGMLAPKYLDPKYSYYLCEFIWQSGLWQTYSCGAITWQHLRISDVRNVFEPGSYLLTSEGNAVLIAPVKLQVSTASLA

  17. Protein (Cyanobacteria): 493719093 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available othetical protein Arthrospira maxima MEDISNAIASHDSPIQRLPETSDSVEDISNAIASHDSPIQRLSETSDSGDVNNAIASHDSPSIQRVSETSDSVEDISNAIASHDSTIQRLSETSDS...VEDISNAIASHDSTIQRLSETSDSVEDISNAIASHDSTIQRLSETSDSGDVNDAIDSVEDISNAIASHDSPIQRLPETSDSGDVNNAIASHDSPIQRLSETSDS...SPIQRLSETSDSGDVNNAIASDDSPIQRLPETSDSVGVNNAIASHDSPSIQRVSETSDSVEDISNAIASHDSPIQRLPETSDS...SPIQRLPETSDSVDVNAIASHDSTIQRLPETSDSGDVNNAIASDDSPIQRLSETYDSSPIQRLPETSDSVDVNVIASDDSPIQRLPETSDS...VDVNNAIASHDSPSIQRVSETSDSVEDISNAIASHDSPIQRLPETSDSSPIQRLPETSDSVDVNAITFHDSSIQRLPETSDSSPIQRLPETSVEDISNAIASHDSPIQRLSETSDS

  18. Protein (Cyanobacteria): 652324638 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available thetical protein Fischerella sp. PCC 9431 MLRDLKKEVFYPYPPQRVWQVLTNRHTLAVWLMENDFEPRVGHKFRFLYSSIPGLAESIDCEVIELDEPKRLS...FTWQDSMMYRPSIVIWTLKPVDGGTQLQLEHKGLSQEPDQTRLSASLHEPMRLSQPWQGRFMHESTALTAHSTMLSPIPVGRYEALNSVILSSFLDGGWDFRLSERMPQVLVSFASNN

  19. Protein (Cyanobacteria): 479128382 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :1689 696747:1689 ... hypothetical protein Arthrospira platensis NIES-39 MSFTSSWGHLESSVIATFLHLVDLLRLSHIIVGCDRLSDIFLNRREIYSSDAPPLLLRLS...HIIVGCDRLSDTLLNRREIYSSDAPPLLLRLSHIIVGCDRLSDTFLNQGEIYSSDAPPLLLRLSHIIVGCDRLSDTFLNRREIYSSDAPPLLRLSHIIVGCDRLSDTLLNQGEIVTD

  20. Protein (Cyanobacteria): 493719463 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Arthrospira maxima MKPNTNLFVRLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVGLSETQKVGWVKPNTNLFVGLSETQK...VGWVKPNTNLFVGLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVRLS...ETQKVGWVKPNTNLFVGLSETQKVGWVKPNTNLFVGLSETQKVGWVKPNTNLFVGLSETQKVGWVKPNTNLFVRLSETQ...KVGWVKPNTNLFVGLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVRLSETQHESKLLNWDSPGRLGGVDG

  1. Protein (Cyanobacteria): 451051 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein MC7420_1253 Coleofasciculus chthonoplastes PCC 7420 MNPFKRVLAFSRNFSSRLSARLSVYHQWFNIYSKDSATTNLTRHNINPFKRVLAFSRNFSSRLSARLS...VYHQWFNIYSKDSATTNLTGHNMNPFKRVLAFSRNFSSRLSARLSVYHQWFNIYSKDSATTNLTGHNMNPFKRVLAFSRNFSSRLSARLSVYHQWFNIYSKDSATTNLTGHNMNPFKRVLAFSRNFSSRLDARLSVYHQ ...

  2. Protein (Cyanobacteria): 451052 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein MC7420_1362 Coleofasciculus chthonoplastes PCC 7420 MNPFKRVLAFSRNFSSRLSARLSVYHQWFNIYSKDSATTNLTRHNINPFKRVLAFSRNFSSRLSARLSVYHQWFNIYSKDSATTNLTGHNMNPFKRVLAFSRNFSSRLSARLSVYHQ ...

  3. Protein (Cyanobacteria): 516326988 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 8:1709 ... hypothetical protein Oscillatoria sp. PCC 10802 MRDLVRAAGIRPDSASLCIYHGVWIWGELAQLAAQLAAQLAAQLAAQLAAQLAAQLAAQWLSWRLSWRLS...GSAGGSAGGSVGGSVGGSVAHFAAHLAAQWLSWRLSWRLSWRLSWRLSWRLTYFGQMSYHPETNLIT

  4. Protein (Viridiplantae): 159466610 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 2419 hypothetical protein CHLREDRAFT_123820, partial Chlamydomonas reinhardtii RVQCRLVDMPAPCLPPFLPTCPHKPRRIPMPCTDAH...ELVDMPAPCLPPFLPDNLPARAPQAPHAVTDAHECMQCRLVDMPAPCLPPFLPKCPHKPRRLPMPCTDAHECNMPAPCLPPFLPKCPHKPRRLPMPCTDAHECMQCRLVDMPAPCLPAFLPNCPHKPRRLPMPCTDAHECSAGW ...

  5. Protein (Cyanobacteria): 554637619 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 2386 1183438:2386 ... hypothetical protein GKIL_3310 Gloeobacter kilaueensis JS1 MSSHDVDRRLSDILDAASSIQQYTANLSELQFISGQQVVDAVNYNLIKIGEAVANLPEDFKEANPDIPWQAIKRTRNFITIVILWWTPASSGQQSGLICRNL

  6. Protein (Cyanobacteria): 78213804 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ... hypothetical protein Syncc9605_2296 Synechococcus sp. CC9605 MHRSLLLWIVAMACTTSSVGASQSWKRSLPLQEASQQAVTAANAVINQSGSEECLRGKFSNAILRLSNSCDVSGYSSTECELASKIAGQESKLSMSDMIATSETLLDLLGDSATSN

  7. Protein (Cyanobacteria): 657935082 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available NIDLTGVTFVAAEMRGANFQGSNLSNAILTKGILLRANLEGANLSYALVDRVTMDEANLKNAIFTEATLTSSRFYGADITGADFTDAIIDRYQVSLLCDRASGVNPVTGISTRESLGCR ...01 ... hypothetical protein [ Scytonema hofmanni] UTEX 2349 MKKILLRFLSLIVSLLLAALWIIFNPHPAFGQVNTINYSNMSLENRDFS

  8. Protein (Cyanobacteria): 414076585 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein ANA_C11310 Anabaena sp. 90 MSVGAKHLEDELSVIAKNSSPNASPVQLLVGGKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVVICPENNPKEQIICAVICGVEEKSNEITAIPELIKVLDMTGCLYSTHLNYLI

  9. Protein (Cyanobacteria): 264168 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available al protein CRC_01598, partial Cylindrospermopsis raciborskii CS-505 MKKFLTLALILILFLVSSFSLGTSPSYAYSQSDLDRLLETRECPECDLSDADLSD...ADLSRDDLRRANLRGAKLKDADLSDADLSDADLRRAKLRHANLRGAKLKDADLSSAYLSGADLTGANLSGADLRDAKLKNADLSGAFLTSADLMRADLTGANLTCAVGADFIVAEIVAE ...

  10. Protein (Cyanobacteria): 218248342 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ... hypothetical protein PCC8801_3595 Cyanothece sp. PCC 8801 MSIQYLLDENLPHLYREQLLRLKSDLTVWIIGDPGVPPKSTLDPEILIWCEQNKFILVTNNRASMPVHLADHLSQNRHIPGIFVLRPKASIGEIIDDLILIDELGNPQDYQDCISHIPFI

  11. Protein (Viridiplantae): 959385 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available othetical protein AMTR_s00062p00178830 Amborella trichopoda MGNCVRKSSSWEGWEDEEWGCDEAEKLVLKPKVEREEEVLSKKKNGGDSKEVKIRISKKQLEELLGKMELHGMSVDQMIEQLMNTNGHKHRGWRPVLQSIPECESWNVGMREKDNCEVADF

  12. Protein (Cyanobacteria): 146367 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ain protein Halothece sp. PCC 7418 MSLVSFSELVTGAKEGKVVSFPTDTVPALAVRPDCAEAIFELKQREATKPLILMGASPEQLWDYVEGTPEEFQ...VWEQTAQQYFPGQLTLVLPSSSLVRPEVNPKTADTIGIRVPDCAIARQVFASTGVLATTSANRSGQPPLTTPEAINQAFPEVLVLADTEPIVSSGLPSTVAKWTGQDWEILRQGNIYLK ...

  13. Protein (Cyanobacteria): 394995 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein gll3097 Gloeobacter violaceus PCC 7421 MKYFFLAEGWRVGRVWDSAGVWDDLVQRRKPQLERINLGIIEQGETFWLYRTEEAVVMVEVKRTEQTTNPAVQGIAQVLLKRLIDARETLERLSKAEVIFNACEPRVPLTSSKEESGRMR ...

  14. Protein (Cyanobacteria): 414076004 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein ANA_C10715 Anabaena sp. 90 MSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLED...KLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSLNASPVQLSVGRNIPPAPCLFCLLL

  15. Protein (Cyanobacteria): 504891571 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available l protein Anabaena sp. 90 MSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLED...KLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSLNASPVQLSVGRNIPPAPCLFCLLL

  16. Protein (Cyanobacteria): 414079227 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein ANA_C20136 Anabaena sp. 90 MVTKFDHNLVVSENVELVNCQLLVGAKHLEDKLSVIAKNSSPNASPVQLLVGAKHLEDKLSVIAKNSSPNASPVQLLVGAKHLED...KLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLSVAKKYFSSLFPVP

  17. Protein (Cyanobacteria): 504896048 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available l protein Anabaena sp. 90 MVTKFDHNLVVSENVELVNCQLLVGAKHLEDKLSVIAKNSSPNASPVQLLVGAKHLEDKLSVIAKNSSPNASPVQLLVGAKHLED...KLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLSVAKKYFSSLFPVP

  18. Protein (Cyanobacteria): 653002134 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available thetical protein, partial Planktothrix agardhii MKFINPKTDYAFKKIFGSDQSQDILISFLNAIVYQGETFITYLEIIDPYAPGRISGLKTT...YFDVKAQLNNGENVLIEMQAFNVPAFGKRILYNTAKMYVNQLKLGEVYPELRAAIGVAVTDFIMFNEHNKVISQFTLKEDELQVNYQHSPLKLVFVELPKFNKTLEELTTITDKWLYFLRKAPDLEVVPESMLIVPEIEKAFTIADRVNLSLEEVDDLEKREQFERERIGAIELG

  19. Protein (Cyanobacteria): 652400470 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available rug ABC transporter ATP-binding protein Planktothrix prolifica MNWAIEVKDSASMSSLNPVVATQNLGKFYRTGFWMNQKIESLKSC...QMRQYSKGMLQRVGMAQALINNPEVVFLDEPMSGLDPMGRYQIREIILSLKAQNKTVFFNSHVLSDVEKICDRIAILAEGE

  20. Protein (Cyanobacteria): 652402344 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available alamin biosynthesis protein CobW Planktothrix prolifica MANLDVETPDFVLNIPKRGMPVTIITGFLGSGKTTLLNQILKNKQDLKIAVL...VNEFGDINIDSQLLISTDDDMVELSNGCICCTINDGLLDAVYRVLEREDRIDYMVIETTGVADPLPIILTFVGTELRELTNLDSVLTVIDAEAFTPEHFDSEAAFKQIVFGDIILLNKT

  1. Protein (Cyanobacteria): 652998063 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available thetical protein, partial Planktothrix agardhii STPQGSTEDGPVAVPTQVQVQTEDGDVWQDVASPTSDNTDEKGRYYTTLSEYLERNKERH...ENRVFYCTDETTQATYIQLHTSQGLEVLFFDSFIDSHFISFLEREHTDVKFARVDAELDDNLIAKDNSPEIVDPKTNKTRSEIIKDLFTAALNKPKLTIRTESLKSEN

  2. Protein (Viridiplantae): 224066412 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :2491 predicted protein Populus trichocarpa MIVTSSSNPAPQVGTSNSAIPTPQVVAASSNPQVVTSSSNPAPQPLQTLRWFHLLRNNPSGGRSSANPTPQVVAASSNP...QVVPSSSRETPQVGTSSANPTPRVVAASSNPQVVPSSSRATPQVEDEKTVYLPVFEVGNYEAWSKK

  3. Protein (Cyanobacteria): 516360189 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available l protein, partial Scytonema hofmanni PALMTALKDEDSSVRSGVADALGEIGIGAKEAVPALMTALKDENSSVRNSAAEALGKIGTGAKEVVPALI...AALKDEDSSVRDGAAEALGEIGIGAKEVVPALMTALKDEDSSVRDSAADALGKISFGEQDAFLITVIQDSSIRDRDAEALRTIGTGIKEAVSALI

  4. Protein (Cyanobacteria): 479132152 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 42 696747:542 ... hypothetical protein Arthrospira platensis NIES-39 MPRWGEAGSVICSPRKLISRCGERAGLAIYSLGNVIDCGTRPYFIV...GGVRAGLAICSLGNVIDCGTRPYFIVGGVRAGLAICSLGNVIDCGTRPYFIVGGVRAGLAICSLGNVIDCGTRPYFIVGGVRAGLAICSLGNVIDCGTRPYFIVGGVRRVWQYAP

  5. Protein (Viridiplantae): 224082572 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 4 3694:5504 predicted protein, partial Populus trichocarpa SLSSTRTQLDLLEQLTSTSSPADGYESDGSSGKLTIRDQLARLVGDRDDDFSIPLGKKNLKKVSANFLTVSQKRNIRRQAYLNEVSQRNDSVFFATIGAFIILPPTLILGIAIIIGYVQLFP ...

  6. Protein (Cyanobacteria): 428215966 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3474 56110:3474 ... hypothetical protein Oscil6304_5715 Oscillatoria acuminata PCC 6304 MEGASIAPLQDQRYAMEGASIAPLQDQRYAMEGASIAPLQDQRFFVMQWRALIGLGYTDKASPARAHQEKLLLTTGLGIKTLFLLFSLHRQASSV

  7. Protein (Cyanobacteria): 518305272 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 1:947 ... 50S ribosomal protein L18 Prochlorococcus sp. W2 MNTISRKQQTQKRHRRLRRFLVGTKAKPRLSVFRSNNHIYAQVIDDQAQSTICSASTIDKEFKIKDNESTSNCNSSSEVGLLLAKRAIKKGVKEVVFDRGGKIYHGRVKALADAARKAGLKF

  8. Protein (Cyanobacteria): 428780101 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 13035:290 ... hypothetical protein Dacsa_1875 Dactylococcopsis salina PCC 8305 MIHTFAPKPPILGACINLPPNPQFWGLASIC...PQTPNSGGLHQFAPKPPILGACINLPPNPQFWGLASICPQTPNSGGLHQFAPKPPILGACINLPPNPQFWGLASICPQTPNSGGLHQFAPKPPILGACINLPPNPQFWGLASIC...PQTPNSGGLHQFAPKPAILGACINLPPNPQFWGLASICPQTRNSGGLHQFAPKPAILGAFINLPPNPQFWGLLSICPQTPNSGGFHQFAPKPPILGAFINLPPNPQFWGLSSICSQTPNSGGFHQFAPKPPILGAFINQFFK

  9. Protein (Cyanobacteria): 647660116 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :162 ... hypothetical protein, partial Prochlorococcus sp. scB243_496A2 MRILLAAAECAPMIKVGGMGDVVGSLPPSLIKLGHDVRVIIPGYGKLWSLLEVSNEPVFRTNTMGTDFAVYEAKHPIHNYVIYLVGHPTFDSDQIYGGENEDWRFTFFASAT

  10. Protein (Viridiplantae): 242039983 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :5312 4558:5312 hypothetical protein SORBIDRAFT_01g026880 Sorghum bicolor MASQTTKMLALVAALLALSTIATATANCLQNIPHVMGMTVMDPCM...QSCMMQQPLAMVMMGMTAMDPCMQSCMMQQPLAMVISSPSLMMRMNSMVSCVQSCMTQQAFSIGGSSLSK

  11. Protein (Viridiplantae): 302830920 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 058 3068:3058 hypothetical protein VOLCADRAFT_87241 Volvox carteri f. nagariensis MPNPLAEMELLGFWGLKLVATVTDCHMSDSGRVMTAFVFKVVSYRNEAAST...LAEMELLGFWGLKLVATVTDCHMSDSGRVMTAFVFKVVSYRNEAASTMLTPEPLPESLEYLQAQVERALDERRELERVMWA...AREGRGGPSMLSCKQLETIELSTMGEAAELEVKRALEAITVVQYSMPNPLAEMELLGFWGLKLVATVTDCHMSDSGRVMTAFVFKVVSYRNEAASTMLTPEPLPESLEYLQAQVERALDERRELERVMWAAREGRGGPSMLSCKQLETIELSTMGEAAELEVKRALEEMFH ...

  12. Protein (Viridiplantae): 714399 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3051:329 ... 3052:329 ... 3055:329 ... predicted protein Chlamydomonas reinhardtii MAPAALPGRSVKSKQAHLLRTDAHRVKSKQAHLLRTDAHRVKSKQAHLLRTDA...HRVKSKQAHLLRTDAHRVKSKQAHLLRTDAHRVALTTLTGALSLFGGACTATSFVLQVSASAASYAASLRLSCPAVPSLTDVA

  13. Protein (Cyanobacteria): 220909747 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 51 ... hypothetical protein Cyan7425_4387 Cyanothece sp. PCC 7425 MIEMKVAGIALDAATRIPIVLLKDATERRALPIWIGQNEARAI...LSALENQKSPRPMTHDLMVNFLKDWDMLLERVVIHSLQDNTYYAVLTVKQGEVKKEIDARPSDAIAIALRVDCPIWVMEEVVADASIPVDREADEAERQAFREFLDSIRPEDFIQRWGTGETSTGS

  14. Protein (Cyanobacteria): 113477182 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 124:288 ... peptidase-like protein Trichodesmium erythraeum IMS101 MHQTKFWAIAPFGLLTILGKPLLSPALPIHQAVVNFSYVDESSTKSEIFAQDTSFPKVTPSPEMTP...TLEDSPSPEMTPTLEDSPSPEMTPTLEDSPSPEMTPTLEDSPSPEMIPPTQEPEIILQQPGMLSDDDLVLPSDESVYDEHTFEGT

  15. Protein (Cyanobacteria): 5336 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ical protein P9515_09211 Prochlorococcus marinus str. MIT 9515 MEENVDSIGDSYINEKDTFKKDNKNTNKEKVAKEKSNEVNKEINEEKVAKENSNEVNIEINEE...KISEENSKEVNKDINKEKVAKEKSNEVNKEINEEKVAKENSNEVNIEINEEKVAKEKSNEVNKEINEEKISEENSKEVNKDINKEKVSKE

  16. Protein (Cyanobacteria): 123966154 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 42:828 ... hypothetical protein P9515_09211 Prochlorococcus marinus str. MIT 9515 MEENVDSIGDSYINEKDTFKKDNKNTNKEKVAKEKSNEVNKEINEE...KVAKENSNEVNIEINEEKISEENSKEVNKDINKEKVAKEKSNEVNKEINEEKVAKENSNEVNIEINEEKVAKEKSNEVNKEINEEKISEE

  17. Protein (Viridiplantae): 357460885 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 42:12854 3877:12854 3880:12854 Flotillin-like protein Medicago truncatula MNSSQAILHRLRPLSPVNYTFEVQAMTSKLISPHDKLSNHVNELVQGNIEGETHVLAASMTMEEVFRGTEEFKQEVFKKVQHKLNQFELLIYNVNVKQLVERMNAFTA ...

  18. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer.

    Science.gov (United States)

    Carreón, Diana; de la Lastra, José M Pérez; Almazán, Consuelo; Canales, Mario; Ruiz-Fons, Francisco; Boadella, Mariana; Moreno-Cid, Juan A; Villar, Margarita; Gortázar, Christian; Reglero, Manuel; Villarreal, Ricardo; de la Fuente, José

    2012-01-05

    Red deer (Cervus elaphus) and white-tailed deer (Odocoileus virginianus) are hosts for different tick species and tick-borne pathogens and play a role in tick dispersal and maintenance in some regions. These factors stress the importance of controlling tick infestations in deer and several methods such as culling and acaricide treatment have been used. Tick vaccines are a cost-effective alternative for tick control that reduced cattle tick infestations and tick-borne pathogens prevalence while reducing the use of acaricides. Our hypothesis is that vaccination with vector protective antigens can be used for the control of tick infestations in deer. Herein, three experiments were conducted to characterize (1) the antibody response in red deer immunized with recombinant BM86, the antigen included in commercial tick vaccines, (2) the antibody response and control of cattle tick infestations in white-tailed deer immunized with recombinant BM86 or tick subolesin (SUB) and experimentally infested with Rhipicephalus (Boophilus) microplus, and (3) the antibody response and control of Hyalomma spp. and Rhipicephalus spp. field tick infestations in red deer immunized with mosquito akirin (AKR), the SUB ortholog and candidate protective antigen against different tick species and other ectoparasites. The results showed that deer produced an antibody response that correlated with the reduction in tick infestations and was similar to other hosts vaccinated previously with these antigens. The overall vaccine efficacy was similar between BM86 (E=76%) and SUB (E=83%) for the control of R. microplus infestations in white-tailed deer. The field trial in red deer showed a 25-33% (18-40% when only infested deer were considered) reduction in tick infestations, 14-20 weeks after the first immunization. These results demonstrated that vaccination with vector protective antigens could be used as an alternative method for the control of tick infestations in deer to reduce tick populations

  19. Protein (Viridiplantae): 108113 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_60352, partial Volvox carteri f. nagariensis MRCASIC...DLQPYMICKRMRSASICDVQAYALCKHMRSASICDVQAYAICNHMRPASICALQAYGMCKRMRSTSI

  20. Protein (Viridiplantae): 108080 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available is MQAYATCDVRSYVICKHIRSASICDLQAYAICKHMPDAICKHMLHSIICDLQAYARCDLQAYATFDVQAYAICKHMRSASICNLQAYAICKHMRSASICHIRCASICDLQAYAICKHMPDAICKRMPHSMCKHMRSASICDLQAYAICKHIPHSMCKHMRYASICDHSYAMLRYATL ...065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_58713 Volvox carteri f. nagariens

  1. Protein (Viridiplantae): 108094 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_71484 Volvox carteri f. nagariensis MRSASIC...DLQAYDKCDLQAYAICKNMPYAICKHMPYAICKHMPYAICKHMHLQAYAVCKHMPYAICKHMPYAICKHMPYAICKHMPYAICKDYNLQAYAICKHMRSASIC...DLQAYAICDLQAYAICDLQAYAICDLQAYAICDLQAYAICDLQAHAICKHMPYAICKHMRSASICHMRSASICSLQAYAVCKHMQSVSICSLQTYAVCKHSNMQAYAVCKHVQSASICSLHAYAICKHMQSASICHM

  2. Protein (Viridiplantae): 108095 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_70901, partial Volvox carteri f. nagariensis MQSASIC...NLQAYAICDLQAYAICKHMPYAICKHHMPYAICKHMRSASICDLQAYAICKHMLSASICDLQAYAVCKHMRSASICCLQAYAICKHLRSASICDLQAYVICKHMRSASIC...HMRSASICDLQAYAVCKHMRSASICSLQAYAVCKHMQSASICDLQAYAICKHMRFASMC

  3. Protein (Viridiplantae): 108112 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_68908, partial Volvox carteri f. nagariensis MQYASIC...DLQAYAMCKHMQCASICALQAYGMCKHMRSASICDLQAYAMCKHMQSASVCALQAYAMCKHMRCASI

  4. Protein (Viridiplantae): 108078 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available is MQACATCDVQSYVICNHIRSASICDLQAYAICKHMPGAICKHMLHSMCKHMRSASICDLQAYAICKHMPDAICKHMSHSIICDLQAYAICKHMPDAICKHMPHSMCKHMRSASIC...DLQAYAICKHIPHSIICDLQAYAICKHMPDAICKHMPHSMCKHMRSASICDLQAYAICKHIPHSMCKHMRYGSLCDHSYVLCYAMLCYAMLC ...065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_62293 Volvox carteri f. nagariens

  5. Protein (Viridiplantae): 108087 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_32364, partial Volvox carteri f. nagariensis YAICKHMRSASIC...DLQAYAICKHMRSASICDLQAYAICKHLPDTICKHMPHSMCKHMRSASICDLQAYAICKHMPSASICQMRSASICHIRCASICDLQAYARCDLQAYATFDVQTYAICKHLRSASICDLQAYAICKHMPHSMCKHMRYASLCDLQAYAIC

  6. Protein (Viridiplantae): 108090 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_62437, partial Volvox carteri f. nagariensis MRSASIC...HIRCASICELQAYAICKHVRSASICDRQAYAICKHMPDTICKHMPHSMCKHMRSASICQIRPASICHIRCASICDLQAYATCKHMRAASIC...DRQAYAICKHMPDAICKHMPHSMCKHMRSASICQMRSASICHIRCASICDLQAYARCDLQAYAICKHMRSASICQIRCASICDL

  7. Protein (Viridiplantae): 108106 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_39614, partial Volvox carteri f. nagariensis ICKHMRYASIC...QMRCASICHIRCASICDLQAYAICKHMQSASICQMRSASICHIRCARICDMQAYAICKHIRSMLCCDMPYALCYATLCPYATCDVRSYVICKHIRSASICDLQAYAICKHMPDAICKHMLHSMCKHMRSASLCDLQAYTI

  8. Protein (Viridiplantae): 108088 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_62449 Volvox carteri f. nagariensis MCFIYTNASYASIC...HMRCAIICDLQAYAMCNHIRSASICDVQSYAICKHMPDAICKHMPHSMCKHMRSASICDLQAYAICKHMPDAICKHMPHSICKHFFHLRSASICHIRCASIC...DLQAYAICKHMPDAICKHMPHSMCKHMRSASICDLQAYAICKHIPHSMCKHMRYGSLCDHSYVLCYAMLCYAMLC

  9. Protein (Viridiplantae): 108097 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_70912 Volvox carteri f. nagariensis MRSASIC...DLQAYVICKHIPYAICKHTPYAICKHMPYAICKHIPLCDLQAYAIMRSASICNYAIGKHMPLCDLQAYAICDLQAYTICDLQAYAICDLQAYAICKHMRSASIC...DLQAYMICKHIICDLQAYAICKHMRSASICDLQAYAICDLQAYAICKHMPYAICKHMPYAICKHMRSASICNLQAYAICDLQAYVICKHT

  10. Protein (Viridiplantae): 108099 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_70990, partial Volvox carteri f. nagariensis MRSASIC...DLQAYAICKHLGCASICDAQAYAIWKHMRSASICDLQVYALCKHIGCASVCDLQAYAIICDLQAYAICKHMRCASICALQAYAICKHMRYYMRSASIC...DLQAYATCKHMPYAICKHMPYAICKHMPYAICKHMPYAICKHMRSASICHMRSASICDLQAYAICDLQAYAMLCLLCLL

  11. Protein (Viridiplantae): 108089 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_70544 Volvox carteri f. nagariensis MRSASIC...HYTICKHMPYAICKHMRSASICHYAICKHMPYAICKHIPYAICEHMPYATCKHMRSASICDLQAYAICKHMRSHMPYAICKHMRSASICHYAICKHMP...YAICKHIPYAICEHMPYATCKHMRSASICDLQAYAICKHIRSASICDLQAYAICKHMPSVICKHMRSASICDLQAYAICDLQACAICKHMRSTSICHYAICKHMPSCHLQAYAIMRSASISHYAICKHMPSCDLQAYAIMRSASICHYAICKHMPL

  12. Protein (Viridiplantae): 108084 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_70645, partial Volvox carteri f. nagariensis MRSASIC...HIRCASICDLQAYATSDVQAYAICKHMPDAICKHMPHSMCKHMRSASICDLQAYAICKHMRSASICDLQAYAICKHLPDTICKHMPHSMCKHMRSASIC...DLQAYAICKHMPSASICQMRSASICHIRCASICDLQAYARCDLQAYATFDVQTYAICKHLRSASICDLQAYAICKHMPHSMCKH

  13. Protein (Viridiplantae): 409327 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 58 3688:972 ... 238069:972 ... 3689:972 ... 3694:972 ... hypothetical protein POPTR_0019s09290g, partial Populus trichocarpa RESVIDDFRAGKTWVLIATDVLGRGMDFKGVKCVINYDFPDCAASYIHRIGMFLNLWIHSYVYM

  14. Protein (Viridiplantae): 232868 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3051:4703 ... 3052:4703 ... 3055:4703 ... hypothetical protein CHLREDRAFT_120274, partial Chlamydomonas reinhardtii PPGCRCSSAPPGCRCSSAPP...GCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCS

  15. Protein (Cyanobacteria): 33862119 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 9:1168 59919:1168 hypothetical protein PMM1563 Prochlorococcus marinus subsp. pastoris str. CCMP1986 MGEAKRRKSLGLPPKQKNTKSKSDESPRIFDWLPLTINQRDSLMKMSIKASWYGIGGLVILWVIVRFIGPAAGWWTPADSL

  16. Protein (Cyanobacteria): 661286037 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 0:477 ... hypothetical protein, partial Prochlorococcus sp. scB243_498P3 MSTKSDSLKEKLIENFSDFSKLSDYSFMNYLRADPQ...STKDGNDHKPRSVYSGHYVPVLPTAIPEPEYISHSKKLFKELRLSSDLTKDKNFCLFFSGDISVANYPMSPVGWATGYALSIYGTEYTQQCPFGTGNGYGDGIAISVFEGLFNGKRMEMQLKGGGPTPYCRGA

  17. Protein (Viridiplantae): 779632 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 65:1289 ... 3066:1289 ... 3067:1289 ... 3068:1289 ... hypothetical protein VOLCADRAFT_95759 Volvox carteri f. nagari...ensis MRHGEDTSRHRGNEQKAPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPFLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPFLPPSLPPSLPPSLPPSLPPSLPPSLPPSLPPSPPPSLPPSLPACP

  18. Protein (Viridiplantae): 674773 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 65:235 ... 3066:235 ... 3067:235 ... 3068:235 ... hypothetical protein VOLCADRAFT_37371, partial Volvox carteri f. nagariensis PSELEADPPS...EWEADPPSELEADPPSELEADPPSELGADPPSELEADPPSELEADPPSELEADPPSELEADPPSGLEADPPSELEADPPSELEADPPSESEADPP

  19. Protein (Viridiplantae): 674776 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 65:235 ... 3066:235 ... 3067:235 ... 3068:235 ... hypothetical protein VOLCADRAFT_56839, partial Volvox carteri f. nagariensis DPPSDWEADPPS...DWEADPPSDWEADPPSDWEADPPSDWEADPPSDWEADPPSDWEADPPSDWEADPPSDWEADPPSDWEADPPSDWEADPPSDWEADPPSDWGADPPSDWEADPPSDWEADPPSDWEADPPSDWKADLPSDWKADPPSD

  20. Protein (Viridiplantae): 674774 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 65:235 ... 3066:235 ... 3067:235 ... 3068:235 ... hypothetical protein VOLCADRAFT_65149, partial Volvox carteri f. nagariensis DPPSDWEADPPS...DWEADPPTIGRLIPPSDWEADPPSDWEADPPSDWKADPPSDWEGDPPSDWEADPPSDWEADPPSDWEADPPSDWEADPPSDWEADPP

  1. Protein (Viridiplantae): 188576 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 65:1947 ... 3066:1947 ... 3067:1947 ... 3068:1947 ... hypothetical protein VOLCADRAFT_62572, partial Volvox carteri f. nagariensis PPS...SVTHTRIPPSSVTHTRIPPSSGTHTRIPPSSGTHTRIPPSSGTHTRIPPSSGTHSRIPPSSGTHSRIPPPSGTHTRIPPPSGTHTRIPPSSVTHTRIPPSSGTHTRIPPS...SGTHTRIPPSSGTHTRIPPSSGTHTRIPPSSGTHTRIPPSSGTHTRIPPSSGTHTRIPPLGRLLLTAAKQHT

  2. Protein (Viridiplantae): 780231 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 401 ... 38832:1362 ... 38833:877 ... 564608:877 predicted protein Micromonas pusilla CCMP1545 MQDSMHDTMHDSIQDSMHDSIQDSMQDSM...AKEEEEPAEPPAKEEEAHAEPPAKEEEAHAEPPAKEEDYAEPPAKEEDYAEPPAKEEAHSMDSMDSMDSMDSMDSMDSMHSMDSMDSMDSMDSMHSMDSMDSMDSM...DSMHSMDSMDSMDSMDSMDSMDSMHSMDTSIDAVDAAANVTDAADTAGAAANVTDAADTAGAAAEEKPPENASVDSLDSLLDG

  3. Protein (Viridiplantae): 746637 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 218 ... 38832:274 ... 38833:414 ... 564608:414 predicted protein Micromonas pusilla CCMP1545 MAQLPSYEVDDGEDSMPGAPGEGPMTDSMQGPPVEVPTSDSM...PGAPGEVPTMDSMHGPPVEVPTMDSMHGAPVEVPMMDSMPGAPVEVPTMDSMQGPPVEVPTMDSMQGAPGEGPMTDSMHGAPGEGPTMDSMNSGNPTKCVVPDWCSTYPPEMQKSKPECQCPDDSHP

  4. Protein (Cyanobacteria): 428318141 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GNDMICGTNRRGFQPPSHSSSRLKPTENSSDDAAGNDMICGTNRRGFQPPSHSSSRLKPTENSSETDVDQLTLQSSFRGLSL ...10 179408:410 ... hypothetical protein Osc7112_3223 Oscillatoria nigro-viridis PCC 7112 MWWQLLRIMPKFAPNLSPDDAT

  5. Protein (Cyanobacteria): 265138 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ZP_05789486.1 1117:4795 1118:3283 1129:815 166314:333 secreted pentapeptide repeats... protein Synechococcus sp. WH 8109 MASLLAVITLAFSTVVWAESVQAITAPELRGQFAVQEISADMHGLDLKEKEFLKADLREVNLSGTDLRGAVIN

  6. Protein (Viridiplantae): 427364 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 803:565 ... 3814:565 ... 163742:102 ... 3877:102 ... 3880:102 ... Aluminum-induced protein Medicago truncatula MKFSPHEKQLDCPRTLRDSGPYPPDQVAKELDGSFAFVVYDSDGSVVISDDLNVIQEGCAKSFAPFSAATMVT

  7. Protein (Viridiplantae): 108125 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:363 ... 3066:363 ... 3067:363 ... 3068:363 ... hypothetical protein VOLCADRAFT_35996, partial Volvox carteri f. nagariensis HIAYCISH...IAYCISHIAYCISHIAYCILHIAYCISHIAYCVSHIAYRILHIAYRILHIAYRILHIAYCILHIAYCILHIAYRISHIAYCISHPYRCIWHIAY

  8. Protein (Viridiplantae): 108124 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:363 ... 3066:363 ... 3067:363 ... 3068:363 ... hypothetical protein VOLCADRAFT_99209 Volvox carteri f. nagariensis MQMHAHTYNISHIVYCISH...IAYCISHIAYRISHIAYRISHIVYRVSHIAYRILHIAYCILHIAYCILHIAYCILHIAYCILHIAYCILHIAYRISHIAAYMAYRISHTAYRISQIAYRCISHIAAYRCILHITYMHIIYAHI

  9. Protein (Viridiplantae): 108120 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:363 ... 3066:363 ... 3067:363 ... 3068:363 ... hypothetical protein VOLCADRAFT_100737 Volvox carteri f. nagariensis MYNISHIVYCISHIAYCISH...IAYRISHIAYRILHIAYCISHIAYCISHIAYCISHIAYRISHIPYRCTISLHMAYRISHTARISHIANCISLHIAYCILHIAYCISHIAYPISLHHIAAYGISHITYRTHIAYRKLHIAAYRISLHIAAYCISHIHICIYAHI

  10. Protein (Viridiplantae): 108121 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:363 ... 3066:363 ... 3067:363 ... 3068:363 ... hypothetical protein VOLCADRAFT_90903 Volvox carteri f. nagariensis MQMHIVYCISH...IAYCILHIAYRILHIAYCISHIAYRILHIAYCILHIAYCISHVAYCISHIPYRCIWHIARISHTAYRIPQITYRCISHIAAYRCILHITYTYMYIYAHI

  11. Protein (Viridiplantae): 108123 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 065:363 ... 3066:363 ... 3067:363 ... 3068:363 ... hypothetical protein VOLCADRAFT_71945 Volvox carteri f. nagariensis MRICLHIAYVCISH...IAYRICACLHIAISHIIHIAYRILPIAYCISHIAYCISHIAYCILHIAYCISHIAYRISHIAYCISHIAYCISHIAYCILHIAYCILHIAYCILHIAYCILHIAYCILHIAYCILHIAYCILHIAAYGILHIAYAYRSQHSIA

  12. Protein (Viridiplantae): 788948 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 832:429 ... 296587:152 ... predicted protein Micromonas sp. RCC299 MRARGKVEVELQGVQRLSARCKECGGSQICEHGRQRFHCRECGGSGICEHGRGRHRCKECG...GSQICEHGRVRSQCKECGGSGICEHGRRRSLCKECGGSGICEHGRQRYSCKECGGAGICEHGRERYSCKECRAAKAGTFPDVDVEVGVTEDA...SSKGAKRKRAPYTKGPCEHGVKYRSQCKVCSACPHGRQRNKCKECGGASICVHGRERNKCKECGGASICEHGRQRSHCKECGGASICVHARERNKCKECG...GASFCEHGRQRRYCKECGGSQICEHGRVRRLCKECGGSGICEHGRQRPQCKECGGSQICEHGRQRYSCKECRAAKAKQR

  13. Protein (Viridiplantae): 788908 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 8832:429 ... 296587:152 ... predicted protein Micromonas sp. RCC299 MPAIWNVSGPLPDVDVEVGVTEDASSKGTKRKRAPPTKGPCEHG...VKPRSKCKVCSACPHGKRRSECKECGGSQICEHGRRRTQCKECGGSQICEHGRVRSTCKECGGSGLCEHGRERSRCKECGGPGICEHGRVRSRCKECGGSQICEHGRQRSKCKECG...GGSICEHGRIRSTCKECGGSQICEHGRERSKCKECGGGAICEHGRIRSTCKECGGGAICEHGRERHRCKECGGSGICEHGRRRSQCKECG...GSAICEHGRHRQYCKECGGGSICEHGRIRSTCKECGGGAICEHGRQRHRCKECGGASFCEHGRQRSRCKECGGSGICEHGRRRSTCKECRAAN

  14. Protein (Viridiplantae): 788912 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 8832:429 ... 296587:152 ... predicted protein Micromonas sp. RCC299 MLPDVDVEVGVTEDASSKGTKRKRAPKTKGPCEHGVKRRSNCKVCSACPHGKWRYWCKECG...GAGICEHGRERRRCKECGGASICEHGRQRRYCKECGGGSICEHGRVRYYCKECGGSGICEHGRDRSRCKECGGGSICEHGRERYYCKECGGSQICEHGRRRSECKECG...GSQICEHGRRRSECKECGGSAICEHGRQRYYCKECGGSGICEHGRDRSRCKECGGGSICEHGRERYYCKECG...GAGICEHGRIRSTCKECGGSRICEHDRQRHTCKDCGGSQICEHGRVRSKCKECGGSGICEHGRHRQYCKECGGGSFCEHGRQRRKCKECGGSQI

  15. Protein (Cyanobacteria): 428774810 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 65093:254 ... SUA5/yciO/yrdC domain-containing protein Halothece sp. PCC 7418 MSLVSFSELVTGAKEGKVVSFPTDTVPALAVRPDCA...EAIFELKQREATKPLILMGASPEQLWDYVEGTPEEFQVWEQTAQQYFPGQLTLVLPSSSLVRPEVNPKTADTIGIRVPDCAIARQVFASTGVLATTSANRSGQPPLTTPEAINQAFPEVLVLADTEPIVSSGLPSTVAKWTGQDWEILRQGNIYLK

  16. Protein (Cyanobacteria): 505037159 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ... SUA5/yciO/yrdC domain-containing protein Halothece sp. PCC 7418 MSLVSFSELVTGAKEGKVVSFPTDTVPALAVRPDCAEAIF...ELKQREATKPLILMGASPEQLWDYVEGTPEEFQVWEQTAQQYFPGQLTLVLPSSSLVRPEVNPKTADTIGIRVPDCAIARQVFASTGVLATTSANRSGQPPLTTPEAINQAFPEVLVLADTEPIVSSGLPSTVAKWTGQDWEILRQGNIYLK

  17. Protein (Viridiplantae): 761681 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3688:2831 ... 238069:2831 ... 3689:2831 ... 3694:2831 ... caprice family protein Populus trichocarpa MDRRRKKQAKTTSCCSEQEVSSIEWEFINMSEQEEDLIYRMHNLVGDRWALIAGRIPGRKAEEIERFWLMRHGEGFASRRREQKRCHS

  18. Protein (Viridiplantae): 653017 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3065:1599 ... 3066:1599 ... 3067:1599 ... 3068:1599 ... hypothetical protein VOLCADRAFT_59909, partial Volvox carter...i f. nagariensis ASVRCTPSASVRRTPSASVRCTPSASVRRTPSASVRCTPSASVRRTPSASVRCTPSASVRRTPSASVRCTPSASVRRTPSASVRCTPSASVRRTPSASVRRT

  19. Protein (Viridiplantae): 364319 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ... 70447:641 ... 242159:190 ... 436017:190 predicted protein Ostreococcus lucimarinus CCE9901 MARETDPKKRVVITGMGLCS...VGDVAEVNAVRKVFKDVQNVKMNATKSMIGHCLGAAGGMEAIACIMAIKTGMLHPTLNQNELEPIVEGIDTCANEKKAHTVTAAISNSFGFGGHNSCVIFAPFED

  20. Protein (Cyanobacteria): 652400785 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796581.1 ... 1117:7580 ... 1150:51181 1301283:72257 ... 54304:1131 54307:211 ... hypothetical protein Plankt...NDVINTIEHLLETEFQQSCIHKRLKLPGLASEIALVVDGTLQTIGFYHQKIHVLSEMNKTIACSIAKAQRELGYNPTIALEEGMRRSLKWIFENYGGLD

  1. Protein (Cyanobacteria): 653002349 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027254540.1 ... 1117:3646 ... 1150:52865 1301283:74127 ... 54304:528 1160:1354 ... hypothetical protein Plankt...FCQRYKPKEKKTPTRCHWGSKLLAGVHLSNKTLTTNPKKSKSRLVQTPCQVSKSPELTRVVSQFIEANRAPWQAEKDF

  2. Protein (Cyanobacteria): 652400958 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796754.1 ... 1117:7970 ... 1150:52478 1301283:73697 ... 54304:23 54307:536 ... hypothetical protein Plankt...LAKLKQDIAQTEALNPMEKAMVEVPIKMIESELQKPEANKTLINQAVVALKKGLEGVETLAEPVIKVAAILAKVWI

  3. Protein (Cyanobacteria): 652997006 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027249473.1 ... 1117:5662 ... 1150:51230 1301283:72312 ... 54304:1176 1160:459 ... hypothetical protein Plankt...RQISFRDQNNTVQWVIHRPDETPTESQWTILDQGVQIDTEETTLYQNKTTKIWRMQFDHKGRANGQLGRMTVSLRNGSPAKRCTFVSTLLGTLRTSQNNPKPKDGKYCY

  4. Protein (Cyanobacteria): 652400689 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796485.1 ... 1117:7766 ... 1150:53377 1301283:74696 ... 54304:99 54307:105 ... hypothetical protein Plankt...GNYADSEAIFRQLVENQPKEAKYHFYLGNSLFYQRKIEEATQVYQEAISLNPQYGLAYNALGFLHASQGQWDEAIAQYQKALEINPDYAEALKNLGESLWKKGNTAEANNAWKKALELYTQQGNNKAVLQLQEMLNKTSQ

  5. Protein (Cyanobacteria): 652392302 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026788149.1 ... 1117:1255 ... 1150:52201 1301283:73391 ... 54304:205 59512:888 ... hypothetical protein Plankt...ARTEQLPEPVYTQGLIRTYADALGLNGVELANFFLPEPQKVGMKSKLNFLTLPQLRPTHLYLTYILLIICAINGVSYLNKTANFASVSGEPVATTNPPEVNPQLRQAV

  6. Protein (Cyanobacteria): 652390785 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026786633.1 ... 1117:7276 ... 1150:53339 1301283:74654 ... 54304:955 59512:541 ... hypothetical protein Plankt...HEAQPDKFPHIPASMWWAVITLTTVGYGDVYPITPLGRLLGGILALLGIGLIALPAGIIASGFTEVIALNQRKNKTIYPKICPHCGKNIDQPLEDSTDLDH

  7. Protein (Cyanobacteria): 652389677 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026785525.1 ... 1117:5888 ... 1150:52976 1301283:74250 ... 54304:628 59512:189 ... hypothetical protein Plankt...GVALLGMAYPIFSKMLSNDTLTKEPFRVFFALAIFLLSIASFTLLFKARVKLWKGIFATFTGMGLIILGSQPEIYRRDNEWFVSHYYYGITAALLMIFSVAIVQDIYQDKQNRWRTAHIILNCFALLLFIGQGMTGARDLLEIPLHWQEHYIYQCDFTNKTCSQPK

  8. Protein (Cyanobacteria): 653003380 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027255564.1 ... 1117:4943 ... 1150:53097 1301283:74385 ... 54304:737 1160:1650 ... hypothetical protein Plankt...TSGRKQAKSGKGFSPVMVGQKWMLSQLEKLVPVVKIEGYRTASTRKYLGLKKNKTDKSKPEFNTHAVDGVAIAATAFVEYR

  9. Protein (Cyanobacteria): 652996507 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027248974.1 ... 1117:6200 ... 1150:51081 1301283:72146 ... 54304:1041 1160:304 ... hypothetical protein Plankt...NGENVLIEMQAFNVPAFGKRILYNTAKMYVNQLKLGEVYPELRAAIGVAVTDFIMFNEHNKVISQFTLKEDELQVNYQHSPLKLVFVELPKFNKTLEELTTITDKWLY

  10. Protein (Cyanobacteria): 653003025 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027255213.1 ... 1117:7881 ... 1150:51355 1301283:72450 ... 54304:1289 1160:584 ... hypothetical protein Plankt...SPPDGVSPLSETPTPAITTPISPTPQVKQPESAILGLVFVTPAQKPIQPALKPQIIPGTQSQNKTSTKTACSVQPTTGNICTTPLPSAVVPSSTTTESYWATPFILYF

  11. Protein (Cyanobacteria): 652402235 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026798031.1 ... 1117:6249 ... 1150:53365 1301283:74683 ... 54304:979 54307:314 ... hypothetical protein Plankt...LCEEISSQLLLPVETDYVDSDFNYSSLWQNKTVETSWFSKILYTAQKPNSQPIFSPSLVSFLVGCTDSEATAKKSKKIRIYLNPEQKKLLKQWFGVSRFVYNETIKYLQQPDTKANWMAIKTGILNGLPEWAKPWVD

  12. Protein (Cyanobacteria): 652996481 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027248948.1 ... 1117:44906 ... 1150:51132 1301283:72203 ... 54304:1088 1160:350 ... hypothetical protein Plankt...IFVEEGSVLNEKIEKAYSELKIEVKKKESTSDQQEKARNWMIENFYDIRMFGAVLSTGLNAGQVWGPLQISWGRSYDPVLPISATITRCAATEAKEKKDNKTMGRKEL

  13. Protein (Cyanobacteria): 652391798 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026787645.1 ... 1117:7766 ... 1150:53377 1301283:74696 ... 54304:99 59512:39 ... hypothetical protein Plankt...NYAASEAIFRQLVENQPKEAKYHFYLGNSLFYQRKIEEATQVYQEAISLNPQYGLAYNALGFLHASQGQWDEAIAQYQKALEINPDYAEALKNLGESLWKKGNTAEANNAWKKALELYTQQGNNKAVLQLQEMLNKTSQ

  14. Protein (Cyanobacteria): 652402868 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026798653.1 ... 1117:6200 ... 1150:51081 1301283:72146 ... 54304:1041 54307:1121 ... hypothetical protein Plankt...QLNNGENVLIEMQAFNVPAFGKKILYNTAKMYVNQLKLGEVYPELRAAIGVAVTDFIMFNEHNKVISQFTLKEDELQVNYQHSPLKLVFVELPKFNKTLEELTTITDK

  15. Protein (Cyanobacteria): 652997420 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027249886.1 ... 1117:7580 ... 1150:51181 1301283:72257 ... 54304:1131 1160:409 ... hypothetical protein Plankt...VINTIEHLLETEFQQSCIHKRLKLPGLASEIALVVDGTLQTLGFYHQKIHVLSEMNKTIACSIAKAQRELGYNPTIALEEGMRRSLKWIFENYGGLD

  16. Protein (Cyanobacteria): 652390511 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026786359.1 ... 1117:2598 ... 1150:51863 1301283:73014 ... 54304:1746 59512:466 ... hypothetical protein Plankt...INCYRVIKDNVEELIEVLKVHKAKNSKEYFDYLRERDRLKQYNKFSDIQKAARIIYLNKTCYNGLFRVNSKGQFNVPFGSYKNPNILDEAVLRGVNDYLNQKSVTFLN

  17. Protein (Cyanobacteria): 652997790 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027250244.1 ... 1117:4728 ... 1150:51209 1301283:72288 ... 54304:1157 1160:435 ... hypothetical protein Plankt...DKVMTIVESLSGYKLYKTASENFGLIFETAQKIINLPEPARKDIAKWLKLSNPCSVNKIGDIQENLYFLGDFSEAIIQAGLSQNKTFFSRN

  18. Protein (Cyanobacteria): 652996974 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027249441.1 ... 1117:5593 ... 1150:51293 1301283:72381 ... 54304:1232 1160:703 ... hypothetical protein Plankt...KWIREDRMSSGMWRTIIHIGEIFLSSEGSVILIDEFENSLGINCIDILTEDLIHENKTLQFIATSHHPYIINNIPYEYWKIVTRQGGHISIGNASDYHLGKSKQDAFIQLTKILEKQS

  19. Protein (Cyanobacteria): 652391987 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026787834.1 ... 1117:7580 ... 1150:51181 1301283:72257 ... 54304:1131 59512:170 ... hypothetical protein Plankt...NDIINTIEHLLETEFQQSCTHKRLKLPGLASEIALVVDGTLQTLGFYHQKIHVLSEMNKTIACSIAKSQRELGYNPTITLEEGMRRSLKWIFENYGGLD

  20. Protein (Cyanobacteria): 652400636 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796432.1 ... 1117:6249 ... 1150:53365 1301283:74683 ... 54304:979 54307:314 ... hypothetical protein Plankt...LCEEISSQLLLPVETDYVDSDFNYSSLWQNKTVETSWFSKILYTAQKPNSQPIFSPSLVSFLVGCTDSEATAKKSKKIRIYLNPEQKKLLKQWFGVSRFVYNETIKYLQQPDTKANWMAIKTGILNGLPEWAKPGID

  1. Protein (Cyanobacteria): 652390179 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026786027.1 ... 1117:3646 ... 1150:52865 1301283:74127 ... 54304:528 59512:364 ... hypothetical protein Plankt...GFCQRYKPKEKKTPTRCHWGSKLLAGVHLSNKTLTTNPKKSKSRLVQTPCQVSKRPELTRIVSQFIEANRAPWQAEKDF

  2. Protein (Cyanobacteria): 652997530 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027249996.1 ... 1117:1255 ... 1150:52201 1301283:73391 ... 54304:205 1160:1045 ... hypothetical protein Plankt...RTEQLPEPVYTQGLIRTYADALGLNGVELANFFLPEPQKVGMKSKLNFLTLPQLRPTHLYLTYILLIICAINGVSYLNKTANFASVSGEPVATTNPPEVNAQLRQAVV

  3. Protein (Cyanobacteria): 652402139 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026797935.1 ... 1117:2598 ... 1150:51863 1301283:73014 ... 54304:1746 54307:1182 ... hypothetical protein Plankt...LINCYRVIKDNVEELIEVLKVHKAKNSKEYFDYLRERDRLKQYNKFSDIQKAARIIYLNKTCYNGLFRVNSKGQFNVPFGSYKNPNILDEAVLRGVNDYLNQKSVTFL

  4. Protein (Cyanobacteria): 653002222 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027254413.1 ... 1117:3316 ... 1150:51705 1301283:72839 ... 54304:1603 1160:934 ... hypothetical protein Plankt...NLNSDWFCYHDRNFGRFRWGEDIGWEWFVIFAQTETKIPLTLILDWRTNKTHSQGGLPYIFIYQNHQLRKIFLGETLRLNW

  5. Protein (Cyanobacteria): 652401612 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026797408.1 ... 1117:6743 ... 1150:53326 1301283:74640 ... 54304:943 54307:169 ... hypothetical protein Plankt...WLWNRQNQLGIAFDSSTGFHLPNGADRSPDASWIRQERWDLLTQEEREIFAPICPDFVLELRSKNDAIEKLQAKMIEYIENGASLGWLIDRKNKTVEIYRQNQDIELLNHPLILSGEDILPGFMLNLTEVWN

  6. Protein (Cyanobacteria): 652997358 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027249824.1 ... 1117:3316 ... 1150:51705 1301283:72839 ... 54304:1603 1160:934 ... hypothetical protein Plankt...NLNSDWFCYHDRNFGRFRWGEDIGWEWFVIFAQTETKIPLTLILDWRTNKTHSQGGLPYIFIYQNHQLRKIFLGETLRLNW

  7. Protein (Cyanobacteria): 653002178 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027254369.1 ... 1117:7580 ... 1150:51181 1301283:72257 ... 54304:1131 1160:409 ... hypothetical protein Plankt...VINTIEHLLETEFQQSCIHKRLKLPGLASEIALVVDGTLQTIGFYHQKIHVLSEMNKTIACSIAKAQRELGYNPTIALEAGMRKSLKWIFENYGGLD

  8. Protein (Cyanobacteria): 653002395 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027254586.1 ... 1117:6743 ... 1150:53326 1301283:74640 ... 54304:943 1160:197 ... hypothetical protein Plankt...WNRQNQLGIAFDSSTGFHLPNGADRSPDASWIRQERWDLLTQEEREIFAPICPDFVLELRSKNDALEKLQAKMIEYIENGASLGWLIDRKNKTVEIYRQNQDIELLNHPLILSGEDILPGFMLDLTEVWN

  9. Protein (Cyanobacteria): 652997575 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027250041.1 ... 1117:7881 ... 1150:51355 1301283:72450 ... 54304:1289 1160:584 ... hypothetical protein Plankt...SPPDGVSPLWETPTPAITTPISPTPQVKQPQSAILGLVFVTPAQKPIQPALKPQIIPGTQSQNKTSTKTACSVQPTTGNICTTPLPSAVVPSSTTTESYWATPFILYF

  10. Protein (Cyanobacteria): 653002660 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027254850.1 ... 1117:5593 ... 1150:51293 1301283:72381 ... 54304:1232 1160:703 ... hypothetical protein Plankt...WIREDRMSSGMWRTIIHIGEIFLSSEGSVILIDEFENSLGINCIDILTEDLIHENKTLQFIATSHHPYIINNIPYEYWKIVTRQGGHISIGNASDYHLGKSKQDAFIQLTKILEKQS

  11. Protein (Cyanobacteria): 653002681 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027254871.1 ... 1117:17730 ... 1150:52975 1301283:74249 ... 54304:627 1160:1450 ... hypothetical protein Plankt...DCCAWSMQTVYSELQKHGAEFRFVPWDTFRDGARERNKTVPSELGGFSRSNDAAFLQEAADFINNQLDPNRPLVLIGHSFGGDSLLSLVPRINRRIQFLGVIDPTAAG

  12. Protein (Viridiplantae): 765582 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 860 3688:2339 ... 238069:2339 ... 3689:2339 ... 3694:2339 ... hypothetical protein POPTR_0002s04950g Populus trichocarpa MIVTSSSNP...APQVGTSNSAIPTPQVVAASSNPQVVTSSSNPAPQVVAASSNPQVVPSSSRETPQVGTSSANPTPRVVAASSNP

  13. Protein (Viridiplantae): 840816 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 82 3803:282 ... 3814:282 ... 163742:12322 ... 3877:12322 ... 3880:12322 ... Root phototropism protein Medicago truncatula MMMFLAKHKESHMHVPILRIGHFVRVIIAINVKGMRFELNDAANMHYDTKYSYSILDRLC

  14. Protein (Cyanobacteria): 493967532 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_006910818.1 NZ_DS990557 1117:3961 ... 1118:8120 1301283:24412 ... 167375:439 180281:1513 ... DNA internalizat...ion competence protein, ComEC/Rec2 family protein Cyanobium sp. PCC 7001 MLLGAVLPLG

  15. Protein (Cyanobacteria): 493967295 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_006910587.1 NZ_DS990557 1117:3961 ... 1118:8120 1301283:24412 ... 167375:439 180281:1345 ... DNA internalizat...ion competence protein, ComEC/Rec2 family protein Cyanobium sp. PCC 7001 MWGALVLLVL

  16. Protein (Viridiplantae): 128879 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 5:248 3803:248 ... 3814:248 ... 163722:3689 ... 3826:3689 ... 3827:3689 ... PREDICTED: uncharacterized protein LOC101515541 Cicer arietinum MNSSTI...CSLFLGLILISQSANAKGHGGGLVVTICKGATDRAACENILGSNSEISHAKSFSQL

  17. Protein (Viridiplantae): 108085 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available is MRCANICDLQAYAICKHMGCASICDLQPYAICNHMRSASICDLQAYAMCKHMRCASICDLQAYAICKHMRCASICDLQAYAICKHMRSASICDLQAYAMCKHMRSASICDLQAYALCKHMGCASIC...DVQAYAMCKHMRCASICDVQAYAMCKHMRSASICALQAYALCKHMRFASIWDVQAYEICKHMRCASICDLQAYALCKHMRSASIC...DVQAYAMCKHMRSASICDLQAYALCKHMGCASICDVQAYAMCKHMRCASICDVQAYAMCKHMRSASICALQAYALCKHMRFASIWDVQAYEICKHMRCASICDMQTYALCKHMRSASICDVQAYVLCKYM ...065:326 ... 3066:326 ... 3067:326 ... 3068:326 ... hypothetical protein VOLCADRAFT_71227 Volvox carteri f. nagariens

  18. Protein (Viridiplantae): 781136 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available g Eutrema salsugineum MSTALINTVTYYLSEHPYIVGFRWGHSQSWGSTWCFLITSISLYIAVSSSLHILLSAVL...836:5711 3699:2519 3700:2519 ... 981100:1661 ... 98005:1661 ... 72664:1661 ... hypothetical protein EUTSA_v10027253m

  19. Protein (Viridiplantae): 668301 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3065:2755 ... 3066:2755 ... 3067:2755 ... 3068:2755 ... hypothetical protein VOLCADRAFT_32173, partial Volvox carteri f. nagariensis TQRAMP...AMTQRAKPAMTQRAMPAMTQRAKPAMTLRAMPAMTLRAMLEMTQRAKPAMTQRAKPAMTQRAKPAMTQRAKPAMTLRAMPAMTQRAKPAMTQRAMP...AMTQRAKPAMTQRAKPAMTQRAMPAMTQRAKPAMTQRAMPAMTLRAMPAMTQRAKPAMTQRAMPAMTQRAKPAMTQRAMPAMTQRAMP...AMTQRAMPAMTLRAMPAMTQRAMPAMTLRAMPAMTQRAKPVMTLRAMPAMTQRAKPAMTQRAMPAMTLRAMPAMTQRAKPAMTQRAMPAMTQRAMPAMTQ

  20. Protein (Viridiplantae): 550181 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 9:1115 3700:1115 ... 981100:441 ... 98005:441 ... 72664:441 ... hypothetical protein EUTSA_v10029206mg Eutrema salsugineum MKRKHPYPSDSDSDSDS...DSHSGSDSDSRTGSDSESDSDSNSHSHSGSDSESDSDSNSHSHSGSDSDSDSDSDSDSDSDS

  1. Protein (Cyanobacteria): 428299087 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007137393.1 NC_019751 1117:18359 ... 1161:10603 ... 1185:1278 1186:1626 32054:1873 1170562:1873 ... DNA alkyla...tion repair protein Calothrix sp. PCC 6303 MAQYLITQLQEQLAQADDSKTKEWWEAYLKHSLPFRGLKL

  2. Protein (Cyanobacteria): 427702805 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ylation repair protein Cyanobium gracile PCC 6307 MGMDRASMTPRAPTIPSAPSSIQKGTPLKHLLG... YP_007046027.1 NC_019675 1117:3386 ... 1118:18369 1301283:9302 ... 167375:2211 59930:1253 292564:1253 ... DNA alk

  3. Protein (Cyanobacteria): 428298871 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007137177.1 NC_019751 1117:18359 ... 1161:10603 ... 1185:1278 1186:1626 32054:1873 1170562:1873 ... DNA alkyla...tion repair protein Calothrix sp. PCC 6303 MAQYLITQLQEQLAQAGDSKTKEWWEAYLKHSLPFRGLKL

  4. Protein (Viridiplantae): 765946 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available s tolerance to multiple environmental stresses and reduces photooxidative damage ... 41938:10941 3629:10941 ... 214909:10941 ... 3640:10941 ... 3641:10941 ... Encodes a chloroplast protein that induce

  5. Protein (Cyanobacteria): 427702068 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007045290.1 NC_019675 1117:18653 ... 1118:16049 1301283:6725 ... 167375:2724 59930:711 292564:711 ... vancomyc...in resistance protein Cyanobium gracile PCC 6307 MPEGVRFDRSVGDLAAGEVEQRPWIGLIQPILFS

  6. Protein (Cyanobacteria): 265114 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ZP_08955563.1 1117:4795 1118:3283 1129:815 166318:666 pentapeptide repeat protein S...ynechococcus sp. WH 8016 MPLPDLFRKQLLSVLFGLLLTSSLISFPFAAQAITAPELRGQFAVQDISNDMHGRDLKEKEFLKADLRGVDLSDTDLRGAVIN

  7. Protein (Cyanobacteria): 496702915 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_009344458.1 ... 1117:5597 ... 1161:618 ... 1162:884 244599:34 668331:34 ... hypothetica...l protein Raphidiopsis brookii MIEVDHLSKIYGSTLAITDVTFKVEPGEILGFLGPNGAGKTTTMRILAGYLPLVRARLKLLDMMSRIIP

  8. Protein (Cyanobacteria): 414077569 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available lasmid addiction system poison protein Anabaena sp. 90 MLINLNENINYTVVIGIDAQDFFESASATLQKKLDRCFEILKIEPRNYPNIKALKGEFSGYYRYRVGDYRVIYEIDDNSKLVTILLIAHRSKVYE ... YP_006996887.1 NC_019440 1117:5824 ... 1161:889 ... 1162:2120 1163:3278 46234:816 ... p

  9. Protein (Cyanobacteria): 440680064 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007154859.1 NC_019775 1117:3991 ... 1161:5387 ... 1162:6232 1163:4927 1165:626 272123:626 ... putative addicti...on module antidote protein Anabaena cylindrica PCC 7122 MALTKDFKETVNARIQRDPDFAIVLLDEAISLFLNGELETARLILRNMLNLSHF

  10. Protein (Cyanobacteria): 652402487 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026798282.1 ... 1117:5648 ... 1150:51942 1301283:73102 ... 54304:1817 54307:1346 ... hypothetical protein Plankt...othrix prolifica MNKTKLKFSTELRKLTTVQNPEALRAYCQSLKSQLVADPSNYAKGRYRLWLFHEVDFRDGTLSKGY

  11. Protein (Cyanobacteria): 652389878 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026785726.1 ... 1117:3298 ... 1150:52043 1301283:73215 ... 54304:1908 59512:262 ... hypothetical protein Plankt...othrix rubescens MPTFFPEGKTININGEVELLAFQCQDTVVQLAAIAPGAIFPLHQHTESQIGMIFNGNLEMNLNGNKT

  12. Protein (Cyanobacteria): 652391756 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026787603.1 ... 1117:6086 ... 1150:52096 1301283:73273 ... 54304:1956 59512:755 ... hypothetical protein Plankt...othrix rubescens MKNAMLEAADIKILEAAAAEDLARDRQFILEEDSNKTLAQQSYKAQQRDQRLVKAALIPRTGEAASP

  13. Protein (Cyanobacteria): 652402508 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026798303.1 ... 1117:6692 ... 1150:51953 1301283:73114 ... 54304:1827 54307:1360 ... hypothetical protein Plankt...othrix prolifica MKRWKILSFQIILAALESCFLPAYSDLITNPAYINKMCQRQQDLPQIERFTVFYQQEFSSQNKTYW

  14. Protein (Cyanobacteria): 652400769 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796565.1 ... 1117:6622 ... 1150:52114 1301283:73294 ... 54304:1972 54307:411 ... hypothetical protein Plankt...othrix prolifica MFPLKSYLISKRISSQAFLISVLAVFTVILTVTLDSVSLAMTHPDAARNQTVYGQELIAQSRIPTSDQPSPSSLSDIPTADTASLFQNNRYAVRVFRQENKAYVNIYDKENKTLTLNNE

  15. Protein (Cyanobacteria): 653002693 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027254883.1 ... 1117:2965 ... 1150:52982 1301283:74257 ... 54304:633 1160:1456 ... hypothetical protein Plankt...othrix agardhii MKTSLLILCQNRLKQKSLLQHQKTSGFTMIELLIGMIMAAVIITPILAFVVDVLQSDRKEGVKAATDQELEAATDFIKRDLSQAIYIYNKT

  16. Protein (Cyanobacteria): 652390640 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026786488.1 ... 1117:44775 ... 1150:52433 1301283:73648 ... 54304:2259 59512:501 ... hypothetical protein Plankt...othrix rubescens MKIIQGYNPSKTISPMKIRKVKGVTIVEKYGDNLYVLPDENNNKTVPEFNKTDSFDINNWAEQATDLDGFYFINAITMTGNYLGSEWNDIILGLKFRGLATYISNH

  17. Protein (Cyanobacteria): 652392751 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026788598.1 ... 1117:7257 ... 1150:51123 1301283:72193 ... 54304:108 59512:73 ... hypothetical protein Plankt...othrix rubescens MNSVEELARLQKRFQEAAKVIDDLSRIKQELDQLSKSYKDKLSNNSFELSQTKQEIESLSINHKEYKKYWHETFNAIHNKT

  18. Protein (Cyanobacteria): 653003511 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027255690.1 ... 1117:21960 ... 1150:53273 1301283:74581 ... 54304:896 1160:1705 ... hypothetical protein Plankt...othrix agardhii MIPNKTQFLSELQVDSELDLELSTDPNQSIRKFVEHKQVIKFLSEQLSEIEPDAIVEALAIHQDNMNN

  19. Protein (Cyanobacteria): 652400912 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796708.1 ... 1117:53359 ... 1150:52148 1301283:73331 ... 54304:2001 54307:507 ... hypothetical protein Plankt...othrix prolifica MKTTFSWLSSYFLLTGLAISGITFLGEVRPASACTGFWGRMDPTCDHGGITNPVHMTTQDFKICNKTENSISFTLNGSLEAPLRVGYCRTYTNVILPGNVAFDASYADGYQESSYGLDDEKNYSFKLNNQGSGIDLFAD

  20. Protein (Cyanobacteria): 652400898 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796694.1 ... 1117:5991 ... 1150:52142 1301283:73325 ... 54304:1998 54307:498 ... hypothetical protein Plankt...othrix prolifica MLKITLTPEQEQFLQAQLKTGKYNNPQEVISKAFKLLEKENKTELLANIPASASAKKILTEKIKEFRDNLENTQNQPLNPEREKLSREVKELFDKTQSIPGIGDITEEEIAAEIEA

  1. Protein (Cyanobacteria): 653002319 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027254510.1 ... 1117:7257 ... 1150:51123 1301283:72193 ... 54304:108 1160:168 ... hypothetical protein Plankt...othrix agardhii MNSVEELARLQKRFQEAAKVIDDLSRIKQELDQLSKSYKDKLSNNSFELSQTKQEIDSLSINHKEYKKYWHETFNAIHNKTENILTQISQIENKT

  2. Protein (Cyanobacteria): 652998182 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027250437.1 ... 1117:53495 ... 1150:52763 1301283:74014 ... 54304:436 1160:1265 ... hypothetical protein Plankt...othrix agardhii MIVMPPPPPAIVSQVPHQAIFRDDFSRGCPGYSQAENQQIGNTAANHLAGITKNKTDSLVIFFTREFT

  3. Protein (Cyanobacteria): 653002604 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027254794.1 ... 1117:7880 ... 1150:53167 1301283:74463 ... 54304:80 1160:53 ... hypothetical protein Plankt...othrix agardhii MEFEQALEVVNNAIAPKIARTLTEVEVALLFGAWNNLTYDRIAERSGYSINYLQRDIGPKFWKFLSEALGRKVNKT

  4. Protein (Cyanobacteria): 652401088 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796884.1 ... 1117:41752 ... 1150:52182 1301283:73369 ... 54304:2032 54307:622 ... hypothetical protein Plankt...othrix prolifica MNTNDEDQSISNIKRKLLEQINTLKCEDERMYNILAIDVWALAKTMDEFQPGFWGAFMKNREKALKRFLAESAKNKTDTDSKRPPFLR

  5. Protein (Cyanobacteria): 652402883 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026798668.1 ... 1117:7321 ... 1150:52735 1301283:73983 ... 54304:410 54307:1082 ... hypothetical protein Plankt...othrix prolifica MHGGFYCTDETTQATYIQLHTSQGLEVLFFDSFIDSHFISFLEREHTDVKFARVDAELDDNLIAKDNSPEIVDPKTNKT

  6. Protein (Cyanobacteria): 653003418 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027255601.1 ... 1117:6743 ... 1150:53326 1301283:74640 ... 54304:943 1160:195 ... hypothetical protein Plankt...othrix agardhii MVQILNKTLSLEDFLNLPETKPANEYINGQIIQKPMPQGKHSKLQGKLVTVINNMAEEQAIALALPELRC

  7. Protein (Cyanobacteria): 652400421 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796217.1 ... 1117:3298 ... 1150:52043 1301283:73215 ... 54304:1908 54307:20 ... hypothetical protein Plankt...othrix prolifica MPTFFPEGKTININGEVELLAFQCQDTVVQLAAIAPGAIFPLHQHTESQIGMIFNGNLEMNLNGNKTV

  8. Protein (Cyanobacteria): 652997312 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027249778.1 ... 1117:3511 ... 1150:51681 1301283:72812 ... 54304:1582 1160:909 ... hypothetical protein Plankt...othrix agardhii MATSLKKLLIGTSVAVGISAVGITPALAGSLTNATIGGTASTDYLIYGKEGNKTVVIPNSVANLQSVLD...ATKWFGETLSKYGMTSSQTLFSNFLLAGGFQRFSDPNISYVNQDNKTGKITIGLAGHYDAASLLGLPSNPNNPIPNPNNPI

  9. Protein (Cyanobacteria): 652400810 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796606.1 ... 1117:6743 ... 1150:53326 1301283:74640 ... 54304:943 54307:170 ... hypothetical protein Plankt...othrix prolifica MVQILNKTLSLEDFLNLPETKPANEYINGQIIQKPMPQGKHSKLQGKLVTVINNMAEEQAIALALPEL

  10. Protein (Cyanobacteria): 652391725 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026787573.1 ... 1117:6169 ... 1150:52274 1301283:73471 ... 54304:2115 59512:749 ... hypothetical protein Plankt...othrix rubescens MGNVSFASENKTLAQSSNISGWVDSFGFASTKQGAGQAGIDQGEKLGILFDGNFDNVINSLKANQLK

  11. Protein (Cyanobacteria): 652390481 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026786329.1 ... 1117:7618 ... 1150:52216 1301283:73407 ... 54304:2063 59512:458 ... hypothetical protein Plankt...othrix rubescens MIPFQDSRLLLRALTYRSYMFENPNKTQGDNEQLEFLGDSVLQFLAGDYVYEKYFGEQEGQLTQKRE

  12. Protein (Cyanobacteria): 652997457 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027249923.1 ... 1117:7063 ... 1150:51701 1301283:72835 ... 54304:160 1160:1002 ... chem...otaxis protein MotB Planktothrix agardhii MSDLSELELETELQEEQDSGVYLSIGDLMSGLLMFFALLFITVMVQLNKTQDIIKRIPDEMFTTMQ

  13. Protein (Cyanobacteria): 158335746 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_001516918.1 NC_009925 1117:18653 ... 1118:16049 1301283:6725 ... 155977:439 155978:2306 329726:2306 ... vancom...ycin B-type resistance protein VanW Acaryochloris marina MBIC11017 MTASSWRTPLRLLKCR

  14. Protein (Cyanobacteria): 158336672 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_001517846.1 NC_009925 1117:18653 ... 1118:16049 1301283:6725 ... 155977:439 155978:2306 329726:2306 ... vancom...ycin B-type resistance protein VanW Acaryochloris marina MBIC11017 MATSQWLPAKQTVRSG

  15. Protein (Cyanobacteria): 158337390 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_001518565.1 NC_009925 1117:18653 ... 1118:16049 1301283:6725 ... 155977:439 155978:2306 329726:2306 ... vancom...ycin B-type resistance protein VanW Acaryochloris marina MBIC11017 MPVNYLQQPQPQQRTR

  16. Protein (Cyanobacteria): 86610187 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ivery (BCD) family protein Synechococcus sp. JA-2-3B'a(2-13) MANIRRDPEVNASVASVTPASP... YP_478949.1 NC_007776 1117:6436 ... 1118:902 1301283:25411 ... 1129:1600 321332:1945 ... bacteriochlorophyll del

  17. The Rhipicephalus (Boophilus microplus Bm86 gene plays a critical role in the fitness of ticks fed on cattle during acute Babesia bovis infection

    Directory of Open Access Journals (Sweden)

    Knowles Donald P

    2010-11-01

    Full Text Available Abstract Background Rhipicephalus (Boophilus microplus is an economically important tick of cattle involved in the transmission of Babesia bovis, the etiological agent of bovine babesiosis. Commercial anti-tick vaccines based on the R. microplus Bm86 glycoprotein have shown some effect in controlling tick infestation; however their efficacy as a stand-alone solution for tick control has been questioned. Understanding the role of the Bm86 gene product in tick biology is critical to identifying additional methods to utilize Bm86 to reduce R. microplus infestation and babesia transmission. Additionally, the role played by Bm86 in R. microplus fitness during B. bovis infection is unknown. Results Here we describe in two independent experiments that RNA interference-mediated silencing of Bm86 decreased the fitness of R. microplus females fed on cattle during acute B. bovis infection. Notably, Bm86 silencing decreased the number and survival of engorged females, and decreased the weight of egg masses. However, gene silencing had no significant effect on the efficiency of transovarial transmission of B. bovis from surviving female ticks to their larval offspring. The results also show that Bm86 is expressed, in addition to gut cells, in larvae, nymphs, adult males and ovaries of partially engorged adult R. microplus females, and its expression was significantly down-regulated in ovaries of ticks fed on B. bovis-infected cattle. Conclusion The R. microplus Bm86 gene plays a critical role during tick feeding and after repletion during blood digestion in ticks fed on cattle during acute B. bovis infection. Therefore, the data indirectly support the rationale for using Bm86-based vaccines, perhaps in combination with acaricides, to control tick infestation particularly in B. bovis endemic areas.

  18. Protein (Cyanobacteria) - PGDBj - Ortholog DB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ut This Database Database Description Download License Update History of This Database Site Policy | Contact Us Protein (Cyanobacteria) - PGDBj - Ortholog DB | LSDB Archive ... ...List Contact us PGDBj - Ortholog DB Protein (Cyanobacteria) Data detail Data name Protein (Cyanobacteria) DO...switchLanguage; BLAST Search Image Search Home About Archive Update History Data

  19. Protein (Viridiplantae) - PGDBj - Ortholog DB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ase Description Download License Update History of This Database Site Policy | Contact Us Protein (Viridiplantae) - PGDBj - Ortholog DB | LSDB Archive ... ...List Contact us PGDBj - Ortholog DB Protein (Viridiplantae) Data detail Data name Protein (Viridiplantae) DO...switchLanguage; BLAST Search Image Search Home About Archive Update History Data

  20. Identification of Novel Human Damage Response Proteins Targeted through Yeast Orthology

    OpenAIRE

    Svensson, J. Peter; Fry, Rebecca C.; Wang, Emma; Somoza, Luis A.; Samson, Leona D.

    2012-01-01

    Studies in Saccharomyces cerevisiae show that many proteins influence cellular survival upon exposure to DNA damaging agents. We hypothesized that human orthologs of these S. cerevisiae proteins would also be required for cellular survival after treatment with DNA damaging agents. For this purpose, human homologs of S. cerevisiae proteins were identified and mapped onto the human protein-protein interaction network. The resulting human network was highly modular and a series of selection rule...

  1. The Princeton Protein Orthology Database (P-POD: a comparative genomics analysis tool for biologists.

    Directory of Open Access Journals (Sweden)

    Sven Heinicke

    2007-08-01

    Full Text Available Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu, a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method. In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools.

  2. Inference of gene-phenotype associations via protein-protein interaction and orthology.

    Directory of Open Access Journals (Sweden)

    Panwen Wang

    Full Text Available One of the fundamental goals of genetics is to understand gene functions and their associated phenotypes. To achieve this goal, in this study we developed a computational algorithm that uses orthology and protein-protein interaction information to infer gene-phenotype associations for multiple species. Furthermore, we developed a web server that provides genome-wide phenotype inference for six species: fly, human, mouse, worm, yeast, and zebrafish. We evaluated our inference method by comparing the inferred results with known gene-phenotype associations. The high Area Under the Curve values suggest a significant performance of our method. By applying our method to two human representative diseases, Type 2 Diabetes and Breast Cancer, we demonstrated that our method is able to identify related Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. The web server can be used to infer functions and putative phenotypes of a gene along with the candidate genes of a phenotype, and thus aids in disease candidate gene discovery. Our web server is available at http://jjwanglab.org/PhenoPPIOrth.

  3. Characterization of the Drosophila ortholog of the human Usher Syndrome type 1G protein sans.

    Directory of Open Access Journals (Sweden)

    Fabio Demontis

    Full Text Available BACKGROUND: The Usher syndrome (USH is the most frequent deaf-blindness hereditary disease in humans. Deafness is attributed to the disorganization of stereocilia in the inner ear. USH1, the most severe subtype, is associated with mutations in genes encoding myosin VIIa, harmonin, cadherin 23, protocadherin 15, and sans. Myosin VIIa, harmonin, cadherin 23, and protocadherin 15 physically interact in vitro and localize to stereocilia tips in vivo, indicating that they form functional complexes. Sans, in contrast, localizes to vesicle-like structures beneath the apical membrane of stereocilia-displaying hair cells. How mutations in sans result in deafness and blindness is not well understood. Orthologs of myosin VIIa and protocadherin 15 have been identified in Drosophila melanogaster and their genetic analysis has identified essential roles in auditory perception and microvilli morphogenesis, respectively. PRINCIPAL FINDINGS: Here, we have identified and characterized the Drosophila ortholog of human sans. Drosophila Sans is expressed in tubular organs of the embryo, in lens-secreting cone cells of the adult eye, and in microvilli-displaying follicle cells during oogenesis. Sans mutants are viable, fertile, and mutant follicle cells appear to form microvilli, indicating that Sans is dispensable for fly development and microvilli morphogenesis in the follicle epithelium. In follicle cells, Sans protein localizes, similar to its vertebrate ortholog, to intracellular punctate structures, which we have identified as early endosomes associated with the syntaxin Avalanche. CONCLUSIONS: Our work is consistent with an evolutionary conserved function of Sans in vesicle trafficking. Furthermore it provides a significant basis for further understanding of the role of this Usher syndrome ortholog in development and disease.

  4. Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads.

    Science.gov (United States)

    Huson, Daniel H; Tappu, Rewati; Bazinet, Adam L; Xie, Chao; Cummings, Michael P; Nieselt, Kay; Williams, Rohan

    2017-01-25

    Microbiome sequencing projects typically collect tens of millions of short reads per sample. Depending on the goals of the project, the short reads can either be subjected to direct sequence analysis or be assembled into longer contigs. The assembly of whole genomes from metagenomic sequencing reads is a very difficult problem. However, for some questions, only specific genes of interest need to be assembled. This is then a gene-centric assembly where the goal is to assemble reads into contigs for a family of orthologous genes. We present a new method for performing gene-centric assembly, called protein-alignment-guided assembly, and provide an implementation in our metagenome analysis tool MEGAN. Genes are assembled on the fly, based on the alignment of all reads against a protein reference database such as NCBI-nr. Specifically, the user selects a gene family based on a classification such as KEGG and all reads binned to that gene family are assembled. Using published synthetic community metagenome sequencing reads and a set of 41 gene families, we show that the performance of this approach compares favorably with that of full-featured assemblers and that of a recently published HMM-based gene-centric assembler, both in terms of the number of reference genes detected and of the percentage of reference sequence covered. Protein-alignment-guided assembly of orthologous gene families complements whole-metagenome assembly in a new and very useful way.

  5. Identification of novel human damage response proteins targeted through yeast orthology.

    Directory of Open Access Journals (Sweden)

    J Peter Svensson

    Full Text Available Studies in Saccharomyces cerevisiae show that many proteins influence cellular survival upon exposure to DNA damaging agents. We hypothesized that human orthologs of these S. cerevisiae proteins would also be required for cellular survival after treatment with DNA damaging agents. For this purpose, human homologs of S. cerevisiae proteins were identified and mapped onto the human protein-protein interaction network. The resulting human network was highly modular and a series of selection rules were implemented to identify 45 candidates for human toxicity-modulating proteins. The corresponding transcripts were targeted by RNA interference in human cells. The cell lines with depleted target expression were challenged with three DNA damaging agents: the alkylating agents MMS and 4-NQO, and the oxidizing agent t-BuOOH. A comparison of the survival revealed that the majority (74% of proteins conferred either sensitivity or resistance. The identified human toxicity-modulating proteins represent a variety of biological functions: autophagy, chromatin modifications, RNA and protein metabolism, and telomere maintenance. Further studies revealed that MMS-induced autophagy increase the survival of cells treated with DNA damaging agents. In summary, we show that damage recovery proteins in humans can be identified through homology to S. cerevisiae and that many of the same pathways are represented among the toxicity modulators.

  6. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice.

    Science.gov (United States)

    Leal, Fernanda Munhoz Dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer

    2016-07-15

    Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Enhancing the prediction of protein pairings between interacting families using orthology information

    Directory of Open Access Journals (Sweden)

    Pazos Florencio

    2008-01-01

    Full Text Available Abstract Background It has repeatedly been shown that interacting protein families tend to have similar phylogenetic trees. These similarities can be used to predicting the mapping between two families of interacting proteins (i.e. which proteins from one family interact with which members of the other. The correct mapping will be that which maximizes the similarity between the trees. The two families may eventually comprise orthologs and paralogs, if members of the two families are present in more than one organism. This fact can be exploited to restrict the possible mappings, simply by impeding links between proteins of different organisms. We present here an algorithm to predict the mapping between families of interacting proteins which is able to incorporate information regarding orthologues, or any other assignment of proteins to "classes" that may restrict possible mappings. Results For the first time in methods for predicting mappings, we have tested this new approach on a large number of interacting protein domains in order to statistically assess its performance. The method accurately predicts around 80% in the most favourable cases. We also analysed in detail the results of the method for a well defined case of interacting families, the sensor and kinase components of the Ntr-type two-component system, for which up to 98% of the pairings predicted by the method were correct. Conclusion Based on the well established relationship between tree similarity and interactions we developed a method for predicting the mapping between two interacting families using genomic information alone. The program is available through a web interface.

  8. 'Ca. Liberibacter asiaticus' proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interaction.

    Directory of Open Access Journals (Sweden)

    L David Kuykendall

    Full Text Available Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mbp pSymA carrying nonessential 'accessory' genes for nitrogen fixation (nif, nodulation and host specificity (nod. A related bacterium, psyllid-vectored 'Ca. Liberibacter asiaticus,' is an obligate phytopathogen with a reduced genome that was previously analyzed for genes orthologous to genes on the S. meliloti circular chromosome. In general, proteins encoded by pSymA genes are more similar in sequence alignment to those encoded by S. meliloti chromosomal orthologs than to orthologous proteins encoded by genes carried on the 'Ca. Liberibacter asiaticus' genome. Only two 'Ca. Liberibacter asiaticus' proteins were identified as having orthologous proteins encoded on pSymA but not also encoded on the chromosome of S. meliloti. These two orthologous gene pairs encode a Na(+/K+ antiporter (shared with intracellular pathogens of the family Bartonellacea and a Co++, Zn++ and Cd++ cation efflux protein that is shared with the phytopathogen Agrobacterium. Another shared protein, a redox-regulated K+ efflux pump may regulate cytoplasmic pH and homeostasis. The pSymA and 'Ca. Liberibacter asiaticus' orthologs of the latter protein are more highly similar in amino acid alignment compared with the alignment of the pSymA-encoded protein with its S. meliloti chromosomal homolog. About 182 pSymA encoded proteins have sequence similarity (≤ E-10 with 'Ca. Liberibacter asiaticus' proteins, often present as multiple orthologs of single 'Ca. Liberibacter asiaticus' proteins. These proteins are involved with amino acid uptake, cell surface structure, chaperonins, electron transport, export of bioactive molecules, cellular homeostasis, regulation of gene expression, signal transduction and synthesis of amino acids and metabolic cofactors. The presence of multiple orthologs defies mutational

  9. Behavioral analysis of the huntingtin-associated protein 1 ortholog trak-1 in Caenorhabditis elegans.

    Science.gov (United States)

    Norflus, Fran; Bu, Jingnan; Guyton, Evon; Gutekunst, Claire-Anne

    2016-09-01

    The precise role of huntingtin-associated protein 1 (HAP1) is not known, but studies have shown that it is important for early development and survival. A Caenorhabditis elegans ortholog of HAP1, T27A3.1 (also called trak-1), has been found and is expressed in a subset of neurons. Potential behavioral functions of three knockout lines of T27A3.1 were examined. From its suspected role in mice we hypothesize that T27A3.1 might be involved in egg hatching and early growth, mechanosensation, chemosensation, sensitivity to osmolarity, and synaptic transmission. Our studies show that the knockout worms are significantly different from the wild-type (WT) worms only in the synaptic transmission test, which was measured by adding aldicarb, an acetylcholinesterase inhibitor. The change in function was determined by measuring the number of worms paralyzed. However, when the T27A3.1 worms were tested for egg hatching and early growth, mechanosensation, chemosensation, and sensitivity to osmolarity, there were no significant differences between the knockout and WT worms. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1

    Directory of Open Access Journals (Sweden)

    Sandhu Devinder

    2009-08-01

    Full Text Available Abstract Background Systemic acquired resistance (SAR is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR genes. Arabidopsis non-expressor of PR1 (NPR1 is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Results Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i PR-1 was induced following INA treatment and (ii BGL2 following infection with Pseudomonas syringae pv. tomato (Pst, and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Conclusion Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential

  11. A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement

    Directory of Open Access Journals (Sweden)

    Finan Christopher L

    2005-03-01

    Full Text Available Abstract Background In Micrococcus luteus growth and resuscitation from starvation-induced dormancy is controlled by the production of a secreted growth factor. This autocrine resuscitation-promoting factor (Rpf is the founder member of a family of proteins found throughout and confined to the actinobacteria (high G + C Gram-positive bacteria. The aim of this work was to search for and characterise a cognate gene family in the firmicutes (low G + C Gram-positive bacteria and obtain information about how they may control bacterial growth and resuscitation. Results In silico analysis of the accessory domains of the Rpf proteins permitted their classification into several subfamilies. The RpfB subfamily is related to a group of firmicute proteins of unknown function, represented by YabE of Bacillus subtilis. The actinobacterial RpfB and firmicute YabE proteins have very similar domain structures and genomic contexts, except that in YabE, the actinobacterial Rpf domain is replaced by another domain, which we have called Sps. Although totally unrelated in both sequence and secondary structure, the Rpf and Sps domains fulfil the same function. We propose that these proteins have undergone "non-orthologous domain displacement", a phenomenon akin to "non-orthologous gene displacement" that has been described previously. Proteins containing the Sps domain are widely distributed throughout the firmicutes and they too fall into a number of distinct subfamilies. Comparative analysis of the accessory domains in the Rpf and Sps proteins, together with their weak similarity to lytic transglycosylases, provide clear evidence that they are muralytic enzymes. Conclusions The results indicate that the firmicute Sps proteins and the actinobacterial Rpf proteins are cognate and that they control bacterial culturability via enzymatic modification of the bacterial cell envelope.

  12. Domain architecture conservation in orthologs

    Science.gov (United States)

    2011-01-01

    Background As orthologous proteins are expected to retain function more often than other homologs, they are often used for functional annotation transfer between species. However, ortholog identification methods do not take into account changes in domain architecture, which are likely to modify a protein's function. By domain architecture we refer to the sequential arrangement of domains along a protein sequence. To assess the level of domain architecture conservation among orthologs, we carried out a large-scale study of such events between human and 40 other species spanning the entire evolutionary range. We designed a score to measure domain architecture similarity and used it to analyze differences in domain architecture conservation between orthologs and paralogs relative to the conservation of primary sequence. We also statistically characterized the extents of different types of domain swapping events across pairs of orthologs and paralogs. Results The analysis shows that orthologs exhibit greater domain architecture conservation than paralogous homologs, even when differences in average sequence divergence are compensated for, for homologs that have diverged beyond a certain threshold. We interpret this as an indication of a stronger selective pressure on orthologs than paralogs to retain the domain architecture required for the proteins to perform a specific function. In general, orthologs as well as the closest paralogous homologs have very similar domain architectures, even at large evolutionary separation. The most common domain architecture changes observed in both ortholog and paralog pairs involved insertion/deletion of new domains, while domain shuffling and segment duplication/deletion were very infrequent. Conclusions On the whole, our results support the hypothesis that function conservation between orthologs demands higher domain architecture conservation than other types of homologs, relative to primary sequence conservation. This supports the

  13. TP0326, a Treponema pallidum β-Barrel Assembly Machinery A (BamA) Ortholog and Rare Outer Membrane Protein

    Science.gov (United States)

    Desrosiers, Daniel C.; Anand, Arvind; Luthra, Amit; Dunham-Ems, Star M; LeDoyt, Morgan; Cummings, Michael A. D.; Eshghi, Azad; Cameron, Caroline E.; Cruz, Adriana R.; Salazar, Juan C.; Caimano, Melissa J.; Radolf, Justin D.

    2011-01-01

    SUMMARY Definitive identification of Treponema pallidum (Tp) rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in Tp with sequence homology to a Gram-negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modeling predicted that five polypeptide transport-associated (POTRA) domains comprise the N-terminus of TP0326, while the C-terminus forms an 18-stranded amphipathic β-barrel. Circular dichroism, heat-modifiability by SDS-PAGE, Triton X-114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β-barrel is responsible for the native protein's amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease-surface accessibility assay confirmed surface exposure. Size-exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in Tp considerably larger than that of E. coli. Non-orthologous ancillary factors and self-association of TP0326 via its β-barrel may both contribute to the Bam complex. Tp-infected rabbits mount a vigorous antibody response to both POTRA and β-barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity. PMID:21488980

  14. The Conserved, Disease-Associated RNA Binding Protein dNab2 Interacts with the Fragile X Protein Ortholog in Drosophila Neurons

    Directory of Open Access Journals (Sweden)

    Rick S. Bienkowski

    2017-08-01

    Full Text Available The Drosophila dNab2 protein is an ortholog of human ZC3H14, a poly(A RNA binding protein required for intellectual function. dNab2 supports memory and axon projection, but its molecular role in neurons is undefined. Here, we present a network of interactions that links dNab2 to cytoplasmic control of neuronal mRNAs in conjunction with the fragile X protein ortholog dFMRP. dNab2 and dfmr1 interact genetically in control of neurodevelopment and olfactory memory, and their encoded proteins co-localize in puncta within neuronal processes. dNab2 regulates CaMKII, but not futsch, implying a selective role in control of dFMRP-bound transcripts. Reciprocally, dFMRP and vertebrate FMRP restrict mRNA poly(A tail length, similar to dNab2/ZC3H14. Parallel studies of murine hippocampal neurons indicate that ZC3H14 is also a cytoplasmic regulator of neuronal mRNAs. Altogether, these findings suggest that dNab2 represses expression of a subset of dFMRP-target mRNAs, which could underlie brain-specific defects in patients lacking ZC3H14.

  15. Vaccinia virus G8R protein: a structural ortholog of proliferating cell nuclear antigen (PCNA.

    Directory of Open Access Journals (Sweden)

    Melissa Da Silva

    Full Text Available BACKGROUND: Eukaryotic DNA replication involves the synthesis of both a DNA leading and lagging strand, the latter requiring several additional proteins including flap endonuclease (FEN-1 and proliferating cell nuclear antigen (PCNA in order to remove RNA primers used in the synthesis of Okazaki fragments. Poxviruses are complex viruses (dsDNA genomes that infect eukaryotes, but surprisingly little is known about the process of DNA replication. Given our previous results that the vaccinia virus (VACV G5R protein may be structurally similar to a FEN-1-like protein and a recent finding that poxviruses encode a primase function, we undertook a series of in silico analyses to identify whether VACV also encodes a PCNA-like protein. RESULTS: An InterProScan of all VACV proteins using the JIPS software package was used to identify any PCNA-like proteins. The VACV G8R protein was identified as the only vaccinia protein that contained a PCNA-like sliding clamp motif. The VACV G8R protein plays a role in poxvirus late transcription and is known to interact with several other poxvirus proteins including itself. The secondary and tertiary structure of the VACV G8R protein was predicted and compared to the secondary and tertiary structure of both human and yeast PCNA proteins, and a high degree of similarity between all three proteins was noted. CONCLUSIONS: The structure of the VACV G8R protein is predicted to closely resemble the eukaryotic PCNA protein; it possesses several other features including a conserved ubiquitylation and SUMOylation site that suggest that, like its counterpart in T4 bacteriophage (gp45, it may function as a sliding clamp ushering transcription factors to RNA polymerase during late transcription.

  16. Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog

    Czech Academy of Sciences Publication Activity Database

    Sivá, Monika; Svoboda, Michal; Veverka, Václav; Trempe, J. F.; Hofmann, K.; Kožíšek, Milan; Hexnerová, Rozálie; Sedlák, František; Belza, Jan; Brynda, Jiří; Šácha, Pavel; Hubálek, Martin; Starková, Jana; Flaisigová, Iva; Konvalinka, Jan; Grantz Šašková, Klára

    2016-01-01

    Roč. 6, Jul 27 (2016), č. článku 30443. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : human DNA-damage-inducible 2 protein * proteasome * ubiquitin * retroviral protease-like domain Subject RIV: CE - Biochemistry Impact factor: 4.259, year: 2016 http://www.nature.com/articles/srep30443

  17. Lack of Benefit of Early Intervention with Dietary Flax and Fish Oil and Soy Protein in Orthologous Rodent Models of Human Hereditary Polycystic Kidney Disease.

    Directory of Open Access Journals (Sweden)

    Tamio Yamaguchi

    Full Text Available Rationale for dietary advice in polycystic kidney disease (PKD is based in part on animal studies that have examined non-orthologous models with progressive development of cystic disease. Since no model completely mimics human PKD, the purpose of the current studies was to examine the effects of dietary soy protein (compared to casein or oils enriched in omega-3 fatty acids (fish or flax oil compared to soy oil on early disease progression in two orthologous models of PKD. The models studied were Pkd2WS25/- mice as a model of autosomal dominant PKD, and PCK rats as a model of autosomal recessive PKD. After 13 weeks of feeding, dietary fish (but not flax oil resulted in larger kidneys and greater kidney water content in female Pkd2WS25/- compared to control mice. After 12 weeks of feeding male PCK compared to control rats, both fish and flax compared to soy oil resulted in enlarged kidneys and livers, greater kidney water content and higher kidney cyst area in diseased rats. Dietary soy protein compared to casein had no effects in Pkd2WS25/- compared to control mice. In PCK rats, kidney and liver histology were not improved, but lower proteinuria and higher urine pH suggest that soy protein could be beneficial in the long term. Therefore, in contrast to studies in non-orthologous models during the progressive development phase, these studies in orthologous PKD models do not support dietary advice to increase soy protein or oils enriched in omega-3 oils in early PKD.

  18. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.

    Science.gov (United States)

    Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia

    2017-11-01

    Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Weak correlation between sequence conservation in promoter regions and in protein-coding regions of human-mouse orthologous gene pairs

    Directory of Open Access Journals (Sweden)

    Nakai Kenta

    2008-04-01

    Full Text Available Abstract Background Interspecies sequence comparison is a powerful tool to extract functional or evolutionary information from the genomes of organisms. A number of studies have compared protein sequences or promoter sequences between mammals, which provided many insights into genomics. However, the correlation between protein conservation and promoter conservation remains controversial. Results We examined promoter conservation as well as protein conservation for 6,901 human and mouse orthologous genes, and observed a very weak correlation between them. We further investigated their relationship by decomposing it based on functional categories, and identified categories with significant tendencies. Remarkably, the 'ribosome' category showed significantly low promoter conservation, despite its high protein conservation, and the 'extracellular matrix' category showed significantly high promoter conservation, in spite of its low protein conservation. Conclusion Our results show the relation of gene function to protein conservation and promoter conservation, and revealed that there seem to be nonparallel components between protein and promoter sequence evolution.

  20. Molecular analysis of Aedes aegypti classical protein tyrosine phosphatases uncovers an ortholog of mammalian PTP-1B implicated in the control of egg production in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Debora Monteiro Moretti

    Full Text Available Protein Tyrosine Phosphatases (PTPs are enzymes that catalyze phosphotyrosine dephosphorylation and modulate cell differentiation, growth and metabolism. In mammals, PTPs play a key role in the modulation of canonical pathways involved in metabolism and immunity. PTP1B is the prototype member of classical PTPs and a major target for treating human diseases, such as cancer, obesity and diabetes. These signaling enzymes are, hence, targets of a wide array of inhibitors. Anautogenous mosquitoes rely on blood meals to lay eggs and are vectors of the most prevalent human diseases. Identifying the mosquito ortholog of PTP1B and determining its involvement in egg production is, therefore, important in the search for a novel and crucial target for vector control.We conducted an analysis to identify the ortholog of mammalian PTP1B in the Aedes aegypti genome. We identified eight genes coding for classical PTPs. In silico structural and functional analyses of proteins coded by such genes revealed that four of these code for catalytically active enzymes. Among the four genes coding for active PTPs, AAEL001919 exhibits the greatest degree of homology with the mammalian PTP1B. Next, we evaluated the role of this enzyme in egg formation. Blood feeding largely affects AAEL001919 expression, especially in the fat body and ovaries. These tissues are critically involved in the synthesis and storage of vitellogenin, the major yolk protein. Including the classical PTP inhibitor sodium orthovanadate or the PTP substrate DiFMUP in the blood meal decreased vitellogenin synthesis and egg production. Similarly, silencing AAEL001919 using RNA interference (RNAi assays resulted in 30% suppression of egg production.The data reported herein implicate, for the first time, a gene that codes for a classical PTP in mosquito egg formation. These findings raise the possibility that this class of enzymes may be used as novel targets to block egg formation in mosquitoes.

  1. Transcriptional activity and nuclear localization of Cabut, the Drosophila ortholog of vertebrate TGF-β-inducible early-response gene (TIEG proteins.

    Directory of Open Access Journals (Sweden)

    Yaiza Belacortu

    Full Text Available BACKGROUND: Cabut (Cbt is a C(2H(2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs, which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein. METHODOLOGY/PRINCIPAL FINDINGS: To determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2. CONCLUSIONS/SIGNIFICANCE: Our results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the

  2. X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijie; Chakraborty, Sayan; Xu, Guozhou (NCSU)

    2016-10-26

    Does not respond to nucleotides 1 (DORN1) has recently been identified as the first membrane-integral plant ATP receptor, which is required for ATP-induced calcium response, mitogen-activated protein kinase activation and defense responses inArabidopsis thaliana. In order to understand DORN1-mediated ATP sensing and signal transduction, crystallization and preliminary X-ray studies were conducted on the extracellular domain of DORN1 (atDORN1-ECD) and that of an orthologous protein,Camelina sativalectin receptor kinase I.9 (csLecRK-I.9-ECD or csI.9-ECD). A variety of deglycosylation strategies were employed to optimize the glycosylated recombinant atDORN1-ECD for crystallization. In addition, the glycosylated csI.9-ECD protein was crystallized at 291 K. X-ray diffraction data were collected at 4.6 Å resolution from a single crystal. The crystal belonged to space groupC222 orC2221, with unit-cell parametersa= 94.7,b= 191.5,c= 302.8 Å. These preliminary studies have laid the foundation for structural determination of the DORN1 and I.9 receptor proteins, which will lead to a better understanding of the perception and function of extracellular ATP in plants.

  3. An analysis approach to identify specific functional sites in orthologous proteins using sequence and structural information: application to neuroserpin reveals regions that differentially regulate inhibitory activity.

    Science.gov (United States)

    Lee, Tet Woo; Yang, Annie Shu-Ping; Brittain, Thomas; Birch, Nigel P

    2015-01-01

    The analysis of sequence conservation is commonly used to predict functionally important sites in proteins. We have developed an approach that first identifies highly conserved sites in a set of orthologous sequences using a weighted substitution-matrix-based conservation score and then filters these conserved sites based on the pattern of conservation present in a wider alignment of sequences from the same family and structural information to identify surface-exposed sites. This allows us to detect specific functional sites in the target protein and exclude regions that are likely to be generally important for the structure or function of the wider protein family. We applied our method to two members of the serpin family of serine protease inhibitors. We first confirmed that our method successfully detected the known heparin binding site in antithrombin while excluding residues known to be generally important in the serpin family. We next applied our sequence analysis approach to neuroserpin and used our results to guide site-directed polyalanine mutagenesis experiments. The majority of the mutant neuroserpin proteins were found to fold correctly and could still form inhibitory complexes with tissue plasminogen activator (tPA). Kinetic analysis of tPA inhibition, however, revealed altered inhibitory kinetics in several of the mutant proteins, with some mutants showing decreased association with tPA and others showing more rapid dissociation of the covalent complex. Altogether, these results confirm that our sequence analysis approach is a useful tool that can be used to guide mutagenesis experiments for the detection of specific functional sites in proteins. © 2014 Wiley Periodicals, Inc.

  4. Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants.

    Science.gov (United States)

    Yeats, Trevor H; Huang, Wenlin; Chatterjee, Subhasish; Viart, Hélène M-F; Clausen, Mads H; Stark, Ruth E; Rose, Jocelyn K C

    2014-03-01

    The aerial epidermis of all land plants is covered with a hydrophobic cuticle that provides essential protection from desiccation, and so its evolution is believed to have been prerequisite for terrestrial colonization. A major structural component of apparently all plant cuticles is cutin, a polyester of hydroxy fatty acids; however, despite its ubiquity, the details of cutin polymeric structure and the mechanisms of its formation and remodeling are not well understood. We recently reported that cutin polymerization in tomato (Solanum lycopersicum) fruit occurs via transesterification of hydroxyacylglycerol precursors, catalyzed by the GDSL-motif lipase/hydrolase family protein (GDSL) Cutin Deficient 1 (CD1). Here, we present additional biochemical characterization of CD1 and putative orthologs from Arabidopsis thaliana and the moss Physcomitrella patens, which represent a distinct clade of cutin synthases within the large GDSL superfamily. We demonstrate that members of this ancient and conserved family of cutin synthase-like (CUS) proteins act as polyester synthases with negligible hydrolytic activity. Moreover, solution-state NMR analysis indicates that CD1 catalyzes the formation of primarily linear cutin oligomeric products in vitro. These results reveal a conserved mechanism of cutin polyester synthesis in land plants, and suggest that elaborations of the linear polymer, such as branching or cross-linking, may require additional, as yet unknown, factors. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  5. Structural and functional characterization of a novel molluskan ortholog of TRAF and TNF receptor-associated protein from disk abalone (Haliotis discus discus).

    Science.gov (United States)

    Lee, Youngdeuk; Elvitigala, Don Anushka Sandaruwan; Whang, Ilson; Lee, Sukkyoung; Kim, Hyowon; Zoysa, Mahanama De; Oh, Chulhong; Kang, Do-Hyung; Lee, Jehee

    2014-09-01

    Immune signaling cascades have an indispensable role in the host defense of almost all the organisms. Tumor necrosis factor (TNF) signaling is considered as a prominent signaling pathway in vertebrate as well as invertebrate species. Within the signaling cascade, TNF receptor-associated factor (TRAF) and TNF receptor-associated protein (TTRAP) has been shown to have a crucial role in the modulation of immune signaling in animals. Here, we attempted to characterize a novel molluskan ortholog of TTRAP (AbTTRAP) from disk abalone (Haliotis discus discus) and analyzed its expression levels under pathogenic stress. The complete coding sequence of AbTTRAP consisted of 1071 nucleotides, coding for a 357 amino acid peptide, with a predicted molecular mass of 40 kDa. According to our in-silico analysis, AbTTRAP resembled the typical TTRAP domain architecture, including a 5'-tyrosyl DNA phosphodiesterase domain. Moreover, phylogenetic analysis revealed its common ancestral invertebrate origin, where AbTTRAP was clustered with molluskan counterparts. Quantitative real time PCR showed universally distributed expression of AbTTRAP in selected tissues of abalone, from which more prominent expression was detected in hemocytes. Upon stimulation with two pathogen-derived mitogens, lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly I:C), transcript levels of AbTTRAP in hemocytes and gill tissues were differentially modulated with time. In addition, the recombinant protein of AbTTRAP exhibited prominent endonuclease activity against abalone genomic DNA, which was enhanced by the presence of Mg(2+) in the medium. Collectively, these results reinforce the existence of the TNF signaling cascade in mollusks like disk abalone, further implicating the putative regulatory behavior of TTRAP in invertebrate host pathology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Orthology Guided Assembly in highly heterozygous crops

    DEFF Research Database (Denmark)

    Ruttink, Tom; Sterck, Lieven; Rohde, Antje

    2013-01-01

    of polymorphism and avoid transcript fragmentation. Here, we propose an Orthology Guided Assembly procedure that first uses sequence similarity (tBLASTn) to proteins of a model species to select allelic and fragmented contigs from all genotypes and then performs CAP3 clustering on a gene-by-gene basis. Thus, we...

  7. SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an Ortholog of OPEN STOMATA1, Is a Negative Regulator of Strawberry Fruit Development and Ripening1[OPEN

    Science.gov (United States)

    Dang, Ruihong; Li, Jinxi; Jiang, Jinzhu; Zhang, Ning; Jia, Meiru; Wei, Lingzhi; Li, Ziqiang; Li, Bingbing; Jia, Wensuo

    2015-01-01

    Whereas the regulatory mechanisms that direct fruit ripening have been studied extensively, little is known about the signaling mechanisms underlying this process, especially for nonclimacteric fruits. In this study, we demonstrated that a SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2, designated as FaSnRK2.6, is a negative regulator of fruit development and ripening in the nonclimacteric fruit strawberry (Fragaria × ananassa) and can also mediate temperature-modulated strawberry fruit ripening. FaSnRK2.6 was identified as an ortholog of OPEN STOMATA1. Levels of FaSnRK2.6 transcript rapidly decreased during strawberry fruit development and ripening. FaSnRK2.6 was found to be capable of physically interacting with strawberry ABSCISIC ACID INSENSITIVE1, a negative regulator in strawberry fruit ripening. RNA interference-induced silencing of FaSnRK2.6 significantly promoted fruit ripening. By contrast, overexpression of FaSnRK2.6 arrested fruit ripening. Strawberry fruit ripening is highly sensitive to temperature, with high temperatures promoting ripening and low temperatures delaying it. As the temperature increased, the level of FaSnRK2.6 expression declined. Furthermore, manipulating the level of FaSnRK2.6 expression altered the expression of a variety of temperature-responsive genes. Taken together, this study demonstrates that FaSnRK2.6 is a negative regulator of strawberry fruit development and ripening and, furthermore, that FaSnRK2.6 mediates temperature-modulated strawberry fruit ripening. PMID:25609556

  8. Large-Scale Orthology Predictions for Inferring Gene Functions Across Multiple Species

    Science.gov (United States)

    2010-06-01

    mutations associated with cancer by studying their corresponding orthologous genes in mice (Denny, 2000). Moreover, the identification of orthologous...taxonomic profiling of eukaryotic model organisms: a comparison of orthologous proteins encoded by the human, fly, nematode , and yeast genomes.” Genome

  9. Cross-species prophylactic efficacy of Sm-p80-based vaccine and intracellular localization of Sm-p80/Sm-p80 ortholog proteins during development in Schistosoma mansoni, Schistosoma japonicum, and Schistosoma haematobium.

    Science.gov (United States)

    Molehin, Adebayo J; Sennoune, Souad R; Zhang, Weidong; Rojo, Juan U; Siddiqui, Arif J; Herrera, Karlie A; Johnson, Laura; Sudduth, Justin; May, Jordan; Siddiqui, Afzal A

    2017-11-01

    Schistosomiasis remains a major global health problem. Despite large-scale schistosomiasis control efforts, clear limitations such as possible emergence of drug resistance and reinfection rates highlight the need for an effective schistosomiasis vaccine. Schistosoma mansoni large subunit of calpain (Sm-p80)-based vaccine formulations have shown remarkable efficacy in protecting against S. mansoni challenge infections in mice and baboons. In this study, we evaluated the cross-species protective efficacy of Sm-p80 vaccine against S. japonicum and S. haematobium challenge infections in rodent models. We also elucidated the expression of Sm-p80 and Sm-p80 ortholog proteins in different developmental stages of S. mansoni, S. haematobium, and S. japonicum. Immunization with Sm-p80 vaccine reduced worm burden by 46.75% against S. japonicum challenge infection in mice. DNA prime/protein boost (1 + 1 dose administered on a single day) resulted in 26.95% reduction in worm burden in S. haematobium-hamster infection/challenge model. A balanced Th1 (IFN-γ, TNF-α, IL-2, and IL-12) and Th2 (IL-4, IgG1) type of responses were observed following vaccination in both S. japonicum and S. haematobium challenge trials and these are associated with the prophylactic efficacy of Sm-p80 vaccine. Immunohistochemistry demonstrated that Sm-p80/Sm-p80 ortholog proteins are expressed in different life cycle stages of the three major human species of schistosomes studied. The data presented in this study reinforce the potential of Sm-p80-based vaccine for both hepatic/intestinal and urogenital schistosomiasis occurring in different geographical areas of the world. Differential expression of Sm-p80/Sm-p80 protein orthologs in different life cycle makes this vaccine potentially useful in targeting different levels of infection, disease, and transmission.

  10. Differences in evolutionary pressure acting within highly conserved ortholog groups

    Directory of Open Access Journals (Sweden)

    Aravind L

    2008-07-01

    Full Text Available Abstract Background In highly conserved widely distributed ortholog groups, the main evolutionary force is assumed to be purifying selection that enforces sequence conservation, with most divergence occurring by accumulation of neutral substitutions. Using a set of ortholog groups from prokaryotes, with a single representative in each studied organism, we asked the question if this evolutionary pressure is acting similarly on different subgroups of orthologs defined as major lineages (e.g. Proteobacteria or Firmicutes. Results Using correlations in entropy measures as a proxy for evolutionary pressure, we observed two distinct behaviors within our ortholog collection. The first subset of ortholog groups, called here informational, consisted mostly of proteins associated with information processing (i.e. translation, transcription, DNA replication and the second, the non-informational ortholog groups, mostly comprised of proteins involved in metabolic pathways. The evolutionary pressure acting on non-informational proteins is more uniform relative to their informational counterparts. The non-informational proteins show higher level of correlation between entropy profiles and more uniformity across subgroups. Conclusion The low correlation of entropy profiles in the informational ortholog groups suggest that the evolutionary pressure acting on the informational ortholog groups is not uniform across different clades considered this study. This might suggest "fine-tuning" of informational proteins in each lineage leading to lineage-specific differences in selection. This, in turn, could make these proteins less exchangeable between lineages. In contrast, the uniformity of the selective pressure acting on the non-informational groups might allow the exchange of the genetic material via lateral gene transfer.

  11. WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning.

    Science.gov (United States)

    Sutphin, George L; Mahoney, J Matthew; Sheppard, Keith; Walton, David O; Korstanje, Ron

    2016-11-01

    The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs) between 6 eukaryotic species-humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/.

  12. WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning.

    Directory of Open Access Journals (Sweden)

    George L Sutphin

    2016-11-01

    Full Text Available The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs between 6 eukaryotic species-humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/.

  13. Cluster (Viridiplantae) - PGDBj - Ortholog DB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available 0”. This cluster ID is uniquely-assigned by the PGDBj Ortholog Database. Cluster size Number of proteins aff...r About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Cluster (Viridiplantae) - PGDBj - Ortholog DB | LSDB Archive ... ...List Contact us PGDBj - Ortholog DB Cluster (Viridiplantae) Data detail Data name Cluster (Viridiplantae) DO...switchLanguage; BLAST Search Image Search Home About Archive Update History Data

  14. Cluster (Cyanobacteria) - PGDBj - Ortholog DB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available 3090”. This cluster ID is uniquely-assigned by the PGDBj Ortholog Database. Cluster size Number of proteins ...ster About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Cluster (Cyanobacteria) - PGDBj - Ortholog DB | LSDB Archive ... ...List Contact us PGDBj - Ortholog DB Cluster (Cyanobacteria) Data detail Data name Cluster (Cyanobacteria) DO...switchLanguage; BLAST Search Image Search Home About Archive Update History Data

  15. AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis.

    Science.gov (United States)

    Oh, Chang-Sik; Beer, Steven V

    2007-10-01

    HrpN (harpin) protein is critical to the virulence of the fire blight pathogen Erwinia amylovora in host plants like apple (Malus x domestica). Moreover, exogenous treatment of Arabidopsis (Arabidopsis thaliana), a nonhost plant, with partially purified HrpN enhances growth. To address the bases of the effects of HrpN in disease, we sought a HrpN-interacting protein(s) in apple, using a yeast two-hybrid assay. A single positive clone, designated HIPM (HrpN-interacting protein from Malus), was found. HIPM, a 6.5-kD protein, interacted with HrpN in yeast and in vitro. Deletion analysis showed that the N-terminal 198 of 403 amino acids of HrpN are required for interaction with HIPM. HIPM orthologs were found in Arabidopsis (AtHIPM) and rice (Oryza sativa; OsHIPM). HrpN also interacted with AtHIPM in yeast and in vitro. In silico analyses revealed that the three plant proteins contain putative signal peptides and putative transmembrane domains. We showed that both HIPM and AtHIPM have functional signal peptides, and green fluorescent protein-tagged HIPM and AtHIPM associated, in clusters, with plasma membranes. Both HIPM and AtHIPM are expressed constitutively; however, they are expressed more strongly in apple and Arabidopsis flowers than in leaves and stems. The size of AtHIPM knockout mutant plants of Arabidopsis was slightly larger than the wild-type plants. Interestingly, the knockout mutant did not exhibit enhanced plant growth in response to treatment with HrpN. Overexpression of AtHIPM conversely resulted in smaller plants. These results indicate that AtHIPM functions as a negative regulator of plant growth and mediates enhanced growth that results from treatment with HrpN.

  16. AtHIPM, an Ortholog of the Apple HrpN-Interacting Protein, Is a Negative Regulator of Plant Growth and Mediates the Growth-Enhancing Effect of HrpN in Arabidopsis1[C][OA

    Science.gov (United States)

    Oh, Chang-Sik; Beer, Steven V.

    2007-01-01

    HrpN (harpin) protein is critical to the virulence of the fire blight pathogen Erwinia amylovora in host plants like apple (Malus x domestica). Moreover, exogenous treatment of Arabidopsis (Arabidopsis thaliana), a nonhost plant, with partially purified HrpN enhances growth. To address the bases of the effects of HrpN in disease, we sought a HrpN-interacting protein(s) in apple, using a yeast two-hybrid assay. A single positive clone, designated HIPM (HrpN-interacting protein from Malus), was found. HIPM, a 6.5-kD protein, interacted with HrpN in yeast and in vitro. Deletion analysis showed that the N-terminal 198 of 403 amino acids of HrpN are required for interaction with HIPM. HIPM orthologs were found in Arabidopsis (AtHIPM) and rice (Oryza sativa; OsHIPM). HrpN also interacted with AtHIPM in yeast and in vitro. In silico analyses revealed that the three plant proteins contain putative signal peptides and putative transmembrane domains. We showed that both HIPM and AtHIPM have functional signal peptides, and green fluorescent protein-tagged HIPM and AtHIPM associated, in clusters, with plasma membranes. Both HIPM and AtHIPM are expressed constitutively; however, they are expressed more strongly in apple and Arabidopsis flowers than in leaves and stems. The size of AtHIPM knockout mutant plants of Arabidopsis was slightly larger than the wild-type plants. Interestingly, the knockout mutant did not exhibit enhanced plant growth in response to treatment with HrpN. Overexpression of AtHIPM conversely resulted in smaller plants. These results indicate that AtHIPM functions as a negative regulator of plant growth and mediates enhanced growth that results from treatment with HrpN. PMID:17704235

  17. Multi-functional characteristics of the Pseudomonas aeruginosa type III needle-tip protein, PcrV; comparison to orthologs in other gram negative bacteria

    Directory of Open Access Journals (Sweden)

    Hiromi eSato

    2011-07-01

    Full Text Available Pseudomonas aeruginosa possesses a type III secretion system (T3SS to intoxicate host cells and evade innate immunity. This virulence-related machinery consists of a molecular syringe and needle assembled on the bacterial surface, which allows delivery of T3 effector proteins into infected cells. To accomplish a one-step effector translocation, a tip protein is required at the top end of the T3 needle structure. Strains lacking expression of the functional tip protein fail to intoxicate host cells.P. aeruginosa encodes a T3S that is highly homologous to the proteins encoded by Yersinia species. The needle tip proteins of Yersinia, LcrV, and P. aeruginosa, PcrV, share 37% identity and 65% similarity. Other known tip proteins are AcrV (Aeromonas, IpaD (Shigella, SipD (Salmonella, BipD (Burkholderia, EspA (EPEC, EHEC, Bsp22 (Bordetella, with additional proteins identified from various Gram negative species, such as Vibrio and Bordetella. The tip proteins can serve as a protective antigen or may be critical for sensing host cells and evading innate immune responses. Recognition of the host microenvironment transcriptionally activates synthesis of T3SS components. The machinery appears to be mechanically controlled by the assemblage of specific junctions within the apparatus. These junctions include the tip and base of the T3 apparatus, the needle proteins and components within the bacterial cytoplasm. The tip proteins likely have chaperone functions for translocon proteins, allowing the proper assembly of translocation channels in the host membrane and completing vectorial delivery of effector proteins into the host cytoplasm. Multifunctional features of the needle-tip proteins appear to be intricately controlled. In this review, we highlight the functional aspects and complex controls of T3 needle-tip proteins with particular emphasis on PcrV and LcrV.

  18. Ortholog identification in genera of high genetic diversity and evolution

    DEFF Research Database (Denmark)

    Rasmussen, Jane Lind Nybo; Vesth, Tammi Camilla; Frisvad, Jens Christian

    In the era of high-throughput sequencing, comparative genomics is vastly used in the discovery of genetic diversity between species, but also in defining the core and pan genome of single species to whole genera. Current comparative approaches are implementing ortholog identification to establish...... genome annotations, gene or protein evolutions or defining functional features in individual species and groups.......In the era of high-throughput sequencing, comparative genomics is vastly used in the discovery of genetic diversity between species, but also in defining the core and pan genome of single species to whole genera. Current comparative approaches are implementing ortholog identification to establish...

  19. Characterization of the Drosophila group ortholog to the amino-terminus of the alpha-thalassemia and mental retardation X-Linked (ATRX vertebrate protein.

    Directory of Open Access Journals (Sweden)

    Brenda López-Falcón

    Full Text Available The human ATRX gene encodes hATRX, a chromatin-remodeling protein harboring an helicase/ATPase and ADD domains. The ADD domain has two zinc fingers that bind to histone tails and mediate hATRX binding to chromatin. dAtrx, the putative ATRX homolog in Drosophila melanogaster, has a conserved helicase/ATPase domain but lacks the ADD domain. A bioinformatic search of the Drosophila genome using the human ADD sequence allowed us to identify the CG8290 annotated gene, which encodes three ADD harboring- isoforms generated by alternative splicing. This Drosophila ADD domain is highly similar in structure and in the amino acids which mediate the histone tail contacts to the ADD domain of hATRX as shown by 3D modeling. Very recently the CG8290 annotated gene has been named dadd1. We show through pull-down and CoIP assays that the products of the dadd1 gene interact physically with dAtrxL and HP1a and all of them mainly co-localize in the chromocenter, although euchromatic localization can also be observed through the chromosome arms. We confirm through ChIP analyses that these proteins are present in vivo in the same heterochromatic regions. The three isoforms are expressed throughout development. Flies carrying transheterozygous combinations of the dadd1 and atrx alleles are semi-viable and have different phenotypes including the appearance of melanotic masses. Interestingly, the dAdd1-b and c isoforms have extra domains, such as MADF, which suggest newly acquired functions of these proteins. These results strongly support that, in Drosophila, the atrx gene diverged and that the dadd1-encoded proteins participate with dAtrx in some cellular functions such as heterochromatin maintenance.

  20. Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton.

    Science.gov (United States)

    Zhang, Xueying; Wang, Liman; Xu, Xiaoyang; Cai, Caiping; Guo, Wangzhen

    2014-12-10

    Mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant growth and development as well as biotic and abiotic stress responses. Knowledge about the MAPK gene family in cotton is limited, and systematic investigation of MAPK family proteins has not been reported. By performing a bioinformatics homology search, we identified 28 putative MAPK genes in the Gossypium raimondii genome. These MAPK members were anchored onto 11 chromosomes in G. raimondii, with uneven distribution. Phylogenetic analysis showed that the MAPK candidates could be classified into the four known A, B, C and D groups, with more MAPKs containing the TEY phosphorylation site (18 members) than the TDY motif (10 members). Furthermore, 21 cDNA sequences of MAPKs with complete open reading frames (ORFs) were identified in G. hirsutum via PCR-based approaches, including 13 novel MAPKs and eight with homologs reported previously in tetraploid cotton. The expression patterns of 23 MAPK genes reveal their important roles in diverse functions in cotton, in both various developmental stages of vegetative and reproductive growth and in the stress response. Using a reverse genetics approach based on tobacco rattle virus-induced gene silencing (TRV-VIGS), we further verified that MPK9, MPK13 and MPK25 confer resistance to defoliating isolates of Verticillium dahliae in cotton. Silencing of MPK9, MPK13 and MPK25 can significantly enhance cotton susceptibility to this pathogen. This study presents a comprehensive identification of 28 mitogen-activated protein kinase genes in G. raimondii. Their phylogenetic relationships, transcript expression patterns and responses to various stressors were verified. This study provides the first systematic analysis of MAPKs in cotton, improving our understanding of defense responses in general and laying the foundation for future crop improvement using MAPKs.

  1. Lipid transfer proteins in coffee: isolation of Coffea orthologs, Coffea arabica homeologs, expression during coffee fruit development and promoter analysis in transgenic tobacco plants.

    Science.gov (United States)

    Cotta, Michelle G; Barros, Leila M G; de Almeida, Juliana D; de Lamotte, Fréderic; Barbosa, Eder A; Vieira, Natalia G; Alves, Gabriel S C; Vinecky, Felipe; Andrade, Alan C; Marraccini, Pierre

    2014-05-01

    The aim of the present study was to perform a genomic analysis of non-specific lipid-transfer proteins (nsLTPs) in coffee. Several nsLTPs-encoding cDNA and gene sequences were cloned from Coffea arabica and Coffea canephora species. In this work, their analyses revealed that coffee nsLTPs belong to Type II LTP characterized under their mature forms by a molecular weight of around 7.3 kDa, a basic isoelectric points of 8.5 and the presence of typical CXC pattern, with X being an hydrophobic residue facing towards the hydrophobic cavity. Even if several single nucleotide polymorphisms were identified in these nsLTP-coding sequences, 3D predictions showed that they do not have a significant impact on protein functions. Northern blot and RT-qPCR experiments revealed specific expression of Type II nsLTPs-encoding genes in coffee fruits, mainly during the early development of endosperm of both C. arabica and C. canephora. As part of our search for tissue-specific promoters in coffee, an nsLTP promoter region of around 1.2 kb was isolated. It contained several DNA repeats including boxes identified as essential for grain specific expression in other plants. The whole fragment, and a series of 5' deletions, were fused to the reporter gene β-glucuronidase (uidA) and analyzed in transgenic Nicotiana tabacum plants. Histochemical and fluorimetric GUS assays showed that the shorter (345 bp) and medium (827 bp) fragments of nsLTP promoter function as grain-specific promoters in transgenic tobacco plants.

  2. Standardized benchmarking in the quest for orthologs

    DEFF Research Database (Denmark)

    Altenhoff, Adrian M; Boeckmann, Brigitte; Capella-Gutierrez, Salvador

    2016-01-01

    Achieving high accuracy in orthology inference is essential for many comparative, evolutionary and functional genomic analyses, yet the true evolutionary history of genes is generally unknown and orthologs are used for very different applications across phyla, requiring different precision-recall...

  3. Protein (Cyanobacteria): 424263 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_723792.1 1117:25190 1150:8925 1205:2560 1206:2560 203124:2560 co-chaperonin GroES Trichodesmium erythrae...um IMS101 MAAVTLSVSTVKPLGERVFVKVSESEEKTAGGILLPDSAKEKPQVGEVVSAGPGKRNDDGTRAEMEVKVGDKVLYSKYAGTDIKLGGDEYVLLAEKDILAIVN ...

  4. Protein (Cyanobacteria): 224923 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_721080.1 1117:4265 1150:1143 1205:18 1206:18 203124:18 putative transposase, orfA Trichodesmium erythrae...um IMS101 MIYCLKTNQVLTRAELAKVLGRHESTITRWLTLYRAGGLKKLLEVKNVPGKTSKISPEILAGLQAKLSETIGFNSLGEIPKWLIEKYQVQLADKTVHKIF ...

  5. Protein (Cyanobacteria): 116376 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available n Tery_2812 Trichodesmium erythraeum IMS101 MVNYNKLLNLPSSDELPDSDNKPVDHEIQVIIPNLLKQILNLLWGDRQDWFFGVNMGIYHTTGS...LGIGSEVGNHERCQREWLYWYDSQGNRLMTPEEKTLQQQQRAEQERQRAEQERQRAEQERQRAEKLEQMLRSLGIDPEQL ...

  6. Protein (Viridiplantae): 968875 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ike Solanum tuberosum MASCIDIASDQLCYIPCNFCNIVLAVSVPCSSLLDIVTVRCGHCTNLWSVNMAAAFQSS... 4069:2009 4070:2009 ... 424551:2009 ... 424574:2009 ... 4107:2009 ... 4113:2831 ... PREDICTED: axial regulator YABBY 5-l

  7. Protein (Viridiplantae): 261309 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YHMFRCVARYGYKDVRKEDHGFFEQLLVESLEKFLRREAQEIALEASTTDAERDDISVVSEVPQSPACEGDLQTPLLSDQRSGDDNRMGTRDGNAPVLPSSSMSAEEDPALEYELEALREAIASGFTYLLAHGDVRARKESFFTKKFIINYFYAFLRRNCRAGTATLKVPHSNIMRVGMTYMV

  8. Protein (Viridiplantae): 531623 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available VAQNGKYVICASEDSHVYVWRHDNSSHPSRSRSTVDVTNSYEHFHCHGVTVAVTWPGAEARCSFGPGSSRHSDSDGAVNSGRDLPVENTRHSSDAADIRCNESPACEGVTSRSTSRHPGDGASTSWPDEKLPSAKSSPGHCSSDLCIGAMDVQRRSAWGLVIVTAGRGGEIRVFQNFGFPVQV

  9. Protein (Cyanobacteria): 427729388 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available QLLVATILSAQCTDERVNQVTPVLFSRFPDAASLGNADLAELETLVRSTGFYRNKAKNIQAACRMIVSEFDSVVPNTMEQLLKLPGVARKTANVVLAHAYGINAGVTVDTHVKRLSQRLGLTKYADPIHIEKDLMKLLPQPDWENWSIRIIYHGRAVCKARSPACEACELADLCPTAVGAGE

  10. Protein (Cyanobacteria): 428771350 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007163140.1 NC_019776 1117:6802 ... 1118:3108 1301283:18843 ... 102234:1346 379064:2146 755178:2146 ... Salicy...late 1-monooxygenase Cyanobacterium aponinum PCC 10605 MEKEIIIIGGGIGGLTLARALQLKRIDF

  11. Protein (Viridiplantae): 323064 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available KSRSRSMSPKRAMSKSMSISPRRSPSRSPSLSPRRSLSRGQGVSRSPPRCPERSVSRSRSPVRSRSRSPARSVSRSPLRGRKSTSFSRSPVRAHSRKSISRS...PVRSRSRRSLSRSPPRSTRKSISRSPVRLSKRSISRSPARSSRRSISRSPVRSPRRSVSRSPVRSSRRSISRSSGRAPPRRSISRSP...RIDRERYSSYRRYSPRRYRSPPRGRTPPRYRGRRSRTRSPSISRSPRYRNRHYSRSHSHSPSRSRTPIRSRSPVDVSRSHSSPKAGRRRSPSQSRSQSESRSSLDSQSPKQASKAGSRSRSRSSSGSPDGKKGLVSYDDGSPDSGR ...LREPSKNYRRSYSRSPARAPPKRSISRSPLREPSRNYRRSYSRSPNPARRVRSPPSNRGRSLSRSISPDASPKRIRRGRGFSERYSYARRYRTPSPDRSSVRSYRYGG

  12. Protein (Viridiplantae): 323433 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available EADVVENDGERSPKENGERRSNGVAAVDSKSDRSLERQPDIVDDHPGKSRSRSISPRRTMSKSMSISPRKTHSKSHSVSPKQSMSRSRSVSQSPPQAPLRSKSISRSP...VRNGSRSVSRSPVRNGSRSPGRSISRSPGRGRKGRSISRSPLRSGHQRGISRSPVRSNPQRSPSRSPPRRASRKSISRSPARVSRSVSRSPVRSSRQSLSRSSGRAPSRRSISRS

  13. Protein (Viridiplantae): 323063 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SLSRGQGVSRSPPRCPERSVSRSRSPVRSRSRSPARSVSRSPLRGRKSTSFSRSPVRAHSRKSISRSPVRSRSRRSLSRSPPRSTRKSISRSPVRLSKRSISRSPARSSRRSISRS...PVRSPRRSVSRSPVRSSRRSISRSSGRAPPRRSISRSPLREPSKNYRRSYSRSPARAPPKRSISRSPLREPSR...NYRRSYSRSPNPARRVRSPPSNRGRSLSRSISPDASPKRIRRGRGFSERYSYARRYRTPSPDRSSVRSYRYGGRIDRERYSSYRRYSPRRYRSPPRGRTPPRGRRSRTRSPSISRS

  14. Protein (Viridiplantae): 322964 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available KRTVSRSMSISPRRSQSKSPSLSPRRNGGRSPAKGTRQMKNLTNSKRESPVSEEKGRHGRKSPTKSVSRSPARIKRGRDVSRSPSRSISRSPLGIPKRGRDISRSPSRSVSRSPLGIPKRGRDISRS...PSRSISRSPLRIPKRGISRSPSRSISRSPLGIPKRVISRSPVRGRISRSLSKSPVRSASRGSLRRGPLRRSSRRSRSRTPARASRRSLS...RSPIRLSRRSLSRSPIRLSRRSLSRSPIRSPRRSVSRSPVRLSRKSVSRSPVCSSRRSISRSPVRLSRKSVSRSPVRLSRRGISRSPVRGRRRISRS

  15. Protein (Viridiplantae): 323066 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GRRSNGIEEDAQSDRSADRQPDVVDDRPSKSRSRSMSPKRAMSKSMSISPRRSPSRSPSLSPRRSLSRGQGVSRSPPRCPERSVSRSRSPVRSRSRSPARSVSRSPLRGRKSTSFSRSPVRAHSRKSISRS...PVRSRSRRSLSRSPPRSTRKSISRSPVRLSKRSISRSPARSSRRSISRSPVRSPRRSVSRSPVRSSRRSISRSSGRAPPRRSISRS...PLREPSKNYRRSYSRSPARAPPKRSISRSPLREPSRNYRRSYSRSPNPARRVRSPPSNRGRSLSRSISPDASPKRIRRGR...GFSERYSYARRYRTPSPDRSSVRSYRYGGRIDRERYSSYRRYSPRRYRSPPRGRTPPRYRGRRSRTRSPSISRSPRYRNRHYSRSHSHSPSRSRTPIRSRSPVDVSRSHSSPKAGRRRSPSQSRSQSESRSSLDSQSPKQASKAGSRSRSRSSSGSPDGKKGLVSYDDGSPDSGR

  16. Protein (Viridiplantae): 323067 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available NGIEEDAQSDRSADRQPDVVDDRPSKSRSRSMSPKRAMSKSMSISPRRSPSRSPSLSPRRSLSRGQGVSRSPPRCPERSVSRSRSPVRSRSRSPARSVSRSPLRGRKSTSFSRSPVRAHSRKSISRS...PVRSRSRRSLSRSPPRSTRKSISRSPVRLSKRSISRSPARSSRRSISRSPVRSPRRSVSRSPVRSSRRSISRSSGRAPPRRSISRSPLREPSKNYRRSYSRSPARAPPKRSISR...RYSYARRYRTPSPDRSSVRSYRYGGRIDRERYSSYRRYSPRRYRSPPRGRTPPRYRGRRSRTRSPSISRSPRYRNRHYSRSHSHSPSRSRTPIRSRSPVDVSRSHSSPKAGRRRSPSQSRSQSESRSSLDSQSPKQASKAGSRSRSRSSSGSPDGKKGLVSYDDGSPDSGR

  17. Protein (Viridiplantae): 323640 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available QPDIRDGHPGKSRSQSMSPKRTTGKSISPRRSLSKSPSVSPKRSSSRSHSASRSHPHVSQRSISRSPVRSGSSRSTARSFSRSPVRAKKARSISTSPVRSRSRRSISRSPVRLPPRRSISRS...PVRSRSQSLQKSISRSPVRDSRSISRSPVRSSRRSISRSPVRSSRRSVSRSPVRSSRRSVSRSPVRSLRRSVSKSPVRSSRRSISRSPVRSSRRSISRSSGRAPSRRSISRS

  18. Protein (Viridiplantae): 323065 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available RSRSPARSVSRSPLRGRKSTSFSRSPVRAHSRKSISRSPVRSRSRRSLSRSPPRSTRKSISRSPVRLSKRSISRSPARSSRRSISRSPVRSPRRSVSRSPVRSSRRSISRSSGRAPPRRSISRS...PLREPSKNYRRSYSRSPARAPPKRSISRSPLREPSRNYRRSYSRSPNPARRVRSPPSNRGRSLSR...SISPDASPKRIRRGRGFSERYSYARRYRTPSPDRSSVRSYRYGGRIDRERYSSYRRYSPRRYRSPPRGRTPPRYRGRRSRTRSPSISRSPRYRNRHYSRSHSHSPSRS

  19. Protein (Cyanobacteria): 497242523 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 2:1902 ... 7-cyano-7-deazaguanine reductase Oscillatoriales cyanobacterium JSC-12 MNRPITESNMKETYGEEKYGERLIAEG... WP_009556745.1 NZ_CM001633 1117:4682 ... 1150:39727 1301283:59529 44887:1731 ... 86470

  20. Protein (Cyanobacteria): 157414062 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_001484928.1 NC_009840 1117:4682 ... 1212:1747 ... 1217:2782 1218:2782 1219:651 9306...0:1440 ... 7-cyano-7-deazaguanine reductase Prochlorococcus marinus str. MIT 9215 MSTAKLDDSTQRPLYGERIIKESKIICF

  1. Protein (Cyanobacteria): 661293060 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :535 ... 7-carboxy-7-deazaguanine synthase, partial Prochlorococcus sp. scB243_498G3 MTNFLPLVEQFHSLQGEGYHAGKSAFFVRLAGCKVGCSWCDTKNS ... WP_029986136.1 NZ_JFMQ01000246 1117:6374 ... 1212:1251 ... 1217:2126 1218:2126 1471492

  2. Protein (Cyanobacteria): 382373 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available n DUF1824 Pseudanabaena sp. PCC 7367 MAEPTPEPIAAAQALLNQYVCTEPEIAALDIDQNEVRQATLLLVSFADYCNIGICADNSHQGFRALREYLLALDYEVPFVLEEIPEKNEPVYIKFNARNSTYYQERYTGAYRGVLISCLSDQHEQINGTYGHLPLALFMGES ...

  3. Protein (Viridiplantae): 128519 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 9:7 3650:7 ... 1003877:7 ... 3655:7 ... 3656:1095 ... PREDICTED: pectinesterase inhibitor-like Cucumis melo MANNSCLV...IVSLIGVLLFTIILNVASSNYVISTICSKSSNPPFCSSVLKSSGTTYLKGLAVYTLNLAHTNASKSLTLARSLATTTTNPQ

  4. Protein (Cyanobacteria): 74944 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available in tlr1014 Thermosynechococcus elongatus BP-1 MCSVGLLLVPALLPYSLAQTSPRTDVIAPWEITTYARVVLEIEPIRQKYYRQAQAAFQGQVPSNACFGMNPQHIPSGLEAICASYGWEAIQVLKKYNMSLEQFNAITLRAQQDSTLSRRIQAEMLRLQQP ...

  5. Protein (Viridiplantae): 108100 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available nagariensis YTICKHMPYAICKHMRSASICHYAICKHMPYAICKHIPYAICKHMPYAICKHMRSASICDLQAYAICKHMRSASICNLQAYAICDLQAYAICDLQA...YAICDLQAYAICDLQAYAICKHMQFASIYALQAYYASICNLQAYATCKHMPYAICKHMPYAICKHMPYAICKHMRSASIC

  6. Protein (Viridiplantae): 108083 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available is MRSASVCDLQAYAICKHMPDAICKHMPHSMCKHMRSASICDLQAYAICKHMRSASICDLQAYAICKHMPDAICKHMPHPMCKHMRSASICQMRSASICHIRCASIC...DLQAYATSDVQAYAICKHMPDAICKHMPHSMCKHMRSASICDLQAYAICKHMRSASICDLQAYAICKHLPDTICKHMPHSMCKHMRSASIC...DLQAYAICKHMPSASICQMRSASICHIRCASICDLQAYARCDLQAYATFDVQTYAICKHLRSASICDLQAYAICKHMPHSMCKHMRYASLCDLQAYAICKQMQSSVTLQ

  7. Protein (Viridiplantae): 788920 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available KGPCEHGVKPRSRCKVCSACPHGKWRKQCKECGGASICEHGRIRSVCKECGGASICEHGRQRSQCKECGGSEICEHGRHRSKCKECGGSQICEHGRQRHRCKECGGSSICEHGRHRPQCKECGGASIC...EHGRHRYSCKECGGASICEHGRHRSKCKECGGSQICEHGRQRSRCKECGGGSICEHGRERS...LCKECGGSQICEHGRRRSRCKECGGGSICEHGRIRSQCKECGGASICEHGRQRSQCKECGGSQICEHGRRRSQCKECGGGSICEHGRIRSQCKDCRCERL

  8. Protein (Viridiplantae): 108093 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available is MPYAICKHMQYALCNHMQYAICKHMRSASICHMRPASMCNMRSASICDLQAYDKCDLQAYAICKNMPYAICKHMPYAICKHMPYAICKHMHLQAYAVCKHMPYAI...CKHMPYAICKHMPYAICKHMPYAICKDYNLQAYAICKHMRSASICDLQAYAICDLQACAICDLQAYAICKHMTNAICKHMPSARICHMRSASICHMRSASICHMRYAICDLQAYAVCKHTQSASICSL

  9. Protein (Viridiplantae): 788916 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available TKGPCEHGVKPRSRCKVCSACPHGKRRSQCKECGGASICKHSRERFKCKECGGASICEHGRIRSRCKECGGGSICEHGRHRHSCKECGGASICEHGRERRYCKECGGS...GICEHGRHRSFCKECGGSQICEHGRVRSTCKECDGSQICEHGRHRHSCKECGGASICEHGRIRNTCKECGGASICEHGRERSRCKQCGGSQICEHSRVRSRCKECGGSQICEHGRQRSLCKECGGGSICEHSRVRSKCKVCRRGA

  10. Protein (Viridiplantae): 108104 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available is MRSAGICHMLAYAICKHMPYAICKHMPLCDLQAYAIMRSSSICHYAICKHMQSASICHMFAYAICKHMPYAICKHMPCAICKHMPYAICGHMRSASICHMLAYAI...CKHMPYAICKHMPLTICKHMPLCDQQAYAICKHMPYVCICDLQAYAIMRSAGICDLQAYAIMLSAGICDLQAYVICLHMRSASICHMRSASICH

  11. Protein (Viridiplantae): 108109 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available nagariensis AICDMQRYVICCDMRYAICDMRPASICDLQAYAICKHMPYAICKHMLCYAMLCYAMLCYAMLCYAMLCYAMLCYAMLCYAMLCYAVLCYAVLCYAMLCYAICKHMQYASIC...DLQAYAMCKHMRSASICNVQAYTLCKHFICDVQAYALCKHMGCASVCDLQAYVICKHMRSASICIMFYVSYLHICICAILCNMRYAAICDMQ

  12. Protein (Cyanobacteria): 129990 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available in Dacsa_1875 Dactylococcopsis salina PCC 8305 MIHTFAPKPPILGACINLPPNPQFWGLASICPQTPNSGGLHQFAPKPPILGACINLPPNPQFWGLASIC...PQTPNSGGLHQFAPKPPILGACINLPPNPQFWGLASICPQTPNSGGLHQFAPKPPILGACINLPPNPQFWGLASICPQTPNSGGLHQFAPKPAILGACINLPPNPQFWGLASIC

  13. Protein (Viridiplantae): 108086 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available is MHLHYASIRSLQAYAICKHMPYAICKHMPYAICKHHMPLCDLQAYAICDLQAYAICKHMRSASICDLQAYALMRPASICDLQAYAICKHMPLCDLQAYAICKHMP...YASVCHMQAYAICKPMPLCDLQAYAICKHMRSASICHYAICKHMQFASICHMQAYAICKHIPYASICDVQAYAICDLQASA...ICKHMPLCDLRAYAICKHIRSASIRNLQTYAICKHMQCASICALQAYVICKRMRCASICDVQAYALCKHMGCASVCDLQAYVICKHMRPASICDVQAYALCKHM

  14. Protein (Viridiplantae): 788917 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PCEHGVKSRSKCKVCSACPHGRKRSQCKECGGASICEHGRIRSKCKECGGASICEHGRRRSQCKECGGASICEHSRIRSKCKECGGSGICEHGRRRFSCKECGGSGICEHGRRRSDCKECGGASIC...VHGRQRSQCKECGGSQICEHGRQRSRCKECGGASICEHGRIRFSCKECGGSQICEHGRRRSRCKECGGSQICEHGRRRHQCKECGGSGICEHGRRRSECKECGGSAICEHGRRRSRCKGCRDNK

  15. Protein (Viridiplantae): 108101 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available is MRSARICDLQAYAICDLQAYAKCKHLPNASICDLQAYAICKHMRSASICDLQAYAICKHMRYAICKHMHYAHMRSASICHLQAYAICDLQAYAICDLQAYAICELQAYAICAIYAICKHMRSASIC...NMQVYAICKHMRSASRCTYAICDLQAYAICKHMRSASICDLQAYAICKHMCCILLNHNWMVASEDTDLEEFHPLK

  16. Protein (Viridiplantae): 788924 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GVKWRSNCKVCSACPHGKQRSRCKECGGSGICEHGRQRHGCKECGGGAICEHGRRRSKCKECGGASICVHARERSKCKECGGASICEHGRERSQCKECGGASICEHGR...RRPQCKECGGVGICVHGRQRHRCKECGGASFCEHGRQRSLCKECGGASICEHGRVRSQCKECGGSQICEHGRRRSKCKECGGASICEHGRVRSQCKECGGSGICEHGRRRSRCKECGGGSISAAAKA

  17. Protein (Viridiplantae): 108079 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available is MQAYATCDVQSYVICKHIRPASIYDLQAYAICKHMPDAICKHMPHSMCKHMRSASICDLQAYAICKHMPDAICKHMPPSICDLQAYATFDVQAYAICKHMRSASICNLQAYAICKHMRSASICHIRCASI...CDLQAYAICKHMPDAICKRMPHSMCKHMRSASICDLQAYAICKHIPHSMCKHMRYASICDHSYAMLRYATL

  18. Protein (Cyanobacteria): 428308225 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available AFAQNSQTNSSITSSALKIALIIWLMIALFYVLIFAFNKMIDRDSRNISHYRSIKDSPSNSSSNIPSQSGSQSVSQPASQSVEEISVLYPSSLEFSISISKAWNLRGFDDLNDRLDEQQRTFTNQVNSLISTA...LINLTPEVADRVNILDNSLLHNIALKQLSNVLSENRCEFLKPILIAPYLSLVDETV

  19. Protein (Viridiplantae): 357130763 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available VVMDCHEFKYDLHIQIGNDDTLPPSGVALARQARMIQNGVDDPLALSLGSIYSAVPSPPPAPARSIRRRLNNSAPSQQQPEPPSDGAAAAADGSAAPAAPPLPWAT...ERPARHETLEILLSHGVTTVEGEARCKRCNCKATVAYDLAAKFTEVRDYVAAHRHEFNDRAPEAWMNPALPDCAACGEKRCVS

  20. Protein (Viridiplantae): 602846 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SXETTKIFTAEELEKATNNYHESGILGEGGYGIVYKXILAABNNKVVAIKKSKICVXTQKEQFVNELLVLSQINHRNVVRLLGCCLELEVPLLVYEFVAHGTLFEHIH...LLTSKLALDSDRPGADRSLARFFVCLMEEDRLNEILDDDMLNERNIETLKTVANLAKRCVXVKGXDRPTMKEVAMELEGMRITEKHPWGKAEXCSKEXXCLLGPGNSDAYHXDVRADCGPSTGTTIGYDSMXIQFTPYDDGR

  1. Protein (Cyanobacteria): 104398 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PPKHPKITEESKSPNPESIQRQYKSSTSEPISDISLIQRLPETSDSVDVNNAIASHDSTIQRLPETSDSVDVNNAIASHDSPIQRLPETSDSSPIQRLPETSDS...VDINAIASHDSPIQRLPETSDSSPIQRLPETSDSVDVNAIASHDSPSIQRLSETSDSVEDISNAIASHDSPIQRLPETSDSSPIQRLPETSDS...VDVNAIASHDSTIQRLPETSDSSPIQRLPETSDSVDVNAIASHDSPIQRLPETSDSVDVNNAIAFHDSSIQRLPETSDSSPIQRLPETSDSVDVNAIASHDSPIQRLPETSDSSPIQRLPETSDS...VDVNAIASHDSPSIQRLSETSDSVEDISNAIASGDSTIQRLSDTSDSSPIQRLPETSDS...VDVNNAIASHDSPIQRLPETSDSGDVNNAIASHDSPIQRLSETSDSGDVNNAIASHDSPSIQRVSETSDSVEDISNAIASHDSTIQRLSETSDSVEDISNAIASHDSPIQRLPETSDS

  2. Protein (Cyanobacteria): 493719099 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SKSPNPESIQRQYKSSTSEPISDISLIQRLPETSDSVDVNNAIASHDSTIQRLPETSDSVDVNNAIASHDSPIQRLPETSDSSPIQRLPETSDS...VDINAIASHDSPIQRLPETSDSSPIQRLPETSDSVDVNAIASHDSPSIQRLSETSDSVEDISNAIASHDSPIQRLPETSDSSPIQRLPETSDSVDVNAIASHDSTIQRLPETSDS...SPIQRLPETSDSVDVNAIASHDSPIQRLPETSDSVDVNNAIAFHDSSIQRLPETSDSSPIQRLPETSDSVDVNAIASHDSPIQRLPETSDSSPIQRLPETSDS...VDVNAIASHDSPSIQRLSETSDSVEDISNAIASGDSTIQRLSDTSDSSPIQRLPETSDSVDVNNAIASHDSPIQRLPETSDS...GDVNNAIASHDSPIQRLSETSDSGDVNNAIASHDSPSIQRVSETSDSVEDISNAIASHDSTIQRLSETSDSVEDISNAIASHDSPIQRLPETSDS

  3. Protein (Cyanobacteria): 104392 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available otein SPLC1_S130480 Arthrospira platensis C1 MDVNAIASHDSPIQRLPETSDSSPIQRLPETSDSVDVNAIASHDSPSIQRLSETSDSVEDISNAIASHDSTIQRLPETSDS...VDVNNAIASGNSPSIQRKSDTSDSVEDISNAIASDDSTIQRLPETSDSGDVNNAIAFRDSSIQRVSETSDSSPIQRLPETSDSVGVNNAIASDDSPSIQRLSDTSDS...VEDISNAIASHDSPIQRLPDTSDSSPIQRLPETSDSVDVNNATASHDSPSIQRLSETSDSVEDI...SNAIASHDSPIQRLPETLDSSPIQRLPETSDSGDVNAIASDDSPIQRLPETSDSVGVNNAIASHDSSIQRVSETSDSVDVNAIASHDSPIQRLPETSDSSPIQRLPETSDSVDVNAIASHDSSIQRVSETSDS...VEDISNAIASHDSPIQRLPETLDSSPIQRLPETSDSVDVNAIASDDSSIQRLSETSDWGDVNAIASDDSSIQRLPETSDSGDVNNAIASHDSPIQRLPETSDS

  4. Protein (Viridiplantae): 218421 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SAKKMTPSKSAIKTDLVEMANVYMEARGIKRKLAASDSESDSDSDSDSDSGDEPAAKKAKTAPASSDSSSDSDSSSSDSDSDSGEKKEDENKEPAKPAKSESSSATSSDSDSSDSDSDSDSDS...KPPAEEEKKDEPVAAVKADSSSSSDSDSSSSDSDSDSDSGEKKEEEKAEVKKADSSDSDSSDSDSSSSDSDS...DEKEEEKKDEPKAEVKADSSSSSSSSSSSSDSDSDSDSDEKEEEKKEEKAEVKKADSSDSDSSSSDSDSDSDSDSDSGEKKEEEKAEVKKADSSSSSSSSDSDSDSDSDS...DEKEEEKKDDEPKAEVKADSSSSSSSSDSDSDSDSDSDSKPAAKTMEDKKDDSSSSDSDSDSSSSDSESEEKKEEEKAEVKADSSSSSDSDSSSSDSDSDS...DEKEEEKKDDDKMDVEDAKADSSSSSSSSSSSDSDDDSDSETEPVKMDADAAVAKPESSSSDSDSDSGSDSDSDSDSKPTAMDVDEKQEEAKAAASSDSDSSDS

  5. Protein (Cyanobacteria): 104397 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available otein AmaxDRAFT_1256 Arthrospira maxima CS-328 MEDISNAIASHDSPIQRLPETSDSVEDISNAIASHDSPIQRLSETSDSGDVNNAIASHDSPSIQRVSETSDS...VEDISNAIASHDSTIQRLSETSDSVEDISNAIASHDSTIQRLSETSDSVEDISNAIASHDSTIQRLSETSDSGDVNDAIDSVEDISNAIASHDSPIQRLPETSDS...GDVNNAIASHDSPIQRLSETSDSSPIQRLSETSDSGDVNNAIASDDSPIQRLPETSDSVGVNNAIASHDSPSIQRVSETSDS...VEDISNAIASHDSPIQRLPETSDSSPIQRLPETSDSVDVNAIASHDSTIQRLPETSDSGDVNNAIASDDSPIQRLSETYDSSPIQRLPETSDSVDVNVIASDDSPIQRLPETSDS...VDVNNAIASHDSPSIQRVSETSDSVEDISNAIASHDSPIQRLPETSDSSPIQRLPETSDSVDVNAITFHDSSIQRLPETSDSSPIQRLPETSVEDISNAIASHDSPIQRLSETSDS

  6. Protein (Viridiplantae): 255557787 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available NIGIAISNNTGISDSTQSCCKASEMMLEDLVTNKDACEGEGKSEAELRSFLRATARGSIHSFSHSIVSRSLDMSGGLDQRRDAAVFQSLFSAVLTLLVGTIIWKAEDPCMPLVVALFAVVGMSLKSVVQFFSTIKNKPASDAVALLSLNWFILGTLTYPALPKVARIIAALTLNVLDWTVS ...

  7. Protein (Viridiplantae): 694554 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available nsis MQFGGLHGDFILAVAWRGFARGCDVRSLLPQAFCLNVARVRGLRSNEAATYVRRLSTVSCTAFCLNVARVRGLRSNEAATYVRRLSTVSCTAFCLNVARVRGLRSNEAATYVRRLS...TVSCTAFCLKVARVRGLRSNEAATYVRRLSTVSCTAFCLKVARVRGLRSNEAATYVRRLSTVSCTAFCLKVARVRGLRSNEAATYVRRLS...TVSCTAFCLNVARVRGLRSNEAATYVRRLSTVSCTAFCLNVARVRGLRSNEAATYVRRLSTVSCTAFCLNVARVRGLRSNEAATYVRRLSTVSCTAFCLNVARVRGLRSNEAATYVRRLSTVSCTAETGRSA

  8. Protein (Cyanobacteria): 479132984 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SKSTIFRSILGDYVSPKSNRFYPPKYPESQERSKSHHSESIQRQYESSTSEPISDISPIQRLSETSDSGDINDAIASNDSPSIQRLSETSDSSPIQRLS...EISDSGDINNAIASNDSPSIQRLSETSDSGDINNAIASDDSPSIQRISETSDSGDVNNAIASNDSPSIQRLSETSDSGDLNNAIASDDSP...SIQRISETSDSGDVNNAIASDDSPSIQRLSETSDWGDRNDAIASDDSPSIQRLSETSDSSPIQRLSEISDSGDINNAIASTHDSPSIQRLSETSDSSPIQRLSETSDS...SPIQRISETSDLGDVNNAIASDDSPSIQRISETSDLGDVNNAIASDDSTIQRLSETSDSVGVNNAIASHDSPSIQRLSETSDLGDVNNAIASHDSPSIQRLS...ETSDLGDVNNAIASDDSPSIQRLSETSDYSSPPIQRVSETSDSGDINNAIASDDSTIQRLSETSDSGDVNNAIASTHDSPSIQRLSETSDSSPIQRLS

  9. Protein (Cyanobacteria): 327031 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available AmaxDRAFT_1930 Arthrospira maxima CS-328 MKPNTNLFVRLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVGLSETQKVGWVKPNTNLFV...GLSETQKVGWVKPNTNLFVGLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVRLS...ETQKVGWVKPNTNLFVGLSETQKVGWVKPNTNLFVGLSETQKVGWVKPNTNLFVGLSETQKVGWVKPNTNLFVRLS...ETQKVGWVKPNTNLFVGLSETQKVGWVKPNTNLFVRLSETQKVGWVKPNTNLFVRLSETQHESKLLNWDSPGRLGGVDG ...

  10. Protein (Cyanobacteria): 446030 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available otein MICAC_1920004 Microcystis aeruginosa PCC 9443 MKLKGKTESNFRSRKAERDTTESSLQEAGLESNSAIDSLVRRVRHRQNRLQVLFLGIKLGIPGSEKALNNALFRYGDEYMALDYLNCGSPELDKGGRQWAYAHGYGVTQSKCGLGTGVECPGGVKWGQF ...

  11. Protein (Cyanobacteria): 428225798 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007109895.1 NC_019703 1117:4682 ... 1150:57546 1301283:79328 ... 63132:2396 1173025...:1855 ... 7-cyano-7-deazaguanine reductase Geitlerinema sp. PCC 7407 MQSEQLAENSTATSETSGVKYGERAIAEGELITFPNPRVG

  12. Protein (Cyanobacteria): 123966873 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 42:1373 ... 7-cyano-7-deazaguanine reductase Prochlorococcus marinus str. MIT 9515 MSTPNLYDSTNKPLYGERLIEESKIIC... YP_001011954.1 NC_008817 1117:4682 ... 1212:1747 ... 1217:2782 1218:2782 1219:651 1675

  13. Protein (Cyanobacteria): 516255382 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_017659345.1 NZ_KB235958 1117:4682 ... 1150:57546 1301283:79328 ... 63132:2396 10212...7:713 ... 7-cyano-7-deazaguanine reductase Geitlerinema sp. PCC 7105 MSDLHSVSNSISENETAEAATEVKYGEREIQEGKLITFPN

  14. Protein (Cyanobacteria): 123969195 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 91:1394 ... 7-cyano-7-deazaguanine reductase Prochlorococcus marinus str. AS9601 MSTAKLEDSTQRPLYGERIIEESKIICFD... YP_001010053.1 NC_008816 1117:4682 ... 1212:1747 ... 1217:2782 1218:2782 1219:651 1468

  15. Protein (Cyanobacteria): 654344934 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GGWIGITDKYWMTALVPDQSANSRMSFSDTPLRGQDVYQADYLRDPITVPANGTASITDRLFAGAKVVRIIDAYEGALGIDNFELAIDWGWFYFITKPLFLALLYIQGIVGNFGVAIIVLTILIKLAFFPLAN...TSYVAMSKMKKVQPEMMKLRDRYKDDKQRQQQELMELYRREKVNPLAGCLPILIQIPVFFALYKVLFVTIEMRHAPFFGWIED

  16. Protein (Cyanobacteria): 140213 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available VIIHAYSGNIEIESGATIGSGVLLVGKSKIGANVCIGSLATILEQNLESEKVVLPASIIGNSGRQFSDNSTISLPDQDSNQSYLFSNETQESSYSLNLANTASSTEETSTETEKANTQLPLANTS...LPAEETPTETEKANTQLPLANTSLPAEETPTETEKANTQLPLANTSLPVEETPTETEKANTQLPLANTSLPVEETPTETEKANTQLQEESPPNIDAQIYGKEYVNKIMQTLFPYKNSLSSHPDDED ...

  17. Protein (Viridiplantae): 183791 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available TQEPFDEELVLSVEQVRLADHVNVSLGTYTTNLNNSNDVDIRFDDVPADDRWVDLNRPGIIENAREVKFASKIHLRISLNGGYHVSDEPLEYSSDFRPSSRDHWPP...SIGVLELGILKATNLMPMKIGGRTDAYCVAKYGPKWVRTRTSVDSREPRWNEQYVWEVYEPFTVITIGVFDNNQLDPESRARG

  18. Protein (Viridiplantae): 242052475 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available EERDGRSPRAATRRARSASPTRSPRADRGAFAEPSGPFASASSSSSSSSSSSSSAKNIRRRMSLRDLLSRTGGSDWAGADQQASSGTEVTSRLGFWPPSIWPSRSSKKPCPAPPQPARRSTSSDRPAGAVPTTAKRARPGGGSARRTTSLPYRQGLVLGCLGFGARGYGLAKSMHPLPSR ...

  19. Protein (Viridiplantae): 661740 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LEKLKLHDCSSLVEVHQSIGNLTSLVFLNLKRCWSLKVLPENIGNVKSLKSLNISGCSQLEKLPECMGDMESLTELLADGIKNEQFLSSIGQLKHVKRLSLIGYSFSQDSPSPTSWVSQISSWLSPSSISWPP...SISSFISASVLCLKRSLPTPFIDWRLVKRLDLPDGGLSDCATNCIDFRGSSSLEELDLSGNKFSSLPSGIGSLPTLWVLSVQR

  20. Protein (Viridiplantae): 928250 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ... 70447:1749 ... 70448:2455 ... TRAPP 20 K subunit (ISS) Ostreococcus tauri MSASAALTVVNANGRSVYERELGSSADSVDTDAH...VRELIGRAALDFADARSWESSATYLRLVDRFNDADAHGYRTSGGGRFVLTLRGRLRGNAGDETIRQFFTDAHEAYAIAKMNPMRDEDEDLGEAFDRAVRESFRRRLAPLFPFARTDE

  1. Protein (Cyanobacteria): 221991 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ivities AAA_3 Nostoc sp. PCC 7107 MANSQGNTQVISYFAPTLTAASVCLCLSILFIKIMSQNHSVFIDLDQNL...YP_007052429.1 1117:4211 1161:939 1162:431 1177:1722 317936:2662 ATPase associated with various cellular act

  2. Protein (Cyanobacteria): 221973 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007126999.1 1117:4211 1118:2627 102231:1117 1173026:1117 ATPase associated with various cellular activiti...es AAA_3 Gloeocapsa sp. PCC 7428 MKKIEILTQNLSRTIVGKAEPIRLVLVSLLAGGHVLLEDVPGVGKTLLAK

  3. Protein (Cyanobacteria): 450480 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available CCP_1839 Synechocystis sp. PCC 6803 substr. PCC-P MNIQEIQTIANQLTLTLDSPQSVKLQVKQINLAQKQLRAIKKEINAHIRQINQDASQAYSDSIVSVGLDIFGKNKWAGRVRAETRRMIERNKKDARQPYMELKDYIDQLILKGDKLKLSAEQYLLSRE ...

  4. Protein (Cyanobacteria): 133117 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available otein Microcystis aeruginosa PCC 7941 MGIVLQPENIVFLDTAPFIYFFEQHPIFFPYMEKLFYDVSIYQVKVITSMITFIEIVTHPARIGNQELVEQYRTYFTPSSQITLLPIDLSIANEAIALRTQYTLKTPDAIQLGTAIAYSATYIITNDRQWKQLTPQNVLLVDEM ...

  5. Protein (Cyanobacteria): 450478 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available TI_1840 Synechocystis sp. PCC 6803 substr. GT-I MNIQEIQTIANQLTLTLDSPQSVKLQVKQINLAQKQLRAIKKEINAHIRQINQDASQAYSDSIVSVGLDIFGKNKWAGRVRAETRRMIERNKKDARQPYMELKDYIDQLILKGDKLKLSAEQYLLSRE ...

  6. Protein (Cyanobacteria): 155596 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LRVVVFADGREWITGRNLPPNLRERQQQGIMGWVAEDKLFQRSLADHKTGNYLGAWLALEKARQFGAGEAILIDSQGNWLETSTGNLWGWKGGSWWTPVLDESILPGIQRSAIINRLKSQDIFVEENLWTPDFIEELEVIAYSNCVVEIIPFTVILSQKRKLTFNAFHPALKQLRINTFKN ...

  7. Protein (Cyanobacteria): 384788 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available oneopterin aldolase Prochlorococcus marinus str. AS9601 METFLKIENIKLWARVGVLDEERELGQLFILDIFLWTHFEKCTIDDDIKKTVDYSKLVQILQNQSKKIYCYTIEKYSNAILEIIDQEFKISKIKIILTKCNPPITGFDGKVSIVRILENK ...

  8. Protein (Cyanobacteria): 384791 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available eopterin aldolase Prochlorococcus marinus str. MIT 9202 METFLKIENIKLWARVGVLDKERELGQLFILDIFLWTDFEKCTVNDDIKKTVDYSKLVQILKDQSNKIYCLTIEKYSNAILEIIDQEFKLSKVKIILTKCNPPITGFDGKVSIVRILENN ...

  9. Protein (Cyanobacteria): 384790 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available neopterin aldolase Prochlorococcus marinus str. MIT 9215 METFLKIENIKLWARVGVLDKERELGQPFILDIFLWTDFEKCTVNDDIKKTVDYSKLVQILKDQSNKIYCFTIEKYSNAILEIIDQEFKLSKVKIILTKCNAPITGFDGKVSIVRILENN ...

  10. Protein (Cyanobacteria): 497314923 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ANLLGANLSSSDLVKANLREADLYKANLKDAEVSGAYLSRAHLREACLQRCDLSLANLQGADLTNAYFSGANLSGADLDESDLSNANLNETNLSNAILSNANLTNADL...RRSDLTNANLEYANLSNSNLSDSKICTANLSHANLQECDLSNTTINQSNLSHANLADSILSNANLSNANLSYTNLKNAVLSNAIL

  11. Protein (Cyanobacteria): 208270 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available transferase Halothece sp. PCC 7418 MKIVIARDFNDFARCIMIRTQVFVMEQGISAEIETDEWENHSTHYLAGDGEKALATARSRLINNQTAKIERVAVLKEARSQGVGTELMRYILQEIHSYSNIQTIKLGSQNSAIPFYEKLGFQVIGEEYLDAGIPHHLMMQRINT ...

  12. Protein (Cyanobacteria): 440680211 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available CEAGDVQGAIEDCNQALRINPKLAEAYCNRSNARCESGDVEGAIEDCNQALRINPKLAEAYLNRGNARRESGDIKRAIEDYNQGLRINPNLAQAYRNRGFARCESGDF...KGAIEDFNQAIRINPNLAQAYQNRGFARCESGDFKGAIEDFNQALRINPNYAEAYYNRGLAHNYSGDRQAEIEDFNQALRINPNLAEAYLNRGVTRRESGDVKGAIEDYNQALHINPNLAEAYQNRGFARC

  13. Protein (Cyanobacteria): 310254 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available sp. CC9605 MIAPLPMPAEPLLEQYGQGARLCPCANDQITLVFSQEYPFDLVELEQLLEAVGWSRRPIRRVRKALSHSLLKVGLWRHDPRVPRLVGFARCTGDGVFEATVWDVAVHPLYQGNGLGKQLMAYILEALDQMGTERVSLFADPGVVSFYQGQGWDLEPQGHRCAFWYAN ...

  14. Protein (Cyanobacteria): 324054 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 472DRAFT_2939 Cyanothece sp. ATCC 51472 MKISLIFLTLPLLFLITLLSSCNRSDFSNSIKSQSLIKQNNSQNSINLNQTCTNKKVGYQVNYPQDWQ...TNSGNVMNDCQVFDPTYAKVPEQTESISKAIYLRVEENAPFDLISQENVGEQHLSKQTLTIDSYQAVAVESKSTGRAMLPKGQRNYSYIVDLGDRTLIATTYDVPDNNYAKNKQILDSMLKTIEFNNNELK ...

  15. Protein (Viridiplantae): 784550 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available QPYIPENERSGVLDVSNFGNQDHHEALTHSLRFEAYDLPKPVVSSRVPPAAVASSTELVPVXEPSYARETRQPASSPSVSDAGSSELKLRLDGVQKKWGRPTYSSSAS...lon-like, partial Malus domestica ELQAVISLDAXAVESIMPLDASCEDIEIDKNLSFLNGYVQEALEKGA

  16. Protein (Cyanobacteria): 493566136 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 29:4530 ... putative DNA alkylation repair enzyme Leptolyngbya sp. PCC 7375 MTAKDISKILRDLADPVIAEHSQRFFKTGKGEY... WP_006519474.1 NZ_JH993796 1117:18358 ... 1150:46430 1301283:66978 ... 47251:4271 1021

  17. Protein (Cyanobacteria): 553736347 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_023070590.1 NZ_AWNH01000001 1117:18358 ... 1150:46430 1301283:66978 ... 47251:4271 1385935:793 ... dna alkyla...tion repair enzyme Leptolyngbya sp. Heron Island J MTADQISKTLRDLADPAIAEHSQRFFKTGKGE

  18. Protein (Cyanobacteria): 504928995 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_015116097.1 ... 1117:4682 ... 1161:4218 ... 1162:3122 1177:1104 317936:3404 ... NADPH-d...ependent 7-cyano-7-deazaguanine reductase Nostoc sp. PCC 7107 MTQDTSEVKYGERNIAEGNLITFPNPRVGRRYDINITLPEFTCKCP

  19. Protein (Viridiplantae): 816755 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available e Solanum tuberosum MAQHYKLSSILLLAFIYFIHDHMITTITARRILQTPSFSTPTTPSFSMPTTPSFSKSPGVSKPASPSFSNSPSLSKPET...PSFSKSETLSFSKPETPSFSTSETPSFSKPETPSFSKPETPSFSKPEIPSFSKPETPSSPRLETPIFIKPETPTFSKPETPTFSKPKTPSLLKPETPSSQKPETPTFSKPET...PIFSKSETHSFSKPETPTSPNPETPTFSKPETPSSPKPETPSFSKPETSSFSKPETPTFSKPETPSSPKSETPSFSKPETPTFSKPET...PSSPKSETPTFPKPKIPSSLKPETPSSPNLETPSFLKPETPIFSKPETPSFSKPEMPSSTKPETPIPQSPRPLLSQSLKSQILQTPRPQLETSSFSKPET...PSFSKPETPSSSKPEAPSSPTPEMQSFTKPETPSFSKPETPNSPKPETPSFPKPETSTFSKPQTSNSPKSETSSSPKPETSSFSKSETPSFSKPEMPSSPTPETPNFSKPET

  20. Protein (Cyanobacteria): 504943837 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available DTPSSNTLNENPSVNSLVETGQVVSDTERQTSQNNNDNNNVNSQDKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPET...KPPETKPPETKPPETKPPGHKPPETKPPETKPPETKPPGHRPPGHKPPETKPPGHKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETRPPETKPPDTKPPETKPPETRPPETKPPETKPPETKPPETKAPGN

  1. Protein (Cyanobacteria): 427719982 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available VVDNPSFLQLSNSSSSSSNASKDTPSSNTLNENPSVNSLVETGQVVSDTERQTSQNNNDNNNVNSQDKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPET...KPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPGHKPPETKPPETKPPETKPPGHRPPGHKPPETKPPGHKPPETKPPETKPPETKPPETKPPETKPPET...KPPETKPPETKPPETRPPETKPPDTKPPETKPPETRPPETKPPETKPPETKPPETKAPGN

  2. Protein (Viridiplantae): 816753 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available e Solanum tuberosum MIDEVKEEWPETPSFLNPETPNSQNPETPTFSNPESPTFSKSETPTFSMPETPTFSKPETPSFSKPETPSFSKPET...PSSQKLEASTFSKTETPTFSKLETPSFSKLETPISPNPETPTFSKPKTPSFSKPEIPSFSKPKTPSFSKSETPTLSKPETPSSPKPETPNSPKIEAPSFSKPETPSFSKPET...PTFSNPETLSSPKSETLTFQKPEIPSSPKLETQSSSKPETPSFSKPETPTFSKSKTPSSSKPEMPSSPKPETPSFSKPEILTFSKPKTPSFSKPETPSFSKPETPSFSRPET...PSFSNPETPSSSKPEPETLSSPKPKTPSSAKLETPSFSKLETPSFSKPETPSSLKPETPSFSKPET...PSSPNPKTPSSPKSETPSFSKPKTPSFSKPETPSSSKLETPNFLKPETPSSLKLEAPPTFLKPETSSSTKPKTPSFSTPETPTFSKPETPTFSKSETPSFSKSETPSSFKPETPSFSKPETPSSPKFETPSSPKPETPSSPKT

  3. Protein (Cyanobacteria): 104308 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available NASKDTPSSNTLNENPSVNSLVETGQVVSDTERQTSQNNNDNNNVNSQDKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPET...KPPETKPPETKPPETKPPETKPPGHKPPETKPPETKPPETKPPGHRPPGHKPPETKPPGHKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETKPPETRPPETKPPDTKPPETKPPETRPPETKPPETKPPETKPPETKAPGN ...

  4. Protein (Viridiplantae): 816751 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 0:266 ... 424551:266 ... 424574:266 ... 4107:266 ... 4113:1088 ... PREDICTED: proteoglycan 4-like Solanum tuberosum MPTLSKLEIPNSPNPET...PGSPKSVTPSISKPKTPSFSKPETPSFSTPETPSFSRPETPSFSKPETPSSSKPEAPSSLTPETPSFSKPETLSFSKPET...PSSPKLEIRNSAKPETPSFSKPETPSFSKPKTPSSPKPETPSFSKPKTPSSPNLKTPTPSSPNSQTPSFSNSRKPEAPTFLKPETPSSPKPKTPSFSTPETPTFSKPET...PNFSKSETPSFSKPETPSSFKPETHSFLKSETPSSPKPETPSSPKFEPPSSPKPETPSSPKTENPSSPNTETPNFSKPETPSSPKPNTPSFPKLDTPSFSNPKTPSYETPSFPKFETTSSQKPETPNSPKFGTPSLPKSKIPSDPIFETISFSKPETSNSSKPKIPTTP

  5. Protein (Cyanobacteria): 52198 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 02412 Synechococcus sp. PCC 7502 MKLTPYLFLTITVTAIIGTSVWQSSAQMNKMMNHNMDEMSMELGAADANLDLRFIDAMIPHHQGAVQMAKEALKK...SKRPEIQKLATAIIKAQQEEIAQLQKWRKLWYPNMSSTPMAWHGEMGHMMTMSASQQKAMMMSMDLGAGDAKFDLRFIDAMIPHHEGALTMAQEALSKSKRPEIQKLAKAIITSQKAEIIEMQKWRKAWY ...

  6. Protein (Viridiplantae): 111158 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available MTRLAASSSPHRAMTSRLVLLAVVAVLCLMASQGVNAQIIIVEGTAEKSPPPKAPQPPSPQPPSPQPPSPQPPSPQPPSPQPPSPQPPSPQPPSPQPPSPQPPSPQPPSPQPPSPKPPSPKPPSPPSPKPPS...PKPPSPKAPYAPRKPEAPKKVKAKGKKFKGKKWNYMISDSMLEFKEADNFCKSAGYVLVSPVEDTSDAVDSACNHSGKGCWLSSDENADPCTYVNSKGGDKAYVNDCKVKNYALCYGPADKPLR

  7. Protein (Viridiplantae): 773137 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available FTLLPLQVYDTQITGNLNCSGIGLGAGQCCGLSDSPCSSSDIGSGVCGVMVDLSAISTCRLNPPPPPSPQPPSPEPSPPSPGLPLQPPSPQPSQALPSPPSPATPPQPPSPQPPSPEPSPPSPGLPLQPPS...PQPSQALPSPPSPATPPQPLSPQPPSPEPSPPSPGLPLQPPSPQPTPALPSPPSPATPPQPPSPQPPSPEPSPPS...PGLPLQPPSPQPSQALPSPPSPATPPQPPSPQPPSPEPSPPSPGLPLQPPSPQPSPRCRRRQALQPHHSRRARSHRRQSLHHLAQDSRCSH...PAHSRHQRCRRRQALQPHHSRRARSHRRQSLHHLAQDCRCSHPAHSRHRAAVAAKPCNPTTAAEPAATPPSPQPPSPEPSPPSPGLPLQPPSPQPSQALPSPPSPATPPQPPSPQPPSPEPSPPS...PGLPLQPPSPQPTPALPSPPSPATPPQPPSPQPPSPEPSPPSPGLPLQPPSPQPTPALPSPPSPATPPQPPSPQPPSPEPSPPS

  8. Protein (Viridiplantae): 161468 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available NLWPSLVFALAICFIATNVAASDDKPYAYSSPPPPDYYKSSPPWYHHHKTPPYHYKSPPPPSPSPPPPYVYKSPPPPSPSPPPPYIYKSPPPPS...PSPPPPYVYKSPPPPSPSPPPPYIYKSPPPPSPSPPPPYMYKSPPPPSPSPPPPYVYKSPPPPSPSPPPRYVYKSPPPPSPSPPPPYIYKSPPPPSPSPPPPYVYKSPPPPS...PSPPPPYVYKSPPPPSPSPPPPYIYKSPPPPSPSPPPPYIYKSPPPPSPSPPPPYIYKSPPPPSPSPPPPYIYKSPPPPSPSPPPPYIYKSPPPPSPSPPPPYIYKSPPPPS...PSPPPPYIYKSPPPPSPSPPPPYIYKSPPPPSPSPPPPYIYKSPPPPSPSPPPPYIYKSPPPPSPSPPPPYIYKSPPPPS...PSPPPPYVYKSPPPPSPSPPPPYIYKSPPPPSPSPPPPYVYKSPPPPSPSPPPPYVYKSPPPPSPSPPPPYVYKSPPPPSPSPPPPYVYKSPPPPSPSPPPPYVYKSPPPPSPSPPKPYDYASPPPPTPY

  9. Protein (Viridiplantae): 302844289 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available IISDVAKGMDKTAKLSSMLDASAASGHAPSPPPPSPPPPSPPPPQPPPPSPPPPDPPPPSPPPPSPQPPSPPPPYPPRPTLPPLPPRAPRHPPGVLDPPAPVSYGGMY...PGPQESYVAFLTGAASSWLSYYYGYQVRFTVMLIALLSSNDPLGLEYVRVLYSLADMTRLVGLVLKPFIRLQKFEHSSAPPDRFRSRCPPQPSSTTPPS...PPPKQASPPPPLPIVPPPSPPLPPQPPSPTSPSQPPKEAAPPPYSPPSTPPSTPSPPQPPSLTPPSPPPKQAIPPPPSPPFSPPSPPSPPQPPPPTPPSPPPKQASPPPPS...PPFPPPSTPSPPQPPSTIPPSPPPKQATPPPPSPPFPPPSTPSPPQPPPLTPPSPPPKQATPPPPSPPFSPPSPPSPPQPPSPTPPSPPPKQATPPPPSPPFPPPSPPS...PPQPPSTTPPSPAPKQASPPPPSPPFPPPSPPSPPQPPSTTPPSPPPKQASPPPPSPPFSPPSPPSPPQPPS

  10. Protein (Viridiplantae): 134980 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available QPPDGPPGGTILRLTQLGLTAATANGARLCIKLTAGRNGTGCGTLEQMCVPPAGSPPGVCTAAIFDSGNGCCPQVQAGTPSPPSPLPPSPRPPSPKPPS...PPPPPGPPPPSPAPPSPSPPSPPPPSPQPPVPPSPAPPTPPGPPPPSPAPPNPPPPPSPAPPSPKPPSPEPPSPPPPPSPEPPSPKPPSPEPPSPQPPLPPPPPSPYPPSPSPPS...PPPPSPPPPSPAPPSPAPPSPPPPCECLAGERELTCAFLPPSPLPPSPAPPSPQPPLPPPPPSPYPPSPAPPVPPSPPPPSPYPPSPAPPAPPS...PPPPPPPPPPPPPPPPPFPPFPPPPSPPPPSPGPPSPAPPSPPPPPPPPPPSPYPPSPAPPLPPSPPPPSPYPPSPAPPVPPSPAPPSPEPPSPAPPSPPPPPSP

  11. Protein (Viridiplantae): 773135 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available TPSITYCPNSPFNWGFATLKVSCCPEPPPPSPPPNPPPPSPPPSPPSPSPPSPAPPSPSPPSPAPPSPSPPSPAPPSPSPPSPVPPSPPSPLPPSPTPPSPLPPS...PSPPPPPSPFPPSPPPPPPPPRQTGSPPPPPSPLSTSPPPPATSPAPLSPPPSATQSPPPSATQSPPPSATQSPPPSATQSPPPSATQSPPPSATQSPPPSATQSPPPS...ATQPPPPSATQSPPPSATQSPPPSATQSPPPSATQSPPPSATQSPPPSATQSPPPSPVRFLPPPPSLSPPKTPPIQPKSPKAPKAPKAPKLSSPPPPS

  12. Protein (Viridiplantae): 111171 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available MTSRLVLLAVVAVLCLMAPQGATAAGQTTGIEERFTWNATWDSWDKALASILKKKSPPPSPQPPSPRPPRPSRPPPSPRPPPSPPPPSLPAPPPPSPSPPPPSPPPPSPLPPSPPPPSPFPPSPPPPS...PLPPSPPPPSPPKSSRLISKPNKWKSSATSSQQDPLHQSLLSRDSVPGTDLKAQENDIEL...EAKLSPASHAATITIRNSDDGKEPSPPSPPTSPSPPSPPNSPPQPNPPSPPNPPSPPSPPNPPSPPSPPNPPSPPSPPKAPKSPFAPNAPGKEYEQFKKKKWMYIISN

  13. Protein (Cyanobacteria): 657934340 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available FQLEINLSGGTTPRYFYLAQPPRMVIDLPDTKLGYVATQQNYSGAIQRIRVSQLNENVTRIVLDLAPGTSLDPNQVQLQPVSAQNNTRWVLRPLIAGGTYSQQGNYPPPSNLPPSNYNYPAPTNLPPSNLPPS...NYNYPPPSNLPPSNLPPSNYNYPPPSNLPPSNLPPSNYNYPPPSNLPPSNLPPSNYNYPPPSNLPPS...NYNNSQIPLVTVPALNSNNPTQQPGSVLPPPSFPNQPGNFNTAPLSVGAPGFPVQTVPNYPVNVPNSGVFEFGQPFPNSNR

  14. Protein (Viridiplantae): 111164 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available MTRLAASSSPHRAMTSRLVLLAVVAVLCLMAPQGVSAQDVESRNSNKPRPPKAPEAPQPPSPQPPSPKPPRQPKAPKPPSPKPPSPKPPSPKPPSRPPSPKPPSPKPPSPKPPSPKPPSPKPPSPKPPS...PKPPSPKPPSPKPPSPKPPSPKPPSPKPPSPKPPSPKPPSPKPPSPKPPSPKPPSPKPPSPKPPSPKPPSPKPPS

  15. Protein (Viridiplantae): 705809 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SGKMVFQFLTAAVVMVLATPAAAWHGSSSRYTAYPGYIINTPAIACWTGWFTYTTNLTACLTPVEANGINNKADGLASICTNYVPGCLSFHLDTGMFYASNDIALLQASPADNVYLKSLSPPS...PMPPKPSSPPSPTPPSPMPPSPAPPSPAPPSPLPPSPVPPSPAPPSPAPPSPAPPSPAPPSPRPPSPVPPSPAPPSPLPPSPAPPSPAPPS...PEPPSPAPPSPEPPSPEPPSPAPPSPEPPSPEPPSPAPPSPAPPSPVPPSPAPPSPVPPSPPPPSPSPPTPIITNGQGTGQQQ

  16. Protein (Viridiplantae): 302839350 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PPPLKPSNPPPLKPPPLEPSPPPPDFPSVPRHPPSPPPPKPPPPSPPPPSPPPPSPPPPQPPPPSPPPPKPPPPSPRPPSPRPPKPPRPSPPPSPSPPSPLSPPPPPPPPPPPPPSPRPPSPSPPPPS...PRPPKPSPNPPQPPPPNPPPPPPSPPPPSPPPPPSPPPPNPPPPSPPPPNPPPPSPPPPCPPPPSPPPPEPPPPSPPPPSPPPPS...PPPPSPPPPSPPPPSPPPPSPPPPVPPQPPSPFLEPSPPSPRPPRPPPRPPPFATPNVRAGASCIKVLIMGTP ...

  17. Protein (Cyanobacteria): 222097 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available Trichodesmium erythraeum IMS101 MHQTKFWAIAPFGLLTILGKPLLSPALPIHQAVVNFSYVDESSTKSEIFAQDTSFPKVTPSPEMTPTLEDSPSPEMTPTLEDSPSPEMTP...TLEDSPSPEMTPTLEDSPSPEMIPPTQEPEIILQQPGMLSDDDLVLPSDESVYDEHTFEGTEGQVVTVTVESPDFDTYLAVFSPDTKLLGEHDDISKKNTNSQLTITLPMTGKYRVIVNSYDKTGRGEYNLQVIQSGQTSDF ...

  18. Protein (Cyanobacteria): 518316762 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available CEKLELNWEDIIELMPNKNLFYRPISQITVLPNLETEQGSVQIITRQILVIDRENQEVISAITLEGEIDSVQSDLSFWQSDFSTKYPNSNIKVIAIKPGSIKIVIEGNQEDIDMLLSD...FESGELTEINGYPVQNIQILTESVEDDESSKRKWRLVEDIRTNKVEGRDLRGVDLSDADLSDAYLVNANLIDADLSDCDLSGANLSD...CDLSGANLSDCDLSGANLSGADLSGADLSGANLSGANLSGANLSGANLSRADLSGADLSGANLSGANLSGANLSGANLSGADLSGADLSGADLSGANLIVANLSD...ANLIVTNLIGADLSGANLSDANLSDANLSGANLSGANLSGANLSGANLSGADLSGADLSGANLIVANLSIANVKKANFSYSNGISKEIKQDLIKRGAIFEDSLGDRSLTTSR

  19. Protein (Cyanobacteria): 158341580 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GESIYLWGADLGGANLSGADLGGATLSGANLWDANLTYADLRGATLIYADLRGATLIGAALIGAALIGAALNGANLSDADLSGADLRNTKISAATKIDAKWKLVHELVNKGGEGKDLSGTDLSGANLSD...ADLSDADLSGADLSDADLSDADLRNTNLRNTKISAETKIDAKWKLVHELVNKGGEGKDLSSTDLSDANLSGTDLSD...ANLSGTDLSDANLSGADLSDADLSGTDLSDTNLSGTDLSDADLSDADLRNTKISAETKIDAKWKLVHELVNKGGEGKDLSGTDLSGADLSGADLSDADLSGADLSDANLSD

  20. Protein (Cyanobacteria): 264858 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LWDANLTYADLRGATLIYADLRGATLIGAALIGAALIGAALNGANLSDADLSGADLRNTKISAATKIDAKWKLVHELVNKGGEGKDLSGTDLSGANLSDADLSDADLSGADLSDADLSD...ADLRNTNLRNTKISAETKIDAKWKLVHELVNKGGEGKDLSSTDLSDANLSGTDLSDANLSGTDLSDANLSGADLSDADLSGTDLSD...TNLSGTDLSDADLSDADLRNTKISAETKIDAKWKLVHELVNKGGEGKDLSGTDLSGADLSGADLSDADLSGADLSDANLSDADLSGADLRNT

  1. Protein (Cyanobacteria): 359322 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ynechocystis sp. PCC 6803 MYFLLVTLVILVFPLLSIALEWTTSGNSQALVDVLARWFVFWGVGVRLFLAGVVQITKPSFTAEKILGVQSQDSLILVKELGIGNLAIASVALGSIFVNAWVLGAALAGGIFYLLAGINHILQPERNAKENYAMATDLFLGLLLGGILFFAWQP ...

  2. Protein (Viridiplantae): 316565 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available NXEEKNVETEDRFFRGVGYKRPRLBEESVFGLCDTEMEMNLDIIKEVELDVAAFGSMKSGLNNKPKFYATESEVFADSQKK...SFSSFSVNESKYVTEFGEEVVEGAICLMIISGCGSNWDRISSVTESSDNNSLSLEVQSPGLKNWIMGNKGGVSVCDDTVKFVDCISDGKNVSVXKKVLEFSENNXGFA

  3. Protein (Cyanobacteria): 158340218 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_001521388.1 NC_009927 1117:1153 ... 1118:6712 1301283:22847 ... 155977:4755 155978:4571 329726:4571 ... tyrosi...nase, putative Acaryochloris marina MBIC11017 MFTSKTRREFLISAGAATALFFLPTKVAQAQELRTRK

  4. Protein (Cyanobacteria): 92229 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ein Microcystis sp. T1-4 MVRAIIRAASTPNYMSDTSAVKKYLAHWFQLGKKVICPKNQAMLFPLPIFNADRYSSEFEDCWQKMLDPQSGDCYLEGTQQTIQDLLSPQWEFHPCARCTIPVPIEVLGQSGLSCPCHDLSNWPNLELPLPHLPVNSRENLDRIRQRLLKNSPSH ...

  5. Protein (Cyanobacteria): 321817 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ynechococcus sp. WH 8102 MLGRNLGGPRRGWWRWLQWQWWGLDLAWNRWWLSFDQTAQTAWLNQLLGSNPNWIGWLVLAGGALAFALGLRVTRWRAVATPIQRTLRLLETLDVTPQPGESFAALCHRAAASTPSCPCRCWPWPKLTSSLPMHLSPAVSVSCSNGFGSRH ...

  6. Protein (Viridiplantae): 759706 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GEIELETRNGQTYTVGVSKYPDKLVLTAGWGAFVKTYDLQIGDSVVFRYDGDSQFNVIVFDRFGREKASSVVAVADNDPLSPHEQEKNRVSTESLNRSHSYPQRMEVQSPTENVNRSQGHPQAMQMPSPTEN...VNLSQEHPQPMQMPPPTENMDRSQRHPQPMHMQSPTGNVDGFVGLSRHMEVQSPTENMQLSCSHTERQSKLQNDYSNQGDSLPPEDDIEVCEEPRYMLGRKNRLSSAQVKEVDEMVQHIHHENPIFVAVMSKCNVTGSFHLLSVENAILNSLNC

  7. Protein (Cyanobacteria): 113478324 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available phorus lyase complex subunit Trichodesmium erythraeum IMS101 MLKVDLPGIWQDEVQQQIFRQL... YP_724385.1 NC_008312 1117:23601 ... 1150:21798 1301283:39608 ... 1205:2820 1206:2820 203124:2820 ... carbon-phos

  8. Protein (Cyanobacteria): 661292839 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 2:479 ... chorismate mutase Prochlorococcus sp. scB243_498G3 MNDDYIITFIRGATTASGNSVKEIEVAVVELIDELISRNNLIKTNILSIIFTATKDLNACFPASIARKFNGLDSVAFLDCQQMHVSNDVDFCIRIMAQVLLPPNYEIKHPYLNGAAKLRTDRC

  9. Protein (Cyanobacteria): 470147 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available rase III subunit beta Prochlorococcus marinus str. MIT 9313 MEPKMSKDKEFAISKDSLRASWGNVPISAKIYQQIQAYLLQRQSMGLSTDVDELISTATDEFRDFQQRPEVKEALELVCADLASDQAFSGLSKDETTRAIVINFAIANYFNNCIGK ...

  10. Protein (Viridiplantae): 357134432 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 8024:5377 3398:5377 4447:5981 4734:5981 38820:5981 4479:5981 359160:5029 147368:5115 147385:5115 15367:5115 15368:5115 PREDICTED: bor...on transporter 4-like Brachypodium distachyon MEHKKTLFKGVIEDFRGRAACYKQDWHNGFSSGFRIL

  11. Protein (Viridiplantae): 802013 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ica MASRSITYPGLLLLVVALVLVPSSQAKRSPPRSAPTPAPRIAPSPAPRSAPTPAPRSAPTPAPRAPQALSPTPAPTPAPRTAPTPAPRSAPTPAPRA...PQAPSPTPAPTPAPTPAPRTAPTPAPRSAPTPAPRAPQAPSPTPAPMPAPRTAPTLAPRSAPTPAPRAPQAPSPTPAPRTAPISAPTPAPRSAPTPAPRA...PQAPSPTPAPTPAPRTAPTPAPRSAPTPAQRAPQAPSPTPAPTPPPRTAPTPAPAPAPKSAPTPAPMAPQAPSPTPAPTASPMTAPTPAPTSAPTPAPRAPQAPSPTPAPTPAPMDGSNTCS

  12. Protein (Viridiplantae): 488484 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available KLFCKIHREGLRIDGILLSALLGVCANVASIKFGTQIHAYMHKKQPMGDLALDNALVDMYAKSGEYLDSRRAFDEMPSRNV...HYSDALGLFASMLRDGMLPDHFTFGSALKACGAISVIFNVELIHTCIIKLGYWDEKVATASLIDSYAKCRSLSSARVIYDSICEPDLVSSTALISDHSMDRNYSEDAM

  13. Protein (Viridiplantae): 658913 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GYMPSLLLDPNVKNPSQIQQLKDFGTGIHSQVSQEPSPYTEFYVQQRTSNPRKCKFMGCVKGARGASGLCISHGGGQRCQKPGCNKGAESKTTFCKTHGGGKRCEHLGCTKSAEGKTDFCISH...GGGRRCEFLEGCDKAARGRSGLCIKHGGGKRCNIEDCTRSAEGQAGLCISHGGGKRCQYFSGCEKGAQGSTNYCKAHGGGKRCIFSGCSKGAE

  14. Protein (Viridiplantae): 658914 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available KRSGGYMPSLLLDPNVKNPSQIQQLKDFGTGIHSQVSQEPSPYTEFYVQQRTSNPRKCKFMGCVKGARGASGLCISHGGGQRCQKPGCNKGAESKTTFCKTHGGGKRCEHLGCTKSAEGKTDFCISH...GGGRRCEFLEGCDKAARGRSGLCIKHGGGKRCNIEDCTRSAEGQAGLCISHGGGKRCQYFSGCEKGAQGSTNYCKAHGGGKRCIFSGCS

  15. Protein (Viridiplantae): 297811063 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available KRSGGYMPSLLLDPTVRNPSQMQQLKDFGTGIHSQVSLEPSPYTALSVQQRTSNPRKCKFMGCLKGARGSSGLCISHGGGQRCQKPGCNKGAESRTTFCKTHGGGKRCEHLGCTKSAEGKTDFCISH...GGGRRCEFLEGCDKAARGKSGLCIKHGGGKRCNIENCTRSAEGQAGLCISHGGGKRCQFSSGCEKGAQGSTNYCKAHGGGKRCIFSGCS

  16. Protein (Viridiplantae): 276123 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available EFEAVASLDIAREKAEARAELLRNERITAKAGDGKITLSSLASAVSSGRLSGIDLHQLNIILKVDVQGSVEAVRQALQVLPQDNVTLKFLLQATGDVSSSDVDLAIAS...QISALKGDNIDDLLETVMLVAELQELKANPHRNAKGTVIEAGLDKSKGPIATFIIQNGTLKRGDVVVCGEAFGKVRALFDDGGKRVDEAGPSIPVQVIGLSNVPKAGD

  17. Protein (Viridiplantae): 357437461 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available tioning 1A Medicago truncatula MKEEIHNNPSENKTKVSKFSDQNQPPKLQTTKTTNPNNNNHSKPRLWGAHIV...36 3398:436 71240:66 91827:66 71275:1826 91835:7886 72025:8391 3803:8391 3814:8391 163742:99 3877:99 3880:99 Chloroplast unusual posi

  18. Protein (Cyanobacteria): 281754 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available se with PAS/PAC and GAF sensors Oscillatoria nigro-viridis PCC 7112 MLYNNEILPTLTVESSPRSMNILLYKLLSLRRIEYIAVDR...YP_007115817.1 1117:4890 1150:2464 1158:318 482564:246 179408:246 diguanylate cycla

  19. Protein (Cyanobacteria): 281805 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available se with PAS/PAC and GAF sensors Oscillatoria nigro-viridis PCC 7112 MYLILPDLYANMTYQIDERLNTSPCGFLSFADDGTIVMVN...YP_007118829.1 1117:4890 1150:2464 1158:318 482564:246 179408:246 diguanylate cycla

  20. Protein (Cyanobacteria): 279247 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ZP_09782276.1 1117:4884 1150:2505 35823:234 376219:114 putative Diguanylate cyclase with PAS/PAC and GAF sen...sors Arthrospira sp. PCC 8005 MMDKYLCPCCSEPLLIHIIAHKKIGFCMNCHQEMPLIEQSRQMATVTEPVDVS

  1. Protein (Cyanobacteria): 281377 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ZP_08493855.1 1117:4890 1150:2448 44471:122 119532:63 756067:63 diguanylate cyclase with PAS/PAC and GAF sen...sors Microcoleus vaginatus FGP-2 MIEESKSIKEKFGVLDSVPVGACLLQDDFVVLFWNTCLEEWTKIPRSQIL

  2. Protein (Cyanobacteria): 275943 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007168782.1 1117:4879 1118:3357 92682:39 76023:39 65093:39 diguanylate cyclase with PAS/PAC and GAF senso...rs Halothece sp. PCC 7418 MDKYLARRTQDLRQQAQARLEQRERETDLNEMTPAELAHELEIHQTELEIQYEELQR

  3. Protein (Cyanobacteria): 285307 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ith PAS/PAC and Chase2 sensors Nostoc sp. PCC 7107 MSKQLGKSFVSSNLNLNLKQLLDRKYRQLVVAFSVAVCIILLRSVGMFQSLELAGLD...YP_007048593.1 1117:4890 1161:684 1162:948 1177:381 317936:58 diguanylate cyclase w

  4. Protein (Cyanobacteria): 286149 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007068440.1 1117:4890 1161:684 1185:224 1186:169 99598:92 diguanylate cyclase with PAS/PAC and Chase2 sen...sors Calothrix sp. PCC 7507 MSKQLGKCLVKFIFGLKQSLGRGHRELITASSVVICILFLRSIGLLQFLELAALD

  5. Protein (Cyanobacteria): 281376 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ZP_08491810.1 1117:4890 1150:2448 44471:122 119532:63 756067:63 diguanylate cyclase with PAS/PAC and GAF sen...sors Microcoleus vaginatus FGP-2 MANMTYQIDELLNTSPCGFLSFADDGTILMVNATLLQLLGYETDELRERK

  6. Protein (Cyanobacteria): 279234 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ZP_09781866.1 1117:4884 1150:2505 35823:234 376219:95 putative Diguanylate cyclase with PAS/PAC and GAF sens...ors Arthrospira sp. PCC 8005 MNQLMEDRSKILWIAGNVGNDNHSLPQSILQNNGYEVHLVIGLKPAYNAIQSWP

  7. Protein (Cyanobacteria): 280942 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available se with PAS/PAC and GAF sensors Crinalium epipsammum PCC 9333 MIEQDKTKDQLLAELATMRQLNNFLLFSGMGVQQHLEKLLIEEREF...YP_007141850.1 1117:4890 1150:2445 241421:53 241425:53 1173022:53 diguanylate cycla

  8. Protein (Cyanobacteria): 279248 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available se with PAS/PAC and GAF sensors Arthrospira maxima CS-328 MMDKYLCPCCSEPLLIHIIAHKKIGFCMNCHQEMPLIEQSRQMATVTEPV...ZP_03273626.1 1117:4884 1150:2505 35823:234 129910:158 513049:158 diguanylate cycla

  9. Protein (Cyanobacteria): 307154701 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_003890085.1 NC_014501 1117:8352 ... 1118:3762 1301283:19569 ... 43988:641 497965:226 ... PAS/PAC and GAF sens...ors-containing diguanylate cyclase Cyanothece sp. PCC 7822 MWEFISNFLAPKSYIPHGHCYLWQ

  10. Protein (Cyanobacteria): 281806 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available se with PAS/PAC and GAF sensors Oscillatoria nigro-viridis PCC 7112 MIEESKSIKEKFGVLDSVPVGACLLQDDFVVLFWNTCLEE...YP_007117793.1 1117:4890 1150:2464 1158:318 482564:246 179408:246 diguanylate cycla

  11. Protein (Cyanobacteria): 499307394 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available KLGNIGLLRLTFFSNRVSDTVAFKRLTPPVNGNTGTWENIGLVQTTGIEASLNLQLAKNIYAFVNYTANDPRILESANPAEVDKALRFAGADKLNLGASYENPQGWYLGVLMNSLNGYPTNNINTEFLSGYTTFDLKMRVPISDSLVLTGSLDNLFDQRYQLFPGYPDGGRVFQVGLSSRF

  12. Protein (Cyanobacteria): 57689 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GLLRLTFFSNRVSDTVAFKRLTPPVNGNTGTWENIGLVQTTGIEASLNLQLAKNIYAFVNYTANDPRILESANPAEVDKALRFAGADKLNLGASYENPQGWYLGVLMNSLNGYPTNNINTEFLSGYTTFDLKMRVPISDSLVLTGSLDNLFDQRYQLFPGYPDGGRVFQVGLSSRF ...

  13. Protein (Cyanobacteria): 413615 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LMSPALSQELTVENMKEIWQDLITITGPIKKQGDSRVISTVNSDLVSINTEFTNKTEDFIVVFNKEGQVVGIDFPQTKSVEEIAQTVVNAVAQNNFAQARGYLHPFLKTELFPQQIRASWESIQQRNGSFEKIVETEVRSGSSVDKVDVVVVEAQFQKANQKIFFIFDENGRITGIDLTQ ...

  14. Protein (Cyanobacteria): 493499523 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available DGSEPEMCGNGIRCLAKFIADLEEEHNEPTLPKSYGVHTLAGIIRPELKPDGQVTVDMGEPILTAREIPTTLGQPDGKVIDETLTVAGENWQVTCVSMGNPHCITFVD...DVEAVPLADIGPRFEHHEAFPARINTEFVEVVRPDFLRMKVWERGAGPTLACGTGTCALVVAAVLNGKCDRQTTVELPGGNLEIEWANNNRVYMTGPATLVFSGDVAVDAAGR

  15. Protein (Viridiplantae): 788919 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available CEHGVKPRSRCKVCGACPHGKQRSRCKECGGSGICEHGRVRSLCKECGGSRICEHGRRRYECKACGGSQICEHGRERCRCKECGGGSICEHGRQRYRCKECGGSSICEHGRQRYRCKECG...GSQICKHGRERSKCKECGGSQICEHGRERCRCKECGGGSICEHGRQRSQCKECGGSAICEHGRHRSYCKECGGSAFCEHGRQRSQCKECG...GSQICEHGRIRSKCKECGGGSICEHGRMRSQCRECGGGSICEHGRRRSRCKECGGPRISTPP

  16. Protein (Viridiplantae): 788911 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available EEEEDASNKGTKRKRAPYTKGPCEHGVKYRSKCKVCSACPHGRERRYCKDCGGSKICEHGRQRDYCKECGGGAICEHGRERHRCKECGGSGICEHGRRRSRCKECGGSGICEHGRVRSRCKECG...GGSICEHGRERSRCKECSGSGVCEHGRERSKCKECGGASICEHGRQRSHCKECGGGSTCEHGRERRYCKECGGSGICEHGRIRSQCKECG...GSGICEHGRRRSDCKECGGSQICEHGRIRSTCKECGGSQICEHGRQRSYCKECGGGSICEHGRRRSRCKECGGSQICEHGRERSKCKECGGASICEHGRQRSQCKECG...GSGVCEHGRQRTRCKECGGASICEHGRVRSQCKECGGGGICEHGRQRSKCKECRAAKAGTHS

  17. Protein (Viridiplantae): 788910 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GPCEHGVKPRSQCKVCSACPHGKRRRHCKECGGSQICEHGRVRSQCKECGGASICEHGRQRHRCKECGGAGICEHGRQRSVCKECGGSSICEHGRIRSTCKECGGSQICEHGRQRHRCKECG...GGGICEHGRQRSVCKECGGSQICEHGRVRSTCKECGGAGICEHGRQRHRCKECGGASICEHGRQRRYCKECGGSGICVHGRQRHSCKECG...GGGICEHDRQRHRCKECGGSQICEHGRVRSTCKECGGGSICEHGRRRSGCKECGGGGICEHGRQRSRCKECGGGSICEHGRRRCECKECGGSQICEHGRRRSQCKECGGASICEHGRHRHQCKECRAAKAKQSR

  18. Protein (Viridiplantae): 788914 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available GTKRKRAPYTKGPCEHGVKPRSQCKVCSACPHGKRRRYCKECGGSQICEHGRIRTLCKECGGSRICEHGRERRRCKECGGGSICEHGRQRSYCKECGGSGICEHGRQRHYCKECGGGSICEHGRRRSECKECG...GGSICEHSRVRYTCKECGGSQICAHGRQRSTCKECGGSQICEHGRIRSTCKECGGSQICEHDCIRSTCKECG...GGSICEHGRQRDYCKECGGSRICAHGRERRYCKECGGSGICEHGRQRKQCKECGGSAICEHGRQRHQCKECRGSSVPVGRWVL

  19. Protein (Cyanobacteria): 423018 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available HETFSEKKIVQLKIAHPEAEAIAHPECESSVLRHASFIGSTAALLKYCQTSPSQEFIVATEPGIIHQMQKLAPNKHFIPAPPVNNCACNECPFMRLNTLEKLYLAMKNRTPEITMSEDIRVAALRPIQRMLEMSV ... ...TAKILNPDKLVLLPDLNAGCSLADSCPPAEFAAFKAAHPDHVVVSYINCSAEIKAMSDIICTSSNAVKIVQQIPEAQPIIFAPDKNLGRYVMEQTGRDLVLWQGSCIV

  20. Protein (Cyanobacteria): 428210455 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LYTADHRYHRSLYKNILKKSRYFIANRAKIDDANATGDQQEVGARFFEGAAAGTVMLGVPPECESFTRNFDWEDAVIQVAYDAPNIVEILAELDSQPDRLQKIRTNNVVNSLLKHDWVYRWETILATVGLDSTPAMMARKARLQNLVERILTRKNSDRQLITQTGFTSKTERRCQLFESVITD

  1. Protein (Cyanobacteria): 423017 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available KILNPEKLVLLPDLNAGCSLADSCPPKEFAAFKAAHPDHLVVSYINCSAEIKAMSDIICTSSNAVKIVQQIPKEQPIIFAPDRNLGRYVMEQTGRDLVLWQGSCLVHETFSEKKIVQLKVAHPQAEAIAHPEC...ESSVLRHASFIGSTAALLQYCQTSPSQEFIVATEPGIIHQMQKLAPNKHFIPAPPINNCACNECPFMRLNTLEKLYWAMKNRTPEITMSEDIRLAALRPMQRMLEMSN ...

  2. Protein (Viridiplantae): 849056 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available IAIVVVLLASVLSPLCAKNGLAVDVPLATEAPSASPQAPFYAPEEAPLPPAFQAPFAAPSPSQAPSQSPGLPDEPPSPSQAPSQSLGEAPS...QNPRPCSCYEPLSPLQAPSQSPGLSYEPLSPSQAPSQSPGLSYEPVSPSQAPSQSPGLSYGPPSPSQAPSQSPGLSYEPLSPSQAPSQSPGLSYEPPSPSQAPSQSPELSYEPSSPSQAPS...QSPGLSYEPPSASQAPSPSPGLSYESLSPSQAPSQNPGLPSKPPSPSLAPPPPKKKSPPKSIPPYMPWGPLPGHRIHPRLPPLREDIYQCWKTLCPIPYCVDRTYWSFYAGKIDVGSFCCKAFERTNDTCFRKMFLAFPNPRLKDALLTYCSKH

  3. Protein (Cyanobacteria): 58265 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PFQYGDQVSCLEWQHGHGEVRAIGPDKLIYVLWADSHQISRHCPSDLIAVREQGLGNNAIASPEVREQGLGNHHTIAPPEV...REQQLGNIELGNNTIAPPEVREQGLGNIELGNNAIASPEVREQQLGNHHTIAPPEVREQQLGNIELGNIELGNNAIASPEVREQGLGNNAIASPEVREQQLGNNAIASP

  4. Protein (Cyanobacteria): 257062007 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PDPDDFDGYWDWIEAWEQWGSSHPDYLIPDSPFQYGDQVSCLEWQHGHGEVRAIGPDKLIYVLWADSHQISRHCPSDLIAVREQGLGNNAIASP...EVREQGLGNHHTIAPPEVREQQLGNIELGNNTIAPPEVREQGLGNIELGNNAIASPEVREQQLGNHHTIAPPEVREQQLGNIELGNIELGNNAIASPEVREQGLGNNAIASP...EVREQQLGNNAIASPEVREQQLGNNAIATPGVREQAVREHPKPTQPPTKVLEKAREFRAKLGNGTIELKKIKSQFYWYFRYRDESRKLKSKYLAKACSISP

  5. Protein (Cyanobacteria): 506264217 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PDYLIPDSPFQYGDQVSCLEWQHGHGEVRAIGPDKLIYVLWADSHQISRHCPSDLIAVREQGLGNNAIASPEVREQGLGNH...HTIAPPEVREQQLGNIELGNNTIAPPEVREQGLGNIELGNNAIASPEVREQQLGNHHTIAPPEVREQQLGNIELGNIELGNNAIASPEVREQGLGNNAIASPEVREQQLGNNAIASP

  6. Protein (Cyanobacteria): 58264 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PFQYGDQVSCLEWQHGHGEVRAIGPDKLIYVLWADSHQISRHCPSDLIAVREQGLGNNAIASPEVREQGLGNHHTIAPPEV...REQQLGNIELGNNTIAPPEVREQGLGNIELGNNAIASPEVREQQLGNHHTIAPPEVREQQLGNIELGNIELGNNAIASPEVREQGLGNNAIASPEVREQQLGNNAIASP

  7. Protein (Cyanobacteria): 257059940 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PDPDDFDGYWDWIEAWEQWGSSHPDYLIPDSPFQYGDQVSCLEWQHGHGEVRAIGPDKLIYVLWADSHQISRHCPSDLIAVREQGLGNNAIASP...EVREQGLGNHHTIAPPEVREQQLGNIELGNNTIAPPEVREQGLGNIELGNNAIASPEVREQQLGNHHTIAPPEVREQQLGNIELGNIELGNNAIASPEVREQGLGNNAIASP...EVREQQLGNNAIASPEVREQQLGNNAIATPGVREQAVREHPKPTQPPTKVLEKAREFRAKLGNGTIELKKIKSQFYWYFRYRDESRKLKSKYLAKACSISP

  8. Protein (Cyanobacteria): 479126449 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_005066409.1 NC_016640 1117:4000 ... 1150:30479 1301283:49254 ... 35823:598 118562:443 696747:443 ... phosphono...pyruvate decarboxylase Arthrospira platensis NIES-39 MIDPQAFYTTLYQAGVHLFAGVPDSLLKDF

  9. Protein (Cyanobacteria): 64998 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available syc2491_c Synechococcus elongatus PCC 6301 MRPLTLEPHDQRSVLRLLIGAAWLDGDMQPEERNYLKGLLEKHRLAADPEFQDLMTRTTPISPAVFEQWLTAYLRQHPRREDVEALLEQISSVIYADSLIDAREAAVLCEIEQELEHRPALRLLDRLQTFFHHCLVMS ...

  10. Protein (Cyanobacteria): 81404 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available _06604 Lyngbya sp. PCC 8106 MNAEVSLFTIGFTRKSAEQFFGILKKAGVTRLIDARLNNSSQLAGFAKKKDLEYFLKVICNIDYIHLLDLSPTKEILDEYKKNGEDWQVYERQFLQLMRDRQVEEKFSPELFYKGCLLCSEATPERCHRRLVAEYLQEKWTTINLNVYHL ...

  11. Protein (Cyanobacteria): 292628 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available n Arthrospira sp. PCC 8005 MDDSSAIAHISTRHPHQSSLKPCNFLGVRIIPNVPGINMKFERDTIVKLTIGSGCVLGSLAFPPLAAAEGMVWGNILATALGNVAAGNTANAVDALIDAREGRVSLENQDLTKAVGKAILYETLRERRRYHPRSQTTGRQNPRISRKNRRPSQG ...

  12. Protein (Cyanobacteria): 442135 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available rotein MicvaDRAFT_0707 Microcoleus vaginatus FGP-2 MIDFNTVTEFSHTYCIAICAFLVPANLLTTLVTVILTALNRPRIQIWASVVVASLWATAMIFHVFCWFAIGVVMPPTYILLVMGITCLTINVWAIAHPASMMQLIRVAVSVVRGSLQRKKDLVILERRM ...

  13. Protein (Cyanobacteria): 75910043 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available QVQLQFYRITAPFEGTVGNIPIKIGDFVNSSTPLLTITQNRPLEVNISVPLERGSQLRQGMPVEIMNTQGQTLGTSRVFFIAPNASNETQSILVKALYNNTNGQLRADQLVRARVIWNQRTGVLIPITAVTRI...AGETFVYVTQTEKTPQGTSQLVARQKRVQLGDIRGNNYQIIKGLQPTDTIVTSGLLNLRDGVPIVPES

  14. Protein (Cyanobacteria): 515884325 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available TQLVSITQNQPLEVNIFVPIERGPQLRKGTPVEVMDAQGNSLGMSKVFFIAPSASNNTQSILIKSLYDNSKNQLRADQFARARVIWSQRSGVLVPTTAVTRIAGETFVYVTAQVPSKPPQGEKPQRDQEAFQLVARQKRVRLGTIKGNNYQVLEGLEPGDRVIVSGLLNLKDGVPIAPES

  15. Protein (Cyanobacteria): 427702170 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007045392.1 NC_019675 1117:4830 ... 1118:1420 1301283:4671 ... 167375:1797 59930:341 292564:341 ... copper/sil...ver-translocating P-type ATPase Cyanobium gracile PCC 6307 MSHSTLGSPCCAADPAAAATTGME

  16. Protein (Cyanobacteria): 493577702 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_006530817.1 NZ_ALVY01000210 1117:4001 ... 1118:2563 1301283:17370 ... 102231:400 102232:1190 ... putative sil...ver efflux pump Gloeocapsa sp. PCC 73106 MRSQNKPLVKVLLITTLLLSVPKIAISHVGHGDEFQATGGIE

  17. Protein (Cyanobacteria): 427704561 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007047783.1 NC_019675 1117:4830 ... 1118:1420 1301283:4671 ... 167375:1797 59930:341 292564:341 ... copper/sil...ver-translocating P-type ATPase Cyanobium gracile PCC 6307 MDCATEEGEIRHALAGVDGIRGLR

  18. Protein (Viridiplantae): 444213 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available DNTKTADSCDKFKRALENQSNLLAVHSHTGDKINHGREKTPGIESLVNYTSKERPNEENVCETHELELLEDGKGIPLEDLGCDDDSGREDNVCETHELELLEDGKGIPLED...LGCDDDSGREDNVCETHELELLEDGKGIPLEDLGCDDDSGREDNVCETHELELLEDGKGIPLEDLGCDDDSGREDNVCETHELELLEDGKGIPLED...LGCDDDSGREDNVCETHELELLEDGKGIPLEDLGCDDDSGREDNVCETHELELLEDGKGIPLEDLGCDDDSGREDNVCETHELELLEDGKGIPLED...LGCDDDSGREDNVCETHELELLEDGKGIPLEDLGCDDDSGREDNVCETHELELLEDGKGIPLEDLGCDDDSGREDNVCETHELELLEDGKGIPLEDLGCDDDSGREDNVCETHELELLED...GKGIPLEDLGCDDDSGREDNVCETHELELLEDGKGIPLEDLGCDDDSGREDNVCETHELELLEDGKGIPLED

  19. Protein (Cyanobacteria): 259590 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available NA_C10715 Anabaena sp. 90 MSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLED...KLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSPNASPVQLSVGAKHLEDKLSVIAKNSSLNASPVQLSVGRNIPPAPCLFCLLL ...

  20. Protein (Cyanobacteria): 259591 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available NA_C20136 Anabaena sp. 90 MVTKFDHNLVVSENVELVNCQLLVGAKHLEDKLSVIAKNSSPNASPVQLLVGAKHLEDKLSVIAKNSSPNASPVQLLVGAKHLED...KLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLLVGAKHLEDKLSVIAKNSSANASPVQLSVAKKYFSSLFPVP ...

  1. Protein (Viridiplantae): 102428 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available s domestica MGEEREDPQQLKRVAAAAYDYENDPRWADYWSNILIPTHMSSRSDVIDHFKRKFYQRYIDPELMVDAXSSGSSSQPKRPSXSS...ALQVYFQSIITTKDFIYLIYCITFVTSHLCLKFALIPILCRALEHVAKFLRRNFSXSSLYRKYLEEPCVWVESNTTTLSILSSHAEVGVGFLLIISLFSWQRNIVQAFMYWQLLKLMYHAPATADYHLSVWTKIGRTVHPLIHRYARFLETPLSAVQRWWLR

  2. Protein (Viridiplantae): 251668 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available estica MCYCKGIRDKGGDSKFRKSAXDEEXMVNLYFNRIGWXSSLPTNEKESFVKNVLQKKKMAMDEFLMSEKLTLXPG...VEEFIDDAYKEGIHVVLLTTYSKSGDQIGRSIVEKLGKERISKLKIVGYKEVDLSLYTXLVNDXXLXSSXDKQLAKEAIKVVFAEKQRIAXEVASMLQLSVDIDTSPP...GSFGVQDKSHILEGGKGIYTTTFTSSLLTGRGMMTMXDIGILKHFSSXYVEQRKLDAAFTVAKHIPILEDESSVLGSLLLKLXSSNLIWGASITXLPVMS

  3. Protein (Viridiplantae): 319058 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WCRAMEISLGAKNKIGFINGKVNMPSETKQPDAYAAWQRCNNMLLAWIINSIESDXSBSILYLKTAYEVWEDLXEXFSQSNAPRIFQLQREIASLTQGQQSVAVYYTKLKXLWDELASYXSS...TIXTCGAQHETNRLMQFLMGLNESYSAIRGQILLMNPLPSYRQXYSXIIQEEKQRELGTGSRSLTEPAAMAVRHQQXSSKKQHXQSQTSXNSRP...XLHCSYCDAKYHTVETCWQKNGYXPDHPXHNPNXTXNSKQNGGGSGFSXXSSSAHHVASTPTIKXLQXXVPNLSEKQXADI...FSALTSKNDKSQAANEAPQAHAAJTSPPPSGPDFEGQKAYKLYDLETHKIFTNRDVIFLEDTFPFDPSXTXAPSPPLSDLPHSTPLPIPLDPITLDHSTXTPLDIVXHTSTXLDPPLXPSPPPXSS...SHPPTFHPLTDPPTDPTPDLPJSTQPTXFSTXHKEPNVXLRDYXXSQVMLPPLQSSSXSSXGSTKGTRYPICXXISYHRYSPLHLSXVAH

  4. Protein (Cyanobacteria): 427712179 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LLAGNQRFVQNKSLHPHQDVRQLAVVTETQTPFAAILSCADARVIPEIIFDQGIGDLFVVRVAGNIAITEEIASEEYAVTILKTPLIVVLGHERCGAVTATLSGKNLPGVMSSLTTAIQPAIALAQTEPGDLLTNAIKANVRLQVQRLKNSPVLAEAIRAEALNIVGAYYELASGAVRFLG

  5. Protein (Cyanobacteria): 353150 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available _03407 Synechococcus sp. CB0101 MAACAAPGLVLALPAVAQPVQPCASQQLGLTVDGTGFLLRHQACAPAEQIEPERPAVRRPLLSSPLLKSLLQAHRELGSQVQPRATTFRSEDANIACMAISPGCFTAAEWASCESNPGVAFAQARSCADARQVLAARNASSSGWR ...

  6. Protein (Cyanobacteria): 661258316 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :556 ... 7-carboxy-7-deazaguanine synthase, partial Prochlorococcus sp. scB241_527E14 RSGVNSISGSYDWITLSPKRHSPPKNYFLKNCNEMKIIINEIEDIEFAIQIKKETLKQYQLSKSEDGL ... WP_029953398.1 NZ_JFKU01000143 1117:6377 ... 1212:1253 ... 1217:2123 1218:2123 1471444

  7. Protein (Cyanobacteria): 493968234 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 1:1983 ... 7-cyano-7-deazaguanine reductase Cyanobium sp. PCC 7001 MTASHPPASSQGAPAAAASQAEPDGATRTPLYGERAIAEASL... WP_006911498.1 NZ_DS990557 1117:4682 ... 1118:6723 1301283:22859 ... 167375:1134 18028

  8. Protein (Cyanobacteria): 517207156 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 27:244 ... 7-cyano-7-deazaguanine reductase filamentous cyanobacterium ESFC-1 MNSMSSETEVAQTPEVKYGERAIADCELITF... WP_018395974.1 NZ_KB904821 1117:4682 ... 1150:39727 1301283:59529 44887:1731 ... 11284

  9. Protein (Viridiplantae): 794323 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SGAALVAPFISYWWPSYPENLLREAFLMLPHSDQWTFRVSHYAPWLFYWWMTQKWFPSLTLTNLLSPDDIEIVKSLSELQNTGQERITQQGEYESLHRDIMSAFGKWEFGPTDITNPFPDNNGSVHIWQGFEDRIIPYTLNRYISHKLPWIRYHELPHAGHLFLFKKNECESIIRALVLT

  10. Protein (Viridiplantae): 794319 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SGAALVAPFISYWWPSYPENLLREAFLMLPHSDQWTFRVSHYAPWLFYWWMTQKWFPSLTLTNLLSPDDIEIVKSLSELQNTGQERITQQGEYESLHRDIMSAFGKWEFGPTDITNPFPDNNGSVHIWQGFEDRIIPYTLNRYISHKLPWIRYHELPHAGHLFLFKKNECESIIRALVLT

  11. Protein (Viridiplantae): 794311 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LSGAALVAPFISYWWPSYPENLLREAFLMLPHSDQWTFRVSHYAPWLFYWWMTQKWFPSLTLTNLLSPDDIEIVKSLSELQNTGQERITQQGEYESLHRDIMSAFGKWEFGPTDITNPFPDNNGSVHIWQGFEDRIIPYTLNRYISHKLPWIRYHELPHAGHLFLFKKNECESIIRALVLT

  12. Protein (Viridiplantae): 879494 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available NQEETLLQLANKCLRISPSSEEDENECESSTASTIIHEGGNIIEKRKSDLFDLDAVVDKLYACQYYQCPQSLTGMGFLNKN...LSSLLSALMQHCIPPQRRFPLERGLAPPWWPRGAENWWGEQGFLAHEHGPPPYKKPHDLKKAWKVSLLAAIIKHMSPNLDKLRRLVTQSKTLQDKMTARDTATWSKVM

  13. Protein (Viridiplantae): 794317 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SGAALVAPFISYWWPSYPENLLREAFLMLPHSDQWTFRVSHYAPWLFYWWMTQKWFPSLTLTNLLSPDDIEIVKSLSELQNTGQERITQQGEYESLHRDIMSAFGKWEFGPTDITNPFPDNNGSVHIWQGFEDRIIPYTLNRYISHKLPWIRYHELPHAGHLFLFKKNECESIIRALVLT

  14. Protein (Viridiplantae): 794315 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LSGAALVAPFISYWWPSYPENLLREAFLMLPHSDQWTFRVSHYAPWLFYWWMTQKWFPSLTLTNLLSPDDIEIVKSLSELQNTGQERITQQGEYESLHRDIMSAFGKWEFGPTDITNPFPDNNGSVHIWQGFEDRIIPYTLNRYISHKLPWIRYHELPHAGHLFLFKKNECESIIRALVLT

  15. Protein (Viridiplantae): 794313 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LSGAALVAPFISYWWPSYPENLLREAFLMLPHSDQWTFRVSHYAPWLFYWWMTQKWFPSLTLTNLLSPDDIEIVKSLSELQNTGQERITQQGEYESLHRDIMSAFGKWEFGPTDITNPFPDNNGSVHIWQGFEDRIIPYTLNRYISHKLPWIRYHELPHAGHLFLFKKNECESIIRALVLT

  16. Protein (Viridiplantae): 794321 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SGAALVAPFISYWWPSYPENLLREAFLMLPHSDQWTFRVSHYAPWLFYWWMTQKWFPSLTLTNLLSPDDIEIVKSLSELQNTGQERITQQGEYESLHRDIMSAFGKWEFGPTDITNPFPDNNGSVHIWQGFEDRIIPYTLNRYISHKLPWIRYHELPHAGHLFLFKKNECESIIRALVLT

  17. Protein (Viridiplantae): 694561 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ri f. nagariensis RAWARTYVSVSPSAASPSAASPSAASPSAASPSAASSSAASPSASRRRPPRRRPPRRPRLVVRVSSSASRRPVSPSASRRRGLPVGVSPSASRRQRLAVGMSYVSVSPSAASPSA...ASPSAASPSAASPSAASSSAASPSASRRRPPRRRPPRRPRLVVRVSSSASRRPVSPSASRRRGLPVGVSPSA...SRRQRLAVGMSPSASRRRPPHRPECRVDWLPGLGAYESSGLPAPARRGRPYFYNARLRWVDGWVGDVGVGVVRLGHQPVRPSGTERALLMMGPAE

  18. Protein (Viridiplantae): 792252 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ariensis MYSVKYSASSAFRSPEPSLLGLPDTSVPSAFSLHEASEPEVLGQSGTTVPSAFAQPEPSASSLQEPSAPSAFSPPEASAPSAISPQEASVSSAFSPQEP...STFSLQAPAAFSPQEPAAFSPQEPAAFSPQAPAAFTPPEPSAFSPPEPSAFTPPEPSAFTPPEPSAFTPPEPSAFTPPEPSASSPPSELSAFSPQEPSA...FTPPEPSAFTPPEPSAFSPPEPSASSPQSKPSAFSPQEPSELSAFSPQEPSASSPRLSHRPSPRKSHRPSARLSHRPPACKRHRAIGLQPARAIGAIGLQPARAIGASAIARGAIGLQPARAIGLQPA

  19. Protein (Viridiplantae): 145355221 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 436017:4609 distinct from photosynthetic electron transfer catalyst, CYC6, partial Ostreococcus lucimarinus CCE9901 RDLERNGVATKEDISNLIERGKGKMPGYGESCAPKGACTFGARLDAEEIDALATYVLDRAAVDW ...

  20. Protein (Viridiplantae): 949655 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PASRCCKEVSDFVAANSDPMIPAQRKSRRSCRFWKWLCGPCLSLVSFCCCCQSKCSCHLKKPKCCSCTSCSCIGSKCCDGSCCSNICCCPRPSCPSCPSCPSCSCFRDCCSCPDLSCCIPTCFRSCSCARPSCVSKKKKSSCCSCTCKIRWSSCCFKCPKVRLSSCCFCNCKNPCSNPCCLAF

  1. Protein (Viridiplantae): 949654 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available EGVQPASRCCKEVSDFVVANSDPLIPAQRKSRRSCRFWKWLCGPCLSLVSFCCCCQSKCSCHLRKPKCCNCTSCSCIGSKCCDGSCCSNICCCPRPSCPSCSCFRGCCCSCPDMSCCIPSCFRNCSCTRPSCLNKKKSSCCSCNCKIRWSSCFRCPKVRLCSCCFCNCKNLCSNPCCLAF

  2. Protein (Viridiplantae): 389551 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available nel, putative Ricinus communis MENDPLLPYHSPRKRTPPQLPPILCPLPEDDEVSLPLSISPSELKERLIFGPSPSPNDSTPVFEALTHSLNSPRP...SCSNQEFNFHDSPRHHQQPQSWLIDPNYSWTKTNLHRSKTAPAMAVINDSLNSSHIPKPQFGSQSIVRQAFVLLILYLSFGVV

  3. Protein (Viridiplantae): 9622 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LLCAASAFLGLAIIMVVEHAYMLIAISNSPPSVLVIWEPDHSGPAKSLKWQAAFFFVATWVSFAVGEILLLIGLSVESGHLRKWSRPRPSCLVLREGVFSAAGVFALTTVLLAAGLYLTALRAQRISLHQETVRREIVEASILYASPPTSPQISTIPRENPIFRETHNIDHQPPAALSKHLNL

  4. Protein (Viridiplantae): 827548 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available QEIDEEKKLVKFKVIGGDILDYYKSFYITVHVETKGEDNLVTWILEYEKLNQDIPDPHTLMKFCLDVTKDIETHHLTGKLVSEINIKSDGDVFHEIFRYRPHHISSMS...PGYIQNVDIHEGEWGTVGSVIVWNFTHDGKEKVAKNVVEEIDEEKKLVKFKVTGGDILEDYNSFYLTVHVETKGEDNIVTWILEYEKRNCNVPDPHTLMELCLNITKDIETHHLN

  5. Protein (Cyanobacteria): 218050 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PEKFFEFSATIKQSNKKETKVVGKGTRSEHYTVTEYEKYDYYEQQSCFQPPKKKVGSKPVKKTKTRNIQYDITKDIQYKELYLPSPEKMGEQWASGIEKGKDKLWDILRNWILEYLDNSYVLFQESVKDIAHLADRALEKQLHIIEKNFDQEREFWQNFEFTKDQVNSIFEELQKSLD ...

  6. Protein (Viridiplantae): 827547 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available LLILDYYKSFYITVHVETKGEDNLVTWILEYEKLNQDIPDPHTLMKFCLDVTKDIETHHLTGKLVSEINIKSDGDVFHEIFRYRPHHISSMSPGYIQNVDIHEGEWGT...VGSVIVWNFTHDGKEKVAKNVIEEIDEEKKLVKFKVTGGDILEDYNSFYVTVHVDTKGEDNIVTWILEYEKKNCNVPDPHTLMELCLNITKDIETHHLN

  7. Protein (Viridiplantae): 110514 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available QTNIDVSAFAHLPEGPVRSSAIVRTMRAAEIDFRKPMPHGILGIPCYVQFTSPIRRYLDLLAHYQVKAFLKGDSPPYSHGQLEGMAATVNINTKLARRLSSVSLRYWILEYLRRQPKENRYRALILRFIKDRNALLLLVEVGIQASAWVSLGVQIGDEVQVRVEDAHPRDDVLSLKEIIQ

  8. Protein (Cyanobacteria): 449844 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available otein MAE_33660 Microcystis aeruginosa NIES-843 MAAKAITILRNQGSRCSCLRVSQPSQQKNNVKATATAPATAPAPARATAPAPAPAPAPARATAPAPARATATAPATAPATATA...TAPATATATARATARATAPATAPATARATAPATATAPAPATAPATATAPAPAPATAPAPAPATARATATATAPAKIFLRQVTAQKQMRRIKIDQRITWFCVLDESKIKPTR ...

  9. Protein (Cyanobacteria): 652401444 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026797240.1 ... 1117:7814 ... 1150:52263 1301283:73459 ... 54304:2105 54307:820 ... rRN...LSQDTPRCEWVSPEVLEAMATTVHPDGVIALAPRIPSKPQTLEGLGIALETLQDPGNLGTIIRTAAATGVEGLWLSADSVDLDHPKVLRASAGAWFGLNKTVSPNLAR

  10. Protein (Cyanobacteria): 652402000 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available agellar biosynthesis anti-sigma factor FlgM Planktothrix prolifica MDFNFFLQSFLNGLSIGSVYAIFALGYTLVFSILGVINFAH...AINFGTATKPIMIRSVQVIIFTVCMVIVALLTYLVNKTKIGKALQAVAEDEITASLLGINPEQFIILTFFVSGFLAGLAGT

  11. Protein (Cyanobacteria): 652996516 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027248983.1 ... 1117:6845 ... 1150:53031 1301283:74313 ... 54304:678 1160:388 ... modification methylase Plankt...LSEKPDDRGYFPNLKTLRNYVEKTGESIDKFRFDVQVGERATERSKAKIYPEEYHLQELEDRLLYEESAFAADIRGKDRPVDRKLNGNGNKTNNSPQQIAEYIQPELWS

  12. Protein (Cyanobacteria): 653002935 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027255124.1 ... 1117:6845 ... 1150:53031 1301283:74313 ... 54304:678 1160:388 ... modification methylase Plankt...LSGKPDDRGYFPNLKTLRNYVEKTGESIDKFRFDVQVGERATERSKAKIYPEEYHLQELEDRLLYEESAFAADIRGKDRPVDRKLNGNGNKTNNSPQQIAEYIQPELWS

  13. Protein (Cyanobacteria): 652997295 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027249761.1 ... 1117:7024 ... 1150:51478 1301283:72586 ... 54304:14 1160:19 ... alpha/beta hydrolase Plankt...othrix agardhii MTVATNPNKTVISVNGVDHYCEWVTTANSTPGSKPVMVFIHGWGGSGRYWESTAQALSQEFDCLIYDLRGFG

  14. Protein (Cyanobacteria): 652390766 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available gellar biosynthesis anti-sigma factor FlgM Planktothrix rubescens MDFNFFLQSFLNGLSIGSVYAIFALGYTLVFSILGVINFAHG...INFGTATKPIMIRSVQVIIFTVCMVIVALLTYLVNKTKIGKALQAVAEDEITASLLGINPEQFIILTFFVSGFLAGLAGTL

  15. Protein (Cyanobacteria): 653002282 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available family transcriptional regulator Planktothrix agardhii MALYTTVSFKSELNDKGWRLTPQRETILQVFQNLPKGNHLSAEDLYTLLKSRG...EAISLSTIYRTLKLMARMGILRELELAEGHKHYEINQPYPHHHHHLVCVQCNKTLEFKNDSISKTSMKQAEKSGFHLLDCQLTIHTICHEALRMGWPSLISTNWSCSKVIADGLSEIDEIECQ

  16. Protein (Cyanobacteria): 652996689 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027249156.1 ... 1117:7027 ... 1150:51287 1301283:72374 ... 54304:1227 1160:523 ... carbonate dehydratase Plankt...othrix agardhii MNKTQQNLTISRRNLLKFGAGVAGTAVLTVGLGTKVSLFKAQPAVAQNNITPEEALKQLLEGNQRFIE

  17. Protein (Cyanobacteria): 653003198 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available phosphoribosyl)-5-amino-4-imidazole-carboxylate carboxylase Planktothrix agardhii MNPEALQQLLESVASGQITPTDALDK...IKYFDFEPVGDFARIDHHRKLRTGFPEVIWGLNKTPEQIIKIIEVMRQRNPVVMATRIEPHVYQQLQAQIPDLRYYEIAKICAIHPDEIPRSNSTGIITILTAGTADL

  18. Protein (Cyanobacteria): 652391838 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available family transcriptional regulator Planktothrix rubescens MLTQDQPLTETVFLAKLNEIIESNHLLKHPFYQMWTEGKLTLTMLQEYAQE...YYLHVHNFPTYVSATHAACDDINIRKMLLENLIEEERGSAHHPELWLRFAEGLGVERSAVLDRQRLNKTQESVQILKKLSRSEEAEKGLAALYAYESQFPEVSTTKISGLEEFYGINEESALSFFKVHEKADEIHSQMTRKALLQLCQTTEQQRAALDSVQTAVDAFNLLLDGVYEEYCQN

  19. Protein (Cyanobacteria): 652401104 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796900.1 ... 1117:3511 ... 1150:51681 1301283:72812 ... 54304:1582 54307:631 ... exosortase Plankt...othrix prolifica MATSLKKLLIGTSVAVGMSAVGITPALAGSLTNATIGGTASTDYLIYGKEGNKTVVIPNSVANLQSVLDGNAVSPTG

  20. Protein (Cyanobacteria): 652997615 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available family transcriptional regulator Planktothrix agardhii MLTQDQPLTETVFLAKLNEIIESNHLLKHPFYQMWTEGKLTLTMLQEYAQEY...YLHVHNFPTYVSATHAACDDINIRKMLLENLIEEERGSAHHPELWLRFAEGLGVERSAVLDRQRLNKTQESVQILKKLSRSEEAEKGLAALYAYESQFPEVSTTKISGLEEFYGINEESALSFFKVHEKADEIHSQMTRKALLQLCQTTEQQQAALDSVQTAVDAFNLLLDGVYEEYCQN

  1. Protein (Cyanobacteria): 652997307 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available family transcriptional regulator Planktothrix agardhii MALYTTVSFKSELNDKGWRLTPQRETILQVFQNLPKGNHLSAEDLYTLLKSRG...EVISLSTIYRTLKLMARMGILRELELAEGHKHYEINQPYPHHHHHLVCVQCNKTLEFKNDSISKTSMKQAEKSGFHLLDCQLTIHTICHEALRMGWPSLISTNWSCSKVIADGPSEIDEIECR

  2. Protein (Cyanobacteria): 652390540 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026786388.1 ... 1117:7027 ... 1150:51287 1301283:72374 ... 54304:1227 59512:475 ... carbonate dehydratase Plankt...othrix rubescens MNKTQQNLTISRRNLLKFGAGVAGTAVLTVGLGTKVSLFKAQPAVAQNGITPDEALNQLLEGNKRF

  3. Protein (Cyanobacteria): 652400452 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796248.1 ... 1117:5667 ... 1150:53378 1301283:74697 ... 54304:990 54307:186 ... alcohol dehydrogenase Plankt...RLRNLRISLELMLTPMLQARIHDQLDQTKILQQCARLIDEGKLKILVNKTFPLASASEAHQLLEAGGMKGKLVLTIE

  4. Protein (Cyanobacteria): 652996914 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available mine monophosphate kinase Planktothrix agardhii MLIKDIGEQGLLEIVKGFCPSEIVGDDAAILAVSGDESLVITTDMLVDEVHFSDRTTSPF...DVGWRGAAVNLSDLAAMGAFPIGITVALGITDNKTVSWVEQLYQGLTTCLNQYQTPIVGGDICRSAVTCISITAFGRVNPKLAIRRSVARPGDKIIVTGDHGDSRAGL

  5. Protein (Cyanobacteria): 652393259 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available RLSQDTPRCEWVSPEVLEAMATTVHPDGVIALAPRIPSKPQTLEGLGIALETLQDPGNLGTIIRTAAATGVEGLWLSADSVDLDHPKVLRASAGAWFGLNKTVSPNLA... WP_026789106.1 ... 1117:7814 ... 1150:52263 1301283:73459 ... 54304:2105 59512:1069 ... rR...NA methyltransferase Planktothrix rubescens MLTSLQNPLVKQIRKLHQAKGRKEQQLFLLEGTHLVEAACEVGYPLTTVCYTSSWQGRHQPLLE

  6. Protein (Cyanobacteria): 652391996 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026787843.1 ... 1117:7208 ... 1150:51556 1301283:72673 ... 54304:147 59512:85 ... histidine kinase Plankt...ALNLSSVVIILTANDTVIDCRNAFKFGAWDYISKNMRGNVFDAVHDSIEEAITYFNRWGNVHNEQWITENLESLEKDYWGKYIAVINKTVIETADKEDSLNALLEQRK

  7. Protein (Cyanobacteria): 652402161 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026797957.1 ... 1117:53289 ... 1150:51871 1301283:73023 ... 54304:1753 54307:1193 ... h...QILKDASKVSGDQLKYGQQLVQDFGNNLQAIDYADISNKTNSFLANINIPVNQLVLDSISFAGEQVLGKNKQLRKDMKVFLQSTPETMCQSYLDKVQGGDSSSWTAIE

  8. Protein (Cyanobacteria): 652392000 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026787847.1 ... 1117:3748 ... 1150:52103 1301283:73282 ... 54304:1962 59512:816 ... NUDIX hydrolase Plankt...othrix rubescens MNKTLILEDFKVGVDNVIFSVDTEQNRLLVLLVKRKEEPFINTWSLPGTLVQKGESLENAAYRILAEKILVE

  9. Protein (Cyanobacteria): 653003121 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027255308.1 ... 1117:42 ... 1150:53120 1301283:74412 ... 54304:758 1160:1574 ... molecu...GLLLQVLPKAATDEELITKLESRVASLSGFTPLLRANKTLPDILQELLGDIGLVILPESQLVRFDCSCSFERVLGALKMFGTEELQDMIEKDNGAEAKCEFCGEMYQANSDHLHQLIEDLRIKPEPEEVRKNSILF

  10. Protein (Cyanobacteria): 652400975 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796771.1 ... 1117:6176 ... 1150:52159 1301283:73343 ... 54304:2011 54307:550 ... cytochrome C6 Plankt...othrix prolifica MKKLLSVLILSFLLLTVLLPKSALAEGVLSGSTIFSNSCAACHINGNNVIVANKTLKKKALTKYLKGYEENPLAAIINQVTNGKNAMPNFKSRLTAREITTVAAYVAEQAEKAWSPLQ

  11. Protein (Cyanobacteria): 653003010 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ltransferase type 11 Planktothrix agardhii MAPVSYWDAQLYDSHHSFVSNLAVDLLELLDPRIGEHILDLGCGTGNLSYKITNTGAEVIGIDKASTMIKKANKT...YPGLNFLVIDGANLVWKEQFDAVFSNAVLHWIKQPEKVISGVCQALKPGGRFVAEFGGKGNIDTIITAIDQALDAAGYPKNKTLNPWYFPSISEYGML... WP_027255198.1 ... 1117:7185 ... 1150:53327 1301283:74641 ... 54304:944 1160:203 ... methy

  12. Protein (Cyanobacteria): 652402338 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 5-phosphoribosyl)-5-amino-4-imidazole-carboxylate carboxylase Planktothrix prolifica MNPEALQQLLESVASGQITPTDA...LDKIKYFDFEPVGDFARIDHHRKLRTGFPEVIWGLNKTPEQIIKIIEVMRQRNPVVMATRIEPHVYQQLQAQIPDLRYYEIAKICAIHPDEIPRSNSTGIITILTAGT

  13. Protein (Cyanobacteria): 652400677 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_026796473.1 ... 1117:3549 ... 1150:52595 1301283:73827 ... 54304:285 54307:343 ... haloacid dehalogenase Plankt...LRDVVQKFGERLGFSPTPTELESLANSIQDWQPFPDTIAALKALKQKYKLVIISNIDDNLFAQTNQHLQIEFDHIITAQQAQSYKPSAHNFQFALNKTGLSSDKLLHVAQSIFHDIATANSLGLTTVWVNRRQGQPGGGATKAAIAQPDLEVPDLKSLVDLIFEV

  14. Protein (Cyanobacteria): 652996447 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available phosphoribosyl)-5-amino-4-imidazole-carboxylate carboxylase Planktothrix agardhii MNPEALQQLLESVASGQITPTDALDK...IKYFDFEPVGDFARIDHHRKLRTGFPEVIWGLNKTPEQIIKIIEVMRQRNPVVMATRIEPHVYQQLQAQIPDLRYYEIAKICAIHPDEIPRSNSTGIITILTAGTADL

  15. Protein (Cyanobacteria): 653002292 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available WP_027254483.1 ... 1117:7024 ... 1150:51478 1301283:72586 ... 54304:14 1160:19 ... alpha/beta hydrolase Plankt...othrix agardhii MTVATNPNKTVISVNGVDHYCEWVTTANSTPGTKPVMVFIHGWGGSGRYWESTAQALSQEFDCLIYDLRGFG

  16. Protein (Viridiplantae): 761564 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :27 3977:222 ... 235629:222 ... 235880:222 ... 3987:222 ... 3988:222 ... triptychon and cpc, putative Ricinus communis MADFDHSSSNDISVNSTEDISQDSKLDFSEDEETLITRMFNLVGERWSLIAGRIPGRTAEEIEKYWTSRYSTSQ

  17. Protein (Viridiplantae): 761566 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :27 3977:222 ... 235629:222 ... 235880:222 ... 3987:222 ... 3988:222 ... triptychon and cpc, putative Ricinus communis MDRRRRKQAKITIVESEEVSSIEWEYINMNQQEEDLIYRMYRLVGERWDLIAGRIPGRKAEEIERFWIMRHRKVF

  18. Protein (Viridiplantae): 761565 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :27 3977:222 ... 235629:222 ... 235880:222 ... 3987:222 ... 3988:222 ... triptychon and cpc, putative Ricinus communis MADSEHSTSDETYMDSQEERNQESKIEFSEDEEALVIRMYNLVGERWSLIAGRIPGRTAEDIEKYWNSRYSTSE

  19. Protein (Viridiplantae): 761563 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :27 3977:222 ... 235629:222 ... 235880:222 ... 3987:222 ... 3988:222 ... triptychon and cpc, putative Ricinus communis MGDLDHTSNDTDQDTQDVKGDQDYSRPDFSEDEENLIARMFSLVGERWSLIAGRIPGRTAEEIEKYWATKDSSSNEG

  20. Protein (Viridiplantae): 754828 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PYGVSTTLTLPPYVSLPPLSVPGNAPPFCINPPNTPPSSSYPGLSPPPGPITLPNPPDSSSNPNSNPNPPESSSNPNPPDSSSNPNSNPNPPVTVPNPPESSSNPNPPDSSSNPNSNPNPPESSSNP...NPPVTVPNPPESSSNPNPPESSSNPNPPITIPYPPESSSPNPPEIVPSPPESGYTPGPVLGPPYSEPGPSTPTGSIPSPSSGFLPPIVY

  1. Protein (Viridiplantae): 167997133 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available omitrella patens subsp. patens PIPSCPTHSKLSNPFQVVQPIPSCPTHSGSSNPPQLVPTRPTHSGSSNPPQLVPARPTHSGSSNPSQLVPARPTHSGSSNP...PQLVLARPTHYSSSNTPHIVQATAARPIHRSSFNPPKLLQHTPARPTHRSSSNPPQLDTGRPSLPPSNGVEDVRRHSLAR ...

  2. Protein (Viridiplantae): 357456611 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available PQPWSRYVSQRRHLQRGFPRMCNIARATACPTLQCLVCLCGTVSTNRQQSCITMASSSPRTACTYQFAYVIGRVTSSNPRT...ARTCLCVHDFGQVPSSIQEQLVPINMFLFGQVASSSPRTACTYQFAYVIGRVTSSNPRTARTCLCVYDFGRVPSSIQEQLIPINMFLFGQVTSSHPRATCTRLLFNVISRVTSSNPRTARTCLCVYDFGQVASSSPRTACTCLSVSVRSSV ...

  3. Protein (Viridiplantae): 754933 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SLLEKMLTQLNLAQPLDYSSSSNTQPYGVSTTLTLPPYVSLPPLSVPGNAPPFCVNPPLTPPSTSYPGLSPPPGPITLPNPPDSSSNPNSNPNPPESSSNPNPPESSSNPNSNPKPPESSSNPNPPDSSSNP...NPPESSSNPNPPVTGPNPPESSSNPNPPESSSNPNPPITIPYPPESSSPNPPETVPSPPESGYTPGPILGPPYSEPGPSTPTGS

  4. Protein (Viridiplantae): 754724 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available MIKAVKHTSLLEKMMTHLNLAQPLDYSSSSITQPYGVSTTLTLPPYVSLPPLSVPGNAPPFCVNPPNTPPSSSSPPTTLPNPPDSSSNPNSIPNPPESSSNP...NPPESSSNPNPPDSSSNPNPPVTVPNPPESSSNPDPPVTVPNPPESSIPNPPESGYTPGPPGSVSGPPYSEPSPSTPTDTPTPSGG

  5. Protein (Viridiplantae): 754829 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SSSNTQPYGVSTTLTLPPYVSLPPLSVPGNAPPFCINPPNTPPSSSYPGLSPPPGPITLPNPPDSSSNPNSNPNPPESSSNPNPPDSSSNPNSNPNPPVTVPNPPESSSNPNPPDSSSNPNSNPNPPESSSNP...NPPVTVPNPPESSSNPNPPESSSNPNPPITIPYPPESSSPNPPEIVPSPPESGYTPGPVLGPPYSEPGPSTPTGSIPSPSSGF

  6. Protein (Viridiplantae): 870479 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 2453 3803:12453 ... 3814:12453 ... 163742:18926 ... 3877:18926 ... 3880:18926 ... Shoot gravitropism Medicago truncatula MAEGSNTPVLLPDLLKNTPSNIARLKDVVEQSKARQKYLAHTNSSSDGGDVRWYFCKTSLAHNVGVFSVKQS

  7. Protein (Cyanobacteria): 495593772 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available VEPPPARPAPVAATKAPPKRLEPYNAFTALRSPNPPLRNPITASSASRANPTPASTAATTAMTATTTEATVVPPHATTPVDWPEGSLVNTVDVRQRRSLSSFL ...GMWILLMAIALVAYNRLVYTGSQPAPSSAPAPAQGRTATSGAETSPNLADSPELGTENSTINTSVAEDPGLSGWSIAALVVLCAGGCFVISQQVQAPPRARSKPRRRP

  8. Protein (Cyanobacteria): 518337526 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available SVGLAVPLLSILLIGLMARNIVGRWLLDFGEQFLQAIPLAGSVYKTLKQILETLLGDSKTKFRRVVIVEYPRKGIWTMGFVTGKVSPPLQSHLVEEMISVFIPTTPNPTSGWYAIVPQEEAIDIDISIEDAFKVLISGGIVSPETPNVKPPLSNPKPRKKISIENAFTAEKSGLIPIEEES

  9. Protein (Cyanobacteria): 117099 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available e Anabaena variabilis ATCC 29413 MTNAFTAAERDTIIQAFADKRPHYLFFVQFLFLTGCRTGEAIGLRWQHVSLDCTQITFCESYDSQLDIRKTTKTGKPRKFPCNQKLSSLLLSIRPANTSPDSLVFTSPNGKPIDNGKFTNQVWRGCRSGQKVYRGILATLVDEGKVR ...

  10. Protein (Viridiplantae): 699330 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 25:5882 3803:5882 ... 3814:5882 ... 163742:4406 ... 3877:4406 ... 3880:4406 ... Beta-glucosidase Medicago truncatula MHIYNYNALLSGAIIPALM...HRIPSELRSQACLGESSTRMGDLLGSAIIPALMHRIPSELRSQACLGESSTRMSDLLGSPCVAPLFAKISCAIIPALM...HRIPSELRSQACLGESSTRMGDLLGSRAIIPALMHRIPSELRSQACLGESSTRMSDLLGSAIIPALMHRIPSELRSQACLGESSTRMSDLLGSPCVAPLFAKISCAIIPALM

  11. Protein (Viridiplantae): 699329 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available o truncatula MDIYNYNALLSGAIIPALMDWIPSELRSQVCLGESSTRMGDLLGSAIIPALMHRIPSELRSQACLGESSTRMGDLLGSRCAIIPALM...HRIPSELCSQACLGESSTRMGDLLGSRAIIPALMHRIPSELRSQACLGESSTRMGDLLGSRAIIPALIHRIPSELRSQACLGESSTRMGDLLGSRAIIPALM...HRIPSELRSQACLGESSTRMSDLLGSPCVARAIIPALMHRIPSELRSQACLGESSTRMGDLLGSRCAIIPALMHRIPSELRSQACLGESSTRMGDLLGSRAIIPALM...HRIPSELRSQACLGESSTRMGDLLGSAIIPALMHRIPSELRSQACLGESSTRMSDLLGSPCVAPLFAKISCAIIPALM...HRIPSELRSQACLGESSTRMSDLLGSPCAIIPALMHRIPSELRSQACLGESSTRMGDLLGSRAIIPALMHRIPSELCSQACLGESSTRMGDLLGSRCAIIPALM

  12. Protein (Viridiplantae): 17565 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available VPPFSVGFWIVLGSAAGGGEGSCALLAQDMSGAIIPALMHRIPSELRRSAAGGGEGSCALLAQDMSGAIIPALMHRIPSEL...RSSAVGGGEGSCALLAQDMSGSAAGGGEGSCALLAQDMSGAIIPALMHRIPSELRSSAAGGGEGSCALLAQDMSGAIIPALMHRIPSELRSSAAGGGEGSCALLAQDMSGAIIPALM...HRIPSELRSSAAGGGEGSCALLAQDMSGAIIPALMHRIPSELRSSAAGGGEGSCALLAQDMSGSAAGGGEGSCALLAQGMSGAIIPALMHRIPSELRSS...GHVGCDHTSTNAPDPIRTPPLGGGGRGRVLCIVGVGHVGMGDLLGSPRVAPPFSVGFWIVFGLAAGGGEGSCALLAQDMSGAIIPALMHRIPSELRSSAAGGGEGSCALLAQDMSGAIIPALM...HRIPSELRSSAAGGGEGSCALLAQDMSGAIIPALMHRIPSELRSSAAGGGEGSCALLAQDMSGAIIPALM

  13. Protein (Viridiplantae): 408708 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ineum MESQAIQDELESLELEIKDVQGQISALIEHQDRLYERKSELKTLLKALAASGSPVASAGSSAIENWSEPFEWDSRADDVRFNIFGISKYRANQKEIINAV...MAGRDVLVIMAAGGGKSLCYQLPAILRGGTTLVVSPLLSLIQDQVMGLAALGISAYMLTSTSGKENEKFVYKALEKGEDDLKI

  14. Protein (Viridiplantae): 408709 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ineum MESQAIQDELESLELEIKDVQGQISALIEHQDRLYERKSELKTLLKALAASGSPVASAGSSAIENWSEPFEWDSRADDVRFNIFGISKYRANQKEIINAV...MAGRDVLVIMAAGGGKSLCYQLPAILRGGTTLVVSPLLSLIQDQVMGLAALGISAYMLTSTSGKENEKFVYKALEKGEDDLKI

  15. Protein (Cyanobacteria): 86604772 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_473535.1 NC_007775 1117:6436 ... 1118:902 1301283:25411 ... 1129:1600 321327:64 ... bacteriochlorophyll deliv...ery (BCD) family transporter Synechococcus sp. JA-3-3Ab MANIQRDPEVNGSAATALSSQPQPSAP

  16. Protein (Cyanobacteria): 31887 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available echococcus sp. WH 8102 MMPIPFLLLLAAWLGVGTVQGGAWCDDQQAGIGSYDPQRSEIALCTERIRSKGRSIDEVVRHELFHAVQHLFGRDGRSFLNDSQITVLVHRFMDDREVMAVISLYPSDEINSELEARLMSRLVPNEVIGGALLAGRLVQQAPQQGPIGSLRAYLLGD ...

  17. Protein (Cyanobacteria): 158688 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_397847.1 1117:3219 1212:425 1217:425 1218:425 1219:425 74546:294 dehydrogenase with different specificiti...es Prochlorococcus marinus str. MIT 9312 MNLDLKDKFIIIAGGLGGIGLETVKDLISEGAEISILTQNES

  18. Protein (Cyanobacteria): 174468 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available s with different specificities Prochlorococcus marinus str. MIT 9202 MINSTKNDKTIGITGASGALGKELTKLFRQKGYKVIGFS...ZP_05138363.1 1117:3468 1212:440 1217:440 1218:440 1219:440 93058:866 dehydrogenase

  19. Calculating orthologs in bacteria and Archaea: a divide and conquer approach.

    Directory of Open Access Journals (Sweden)

    Mihail R Halachev

    Full Text Available Among proteins, orthologs are defined as those that are derived by vertical descent from a single progenitor in the last common ancestor of their host organisms. Our goal is to compute a complete set of protein orthologs derived from all currently available complete bacterial and archaeal genomes. Traditional approaches typically rely on all-against-all BLAST searching which is prohibitively expensive in terms of hardware requirements or computational time (requiring an estimated 18 months or more on a typical server. Here, we present xBASE-Orth, a system for ongoing ortholog annotation, which applies a "divide and conquer" approach and adopts a pragmatic scheme that trades accuracy for speed. Starting at species level, xBASE-Orth carefully constructs and uses pan-genomes as proxies for the full collections of coding sequences at each level as it progressively climbs the taxonomic tree using the previously computed data. This leads to a significant decrease in the number of alignments that need to be performed, which translates into faster computation, making ortholog computation possible on a global scale. Using xBASE-Orth, we analyzed an NCBI collection of 1,288 bacterial and 94 archaeal complete genomes with more than 4 million coding sequences in 5 weeks and predicted more than 700 million ortholog pairs, clustered in 175,531 orthologous groups. We have also identified sets of highly conserved bacterial and archaeal orthologs and in so doing have highlighted anomalies in genome annotation and in the proposed composition of the minimal bacterial genome. In summary, our approach allows for scalable and efficient computation of the bacterial and archaeal ortholog annotations. In addition, due to its hierarchical nature, it is suitable for incorporating novel complete genomes and alternative genome annotations. The computed ortholog data and a continuously evolving set of applications based on it are integrated in the xBASE database, available

  20. Identifying single copy orthologs in Metazoa.

    Directory of Open Access Journals (Sweden)

    Christopher J Creevey

    2011-12-01

    Full Text Available The identification of single copy (1-to-1 orthologs in any group of organisms is important for functional classification and phylogenetic studies. The Metazoa are no exception, but only recently has there been a wide-enough distribution of taxa with sufficiently high quality sequenced genomes to gain confidence in the wide-spread single copy status of a gene.Here, we present a phylogenetic approach for identifying overlooked single copy orthologs from multigene families and apply it to the Metazoa. Using 18 sequenced metazoan genomes of high quality we identified a robust set of 1,126 orthologous groups that have been retained in single copy since the last common ancestor of Metazoa. We found that the use of the phylogenetic procedure increased the number of single copy orthologs found by over a third more than standard taxon-count approaches. The orthologs represented a wide range of functional categories, expression profiles and levels of divergence.To demonstrate the value of our set of single copy orthologs, we used them to assess the completeness of 24 currently published metazoan genomes and 62 EST datasets. We found that the annotated genes in published genomes vary in coverage from 79% (Ciona intestinalis to 99.8% (human with an average of 92%, suggesting a value for the underlying error rate in genome annotation, and a strategy for identifying single copy orthologs in larger datasets. In contrast, the vast majority of EST datasets with no corresponding genome sequence available are largely under-sampled and probably do not accurately represent the actual genomic complement of the organisms from which they are derived.

  1. Evolutionary aspects of variability in bHLH orthologous families: insights from the pearl oyster, Pinctada fucata.

    Science.gov (United States)

    Gyoja, Fuki; Satoh, Nori

    2013-10-01

    Basic helix-loop-helix (bHLH) transcription factors play significant roles in multiple biological processes in metazoan cells. In recent work, we showed that three orthologous HLH families, pearl, amber, and peridot, have apparently been lost in the Drosophila melanogaster, Caenorhabditis elegans, and Homo sapiens lineages. To further address the gain and loss of bHLH proteins during bilaterian evolution, we examined the genome of the pearl oyster, Pinctada fucata, which has recently been sequenced. We characterized the putative full set 65 bHLH genes and showed that genes previously categorized into the orthologous family PTFb, actually fall into two distinct orthologous families, 48-related-1 and 48-related-2. We also identified a novel orthologous family, clockwork orange. Based on these newly identified orthologous family members and on orphan bHLH factors, we propose that genes encoding bHLH factors in bilaterians are not as evolutionarily stable as previously thought.

  2. Testing the ortholog conjecture with comparative functional genomic data from mammals.

    Directory of Open Access Journals (Sweden)

    Nathan L Nehrt

    2011-06-01

    Full Text Available A common assumption in comparative genomics is that orthologous genes share greater functional similarity than do paralogous genes (the "ortholog conjecture". Many methods used to computationally predict protein function are based on this assumption, even though it is largely untested. Here we present the first large-scale test of the ortholog conjecture using comparative functional genomic data from human and mouse. We use the experimentally derived functions of more than 8,900 genes, as well as an independent microarray dataset, to directly assess our ability to predict function using both orthologs and paralogs. Both datasets show that paralogs are often a much better predictor of function than are orthologs, even at lower sequence identities. Among paralogs, those found within the same species are consistently more functionally similar than those found in a different species. We also find that paralogous pairs residing on the same chromosome are more functionally similar than those on different chromosomes, perhaps due to higher levels of interlocus gene conversion between these pairs. In addition to offering implications for the computational prediction of protein function, our results shed light on the relationship between sequence divergence and functional divergence. We conclude that the most important factor in the evolution of function is not amino acid sequence, but rather the cellular context in which proteins act.

  3. TaDIR1-2, a Wheat Ortholog of Lipid Transfer Protein AtDIR1 Contributes to Negative Regulation of Wheat Resistance againstPuccinia striiformisf. sp.tritici.

    Science.gov (United States)

    Ahmed, Soyed M; Liu, Peng; Xue, Qinghe; Ji, Changan; Qi, Tuo; Guo, Jia; Guo, Jun; Kang, Zhensheng

    2017-01-01

    Very few LTPs have been shown to act through plasma membrane receptors or to be involved in the hypersensitive response (HR). DIR1, a new type of plant LTP interacts with lipids in vitro , moves to distant tissues during systemic acquired resistance (SAR) and therefore is thought to be involved in long-distance signaling during SAR. However, the exact functions of DIR1 orthologs in cereal species under biotic and abiotic stresses have not been thoroughly defined. In this study, a novel wheat ortholog of the DIR1 gene, TaDIR1-2, was isolated from Suwon11, a Chinese cultivar of wheat and functionally characterized. Phylogenetic analysis indicated that TaDIR1-2 is clustered within the nsLTP-Type II group and shows a closer relationship with DIR1 orthologs from monocots than from eudicots. TaDIR1-2 was localized in the cytoplasm and the cell membrane of wheat mesophyll protoplast. Transcription of TaDIR1-2 was detected in wheat roots, stems and leaves. TaDIR1-2 transcript was significantly induced during the compatible interaction of wheat with the stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst). Treatments with salicylic acid (SA) and low temperature significantly up-regulated the expression of TaDIR1-2. Transient overexpression of TaDIR1-2 did not induce cell death or suppress Bax-induced cell death in tobacco leaves. Knocking down the expression of TaDIR1-2 through virus-induced gene silencing increased wheat resistance to Pst accompanied by HR, increased accumulation of H 2 O 2 and SA, increased expression of TaPR1, TaPR2, TaPAL, and TaNOX, and decreased expression of two reactive oxygen species (ROS) scavenging genes TaCAT and TaSOD. Our results suggest that TaDIR1-2 acts as a negative regulator in wheat resistance to Pst by modulating ROS and/or SA-induced signaling.

  4. Orthology prediction at scalable resolution by phylogenetic tree analysis

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2007-03-01

    Full Text Available Abstract Background Orthology is one of the cornerstones of gene function prediction. Dividing the phylogenetic relations between genes into either orthologs or paralogs is however an oversimplification. Already in two-species gene-phylogenies, the complicated, non-transitive nature of phylogenetic relations results in inparalogs and outparalogs. For situations with more than two species we lack semantics to specifically describe the phylogenetic relations, let alone to exploit them. Published procedures to extract orthologous groups from phylogenetic trees do not allow identification of orthology at various levels of resolution, nor do they document the relations between the orthologous groups. Results We introduce "levels of orthology" to describe the multi-level nature of gene relations. This is implemented in a program LOFT (Levels of Orthology From Trees that assigns hierarchical orthology numbers to genes based on a phylogenetic tree. To decide upon speciation and gene duplication events in a tree LOFT can be instructed either to perform classical species-tree reconciliation or to use the species overlap between partitions in the tree. The hierarchical orthology numbers assigned by LOFT effectively summarize the phylogenetic relations between genes. The resulting high-resolution orthologous groups are depicted in colour, facilitating visual inspection of (large trees. A benchmark for orthology prediction, that takes into account the varying levels of orthology between genes, shows that the phylogeny-based high-resolution orthology assignments made by LOFT are reliable. Conclusion The "levels of orthology" concept offers high resolution, reliable orthology, while preserving the relations between orthologous groups. A Windows as well as a preliminary Java version of LOFT is available from the LOFT website http://www.cmbi.ru.nl/LOFT.

  5. Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene

    OpenAIRE

    Solé, Alicia; Sánchez Fernández, M.ª Concepción; Vielba, Jesús; Valladares, Silvia; Abarca, Dolores; Díaz-Sala, Carmen

    2008-01-01

    We characterized a Pinus radiata D. Don putative ortholog to the Arabidopsis thaliana (L.) Heynh. SHORT-ROOT gene (AtSHR) and analyzed its expression in different organs during vegetative development and in response to exogenous auxin during adventitious rooting. The predicted protein sequence contained domains characteristic of the GRAS protein family and showed a strong similarity to the SHORT-ROOT (SHR) proteins. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and in...

  6. Vaccination against Bm86 Homologues in Rabbits Does Not Impair Ixodes ricinus Feeding or Oviposition

    NARCIS (Netherlands)

    Coumou, Jeroen; Wagemakers, Alex; Trentelman, Jos J.; Nijhof, Ard M.; Hovius, Joppe W.

    2014-01-01

    Human tick-borne diseases that are transmitted by Ixodes ricinus, such as Lyme borreliosis and tick borne encephalitis, are on the rise in Europe. Diminishing I. ricinus populations in nature can reduce tick exposure to humans, and one way to do so is by developing an anti-vector vaccine against

  7. Proteinortho: Detection of (Co-orthologs in large-scale analysis

    Directory of Open Access Journals (Sweden)

    Steiner Lydia

    2011-04-01

    Full Text Available Abstract Background Orthology analysis is an important part of data analysis in many areas of bioinformatics such as comparative genomics and molecular phylogenetics. The ever-increasing flood of sequence data, and hence the rapidly increasing number of genomes that can be compared simultaneously, calls for efficient software tools as brute-force approaches with quadratic memory requirements become infeasible in practise. The rapid pace at which new data become available, furthermore, makes it desirable to compute genome-wide orthology relations for a given dataset rather than relying on relations listed in databases. Results The program Proteinortho described here is a stand-alone tool that is geared towards large datasets and makes use of distributed computing techniques when run on multi-core hardware. It implements an extended version of the reciprocal best alignment heuristic. We apply Proteinortho to compute orthologous proteins in the complete set of all 717 eubacterial genomes available at NCBI at the beginning of 2009. We identified thirty proteins present in 99% of all bacterial proteomes. Conclusions Proteinortho significantly reduces the required amount of memory for orthology analysis compared to existing tools, allowing such computations to be performed on off-the-shelf hardware.

  8. MetaPhOrs: orthology and paralogy predictions from multiple phylogenetic evidence using a consistency-based confidence score.

    Science.gov (United States)

    Pryszcz, Leszek P; Huerta-Cepas, Jaime; Gabaldón, Toni

    2011-03-01

    Reliable prediction of orthology is central to comparative genomics. Approaches based on phylogenetic analyses closely resemble the original definition of orthology and paralogy and are known to be highly accurate. However, the large computational cost associated to these analyses is a limiting factor that often prevents its use at genomic scales. Recently, several projects have addressed the reconstruction of large collections of high-quality phylogenetic trees from which orthology and paralogy relationships can be inferred. This provides us with the opportunity to infer the evolutionary relationships of genes from multiple, independent, phylogenetic trees. Using such strategy, we combine phylogenetic information derived from different databases, to predict orthology and paralogy relationships for 4.1 million proteins in 829 fully sequenced genomes. We show that the number of independent sources from which a prediction is made, as well as the level of consistency across predictions, can be used as reliable confidence scores. A webserver has been developed to easily access these data (http://orthology.phylomedb.org), which provides users with a global repository of phylogeny-based orthology and paralogy predictions.

  9. ORCAN-a web-based meta-server for real-time detection and functional annotation of orthologs.

    Science.gov (United States)

    Zielezinski, Andrzej; Dziubek, Michal; Sliski, Jan; Karlowski, Wojciech M

    2017-04-15

    ORCAN (ORtholog sCANner) is a web-based meta-server for one-click evolutionary and functional annotation of protein sequences. The server combines information from the most popular orthology-prediction resources, including four tools and four online databases. Functional annotation utilizes five additional comparisons between the query and identified homologs, including: sequence similarity, protein domain architectures, functional motifs, Gene Ontology term assignments and a list of associated articles. Furthermore, the server uses a plurality-based rating system to evaluate the orthology relationships and to rank the reference proteins by their evolutionary and functional relevance to the query. Using a dataset of ∼1 million true yeast orthologs as a sample reference set, we show that combining multiple orthology-prediction tools in ORCAN increases the sensitivity and precision by 1-2 percent points. The service is available for free at http://www.combio.pl/orcan/ . wmk@amu.edu.pl. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. New Tools in Orthology Analysis: A Brief Review of Promising Perspectives

    Directory of Open Access Journals (Sweden)

    Bruno T. L. Nichio

    2017-10-01

    Full Text Available Nowadays defying homology relationships among sequences is essential for biological research. Within homology the analysis of orthologs sequences is of great importance for computational biology, annotation of genomes and for phylogenetic inference. Since 2007, with the increase in the number of new sequences being deposited in large biological databases, researchers have begun to analyse computerized methodologies and tools aimed at selecting the most promising ones in the prediction of orthologous groups. Literature in this field of research describes the problems that the majority of available tools show, such as those encountered in accuracy, time required for analysis (especially in light of the increasing volume of data being submitted, which require faster techniques and the automatization of the process without requiring manual intervention. Conducting our search through BMC, Google Scholar, NCBI PubMed, and Expasy, we examined more than 600 articles pursuing the most recent techniques and tools developed to solve most the problems still existing in orthology detection. We listed the main computational tools created and developed between 2011 and 2017, taking into consideration the differences in the type of orthology analysis, outlining the main features of each tool and pointing to the problems that each one tries to address. We also observed that several tools still use as their main algorithm the BLAST “all-against-all” methodology, which entails some limitations, such as limited number of queries, computational cost, and high processing time to complete the analysis. However, new promising tools are being developed, like OrthoVenn (which uses the Venn diagram to show the relationship of ortholog groups generated by its algorithm; or proteinOrtho (which improves the accuracy of ortholog groups; or ReMark (tackling the integration of the pipeline to turn the entry process automatic; or OrthAgogue (using algorithms developed to

  11. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-11-01

    Full Text Available Abstract Background An evolutionary classification of genes from sequenced genomes that distinguishes between orthologs and paralogs is indispensable for genome annotation and evolutionary reconstruction. Shortly after multiple genome sequences of bacteria, archaea, and unicellular eukaryotes became available, an attempt on such a classification was implemented in Clusters of Orthologous Groups of proteins (COGs. Rapid accumulation of genome sequences creates opportunities for refining COGs but also represents a challenge because of error amplification. One of the practical strategies involves construction of refined COGs for phylogenetically compact subsets of genomes. Results New Archaeal Clusters of Orthologous Genes (arCOGs were constructed for 41 archaeal genomes (13 Crenarchaeota, 27 Euryarchaeota and one Nanoarchaeon using an improved procedure that employs a similarity tree between smaller, group-specific clusters, semi-automatically partitions orthology domains in multidomain proteins, and uses profile searches for identification of remote orthologs. The annotation of arCOGs is a consensus between three assignments based on the COGs, the CDD database, and the annotations of homologs in the NR database. The 7538 arCOGs, on average, cover ~88% of the genes in a genome compared to a ~76% coverage in COGs. The finer granularity of ortholog identification in the arCOGs is apparent from the fact that 4538 arCOGs correspond to 2362 COGs; ~40% of the arCOGs are new. The archaeal gene core (protein-coding genes found in all 41 genome consists of 166 arCOGs. The arCOGs were used to reconstruct gene loss and gene gain events during archaeal evolution and gene sets of ancestral forms. The Last Archaeal Common Ancestor (LACA is conservatively estimated to possess 996 genes compared to 1245 and 1335 genes for the last common ancestors of Crenarchaeota and Euryarchaeota, respectively. It is inferred that LACA was a chemoautotrophic hyperthermophile

  12. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots.

    Science.gov (United States)

    Cenci, Albero; Guignon, Valentin; Roux, Nicolas; Rouard, Mathieu

    2014-05-01

    Identifying the molecular mechanisms underlying tolerance to abiotic stresses is important in crop breeding. A comprehensive understanding of the gene families associated with drought tolerance is therefore highly relevant. NAC transcription factors form a large plant-specific gene family involved in the regulation of tissue development and responses to biotic and abiotic stresses. The main goal of this study was to set up a framework of orthologous groups determined by an expert sequence comparison of NAC genes from both monocots and dicots. In order to clarify the orthologous relationships among NAC genes of different species, we performed an in-depth comparative study of four divergent taxa, in dicots and monocots, whose genomes have already been completely sequenced: Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa. Due to independent evolution, NAC copy number is highly variable in these plant genomes. Based on an expert NAC sequence comparison, we propose forty orthologous groups of NAC sequences that were probably derived from an ancestor gene present in the most recent common ancestor of dicots and monocots. These orthologous groups provide a curated resource for large-scale protein sequence annotation of NAC transcription factors. The established orthology relationships also provide a useful reference for NAC function studies in newly sequenced genomes such as M. acuminata and other plant species.

  13. Phylogenetic reconstruction of orthology, paralogy, and conserved synteny for dog and human.

    Science.gov (United States)

    Goodstadt, Leo; Ponting, Chris P

    2006-09-29

    Accurate predictions of orthology and paralogy relationships are necessary to infer human molecular function from experiments in model organisms. Previous genome-scale approaches to predicting these relationships have been limited by their use of protein similarity and their failure to take into account multiple splicing events and gene prediction errors. We have developed PhyOP, a new phylogenetic orthology prediction pipeline based on synonymous rate estimates, which accurately predicts orthology and paralogy relationships for transcripts, genes, exons, or genomic segments between closely related genomes. We were able to identify orthologue relationships to human genes for 93% of all dog genes from Ensembl. Among 1:1 orthologues, the alignments covered a median of 97.4% of protein sequences, and 92% of orthologues shared essentially identical gene structures. PhyOP accurately recapitulated genomic maps of conserved synteny. Benchmarking against predictions from Ensembl and Inparanoid showed that PhyOP is more accurate, especially in its predictions of paralogy. Nearly half (46%) of PhyOP paralogy predictions are unique. Using PhyOP to investigate orthologues and paralogues in the human and dog genomes, we found that the human assembly contains 3-fold more gene duplications than the dog. Species-specific duplicate genes, or "in-paralogues," are generally shorter and have fewer exons than 1:1 orthologues, which is consistent with selective constraints and mutation biases based on the sizes of duplicated genes. In-paralogues have experienced elevated amino acid and synonymous nucleotide substitution rates. Duplicates possess similar biological functions for either the dog or human lineages. Having accounted for 2,954 likely pseudogenes and gene fragments, and after separating 346 erroneously merged genes, we estimated that the human genome encodes a minimum of 19,700 protein-coding genes, similar to the gene count of nematode worms. PhyOP is a fast and robust

  14. Phylogenetic reconstruction of orthology, paralogy, and conserved synteny for dog and human.

    Directory of Open Access Journals (Sweden)

    Leo Goodstadt

    2006-09-01

    Full Text Available Accurate predictions of orthology and paralogy relationships are necessary to infer human molecular function from experiments in model organisms. Previous genome-scale approaches to predicting these relationships have been limited by their use of protein similarity and their failure to take into account multiple splicing events and gene prediction errors. We have developed PhyOP, a new phylogenetic orthology prediction pipeline based on synonymous rate estimates, which accurately predicts orthology and paralogy relationships for transcripts, genes, exons, or genomic segments between closely related genomes. We were able to identify orthologue relationships to human genes for 93% of all dog genes from Ensembl. Among 1:1 orthologues, the alignments covered a median of 97.4% of protein sequences, and 92% of orthologues shared essentially identical gene structures. PhyOP accurately recapitulated genomic maps of conserved synteny. Benchmarking against predictions from Ensembl and Inparanoid showed that PhyOP is more accurate, especially in its predictions of paralogy. Nearly half (46% of PhyOP paralogy predictions are unique. Using PhyOP to investigate orthologues and paralogues in the human and dog genomes, we found that the human assembly contains 3-fold more gene duplications than the dog. Species-specific duplicate genes, or "in-paralogues," are generally shorter and have fewer exons than 1:1 orthologues, which is consistent with selective constraints and mutation biases based on the sizes of duplicated genes. In-paralogues have experienced elevated amino acid and synonymous nucleotide substitution rates. Duplicates possess similar biological functions for either the dog or human lineages. Having accounted for 2,954 likely pseudogenes and gene fragments, and after separating 346 erroneously merged genes, we estimated that the human genome encodes a minimum of 19,700 protein-coding genes, similar to the gene count of nematode worms. PhyOP is a

  15. Systematic Functional Characterization of Human 21st Chromosome Orthologs inCaenorhabditis elegans.

    Science.gov (United States)

    Nordquist, Sarah K; Smith, Sofia R; Pierce, Jonathan T

    2018-03-02

    Individuals with Down syndrome have neurological and muscle impairments due to an additional copy of the human 21st chromosome (HSA21). Only a few of ∼200 HSA21 genes encoding proteins have been linked to specific Down syndrome phenotypes, while the remainder are understudied. To identify poorly characterized HSA21 genes required for nervous system function, we studied behavioral phenotypes caused by loss-of-function mutations in conserved HSA21 orthologs in the nematode Caenorhabditis elegans We identified 10 HSA21 orthologs that are required for neuromuscular behaviors: cle-1 ( COL18A1 ), cysl-2 ( CBS ), dnsn-1 ( DONSON ), eva-1 ( EVA1C ), mtq-2 ( N6ATM1 ), ncam-1 ( NCAM2 ), pad-2 ( POFUT2 ), pdxk-1 ( PDXK ), rnt-1 ( RUNX1 ), and unc-26 ( SYNJ1 ). We also found that three of these genes are required for normal release of the neurotransmitter acetylcholine. This includes a known synaptic gene unc-26 ( SYNJ1 ), as well as uncharacterized genes pdxk-1 ( PDXK ) and mtq-2 ( N6ATM1 ). As the first systematic functional analysis of HSA21 orthologs, this study may serve as a platform to understand genes that underlie phenotypes associated with Down syndrome. Copyright © 2018 Nordquist et al.

  16. The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress

    Directory of Open Access Journals (Sweden)

    Houde Mario

    2008-07-01

    Full Text Available Abstract Background Lipocalins are a large and diverse family of small, mostly extracellular proteins implicated in many important functions. This family has been studied in bacteria, invertebrate and vertebrate animals but little is known about these proteins in plants. We recently reported the identification and molecular characterization of the first true lipocalins from plants, including the Apolipoprotein D ortholog AtTIL identified in the plant model Arabidopsis thaliana. This study aimed to determine its physiological role in planta. Results Our results demonstrate that the AtTIL lipocalin is involved in modulating tolerance to oxidative stress. AtTIL knock-out plants are very sensitive to sudden drops in temperature and paraquat treatment, and dark-grown plants die shortly after transfer to light. These plants accumulate a high level of hydrogen peroxide and other ROS, which causes an oxidative stress that is associated with a reduction in hypocotyl growth and sensitivity to light. Complementation of the knock-out plants with the AtTIL cDNA restores the normal phenotype. On the other hand, overexpression enhances tolerance to stress caused by freezing, paraquat and light. Moreover, this overexpression delays flowering and maintains leaf greenness. Microarray analyses identified several differentially-regulated genes encoding components of oxidative stress and energy balance. Conclusion This study provides the first functional evidence that a plant lipocalin is involved in modulating tolerance to oxidative stress. These findings are in agreement with recently published data showing that overexpression of ApoD enhances tolerance to oxidative stress and increases life span in mice and Drosophila. Together, the three papers strongly support a similar function of lipocalins in these evolutionary-distant species.

  17. ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline.

    Science.gov (United States)

    Ciosk, Rafal; DePalma, Michael; Priess, James R

    2004-10-01

    Human ataxin 2 is a protein of unknown function that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. We found that the C. elegans ortholog of ataxin 2, ATX-2, forms a complex with PAB-1, a cytoplasmic polyA-binding protein, and that ATX-2 is required for development of the germline. In the absence of ATX-2, proliferation of stem cells is reduced, and the germline is abnormally masculinized. These defects appear to result from inappropriate translational regulation that normally is mediated by the conserved KH-domain protein GLD-1. We find that MEX-3, a second KH-domain protein, exhibits a novel, ATX-2-dependent role in preventing inappropriate translation in the germline stem cells. Together, our results suggest that ATX-2 functions in translational regulation that is mediated by GLD-1 and MEX-3 proteins.

  18. Database Description - PGDBj - Ortholog DB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj - Ortholog DB Database Description General information of database Database name PGDBj - Orth...olog DB Alternative name Plant Genome Database Japan - Ortholog Database DOI 10.18908/lsdba.nbdc01194...teria Taxonomy ID: 1117 Database description Orthology is a homologous relationship among genes derived from...o predict the divergence of gene function based on syntenic relationships among species. PGDBj Ortholog DB i...f utilization of database PGDBj Ortholog DB is hierarchically organized to reflect evolutionary relationship

  19. Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    LENUS (Irish Health Repository)

    OhEigeartaigh, Sean S

    2011-07-26

    Abstract Background In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. Results We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. Conclusions SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external

  20. Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper

    DEFF Research Database (Denmark)

    Huerta-Cepas, Jaime; Forslund, Kristoffer; Coelho, Luis Pedro

    2017-01-01

    Orthology assignment is ideally suited for functional inference. However, because predicting orthology is computationally intensive at large scale, and most pipelines are relatively inaccessible (e.g., new assignments only available through database updates), less precise homology-based functiona...

  1. Comparative analysis of the radish genome based on a conserved ortholog set (COS) of Brassica.

    Science.gov (United States)

    Jeong, Young-Min; Chung, Won-Hyong; Chung, Hee; Kim, Namshin; Park, Beom-Seok; Lim, Ki-Byung; Yu, Hee-Ju; Mun, Jeong-Hwan

    2014-09-01

    This manuscript provides a Brassica conserved ortholog set (COS) that can be used as diagnostic cross-species markers as well as tools for genetic mapping and genome comparison of the Brassicaceae. A conserved ortholog set (COS) is a collection of genes that are conserved in both sequence and copy number between closely related genomes. COS is a useful resource for developing gene-based markers and is suitable for comparative genome mapping. We developed a COS for Brassica based on proteome comparisons of Arabidopsis thaliana, B. rapa, and B. oleracea to establish a basis for comparative genome analysis of crop species in the Brassicaceae. A total of 1,194 conserved orthologous single-copy genes were identified from the genomes based on whole-genome BLASTP analysis. Gene ontology analysis showed that most of them encoded proteins with unknown function and chloroplast-related genes were enriched. In addition, 152 Brassica COS primer sets were applied to 16 crop and wild species of the Brassicaceae and 57.9-92.8 % of them were successfully amplified across the species representing that a Brassica COS can be used as diagnostic cross-species markers of diverse Brassica species. We constructed a genetic map of Raphanus sativus by analyzing the segregation of 322 COS genes in an F2 population (93 individuals) of Korean cultivars (WK10039 × WK10024). Comparative genome analysis based on the COS genes showed conserved genome structures between R. sativus and B. rapa with lineage-specific rearrangement and fractionation of triplicated subgenome blocks indicating close evolutionary relationship and differentiation of the genomes. The Brassica COS developed in this study will play an important role in genetic, genomic, and breeding studies of crop Brassicaceae species.

  2. Identification and characterization of orthologs of AtNHX5 and AtNHX6 in Brassica napus

    Directory of Open Access Journals (Sweden)

    Brett Andrew Ford

    2012-09-01

    Full Text Available Improving crop species by breeding for salt tolerance or introducing salt tolerant traits is one method of increasing crop yields in saline affected areas. The model plant species Arabidopsis thaliana has been extensively studied and there is substantial information available about the function and importance of many genes and proteins involved in salt tolerance. The identification and characterization of A. thaliana orthologs in species such as Brassica napus (oilseed rape can prove difficult due to the significant genomic changes that have occurred since their divergence approximately 20 million years ago. The recently released B. rapa genome provides an excellent resource for comparative studies of Arabidopsis and the cultivated Brassica species, and facilitates the identification of Brassica species orthologs which may be of agronomic importance. Sodium hydrogen antiporter (NHX proteins transport a sodium or potassium ion in exchange for a hydrogen ion in the other direction across a membrane. In A. thaliana there are eight members of the NHX family designated AtNHX1-8 that can be sub-divided into three clades (plasma membrane (PM, intracellular class I (IC-I and intracellular class II (IC-II based on their subcellular localization. In plants, many NHX proteins are primary determinants of salt tolerance and act by transporting Na+ out of the cytosol where it would otherwise accumulate to toxic levels. Significant work has been done analyzing both PM and IC-I clade members role in salt tolerance in a variety of plant species but relatively little analysis has been described for the IC-II clade. Here we describe the identification of B. napus orthologs of AtNHX5 and AtNHX6, using the Brassica rapa genome sequence, macro- and micro-synteny analysis, comparative expression and promoter motif analysis, and highlight the value of these multiple approaches for identifying true orthologs in closely related species with multiple paralogs.

  3. Ortholog - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us MicrobeDB.jp Ortholog Data detail Data name Ortholog DOI 10.18908/lsdba.nbdc01181-010.V002 V...814 triples - About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Ortholog - MicrobeDB.jp | LSDB Archive ...

  4. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3

    DEFF Research Database (Denmark)

    Hudson, Brian D; Tikhonova, Irina G; Pandey, Sunil K

    2012-01-01

    Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency such that acetate (C2) has been described as FFA2-selective, whereas propionate (C3...... selectivity to C2 and C3 resulted from broad differences in SCFAs potency at the mouse orthologs. In studies to define the molecular basis for these observations, marked variation in ligand-independent constitutive activity was identified using a [(35)S]GTPγS assay. The orthologs with higher potency...

  5. Retrotranspositions in orthologous regions of closely related grass species

    Directory of Open Access Journals (Sweden)

    Swigoňová Zuzana

    2006-08-01

    Full Text Available Abstract Background Retrotransposons are commonly occurring eukaryotic transposable elements (TEs. Among these, long terminal repeat (LTR retrotransposons are the most abundant TEs and can comprise 50–90% of the genome in higher plants. By comparing the orthologous chromosomal regions of closely related species, the effects of TEs on the evolution of plant genomes can be studied in detail. Results Here, we compared the composition and organization of TEs within five orthologous chromosomal regions among three grass species: maize, sorghum, and rice. We identified a total of 132 full or fragmented LTR retrotransposons in these regions. As a percentage of the total cumulative sequence in each species, LTR retrotransposons occupy 45.1% of the maize, 21.1% of the rice, and 3.7% of the sorghum regions. The most common elements in the maize retrotransposon-rich regions are the copia-like retrotransposons with 39% and the gypsy-like retrotransposons with 37%. Using the contiguous sequence of the orthologous regions, we detected 108 retrotransposons with intact target duplication sites and both LTR termini. Here, we show that 74% of these elements inserted into their host genome less than 1 million years ago and that many retroelements expanded in size by the insertion of other sequences. These inserts were predominantly other retroelements, however, several of them were also fragmented genes. Unforeseen was the finding of intact genes embedded within LTR retrotransposons. Conclusion Although the abundance of retroelements between maize and rice is consistent with their different genome sizes of 2,364 and 389 Mb respectively, the content of retrotransposons in sorghum (790 Mb is surprisingly low. In all three species, retrotransposition is a very recent activity relative to their speciation. While it was known that genes re-insert into non-orthologous positions of plant genomes, they appear to re-insert also within retrotransposons, potentially

  6. Ortholog-based screening and identification of genes related to intracellular survival.

    Science.gov (United States)

    Yang, Xiaowen; Wang, Jiawei; Bing, Guoxia; Bie, Pengfei; De, Yanyan; Lyu, Yanli; Wu, Qingmin

    2018-04-20

    Bioinformatics and comparative genomics analysis methods were used to predict unknown pathogen genes based on homology with identified or functionally clustered genes. In this study, the genes of common pathogens were analyzed to screen and identify genes associated with intracellular survival through sequence similarity, phylogenetic tree analysis and the λ-Red recombination system test method. The total 38,952 protein-coding genes of common pathogens were divided into 19,775 clusters. As demonstrated through a COG analysis, information storage and processing genes might play an important role intracellular survival. Only 19 clusters were present in facultative intracellular pathogens, and not all were present in extracellular pathogens. Construction of a phylogenetic tree selected 18 of these 19 clusters. Comparisons with the DEG database and previous research revealed that seven other clusters are considered essential gene clusters and that seven other clusters are associated with intracellular survival. Moreover, this study confirmed that clusters screened by orthologs with similar function could be replaced with an approved uvrY gene and its orthologs, and the results revealed that the usg gene is associated with intracellular survival. The study improves the current understanding of intracellular pathogens characteristics and allows further exploration of the intracellular survival-related gene modules in these pathogens. Copyright © 2018. Published by Elsevier B.V.

  7. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    Directory of Open Access Journals (Sweden)

    Laura Graf

    2013-12-01

    Full Text Available The human cytomegalovirus (HCMV-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins.

  8. A meta-approach for improving the prediction and the functional annotation of ortholog groups.

    Science.gov (United States)

    Pereira, Cécile; Denise, Alain; Lespinet, Olivier

    2014-01-01

    In comparative genomics, orthologs are used to transfer annotation from genes already characterized to newly sequenced genomes. Many methods have been developed for finding orthologs in sets of genomes. However, the application of different methods on the same proteome set can lead to distinct orthology predictions. We developed a method based on a meta-approach that is able to combine the results of several methods for orthologous group prediction. The purpose of this method is to produce better quality results by using the overlapping results obtained from several individual orthologous gene prediction procedures. Our method proceeds in two steps. The first aims to construct seeds for groups of orthologous genes; these seeds correspond to the exact overlaps between the results of all or several methods. In the second step, these seed groups are expanded by using HMM profiles. We evaluated our method on two standard reference benchmarks, OrthoBench and Orthology Benchmark Service. Our method presents a higher level of accurately predicted groups than the individual input methods of orthologous group prediction. Moreover, our method increases the number of annotated orthologous pairs without decreasing the annotation quality compared to twelve state-of-the-art methods. The meta-approach based method appears to be a reliable procedure for predicting orthologous groups. Since a large number of methods for predicting groups of orthologous genes exist, it is quite conceivable to apply this meta-approach to several combinations of different methods.

  9. Comparing the evolutionary conservation between human essential genes, human orthologs of mouse essential genes and human housekeeping genes.

    Science.gov (United States)

    Lv, Wenhua; Zheng, Jiajia; Luan, Meiwei; Shi, Miao; Zhu, Hongjie; Zhang, Mingming; Lv, Hongchao; Shang, Zhenwei; Duan, Lian; Zhang, Ruijie; Jiang, Yongshuai

    2015-11-01

    Human housekeeping genes are often confused with essential human genes, and several studies regard both types of genes as having the same level of evolutionary conservation. However, this is not necessarily the case. To clarify this, we compared the differences between human housekeeping genes and essential human genes with respect to four aspects: the evolutionary rate (dN/dS), protein sequence identity, single-nucleotide polymorphism (SNP) density and level of linkage disequilibrium (LD). The results showed that housekeeping genes had lower evolutionary rates, higher sequence identities, lower SNP densities and higher levels of LD compared with essential genes. Together, these findings indicate that housekeeping and essential genes are two distinct types of genes, and that housekeeping genes have a higher level of evolutionary conservation. Therefore, we suggest that researchers should pay careful attention to the distinctions between housekeeping genes and essential genes. Moreover, it is still controversial whether we should substitute human orthologs of mouse essential genes for human essential genes. Therefore, we compared the evolutionary features between human orthologs of mouse essential genes and human housekeeping genes and we got inconsistent results in long-term and short-term evolutionary characteristics implying the irrationality of simply replacing human essential genes with human orthologs of mouse essential genes. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Drosophila TDP1 Ortholog Important for Longevity and Nervous System Maintenance | Center for Cancer Research

    Science.gov (United States)

    As the molecule responsible for encoding a cell’s hereditary information, DNA must maintain its integrity. However, nucleic acids are vulnerable to damage by a number of endogenous and exogenous insults, such as reactive oxygen species or enzymes that react with DNA. Thus, other enzymes are tasked with repairing damaged DNA, including tyrosyl-DNA phosphodiesterase 1 (TDP1), which frees the 3’ ends of DNA that are blocked by proteins and oxidized bases to allow the ligation of strand breaks. Yeast, mice, and humans that express mutants of TDP1 have a reduced capacity to repair oxidative or topoisomerase-induced damage. A Drosophila TDP1 ortholog, glaikit (gkt), has been reported, but its function in DNA repair has not been evaluated because, surprisingly, gkt knockout flies were not viable.

  11. Mutations that Allow SIR2 Orthologs to Function in a NAD+-Depleted Environment

    Directory of Open Access Journals (Sweden)

    Caitlin R. Ondracek

    2017-03-01

    Full Text Available Sirtuin enzymes depend on NAD+ to catalyze protein deacetylation. Therefore, the lowering of NAD+ during aging leads to decreased sirtuin activity and may speed up aging processes in laboratory animals and humans. In this study, we used a genetic screen to identify two mutations in the catalytic domain of yeast Sir2 that allow the enzyme to function in an NAD+-depleted environment. These mutant enzymes give rise to a significant increase of yeast replicative lifespan and increase deacetylation by the Sir2 ortholog, SIRT1, in mammalian cells. Our data suggest that these mutations increase the stability of the conserved catalytic sirtuin domain, thereby increasing the catalytic efficiency of the mutant enzymes. Our approach to identifying sirtuin mutants that permit function in NAD+-limited environments may inform the design of small molecules that can maintain sirtuin activity in aging organisms.

  12. License - PGDBj - Ortholog DB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available database as follows: PGDBj - Ortholog DB © Akihiro Nakaya (Osaka University) licensed under CC Attribution-...ice. About This Database Database Description Download License Update History of This Database Site Policy | Contact Us License - PGDBj - Ortholog DB | LSDB Archive ... ...List Contact us PGDBj - Ortholog DB License License to Use This Database Last updated : 2017/03/07 You may u...switchLanguage; BLAST Search Image Search Home About Archive Update History Data

  13. Update History of This Database - PGDBj - Ortholog DB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj - Ortholog DB Update History of This Database Date Update contents 2017/03/07 PGDBj Orth...L of the Whole data download The URL of The original website information 2014/05/12 PGDBj Ortholog DB (Relea...se57 ver.) English archive site is opened. (Archive V1) 2012/08/01 PGDBj Ortholog DB ( http://pgdbj.jp/ortho...e Update History of This Database Site Policy | Contact Us Update History of This Database - PGDBj - Ortholog DB | LSDB Archive ... ...switchLanguage; BLAST Search Image Search Home About Archive Update History Data

  14. Human and mouse mitochondrial orthologs of bacterial ClpX

    DEFF Research Database (Denmark)

    Corydon, T J; Wilsbech, M; Jespersgaard, C

    2000-01-01

    We have determined the cDNA sequence and exon/intron structure of the human CLPX gene encoding a human ortholog of the E. coli ClpX chaperone and protease subunit. The CLPX gene comprises 14 exons and encodes a 633-amino acid-long precursor polypeptide. The polypeptide contains an N-terminal puta......We have determined the cDNA sequence and exon/intron structure of the human CLPX gene encoding a human ortholog of the E. coli ClpX chaperone and protease subunit. The CLPX gene comprises 14 exons and encodes a 633-amino acid-long precursor polypeptide. The polypeptide contains an N......-terminal putative mitochondrial transit peptide, and expression of a full-length ClpX cDNA tagged at its C-terminus (Myc-His) shows that the polypeptide is transported into mitochondria. FISH analysis localized the CLPX gene to human Chromosome (Chr) 15q22.1-22.32. This localization was refined by radiation hybrid...... variability between mouse ClpX cDNAs from different strains. Alignment of the human and mouse ClpX amino acid sequences with ClpX sequences from other organisms shows that they display the typical modular organization of domains with one AAA(+) domain common to a large group of ATPases and several other...

  15. Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene.

    Science.gov (United States)

    Solé, Alicia; Sánchez, Conchi; Vielba, Jesús M; Valladares, Silvia; Abarca, Dolores; Díaz-Sala, Carmen

    2008-11-01

    We characterized a Pinus radiata D. Don putative ortholog to the Arabidopsis thaliana (L.) Heynh. SHORT--ROOT gene (AtSHR) and analyzed its expression in different organs during vegetative development and in response to exogenous auxin during adventitious rooting. The predicted protein sequence contained domains characteristic of the GRAS protein family and showed a strong similarity to the SHORT--ROOT (SHR) proteins. Quantitative reverse transcriptase--polymerase chain reaction (qRT-PCR) and in situ hybridization showed that the gene is predominantly expressed in roots, root primordia and in the cambial region of hypocotyl cuttings. Increased mRNA levels were observed, independently of the presence or absence of exogenous auxin, in the cambial region and rooting competent cells of hypocotyl cuttings within the first 24 h of adventitious rooting, before the activation of cell divisions and the organization of the adventitious root meristem. The expression pattern in organs and during adventitious rooting was similar to that of a Pinus radiata SCARECROW-LIKE (PrSCL1) gene, except that PrSCL1 is induced in response to exogenous auxin. Results suggest that the Pinus radiata SHORT-ROOT (PrSHR) gene has a role in root meristem formation and maintenance and in the cambial region of hypocotyl cuttings.

  16. Taxon (Viridiplantae) - PGDBj - Ortholog DB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available of This Database Site Policy | Contact Us Taxon (Viridiplantae) - PGDBj - Ortholog DB | LSDB Archive ... ...List Contact us PGDBj - Ortholog DB Taxon (Viridiplantae) Data detail Data name Taxon (Viridiplantae) DOI 10...switchLanguage; BLAST Search Image Search Home About Archive Update History Data

  17. Download - PGDBj - Ortholog DB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available e Description Download License Update History of This Database Site Policy | Contact Us Download - PGDBj - Ortholog DB | LSDB Archive ... ...List Contact us PGDBj - Ortholog DB Download First of all, please read the license of this database. Data na...switchLanguage; BLAST Search Image Search Home About Archive Update History Data

  18. Taxon (Cyanobacteria) - PGDBj - Ortholog DB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available of This Database Site Policy | Contact Us Taxon (Cyanobacteria) - PGDBj - Ortholog DB | LSDB Archive ... ...List Contact us PGDBj - Ortholog DB Taxon (Cyanobacteria) Data detail Data name Taxon (Cyanobacteria) DOI 10...switchLanguage; BLAST Search Image Search Home About Archive Update History Data

  19. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics.

    Science.gov (United States)

    Stubenvoll, Michael D; Medley, Jeffrey C; Irwin, Miranda; Song, Mi Hye

    2016-09-01

    Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin), increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.

  20. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics.

    Directory of Open Access Journals (Sweden)

    Michael D Stubenvoll

    2016-09-01

    Full Text Available Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin, increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.