WorldWideScience

Sample records for bluetongue

  1. Bluetongue

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose

    2017-01-01

    it was highlighted that under the current surveillance policy bluetongue circulation might occur undetected. For the safe movement of animals, newborn ruminants from vaccinated mothers with neutralising antibodies can be considered protected against infection, although a protective titre threshold cannot...... be identified. The presence of colostral antibodies interferes with the vaccine immunisation in the newborn for more than 3 months after birth, whereas the minimum time after vaccination of animal to be considered immune can be up to 48 days. The knowledge about vectors ecology, mechanisms of over...

  2. [Bluetongue disease reaches Switzerland].

    Science.gov (United States)

    Hofmann, M; Griot, C; Chaignat, V; Perler, L; Thür, B

    2008-02-01

    Since 2006 bluetongue disease is rapidly spreading across Europe and reached Switzerland in October 2007. In the present article a short overview about the disease and the virus is given, and the first three clinical bluetongue disease cases in cattle, and the respective laboratory findings are presented.

  3. European bluetongue serotype 8

    NARCIS (Netherlands)

    Drolet, Barbara S.; Reister-Hendricks, Lindsey M.; Podell, Brendan K.; Breitenbach, Jonathan E.; Mcvey, D.S.; Rijn, van Piet A.; Bowen, Richard A.

    2016-01-01

    Bluetongue virus (BTV) is an orbivirus transmitted by biting midges (Culicoides spp.) that can result in moderate to high morbidity and mortality primarily in sheep and white-tailed deer. Although only 5 serotypes of BTV are considered endemic to the United States, as many as 11 incursive

  4. 9 CFR 113.303 - Bluetongue Vaccine.

    Science.gov (United States)

    2010-01-01

    ... virus titer using the titration method used in paragraph (c)(2) of this section. To be eligible for... Master Seed shall be tested for transmissibility and reversion to virulence in sheep using a method... TCID50 of bluetongue virus or another method acceptable to Animal and Plant Health Inspection Service. (2...

  5. Economics of vaccinating extensively managed sheep flocks against Bluetongue disease

    Science.gov (United States)

    Bluetongue is a serious and recurring threat to sheep producers throughout the world. In the western United States, bluetongue virus (BTV) is transmitted by biting midges in late summer and early autumn, just before lambs are sent to market. No vaccine is currently sold for the most common serotype ...

  6. Bluetongue vector species of Culicoides in Switzerland.

    Science.gov (United States)

    Cagienard, A; Griot, C; Mellor, P S; Denison, E; Stärk, K D C

    2006-06-01

    Switzerland is historically recognized by the Office Internationale des Epizooties as free from bluetongue disease (BT) because of its latitude and climate. With bluetongue virus (BTV) moving north from the Mediterranean, an entomological survey was conducted in Switzerland in 2003 to assess the potential of the BTV vectors present. A total of 39 cattle farms located in three geographical regions, the Ticino region, the Western region and the region of the Grisons, were monitored during the vector season. Farms were located in areas at high risk of vector introduction and establishment based on the following characteristics: annual average temperature > 12.5 degrees C, average annual humidity >or= 60%, cattle farm. Onderstepoort black light traps were operated at the cattle farms generally for one night in July and one night in September. A total of 56 collections of Culicoides (Diptera: Ceratopogonidae) were identified morphologically. Only one single individual of Culicoides (Avaritia) imicola, the major Old World vector of BTV, was found in July 2003 in the Ticino region, one of the southernmost regions of Switzerland. In the absence of further specimens of C. imicola from Switzerland it is suggested that this individual may be a vagrant transported by wind from regions to the south of the country where populations of this species are known to occur. Alternative potential BTV vectors of the Culicoides (Culicoides) pulicaris and Culicoides (Avaritia) obsoletus complexes were abundant in all sampled regions with individual catches exceeding 70 000 midges per trap night.

  7. Did vaccination slow the spread of bluetongue in France?

    Directory of Open Access Journals (Sweden)

    Maryline Pioz

    Full Text Available Vaccination is one of the most efficient ways to control the spread of infectious diseases. Simulations are now widely used to assess how vaccination can limit disease spread as well as mitigate morbidity or mortality in susceptible populations. However, field studies investigating how much vaccines decrease the velocity of epizootic wave-fronts during outbreaks are rare. This study aimed at investigating the effect of vaccination on the propagation of bluetongue, a vector-borne disease of ruminants. We used data from the 2008 bluetongue virus serotype 1 (BTV-1 epizootic of southwest France. As the virus was newly introduced in this area, natural immunity of livestock was absent. This allowed determination of the role of vaccination in changing the velocity of bluetongue spread while accounting for environmental factors that possibly influenced it. The average estimated velocity across the country despite restriction on animal movements was 5.4 km/day, which is very similar to the velocity of spread of the bluetongue virus serotype 8 epizootic in France also estimated in a context of restrictions on animal movements. Vaccination significantly reduced the propagation velocity of BTV-1. In comparison to municipalities with no vaccine coverage, the velocity of BTV-1 spread decreased by 1.7 km/day in municipalities with immunized animals. For the first time, the effect of vaccination has been quantified using data from a real epizootic whilst accounting for environmental factors known to modify the velocity of bluetongue spread. Our findings emphasize the importance of vaccination in limiting disease spread across natural landscape. Finally, environmental factors, specifically those related to vector abundance and activity, were found to be good predictors of the velocity of BTV-1 spread, indicating that these variables need to be adequately accounted for when evaluating the role of vaccination on bluetongue spread.

  8. Did vaccination slow the spread of bluetongue in France?

    Science.gov (United States)

    Pioz, Maryline; Guis, Hélène; Pleydell, David; Gay, Emilie; Calavas, Didier; Durand, Benoît; Ducrot, Christian; Lancelot, Renaud

    2014-01-01

    Vaccination is one of the most efficient ways to control the spread of infectious diseases. Simulations are now widely used to assess how vaccination can limit disease spread as well as mitigate morbidity or mortality in susceptible populations. However, field studies investigating how much vaccines decrease the velocity of epizootic wave-fronts during outbreaks are rare. This study aimed at investigating the effect of vaccination on the propagation of bluetongue, a vector-borne disease of ruminants. We used data from the 2008 bluetongue virus serotype 1 (BTV-1) epizootic of southwest France. As the virus was newly introduced in this area, natural immunity of livestock was absent. This allowed determination of the role of vaccination in changing the velocity of bluetongue spread while accounting for environmental factors that possibly influenced it. The average estimated velocity across the country despite restriction on animal movements was 5.4 km/day, which is very similar to the velocity of spread of the bluetongue virus serotype 8 epizootic in France also estimated in a context of restrictions on animal movements. Vaccination significantly reduced the propagation velocity of BTV-1. In comparison to municipalities with no vaccine coverage, the velocity of BTV-1 spread decreased by 1.7 km/day in municipalities with immunized animals. For the first time, the effect of vaccination has been quantified using data from a real epizootic whilst accounting for environmental factors known to modify the velocity of bluetongue spread. Our findings emphasize the importance of vaccination in limiting disease spread across natural landscape. Finally, environmental factors, specifically those related to vector abundance and activity, were found to be good predictors of the velocity of BTV-1 spread, indicating that these variables need to be adequately accounted for when evaluating the role of vaccination on bluetongue spread.

  9. [Vaccination against bluetongue: safety and immune response in the field].

    Science.gov (United States)

    Bruckner, L; Fricker, R; Hug, M; Hotz, R; Muntwyler, J; Iten, C; Griot, C

    2009-03-01

    Bluetongue, caused by the bluetongue virus serotype 8 has rapidly spread through Europe since 2006. The first cases in Switzerland were detected in October 2007. The European Union and Switzerland launched a vaccination campaign in June 2008. This study aims to demonstrate the safety and the immune response of the three vaccines used in Switzerland under practical conditions in the field. The trial was carried out in cattle, sheep and goats. Based on the results of this study recommendations for the 2009 campaign are presented.

  10. No evidence of bluetongue virus in Switzerland.

    Science.gov (United States)

    Cagienard, A; Thür, B; Griot, C; Hamblin, C; Stärk, K D C

    2006-08-25

    We report the results of the first survey for antibody against bluetongue virus (BTV) that was conducted in Switzerland in the year 2003. In a nationwide cross-sectional study with partial verification, 2437 cattle sera collected from 507 herds were analysed using competitive enzyme-linked immunosorbent assays (c-ELISA). To adjust for misclassification, 158 sera, including 86 that were recorded equivocal in Switzerland, were sent to the Office Internationale des Epizooties designated regional reference laboratory in the UK for confirmation. No BTV antibody was detected in any of these samples, confirming the absence of BTV from Switzerland in 2003. The specificity of the c-ELISA used in Switzerland for individual Swiss cattle was calculated to be 96.5%. The mean herd sensitivity achieved in our survey ranged from 78.9% to 98.8% depending on the with-in herd prevalence and test sensitivity used for the calculations. The cumulated confidence level achieved with the survey based on a minimal expected prevalence of 2%, was 99.99% and therefore it was concluded that there was no evidence of BTV circulation in Switzerland in 2003.

  11. The evolutionary dynamics of bluetongue virus.

    Science.gov (United States)

    Carpi, Giovanna; Holmes, Edward C; Kitchen, Andrew

    2010-06-01

    Bluetongue virus (BTV) is a midge-borne member of the genus Orbivirus that causes an eponymous debilitating livestock disease of great agricultural impact and which has expanded into Europe in recent decades. Reassortment among the ten segments comprising the double-stranded (ds) RNA genome of BTV has played an important role in generating the epidemic strains of this virus in Europe. In this study, we investigated the dynamics of BTV genome segment evolution utilizing time-structured data sets of complete sequences from four segments, totalling 290 sequences largely sampled from ruminant hosts. Our analysis revealed that BTV genome segments generally evolve under strong purifying selection and at substitution rates that are generally lower (mean rates of approximately 0.5-7 x 10(-4) nucleotide substitutions per site, per year) than vector-borne positive-sense viruses with single-strand (ss) RNA genomes. These also represent the most robust estimates of the nucleotide substitution rate in a dsRNA virus generated to date. Additionally, we determined that patterns of geographic structure and times to most recent common ancestor differ substantially between each segment, including a relatively recent origin for the diversity of segment 10 within the past millennium. Together, these findings demonstrate the effect of reassortment to decouple the evolutionary dynamics of BTV genome segments.

  12. Seroepidemiology of bluetongue in South Bengal

    Directory of Open Access Journals (Sweden)

    Arkendu Halder

    2016-01-01

    Full Text Available Aim: With the aim of revealing the epidemiological intricacies of bluetongue (BT in the southern part of West Bengal state, the present study was undertaken to assess seroprevalence of BT along with identification of the vector of the disease, i.e., Culicoides midges available in the region in their breeding season with conducive environmental factors, if any. Materials and Methods: A total of 1509 (sheep-504, goat-1005 samples were collected from three different agroclimatic zones of South Bengal viz. new alluvial, red laterite and coastal saline. To detect anti-BT antibodies in the collected serum samples, indirect-enzyme-linked immunosorbent assay (i-ELISA was performed. Culicoides midges were collected from those agro-climatic zones of South Bengal for species identification. The meteorological parameters, viz. temperature (maximum and minimum, rainfall and relative humidity of three agro-climatic zones of South Bengal were analyzed for the months of July to December during 2010-2013. Results: The overall seropositivity was 33.13% and 30.24% in sheep and goat, respectively as assessed by i-ELISA. In South Bengal, the predominant species of Culicoides found were Culicoides schultzei, Culicoides palpifer and Culicoides definitus. Conclusion: Since virus transmitting species of Culicoides midges could be detected in South Bengal, besides high seropositivity in ruminants, the possibility of circulating BT virus in South Bengal is quite imminent.

  13. Seroprevalence of bluetongue in ruminants of Jharkhand

    Directory of Open Access Journals (Sweden)

    Pinky Tigga

    2015-03-01

    Full Text Available Aim: This study was carried out to assess the presence of anti-bluetongue (BT antibodies in sheep, goat and cattle of different agro-climatic zones of Jharkhand. Materials and Methods: Serum samples were collected from apparently healthy as well as suspected sheep, goat and cattle from different districts of Jharkhand covering different agro-climatic zones. Serum samples were screened by indirect enzyme linked immunosorbent assay (iELISA for detecting anti-BT antibodies. Results: Out of a total of 480 animal serum samples (sheep-190, goats-210 and cattle-80 screened, 83 (43.68% of sheep, 91 (43.33% of goat and 46 (57.50% of cattle sera were found positive. The % positivity ranged between 41% and 51% in different agro-climatic zones. The results showed slight higher seroprevalence, although not significantly, in cattle than sheep and goats in different agro-climatic zones of Jharkhand. Conclusions: The above data indicate widespread prevalence of BT virus antibodies in studied areas. The incidence of BT is not detected officially, so far. The present seroprevalence status of BT in Jharkhand indicates presence of BT infection in the state for the first time.

  14. The molecular biology of Bluetongue virus replication.

    Science.gov (United States)

    Patel, Avnish; Roy, Polly

    2014-03-01

    The members of Orbivirus genus within the Reoviridae family are arthropod-borne viruses which are responsible for high morbidity and mortality in ruminants. Bluetongue virus (BTV) which causes disease in livestock (sheep, goat, cattle) has been in the forefront of molecular studies for the last three decades and now represents the best understood orbivirus at a molecular and structural level. The complex nature of the virion structure has been well characterised at high resolution along with the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell as well as the protein and genome sequestration required for it; and the role of host proteins in virus entry and virus release. More recent developments of Reverse Genetics and Cell-Free Assembly systems have allowed integration of the accumulated structural and molecular knowledge to be tested at meticulous level, yielding higher insight into basic molecular virology, from which the rational design of safe efficacious vaccines has been possible. This article is centred on the molecular dissection of BTV with a view to understanding the role of each protein in the virus replication cycle. These areas are important in themselves for BTV replication but they also indicate the pathways that related viruses, which includes viruses that are pathogenic to man and animals, might also use providing an informed starting point for intervention or prevention. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sero-epidemiology of bluetongue in Algerian ruminants

    African Journals Online (AJOL)

    BMH Labo SPA

    2016-05-18

    May 18, 2016 ... the herds and lack of Culicoides controls strategies were the major risk factors for bluetongue sero- positivity in Algerian ruminant ... coastline at the Mediterranean Sea; most of the coastal area. (northern region) is hilly, .... Culicoides control measures in disease prevention strategy may play a key role in ...

  16. Serological and molecular evidence of bluetongue in sheep and ...

    African Journals Online (AJOL)

    Dr Molalegne Bitew

    2013-05-08

    May 8, 2013 ... India. A total of 91 (58 sheep and 33 goats) were included in this study. Both males and females of different age groups were part of the study. Sample ..... Evaluation of a commercial competitive ELISA test kit for the detection of group- specific antibodies to bluetongue virus. J. Vet. Diagn. Invest. 5:336-. 340.

  17. [Bluetongue disease in Swiss sheep breeds: clinical signs after experimental infection with bluetongue virus serotype 8].

    Science.gov (United States)

    Worwa, G; Thür, B; Griot, C; Hofmann, M; MacLachlan, J N; Chaignat, V

    2008-10-01

    Clinical disease of bluetongue (BT) in sheep may differ depending on breed, age and immunity of infected sheep and may also vary between serotype and strain of BT virus (BTV). Since there are no data available on the susceptibility of Swiss sheep breeds for BT, we performed experimental infection of the 4 most common Swiss sheep breeds and the highly susceptible Poll Dorset sheep with the BTV serotype 8 (BTV-8) circulating in Northern Europe since 2006. Clinical signs were assessed regarding severity, localisation, progression and time point of their appearance. The results clearly show that the Swiss sheep breeds investigated were susceptible to BTV-8 infection. They developed moderate, BT-characteristic symptoms, which were similar to those observed in Poll Dorset sheep. Regardless of breed, the majority of infected animals showed fever, swelling of the head as well as erosions of the mouth and subcutaneous haemorrhages.

  18. Bluetongue virus with mutated genome segment 10 to differentiate infected from vaccinated animals: A genetic DIVA approach

    NARCIS (Netherlands)

    Rijn, van P.A.; Water, van de S.G.P.; Gennip, van H.G.P.

    2013-01-01

    Bluetongue virus (BTV) includes 24 serotypes and recently even more serotypes are proposed. Mass vaccination campaigns highlight the need for differential diagnostics in vaccinated populations. Bluetongue disease is routinely diagnosed by serological and virological tests by which differentiation

  19. Evaluation of different adjuvants formulations for bluetongue vaccine

    OpenAIRE

    Macedo, Ludmila Branco; Lobato, Zélia Inês Portela; Fialho, Sílvia Ligório; Viott, Aline de Marco; Guedes, Roberto Maurício Carvalho; Silva-Cunha, Armando

    2013-01-01

    This study investigated the adjuvant potential of W/O/W multiple emulsions and microemulsions, comparing them with traditional aluminum hydroxide and oil-in-water emulsion adjuvants against bluetongue vaccine (BTV). Local inflammatory reactions were assessed in rabbits by measuring the temperature of the animals and the skin thickness at the site of application. Antibodies titers were determined by serum-neutralization test. Histological analyses of lesions at the site of adjuvants applicatio...

  20. Enhanced infectivity of bluetongue virus in cell culture by centrifugation.

    OpenAIRE

    Sundin, D R; Mecham, J O

    1989-01-01

    The effects of centrifugation of the infection of cell culture with bluetongue virus (BTV) were investigated. Baby hamster kidney cells were infected with BTV with or without centrifugation. Viral antigen was detected by immunofluorescence at 24 h in both centrifuged and noncentrifuged cultures. However, after 24 h of infection, the production of PFU in centrifuged cell cultures was 10- to 20-fold greater than that seen in cultures not centrifuged. In addition, centrifugation enhanced the dir...

  1. Experimental infection of white-tailed deer with bluetongue virus serotype 8

    NARCIS (Netherlands)

    Drolet, B.S.; Reister, L.M.; Mecham, J.O.; Wilson, W.C.; Nol, P.; Vercauteren, K.C.; Rijn, van P.A.; Bowen, R.A.

    2013-01-01

    Bluetongue (BT) is an insect-transmitted, economically important disease of domestic and wild ruminants. Although only five of the 26 reported bluetongue virus (BTV) serotypes are considered endemic to the USA, 10 exotic serotypes have been isolated primarily in the southeastern region of the

  2. Sero-prevalence study of bluetongue infection in sheep and goats in ...

    African Journals Online (AJOL)

    of bluetongue is also seen in cattle but also recorded in elk, white-tailed deer, pronghorn antelope, camels and other wild ruminants. The disease is not con- tagious and is transmitted biologically by certain species of culicoides (Du Toit,. 1944). Bluetongue infection is seasonal because Culicoides life depends on the.

  3. Structural constraints in the packaging of bluetongue virus genomic segments

    OpenAIRE

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C.; Roy, Polly

    2014-01-01

    : The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by bioche...

  4. Preliminary bluetongue Transmission with the sheep ked Melophagus ovinus (L.).

    Science.gov (United States)

    Luedke, A J; Jochim, M M; Bowne, J G

    1965-09-01

    Five experiments indicated that the sheep ked MELOPHAGUS OVINUS (L.), can transmit bluetongue virus (BTV) in sheep. It was not determined whether these were mechanical or biological transmissions, although the results suggested mechanical transmission. Sheep keds were manually transferred from a BTV-host sheep to 18 susceptible test sheep. Of these, 10 were positive (5 with mild reactions), 6 questionable, and 2 negative for BTV. Three of the mildly reacting sheep and 3 of the questionable sheep had highly intensified reactions on challenge inoculation. Five of the positive sheep were immune on challenge inoculation. Blood from 2 positive reactors was subpassaged into susceptible sheep, which reacted with typical disease signs.

  5. Preliminary Bluetongue Transmissions with the Sheep Ked Melophagus Ovinus (L.)*

    Science.gov (United States)

    Luedke, A. J.; Jochim, M. M.; Bowne, J. G.

    1965-01-01

    Five experiments indicated that the sheep ked MELOPHAGUS OVINUS (L.), can transmit bluetongue virus (BTV) in sheep. It was not determined whether these were mechanical or biological transmissions, although the results suggested mechanical transmission. Sheep keds were manually transferred from a BTV-host sheep to 18 susceptible test sheep. Of these, 10 were positive (5 with mild reactions), 6 questionable, and 2 negative for BTV. Three of the mildly reacting sheep and 3 of the questionable sheep had highly intensified reactions on challenge inoculation. Five of the positive sheep were immune on challenge inoculation. Blood from 2 positive reactors was subpassaged into susceptible sheep, which reacted with typical disease signs. PMID:4221988

  6. Bluetongue, Schmallenberg - what is next? : Culicoides-borne viral diseases in the 21st Century

    NARCIS (Netherlands)

    Koenraadt, Constantianus Jm; Balenghien, Thomas; Carpenter, Simon; Ducheyne, Els; Elbers, Armin Rw; Fife, Mark; Garros, Claire; Ibáñez-Justicia, Adolfo; Kampen, Helge; Kormelink, Richard Jm; Losson, Bertrand; van der Poel, Wim Hm; De Regge, Nick; van Rijn, Piet A; Sanders, Christopher; Schaffner, Francis; Sloet van Oldruitenborgh-Oosterbaan, Marianne M|info:eu-repo/dai/nl/075234394; Takken, Willem; Werner, Doreen; Seelig, Frederik

    2014-01-01

    In the past decade, two pathogens transmitted by Culicoides biting midges (Diptera: Ceratopogonidae), bluetongue virus and Schmallenberg virus, have caused serious economic losses to the European livestock industry, most notably affecting sheep and cattle. These outbreaks of arboviral disease have

  7. Bluetongue, Schmallenberg - what is next? Culicoides-borne viral diseases in the 21st Century

    NARCIS (Netherlands)

    Koenraadt, C.J.M.; Balenghien, T.; Carpenter, S.; Ducheyne, E.; Elbers, A.R.W.; Fife, M.; Garros, C.; Ibanez-Justicia, A.; Kampen, H.; Kormelink, R.J.M.; Losson, B.; Poel, van der W.H.M.; Regge, de N.; Rijn, van P.A.; Sanders, C.; Schaffner, F.; Sloet van Oldruitenborgh-Oosterbaan, M.M.; Takken, W.; Werner, D.; Seelig, F.

    2014-01-01

    In the past decade, two pathogens transmitted by Culicoides biting midges (Diptera: Ceratopogonidae), bluetongue virus and Schmallenberg virus, have caused serious economic losses to the European livestock industry, most notably affecting sheep and cattle. These outbreaks of arboviral disease have

  8. Serological status of Canadian cattle for brucellosis, anaplasmosis, and bluetongue in 2007-2008.

    Science.gov (United States)

    Paré, Julie; Geale, Dorothy W; Koller-Jones, Maria; Hooper-McGrevy, Kathleen; Golsteyn-Thomas, Elizabeth J; Power, Christine A

    2012-09-01

    A national bovine serological survey was conducted to confirm that the prevalence of brucellosis, bluetongue, and anaplasmosis does not exceed 0.02% (95% confidence) in live cattle in Canada. Sampling consisted of a systematic random sample of 15 482 adult cattle slaughtered in federally inspected abattoirs, stratified by province. Samples were tested to detect antibodies for brucellosis, bluetongue, and anaplasmosis. All samples were negative for brucellosis. Three samples were seroreactors to bluetongue, 2 of which originated from the Okanagan Valley in British Columbia and 1 from Ontario, which after follow-up, was considered an atypical result. A total of 244 samples were seroreactors to Anaplasma and follow-up identified infection in Saskatchewan, Manitoba, and Quebec. In conclusion, the Canadian cattle population remains free of brucellosis and free of bluetongue outside the Okanagan Valley. Canada is no longer free of anaplasmosis and will be unable to claim freedom until eradication measures are completed.

  9. Evaluation of different adjuvants formulations for bluetongue vaccine

    Directory of Open Access Journals (Sweden)

    Ludmila Branco Macedo

    2013-12-01

    Full Text Available This study investigated the adjuvant potential of W/O/W multiple emulsions and microemulsions, comparing them with traditional aluminum hydroxide and oil-in-water emulsion adjuvants against bluetongue vaccine (BTV. Local inflammatory reactions were assessed in rabbits by measuring the temperature of the animals and the skin thickness at the site of application. Antibodies titers were determined by serum-neutralization test. Histological analyses of lesions at the site of adjuvants application were done. Results showed that multiple emulsion and microemulsion maintained their stability even in the presence of complex components and presented adequate characteristics for subcutaneous administration. They were able to induce immune response against BTV, but it was smaller than the traditional adjuvants. Despite microemulsion adjuvant showed lower antibodies titre, it was easier to prepare more stable at 4°C and it was the only one that did not induce any local reaction.

  10. Bluetongue control using vaccines: the experience of Emilia Romagna, Italy.

    Science.gov (United States)

    Santi, A; Piccolomini, L Loli; Viappiani, P; Tamba, M; Calabrese, R; Massirio, I

    2004-01-01

    In 2003, thirty municipalities of the provinces of Parma, Reggio Emilia and Modena in the Emilia Romagna region of Italy, bordering the region of Tuscany, were included in the national bluetongue (BT) vaccination programme, using monovalent live-attenuated type 2 vaccine. The purpose of the study was to evaluate the organisation of a vaccination programme designed by the Regional Veterinary Service and the relative cost of the campaign, as a large number of animals were involved. To better evaluate the real cost of the campaign, costs sustained by the Reggio Emilia Local Sanitary Unit were specifically analysed. BT vaccination of all domestic ruminants is a very expensive operation (euro9.20 per vaccinated animal). Consequently, to evaluate the need for a vaccination campaign in a new area, the risk of disease spread, as well as the cost of the operation, should be considered.

  11. Expected net benefit of vaccinating rangeland sheep against bluetongue virus using a modified-live versus killed virus vaccine

    Science.gov (United States)

    Recurring outbreaks of bluetongue virus in large rangeland sheep flocks in the Intermountain West of the United States have prompted questions about the economic benefits and costs of vaccinating individual flocks against bluetongue disease. We use enterprise budgets and stochastic simulation to est...

  12. Structural constraints in the packaging of bluetongue virus genomic segments.

    Science.gov (United States)

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C; Roy, Polly

    2014-10-01

    The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by biochemical data analysis suggested that a conformational motif formed by interaction of the 5' and 3' ends of the molecule was necessary and sufficient for packaging. A similar structural signal was also identified in S8 of BTV serotype 1. Furthermore, the same conformational analysis of secondary structures for positive-sense ssRNAs was used to generate a chimeric segment that maintained the putative packaging motif but contained unrelated internal sequences. This chimeric segment was packaged successfully, confirming that the motif identified directs the correct packaging of the segment. © 2014 The Authors.

  13. Deep sequencing as a method of typing bluetongue virus isolates.

    Science.gov (United States)

    Rao, Pavuluri Panduranga; Reddy, Yella Narasimha; Ganesh, Kapila; Nair, Shreeja G; Niranjan, Vidya; Hegde, Nagendra R

    2013-11-01

    Bluetongue (BT) is an economically important endemic disease of livestock in tropics and subtropics. In addition, its recent spread to temperate regions like North America and Northern Europe is of serious concern. Rapid serotyping and characterization of BT virus (BTV) is an essential step in the identification of origin of the virus and for controlling the disease. Serotyping of BTV is typically performed by serum neutralization, and of late by nucleotide sequencing. This report describes the near complete genome sequencing and typing of two isolates of BTV using Illumina next generation sequencing platform. Two of the BTV RNAs were multiplexed with ten other unknown samples. Viral RNA was isolated and fragmented, reverse transcribed, the cDNA ends were repaired and ligated with a multiplex oligo. The genome library was amplified using primers complementary to the ligated oligo and subjected to single and paired end sequencing. The raw reads were assembled using a de novo method and reference-based assembly was performed based on the contig data. Near complete sequences of all segments of BTV were obtained with more than 20× coverage, and single read sequencing method was sufficient to identify the genotype and serotype of the virus. The two viruses used in this study were typed as BTV-1 and BTV-9E. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Using remote sensing and machine learning for the spatial modelling of a bluetongue virus vector

    Science.gov (United States)

    Van doninck, J.; Peters, J.; De Baets, B.; Ducheyne, E.; Verhoest, N. E. C.

    2012-04-01

    Bluetongue is a viral vector-borne disease transmitted between hosts, mostly cattle and small ruminants, by some species of Culicoides midges. Within the Mediterranean basin, C. imicola is the main vector of the bluetongue virus. The spatial distribution of this species is limited by a number of environmental factors, including temperature, soil properties and land cover. The identification of zones at risk of bluetongue outbreaks thus requires detailed information on these environmental factors, as well as appropriate epidemiological modelling techniques. We here give an overview of the environmental factors assumed to be constraining the spatial distribution of C. imicola, as identified in different studies. Subsequently, remote sensing products that can be used as proxies for these environmental constraints are presented. Remote sensing data are then used together with species occurrence data from the Spanish Bluetongue National Surveillance Programme to calibrate a supervised learning model, based on Random Forests, to model the probability of occurrence of the C. imicola midge. The model will then be applied for a pixel-based prediction over the Iberian peninsula using remote sensing products for habitat characterization.

  15. RNA Elements in Open Reading Frames of the Bluetongue Virus Genome Are Essential for Virus Replication

    NARCIS (Netherlands)

    Feenstra, F.; Gennip, van H.G.P.; Water, van de S.G.P.; Rijn, van P.A.

    2014-01-01

    Members of the Reoviridae family are non-enveloped multi-layered viruses with a double stranded RNA genome consisting of 9 to 12 genome segments. Bluetongue virus is the prototype orbivirus (family Reoviridae, genus Orbivirus), causing disease in ruminants, and is spread by Culicoides biting midges.

  16. Bluetongue virus nonstructural protein NS3/NS3a is not essential for virus replication

    NARCIS (Netherlands)

    Gennip, van H.G.P.; Water, van de S.G.P.; Rijn, van P.A.

    2014-01-01

    Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is

  17. Simulating spread of Bluetongue Virus by flying vectors between hosts on pasture

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Bødker, Rene; Enøe, Claes

    2012-01-01

    and display search behavior to locate areas with hosts. We also include wind spread of vectors, host movements, and vector seasonality. Results show that temperature and seasonality of vectors determines the period in which an incursion of Bluetongue may lead to epidemic spread in Denmark. Within this period...

  18. Seroprevalence of bluetongue disease in sheep in west and northwest provinces of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Khezri

    2013-09-01

    Full Text Available The objective of this study was to describe the seroprevalence rates of bluetongue virus (BTV in sheep in west and northwest provinces of Iran. Bluetongue virus, an economically important orbivirus of the Reoviridae family, causes a hemorrhagic disease mainly in sheep and occasionally in cattle and some species of deer. Bluetongue virus is transmitted between its mammalian hosts by certain species of biting midges (Culicoides spp. and it can infect all ruminant species. Overall, 26 serotypes have been reported around the world. Due to its economic impact, bluetongue (BT is an Office of International des Epizooties (OIE-listed disease. A total of 756 sera samples collected during 2007-2008, were available. Sera were tested with competitive enzyme-linked immunosorbent assay (C-ELISA. The seroprevalence rate in sheep was 40.87%. The rate of positivity in sheep in west and northwest was 46.10% and 33.75%, respectively. The highest prevalence of antibodies in serum was in West Azerbaijan (64.86%, and lower was in Ardabil (23.77%.

  19. Bluetongue disease and seroprevalence in South American camelids from the northwestern region of the United States.

    Science.gov (United States)

    Allen, Andrew J; Stanton, James B; Evermann, James F; Fry, Lindsay M; Ackerman, Melissa G; Barrington, George M

    2015-03-01

    In late summer/early fall of 2013, 2 South American camelids from central Washington were diagnosed with fatal bluetongue viral disease, an event which is rarely reported. A 9-year-old intact male llama (Lama glama), with a 1-day history of anorexia, recumbency, and dyspnea before death. Abundant foam discharged from the mouth and nostrils, and the lungs were severely edematous on postmortem examination. Histologically, there was abundant intra-alveolar edema with fibrin. Hemorrhage and edema disrupted several other organs. Bluetongue viral RNA was detected by reverse transcription polymerase chain reaction (RT-PCR), and serotype 11 was identified by sequencing a segment of the VP2 outer capsid gene. Approximately 1 month later, at a site 150 miles north of the index case, a 2-year-old female alpaca with similar, acutely progressive clinical signs was reported. A postmortem examination was performed, and histologic lesions from the alpaca were similar to those of the llama, and again serotype 11 was detected by PCR. The occurrence of bluetongue viral infection and disease is described in the context of seasonal Bluetongue virus activity within the northwestern United States and southwestern Canada. © 2015 The Author(s).

  20. Disa vaccines for Bluetongue: A novel vaccine approach for insect-borne diseases

    Science.gov (United States)

    Bluetongue virus (BTV) lacking functional NS3/NS3a protein is named Disabled Infectious Single Animal (DISA) vaccine. The BT DISA vaccine platform is broadly applied by exchange of serotype specific proteins. BT DISA vaccines are produced in standard cell lines in established production facilities, ...

  1. Sero-prevalence study of bluetongue infection in sheep and goats in ...

    African Journals Online (AJOL)

    Result of this study showed that small ruminant dwelling in and around the small ruminant breed improvement centers are exposed to bluetongue virus. In the present study areas there were no observation of clinical cases in any species of animals. This indicates that local breed of animals are resistant to clinical disease of ...

  2. Prevalence of bluetongue virus infection and associated risk factors among cattle in North Kordufan State, Western Sudan.

    Science.gov (United States)

    Adam, Ibrahim A; Abdalla, Mohamed A; Mohamed, Mohamed E H; Aradaib, Imadeldin E

    2014-04-24

    Bluetongue virus causes febrile disease in sheep and a fatal hemorrhagic infection in North American White-tailed deer. However, in cattle the disease is typically asymptomatic and no clinical overt disease is associated with bluetongue infection. Bluetongue virus activity has been detected in Khartoum, Sennar and South Darfur states of the Sudan. Currently, no information is available in regard to previous exposure of livestock to Bluetongue virus in North Kordufan State, the largest livestock producing region in the country. The present study was conducted to determine the prevalence of bluetongue antibodies and to identify the potential risk factors associated with the presence of bluetongue antibodies among cattle in North Kordufan State, Sudan. A total of 299 bovine blood samples were collected randomly from six localities in North Kordufan State and were tested by enzyme-linked immunosorbent assay (ELISA) for detection of BTV-specific immunoglobulin G (IgG) antibodies. The serological evidence of Bluetongue virus infection was observed in 58 out of 299 cows, accounting for a 19.4% prevalence rate among cattle in North Kordufan State. Older cattle (>2 years of age) had four times the odds to be infected with BTV compared to young cattle (OR = 4.309, CI = 1.941-9.567, p-value = 0.01). Application of preventive measures, such as spraying or dipping with insecticide protects cattle against Bluetongue infection. Application of vector control measures decreased the odds for bluetongue seropositivity by 7 times (OR = 7.408, CI = 3.111-17.637, p-value = 0.01). The results of this study indicated that age and application of routine insecticides are influential risk factors for seroprevalence of Bluetongue in cattle. Surveillance of Bluetongue virus should be extended to include other susceptible animals and to study the distribution of the insect vectors in the region to better predict and respond to BTV outbreak in the State of North Kordufan

  3. Molecular epidemiology of bluetongue virus serotype 1 isolated in 2006 from Algeria.

    Science.gov (United States)

    Cêtre-Sossah, C; Madani, H; Sailleau, C; Nomikou, K; Sadaoui, H; Zientara, S; Maan, S; Maan, N; Mertens, P; Albina, E

    2011-12-01

    This study reports on an outbreak of disease that occurred in central Algeria during July 2006. Sheep in the affected area presented clinical signs typical of bluetongue (BT) disease. A total of 5245 sheep in the affected region were considered to be susceptible, with 263 cases and thirty-six deaths. Bluetongue virus (BTV) serotype 1 was isolated and identified as the causative agent. Segments 2, 7 and 10 of this virus were sequenced and compared with other isolates from Morocco, Italy, Portugal and France showing that they all belong to a 'western' BTV group/topotype and collectively represent a western Mediterranean lineage of BTV-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Establishment of an early warning system against bluetongue virus in Switzerland.

    Science.gov (United States)

    Racloz, V; Straver, R; Kuhn, M; Thur, B; Vanzetti, T; Stärk, K D C; Griot, C; Cagienard, A

    2006-11-01

    Bluetongue (BT) is a vector-borne animal disease of economical importance due to the international trade restrictions likely to be put into place in a country once the infection is discovered. The presence of BT and its vectors in countries adjacent to Switzerland stresses the need of implementing a surveillance system and to raise disease awareness among potential stakeholders. A national survey in Switzerland 2003 indicated freedom of Bluetongue virus (BTV), although a single individual of the main BT vector Culicoides imicola was caught in the canton of Ticino. The survey also demonstrated that potential BT vectors, C. obsoletus and C. pulicaris are locally abundant in Switzerland. Therefore, a new surveillance method based on sentinel herds in high risk areas was implemented in 2004 for the early detection of both an incursion of BT vectors into Switzerland, and potential virus circulation among cattle.

  5. A novel Bluetongue virus serotype 3 strain in Tunisia, November 2016.

    Science.gov (United States)

    Sghaier, S; Lorusso, A; Portanti, O; Marcacci, M; Orsini, M; Barbria, M E; Mahmoud, A S; Hammami, S; Petrini, A; Savini, G

    2017-06-01

    Since 1998, southern Europe has experienced multiple incursions of different serotypes and topotypes of Bluetongue virus, a vector-borne transmitted virus, the causative agent of Bluetongue (BT), a major disease of ruminants. Some of these incursions originated from northern Africa, likely because of wind-blown dissemination of infected midges. In this report, we describe the detection and whole genome characterization of a novel BTV-3 strain identified in a symptomatic sheep in Tunisia. Sequences were immediately deposited with the GenBank Database under Accession Nos KY432369-KY432378. Alert and preparedness are requested to face the next vector seasons in northern Africa and the potential incursion of this novel strain in southern Europe. © 2017 Blackwell Verlag GmbH.

  6. Modelling spread of Bluetongue and other vector borne diseases in Denmark and evaluation of intervention strategies

    DEFF Research Database (Denmark)

    Græsbøll, Kaare

    that describes spread of disease using vectors or hosts as agents of the spread. The model is run with bluetongue as the primary case study, and it is demonstrated how an epidemic outbreak of bluetongue 8 in Denmark is sensitive to the use of pasture, climate, vaccination, vector abundance, and flying parameters......The main outcome of this PhD project is a generic model for non-contagious infectious vector-borne disease spread by one vector species between up to two species of hosts distributed on farms and pasture. The model features a within-herd model of disease, combined with a triple movement kernel....... In constructing a more process oriented agent-based approach to spread modeling new parameters describing vector behavior were introduced. When these vector flying parameters have been quantified by experiments, this model can be implemented on areas naïve to the modeled disease with a high predictive power...

  7. Toggenburg Orbivirus, a new bluetongue virus: initial detection, first observations in field and experimental infection of goats and sheep.

    Science.gov (United States)

    Chaignat, Valérie; Worwa, Gabriella; Scherrer, Nicole; Hilbe, Monika; Ehrensperger, Felix; Batten, Carrie; Cortyen, Mandy; Hofmann, Martin; Thuer, Barbara

    2009-07-02

    A novel bluetongue virus termed "Toggenburg Orbivirus" (TOV) was detected in two Swiss goat flocks. This orbivirus was characterized by sequencing of 7 of its 10 viral genome segments. The sequencing data revealed that this virus is likely to represent a new serotype of bluetongue virus [Hofmann, M.A., Renzullo, S., Mader, M., Chaignat, V., Worwa, G., Thuer, B., 2008b. Genetic characterization of Toggenburg Orbivirus (TOV) as a tentative 25th serotype of bluetongue virus, detected in goats from Switzerland. Emerg. Infect. Dis. 14, 1855-1861]. In the field, no clinical signs were observed in TOV-infected adult goats; however, several stillborn and weak born kids were reported. Although born during a period of extremely low vector activity, one of these kids was found to be antibody and viral genome positive and died 3.5 weeks postpartum. Experimental infection of goats and sheep, using TOV-positive field blood samples, was performed to assess the pathogenicity of this virus. Goats did not show any clinical or pathological signs, whereas in sheep mild bluetongue-like clinical signs were observed. Necropsy of sheep demonstrated bluetongue-typical hemorrhages in the wall of the pulmonary artery. Viral RNA was detected in organs, e.g. spleen, palatine tonsils, lung and several lymph nodes of three experimentally infected animals. Unlike other bluetongue virus serotypes, it was not possible to propagate the virus, either from naturally or experimentally infected animals in any of the tested mammalian or insect cell lines or in embryonated chicken eggs. In small ruminants, TOV leads to mild bluetongue-like symptoms. Further investigations about prevalence of this virus are needed to increase the knowledge on its epidemiology.

  8. Bluetongue: a historical and epidemiological perspective with the emphasis on South Africa

    Directory of Open Access Journals (Sweden)

    Coetzee Peter

    2012-09-01

    Full Text Available Abstract Bluetongue (BT is a non-contagious, infectious, arthropod transmitted viral disease of domestic and wild ruminants that is caused by the bluetongue virus (BTV, the prototype member of the Orbivirus genus in the family Reoviridae. Bluetongue was first described in South Africa, where it has probably been endemic in wild ruminants since antiquity. Since its discovery BT has had a major impact on sheep breeders in the country and has therefore been a key focus of research at the Onderstepoort Veterinary Research Institute in Pretoria, South Africa. Several key discoveries were made at this Institute, including the demonstration that the aetiological agent of BT was a dsRNA virus that is transmitted by Culicoides midges and that multiple BTV serotypes circulate in nature. It is currently recognized that BT is endemic throughout most of South Africa and 22 of the 26 known serotypes have been detected in the region. Multiple serotypes circulate each vector season with the occurrence of different serotypes depending largely on herd-immunity. Indigenous sheep breeds, cattle and wild ruminants are frequently infected but rarely demonstrate clinical signs, whereas improved European sheep breeds are most susceptible. The immunization of susceptible sheep remains the most effective and practical control measure against BT. In order to protect sheep against multiple circulating serotypes, three pentavalent attenuated vaccines have been developed. Despite the proven efficacy of these vaccines in protecting sheep against the disease, several disadvantages are associated with their use in the field.

  9. VP2-serotyped live-attenuated bluetongue virus without NS3/NS3a expression provided serotype-specific protection and enables DIVA.

    NARCIS (Netherlands)

    Feenstra, F.; Maris-Veldhuis, M.A.; Daus, F.J.; Tacken, M.G.J.; Moormann, R.J.M.; Gennip, van H.G.P.; Rijn, van P.A.

    2014-01-01

    Bluetongue virus (BTV) causes Bluetongue in ruminants and is transmitted by Culicoides biting midges. Vaccination is the most effective measure to control vector borne diseases; however, there are 26 known BTV serotypes showing little cross protection. The BTV serotype is mainly determined by genome

  10. A Multiplex Real-time Reverse Transcription Polymerase Chain Reaction Assay for Detection and Differentiation of Bluetongue Virus and Epizootic Hemorrhagic Disease Virus Serogroups

    Science.gov (United States)

    Bluetongue virus (BTV) causes disease in domestic and wild ruminants resulting in significant economic loss. The closely related Epizootic hemorrhagic diseases virus (EHDV) has been associated with bluetongue-like disease in cattle. Although US EHDV strains have not been experimentally proven to cau...

  11. A DIVA system based on the detection of antibodies to non-structural protein 3 (NS3) of Bluetongue virus

    OpenAIRE

    2009-01-01

    Abstract Vaccination programs for the control of bluetongue (BT) in ruminants have limitations due to difficulties in differentiating between vaccinated and virus infected animals (DIVA). To overcome this problem a DIVA test that looks at a differential immune response to bluetongue virus (BTV) non-structural protein 3 (NS3) was developed. The NS3 encoding gene of strain BTV4/22045/PT04 was inserted into expression vector pET-28a and expressed in Escherichia coli strain JM109. Reco...

  12. Milk concentration improves Bluetongue antibody detection by use of an indirect ELISA.

    Science.gov (United States)

    Chaignat, Valérie; Nitzsche, Sabine; Schärrer, Sara; Feyer, Dora; Schwermer, Heinzpeter; Thur, Barbara

    2010-07-14

    A national Bluetongue antibody surveillance in cattle through bulk milk was conducted in Switzerland between July 2007 and June 2008. Using ID Screen Bluetongue Milk ELISA (ID VET, Montpellier, France), samples from 15 out of 210 dairy farms at least once gave a positive result. In only three of these herds bluetongue positive animals were found. Therefore, specificity for bulk milk was not as good as expected and when individual milk samples were tested, it was even lower. As further investigations of positive results were time-consuming and no other ELISA was available at that time, we aimed at discriminating false from true positive samples with a confirmatory test using a protein precipitation method followed by retesting with the same ELISA. Additionally, we examined whether testing of single milk samples can reliably be used to assess status of cows, and whether sampling at the beginning or at the end of milking, as well as freezing and thawing of the milk could influence the performance of the test. Screening with ID VET milk ELISA and confirmatory testing after protein precipitation yielded a clear increase of specificity without any loss of sensitivity in both bulk and single milk samples. This testing scheme allowed minimizing follow-up investigations by blood testing. Antibody levels in plasma and milk showed a good correlation. Tested by logistic regression, none of the possible influencing factors (time point of sample collection, freezing, or milk content of the samples) had a significant influence on the test performance. (c) 2009 Elsevier B.V. All rights reserved.

  13. The Immatures of Culicoides trilineatus (Diptera: Ceratopogonidae) Potential Vector of the Bluetongue Virus.

    Science.gov (United States)

    Diaz, F; Mangudo, C; Spinelli, G R; Gleiser, R M; Ronderos, M M

    2018-03-05

    The fourth instar larva and pupa of Culicoides trilineatus Fox (Diptera, Ceratopogonidae), a species considered as potential vector of the bluetongue virus in Central and South America, are described, illustrated, and photomicrographed for the first time by using binocular, phase-contrast, and scanning electron microscopy. The immatures were collected by using a siphon bottle in tree holes in Salta Province, Argentina, transported to the laboratory, and there reared to the adult's emergence. They are compared with the immatures of Culicoides debilipalpis Lutz (Diptera, Ceratopogonidae), another Neotropical species that develops in tree holes. Details on larval biology and habitat are given.

  14. Bluetongue surveillance in Switzerland in 2003: a serological and entomological survey.

    Science.gov (United States)

    Cagienard, A; Dall'Acqua, F; Thür, B; Mellor, P S; Denison, E; Griot, C; Stärk, K D C

    2004-01-01

    At present, Switzerland is considered officially free from bluetongue (BT) disease. Recently reported outbreaks have recorded BT moving north as far as latitude 44 degrees 30'N in Europe and 49 degrees N in Kazakhstan. The absence of clinical disease does not prove freedom from BT virus (BTV) infection. In addition, the occurrence and distribution of the only known biological vector, certain species of Culicoides biting midges (Diptera: Ceratopogonidae), is poorly understood for Switzerland. Consequently the Swiss Veterinary Office initiated a project on BT surveillance in April 2003 on cattle farms. The study comprised serological and entomological activities; initial results are presented.

  15. The use of recombinant DNA technology for the development of a bluetongue virus subunit vaccine

    International Nuclear Information System (INIS)

    Huismans, H.

    1985-01-01

    The double-standed RNA gene coding for the surface antigen responsible for inducing neutralising anti-bodies has been isolated, converted to DNA, and cloned in the plasmid pBR322. So far, only plasmids containing inserts smaller than the gene have been obtained. The recombinant plasmids were isolated by screening for specific antibiotic resistance markers and characterized by size, restriction enzymes and hybridization with a 32 P-labelled DNA probe made with BTV-m RNA as template. Possible strategies for the development of a bluetongue virus submit vaccine are discussed

  16. Transplacental and oral transmission of wild-type bluetongue virus serotype 8 in cattle after experimental infection

    NARCIS (Netherlands)

    Backx, A.; Heutink, C.G.; Rooij, van E.M.A.; Rijn, van P.A.

    2009-01-01

    Potential vertical transmission of wild-type bluetongue virus serotype 8 (BTV-8) in cattle was explored in this experiment. We demonstrated transplacental transmission of wild-type BTV-8 in one calf and oral infection with BTV-8 in another calf. Following the experimental BTV-8 infection of seven

  17. The Mondrian Matrix: Culicoides prevalence and seasonal abundance during the 2006-2008 epizootic of bluetongue in the Netherlands

    NARCIS (Netherlands)

    Meiswinkel, R.; Scolamacchia, F.; Dik, M.; Mudde, J.; Dijkstra, E.; Ven, van der I.J.K.; Elbers, A.R.W.

    2014-01-01

    During the northern Europe epidemic of bluetongue (BT), Onderstepoort-type blacklight traps were used to capture Culicoides Latreille (Diptera: Ceratopogonidae) biting midges weekly between November 2006 and December 2008 on 21 livestock farms in the Netherlands. Proven and potential vectors for the

  18. Sequence analysis of bluetongue virus serotype 8 from the Netherlands 2006 and comparison to other European strains

    NARCIS (Netherlands)

    Maan, S.; Maan, N.S.; Ross-Smith, N.; Batten, C.; Shaw, A.E.; Anthony, S.; Samual, A.R.; Darpel, K.E.; Veronesi, E.; Oura, C.A.L.; Singh, K.P.; Nomikou, K.; Potgieter, A.; Attoui, H.; Rooij, van E.M.A.; Rijn, van P.A.; Clercq, K.; Vandenbussche, F.; Zientara, S.; Breard, E.; Sailleau, C.; Beer, M.; Hoffmann, B.; Mellor, P.S.; Mertens, P.P.C.

    2008-01-01

    During 2006 the first outbreak of bluetongue ever recorded in northern Europe started in Belgium and the Netherlands, spreading to Luxemburg, Germany and north-east France. The virus overwintered (2006¿2007) reappearing during May¿June 2007 with greatly increased severity in affected areas,

  19. Toxorhynchites-fluorescent antibody system for the detection of bluetongue virus from Culicoides midges (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Habibur Rahman, A; Manickam, R

    1997-12-01

    A new system, the Toxorhynchites-fluorescent antibody (TFA) test in which the larvae of Toxorhynchites splendens mosquitoes were used for the detection of bluetongue virus (BTV) from Culicoides midges, was developed. Twenty-seven pools of Culicoides midges were collected from bluetongue-prone areas of Tamil Nadu by use of the light-trap and suction-trap methods. A suspension of each pool was injected intrathoracically into T. splendens IV instar larvae and inoculated onto Vero cell monolayers. An indirect fluorescent antibody technique and an immunoperoxidase test were used to detect BTV antigen in smears of crushed midges, crushed larval head smears after incubation for 7 d at 28 degrees and cell monolayers showing cytopathic effects 48 h post inoculation. The suspensions were also injected intravenously into embryonated chicken eggs, and the characteristic BTV-induced lesion(s), viz. cherry-red appearance of embryos, were observed after 48 h. Virus was confirmed by a qualitative neutralization test conducted simultaneously in embryonated chicken eggs. A total of seven out of 27 samples (26%) were positive for the presence of BTV antigen in all the diagnostic systems used. Since BTV propagates readily in experimentally infected T. splendens larvae and the BTV antigen can be detected by the fluorescent antibody technique with a sensitivity comparable to that for virus propagated in tissue culture and embryonated eggs, the TFA system can be adopted as a new method for the isolation of BTV from vectors. The advantages of the TFA system are discussed.

  20. Isolation and evolutionary analysis of Australasian topotype of bluetongue virus serotype 4 from India.

    Science.gov (United States)

    Reddy, Y V; Susmitha, B; Patil, S; Krishnajyothi, Y; Putty, K; Ramakrishna, K V; Sunitha, G; Devi, B V; Kavitha, K; Deepthi, B; Krovvidi, S; Reddy, Y N; Reddy, G H; Singh, K P; Maan, N S; Hemadri, D; Maan, S; Mertens, P P; Hegde, N R; Rao, P P

    2018-04-01

    Bluetongue (BT) is a Culicoides-borne disease caused by several serotypes of bluetongue virus (BTV). Similar to other insect-borne viral diseases, distribution of BT is limited to distribution of Culicoides species competent to transmit BTV. In the tropics, vector activity is almost year long, and hence, the disease is endemic, with the circulation of several serotypes of BTV, whereas in temperate areas, seasonal incursions of a limited number of serotypes of BTV from neighbouring tropical areas are observed. Although BTV is endemic in all the three major tropical regions (parts of Africa, America and Asia) of the world, the distribution of serotypes is not alike. Apart from serological diversity, geography-based diversity of BTV genome has been observed, and this is the basis for proposal of topotypes. However, evolution of these topotypes is not well understood. In this study, we report the isolation and characterization of several BTV-4 isolates from India. These isolates are distinct from BTV-4 isolates from other geographical regions. Analysis of available BTV seg-2 sequences indicated that the Australasian BTV-4 diverged from African viruses around 3,500 years ago, whereas the American viruses diverged relatively recently (1,684 CE). Unlike Australasia and America, BTV-4 strains of the Mediterranean area evolved through several independent incursions. We speculate that independent evolution of BTV in different geographical areas over long periods of time might have led to the diversity observed in the current virus population. © 2017 Blackwell Verlag GmbH.

  1. Susceptibility of in vitro produced hatched bovine blastocysts to infection with bluetongue virus serotype 8

    Directory of Open Access Journals (Sweden)

    Vandaele Leen

    2011-01-01

    Full Text Available Abstract Bluetongue virus serotype 8 (BTV-8, which caused an epidemic in ruminants in central Western Europe in 2006 and 2007, seems to differ from other bluetongue serotypes in that it can spread transplacentally and has been associated with an increased incidence of abortion and other reproductive problems. For these reasons, and also because BTV-8 is threatening to spread to other parts of the world, there is a need for more information on the consequences of infection during pregnancy. The aim of the present study was to investigate whether hatched (i.e. zona pellucida-free in vitro produced bovine blastocysts at 8-9 days post insemination are susceptible to BTV-8 and whether such infection induces cell death as indicated by apoptosis. Exposure of hatched in vitro produced bovine blastocysts for 1 h to a medium containing 103.8 or 104.9 TCID50 of the virus resulted in active viral replication in between 25 and 100% of the cells at 72 h post exposure. The infected blastocysts also showed growth arrest as evidenced by lower total cell numbers and a significant level of cellular apoptosis. We conclude from this in vitro study that some of the reproductive problems that are reported when cattle herds are infected with BTV-8 may be attributed to direct infection of blastocysts and other early-stage embryos in utero.

  2. Prevalence of bluetongue virus antibodies in sheep from Distrito Federal, Brazil
    Prevalência de anticorpos contra o vírus da língua azul em ovinos do Distrito Federal

    OpenAIRE

    Aurora Maria Guimarães Gouveia; Vitor Salvador Picão Gonçalves; Andrey Pereira Lage; Zélia Inês Portela Lobato; Alessandro de Sá Guimarães; Fernanda Coura Morcatti; Elaine Maria Seles Dorneles; Marcos Bryan Heinemann

    2012-01-01

    The aims of the present study were to determine the prevalence of bluetongue virus antibodies in sheep from Distrito Federal. Sera from 606 sheep of 18 herds were submitted to the agar-gel immunodiffusion for bluetongue virus antibodies. The prevalences of bluetongue infection found in Distrito Federal were 100% (CI 95%: 84.67 to 100.00) for flocks and 52.37% (389/606) (CI 95%: 35.76 to 68.98) for animals. Thus, data from the present study showed that infection by bluetongue virus is highly w...

  3. Complete Genome Sequences of Five Bluetongue Virus (BTV) Vaccine Strains from a Commercial Live Attenuated Vaccine, a BTV-4 Field Strain from South Africa, and a Reassortant Strain Isolated from Experimentally Vaccinated Cattle

    Science.gov (United States)

    Coetzee, Peter; le Grange, Misha; Venter, Estelle H.

    2016-01-01

    This is a report of the complete genome sequences of plaque-selected isolates of each of the five virus strains included in a South African commercial trivalent bluetongue virus (BTV) attenuated live virus vaccine, a BTV-4 field strain isolated from Rustenburg, South Africa, in 2011, and a bluetongue reassortant (bluetongue virus 4 strain 4/O. aries-tc/ZAF/11/OBP-115) isolated from experimentally vaccinated cattle. Full-genome sequencing and phylogenetic analyses show that the bluetongue virus 9 strain 9/B. taurus-tc/ZAF/15/Onderstepoort_B02b is a reassortant virus containing segments from both BTV-9 and BTV-8. PMID:27340051

  4. Standardization and application of real-time polymerase chain reaction for rapid detection of bluetongue virus

    Directory of Open Access Journals (Sweden)

    I. Karthika Lakshmi

    2018-04-01

    Full Text Available Aim: The present study was designed to standardize real-time polymerase chain reaction (PCR for detecting the bluetongue virus from blood samples of sheep collected during outbreaks of bluetongue disease in the year 2014 in Andhra Pradesh and Telangana states of India. Materials and Methods: A 10-fold serial dilution of Plasmid PUC59 with bluetongue virus (BTV NS3 insert was used to plot the standard curve. BHK-21 and KC cells were used for in vitro propagation of virus BTV-9 at a TCID50/ml of 105 ml and RNA was isolated by the Trizol method. Both reverse transcription -PCR and real-time PCR using TaqMan probe were carried out with RNA extracted from virus-spiked culture medium and blood to compare the sensitivity by means of finding out the limit of detection (LoD. The results were verified by inoculating the detected and undetected dilutions onto cell cultures with further cytological (cytopathic effect and molecular confirmation (by BTV-NS1 group-specific PCR. The standardized technique was then applied to field samples (blood for detecting BTV. Results: The slope of the standard curve obtained was -3.23, and the efficiency was 103%. The LoD with RT-PCR was 8.269Ex103 number of copies of plasmid, whereas it was 13 with real-time PCR for plasmid dilutions. Similarly, LoD was determined for virus-spiked culture medium, and blood with both the types of PCR and the values were 103 TCID 50/ml and 104 TCID 50/ml with RT-PCR and 10° TCID 50/ml and 102 TCID 50/ml with real-time PCR, respectively. The standardized technique was applied to blood samples collected from BTV suspected animals; 10 among 20 samples were found positive with Cq values ranging from 27 to 39. The Cq value exhibiting samples were further processed in cell cultures and were confirmed to be BT positive. Likewise, Cq undetected samples on processing in cell cultures turned out to be BTV negative. Conclusion: Real-time PCR was found to be a very sensitive as well as reliable method

  5. Replication-Deficient Particles: New Insights into the Next Generation of Bluetongue Virus Vaccines.

    Science.gov (United States)

    Celma, Cristina C; Stewart, Meredith; Wernike, Kerstin; Eschbaumer, Michael; Gonzalez-Molleda, Lorenzo; Breard, Emmanuel; Schulz, Claudia; Hoffmann, Bernd; Haegeman, Andy; De Clercq, Kris; Zientara, Stephan; van Rijn, Piet A; Beer, Martin; Roy, Polly

    2017-01-01

    Bluetongue virus (BTV) is endemic in many parts of the world, often causing severe hemorrhagic disease in livestock. To date, at least 27 different serotypes have been recognized. Vaccination against all serotypes is necessary to protect susceptible animals and to prevent onward spread of the virus by insect vectors. In our previous studies, we generated replication-deficient (disabled infectious single-cycle [DISC]) virus strains for a number of serotypes and reported preliminary data on their protective efficacy in animals. In this report, to advance the DISC vaccines to the marketplace, we investigated different parameters of these DISC vaccines. First, we demonstrated the genetic stabilities of these vaccine strains and also the complementing cell line. Subsequently, the optimal storage conditions of vaccines, including additives, temperature, and desiccation, were determined and their protective efficacies in animals confirmed. Furthermore, to test if mixtures of different vaccine strains could be tolerated, we tested cocktails of DISC vaccines in combinations of three or six different serotypes in sheep and cattle, the two natural hosts of BTV. Groups of sheep vaccinated with a cocktail of six different vaccines were completely protected from challenge with individual virulent serotypes, both in early challenge and after 5 months of challenge without any clinical disease. There was no interference in protection between the different vaccines. Protection was also achieved in cattle with a mixture of three vaccine strains, albeit at a lesser level than in sheep. Our data support and validate the suitability of these virus strains as the next-generation vaccines for BTV. Bluetongue (BT) is a debilitating and in many cases lethal disease that affects ruminants of economic importance. Classical vaccines that afford protection against bluetongue virus, the etiological agent, are not free from secondary and undesirable effects. A surge in new approaches to produce

  6. Laboratory infection of the mosquito, Toxorhynchites brevipalpis (Diptera, Culicidae), with bluetongue virus.

    Science.gov (United States)

    Jennings, M; Boorman, J; Mellor, P S

    1984-01-01

    The use of Toxorhynchites brevipalpis as a system for the propagation and isolation of bluetongue virus (BTV) was investigated. BTV was found to multiply in T. brevipalpis after infection by intrathoracic inoculation. Virus concentrations of up to 6.9 log 10 TCID50 per mosquito were found within 7 days of infection and were maintained for at least 6 days. Virus could be detected by an indirect fluorescent antibody test applied to head and thorax tissue smears. These results are comparable to those obtained after inoculation of Culicoides variipennis with the same virus. Comparison of T. brevipalpis and baby hamster kidney (BHK) cells as systems for isolation of BTV showed that there was little difference in sensitivity between the two systems for the stock BTV used. Field samples were not available for test. It was concluded that the use of T. brevipalpis as an isolation system for BTV would have no apparent advantage if BHK cells were available.

  7. Using farmers' attitude and social pressures to design voluntary Bluetongue vaccination strategies.

    Science.gov (United States)

    Sok, J; Hogeveen, H; Elbers, A R W; Oude Lansink, A G J M

    2016-10-01

    Understanding the context and drivers of farmers' decision-making is critical to designing successful voluntary disease control interventions. This study uses a questionnaire based on the Reasoned Action Approach framework to assess the determinants of farmers' intention to participate in a hypothetical reactive vaccination scheme against Bluetongue. Results suggest that farmers' attitude and social pressures best explained intention. A mix of policy instruments can be used in a complementary way to motivate voluntary vaccination based on the finding that participation is influenced by both internal and external motivation. Next to informational and incentive-based instruments, social pressures, which stem from different type of perceived norms, can spur farmers' vaccination behaviour and serve as catalysts in voluntary vaccination schemes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Economic comparison of the monitoring programmes for bluetongue vectors in Austria and Switzerland.

    Science.gov (United States)

    Pinior, B; Brugger, K; Köfer, J; Schwermer, H; Stockreiter, S; Loitsch, A; Rubel, F

    2015-05-02

    With the bluetongue virus serotype 8 (BTV-8) outbreak in 2006, vector monitoring programmes (according to EU regulation 1266/2007) were implemented by European countries to obtain information on the spatial distribution of vectors and the vector-free period. This study investigates the vector monitoring programmes in Austria and Switzerland by performing a retrospective cost analysis for the period 2006-2010. Two types of costs were distinguished: costs financed directly via the national bluetongue programmes and costs contributed in-kind by the responsible institutions and agricultural holdings. The total net costs of the monitoring programme in Austria amounted to €1,415,000, whereby in Switzerland the costs were valued at €94,000. Both countries followed the legislation complying with requirements, but differed in regard to sampling frequency, number of trap sites and sampling strategy. Furthermore, the surface area of Austria is twice the area of Switzerland although the number of ruminants is almost the same in both countries. Thus, for comparison, the costs were normalised with regard to the sampling frequency and the number of trap sites. Resulting costs per trap sample comprised €164 for Austria and €48 for Switzerland. In both countries, around 50 per cent of the total costs can be attributed to payments in-kind. The benefit of this study is twofold: first, veterinary authorities may use the results to improve the economic efficiency of future vector monitoring programmes. Second, the analysis of the payment in-kind contribution is of great importance to public authorities as it makes the available resources visible and demonstrates how they have been used. British Veterinary Association.

  9. Virological and pathological findings in Bluetongue virus serotype 8 infected sheep.

    Science.gov (United States)

    Worwa, Gabriella; Hilbe, Monika; Chaignat, Valérie; Hofmann, Martin A; Griot, Christian; Ehrensperger, Felix; Doherr, Marcus G; Thür, Barbara

    2010-08-26

    Twenty-seven sheep of the four most common Swiss breeds and the English breed Poll Dorset were experimentally infected with a northern European field strain of bluetongue virus serotype 8 (BTV-8). Animals of all breeds developed clinical signs, viremia and pathological lesions, demonstrating that BTV-8 is fully capable of replicating and inducing bluetongue disease (BT) in the investigated sheep. Necropsy performed between 10 and 16 days post-infectionem (d.p.i.) revealed BT-typical hemorrhages, effusions, edema, erosions and activation of lymphatic tissues. Hemorrhages on the base of the Arteria pulmonalis and the left Musculus papillaris subauricularis were frequently present. Histology confirmed the macroscopical findings. Using a score system, clinical manifestation and pathology were found to be significantly related. Furthermore, clinical signs and fever were shown to be indicative for the concurrent presence of high amounts of viral ribonucleic acid (RNA) in blood. Spleen, lung, lymph nodes and tonsils from all animals were analyzed regarding viral RNA loads and infectivity using real-time reverse transcriptase PCR (rRT-PCR) and virus isolation in cell culture, respectively. The highest amount of viral RNA was detected in spleen and lung and rRT-PCR revealed to be a more sensitive method for virus detection compared to virus isolation. A long-term follow-up was performed with three sheep showing that BTV-8 viral RNA in blood was present up to 133 d.p.i. and in certain tissues even on 151 d.p.i. No significant breed-related differences were observed concerning clinicopathological picture and viremia, and the Swiss sheep were as susceptible to BTV-8 infection as Poll Dorset sheep, demonstrating a remarkably high virulence of BTV-8 for indigenous sheep breeds. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Two-host, two-vector basic reproduction ratio (R(0 for bluetongue.

    Directory of Open Access Journals (Sweden)

    Joanne Turner

    Full Text Available Mathematical formulations for the basic reproduction ratio (R(0 exist for several vector-borne diseases. Generally, these are based on models of one-host, one-vector systems or two-host, one-vector systems. For many vector borne diseases, however, two or more vector species often co-occur and, therefore, there is a need for more complex formulations. Here we derive a two-host, two-vector formulation for the R(0 of bluetongue, a vector-borne infection of ruminants that can have serious economic consequences; since 1998 for example, it has led to the deaths of well over 1 million sheep in Europe alone. We illustrate our results by considering the situation in South Africa, where there are two major hosts (sheep, cattle and two vector species with differing ecologies and competencies as vectors, for which good data exist. We investigate the effects on R(0 of differences in vector abundance, vector competence and vector host preference between vector species. Our results indicate that R(0 can be underestimated if we assume that there is only one vector transmitting the infection (when there are in fact two or more and/or vector host preferences are overlooked (unless the preferred host is less beneficial or more abundant. The two-host, one-vector formula provides a good approximation when the level of cross-infection between vector species is very small. As this approaches the level of intraspecies infection, a combination of the two-host, one-vector R(0 for each vector species becomes a better estimate. Otherwise, particularly when the level of cross-infection is high, the two-host, two-vector formula is required for accurate estimation of R(0. Our results are equally relevant to Europe, where at least two vector species, which co-occur in parts of the south, have been implicated in the recent epizootic of bluetongue.

  11. Animal viral diseases and global change: Bluetongue and West Nile fever as paradigms

    Directory of Open Access Journals (Sweden)

    Miguel Angel eJimenez-Clavero

    2012-06-01

    Full Text Available Environmental changes have an undoubted influence on the appearance, distribution and evolution of infectious diseases, and notably on those transmitted by vectors. Global change refers to environmental changes arising from human activities affecting the fundamental mechanisms operating in the biosphere. This paper discusses the changes observed in recent times with regard to some important arboviral (arthropod-borne viral diseases of animals, and the role global change could have played in these variations. Two of the most important arboviral diseases of animals, bluetongue and West Nile fever/encephalitis, have been selected as models. In both cases, in the last 15 years an important leap forward has been observed, which has lead to considering them emerging diseases in different parts of the world. Bluetongue, affecting domestic ruminants, has recently afflicted livestock in Europe in an unprecedented epizootic, causing enormous economic losses. West Nile fever/encephalitis affects wildlife (birds, domestic animals (equines and humans, thus, beyond the economic consequences of its occurrence, as a zoonotic disease, it poses an important public health threat. West Nile virus has expanded in the last 12 years worldwide, and particularly in the Americas, where it first occurred in 1999, extending throughout the Americas relentlessly since then, causing a severe epidemic of disastrous consequences for public health, wildlife and livestock. In Europe, West Nile virus is known long time ago, but it is since the last years of the XXth century that its incidence has risen substantially. Circumstances such as global warming, changes in land use and water management, increase in travel, trade of animals, and others, can have an important influence in the observed changes in both diseases. The following question is raised: What is the contribution of global changes to the current increase of these diseases in the world?

  12. Experimental infection of South American camelids with bluetongue virus serotype 8.

    Science.gov (United States)

    Schulz, Claudia; Eschbaumer, Michael; Rudolf, Miriam; König, Patricia; Keller, Markus; Bauer, Christian; Gauly, Matthias; Grevelding, Christoph G; Beer, Martin; Hoffmann, Bernd

    2012-01-27

    Bluetongue (BT) is an infectious, non-contagious disease of wild and domestic ruminants. It is caused by bluetongue virus (BTV) and transmitted by Culicoides biting midges. Since 1998, BT has been emerging throughout Europe, threatening not only the naïve ruminant population. Historically, South American camelids (SAC) were considered to be resistant to BT disease. However, recent fatalities related to BTV in captive SAC have raised questions about their role in BTV epidemiology. Data on the susceptibility of SAC to experimental infection with BTV serotype 8 (BTV-8) were collected in an animal experiment. Three alpacas (Vicugna pacos) and three llamas (Lama glama) were experimentally infected with BTV-8. They displayed very mild clinical signs. Seroconversion was first measured 6-8 days after infection (dpi) by ELISA, and neutralising antibodies appeared 10-13 dpi. BTV-8 RNA levels in blood were very low, and quickly cleared after seroconversion. However, spleens collected post-mortem were still positive for BTV RNA, over 71 days after the last detection in blood samples. Virus isolation was only possible from blood samples of two alpacas by inoculation of highly sensitive interferon alpha/beta receptor-deficient (IFNAR(-/-)) mice. An in vitro experiment demonstrated that significantly lower amounts of BTV-8 adsorb to SAC blood cells than to bovine blood cells. Although this experiment showed that SAC are generally susceptible to a BTV-8 infection, it indicates that these species play a negligible role in BTV epidemiology. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. An investigation into the possibility of bluetongue virus transmission by transfer of infected ovine embryos

    Directory of Open Access Journals (Sweden)

    Estelle H. Venter

    2011-02-01

    Full Text Available Bluetongue (BT, a disease that affects mainly sheep, causes economic losses owing to not only its deleterious effects on animals but also its associated impact on the restriction of movement of livestock and livestock germplasm. The causative agent, bluetongue virus (BTV, can occur in the semen of rams and bulls at the time of peak viraemia and be transferred to a developing foetus. The risk of the transmission of BTV by bovine embryos is negligible if the embryos are washed according to the International Embryo Transfer Society (IETS protocol. Two experiments were undertaken to determine whether this holds for ovine embryos that had been exposed to BTV. Firstly, the oestrus cycles of 12 ewes were synchronised and the 59 embryos that were obtained were exposed in vitro to BTV-2 and BTV-4 at a dilution of 1 x 102.88 and 1 x 103.5 respectively. In the second experiment, embryos were recovered from sheep at the peak of viraemia. A total of 96 embryos were collected from BTV-infected sheep 21 days after infection. In both experiments half the embryos were washed and treated with trypsin according to the IETS protocol while the remaining embryos were neither washed nor treated. All were tested for the presence of BTV using cell culture techniques. The virus was detected after three passages in BHK-21 cells only in one wash bath in the first experiment and two unwashed embryos exposed to BTV-4 at a titre of 1 x 103.5. No embryos or uterine flush fluids obtained from viraemic donors used in the second experiment were positive for BTV after the standard washing procedure had been followed. The washing procedure of the IETS protocol can thus clear sheep embryos infected with BTV either in vitro or in vivo.

  14. The use of infrared thermography as a non-invasive method for fever detection in sheep infected with bluetongue virus.

    Science.gov (United States)

    Pérez de Diego, Ana C; Sánchez-Cordón, Pedro J; Pedrera, Miriam; Martínez-López, Beatriz; Gómez-Villamandos, José C; Sánchez-Vizcaíno, José M

    2013-10-01

    Fever, which is closely linked to viraemia, is considered to be both the main and the earliest clinical sign in sheep infected with bluetongue virus (BTV). The aim of this study was to evaluate the potential use of infrared thermography (IRT) for early detection of fever in sheep experimentally infected with bluetongue virus serotype 1 (BTV-1) and serotype 8 (BTV-8). This would reduce animal stress during experimental assays and assist in the development of a screening method for the identification of fever in animals suspected of being infected with BTV. Rectal and infrared eye temperatures were collected before and after BTV inoculation. The two temperature measures were positively correlated (r=0.504, Pinfrared temperatures was observed when temperatures were above physiological levels. IRT discriminated between febrile and non-febrile sheep with a sensitivity of 85% and specificity of 97%. The results showed that eye temperature measured using IRT was a useful non-invasive method for the assessment of fever in sheep infected with BTV under experimental conditions. Further research is required to evaluate the use of IRT under field conditions to identify potentially infected animals in bluetongue surveillance programmes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Disabled infectious single animal (DISA) vaccine against Bluetongue by deletion of viroporin-like NS3/NS3a expression is effective, safe, and enables differentiation of infected from vaccinated animals (DIVA)

    Science.gov (United States)

    The prototype virus species of the genus Orbivirus (family Reoviridae) is bluetongue virus (BTV) consisting of at least 27 serotypes. Bluetongue is a noncontagious haemorrhagic disease of ruminants spread by competent species of Culicoides biting midges in large parts of the world leading to huge ec...

  16. [Risk assessment of bluetongue disease incursion into Germany using geographic information system (GIS)].

    Science.gov (United States)

    Koslowsky, Sylvia; Staubach, Christoph; Kramer, Mathias; Wieler, Lothar H

    2004-01-01

    Using a geographic information system (GIS), by analysis of the relationship between the spatial distribution of cattle density and the risk factors temperature, altitude and rainfall, we defined geographical habitats enabling optimal development and competence of Culicoides spp. to transmit Bluetongue-Virus (BTV): Risk zones (low, high, highest risk) were identified mainly in Baden-Württemberg, Hessen and Rheinland-Pfalz if persistently infected ruminants are imported into these zones in summer (June to August mainly), based on the current climatic conditions, BTD outbreaks are considered a real possibility. Overwintering of the virus seems unlikely. However, global warming will lead to a steady increase of the size of the risk zones. In addition, the possibility of primary outbreaks increases. The reason for this is not only the expected northern shift of Culicoides imicola, but in addition an increasing vector competence of domestic Culicoides species. We therefore recommend the storage of vaccines as well as conducting ecological studies analysing the presence of Culicoides vectors. Using the data from these studies, it will be possible to produce updated quantitative risk assessment via GIS.

  17. Cost distribution of bluetongue surveillance and vaccination programmes in Austria and Switzerland (2007–2016)

    Science.gov (United States)

    Pinior, Beate; Loitsch, Angelika; Stockreiter, Simon; Hutter, Sabine; Richter, Veronika; Lebl, Karin; Schwermer, Heinzpeter; Käsbohrer, Annemarie

    2018-01-01

    Bluetongue virus (BTV) is an emerging transboundary disease in Europe, which can cause significant production losses among ruminants. The analysis presented here assessed the costs of BTV surveillance and vaccination programmes in Austria and Switzerland between 2007 and 2016. Costs were compared with respect to time, type of programme, geographical area and who was responsible for payment. The total costs of the BTV vaccination and surveillance programmes in Austria amounted to €23.6 million, whereas total costs in Switzerland were €18.3 million. Our analysis demonstrates that the costs differed between years and geographical areas, both within and between the two countries. Average surveillance costs per animal amounted to approximately €3.20 in Austria compared with €1.30 in Switzerland, whereas the average vaccination costs per animal were €6.20 in Austria and €7.40 in Switzerland. The comparability of the surveillance costs is somewhat limited, however, due to differences in each nation’s surveillance (and sampling) strategy. Given the importance of the export market for cattle production, investments in such programmes are more justified for Austria than for Switzerland. The aim of the retrospective assessment presented here is to assist veterinary authorities in planning and implementing cost-effective and efficient control strategies for emerging livestock diseases. PMID:29363572

  18. Cost distribution of bluetongue surveillance and vaccination programmes in Austria and Switzerland (2007-2016).

    Science.gov (United States)

    Pinior, Beate; Firth, Clair L; Loitsch, Angelika; Stockreiter, Simon; Hutter, Sabine; Richter, Veronika; Lebl, Karin; Schwermer, Heinzpeter; Käsbohrer, Annemarie

    2018-03-03

    Bluetongue virus (BTV) is an emerging transboundary disease in Europe, which can cause significant production losses among ruminants. The analysis presented here assessed the costs of BTV surveillance and vaccination programmes in Austria and Switzerland between 2007 and 2016. Costs were compared with respect to time, type of programme, geographical area and who was responsible for payment. The total costs of the BTV vaccination and surveillance programmes in Austria amounted to €23.6 million, whereas total costs in Switzerland were €18.3 million. Our analysis demonstrates that the costs differed between years and geographical areas, both within and between the two countries. Average surveillance costs per animal amounted to approximately €3.20 in Austria compared with €1.30 in Switzerland, whereas the average vaccination costs per animal were €6.20 in Austria and €7.40 in Switzerland. The comparability of the surveillance costs is somewhat limited, however, due to differences in each nation's surveillance (and sampling) strategy. Given the importance of the export market for cattle production, investments in such programmes are more justified for Austria than for Switzerland. The aim of the retrospective assessment presented here is to assist veterinary authorities in planning and implementing cost-effective and efficient control strategies for emerging livestock diseases. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Detection in and circulation of Bluetongue virus among domestic ruminants in Madagascar.

    Science.gov (United States)

    Andriamandimby, Soa Fy; Viarouge, Cyril; Ravalohery, Jean-Pierre; Reynes, Jean-Marc; Sailleau, Corinne; Tantely, Michael Luciano; Elissa, Nohal; Cardinale, Eric; Sall, Amadou Alpha; Zientara, Stephan; Heraud, Jean-Michel

    2015-04-17

    So far, no published data was available concerning the circulation of Bluetongue virus (BTV) in Madagascar. During a survey on Rift Valley Fever, we were able to detect a virus belonging to BTV. Therefore, we conducted a study aiming at characterizing molecularly the BTV isolated and assess the importance of circulation of BTV in Madagascar. A total of 4393 sera from ruminants selected randomly by stratification and sampled in 30 districts of Madagascar were tested for BTV. Moreover, 175 cattle were followed during 11 months. Phylogenetic analyses were performed from virus isolated from unfed pools of mosquitoes. Overall, the estimated mean seroprevalence of infection at the national level was 95.9% (95% CI: [95.2-96.5]) in cattle and 83.7% (95% CI: [81.4-85.9]) in small ruminants. Estimation of incidence rate was 54 per 100 cattle-years assuming that the incidence rate is constant all year along. Phylogenetic analyses revealed that BTV detected belong to serotype 2. In conclusion, our results showed that BTV is endemic in Madagascar and highly prevalent among cattle. In our study we did not work on the vector involved in transmission of BTV in cattle. Thus, research should be conducted to better describe epidemiology of BTV in Madagascar including vectors and assess economic impact of the disease associated to BTV infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  1. Economic analysis of animal disease outbreaks--BSE and Bluetongue disease as examples.

    Science.gov (United States)

    Gethmann, Jörn; Probst, Carolina; Sauter-Louis, Carola; Conraths, Franz Josef

    2015-01-01

    Although there is a long tradition of research on animal disease control, economic evaluation of control measures is rather limited in veterinary medicine. This may, on the one hand, be due to the different types of costs and refunds and the different people and organizations bearing them, such as animal holders, county, region, state or European Union, but it may also be due to the fact that economic analyses are both complex and time consuming. Only recently attention has turned towards economic analysis in animal disease control. Examples include situations, when decisions between different control measures must be taken, especially if alternatives to culling or compulsory vaccination are under discussion. To determine an optimal combination of control measures (strategy), a cost-benefit analysis should be performed. It is not necessary to take decisions only based on the financial impact, but it becomes possible to take economic aspects into account. To this end, the costs caused by the animal disease and the adopted control measures must be assessed. This article presents a brief overview of the methodological approaches used to retrospectively analyse the economic impact of two particular relevant diseases in Germany in the last few years: Blue-tongue disease (BT) and Bovine Spongiform Encephalopathy (BSE).

  2. Influence of Cellular Trafficking Pathway on Bluetongue Virus Infection in Ovine Cells

    Directory of Open Access Journals (Sweden)

    Bishnupriya Bhattacharya

    2015-05-01

    Full Text Available Bluetongue virus (BTV, a non-enveloped arbovirus, causes hemorrhagic disease in ruminants. However, the influence of natural host cell proteins on BTV replication process is not defined. In addition to cell lysis, BTV also exits non-ovine cultured cells by non-lytic pathways mediated by nonstructural protein NS3 that interacts with virus capsid and cellular proteins belonging to calpactin and ESCRT family. The PPXY late domain motif known to recruit NEDD4 family of HECT ubiquitin E3 ligases is also highly conserved in NS3. In this study using a mixture of molecular, biochemical and microscopic techniques we have analyzed the importance of ovine cellular proteins and vesicles in BTV infection. Electron microscopic analysis of BTV infected ovine cells demonstrated close association of mature particles with intracellular vesicles. Inhibition of Multi Vesicular Body (MVB resident lipid phosphatidylinositol-3-phosphate resulted in decreased total virus titre suggesting that the vesicles might be MVBs. Proteasome mediated inhibition of ubiquitin or modification of virus lacking the PPXY in NS3 reduced virus growth. Thus, our study demonstrated that cellular components comprising of MVB and exocytic pathways proteins are involved in BTV replication in ovine cells.

  3. Co-evolution in a putative bundling signal of bluetongue and epizootic hemorrhagic disease viruses.

    Science.gov (United States)

    Suzuki, Yoshiyuki

    2017-04-04

    Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) possess a genome of 10 segmented RNAs (S1-S10), one copy of each of which is considered to be packaged in a virion. This selective packaging is thought to be mediated by supramolecular complex formation of the 10 RNAs, through intermolecular base pairing of complementary nucleotide sequences termed the bundling signal. Here, the whole genomic sequences of BTV and EHDV isolates were analyzed to identify co-evolving pairs of complementary nucleotide sequences within and between genomic segments. One co-evolving pair was identified within S5 and another between S5 and S10. The co-evolving pair between S5 and S10, consisting of six bases in each segment, was a candidate for a bundling signal and was identical to one of two putative bundling signals reported in a previous experimental study, validating the effectiveness of the method used in the present study. The six bases in S10 were confirmed to be located in a loop at the end of a stable stem. Although the six bases in S5 were located in a loop at the end of a stem of only four bases long, the complementary nucleotide sequences constituting this stem were, remarkably, the co-evolving pair within S5. These results highlight the importance not only of loops but also of stems in the intermolecular base pairing of bundling signals.

  4. Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe

    Science.gov (United States)

    Guis, Helene; Caminade, Cyril; Calvete, Carlos; Morse, Andrew P.; Tran, Annelise; Baylis, Matthew

    2012-01-01

    Vector-borne diseases are among those most sensitive to climate because the ecology of vectors and the development rate of pathogens within them are highly dependent on environmental conditions. Bluetongue (BT), a recently emerged arboviral disease of ruminants in Europe, is often cited as an illustration of climate's impact on disease emergence, although no study has yet tested this association. Here, we develop a framework to quantitatively evaluate the effects of climate on BT's emergence in Europe by integrating high-resolution climate observations and model simulations within a mechanistic model of BT transmission risk. We demonstrate that a climate-driven model explains, in both space and time, many aspects of BT's recent emergence and spread, including the 2006 BT outbreak in northwest Europe which occurred in the year of highest projected risk since at least 1960. Furthermore, the model provides mechanistic insight into BT's emergence, suggesting that the drivers of emergence across Europe differ between the South and the North. Driven by simulated future climate from an ensemble of 11 regional climate models, the model projects increase in the future risk of BT emergence across most of Europe with uncertainty in rate but not in trend. The framework described here is adaptable and applicable to other diseases, where the link between climate and disease transmission risk can be quantified, permitting the evaluation of scale and uncertainty in climate change's impact on the future of such diseases. PMID:21697167

  5. Culicoides midge bites modulate the host response and impact on bluetongue virus infection in sheep.

    Science.gov (United States)

    Pages, Nonito; Bréard, Emmanuel; Urien, Céline; Talavera, Sandra; Viarouge, Cyril; Lorca-Oro, Cristina; Jouneau, Luc; Charley, Bernard; Zientara, Stéphan; Bensaid, Albert; Solanes, David; Pujols, Joan; Schwartz-Cornil, Isabelle

    2014-01-01

    Many haematophagous insects produce factors that help their blood meal and coincidently favor pathogen transmission. However nothing is known about the ability of Culicoides midges to interfere with the infectivity of the viruses they transmit. Among these, Bluetongue Virus (BTV) induces a hemorrhagic fever- type disease and its recent emergence in Europe had a major economical impact. We observed that needle inoculation of BTV8 in the site of uninfected C. nubeculosus feeding reduced viraemia and clinical disease intensity compared to plain needle inoculation. The sheep that developed the highest local inflammatory reaction had the lowest viral load, suggesting that the inflammatory response to midge bites may participate in the individual sensitivity to BTV viraemia development. Conversely compared to needle inoculation, inoculation of BTV8 by infected C. nubeculosus bites promoted viraemia and clinical symptom expression, in association with delayed IFN- induced gene expression and retarded neutralizing antibody responses. The effects of uninfected and infected midge bites on BTV viraemia and on the host response indicate that BTV transmission by infected midges is the most reliable experimental method to study the physio-pathological events relevant to a natural infection and to pertinent vaccine evaluation in the target species. It also leads the way to identify the promoting viral infectivity factors of infected Culicoides in order to possibly develop new control strategies against BTV and other Culicoides transmitted viruses.

  6. Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus.

    Directory of Open Access Journals (Sweden)

    Eva Calvo-Pinilla

    Full Text Available Bluetongue virus (BTV belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/- mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+ T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.

  7. Humoral response to 2 inactivated bluetongue virus serotype-8 vaccines in South American camelids.

    Science.gov (United States)

    Zanolari, P; Bruckner, L; Fricker, R; Kaufmann, C; Mudry, M; Griot, C; Meylan, M

    2010-01-01

    Bluetongue virus serotype 8 (BTV-8) has caused disease in domestic ruminants in several countries of northern Europe since 2006. In 2008 a mass-vaccination program was launched in most affected countries using whole virus inactivated vaccines. To evaluate 2 inactivated vaccines (Bovilis BTV 8; BTVPUR AlSap8) for immunogenicity and safety against BTV-8 in South American camelids (SAC) in a field trial. Forty-two SAC (25 Alpacas, 17 Llamas) aged between 1 and 16 years. The animals were vaccinated twice at intervals of 21 days. They were observed clinically for adverse local, systemic, or both reactions throughout the trial. Blood samples collected on days 0, 14, 21, 43, and 156 after vaccination were tested for the presence of BTV-8 virus by real time-polymerase chain reaction and of specific antibodies by competitive ELISA and a serum neutralization test. All vaccinated animals developed antibodies to BTV-8 after the 2nd administration of the vaccine. No adverse effects were observed except for moderate local swellings at the injection site, which disappeared within 21 days. Slightly increased body temperatures were only observed in the first 2 days after vaccination. The BTV was not detected in any of the samples analyzed. The administration of the 2 inactivated commercial vaccines was safe and induced seroconversion against BTV-8 in all vaccinated animals. The results of this study suggest that 2 doses injected 3 weeks apart is a suitable vaccination regimen for SAC.

  8. Epidemiological characteristics and clinicopathological features of bluetongue in sheep and cattle, during the 2014 BTV serotype 4 incursion in Greece.

    Science.gov (United States)

    Katsoulos, Panagiotis-Dimitrios; Giadinis, Nektarios D; Chaintoutis, Serafeim C; Dovas, Chrysostomos I; Kiossis, Evangelos; Tsousis, Georgios; Psychas, Vassilios; Vlemmas, Ioannis; Papadopoulos, Theologos; Papadopoulos, Orestis; Zientara, Stéphan; Karatzias, Harilaos; Boscos, Constantinos

    2016-03-01

    During 2014, an outbreak of Bluetongue virus (BTV) infections attributed to serotype 4 occurred in Greece and spread to south-eastern Europe. In the present article, the clinical and epidemiological data of 15 sheep flocks and 5 dairy cattle herds affected in Greece are described. In sheep, the most frequent clinical signs observed were fever, hyporexia, and edema of the face. A number of clinically affected sheep had chronic laminitis resulting in chronic lameness. Confirmation of suspect clinical cases was performed using BTV-specific real-time RT-PCR, and serotype 4-specific RT-PCR. The average morbidity of bluetongue in the sheep flocks was estimated to be 15.3 % (95 % C.I. 6.8-23.8 %) and the average mortality and case fatality were 4.5 % (95 % C.I. 1.5-7.6 %) and 32.0 % (95 % C.I. 18.1-42.9 %), respectively. The BTV seroprevalence and the ratio of clinical manifestations-to-infections determined in seven of these flocks, were on average 36.5 % (95 % C.I. 15.7-57.3 %) and 24.6 % (95 % C.I. 12.8-36.3 %). BTV ratio of clinical manifestations-to-infections was higher in the imported western European sheep breeds examined compared to the local ones. In dairy cattle, the average herd prevalence of viremia was 48.8 % (95 % C.I. 15.3-82.4 %) and none had signs associated with bluetongue. The results of this study indicate that the 2014 Greek BTV-4 has significant impact on the health status and the viability of sheep in affected flocks but does not cause clinical signs in cattle, despite the high prevalence of viremia.

  9. Climate change and the spread of vector-borne diseases: using approximate Bayesian computation to compare invasion scenarios for the bluetongue virus vector Culicoides imicola in Italy

    NARCIS (Netherlands)

    Mardulyn, P.; Goffredo, M.; Conte, A.; Hendrickx, G.; Meiswinkel, R.; Balenghien, T.; Sghaier, S.; Lohr, Y.; Gilbert, M.

    2013-01-01

    Bluetongue (BT) is a commonly cited example of a disease with a distribution believed to have recently expanded in response to global warming. The BT virus is transmitted to ruminants by biting midges of the genus Culicoides, and it has been hypothesized that the emergence of BT in Mediterranean

  10. Whole genome sequence analysis of recently circulating Bluetongue virus serotype 11 strains from the United States including two domestic canine isolates

    Science.gov (United States)

    Bluetongue virus (BTV) is a vector-transmitted pathogen that that typically infects and causes disease in domestic and wild ruminants. BTV is also known to infect domestic canines as discovered when dogs were vaccinated with a BTV-contaminated vaccine. Canine BTV infections have been documented thro...

  11. Possible routes of introduction of bluetongue serotype 8 virus into the epicentre of the 2006 epidemic in north-western Europe

    NARCIS (Netherlands)

    Mintiens, K.; Meroc, E.; Mellor, P.S.; Staubach, C.; Gerbier, G.; Elbers, A.R.W.; Hendrickx, G.; Clercq, K.

    2008-01-01

    In August 2006, bluetongue (BT) was notified in The Netherlands on several animal holdings. This was the onset of a rapidly spreading BT-epidemic in north-western Europe (latitude >51°N) that affected cattle and sheep holdings in The Netherlands, Belgium, Germany, France and Luxembourg. The

  12. Field observations during the Bluetongue serotype 8 epidemic in 2006 II. Morbidity and mortality rate, case fatality and clinical recovery in sheep and cattle in the Netherlands

    NARCIS (Netherlands)

    Elbers, A.R.W.; Backx, A.; Mintiens, K.; Gerbier, G.; Staubach, C.; Hendrickx, G.; Spek, van der A.N.

    2008-01-01

    Data collected in the Netherlands during the Bluetongue serotype 8 (BTV-8) epidemic indicated that in outbreak cattle herds, predominantly dairy and nursing cows were clinically affected and not young stock, beef cattle, beef calves, or breeding animals. In outbreak sheep flocks, mainly ewes and ¿

  13. Spatial analysis of bluetongue cases and vaccination of Swiss cattle in 2008 and 2009.

    Science.gov (United States)

    Willgert, Katriina J E; Schroedle, Birgit; Schwermer, Heinzpeter

    2011-05-01

    Bluetongue (BT) is a vector-borne viral disease of ruminants. The infection is widespread globally with major implications for international animal trade and production. In 2006, BT virus serotype 8 (BTV-8) was encountered in Europe for the first time, causing extensive production losses and death in susceptible livestock. Following the appearance of BTV-8 in Switzerland in 2007, a compulsory vaccination programme was launched in the subsequent year. Due to social factors and difficulties to reach animals on high pasture, the regional vaccination coverage varied across the country in both 2008 and 2009. In this study, the effect of vaccination on the spatial occurrence of BTV-8 and the associated relative disease risk in Switzerland in 2008 and 2009 were investigated by a spatial Bayesian hierarchical approach. Bayesian posterior distributions were obtained by integrated nested Laplace approximations, a promising alternative to commonly used Markov chain Monte Carlo methods. The number of observed BTV-8 outbreaks in Switzerland decreased notably from 2008 to 2009. However, only a non-significant association between vaccination coverage and the probability of a spatial unit being infected with BTV-8 was identified using the model developed for this study. The relative disease risk varied significantly across the country, with a higher relative risk of BTV-8 infection in western and north-western Switzerland where environmental conditions are more suitable for vector presence and viral transmission. Examination of the spatial correlation between disease occurrence, control measures and associated ecological factors can be valuable in the evaluation and development of disease control programmes, allowing prioritisation of areas with a high relative risk of disease.

  14. Determination of the minimum protective dose for bluetongue virus serotype 2 and 8 vaccines in sheep

    Directory of Open Access Journals (Sweden)

    Jacob Modumo

    2012-08-01

    Full Text Available Recent outbreaks of bluetongue virus (BTV serotypes 2 and 8 in many European countries provided an opportunity to investigate the possibility of improving the safety of the modified live vaccines administered mainly in South Africa. Modified live vaccines (MLV released at a titre of 5 x 104 PFU/mL, raised concerns and prompted the need to determine the minimum titre which will still be protective and also safe. The BTV serotypes 2 and 8 vaccines were produced at the following titres: 102 PFU/mL, 103 PFU/mL and 104 PFU/mL, and were injected into 24 sheep which were then monitored. Blood was collected on days 0, 3, 6, 9, 12, 15, 18, 21, 25, 28 and 4 months post vaccination, for seroconversion and viraemia studies. These sheep were later challenged at 4 months post vaccination using BTV infected cell culture material, they were then observed and bled and again tested for viraemia. There was no viraemia post vaccination, however, a febrile reaction did occur and seroconversion was demonstrated at low titres for both BTV 2 and 8. Although viraemia was demonstrated post challenge, sheep vaccinated with the low titre BTV 2 vaccine showed more than a 90% protection index at a lower titre of 103 PFU/mL, compared with BTV 8 that showed a protection index above 90% at all the titres used. It is recommended that for BTV 2 vaccine, sheep should be vaccinated at a titre of 103 PFU/mL and at a titre of 102 PFU/mL with BTV 8 vaccine.

  15. Determination of the minimum protective dose for bluetongue virus serotype 2 and 8 vaccines in sheep.

    Science.gov (United States)

    Modumo, Jacob; Venter, Estelle H

    2012-08-03

    Recent outbreaks of bluetongue virus (BTV) serotypes 2 and 8 in many European countries provided an opportunity to investigate the possibility of improving the safety of the modified live vaccines administered mainly in South Africa. Modified live vaccines (MLV) released at a titre of 5 x 104 PFU/mL, raised concerns and prompted the need to determine the minimum titre which will still be protective and also safe. The BTV serotypes 2 and 8 vaccines were produced at the following titres: 102 PFU/mL, 103 PFU/mL and 104 PFU/mL, and were injected into 24 sheep which were then monitored. Blood was collected on days 0, 3, 6, 9, 12, 15, 18, 21, 25, 28 and 4 months post vaccination, for seroconversion and viraemia studies. These sheep were later challenged at 4 months post vaccination using BTV infected cell culture material, they were then observed and bled and again tested for viraemia. There was no viraemia post vaccination, however, a febrile reaction did occur and seroconversion was demonstrated at low titres for both BTV 2 and 8. Although viraemia was demonstrated post challenge, sheep vaccinated with the low titre BTV 2 vaccine showed more than a 90% protection index at a lower titre of 103 PFU/mL, compared with BTV 8 that showed a protection index above 90% at all the titres used. It is recommended that for BTV 2 vaccine, sheep should be vaccinated at a titre of 103 PFU/mL and at a titre of 102 PFU/mL with BTV 8 vaccine.

  16. Seroprevalence and S7 gene characterization of bluetongue virus in the West of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Khezri

    Full Text Available Aim: The objective of this study was conducted to determine the seroprevalence and S7 gene characterization of BTV of sheep in the West of Iran, during 2007-2008. Materials and Methods: A total 372 sheep blood samples were collected from known seropositive regions in the West of Iran. Anti-BTV antibodies were detected in the serum samples by group specific, c-ELISA. Extractions of the dsRNA from whole blood samples were carried out. The One-step RT-PCR kit was used for the detection of S7 BTV gene in the blood samples. PCR products of the first amplification (RT-PCR were used; template in the nested PCR. Products were separated by 1.2% Agarose gel electrophoresis. Nested PCR products of S7 segment from positive samples and the reference strain; BTV1 (RSA vvvv/01 were prepared for sequencing. All sequences were subjected to multiple sequence alignments and phylogenetic analysis. Results: The results showed widespread presence of the anti-BTV antibodies in the province's sheep population, where 46.77% of the tested sera were positive on ELISA. Bluetongue viruses were diagnosed in some animals by RT-PCR and nested PCR, by targeting S7 segment. This genome segment was sequenced and analyzed in four samples as a conserved gene in BTV serogroup. This group was very similar to the West BTV strains from US, Africa and Europe. This clustered was categorized with BTV4 from Turkey. Conclusion: Increases in epidemic disease may constitute a serious problem for Iran's rural economy in future, and the situation is likely to worsen in the next few years as the proportion of unvaccinated livestock increases. [Vet World 2012; 5(9.000: 549-555

  17. Determination of the minimum protective dose for bluetongue virus serotype 2 and 8 vaccines in sheep

    Directory of Open Access Journals (Sweden)

    Jacob Modumo

    2012-04-01

    Full Text Available Recent outbreaks of bluetongue virus (BTV serotypes 2 and 8 in many European countries provided an opportunity to investigate the possibility of improving the safety of the modified live vaccines administered mainly in South Africa. Modified live vaccines (MLV released at a titre of 5 x 104 PFU/mL, raised concerns and prompted the need to determine the minimum titre which will still be protective and also safe. The BTV serotypes 2 and 8 vaccines were produced at the following titres: 102 PFU/mL, 103 PFU/mL and 104 PFU/mL, and were injected into 24 sheep which were then monitored. Blood was collected on days 0, 3, 6, 9, 12, 15, 18, 21, 25, 28 and 4 months post vaccination, for seroconversion and viraemia studies. These sheep were later challenged at 4 months post vaccination using BTV infected cell culture material, they were then observed and bled and again tested for viraemia. There was no viraemia post vaccination, however, a febrile reaction did occur and seroconversion was demonstrated at low titres for both BTV 2 and 8. Although viraemia was demonstrated post challenge, sheep vaccinated with the low titre BTV 2 vaccine showed more than a 90% protection index at a lower titre of 103 PFU/mL, compared with BTV 8 that showed a protection index above 90% at all the titres used. It is recommended that for BTV 2 vaccine, sheep should be vaccinated at a titre of 103 PFU/mL and at a titre of 102 PFU/mL with BTV 8 vaccine.

  18. The spread of bluetongue virus serotype 8 in Great Britain and its control by vaccination.

    Directory of Open Access Journals (Sweden)

    Camille Szmaragd

    2010-02-01

    Full Text Available Bluetongue (BT is a viral disease of ruminants transmitted by Culicoides biting midges and has the ability to spread rapidly over large distances. In the summer of 2006, BTV serotype 8 (BTV-8 emerged for the first time in northern Europe, resulting in over 2000 infected farms by the end of the year. The virus subsequently overwintered and has since spread across much of Europe, causing tens of thousands of livestock deaths. In August 2007, BTV-8 reached Great Britain (GB, threatening the large and valuable livestock industry. A voluntary vaccination scheme was launched in GB in May 2008 and, in contrast with elsewhere in Europe, there were no reported cases in GB during 2008.Here, we use carefully parameterised mathematical models to investigate the spread of BTV in GB and its control by vaccination. In the absence of vaccination, the model predicted severe outbreaks of BTV, particularly for warmer temperatures. Vaccination was predicted to reduce the severity of epidemics, with the greatest reduction achieved for high levels (95% of vaccine uptake. However, even at this level of uptake the model predicted some spread of BTV. The sensitivity of the predictions to vaccination parameters (time to full protection in cattle, vaccine efficacy, the shape of the transmission kernel and temperature dependence in the transmission of BTV between farms was assessed.A combination of lower temperatures and high levels of vaccine uptake (>80% in the previously-affected areas are likely to be the major contributing factors in the control achieved in England in 2008. However, low levels of vaccination against BTV-8 or the introduction of other serotypes could result in further, potentially severe outbreaks in future.

  19. Animal viral diseases and global change: bluetongue and West Nile fever as paradigms.

    Science.gov (United States)

    Jiménez-Clavero, Miguel Á

    2012-01-01

    Environmental changes have an undoubted influence on the appearance, distribution, and evolution of infectious diseases, and notably on those transmitted by vectors. Global change refers to environmental changes arising from human activities affecting the fundamental mechanisms operating in the biosphere. This paper discusses the changes observed in recent times with regard to some important arboviral (arthropod-borne viral) diseases of animals, and the role global change could have played in these variations. Two of the most important arboviral diseases of animals, bluetongue (BT) and West Nile fever/encephalitis (WNF), have been selected as models. In both cases, in the last 15 years an important leap forward has been observed, which has lead to considering them emerging diseases in different parts of the world. BT, affecting domestic ruminants, has recently afflicted livestock in Europe in an unprecedented epizootic, causing enormous economic losses. WNF affects wildlife (birds), domestic animals (equines), and humans, thus, beyond the economic consequences of its occurrence, as a zoonotic disease, it poses an important public health threat. West Nile virus (WNV) has expanded in the last 12 years worldwide, and particularly in the Americas, where it first occurred in 1999, extending throughout the Americas relentlessly since then, causing a severe epidemic of disastrous consequences for public health, wildlife, and livestock. In Europe, WNV is known long time ago, but it is since the last years of the twentieth century that its incidence has risen substantially. Circumstances such as global warming, changes in land use and water management, increase in travel, trade of animals, and others, can have an important influence in the observed changes in both diseases. The following question is raised: What is the contribution of global changes to the current increase of these diseases in the world?

  20. Widespread Reassortment Shapes the Evolution and Epidemiology of Bluetongue Virus following European Invasion.

    Directory of Open Access Journals (Sweden)

    Kyriaki Nomikou

    2015-08-01

    Full Text Available Genetic exchange by a process of genome-segment 'reassortment' represents an important mechanism for evolutionary change in all viruses with segmented genomes, yet in many cases a detailed understanding of its frequency and biological consequences is lacking. We provide a comprehensive assessment of reassortment in bluetongue virus (BTV, a globally important insect-borne pathogen of livestock, during recent outbreaks in Europe. Full-genome sequences were generated and analysed for over 150 isolates belonging to the different BTV serotypes that have emerged in the region over the last 5 decades. Based on this novel dataset we confirm that reassortment is a frequent process that plays an important and on-going role in evolution of the virus. We found evidence for reassortment in all ten segments without a significant bias towards any particular segment. However, we observed biases in the relative frequency at which particular segments were associated with each other during reassortment. This points to selective constraints possibly caused by functional relationships between individual proteins or genome segments and genome-wide epistatic interactions. Sites under positive selection were more likely to undergo amino acid changes in newly reassorted viruses, providing additional evidence for adaptive dynamics as a consequence of reassortment. We show that the live attenuated vaccines recently used in Europe have repeatedly reassorted with field strains, contributing to their genotypic, and potentially phenotypic, variability. The high degree of plasticity seen in the BTV genome in terms of segment origin suggests that current classification schemes that are based primarily on serotype, which is determined by only a single genome segment, are inadequate. Our work highlights the need for a better understanding of the mechanisms and epidemiological consequences of reassortment in BTV, as well as other segmented RNA viruses.

  1. Evidence for transmission of bluetongue virus serotype 26 through direct contact.

    Directory of Open Access Journals (Sweden)

    Carrie Batten

    Full Text Available The aim of this study was to assess the mechanisms of transmission of bluetongue virus serotype 26 (BTV-26 in goats. A previous study, which investigated the pathogenicity and infection kinetics of BTV-26 in goats, unexpectedly revealed that one control goat may have been infected through a direct contact transmission route. To investigate the transmission mechanisms of BTV-26 in more detail an experimental infection study was carried out in which three goats were infected with BTV-26, three goats were kept uninfected, but were housed in direct contact with the infected goats, and an additional four goats were kept in indirect contact separated from infected goats by metal gates. This barrier allowed the goats to have occasional face-to-face contact in the same airspace, but feeding, watering, sampling and environmental cleaning was carried out separately. The three experimentally infected goats did not show clinical signs of BTV, however high levels of viral RNA were detected and virus was isolated from their blood. At 21 dpi viral RNA was detected in, and virus was isolated from the blood of the three direct contact goats, which also seroconverted. The four indirect barrier contact goats remained uninfected throughout the duration of the experiment. In order to assess replication in a laboratory model species of Culicoides biting midge, more than 300 Culicoides sonorensis were fed a BTV-26 spiked blood meal and incubated for 7 days. The dissemination of BTV-26 in individual C. sonorensis was inferred from the quantity of virus RNA and indicated that none of the insects processed at day 7 possessed transmissible infections. This study shows that BTV-26 is easily transmitted through direct contact transmission between goats, and the strain does not seem to replicate in C. sonorensis midges using standard incubation conditions.

  2. A spatial simulation model for the dispersal of the bluetongue vector Culicoides brevitarsis in Australia.

    Directory of Open Access Journals (Sweden)

    Joel K Kelso

    Full Text Available The spread of Bluetongue virus (BTV among ruminants is caused by movement of infected host animals or by movement of infected Culicoides midges, the vector of BTV. Biologically plausible models of Culicoides dispersal are necessary for predicting the spread of BTV and are important for planning control and eradication strategies.A spatially-explicit simulation model which captures the two underlying population mechanisms, population dynamics and movement, was developed using extensive data from a trapping program for C. brevitarsis on the east coast of Australia. A realistic midge flight sub-model was developed and the annual incursion and population establishment of C. brevitarsis was simulated. Data from the literature was used to parameterise the model.The model was shown to reproduce the spread of C. brevitarsis southwards along the east Australian coastline in spring, from an endemic population to the north. Such incursions were shown to be reliant on wind-dispersal; Culicoides midge active flight on its own was not capable of achieving known rates of southern spread, nor was re-emergence of southern populations due to overwintering larvae. Data from midge trapping programmes were used to qualitatively validate the resulting simulation model.The model described in this paper is intended to form the vector component of an extended model that will also include BTV transmission. A model of midge movement and population dynamics has been developed in sufficient detail such that the extended model may be used to evaluate the timing and extent of BTV outbreaks. This extended model could then be used as a platform for addressing the effectiveness of spatially targeted vaccination strategies or animal movement bans as BTV spread mitigation measures, or the impact of climate change on the risk and extent of outbreaks. These questions involving incursive Culicoides spread cannot be simply addressed with non-spatial models.

  3. Seroprevalence and Risk Factors of Bluetongue Virus Infection in Tibetan Sheep and Yaks in Tibetan Plateau, China.

    Science.gov (United States)

    Ma, Jian-Gang; Zhang, Xiao-Xuan; Zheng, Wen-Bin; Xu, Ying-Tian; Zhu, Xing-Quan; Hu, Gui-Xue; Zhou, Dong-Hui

    2017-01-01

    Bluetongue (BT), caused by bluetongue virus (BTV), is an arthropod-borne viral disease in ruminants. However, information about BTV infection in yaks in China is limited. Moreover, no such data concerning BTV in Tibetan sheep is available. Therefore, 3771 serum samples were collected from 2187 Tibetan sheep and 1584 yaks between April 2013 and March 2014 from Tibetan Plateau, western China, and tested for BTV antibodies using a commercially available ELISA kit. The overall seroprevalence of BTV was 17.34% (654/3771), with 20.3% (443/2187) in Tibetan sheep and 13.3% (211/1584) in yaks. In the Tibetan sheep group, the seroprevalence of BTV in Luqu, Maqu, Tianzhu, and Nyingchi Prefecture was 20.3%, 20.8%, 20.5%, and 19.1%, respectively. The seroprevalence of BTV in different season groups varied from 16.5% to 23.4%. In the yak group, BTV seroprevalence was 12.6%, 15.5%, and 11.0% in Tianzhu, Maqu, and Luqu counties, respectively. The seroprevalence in different seasons was 12.6%, 15.5%, 15.4%, and 9.0% in spring, summer, autumn, and winter, respectively. The season was the major risk factor concerning BTV infection in yaks ( P Tibetan sheep and yaks provides baseline information for controlling BT in ruminants in western China.

  4. Establishment of a bluetongue virus infection model in mice that are deficient in the alpha/beta interferon receptor.

    Directory of Open Access Journals (Sweden)

    Eva Calvo-Pinilla

    Full Text Available Bluetongue (BT is a noncontagious, insect-transmitted disease of ruminants caused by the bluetongue virus (BTV. A laboratory animal model would greatly facilitate the studies of pathogenesis, immune response and vaccination against BTV. Herein, we show that adult mice deficient in type I IFN receptor (IFNAR((-/- are highly susceptible to BTV-4 and BTV-8 infection when the virus is administered intravenously. Disease was characterized by ocular discharges and apathy, starting at 48 hours post-infection and quickly leading to animal death within 60 hours of inoculation. Infectious virus was recovered from the spleen, lung, thymus, and lymph nodes indicating a systemic infection. In addition, a lymphoid depletion in spleen, and severe pneumonia were observed in the infected mice. Furthermore, IFNAR((-/- adult mice immunized with a BTV-4 inactivated vaccine showed the induction of neutralizing antibodies against BTV-4 and complete protection against challenge with a lethal dose of this virus. The data indicate that this mouse model may facilitate the study of BTV pathogenesis, and the development of new effective vaccines for BTV.

  5. Serological survey of bluetongue virus serotype-8 infection in South American camelids in Switzerland (2007-2008).

    Science.gov (United States)

    Zanolari, P; Chaignat, V; Kaufmann, C; Mudry, M; Griot, C; Thuer, B; Meylan, M

    2010-01-01

    Outbreak of bluetongue virus serotype-8 (BTV-8) infection in domestic ruminants in Northern Europe. To investigate the South American camelids' (SAC) susceptibility to BTV-8 infection, their role in the epidemiology of the disease, and the use of currently available serological screening tests in SAC in an endemic region. Three hundred and fifty-four unvaccinated and 27 vaccinated SAC (170 llamas, 201 alpacas), ranging in age from 1 month to 17 years between June and August 2008. The SAC originated from 44 herds throughout the country, representing 10% of the Swiss SAC population. Prospective, observational study of a convenience sample of SAC. Serum samples were analyzed with 2 serological screening tests. When results diverged, a 3rd ELISA was carried out for confirmation (ID Screen Bluetongue Competition ELISA kit). All sera from the 354 unvaccinated animals were negative in the endemic region. Reliable seroconversion was observed after administration of 2 doses of vaccine. This study suggests a low susceptibility of SAC to BTV-8 despite the presence of the virus in the cattle and small ruminant population, indicating that SAC do not play a major role in the epidemiology of BTV-8. Furthermore, these results indicate that commercially available serological tests for BTV-8 can be used in SAC.

  6. Cross-sectional study of bluetongue virus serotype 8 infection in South American camelids in Germany (2008/2009).

    Science.gov (United States)

    Schulz, Claudia; Eschbaumer, Michael; Ziller, Mario; Wäckerlin, Regula; Beer, Martin; Gauly, Matthias; Grevelding, Christoph G; Hoffmann, Bernd; Bauer, Christian

    2012-11-09

    Bluetongue (BT) is a major disease of ruminant livestock that can have a substantial impact on income and animal welfare. In South American camelids (SAC), fatalities related to bluetongue virus (BTV) infection were reported in Germany and France during the recent BTV-8 and BTV-1 epizootics, which raised concern about the role of SAC in the epidemiology of BTV. Therefore, a large-scale serological and virological study was conducted in Germany from autumn 2008 to spring 2009. Risk factors associated with BTV infection were analysed by multiple logistic regression. These included age, species, gender and housing arrangements of SAC as well as the location of the herds and the presence of ruminants on farms.Altogether, 249 (14.3%) of 1742 SAC were found seropositive by BTV ELISA, and 43 (47.3%) of the 91 herds had at least one BTV-seropositive SAC. However, no BTV RNA was detected in any of the seropositive samples. Seroprevalence depended on the sampling region and probably on age, but not on any other analysed risk factors associated with BTV infection in ruminants. The highest seroprevalence was found in the west of Germany where the BTV-8 epizootic started in 2006. Recorded BTV-8 related disease and fatalities are discussed. Although the prevalence of BTV-8 antibodies was high in some regions, the virological results indicate that SAC play a negligible role in the epidemiology of this virus infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Anthropogenic and meteorological factors influence vector abundance and prevalence of bluetongue virus infection of dairy cattle in California.

    Science.gov (United States)

    Mayo, Christie E; Gardner, Ian A; Mullens, Bradley A; Barker, Christopher M; Gerry, Alec C; Guthrie, Alan J; MacLachlan, N James

    2012-03-23

    Bluetongue is an economically important arboviral disease of ruminants that is transmitted by hematophagous Culicoides midges. In light of dramatic recent changes in the global distribution of bluetongue virus (BTV), the goals of this study were to re-evaluate the prevalence of BTV infection of cattle and abundance of Culicoides midges on individual dairy farms in California. A serosurvey of adult dairy cattle confirmed that BTV infection is prevalent throughout much of the state, although the coastal northwestern region remains free of infection and prevalence varies markedly among farms in the remainder of the state. Intensive sampling for one year of 4 farms in the northern Central Valley of California showed that the abundance of Culicoides midges was markedly different and coincided with the prevalence of BTV infection of sentinel cattle on each farm. Mean maximum and minimum temperatures and other meteorological parameters were similar on all 4 farms, thus we speculate that particular management practices were responsible for both the increased midge abundance and prevalence of BTV infection of cattle at individual farms. Specifically, it is concluded that variation in vector abundance at individual farms most likely is the result of waste-water lagoon and irrigation management practices, leading to higher BTV infection rates among livestock held on farms with more waste-water lagoons and greater acreage of land for waste-water irrigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A side effect of decreased fertility associated with vaccination against bluetongue virus serotype 8 in Holstein dairy cows.

    Science.gov (United States)

    Nusinovici, Simon; Seegers, Henri; Joly, Alain; Beaudeau, François; Fourichon, Christine

    2011-08-01

    Inactivated virus vaccines have been widely used to control bluetongue after introduction of serotype 8 of the bluetongue virus (BTV) in northern Europe in 2006. To evaluate vaccination, quantitative knowledge of its possible side effects is needed. One current adverse reaction with inactivated vaccines is a rise in body temperature, which could reduce cow reproductive performance. The objective of this study was to quantify a possible side effect of vaccination on fertility before the implantation of the embryo of dairy cows under field conditions. The study was performed on herds that were not exposed to BTV. Fertility was assessed by return-to-service following artificial insemination (AI). Biological assumptions for a possible side effect of vaccination were conception failure and embryonic death. Associations between return-to-service rates and vaccine injections were assessed using mixed-logistic regression models and survival analysis. Two models were considered: a 3-week-return-to-service model comparing cows vaccinated between 3 days before and 16 days after AI and unvaccinated cows (assuming an effect on conception failure or early embryonic death), and a 90-day-return-to-service model comparing cows vaccinated between 3 days before and 42 days after AI and unvaccinated cows (assuming an effect on conception failure, early or late embryonic death). Only cows receiving a second vaccine injection between 2 and 7 days after AI had a significantly higher risk of 3-week-return-to-service (RR=1.19 [1.07-1.33]). This corresponds to an increase of return-to-service by 4 percentage points. A side effect of vaccination could be due to early embryonic death. The slight side effect on fertility associated with vaccination was low compared to effects of BTV-8 exposure on fertility. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Monitoring of biting midges (Diptera: Ceratopogonidae: Culicoides Latreille) on farms in Sweden during the emergence of the 2008 epidemic of bluetongue

    DEFF Research Database (Denmark)

    Nielsen, Søren Achim; Nielsen, Boy Overgaard; Chirico, Jan

    2010-01-01

    In light of the emergence of bluetongue in northern Europe, populations of Culicoides species were monitored in 2007-2008 by means of Onderstepoort blacklight suction traps operating at livestock farms in Sweden. The location of the 22 sampling sites ranged from about latitude 55°N to about 68°N....... A total of 61,669 male and female Culicoides were captured, of which, 52,319 were trapped outside the farms and 9,350 in byres or livestock sheds. Thirty-three Culicoides species were recorded, of which, 30 were new to Sweden. The species and their relative abundance and spatial distribution on sites...... are presented. Two species incriminated as vectors of bluetongue virus, viz. Culicoides obsoletus (about 38%) and Culicoides scoticus (about 36%), were predominant and common in the environment of livestock farms practically all over the Swedish mainland, penetrating far north to at least 65°N. The two species...

  10. Entomological research on the vectors of bluetongue disease and the monitoring of activity of Culicoides in the Prishtinë region of Kosova

    OpenAIRE

    Betim Berisha; Izedin Goga; William P. Taylor; Kurtesh Sherifi; Anthony J. Wilsmore; Driton Çaushi; Beqë Hulaj

    2010-01-01

    Clinical bluetongue (BT) caused by BT virus serotype 9 (BTV‑9) was observed in Kosova in 2001 and, although subsequently no further clinical cases was diagnosed, its continuing presence has been demonstrated by serological tests in cattle, sheep and goats. In this study, light traps were placed in stables near Prishtinë to identify possible vectors of BTV in Kosova. Samples were collected from October 2004 until the end of 2006. Culicoides were identified and speciated and results were plotte...

  11. Expected Net Benefit of Vaccinating Rangeland Sheep against Bluetongue Virus Using a Modified-Live versus Killed Virus Vaccine.

    Science.gov (United States)

    Munsick, Tristram R; Peck, Dannele E; Ritten, John P; Jones, Randall; Jones, Michelle; Miller, Myrna M

    2017-01-01

    Recurring outbreaks of bluetongue virus in domestic sheep of the US Intermountain West have prompted questions about the economic benefits and costs of vaccinating individual flocks against bluetongue (BT) disease. We estimate the cost of a BT outbreak on a representative rangeland sheep operation in the Big Horn Basin of the state of Wyoming using enterprise budgets and stochastic simulation. The latter accounts for variability in disease severity and lamb price, as well as uncertainty about when an outbreak will occur. We then estimate the cost of purchasing and administering a BT vaccine. Finally, we calculate expected annual net benefit of vaccinating under various outbreak intervals. Expected annual net benefit is calculated for both a killed virus (KV) vaccine and modified-live virus vaccine, using an observed price of $0.32 per dose for modified-live and an estimated price of $1.20 per dose for KV. The modified-live vaccine's expected annual net benefit has a 100% chance of being positive for an outbreak interval of 5, 10, or 20 years, and a 77% chance of being positive for a 50-year interval. The KV vaccine's expected annual net benefit has a 97% chance of being positive for a 5-year outbreak interval, and a 42% chance of being positive for a 10-year interval. A KV vaccine is, therefore, unlikely to be economically attractive to producers in areas exposed less frequently to BT disease. A modified-live vaccine, however, requires rigorous authorization before legal use can occur in Wyoming. To date, no company has requested to manufacture a modified-live vaccine for commercial use in Wyoming. The KV vaccine poses less risk to sheep reproduction and less risk of unintentional spread, both of which facilitate approval for commercial production. Yet, our results show an economically consequential tradeoff between a KV vaccine's relative safety and higher cost. Unless the purchase price is reduced below our assumed $1.20 per dose, producer adoption of a KV

  12. Prevalence of bluetongue virus antibodies and associated risk factors among cattle in East Darfur State, Western Sudan.

    Science.gov (United States)

    Khair, Hadia Om; Adam, Ibrahim A; Bushara, Shakir B; Eltom, Kamal H; Musa, Nasreen O; Aradaib, Imadeldin E

    2014-02-07

    Bluetongue virus (BTV) is an insect-transmitted virus, which causes bluetongue disease (BT) in sheep and a fatal hemorrhagic infection in North American white-tailed deer. However, in cattle the disease is typically asymptomatic and no overt clinical signs of disease appear to be associated with BTV infection. Serological evidence and isolation of different BTV serotypes have been reported in Sudan, however, no information is currently available in regard to previous exposure of Sudanese livestock to BTV infection in East Darfur State, Sudan. To determine the prevalence of BTV antibodies and to identify the potential risk factors associated with BTV infection among cattle in East Darfur State, Sudan. A total of 224 blood samples were collected randomly from five localities in East Darfur State, Sudan. The serum samples were screened for detection of BTV-specific immunoglobulin G (IgG) antibodies using a competitive enzyme-linked immunosorbent assay (c-ELISA). Serological evidence of BTV infection was observed in 150 out of 224 animals accounting for a 67% prevalence rate among cattle in East Darfur State. Older cattle (>2 years of age) were six times more likely to be infected with BTV (OR = 6.62, CI = 2.87-15.26, p-value = 0.01). Regarding animal source (contact with other herds) as a risk factor, it was shown that cattle purchased from market or introduced from other herds were 3 times at higher risk of being infected with BTV (OR = 3.87, CI = 1.07-13.87, p value = 0.03). Exposure of cattle to the insect vector increased the risk of contracting BTV infection by six times compared to non-exposed cattle (OR = 6.44, CI = 1.53-27.08, p value = 0.01). The present study indicated that age, animal source and the intensity of the insect vector are influential risk factors for BTV infection in cattle in the Darfur region. Surveillance for BTV infection should be extended to include other susceptible ruminants and to study the distribution of the insect vectors to better

  13. Use of mapping and statistical modelling for the prediction of bluetongue occurrence in Switzerland based on vector biology.

    Science.gov (United States)

    Racloz, Vanessa; Presi, Patrick; Vounatsou, Penelope; Schwermer, Heinzpeter; Casati, Simona; Vanzetti, Tullio; Griot, Christian; Stärk, Katarina D C

    2007-01-01

    Due to the spread of bluetongue (BT) in Europe in the last decade, a sentinel surveillance programme was initiated for Switzerland in 2003, consisting of serological sampling of sentinel cattle tested for BT virus antibodies, as well as entomological trapping of Culicoides midges from June until October. The aim of this study was to create a 'suitability map' of Switzerland, indicating areas of potential disease occurrence based on the biological parameters of Obsoletus Complex habitat. Data on Culicoides catches from insect traps together with various environmental parameters were recorded and analysed. A multiple regression analysis was performed to determine correlation between the environmental conditions and vector abundance. Meteorological data were collected from 50 geo-referenced weather stations across Switzerland and maps of temperature, precipitation and altitude were created. A range of values of temperature, precipitation and altitude influencing vector biology were obtained from the literature. The final combined map highlighted areas in Switzerland which are most suitable for vector presence, hence implying a higher probability of disease occurrence given the presence of susceptible animals. The results confirmed the need for an early warning system for the surveillance of BT disease and its vectors in Switzerland.

  14. Protection of Spanish Ibex (Capra pyrenaica) against Bluetongue Virus Serotypes 1 and 8 in a Subclinical Experimental Infection

    Science.gov (United States)

    Lorca-Oró, Cristina; Pujols, Joan; García-Bocanegra, Ignacio; Mentaberre, Gregorio; Granados, José Enrique; Solanes, David; Fandos, Paulino; Galindo, Iván; Domingo, Mariano; Lavín, Santiago; López-Olvera, Jorge Ramón

    2012-01-01

    Many wild ruminants such as Spanish ibex (Capra pyrenaica) are susceptible to Bluetongue virus (BTV) infection, which causes disease mainly in domestic sheep and cattle. Outbreaks involving either BTV serotypes 1 (BTV-1) and 8 (BTV-8) are currently challenging Europe. Inclusion of wildlife vaccination among BTV control measures should be considered in certain species. In the present study, four out of fifteen seronegative Spanish ibexes were immunized with a single dose of inactivated vaccine against BTV-1, four against BTV-8 and seven ibexes were non vaccinated controls. Seven ibexes (four vaccinated and three controls) were inoculated with each BTV serotype. Antibody and IFN-gamma responses were evaluated until 28 days after inoculation (dpi). The vaccinated ibexes showed significant (P<0.05) neutralizing antibody levels after vaccination compared to non vaccinated ibexes. The non vaccinated ibexes remained seronegative until challenge and showed neutralizing antibodies from 7 dpi. BTV RNA was detected in the blood of non vaccinated ibexes from 2 to the end of the study (28 dpi) and in target tissue samples obtained at necropsy (8 and 28 dpi). BTV-1 was successfully isolated on cell culture from blood and target tissues of non vaccinated ibexes. Clinical signs were unapparent and no gross lesions were found at necropsy. Our results show for the first time that Spanish ibex is susceptible and asymptomatic to BTV infection and also that a single dose of vaccine prevents viraemia against BTV-1 and BTV-8 replication. PMID:22666321

  15. The economic impact of Bluetongue and other orbiviruses in sub-Saharan Africa, with special reference to Southern Africa.

    Science.gov (United States)

    Grewar, John Duncan

    2016-09-30

    Bluetongue (BT) and African horse sickness (AHS) are considered the most important orbiviral diseases in Southern Africans countries. The general endemic status makes these diseases challenging to be quanti ed in terms of their economic impact. Using country reported data from BT and AHS outbreaks and cases, as well as international trade data, the economic impact of BT and AHS is evaluated on local, regional, and global scales. Local scale impact in the Southern African region is underestimated as shown by the underreporting of BT and AHS. Exceptions occur during epidemic cycles of the diseases and when the diseases impact regional animal movement and global trade, as in the case of AHS in South Africa. While BT is not directly implicated as a signi cant non-tari barrier for regional movement, there are unspeci ed clauses in import permits which refer to the 'OIE listed diseases' and the freedom thereof includes endemic diseases like BT. African horse sickness has a much more tangible regional and global economic impact because of movement restrictions within AHS control zones in South Africa and through international movement of horses from this country.

  16. Protection of Spanish Ibex (Capra pyrenaica against Bluetongue virus serotypes 1 and 8 in a subclinical experimental infection.

    Directory of Open Access Journals (Sweden)

    Cristina Lorca-Oró

    Full Text Available Many wild ruminants such as Spanish ibex (Capra pyrenaica are susceptible to Bluetongue virus (BTV infection, which causes disease mainly in domestic sheep and cattle. Outbreaks involving either BTV serotypes 1 (BTV-1 and 8 (BTV-8 are currently challenging Europe. Inclusion of wildlife vaccination among BTV control measures should be considered in certain species. In the present study, four out of fifteen seronegative Spanish ibexes were immunized with a single dose of inactivated vaccine against BTV-1, four against BTV-8 and seven ibexes were non vaccinated controls. Seven ibexes (four vaccinated and three controls were inoculated with each BTV serotype. Antibody and IFN-gamma responses were evaluated until 28 days after inoculation (dpi. The vaccinated ibexes showed significant (P<0.05 neutralizing antibody levels after vaccination compared to non vaccinated ibexes. The non vaccinated ibexes remained seronegative until challenge and showed neutralizing antibodies from 7 dpi. BTV RNA was detected in the blood of non vaccinated ibexes from 2 to the end of the study (28 dpi and in target tissue samples obtained at necropsy (8 and 28 dpi. BTV-1 was successfully isolated on cell culture from blood and target tissues of non vaccinated ibexes. Clinical signs were unapparent and no gross lesions were found at necropsy. Our results show for the first time that Spanish ibex is susceptible and asymptomatic to BTV infection and also that a single dose of vaccine prevents viraemia against BTV-1 and BTV-8 replication.

  17. Structure based modification of Bluetongue virus helicase protein VP6 to produce a viable VP6-truncated BTV

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Eiko [Microbiology and Immunology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe-City 657-8501 (Japan); Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT (United Kingdom); Leon, Esther; Matthews, Steve J. [Division of Molecular Biosciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Roy, Polly, E-mail: polly.roy@lshtm.ac.uk [Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT (United Kingdom)

    2014-09-05

    Highlights: • NMR analysis on BTV VP6 reveals two large loop regions. • The loss of a loop (aa 34–130) does not affect the overall fold of the protein. • A region of VP6 (aa 34–92) is not required for BTV replication. • A region of VP6 (aa 93–130) plays an essential role in the virus replication. - Abstract: Bluetongue virus core protein VP6 is an ATP hydrolysis dependent RNA helicase. However, despite much study, the precise role of VP6 within the viral capsid and its structure remain unclear. To investigate the requirement of VP6 in BTV replication, we initiated a structural and biological study. Multinuclear nuclear magnetic resonance spectra were assigned on his-tagged full-length VP6 (329 amino acid residues) as well as several truncated VP6 variants. The analysis revealed a large structured domain with two large loop regions that exhibit significant conformational exchange. One of the loops (amino acid position 34–130) could be removed without affecting the overall fold of the protein. Moreover, using a BTV reverse genetics system, it was possible to demonstrate that the VP6-truncated BTV was viable in BHK cells in the absence of any helper VP6 protein, suggesting that a large portion of this loop region is not absolutely required for BTV replication.

  18. Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV.

    Science.gov (United States)

    French, T J; Roy, P

    1990-04-01

    The L3 and M7 genes of bluetongue virus (BTV), which encode the two major core proteins of the virus (VP3 and VP7, respectively), were inserted into a baculovirus dual-expression transfer vector and a recombinant baculovirus expressing both foreign genes isolated following in vivo recombination with wild-type Autographa californica nuclear polyhedrosis virus DNA. Spodoptera frugiperda insect cells infected with the recombinant synthesized large amounts of BTV corelike particles. These particles have been shown to be similar to authentic BTV cores in terms of size, appearance, stoichiometric arrangement of VP3 to VP7 (ratio, 2:15), and the predominance of VP7 on the surface of the particles. In infected insect cells, the corelike particles were observed in paracrystalline arrays. The formation of these structures indicates that neither the BTV double-stranded viral RNA species nor the associated minor core proteins are necessary for assembly of cores in insect cells. Furthermore, the three BTV nonstructural proteins NS1, NS2, and NS3, are not required to assist or direct the formation of empty corelike particles from VP3 and VP7.

  19. Potential role of proinflammatory cytokines in the pathogenetic mechanisms of vascular lesions in goats naturally infected with bluetongue virus serotype 1.

    Science.gov (United States)

    Sánchez-Cordón, P J; Pedrera, M; Risalde, M A; Molina, V; Rodríguez-Sánchez, B; Núñez, A; Sánchez-Vizcaíno, J M; Gómez-Villamandos, J C

    2013-06-01

    In vitro studies have demonstrated that bluetongue virus (BTV)-induced vasoactive mediators could contribute to the endothelial cells dysfunction and increased vascular permeability responsible of lesions characteristic of bluetongue (BT) like oedema, haemorrhages and ischaemic necrosis in different tissues. However, few in vivo studies have been carried out to clarify the causes of these lesions. The aim of this study was to elucidate in vivo the pathogenetic mechanisms involved in the appearance of vascular lesions in different organs during BT. For this purpose, tissue samples from goats naturally infected with bluetongue virus serotype 1 (BTV-1) were taken for histopathological and immunohistochemical studies to determine the potential role of proinflammatory cytokines (tumour necrosis factor alpha, TNFα and interleukin one alpha, IL-1α) in the increased vascular permeability and their relationship with the presence of virus. Gross and histopathological examination revealed the presence of vascular damage leading to generalized oedema and haemorrhages. Immunohistochemical studies displayed that endothelial injury may have been due to the direct pathogenic effect of BTV infection on endothelial cells or may be a response to inflammatory mediators released by virus-infected endothelial cells and, possibly, other cell types such as monocytes/macrophages. These preliminary results of what appears to be the first in vivo study of tissue damage in small BT-infected ruminants suggest a direct link between the appearance of vascular changes and the presence of BTV-induced vasoactive cytokines. © Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of Canadian Food Inspection Agency.

  20. Population Genetic Structure and Potential Incursion Pathways of the Bluetongue Virus Vector Culicoides brevitarsis (Diptera: Ceratopogonidae) in Australia

    Science.gov (United States)

    Tay, W. T.; Kerr, P. J.; Jermiin, L. S.

    2016-01-01

    Culicoides brevitarsis is a vector of the bluetongue virus (BTV), which infects sheep and cattle. It is an invasive species in Australia with an assumed Asian/South East Asian origin. Using one mitochondrial marker (i.e., part of the cytochrome oxidase subunit I gene) and six nuclear markers, we inferred population genetic structure and possible incursion pathways for Australian C. brevitarsis. Nine mitochondrial haplotypes, with low nucleotide sequence diversity (0.0–0.7%) among these, were identified in a sample of 70 individuals from seven sites. Both sets of markers revealed a homogeneous population structure, albeit with evidence of isolation by distance and two genetically distinct clusters distributed along a north-to-south cline. No evidence of a cryptic species complex was found. The geographical distribution of the mitochondrial haplotypes is consistent with at least two incursion pathways into Australia since the arrival of suitable livestock hosts. By contrast, 15 mitochondrial haplotypes, with up to four times greater nucleotide sequence diversity (0.0–2.9%) among these, were identified in a sample of 16 individuals of the endemic C. marksi (sampled from a site in South Australia and another in New South Wales). A phylogenetic tree inferred using the mitochondrial marker revealed that the Australian and Japanese samples of C. brevitarsis are as evolutionarily different from one another as some of the other Australian species (e.g., C. marksi, C. henryi, C. pallidothorax) are. The phylogenetic tree placed four of the species endemic to Australia (C. pallidothorax, C. bundyensis, C. marksi, C. henryi) in a clade, with a fifth such species (C. bunrooensis) sharing a common ancestor with that clade and a clade comprising two Japanese species (C. verbosus, C. kibunensis). PMID:26771743

  1. Estimating the temporal and spatial risk of bluetongue related to the incursion of infected vectors into Switzerland.

    Science.gov (United States)

    Racloz, V; Venter, G; Griot, C; Stärk, K D C

    2008-10-15

    The design of veterinary and public health surveillance systems has been improved by the ability to combine Geographical Information Systems (GIS), mathematical models and up to date epidemiological knowledge. In Switzerland, an early warning system was developed for detecting the incursion of the bluetongue disease virus (BT) and to monitor the frequency of its vectors. Based on data generated by this surveillance system, GIS and transmission models were used in order to determine suitable seasonal vector habitat locations and risk periods for a larger and more targeted surveillance program. Combined thematic maps of temperature, humidity and altitude were created to visualize the association with Culicoides vector habitat locations. Additional monthly maps of estimated basic reproduction number transmission rates (R0) were created in order to highlight areas of Switzerland prone to higher BT outbreaks in relation to both vector activity and transmission levels. The maps revealed several foci of higher risk areas, especially in northern parts of Switzerland, suitable for both vector presence and vector activity for 2006.Results showed a variation of R0 values comparing 2005 and 2006 yet suggested that Switzerland was at risk of an outbreak of BT, especially if the incursion arrived in a suitable vector activity period. Since the time of conducting these analyses, this suitability has proved to be the case with the recent outbreaks of BT in northern Switzerland. Our results stress the importance of environmental factors and their effect on the dynamics of a vector-borne disease. In this case, results of this model were used as input parameters for creating a national targeted surveillance program tailored to both the spatial and the temporal aspect of the disease and its vectors. In this manner, financial and logistic resources can be used in an optimal way through seasonally and geographically adjusted surveillance efforts. This model can serve as a tool for other

  2. Sensing and control of bluetongue virus infection in epithelial cells via RIG-I and MDA5 helicases.

    Science.gov (United States)

    Chauveau, Emilie; Doceul, Virginie; Lara, Estelle; Adam, Micheline; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Desprat, Alexandra; Meyer, Gilles; Schwartz-Cornil, Isabelle; Ruscanu, Suzana; Charley, Bernard; Zientara, Stéphan; Vitour, Damien

    2012-11-01

    Bluetongue virus (BTV), an arthropod-borne member of the Reoviridae family, is a double-stranded RNA virus that causes an economically important livestock disease that has spread across Europe in recent decades. Production of type I interferon (alpha/beta interferon [IFN-α/β]) has been reported in vivo and in vitro upon BTV infection. However, the cellular sensors and signaling pathways involved in this process remain unknown. Here we studied the mechanisms responsible for the production of IFN-β in response to BTV serotype 8. Upon BTV infection of A549 cells, expression of IFN-β and other proinflammatory cytokines was strongly induced at both the protein and mRNA levels. This response appeared to be dependent on virus replication, since exposure to UV-inactivated virus failed to induce IFN-β. We also demonstrated that BTV infection activated the transcription factors IFN regulatory factor 3 and nuclear factor κB. We investigated the role of several pattern recognition receptors in this response and showed that expression of IFN-β was greatly reduced after small-interfering-RNA-mediated knockdown of the RNA helicase encoded by retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5). In contrast, silencing of MyD88, Toll-like receptor 3, or the recently described DexD/H-box helicase DDX1 sensor had no or a weak effect on IFN-β induction, suggesting that the RIG-I-like receptor pathway is specifically engaged for BTV sensing. Moreover, we also showed that overexpression of either RIG-I or MDA5 impaired BTV expression in infected A549 cells. Overall, this indicates that RIG-I and MDA5 can both contribute to the recognition and control of BTV infection.

  3. Protective Efficacy in Sheep of Adenovirus-Vectored Vaccines against Bluetongue Virus Is Associated with Specific T Cell Responses

    Science.gov (United States)

    Martín, Verónica; Pascual, Elena; Avia, Miguel; Peña, Lourdes; Valcárcel, Félix; Sevilla, Noemí

    2015-01-01

    Bluetongue virus (BTV) is an economically important Orbivirus of the Reoviridae family that causes a hemorrhagic disease in ruminants. Its control has been achieved by inactivated-vaccines that have proven to protect against homologous BTV challenge although unable to induce long-term immunity. Therefore, a more efficient control strategy needs to be developed. Recombinant adenovirus vectors are lead vaccine candidates for protection of several diseases, mainly because of their potency to induce potent T cell immunity. Here we report the induction of humoral and T-cell mediated responses able to protect animals against BTV challenge by recombinant replication-defective human adenovirus serotype 5 (Ad5) expressing either VP7, VP2 or NS3 BTV proteins. First we used the IFNAR(-/-) mouse model system to establish a proof of principle, and afterwards we assayed the protective efficacy in sheep, the natural host of BTV. Mice were completely protected against BTV challenge, developing humoral and BTV-specific CD8+- and CD4+-T cell responses by vaccination with the different rAd5. Sheep vaccinated with Ad5-BTV-VP2 and Ad5-BTV-VP7 or only with Ad5-BTV-VP7 and challenged with BTV showed mild disease symptoms and reduced viremia. This partial protection was achieved in the absence of neutralizing antibodies but strong BTV-specific CD8+ T cell responses in those sheep vaccinated with Ad5-BTV-VP7. These data indicate that rAd5 is a suitable vaccine vector to induce T cell immunity during BTV vaccination and provide new data regarding the relevance of T cell responses in protection during BTV infection. PMID:26619062

  4. Role of wild ruminants in the epidemiology of bluetongue virus serotypes 1, 4 and 8 in Spain

    Directory of Open Access Journals (Sweden)

    García-Bocanegra Ignacio

    2011-07-01

    Full Text Available Abstract Although the importance of wild ruminants as potential reservoirs of bluetongue virus (BTV has been suggested, the role played by these species in the epidemiology of BT in Europe is still unclear. We carried out a serologic and virologic survey to assess the role of wild ruminants in the transmission and maintenance of BTV in Andalusia (southern Spain between 2006 and 2010. A total of 473 out of 1339 (35.3% wild ruminants analyzed showed antibodies against BTV by both ELISA and serum neutralization test (SNT. The presence of neutralizing antibodies to BTV-1 and BTV-4 were detected in the four species analyzed (red deer, roe deer, fallow deer and mouflon, while seropositivity against BTV-8 was found in red deer, fallow deer and mouflon but not in roe deer. Statistically significant differences were found among species, ages and sampling regions. BTV RNA was detected in twenty-one out of 1013 wild ruminants (2.1% tested. BTV-1 and BTV-4 RNA were confirmed in red deer and mouflon by specific rRT-PCR. BTV-1 and BTV-4 seropositive and RNA positive wild ruminants, including juveniles and sub-adults, were detected years after the last outbreak was reported in livestock. In addition, between the 2008/2009 and the 2010/2011 hunting seasons, the seroprevalence against BTV-1, BTV-4 and BTV-8 increased in the majority of provinces, and these serotypes were detected in many areas where BTV outbreaks were not reported in domestic ruminants. The results indicate that wild ruminants seem to be implicated in the dissemination and persistence of BTV in Spain.

  5. Long-term dynamics of bluetongue virus in wild ruminants: relationship with outbreaks in livestock in Spain, 2006-2011.

    Directory of Open Access Journals (Sweden)

    Cristina Lorca-Oró

    Full Text Available Wild and domestic ruminants are susceptible to Bluetongue virus (BTV infection. Three BTV serotypes (BTV-4, BTV-1 and BTV-8 have been detected in Spain in the last decade. Even though control strategies have been applied to livestock, BTV circulation has been frequently detected in wild ruminant populations in Spain. The aim of the present study is to assess the role for wild ruminants in maintaining BTV after the vaccination programs in livestock in mainland Spain. A total of 931 out 1,914 (48.6% serum samples, collected from eight different wild ruminant species between 2006 and 2011, were BTV positive by ELISA. In order to detect specific antibodies against BTV-1, BTV-4 and BTV-8, positive sera were also tested by serumneutralisation test (SNT. From the ELISA positive samples that could be tested by SNT (687 out of 931, 292 (42.5% showed neutralising antibodies against one or two BTV serotypes. For each BTV serotype, the number of outbreaks in livestock (11,857 outbreaks in total was modelled with pure autoregressive models and the resulting smoothed values, representing the predicted number of BTV outbreaks in livestock at municipality level, were positively correlated with BTV persistence in wild species. The strength of this relationship significantly decreased as red deer (Cervus elaphus population abundance increased. In addition, BTV RNA was detected by real time RT-PCR in 32 out of 311 (10.3% spleen samples from seropositive animals. Although BT outbreaks in livestock have decreased substantially after vaccination campaigns, our results indicated that wild ruminants have been exposed to BTV in territories where outbreaks in domestic animals occurred. The detection of BTV RNA and spatial association between BT outbreaks in livestock and BTV rates in red deer are consistent with the hypothesis of virus circulation and BTV maintenance within Iberian wild ruminant populations.

  6. Possible over-wintering of bluetongue virus in Culicoides populations in the Onderstepoort area, Gauteng, South Africa

    Directory of Open Access Journals (Sweden)

    Jumari Steyn

    2016-10-01

    Full Text Available Several studies have demonstrated the ability of certain viruses to overwinter in arthropod vectors. The over-wintering mechanism of bluetongue virus (BTV is unknown. One hypothesis is over-wintering within adult Culicoides midges (Diptera; Ceratopogonidae that survive mild winters where temperatures seldom drop below 10 °C. The reduced activity of midges and the absence of outbreaks during winter may create the impression that the virus has disappeared from an area. Light traps were used in close association with horses to collect Culicoides midges from July 2010 to September 2011 in the Onderstepoort area, in Gauteng Province, South Africa. More than 500 000 Culicoides midges were collected from 88 collections and sorted to species level, revealing 26 different Culicoides species. Culicoides midges were present throughout the 15 month study. Nine Culicoides species potentially capable of transmitting BTV were present during the winter months. Midges were screened for the presence of BTV ribonucleic acid (RNA with the aid of a real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR assay. In total 91.2% of midge pools tested positive for BTV RNA. PCR results were compared with previous virus isolation results (VI that demonstrated the presence of viruses in summer and autumn months. The results indicate that BTV-infected Culicoides vectors are present throughout the year in the study area. Viral RNA-positive midges were also found throughout the year with VI positive midge pools only in summer and early autumn. Midges that survive mild winter temperatures could therefore harbour BTV but with a decreased vector capacity. When the population size, biting rate and viral replication decrease, it could stop BTV transmission. Over-wintering of BTV in the Onderstepoort region could therefore result in re-emergence because of increased vector activity rather than reintroduction from outside the region.

  7. Estimating the temporal and spatial risk of bluetongue related to the incursion of infected vectors into Switzerland

    Directory of Open Access Journals (Sweden)

    Griot C

    2008-10-01

    Full Text Available Abstract Background The design of veterinary and public health surveillance systems has been improved by the ability to combine Geographical Information Systems (GIS, mathematical models and up to date epidemiological knowledge. In Switzerland, an early warning system was developed for detecting the incursion of the bluetongue disease virus (BT and to monitor the frequency of its vectors. Based on data generated by this surveillance system, GIS and transmission models were used in order to determine suitable seasonal vector habitat locations and risk periods for a larger and more targeted surveillance program. Results Combined thematic maps of temperature, humidity and altitude were created to visualize the association with Culicoides vector habitat locations. Additional monthly maps of estimated basic reproduction number transmission rates (R0 were created in order to highlight areas of Switzerland prone to higher BT outbreaks in relation to both vector activity and transmission levels. The maps revealed several foci of higher risk areas, especially in northern parts of Switzerland, suitable for both vector presence and vector activity for 2006. Results showed a variation of R0 values comparing 2005 and 2006 yet suggested that Switzerland was at risk of an outbreak of BT, especially if the incursion arrived in a suitable vector activity period. Since the time of conducting these analyses, this suitability has proved to be the case with the recent outbreaks of BT in northern Switzerland. Conclusion Our results stress the importance of environmental factors and their effect on the dynamics of a vector-borne disease. In this case, results of this model were used as input parameters for creating a national targeted surveillance program tailored to both the spatial and the temporal aspect of the disease and its vectors. In this manner, financial and logistic resources can be used in an optimal way through seasonally and geographically adjusted

  8. Cost analysis of bluetongue virus serotype 8 surveillance and vaccination programmes in Austria from 2005 to 2013.

    Science.gov (United States)

    Pinior, Beate; Lebl, Karin; Firth, Clair; Rubel, Franz; Fuchs, Reinhard; Stockreiter, Simon; Loitsch, Angelika; Köfer, Josef

    2015-11-01

    This study was designed to evaluate the costs between 2005 and 2013 of the national bluetongue virus (BTV) surveillance and vaccination programmes before, during and after the BTV serotype 8 (BTV-8) outbreak in Austria commencing in 2008. In addition to an assessment of the temporal development of costs, a spatial cost analysis was performed. Within the context of this study, the term 'costs' refers to actual financial expenditure and imputed monetary costs for contributions in-kind. Costs were financed directly by the private-public sectors, by the European Commission (EC), and (in-kind) by responsible national institutions and individuals (e.g. blood sampling by veterinarians). The total net cost of the BTV-8 surveillance and vaccination programmes arising from the outbreak amounted to €22.8 million (0.86% of the national agricultural Gross Value Added), of which 32% was allocated to surveillance and 68% to the vaccination programme. Of the total programme costs, the EC supplied €4.9 million, while the remaining costs (€18 million) were directly financed from national resources. Of the latter, €14.5 million was classed as public costs, including €2 million contributions in-kind, and €3.4 million as private costs. The assessment of the costs revealed heterogeneous temporal and spatial distributions. The methodology of this analysis might assist decision makers in calculating costs for other surveillance and intervention programmes. The assessment of contributions in-kind is of importance to public authorities as it increases visibility of the available resources and shows how they have been employed. This study also demonstrates the importance of tracking changing costs per payer over time. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. VP2-segment sequence analysis of some isolates of bluetongue virus recovered in the Mediterranean basin during the 1998-2003 outbreak.

    Science.gov (United States)

    Potgieter, A C; Monaco, F; Mangana, O; Nomikou, K; Yadin, H; Savini, G

    2005-11-01

    The complete nucleotide sequences of the VP2 segments of bluetongue virus (BTV) isolates recovered from Italy, Greece and Israel, from 1998 to 2003, were determined. Phylogenetic analysis of these sequences, those from related viruses and the South African vaccine strains, were used to determine the probable geographic origin of BTV incursions into Italy. Results indicated that viruses from each of the four serotypes isolated in Italy (2, 4, 9 and 16) possibly had a different origin. Analysis of the bluetongue virus serotype 2 (BTV-2) isolates gave evidence that this serotype probably moved from Tunisia. BTV-4 results showed probable incursion from the southwest and not from Greece or Israel. BTV-9 isolates clearly have an eastern origin (most probably Greece), whereas BTV-16 isolates are indistinguishable from the BTV-16 live attenuated vaccine strain. The phylogenetic findings were supported by polyacrylamide gel electrophoresis (PAGE) analysis of the complete amplified genome of each isolate except for BTV-16 Italian field isolate, which showed a slightly different PAGE profile. A combination of the complete VP2 sequencing and PAGE analysis of complete genomes, allowed not only phylogenetic analysis, but also vaccine detection and assessment of reassortment events.

  10. Indoor activity of Culicoides associated with livestock in the bluetongue virus (BTV) affected region of northern France during autumn 2006.

    Science.gov (United States)

    Baldet, T; Delécolle, J C; Cêtre-Sossah, C; Mathieu, B; Meiswinkel, R; Gerbier, G

    2008-10-15

    In August 2006, bluetongue virus (BTV) was detected in the Netherlands, Belgium, western Germany, Luxembourg and northern France for the first time. Consequently, a longitudinal entomological study was conducted in the affected region of northern France (Ardennes) throughout the autumn of 2006. Data on the spatio-temporal distribution of Culicoides (Diptera: Ceratopogonidae) associated with livestock were collected and an attempt was made to identify the vector(s) involved in BTV transmission by means of virus detection in wild-caught biting midges. Weekly sampling using standardized Onderstepoort-type blacklight traps were performed simultaneously both outdoors and indoors in one BTV-free and three BTV-affected farms between September and December 2006. Culicoides were sorted according to farm, location (outdoors vs. indoors), time point (in weeks), species and physiological stage. BTV detection was conducted by RT-PCR on monospecific pools of non-bloodfed parous female Culicoides. The principal results showed: (i) the absence of the Mediterranean vector, C. imicola, (ii) the relatively low abundance of C. dewulfi and C. pulicaris, (iii) the widespread occurrence and abundance of C. obsoletus/C. scoticus with longevity and behaviour compatible with BTV transmission, and (iv) all Culicoides pools tested for BTV were negative. In France, the very low levels of BTV-8 circulation were probably due to the limited introduction of the virus from affected neighbouring countries, and not due to the absence of local vector populations. A key finding has been the substantiation, for the first time, that Culicoides, and particularly the potential vectors C. obsoletus/C. scoticus and C. dewulfi, can be active at night inside livestock buildings and not only outside, as originally believed. The endophagic tendencies of members of the Obsoletus group are discussed in light of the prolonged period of BTV transmission during the autumn of 2006 and the risk of BTV overwintering and

  11. Genetic characterization and molecular identification of the bloodmeal sources of the potential bluetongue vector Culicoides obsoletus in the Canary Islands, Spain

    Directory of Open Access Journals (Sweden)

    Martínez-de la Puente Josué

    2012-07-01

    Full Text Available Abstract Background Culicoides (Diptera: Ceratopogonidae biting midges are vectors for a diversity of pathogens including bluetongue virus (BTV that generate important economic losses. BTV has expanded its range in recent decades, probably due to the expansion of its main vector and the presence of other autochthonous competent vectors. Although the Canary Islands are still free of bluetongue disease (BTD, Spain and Europe have had to face up to a spread of bluetongue with disastrous consequences. Therefore, it is essential to identify the distribution of biting midges and understand their feeding patterns in areas susceptible to BTD. To that end, we captured biting midges on two farms in the Canary Islands (i to identify the midge species in question and characterize their COI barcoding region and (ii to ascertain the source of their bloodmeals using molecular tools. Methods Biting midges were captured using CDC traps baited with a 4-W blacklight (UV bulb on Gran Canaria and on Tenerife. Biting midges were quantified and identified according to their wing patterns. A 688 bp segment of the mitochondrial COI gene of 20 biting midges (11 from Gran Canaria and 9 from Tenerife were PCR amplified using the primers LCO1490 and HCO2198. Moreover, after selected all available females showing any rest of blood in their abdomen, a nested-PCR approach was used to amplify a fragment of the COI gene from vertebrate DNA contained in bloodmeals. The origin of bloodmeals was identified by comparison with the nucleotide-nucleotide basic alignment search tool (BLAST. Results The morphological identification of 491 female biting midges revealed the presence of a single morphospecies belonging to the Obsoletus group. When sequencing the barcoding region of the 20 females used to check genetic variability, we identified two haplotypes differing in a single base. Comparison analysis using the nucleotide-nucleotide basic alignment search tool (BLAST showed that both

  12. Development of a real-time RT-PCR assay based on primer-probe energy transfer for the detection of all serotypes of bluetongue virus

    DEFF Research Database (Denmark)

    Leblanc, N; Rasmussen, Thomas Bruun; Fernandez, J

    2010-01-01

    A real-time RT-PCR assay based on the primer–probe energy transfer (PriProET) was developed to detect all 24 serotypes of bluetongue virus (BTV). BTV causes serious disease, primarily in sheep, but in other ruminants as well. A distinguishing characteristic of the assay is its tolerance toward...... tests showed no positive results for heterologous pathogens. The assay was tested on clinical samples from BTV 8 outbreaks in Sweden and Denmark in 2008. The lowest detection limit for that serotype, determined with PCR standards, was 57 genome copies. The assay sensitivity for some other serotypes...... that circulate currently in Europe was also determined. BTV 2, 4, 9 and 16 were tested on available cell culture samples and the detection limits were 109, 12, 13 and 24 copies, respectively. This assay provides an important tool for early and rapid detection of a wide range of BTV strains, including emerging...

  13. Identification and differentiation of the twenty six bluetongue virus serotypes by RT-PCR amplification of the serotype-specific genome segment 2.

    Directory of Open Access Journals (Sweden)

    Narender S Maan

    Full Text Available Bluetongue (BT is an arthropod-borne viral disease, which primarily affects ruminants in tropical and temperate regions of the world. Twenty six bluetongue virus (BTV serotypes have been recognised worldwide, including nine from Europe and fifteen in the United States. Identification of BTV serotype is important for vaccination programmes and for BTV epidemiology studies. Traditional typing methods (virus isolation and serum or virus neutralisation tests (SNT or VNT are slow (taking weeks, depend on availability of reference virus-strains or antisera and can be inconclusive. Nucleotide sequence analyses and phylogenetic comparisons of genome segment 2 (Seg-2 encoding BTV outer-capsid protein VP2 (the primary determinant of virus serotype were completed for reference strains of BTV-1 to 26, as well as multiple additional isolates from different geographic and temporal origins. The resulting Seg-2 database has been used to develop rapid (within 24 h and reliable RT-PCR-based typing assays for each BTV type. Multiple primer-pairs (at least three designed for each serotype were widely tested, providing an initial identification of serotype by amplification of a cDNA product of the expected size. Serotype was confirmed by sequencing of the cDNA amplicons and phylogenetic comparisons to previously characterised reference strains. The results from RT-PCR and sequencing were in perfect agreement with VNT for reference strains of all 26 BTV serotypes, as well as the field isolates tested. The serotype-specific primers showed no cross-amplification with reference strains of the remaining 25 serotypes, or multiple other isolates of the more closely related heterologous BTV types. The primers and RT-PCR assays developed in this study provide a rapid, sensitive and reliable method for the identification and differentiation of the twenty-six BTV serotypes, and will be updated periodically to maintain their relevance to current BTV distribution and

  14. Effectiveness and Cost Efficiency of Different Surveillance Components for Proving Freedom and Early Detection of Disease: Bluetongue Serotype 8 in Cattle as Case Study for Belgium, France and the Netherlands.

    Science.gov (United States)

    Welby, S; van Schaik, G; Veldhuis, A; Brouwer-Middelesch, H; Peroz, C; Santman-Berends, I M; Fourichon, C; Wever, P; Van der Stede, Y

    2017-12-01

    Quick detection and recovery of country's freedom status remain a constant challenge in animal health surveillance. The efficacy and cost efficiency of different surveillance components in proving the absence of infection or (early) detection of bluetongue serotype 8 in cattle populations within different countries (the Netherlands, France, Belgium) using surveillance data from years 2006 and 2007 were investigated using an adapted scenario tree model approach. First, surveillance components (sentinel, yearly cross-sectional and passive clinical reporting) within each country were evaluated in terms of efficacy for substantiating freedom of infection. Yearly cross-sectional survey and passive clinical reporting performed well within each country with sensitivity of detection values ranging around 0.99. The sentinel component had a sensitivity of detection around 0.7. Secondly, how effective the components were for (early) detection of bluetongue serotype 8 and whether syndromic surveillance on reproductive performance, milk production and mortality data available from the Netherlands and Belgium could be of added value were evaluated. Epidemic curves were used to estimate the timeliness of detection. Sensitivity analysis revealed that expected within-herd prevalence and number of herds processed were the most influential parameters for proving freedom and early detection. Looking at the assumed direct costs, although total costs were low for sentinel and passive clinical surveillance components, passive clinical surveillance together with syndromic surveillance (based on reproductive performance data) turned out most cost-efficient for the detection of bluetongue serotype 8. To conclude, for emerging or re-emerging vectorborne disease that behaves such as bluetongue serotype 8, it is recommended to use passive clinical and syndromic surveillance as early detection systems for maximum cost efficiency and sensitivity. Once an infection is detected and eradicated

  15. Antigenic profile of African horse sickness virus serotype 4 VP5 and identification of a neutralizing epitope shared with bluetongue virus and epizootic hemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, J.L.; Langeveld, J.P.M.; Venteo, A.

    1999-01-01

    African horse sickness virus (AHSV) causes a fatal disease in horses. The virus capsid is composed of a double protein layer, the outermost of which is formed by two proteins: VP2 and VP5. VP2 is known to determine the serotype of the virus and to contain the neutralizing epitopes. The biological...... in a plaque reduction assay were generated. To dissect the antigenic structure of AHSV VP5, the protein was cloned in Escherichia coil using the pET3 system. The immunoreactivity of both MAbs, and horse and rabbit polyclonal antisera, with 17 overlapping fragments from VP5 was analyzed. The most....... Neutralizing epitopes were defined at positions 85-92 (PDPLSPGE) for MAb 10AE12 and at 179-185 (EEDLRTR) for MAb 10AC6. Epitope 10AE12 is highly conserved between the different orbiviruses. MAb 10AE12 was able to recognize bluetongue virus VP5 and epizootic hemorrhagic disease virus VP5 by several techniques...

  16. Climate change and the spread of vector-borne diseases: using approximate Bayesian computation to compare invasion scenarios for the bluetongue virus vector Culicoides imicola in Italy.

    Science.gov (United States)

    Mardulyn, Patrick; Goffredo, Maria; Conte, Annamaria; Hendrickx, Guy; Meiswinkel, Rudolf; Balenghien, Thomas; Sghaier, Soufien; Lohr, Youssef; Gilbert, Marius

    2013-05-01

    Bluetongue (BT) is a commonly cited example of a disease with a distribution believed to have recently expanded in response to global warming. The BT virus is transmitted to ruminants by biting midges of the genus Culicoides, and it has been hypothesized that the emergence of BT in Mediterranean Europe during the last two decades is a consequence of the recent colonization of the region by Culicoides imicola and linked to climate change. To better understand the mechanism responsible for the northward spread of BT, we tested the hypothesis of a recent colonization of Italy by C. imicola, by obtaining samples from more than 60 localities across Italy, Corsica, Southern France, and Northern Africa (the hypothesized source point for the recent invasion of C. imicola), and by genotyping them with 10 newly identified microsatellite loci. The patterns of genetic variation within and among the sampled populations were characterized and used in a rigorous approximate Bayesian computation framework to compare three competing historical hypotheses related to the arrival and establishment of C. imicola in Italy. The hypothesis of an ancient presence of the insect vector was strongly favoured by this analysis, with an associated P ≥ 99%, suggesting that causes other than the northward range expansion of C. imicola may have supported the emergence of BT in southern Europe. Overall, this study illustrates the potential of molecular genetic markers for exploring the assumed link between climate change and the spread of diseases. © 2013 Blackwell Publishing Ltd.

  17. Why is the tongue of blue-tongued skinks blue? Reflectance of lingual surface and its consequences for visual perception by conspecifics and predators

    Science.gov (United States)

    Abramjan, Andran; Bauerová, Anna; Somerová, Barbora; Frynta, Daniel

    2015-08-01

    Blue-tongued skinks of the genus Tiliqua (Scincidae) are characterized by their large blue melanin-pigmented tongues, often displayed during open-mouth threats, when the animal feels endangered. It is not clear whether this unusual coloration is a direct anti-predation adaptation or it may rather serve intraspecific communication, as ultraviolet-blue color is a frequent visual signal in a number of lizard species. We used spectrophotometry and visual modeling to compare blue tongues of Tiliqua gigas with tongues and skin coloration of other lizard species, and to examine their appearance through the eyes of both the conspecifics and avian predators. Our results show that (1) the tongue coloration is probably not substantially influenced by the amount of melanin in the skin, (2) lingual and oral tissues are UV-reflective in general, with blue colored tongues having chromatic qualities similar to UV-blue skin patches of other lizard species, (3) UV-blue tongues are more conspicuous than pink tongues, especially in the visual model of conspecifics. We hypothesize that blue tongues may possibly serve as a semantic (honest) signal analogous to UV-blue skin patches of other lizard species due to greater UV-bias in the vision of diurnal lizards. Regarding the social behavior and high aggressiveness in Tiliqua and their relatives, such signal might serve, e.g., in intraspecific long-distance communication between conspecifics in order to avoid aggression, and its anti-predation effect may only be a secondary function (exaptation).

  18. Entomological research on the vectors of bluetongue disease and the monitoring of activity of Culicoides in the Prishtinë region of Kosova

    Directory of Open Access Journals (Sweden)

    Betim Berisha

    2010-12-01

    Full Text Available Clinical bluetongue (BT caused by BT virus serotype 9 (BTV‑9 was observed in Kosova in 2001 and, although subsequently no further clinical cases was diagnosed, its continuing presence has been demonstrated by serological tests in cattle, sheep and goats. In this study, light traps were placed in stables near Prishtinë to identify possible vectors of BTV in Kosova. Samples were collected from October 2004 until the end of 2006. Culicoides were identified and speciated and results were plotted against temperature data. Samples contained Obsoletus and Pulicaris Complexes but not C. imicola. The first specimens of Culicoides were collected in April and they continued to be detected until November. Generally, Obsoletus Complex was present in the largest numbers, with the exception of the middle of the year when the Pulicaris Complex predominated. The number of Culicoides trapped was directly linked to temperature (p<0.05 and records indicated that Culicoides activity ceased when minimum temperatures fell below 0°C; activity recommenced when minimum temperatures rose to approximately 6°C. These results indicate that there was a lack of a vector for BTV during winter for a period lasting approximately five months.

  19. Information management and ante-mortem inspection procedures for the emerging diseases control: Experiences acquired in the epidemiological surveillance of bluetongue and lumpy skin disease

    Directory of Open Access Journals (Sweden)

    Alessandra Corradini

    2018-03-01

    Full Text Available The spread of exotic, emerging and reemerging diseases, has become, in the last years, one of the most important threats to the animal productions and public health, representing a new challenge for the European Community. In a global-market framework, where trade and contacts between countries are simplified, effective and well-developed surveillance systems are necessary. Multiple factors are, in fact, associated with the emergence of new, known or exotic diseases in this new economic panorama and for these reasons controls on animal imports, traceability and timeliness detection of infected animals should be considered the basis of a sound surveillance. In this work, we focused our attention on the management of Bluetongue and on the risk of introduction of the Lumpy Skin Disease in Italy, in order to describe the national and European surveillance systems for these diseases. In particular, we underlined the crucial role of information that reach the Official Veterinarian at the slaughterhouse concerning the epidemiological situation of the sending countries. Information that are important for the management of the ante-mortem inspection and for increasing the awareness of the Veterinary Inspectors of their role in the surveillance.

  20. Bluetongue Virus Serotype 1 Outbreak in the Basque Country (Northern Spain) 2007–2008. Data Support a Primary Vector Windborne Transport

    Science.gov (United States)

    García-Lastra, Rodrigo; Leginagoikoa, Iratxe; Plazaola, Jose M.; Ocabo, Blanca; Aduriz, Gorka; Nunes, Telmo; Juste, Ramón A.

    2012-01-01

    Background Bluetongue (BT) is a vector-borne disease of ruminants that has expanded its traditional global distribution in the last decade. Recently, BTV-1 emerged in Southern Spain and caused several outbreaks in livestock reaching the north of the country. The aim of this paper was to review the emergence of BTV-1 in the Basque Country (Northern Spain) during 2007 and 2008 analyzing the possibility that infected Culicoides were introduced into Basque Country by winds from the infected areas of Southern Spain. Methodology/Principal Findings We use a complex HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model to draw wind roses and backward wind trajectories. The analysis of winds showed September 28 to October 2 as the only period for the introduction of infected midges in the Basque Country. These wind trajectories crossed through the areas affected by serotype 1 on those dates in the South of the Iberian Peninsula. Additionally meteorological data, including wind speed and humidity, and altitude along the trajectories showed suitable conditions for Culicoides survival and dispersion. Conclusions/Significance An active infection in medium-long distance regions, wind with suitable speed, altitude and trajectory, and appropriate weather can lead to outbreaks of BTV-1 by transport of Culicoides imicola, not only over the sea (as reported previously) but also over the land. This shows that an additional factor has to be taken into account for the control of the disease which is currently essentially based on the assumption that midges will only spread the virus in a series of short hops. Moreover, the epidemiological and serological data cannot rule out the involvement of other Culicoides species in the spread of the infection, especially at a local level. PMID:22479628

  1. Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector.

    Science.gov (United States)

    Burgin, Laura; Ekström, Marie; Dessai, Suraje

    2017-07-01

    Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge's flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods.

  2. Serosurveillance and factors associated with the presence of antibodies against bluetongue virus in dairy cattle in two eco-zones of Nepal.

    Science.gov (United States)

    Gaire, T N; Karki, S; Dhakal, I P; Khanal, D R; Bowen, R A

    2016-12-01

    Cattle play an important role in the epidemiology of bluetongue (BT) by acting as reservoir hosts. However, the status of BT virus (BTV) in dairy cattle in Nepal is unknown. The objective of this study was to estimate the prevalence of BTV antibodies in dairy cattle in two eco-zones of Nepal, and to identify the factors associated with virus exposure. The authors conducted a cross-sectional serosurvey from March 2012 through February 2013 by sampling 131 dairy cattle from seven clusters (villages) in the Chitwan district in the Terai region (southern lowlands) and the Lamjung district in the Hills region (the middle part of Nepal). Of the 131 serum samples tested, 29.3% (95% confidence interval [CI]: 21.5-37.2) were positive for BTV antibodies. Herd-level seroprevalence was 45.7% (95% CI: 30.9-61.0). Bivariate analysis indicated a positive association between seroconversion to BTV and age, and an association with breed of cattle after controlling for clustering of animals within herds. Based on this model, cattle were more likely to become seropositive as they aged. Crossbred cattle were more likely to be seropositive than those of exotic breeds (odds ratio [OR] = 4.6; 95% CI: 1.5-14.1). The results indicate widespread exposure of dairy cattle to BTV in Nepal. The authors suggest that dairy cattle should be included in the surveillance plan for BTV infection in Nepal and that it is important to educate farmers about the possible impacts of this disease. © OIE (World Organisation for Animal Health), 2016.

  3. Using animal performance data to evidence the under-reporting of case herds during an epizootic: application to an outbreak of bluetongue in cattle.

    Directory of Open Access Journals (Sweden)

    Simon Nusinovici

    Full Text Available Following the emergence of the Bluetongue virus serotype 8 (BTV-8 in France in 2006, a surveillance system (both passive and active was implemented to detect and follow precociously the progression of the epizootic wave. This system did not allow a precise estimation of the extent of the epizootic. Infection by BTV-8 is associated with a decrease of fertility. The objective of this study was to evaluate whether a decrease in fertility can be used to evidence the under-reporting of cases during an epizootic and to quantify to what extent non-reported cases contribute to the total burden of the epizootic. The cow fertility in herds in the outbreak area (reported or not was monitored around the date of clinical signs. A geostatistical interpolation method was used to estimate a date of clinical signs for non-reported herds. This interpolation was based on the spatiotemporal dynamic of confirmed case herds reported in 2007. Decreases in fertility were evidenced for both types of herds around the date of clinical signs. In non-reported herds, the decrease fertility was large (60% of the effect in reported herds, suggesting that some of these herds have been infected by the virus during 2007. Production losses in non-reported infected herds could thus contribute to an important part of the total burden of the epizootic. Overall, results indicate that performance data can be used to evidence the under-reporting during an epizootic. This approach could be generalized to pathogens that affect cattle's performance, including zoonotic agents such as Coxiella burnetii or Rift Valley fever virus.

  4. Bluetongue virus serotype 1 outbreak in the Basque Country (Northern Spain 2007-2008. Data support a primary vector windborne transport.

    Directory of Open Access Journals (Sweden)

    Rodrigo García-Lastra

    Full Text Available BACKGROUND: Bluetongue (BT is a vector-borne disease of ruminants that has expanded its traditional global distribution in the last decade. Recently, BTV-1 emerged in Southern Spain and caused several outbreaks in livestock reaching the north of the country. The aim of this paper was to review the emergence of BTV-1 in the Basque Country (Northern Spain during 2007 and 2008 analyzing the possibility that infected Culicoides were introduced into Basque Country by winds from the infected areas of Southern Spain. METHODOLOGY/PRINCIPAL FINDINGS: We use a complex HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory model to draw wind roses and backward wind trajectories. The analysis of winds showed September 28 to October 2 as the only period for the introduction of infected midges in the Basque Country. These wind trajectories crossed through the areas affected by serotype 1 on those dates in the South of the Iberian Peninsula. Additionally meteorological data, including wind speed and humidity, and altitude along the trajectories showed suitable conditions for Culicoides survival and dispersion. CONCLUSIONS/SIGNIFICANCE: An active infection in medium-long distance regions, wind with suitable speed, altitude and trajectory, and appropriate weather can lead to outbreaks of BTV-1 by transport of Culicoides imicola, not only over the sea (as reported previously but also over the land. This shows that an additional factor has to be taken into account for the control of the disease which is currently essentially based on the assumption that midges will only spread the virus in a series of short hops. Moreover, the epidemiological and serological data cannot rule out the involvement of other Culicoides species in the spread of the infection, especially at a local level.

  5. Morphometric discrimination of two sympatric sibling species in the Palaearctic region, Culicoides obsoletus Meigen and C. scoticus Downes & Kettle (Diptera: Ceratopogonidae), vectors of bluetongue and Schmallenberg viruses.

    Science.gov (United States)

    Kluiters, G; Pagès, N; Carpenter, S; Gardès, L; Guis, H; Baylis, M; Garros, C

    2016-05-04

    Some Palaearctic biting midge species (subgenus Avaritia) have been implicated as vectors of bluetongue virus in northern Europe. Separation of two species (C. obsoletus and C. scoticus) is considered difficult morphologically and, often, these female specimens are grouped in entomological studies. However, species-specific identification is desirable to understand their life history characteristics, assess their roles in disease transmission or measure their abundance during arboviral outbreaks. This study aims to investigate whether morphometric identification techniques can be applied to female C. obsoletus and C. scoticus individuals trapped at different geographical regions and time periods during the vector season. C. obsoletus and C. scoticus were collected using light-suction traps from the UK, France and Spain, with two geographical locations sampled per country. A total of 759 C. obsoletus/C. scoticus individuals were identified using a molecular assay based on the cytochrome c oxidase subunit I gene. Fifteen morphometric measurements were taken from the head, wings and abdomen of slide-mounted specimens, and ratios calculated between these measurements. Multivariate analyses explored whether a combination of morphometric variables could lead to accurate species identification. Finally, Culicoides spp. collected in France at the start, middle and end of the adult vector season were compared, to determine whether seasonal variation exists in any of the morphometric measurements. The principal component analyses revealed that abdominal characteristics: length and width of the smaller and larger spermathecae, and the length of the chitinous plates and width between them, are the most reliable morphometric characteristics to differentiate between the species. Seasonal variation in the size of each species was observed for head and wing measurements, but not abdominal measurements. Geographical variation in the size of Culicoides spp. was also observed and is

  6. Sellers’ Revisited: A Big Data Reassessment of Historical Outbreaks of Bluetongue and African Horse Sickness due to the Long-Distance Wind Dispersion of Culicoides Midges

    Directory of Open Access Journals (Sweden)

    Peter A. Durr

    2017-07-01

    Full Text Available The possibility that outbreaks of bluetongue (BT and African horse sickness (AHS might occur via long-distance wind dispersion (LDWD of their insect vector (Culicoides spp. was proposed by R. F. Sellers in a series of papers published between 1977 and 1991. These investigated the role of LDWD by means of visual examination of the wind direction of synoptic weather charts. Based on the hypothesis that simple wind direction analysis, which does not allow for wind speed, might have led to spurious conclusions, we reanalyzed six of the outbreak scenarios described in Sellers’ papers. For this reanalysis, we used a custom-built Big Data application (“TAPPAS” which couples a user-friendly web-interface with an established atmospheric dispersal model (“HYSPLIT”, thus enabling more sophisticated modeling than was possible when Sellers undertook his analyzes. For the two AHS outbreaks, there was strong support from our reanalysis of the role of LDWD for that in Spain (1966, and to a lesser degree, for the outbreak in Cyprus (1960. However, for the BT outbreaks, the reassessments were more complex, and for one of these (western Turkey, 1977 we could discount LDWD as the means of direct introduction of the virus. By contrast, while the outbreak in Cyprus (1977 showed LDWD was a possible means of introduction, there is an apparent inconsistency in that the outbreaks were localized while the dispersion events covered much of the island. For Portugal (1956, LDWD from Morocco on the dates suggested by Sellers is very unlikely to have been the pathway for introduction, and for the detection of serotype 2 in Florida (1982, LDWD from Cuba would require an assumption of a lengthy survival time of the midges in the air column. Except for western Turkey, the BT reanalyses show the limitation of LDWD modeling when used by itself, and indicates the need to integrate susceptible host population distribution (and other covariate data into the modeling process

  7. Production of recombinant non-structural protein-3 hydrophobic domain deletion (NS3ΔHD) protein of bluetongue virus from prokaryotic expression system as an efficient diagnostic reagent.

    Science.gov (United States)

    Mohanty, Nihar Nalini; Chacko, Nirmal; Biswas, Sanchay Kumar; Chand, Karam; Pandey, Awadh Bihari; Mondal, Bimalendu; Hemadri, Divakar; Shivachandra, Sathish Bhadravati

    2016-09-01

    Serological diagnostics for bluetongue (BT), which is an infectious, non-contagious and arthropod-borne virus disease of ruminants, are primarily dependent on availability of high quality native or recombinant antigen(s) based on either structural/non-structural proteins in sufficient quantity. Non-structural proteins (NS1-NS4) of BT virus are presumed candidate antigens in development of DIVA diagnostics. In the present study, NS3 fusion gene encoding for NS3 protein containing the N- and C-termini with a deletion of two hydrophobic domains (118A to S141 aa and 162S to A182 aa) and intervening variable central domain (142D to K161 aa) of bluetongue virus 23 was constructed, cloned and over-expressed using prokaryotic expression system. The recombinant NS3ΔHD fusion protein (∼38 kDa) including hexa-histidine tag on its both termini was found to be non-cytotoxic to recombinant Escherichia coli cells and purified by affinity chromatography. The purified rNS3ΔHD fusion protein was found to efficiently detect BTV-NS3 specific antibodies in indirect-ELISA format with diagnostic sensitivity (DSn = 94.4%) and specificity (DSp = 93.9%). The study indicated the potential utility of rNS3ΔHD fusion protein as candidate diagnostic reagent in developing an indirect-ELISA for sero-surveillance of animals for BTV antibodies under DIVA strategy, wherever monovalent/polyvalent killed BT vaccine formulations devoid of NS proteins are being practiced for immunization. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  8. Understanding Spatio-Temporal Variability in the Reproduction Ratio of the Bluetongue (BTV-1 Epidemic in Southern Spain (Andalusia in 2007 Using Epidemic Trees.

    Directory of Open Access Journals (Sweden)

    S Napp

    Full Text Available Andalusia (Southern Spain is considered one of the main routes of introduction of bluetongue virus (BTV into Europe, evidenced by a devastating epidemic caused by BTV-1 in 2007. Understanding the pattern and the drivers of BTV-1 spread in Andalusia is critical for effective detection and control of future epidemics. A long-standing metric for quantifying the behaviour of infectious diseases is the case-reproduction ratio (Rt, defined as the average number of secondary cases arising from a single infected case at time t (for t>0. Here we apply a method using epidemic trees to estimate the between-herd case reproduction ratio directly from epidemic data allowing the spatial and temporal variability in transmission to be described. We then relate this variability to predictors describing the hosts, vectors and the environment to better understand why the epidemic spread more quickly in some regions or periods. The Rt value for the BTV-1 epidemic in Andalusia peaked in July at 4.6, at the start of the epidemic, then decreased to 2.2 by August, dropped below 1 by September (0.8, and by October it had decreased to 0.02. BTV spread was the consequence of both local transmission within established disease foci and BTV expansion to distant new areas (i.e. new foci, which resulted in a high variability in BTV transmission, not only among different areas, but particularly through time, which suggests that general control measures applied at broad spatial scales are unlikely to be effective. This high variability through time was probably due to the impact of temperature on BTV transmission, as evidenced by a reduction in the value of Rt by 0.0041 for every unit increase (day in the extrinsic incubation period (EIP, which is itself directly dependent on temperature. Moreover, within the range of values at which BTV-1 transmission occurred in Andalusia (20.6°C to 29.5°C there was a positive correlation between temperature and Rt values, although the

  9. First molecular identification of the vertebrate hosts of Culicoides imicola in Europe and a review of its blood-feeding patterns worldwide: implications for the transmission of bluetongue disease and African horse sickness.

    Science.gov (United States)

    Martínez-DE LA Puente, J; Navarro, J; Ferraguti, M; Soriguer, R; Figuerola, J

    2017-12-01

    Culicoides (Diptera: Ceratopogonidae) are vectors of pathogens that affect wildlife, livestock and, occasionally, humans. Culicoides imicola (Kieffer, 1913) is considered to be the main vector of the pathogens that cause bluetongue disease (BT) and African horse sickness (AHS) in southern Europe. The study of blood-feeding patterns in Culicoides is an essential step towards understanding the epidemiology of these pathogens. Molecular tools that increase the accuracy and sensitivity of traditional methods have been developed to identify the hosts of potential insect vectors. However, to the present group's knowledge, molecular studies that identify the hosts of C. imicola in Europe are lacking. The present study genetically characterizes the barcoding region of C. imicola trapped on farms in southern Spain and identifies its vertebrate hosts in the area. The report also reviews available information on the blood-feeding patterns of C. imicola worldwide. Culicoides imicola from Spain feed on blood of six mammals that include species known to be hosts of the BT and AHS viruses. This study provides evidence of the importance of livestock as sources of bloodmeals for C. imicola and the relevance of this species in the transmission of BT and AHS viruses in Europe. © 2017 The Royal Entomological Society.

  10. Altitudinal variation and bio-climatic variables influencing the potential distribution of Culicoides orientalis Macfie, 1932, suspected vector of Bluetongue virus across the North Eastern Himalayan belt of Sikkim.

    Science.gov (United States)

    Mukhopadhyay, Emon; Hazra, Surajit; Saha, Goutam Kumar; Banerjee, Dhriti

    2017-12-01

    Culicoides orientalis was first recorded from Sikkim, in the year 1963, but no evidence based disease outbreak were available. In the last 50 years, 260 Bluetongue disease outbreaks caused by Culicoides species have been evidenced from India. Moreover, in recent years with increase of average temperature worldwide and increase in longevity of arthropod vectors like Culicoides along with a geographical range shift to new suitable warmer regions has increased the potentiality of vector borne disease outbreak throughout the world. The Himalayan range of Sikkim in India is a biodiversity hotspot and is extremely sensitive to such global climate changes. An attempt has been made to evaluate the altitude, climate and environmental data on selected study sites of Sikkim for a period of two years (2014-2015) for discerning potential distribution of C.orientalis in this region. The altitude, temperature, precipitation and potential distribution range maps of C. orientalis showed the areas of highest species abundance within the altitudinal range of 550-1830m, with some species extending its range up to 3750m, with average precipitation of 2010-2590mm and mean temperature of 11-18°C. The Maximum Entropy Modelling (MaxEnt) and the Jackknife test of the MaxEnt model further revealed that the major contributing factors governing C. orientalis distribution are annual precipitation (78.8%), followed by precipitation of driest quarter (8.3%) and mean temperature of the warmest quarter (3.3%). Accuracy of the study was evaluated by the area under the curve (AUC=0.860). The Biplot on F 1 -F 2 axes (N=16, α=0.05) in the PCA showed the linear depiction of all the variables considered in our study, major contributors were annual precipitation, precipitation of driest quarter and mean temperature of warmest quarter being the primary factors governing species distribution, as analogous to results of the MaxEnt model. This study would help in developing strategies for monitoring and

  11. Infección por el virus de la Lengua azul: activación de señales celulares que inducen apoptosis Bluetongue virus infection: signaling pathway activated during apoptosis

    Directory of Open Access Journals (Sweden)

    E. Mortola

    2009-09-01

    Full Text Available El virus de la Lengua azul (VLA es un ARN virus de doble cadena que induce apoptosis tanto en cultivos celulares como en tejidos blanco. Con el fin de dilucidar el mecanismo de apoptosis en la infección por el VLA, en el presente trabajo examinamos en detalle, por la técnica de Western blot, las señales celulares de caspasas, Bax, citocromo c, Smac/DIABLO y factor nuclear kappa B (NF-kB que se activan en la infección viral. Hemos comprobado que luego de la infección in vitro con el VLA, se detectó la activación de la caspasa 8 y con ello el mecanismo extrínseco de la apoptosis. También detectamos por primera vez no sólo la activación de miembros de la familia Bcl-2 (Bax, sino también la liberación del citocromo c y la proteína Smac/DIABLO, confirmando que en la infección por el VLA está involucrado el mecanismo secuencial intrínseco de la apoptosis. Asimismo, demostramos que la infección por el VLA activa el NF-kB y que la apoptosis es sustancialmente reducida mediante la inhibición del mismo. La activación de las señales celulares tales como Bax, citocromo c, Smac/DIABLO y NF-kB presentados en este trabajo, esclarecen los mecanismos apoptóticos durante la infección por el VLA para una mayor comprensión del papel primario que juega la apoptosis en la patogénesis del virus.Bluetongue (BTV is a double-stranded RNA virus that induces apoptosis both in mammalian cell cultures and in target tissues. To elucidate the apoptosis pathways in BTV infection, we have examined in detail the apoptosis mechanism by examination of caspases, Bax, cytochrome c, Smac/DIABLO and NF-kB signalling pathways. In this report, after cell infection with BTV, the activation of caspase 8 was detected, proving the extrinsic receptor binding apoptotic pathway. Apoptosis followed a sequential pathway involving the detection of activated Bcl-2 family members. Furthermore, its translocation to the mitochondria, as well as the release of cytochrome c and

  12. Molecular epidemiology of foot and mouth disease, bluetongue and ...

    African Journals Online (AJOL)

    Client

    2016-11-02

    Nov 2, 2016 ... epidemiology to the diagnosis and control of some animal diseases such as foot and mouth disease. (FMD), buetongue and peste ... companion animals, livestock and fish, as well as several human behavioral risk factors .... Following this FMD epidemic, an appeal for vigilance was launched throughout ...

  13. Molecular epidemiology of foot and mouth disease, bluetongue and ...

    African Journals Online (AJOL)

    Molecular tools have become an increasingly important part of studying the epidemiology of infectious agents. These tools have allowed the aetiological agent within a population to be diagnosed rapidly with a greater degree of efficiency and accuracy than conventional diagnostic tools. They have enhanced understanding ...

  14. Capsid Modified Bluetongue Virus 16 (BTV16 as a Virulytic Oncotherapy Agent

    Directory of Open Access Journals (Sweden)

    Taghi Naserpour Farivar

    2017-03-01

    Full Text Available Objective Using potential viruses to destroy cancer cells has a long history, but recent advances in molecular biology raised hopes for successful use of these viruses again. Methods Octreotate sequence was inserted into the neutralization region (R1& R2 in vp2 protein of capsid segment in 10 segmented genome of BTV in 304 - 368 position. T7 BTV RNA transcripts were extracted. Cancerous cultured cells were transfected with wild and modified BTV to recover BTV with cDNA-derived genome segments. Results The results of all the performed experiments revealed that treatment of AGS cell lines with VP2 modified BTV16, which targeted cell surface of cancerous cells, significantly increased apoptosis in cancer infected cells. Conclusions Modified VP2 BTV16 may be used as a potential virulytic oncotherapy agent in AGS cells.

  15. Farmers’ willingness to invest in livestock disease control: the case of voluntary vaccination against bluetongue

    NARCIS (Netherlands)

    Sok, Jaap

    2017-01-01

    Animal health authorities in the European Union nowadays consider voluntary approaches based on a neoliberal model of cost and responsibility sharing as a tool for controlling livestock diseases. Policy makers aim for policies that are soft and optional, and use insights from behavioural economics

  16. 9 CFR 311.10 - Anaplasmosis, anthrax, babesiosis, bacillary hemoglobinuria in cattle, blackleg, bluetongue...

    Science.gov (United States)

    2010-01-01

    ... hemorrhagica, azoturia, infectious equine encephalomyelitis, toxic encephalomyelitis (forage poisoning), infectious anemia (swamp fever), dourine, acute influenza, generalized osteoporosis, glanders (farcy), acute..., purpura hemorrhagica, azoturia, infectious equine encephalomyelitis, toxic encephalomyelitis (forage...

  17. Using farmers’ attitude and social pressures to design voluntary Bluetongue vaccination strategies

    NARCIS (Netherlands)

    Sok, J.; Hogeveen, H.; Elbers, A.R.W.; Oude Lansink, A.G.J.M.

    2016-01-01

    Understanding the context and drivers of farmers’ decision-making is critical to designing successful voluntary disease control interventions. This study uses a questionnaire based on the Reasoned Action Approach framework to assess the determinants of farmers’ intention to participate in a

  18. EFSA Panel on Animal Health and Welfare (AHAW); Scientific Opinion on bluetongue serotype 8

    DEFF Research Database (Denmark)

    Bøtner, Anette; Oura, Chris; Saegerman, Claude

    and the contamination of semen are also observed for several serotypes of modified live virus (MLV) vaccines and for some cell culture/egg passaged strains. These two features may have an impact on the epidemiology of the disease, since they may increase the ability of BTV-8 to survive the winter period, for example...

  19. Ring trial 2016 for Bluetongue virus detection by real-time RT-PCR in France.

    Science.gov (United States)

    Sailleau, Corinne; Viarouge, Cyril; Breard, Emmanuel; Vitour, Damien; Zientara, Stephan

    2017-05-01

    Since the unexpected emergence of BTV-8 in Northern Europe and the incursion of BTV-8 and 1 in France in 2006-2007, molecular diagnosis has considerably evolved. Several real-time RT-PCR (rtRT-PCR) methods have been developed and published, and are currently being used in many countries across Europe for BTV detection and typing. In France, the national reference laboratory (NRL) for orbiviruses develops and validates 'ready-to-use' kits with private companies for viral RNA detection. The regional laboratories network that was set up to deal with a heavy demand for analyses has used these available kits. From 2007, ring tests were organized to monitor the performance of the French laboratories. This study presents the results of 63 regional laboratories in the ring trial organized in 2016. Blood samples were sent to the laboratories. Participants were asked to use the rtRT-PCR methods in place in their laboratory, for detection of all BTV serotypes and specifically BTV-8. The French regional laboratories are able to detect and genotype BTV in affected animals. Despite the use of several methods (i.e. RNA extraction and different commercial rtRT-PCRs), the network is homogeneous. The ring trial demonstrated that the French regional veterinary laboratories have reliable and robust BTV diagnostic tools for BTV genome detection.

  20. Farmers’ willingness to invest in livestock disease control: the case of voluntary vaccination against bluetongue

    NARCIS (Netherlands)

    Sok, Jaap

    2017-01-01

    Animal health authorities in the European Union nowadays consider voluntary approaches based on a neoliberal model of cost and responsibility sharing as a tool for controlling livestock diseases. Policy makers aim for policies that are soft and optional, and use insights from behavioural

  1. On surveillance systems and surveys for bluetongue and zoonotic diseases of ruminants

    NARCIS (Netherlands)

    Scolamacchia, F.

    2013-01-01

    Health of livestock populations is a concern for all communities. This concern arises from the consequences of animal diseases on public health, economy and societal development but also from animal welfare and environmental considerations. The marked differences in economies, environments,

  2. A Study of the Immunologic Response to Second Heterotypic Bluetongue Virus Infection in Mice

    Science.gov (United States)

    1983-05-01

    spleen and lymph node), integument (skin), urogenital (kidney and testicle /ovary), muscular (heart and skeletal muscle) and nervous (brain) systems...staining) of the spleen, liver, mesenteric lymph node, skin, kidney, ovary, testicle , heart, skeletal muscle, and brain revealed no significant deviations...EH, Pay JW, Laszlo J, Moore JO: Facilitated light microscopic cytochemical diagnosis 0of acute myelogenous leukemia. Cancer Res 39: 1635, 1979

  3. Spatio-temporal optimization of sampling for bluetongue vectors (Culicoides) near grazing livestock

    DEFF Research Database (Denmark)

    Kirkeby, Carsten; Stockmarr, Anders; Bødker, Rene

    2013-01-01

    absence of vectors on the field. The variation in the estimated abundance decreased steeply when using up to six traps, and was less pronounced when using more traps, although no clear cutoff was found. CONCLUSIONS: Despite spatial clustering in vector abundance, we found no effect of increasing...

  4. EFSA Panel on Animal Health and Welfare (AHAW); Scientific Opinion on bluetongue monitoring and surveillance

    DEFF Research Database (Denmark)

    Stegeman, Arjan; Bøtner, Anette; Savini, Giovanni

    been infected for several years were slightly lower than the design prevalence of 2 % currently used for monthly testing of sentinel animals, but much lower than the design prevalences of 20 % and 10 % for annual surveys in populations of unvaccinated and vaccinated ruminants, respectively. Currently......Following a request from the Commission, the Panel on Animal Health and Welfare was asked to deliver a Scientific Opinion on: 1) the expected prevalence (design prevalence) under different circumstances, and, 2) an updated scientific assessment of the size of the relevant geographical area...... unit but, when based on active surveillance, it is best targeted at regions considered at risk for introduction, using small geographical units, a high sampling frequency and sample size. For estimating the impact of interventions on the prevalence of infected animals, smaller areas result in more...

  5. How does increasing immunity change spread kernel parameters in subsequent outbreaks? – A simulation study on Bluetongue Virus

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Bødker, Rene; Enøe, Claes

    estimate on how future epidemics could proceed under similar conditions. However, a number of variables influence the spread of vector borne diseases. If one of these changes significantly after an outbreak, it needs to be incorporated into the model to improve the prediction on future outbreaks. Examples...... of such changes are: vaccinations, acquired immunity, vector density and control, meteorological variations, wind pattern, and so on. Including more and more variables leads to a more process oriented model. A full process oriented approach simulates the movement of virus between vectors and host, describing...... density and motion of vectors/hosts, climatic variables, and so on will theoretically be able to describe an outbreak under any circumstances. It will most likely contain parameters not very well established, and is also very heavy in computer time. Nevertheless, we have tried to create a relatively...

  6. A clathrin independent macropinocytosis-like entry mechanism used by bluetongue virus-1 during infection of BHK cells.

    Directory of Open Access Journals (Sweden)

    Sarah Gold

    2010-06-01

    Full Text Available Acid dependent infection of Hela and Vero cells by BTV-10 occurs from within early-endosomes following virus uptake by clathrin-mediated endocytosis (Forzan et al., 2007: J Virol 81: 4819-4827. Here we report that BTV-1 infection of BHK cells is also dependent on a low endosomal pH; however, virus entry and infection were not inhibited by dominant-negative mutants of Eps15, AP180 or the 'aa' splice variant of dynamin-2, which were shown to inhibit clathrin-mediated endocytosis. In addition, infection was not inhibited by depletion of cellular cholesterol, which suggests that virus entry is not mediated by a lipid-raft dependent process such as caveolae-mediated endocytosis. Although virus entry and infection were not inhibited by the dominant-negative dynamin-2 mutant, entry was inhibited by the general dynamin inhibitor, dynasore, indicating that virus entry is dynamin dependent. During entry, BTV-1 co-localised with LAMP-1 but not with transferrin, suggesting that virus is delivered to late-endosomal compartments without first passing through early-endosomes. BTV-1 entry and infection were inhibited by EIPA and cytochalasin-D, known macropinocytosis inhibitors, and during entry virus co-localised with dextran, a known marker for macropinocytosis/fluid-phase uptake. Our results extend earlier observations with BTV-10, and show that BTV-1 can infect BHK cells via an entry mechanism that is clathrin and cholesterol-independent, but requires dynamin, and shares certain characteristics in common with macropinocytosis.

  7. Cost assessment of the movement restriction policy in France during the 2006 bluetongue virus episode (BTV-8).

    Science.gov (United States)

    Tago, Damian; Hammitt, James K; Thomas, Alban; Raboisson, Didier

    2014-12-01

    This study aims at evaluating the costs of the movement restriction policy (MRP) during the 2006 BTV-8 epidemic in France for the producers of 6-9 month old Charolais beef weaned calves (BWC), an important sector that was severely affected by the restrictions imposed. This study estimates the change in the number of BWC sold that was due to the movement restrictions, and evaluates the economic effect of the MRP. The change in BWC sold by producers located inside the restriction zone (RZ) was analyzed for 2006 by using a multivariate matching approach to control for any internal validity threat. The economic evaluation of the MRP was based on several scenarios that describe farms' capacity constraints, feeding prices, and the animal's selling price. Results show that the average farmer experienced a 21% decrease in animals sold due to the MRP. The economic evaluation of the MRP shows a potential gain during the movement standstill period in the case of no capacity constraint faced by the farm and food self-sufficiency. This gain remains limited and close to zero in case of a low selling price and when animals are held until they no longer fit the BWC market so that they cannot be sold as an intermediate product. Capacity constraints represent a tremendous challenge to farmers facing movement restrictions and the fattening profit becomes negative under such conditions. The timing and length of the movement standstill period significantly affect the profitability of the strategy employed by the farmer: for a 5.5 month-long standstill period with 3.5 months of cold weather, farmers with capacity constraints have stronger incentives to leave their animals outside during the whole period and face higher mortality and morbidity rates than paying for a boarding facility for the cold months. This is not necessarily true for a shorter standstill period. Strategies are also sensitive to the feed costs and to the food self-sufficiency of the farm. Altogether, the present work shows the farmer's vulnerability to animal movement restrictions and quantifies the costs of the standstill. These results should assist decision-makers who seek to calculate adequate subsidies/aid or to efficiently allocate resources to prevent future outbreaks. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Photodermatitis and photokeratoconjunctivitis in a ball python (Python regius) and a blue-tongue skink (Tiliqua spp.).

    Science.gov (United States)

    Gardiner, David W; Baines, Frances M; Pandher, Karamjeet

    2009-12-01

    A male ball python (Python regius) and a female blue tongue skink (Tiliqua spp.) of unknown age were evaluated for anorexia, lethargy, excessive shedding, corneal opacity (python), and weight loss (skink) of approximately three weeks' duration. These animals represented the worst affected animals from a private herpetarium where many animals exhibited similar signs. At necropsy, the python had bilateral corneal opacity and scattered moderate dysecdysis. The skink had mild dysecdysis, poor body condition, moderate intestinal nematodiasis, and mild liver atrophy. Microscopic evaluation revealed epidermal erosion and ulceration, with severe epidermal basal cell degeneration and necrosis, and superficial dermatitis (python and skink). Severe bilateral ulcerative keratoconjunctivitis with bacterial colonization was noted in the ball python. Microscopic findings within the skin and eyes were suggestive of ultraviolet (UV) radiation damage or of photodermatitis and photokeratoconjunctivitis. Removal of the recently installed new lamps from the terrariums of the surviving reptiles resulted in resolution of clinical signs. Evaluation of a sample lamp of the type associated with these cases revealed an extremely high UV output, including very-short-wavelength UVB, neither found in natural sunlight nor emitted by several other UVB lamps unassociated with photokeratoconjunctivitis. Exposure to high-intensity and/or inappropriate wavelengths of UV radiation may be associated with significant morbidity, and even mortality, in reptiles. Veterinarians who are presented with reptiles with ocular and/or cutaneous disease of unapparent cause should fully evaluate the specifics of the vivarium light sources. Further research is needed to determine the characteristics of appropriate and of toxic UV light for reptiles kept in captivity.

  9. Coinfections of Sudanese dairy cattle with bovine herpes virus 1, bovine viral diarrhea virus, bluetongue virus and bovine herpes virus 4 and their relation to reproductive disorders

    Directory of Open Access Journals (Sweden)

    Amira M. Elhassan

    2016-12-01

    Reults: The meta-analysis of the data indicated high seroprevalence of coinfections with various combinations of these agents; only few animals were singly infected. An infection with BHV-1 was observed to be higher than the prevalence of associations between BHV-1 and the other three viral agents. Prevalence of seropositivities to coinfection with BHV-1/BTV; BHV-1/BVD; BHV-1/BTV/BVD were the highest while seropositivities prevalences that involved BHV-4 were much lower. The highest abortion rates were encountered in coinfections with BHV-1/BVD/BTV (31% and BHV-1/BVD/BTV/BHV-4 (30% while most infertility cases were noticed in coinfection with BHV-1/BVD/BTV (44% and BHV-1/BVD/BTV/BHV-4 (21%, and coinfections with the four viruses were encountered in most of the death after birth cases (25%. Overall mixed infections with BHV-1/BVD/BTV (34% and BHV-1/BVD/BTV/BHV-4 (22.5% were involved in the majority of reproductive problems studied. Conclusion: Mixed infections constitutes the vast majority of cases and are involved in the majority of reproductive disorders investigated. The high prevalence of seropositivity to all of the four viruses should call for an intervention strategy to reduce the impact of these viruses. [J Adv Vet Anim Res 2016; 3(4.000: 332-337

  10. Full Genome Characterisation of Bluetonge Virus Seroptype 6 from the Netherlands 2008 and Comparison to Other Field and Vaccine Strains

    NARCIS (Netherlands)

    Maan, S.; Maan, N.S.; Rijn, van P.A.; Gennip, van H.G.P.; Sanders, A.A.; Wright, I.M.; Batten, C.; Hoffmann, B.; Eschbaumer, M.; Oura, C.A.L.; Potgieter, C.; Nomikou, K.; Mertens, P.P.C.

    2010-01-01

    In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8 vaccine (during May-June 2008). Bluetongue virus (BTV)

  11. Anticorpos contra o vírus da língua azul em bovinos do sertão da Paraíba

    OpenAIRE

    Melo,C.B.; Oliveira,A.M.; Azevedo,E.O.; Lobato,Z.I.P.; Leite,R.C.

    2000-01-01

    In June of 1997 the prevalence of antibodies to bluetongue virus was between 3.94 and 4.82% in 137 bovine serum samples from 12 herds in Paraiba State, Brazil. This is the first report of antibodies to bluetongue virus in Paraiba State herds.

  12. Development and evaluation of a real-time quantitative PCR assay for Culicoides imicola, one of the main vectors of bluetongue (BT) and African horse sickness (AHS) in Africa and Europe.

    Science.gov (United States)

    Cêtre-Sossah, Catherine; Mathieu, Bruno; Setier-Rio, Marie-Laure; Grillet, Colette; Baldet, Thierry; Delécolle, Jean-Claude; Albina, Emmanuel

    2008-10-01

    The current microscopy method for identifying the Culicoides imicola Kieffer, 1913 species can be time and labour intensive. There is a need for the development of a rapid and quantitative tool to quantify the biting midges C. imicola ss in light trap catches. A reproducible and sensitive real-time polymerase chain reaction method that targets the internal transcribed spacer (ITS-1) of ribosomal DNA of C. imicola ss species was developed. This real-time PCR assay was first performed on 10-fold serial dilutions of purified plasmid DNA containing specific C. imicola ss ITS-1. It was then possible to construct standard curves with a high correlation coefficient (r2=0.99) in the range of 10(-2)-10(-8) ng of purified DNA. The performances of this PCR were evaluated in comparison with morphological determination on Culicoides trapped along the Mediterranean coastal mainland France. ROC statistical analysis was carried out using morphology as gold standard and the area under the ROC curve had a satisfactory value of 0.9752. The results indicated that this real-time PCR assay holds promise for monitoring C. imicola ss population in both surveillance and research programmes because of its good specificity (92%) and sensitivity (95%).

  13. Culicoides: The Controller of Orbivirus Transmission

    Science.gov (United States)

    Culicoides sonorensis are biting midges of great agricultural importance as vectors of several emerging/re-emerging arboviruses world-wide including bluetongue, epizootic hemorrhagic disease, African horse sickness, vesicular stomatitis, and Schmallenberg. C. sonorensis feed primarily on domestic sh...

  14. Functional validation of Apoptosis Genes IAP1 and DRONC in midgut tissue of the biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) by RNAi

    Science.gov (United States)

    Background: Culicoides biting midges transmit multiple ruminant viruses, including bluetongue virus and epizootic hemorrhagic disease virus, causing significant economic burden worldwide due to trade restrictions and production loss. To limit the spread of these viruses, control strategies focus on ...

  15. Biting Midges (Ceratopogonidae: Culicoides Latreille) Recorded from Farms in Sweden

    DEFF Research Database (Denmark)

    Nielsen, S. A.; Nielsen, B.O.; Chirico, J.

    2009-01-01

    In light of the emergence of bluetongue in Northern Europe, populations of Culicoides species were monitored in and around several Swedish livestock farms (surveillance in 2007 and 2008). The position of the sampling sites ranged from about latitude 55° N to about 68° N. Thirty-three Culicoides...... species were recorded, of which 30 were new to Sweden. The species recorded, and their relative abundance and spatial distribution on sites are detailed. Species incriminated as vectors of bluetongue virus were predominant. (Texte intégral)...

  16. Animal diseases caused by orbiviruses, Algeria.

    Science.gov (United States)

    Madani, Hafsa; Casal, Jordi; Alba, Anna; Allepuz, Alberto; Cêtre-Sossah, Catherine; Hafsi, Leila; Kount-Chareb, Houria; Bouayed-Chaouach, Nadera; Saadaoui, Hassiba; Napp, Sebastian

    2011-12-01

    Antibodies against bluetongue virus were detected in cattle, sheep, goats, and camels in Algeria in 2008. Antibodies against epizootic hemorrhagic disease virus were detected in cattle, but antibodies against African horse sickness virus were not detected in horses and mules. Epizootic hemorrhagic disease in northern Africa poses a major risk for the European Union.

  17. Agricultural Bioterrorism: Why It Is A Concern And What We Must Do

    Science.gov (United States)

    2003-04-07

    Bovine anaplasmosis • Bovine babesiosis • Bovine brucellosis • Bovine genital...Vesicular Stomatitis • Bluetongue • Sheep Pox and Goat Pox 9 • Swine Vesicular Disease • Rinderpest • Peste des Petits Ruminants • Contagious Bovine ...campylobacteriosis • Bovine tuberculosis • Bovine cysticercosis • Dermatophilosis • Enzootic bovine leukosis • Haemorrhagic septicaemia • Infectious bovine

  18. Spatial and temporal variation in the abundance of Culicoides biting midges (Diptera: Ceratopogonidae) in nine European countries

    DEFF Research Database (Denmark)

    Cuellar, Ana Carolina; Kjær, Lene Jung; Kirkeby, Carsten Thure

    2018-01-01

    Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are vectors of bluetongue virus (BTV), African horse sickness virus and Schmallenberg virus (SBV). Outbreaks of both BTV and SBV have affected large parts of Europe. The spread of these diseases depends largely on vector distributio...

  19. Role of mammalian immune responses in vector-enhanced orbiviral transmission

    Science.gov (United States)

    Culicoides sonorensis biting midges are vectors of several emerging and re-emerging orbiviruses including bluetongue, epizootic hemorrhagic disease, and African horse sickness viruses. They feed primarily on domestic sheep and cattle, but opportunistically feed on a variety of wildlife and on humans...

  20. Innate Mammalian Immune Response to Culicoides Feeding

    Science.gov (United States)

    Hematophagous Culicoides spp. biting midges are of great agricultural importance as livestock and wildlife pests and as vectors of orbiviruses such as bluetongue, epizootic hemorrhagic disease, and African horse sickness viruses, as well as vesicular stomatitis, bovine ephemeral fever and Schmallenb...

  1. 76 FR 25593 - Endangered and Threatened Wildlife and Plants; Establishment of a Nonessential Experimental...

    Science.gov (United States)

    2011-05-05

    ...--Yuma, Luke Air Force Base, BLM, and OPCNM, with volunteer efforts from the Arizona Desert Bighorn Sheep... disease (EHD) and bluetongue (BTV). Both diseases can infect bighorn sheep and mule deer, as well as... via aircraft and on- the-ground personnel to determine survival, reproduction, and other measures of...

  2. Why German farmers have their animals vaccinated against Bleutongue virus serotype 8: Results of a questionnaire survey

    NARCIS (Netherlands)

    Gethmann, J.; Zilow, V.; Probst, C.; Elbers, A.R.W.; Conraths, F.J.

    2015-01-01

    In response to the Bluetongue disease epidemic in 2006–2007, Germany started in 2008 a country-wide mandatory vaccination campaign. By 2009 the number of new outbreaks had decreased so that vaccination became voluntary in 2010. We conducted a questionnaire survey in cattle and sheep farms in three

  3. Etiology, pathogenesis and future prospects for developing ...

    African Journals Online (AJOL)

    BTV serotypes are known to occur in Africa, Asia, South America, North America, Middle East, India, and Australia generally between latitudes 35°S and 50°N. It occurs around the Mediterranean in summer, subsiding when temperatures drop in winter. The replication phase of the bluetongue virus (BTV) infection cycle is ...

  4. Replication-Deficient Particles: New Insights into the Next Generation of Bleutongue Virus Vaccines

    NARCIS (Netherlands)

    Celma, Cristina C.; Stewart, Meredith; Wernike, Kerstine; Eschbaumer, Michael; Gonzalez-Molleda, Lorenzo; Breard, Emmanuel; Schulz, Claudia; Hoffmann, Bernd; Haegeman, Andy; Clercq, De Kris; Rijn, van P.A.

    2017-01-01

    Bluetongue virus (BTV) is endemic in many parts of the world, often causing severe haemorrhagic disease in livestock. To date, at least 27 different serotypes have been recognized. Vaccination against all serotypes is necessary to protect susceptible animals and to prevent onward spread of the virus

  5. Molecular differentiation of Culicoides biting midges (Diptera: Ceratopogonidae) from the subgenus Culicoides Latreille in Denmark

    DEFF Research Database (Denmark)

    Lassen, Sandra; Nielsen, Søren Achim; Pedersen, Henrik Skovgård

    2012-01-01

    Identification of Culicoides biting midges to species has attracted attention due to the recent outbreak of bluetongue disease in Northern Europe. Identification of Culicoides to species level has been based on morphological characters and is difficult as several species belonging to species...

  6. African Journal of Biotechnology - Vol 15, No 44 (2016)

    African Journals Online (AJOL)

    Molecular epidemiology of foot and mouth disease, bluetongue and pest de petites ruminants in Algeria: Historical perspective, diagnosis and control · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Moustafa Kardjadj, Pam Dachung Luka, 2474-2479 ...

  7. A spatiotemporal model to assess the introduction risk of African horse sickness by import of animals and vectors in France

    NARCIS (Netherlands)

    Faverjon, C.; Leblond, A.; Hendrikx, P.; Balenghien, T.; Vos, de C.; Fischer, E.A.J.; Koeijer, de A.A.

    2015-01-01

    Background: African horse sickness (AHS) is a major, Culicoides-borne viral disease in equines whose introduction into Europe could have dramatic consequences. The disease is considered to be endemic in sub-Saharan Africa. Recent introductions of other Culicoides-borne viruses (bluetongue and

  8. Transmission and control of African Horse Sickness in The Netherlands: a model analysis.

    NARCIS (Netherlands)

    Backer, J.A.; Nodelijk, G.

    2011-01-01

    African horse sickness (AHS) is an equine viral disease that is spread by Culicoides spp. Since the closely related disease bluetongue established itself in The Netherlands in 2006, AHS is considered a potential threat for the Dutch horse population. A vector-host model that incorporates the current

  9. Transplacental transmission of BTV-8 in sheep: BTV viraemia, antibody responses and vaccine efficacy in lambs infected in utero

    NARCIS (Netherlands)

    Sluijs, van der M.T.W.; Schroer-Joosten, D.P.H.; Fid-Fourkour, A.; Smit, M.; Vrijenhoek, M.P.; Moulin, V.; Smit, de A.J.; Moormann, R.J.M.

    2013-01-01

    Bluetongue virus (BTV) is an insect vector transmitted virus which causes an economically important disease in ruminants. BTV infection during pregnancy can result in infection of the foetus, which may lead to the birth of persistently infected or immunotolerant offspring. Since persistently

  10. Association between land cover and Culicoides (Diptera: Ceratopogonidae) breeding sites on four Danish cattle farms

    DEFF Research Database (Denmark)

    Kirkeby, Carsten; Bødker, Rene; Stockmarr, Anders

    2009-01-01

    Biting midges of the genus Culicoides are vectors of bluetongue virus. Their larval habitats are poorly known in Northern Europe. Three classes of the CORINE land cover index, found within 300 in of four farms in Denmark, were used to stratify sampling sites for a total of 360 soil core samples f...

  11. [African horse sickness and equine encephalosis: must Switzerland get prepared].

    Science.gov (United States)

    Zimmerli, U; Herholz, C; Schwermer, H; Hofmann, M; Griot, C

    2010-04-01

    African horse sickness (AHS) of equines is partly transmitted by the same culicoides species as Bluetongue (BT) disease in even-toed ungulates. Horses normally get seriously sick, with a high case fatality rate. Equine Encephalosis is another, but less-known viral disease of equines, caused by viruses of the same genus as BT and AHS. Like BT of serotype 8 in 2006, both diseases could theoretically be introduced to Europe anytime and spread rapidly then. After the lessons learnt from the most recent bluetongue outbreaks in Europe, the regulations and AHS-contingency plans in force must be updated. All stakeholders must be aware of the risks and take own measures to prevent a possible emergence of the diseases, and be prepared in case of an outbreak.

  12. Evaluation of long-distance dispersal of Culicoides midges into northern Australia using a migration model.

    Science.gov (United States)

    Eagles, D; Deveson, T; Walker, P J; Zalucki, M P; Durr, P

    2012-09-01

    The introduction of novel bluetongue serotypes and genotypes into northern Australia is considered possible via the long-distance windborne dispersal of Culicoides (Diptera: Ceratopogonidae) vectors from Southeast Asia. Initial findings from simulation modelling of potential dispersal over a 15-year period revealed that the greatest risk for incursion of windborne Culicoides from the island of Timor into northern Australia occurs during December-March. The regions at greatest risk for incursion include the top end of the Northern Territory and the Kimberley region in Western Australia, but there is potential for more widespread dispersal into northern Australia based on Timor as the putative source. The establishment of a more pathogenic strain of the virus, or of a novel Culicoides vector introduced by such inter-continental dispersal events, could dramatically alter Australia's current bluetongue disease status. © 2011 CSIRO. Medical and Veterinary Entomology © 2011 The Royal Entomological Society.

  13. Serosurvey for selected pathogens in Iberian roe deer

    OpenAIRE

    Boadella, Mariana; Carta, Tania; Oleaga, ?lvaro; Pajares, Gerardo; Mu?oz, Marta; Gort?zar, Christian

    2010-01-01

    Abstract Background The roe deer is the most abundant and widespread wild Eurasian cervid. Its populations are expanding and increasingly in contact with livestock. This may affect the distribution of infectious diseases shared with other wild and domestic ungulates. Methods We investigated the antibody seroprevalence against Pestivirus, Herpesvirus, Bluetongue (BT) virus, M. avium paratuberculosis (MAP), and Brucella sp. in 519 roe deer from different regions in Spain, south-western Europe. ...

  14. Detection and Analysis of Six Lizard Adenoviruses by Consensus Primer PCR Provides Further Evidence of a Reptilian Origin for the Atadenoviruses

    OpenAIRE

    Wellehan, James F. X.; Johnson, April J.; Harrach, Balázs; Benkö, Mária; Pessier, Allan P.; Johnson, Calvin M.; Garner, Michael M.; Childress, April; Jacobson, Elliott R.

    2004-01-01

    A consensus nested-PCR method was designed for investigation of the DNA polymerase gene of adenoviruses. Gene fragments were amplified and sequenced from six novel adenoviruses from seven lizard species, including four species from which adenoviruses had not previously been reported. Host species included Gila monster, leopard gecko, fat-tail gecko, blue-tongued skink, Tokay gecko, bearded dragon, and mountain chameleon. This is the first sequence information from lizard adenoviruses. Phyloge...

  15. Developmental and Environmental Regulation of AaeIAP1 Transcript in Aedes aegypti

    Science.gov (United States)

    2008-01-01

    present the developmental regulation of an IAP1 homolog from Aedes aegypti (L.), AaeIAP1, the vector of yellow fever and dengue viruses, both of which...swine fever virus IAP ho- molog is a late structural polypeptide. Virology 214: 670Ð 674. Christophers, S. R. 1960. Aedes aegypti (L.) the yellow fever ...and J. Zhang. 2007. The Aedes albopictus inhibitor of apoptosis 1 gene protects verte- brate cells from bluetongue virus-induced apoptosis. In- sect

  16. Identification of cattle-derived volatiles that modulate the behavioral response of the biting midge culicoides nubeculosus

    OpenAIRE

    Isberg, Elin; Bray, Daniel Peter; Birgersson, Göran; Hillbur, Ylva; Ignell, Rickard

    2016-01-01

    Identification of host-derived volatiles is an important step towards the development of novel surveillance and control tools for Culicoides biting midges. In this study, we identified compounds from headspace collections of cattle hair and urine that modulate the behavioral response of Culicoides nubeculosus, a research model species with a similar host-range as the vectors of Bluetongue disease and Schmallenberg disease in Europe. Combined gas chromatography and electroantennographic detect...

  17. Les porcheries : réservoirs des Culicoides (Diptera : Ceratopogonidae, vecteurs des virus de la Maladie de la Langue bleue et de Schmallenberg ?

    Directory of Open Access Journals (Sweden)

    Zimmer, JY.

    2014-01-01

    Full Text Available Pig farms: reservoirs of vectors of Bluetongue and Schmallenberg viruses?. Bluetongue (BT is a vector-borne disease that affects domestic and wild ruminants. Since its recent outbreak in northern Europe, this viral disease has caused considerable economic losses. The biological vectors of the bluetongue virus are biting midges belonging to the genus Culicoides (Diptera: Ceratopogonidae. Several light trapping campaigns targeting these adult midges have been previously conducted in Belgium within cattle and sheep farms, but none have been performed inside pig farms. This study therefore aims to assess, using light traps, the levels of Culicoides populations that may have been present inside two Belgian pig farms during the fall and winter of 2008. The presence of (potential Culicoides vector species was demonstrated inside the pig buildings during the fall: 8 and 749 specimens belonging to 2 and 7 species were respectively trapped inside the pigsties, with the majority being Obsoletus complex females. The opening up of the buildings seemed to strongly influence their presence. Observation of the females' nutritional status suggests that these midges were likely to have fed or to have laid eggs inside the pig farms, despite the fact that pig's blood could not be identified in the abdomen of engorged females and that pig manure did not reveal the presence of larvae. Pigs could thus be involved in the maintenance of potential vector species populations of the BT virus, or of the new Schmallenberg virus.

  18. A Comparison of Dynamics in Two Models for the Spread of a Vector-Borne Disease

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Sumner, T.; Enøe, Claes

    2016-01-01

    In 2007, bluetongue virus (BTV) was introduced to both Denmark (DK) and the United Kingdom (UK). For this reason, simulation models were built to predict scenarios for future incursions. The DK and UK models have a common description of within-herd dynamics, but differ greatly in their descriptio...... sensitivity to the level of vaccine uptake and has lower variability compared with a kernel-based model. However, a model using a transmission kernel requires less detailed data and is often faster.......In 2007, bluetongue virus (BTV) was introduced to both Denmark (DK) and the United Kingdom (UK). For this reason, simulation models were built to predict scenarios for future incursions. The DK and UK models have a common description of within-herd dynamics, but differ greatly in their descriptions...... of between-herd spread, one using an explicit representation of vector dispersal, the other a transmission kernel. Here, we compare model predictions for the dynamics of bluetongue in the UK, based on the 2007 incursion and vaccination rollout in 2008. We demonstrate how an agent-based model shows greater...

  19. [Arbovirus circulation in the Republic of Guinea].

    Science.gov (United States)

    Butenko, A M

    1996-01-01

    In 1978-1991 the USSR-Guinea Virological and Microbiological Laboratory functioned in Kindia, the Republic of Guinea. Arbovirus activity in this country was studied by a number of virologists and other specialists. Their personal contribution and achievements in this collaboration are reflected in the present paper. About 74,000 mosquitoes, 100,000 Ixodidae ticks, 1,500 wild birds, 2,700 bats, 106 monkeys, and 308 other mammals, 927 blood samples collected from febrile patients were examined in 1978-1989, using inoculation of new-born white mice. As a result of this work 127 strains of the following arboviruses were isolated: Chikungunia (1 strain), Dengue 2 (4), Saboya (7), Wesselsbron (1), Bunyamwera (4), M'Poko (5), Rift Valley Fever (6), CHF-Congo (9), Dugbe (22), Bhanja (6), Forecariah (2), Jos (26), Abadina (15), Kindia (2), Ark 6956 (1), Fomede (2), Bluetongue (9), Mossuril (2), AnK 6009 (1), and Kolente (2). Dengue 2, Wesselsbron, Bunyamwera, M'Poko, Kindia, Mossuril viruses were isolated from mosquitoes. Ixodidae ticks were sources for isolation of Chikungunia, Saboya, CCHF, Dugbe, Bhanja, Forecaciah, Jos, Abadina, Kindia, Ark 6956, Fomede, Bluetongue, and Kolente viruses. Saboya, RVF, Fomede, Kolente, AnK 6909 were isolated from bats (Chiroptera); Saboya, Abadina, and Bluetongue viruses from birds. One strain of Dugbe virus was originated from the brain of Cercopithecus patas. Bunyamwera and Abadina viruses were isolated from the blood of two febrile patients. Serological identification of many strains was kindly conducted at the Pasteur Institute, Dakar (J. P.Digoutte) and some at the YARU, USA (R. Shope). Kindia and Ark 6956 (Reovirus, gr. Palyam), Fomede (gr. Chobar Gorge), Forecariah (Bunyavirus, gr. Bhanja), Kolente (Rhabdovirus) were identified as an original type of Lagos bat virus. The results of seroepidemiological surveys are also presented.

  20. Culicoides (Avaritia) gornostaevae Mirzaeva, 1984 (Diptera: Ceratopogonidae) a possible vector species of the Obsoletus group new to the European fauna

    DEFF Research Database (Denmark)

    Kirkeby, Carsten; Dominiak, Patrycja

    2014-01-01

    Culicoides gornostaevae Mirzaeva, 1984, known previously only from Siberia, is a boreal species included into the Obsoletus group of Culicoides sg. Avaritia. Members of the subgenus can act as vectors of various diseases. In Europe they are involved in the transmission of the Schmallenberg virus...... and bluetongue virus. Culicoides gornostaevae Mirzaeva, 1984 is reported for the first time in Europe with new country records from Norway, Poland and Sweden. Culicoides gornostaevae Mirzaeva, 1984 has not been previously mentioned from Europe, even though there has been an extensive monitoring of Culicoides...

  1. AcEST: BP921052 [AcEST

    Lifescience Database Archive (English)

    Full Text Available disease virus 2 (strain Australia) Align length 55 Score (bit) 32.0 E-value 2.1 Report BLASTX 2.2.19 [Nov-0... VP3 OS=Epizootic hemorrhagic disease virus 2 (strain Australia) GN=S3 PE=3 SV=1 Length = 899 Score = 32.0 b...608|VP3_BTV1A Core protein VP3 OS=Bluetongue virus 1 (isolate Australia) GN=S3 PE=3 SV=1 Length = 901 Score

  2. Detection and analysis of six lizard adenoviruses by consensus primer PCR provides further evidence of a reptilian origin for the atadenoviruses.

    Science.gov (United States)

    Wellehan, James F X; Johnson, April J; Harrach, Balázs; Benkö, Mária; Pessier, Allan P; Johnson, Calvin M; Garner, Michael M; Childress, April; Jacobson, Elliott R

    2004-12-01

    A consensus nested-PCR method was designed for investigation of the DNA polymerase gene of adenoviruses. Gene fragments were amplified and sequenced from six novel adenoviruses from seven lizard species, including four species from which adenoviruses had not previously been reported. Host species included Gila monster, leopard gecko, fat-tail gecko, blue-tongued skink, Tokay gecko, bearded dragon, and mountain chameleon. This is the first sequence information from lizard adenoviruses. Phylogenetic analysis indicated that these viruses belong to the genus Atadenovirus, supporting the reptilian origin of atadenoviruses. This PCR method may be useful for obtaining templates for initial sequencing of novel adenoviruses.

  3. Determination of the In Vitro and In Vivo Activity of Compounds Tested Against Punta Toro Virus.

    Science.gov (United States)

    1987-12-29

    cells were grown in minimum essential medium (MEM; GIBCO Labs, Grand Island, NY) containing 5% fetal bovine serum (FBS; HyClone Labs, Logan, UT) and 0.1... bovine serum (FBS, HyClone Labs, Logan, UT) and 0.1% NaHCO3 without antibiotics. All were determined to be mycoplasma-free. Test Compounds: All...influenza, parainfluenza , rhino, vesicular stomatitis, bluetongue, reo and rota viruses (3-6). The compound was only slightly effective vs PTV in vitro (VR

  4. Disease-modeling as a tool for surveillance, foresight and control of exotic vector borne diseases in the Nordic countries

    DEFF Research Database (Denmark)

    Bødker, Rene

    Modeling the potential transmission intensity of insect borne diseases with climate driven R0 process models is frequently used to assess the potential for veterinary and human infections to become established in non endemic areas. Models are often based on mean temperatures of an arbitrary time...... partners to generate a truly risk based surveillance system for insect borne diseases. We have also used the R0 models to predict the potential impact of climate change on four selected vector borne disease: Bluetongue in cattle, African Horse Sickness in horses, Dirofilariasis in dogs and Vivax...

  5. Animal Production and Health Newsletter. No. 13

    International Nuclear Information System (INIS)

    1991-01-01

    This newsletter includes reports of FAO/IAEA-organized meetings held between 17 September 1990 and 23 November 1990, with emphasis on the development and application of radioimmunoassay and enzyme-linked immunosorbent assay techniques to study Foot and Mouth Disease, bluetongue vins and other diseases, and animal reproduction. The status of existing coordinated research programmes is summarized, and a new coordinated research programme on the development of supplementation strategies for milk-producing animals in tropical and subtropical environments is announced. Applications for contracts to participate in this programme are invited. The role of the Section's Animal Production Unit at Seibersdorf is reviewed, and a list of forthcoming events is given

  6. Vector-borne disease surveillance in livestock populations: a critical review of literature recommendations and implemented surveillance (BTV-8) in five European countries

    DEFF Research Database (Denmark)

    Dórea, Fernanda C.; Elbers, Armin R.W.; Hendrikx, Pascal

    2016-01-01

    of diseases during the early phase of introduction into a free country. However, its value diminished once the disease has been established in a territory. Detection of emerging diseases was found to be very context and area specific, and thus active surveillance designs need to take the available...... of the bluetongue surveillance in the affected countries showed that the degree of voluntary engagement varied, and that it is important to engage the public by general awareness and dissemination of results. The degree of engagement will also aid in establishing a passive surveillance system....

  7. Transplacental transmission of field and rescued strains of BTV-2 and BTV-8 in experimentally infected sheep

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Savini, Giovanni; Lorusso, Alessio

    2013-01-01

    Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated......) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses...

  8. Interacting impacts of invasive plants and invasive toads on native lizards.

    Science.gov (United States)

    Price-Rees, Samantha J; Brown, Gregory P; Shine, Richard

    2012-03-01

    The ecological impacts of an invasive species may be reduced by prior invasions if selective pressures imposed by earlier events preadapt the native biota to deal with the newer arrival. In northwestern Australia, invasion of the cane toad (Rhinella marina) kills many native predators if they ingest the highly toxic toads. Remarkably, the toads' defensive toxins (bufadienolides) are chemically similar to those of another invasive species: an ornamental plant from Madagascar, Bryophyllum spp. (Crassulaceae, mother-of-millions). Omnivorous lizards (bluetongue skinks, Tiliqua scincoides) are imperiled by the invasion of toads in northwestern Australia, but conspecifics from other areas of the continent (those where exotic plants were introduced and including areas where toads have yet to invade) are less affected because they exhibit higher physiological tolerance of toad toxins (and also of plant toxins). The willingness of captive bluetongues to consume both toads and these plants and the high correlation in the lizards' sensitivity to toad toxins versus plant toxins suggest that exotic plants may have imposed strong selection on the lizards' physiological tolerance of bufadienolides. As a result, populations of lizards from areas previously exposed to these alien plants may be preadapted to deal with the toxins of the more recent anuran invader.

  9. Description of breeding sites of Culicoides species (Diptera: Ceratopogonidae) in Turkey.

    Science.gov (United States)

    Uslu, U; Dik, B

    2007-06-01

    The aim of this study was to describe the breeding sites of Culicoides species in Konya province, Turkey. The samples taken from 11 different habitats in Konya province were examined for Culicoides species. The collected adult Culicoides specimens were reared in plastic buckets in our laboratory. Among 2,798 specimens reared, 18 species were identified. Culicoides circumscriptus Kieffer, 1918 was the most abundant species reared in the samples taken from mud rich in organic matters near the water reservoirs; C. circumscriptus, C. nubeculosus (Meigen), 1830 and C. shaklawensis Khalaf, 1957 in moist soil with organic matter; C. geigelensis Dzhafarov, 1964 in moist soils, along watering channels and dripping waters; C. festivipennis Kieffer, 1914 and C. circumscriptus along sewage channel; C. festivipennis in reed sites and along garden watering channels; C. circumscriptus in rain pools; C. odiatus Austen, 1921 and C. circumscriptus in mud near the dams; C. geigelensis and C. kibunensis Tokunaga, 1937 from sites along the stream. No Culicoides was reared in the samples obtained from livestock dung and tree holes. It was observed that C. circumscriptus, C. festivipennis and C. shaklawensis preferred mud rich in organic matters near the water reservoirs. Culicoides imicola Kieffer, 1913, which is the main vector of bluetongue, was not detected in Konya province. The others vectors of bluetongue, C. obsoletus gr. (Meigen), 1818, C. schultzei gr. (Enderlein), 1908 and C. pulicaris (Linnaeus), 1758 were only obtained in little numbers.

  10. Description of breeding sites of Culicoides species (Diptera: Ceratopogonidae in Turkey

    Directory of Open Access Journals (Sweden)

    Uslu U.

    2007-06-01

    Full Text Available The aim of this study was to describe the breeding sites of Culicoides species in Konya province, Turkey. The samples taken from 11 different habitats in Konya province were examined for Culicoides species. The collected adult Culicoides specimens were reared in plastic buckets in our laboratory. Among 2,798 specimens reared, 18 species were identified. Culicoides circumscriptus Kieffer, 1918 was the most abundant species reared in the samples taken from mud rich in organic matters near the water reservoirs; C. circumscriptus, C. nubeculosus (Meigen, 1830 and C. shaklawensis Khalaf, 1957 in moist soil with organic matter; C. gejgelensis Dzhafarov, 1964 in moist soils, along watering channels and dripping waters; C. festivipennis Kieffer, 1914 and C. circumscriptus along sewage channel; C. festivipennis in reed sites and along garden watering channels; C. circumscriptus in rain pools; C. odiatus Austen, 1921 and C. circumscriptus in mud near the dams; C. gejgelensis and C. kibunensis Tokunaga, 1937 from sites along the stream. No Culicoides was reared in the samples obtained from livestock dung and tree holes. It was observed that C. circumscriptus, C. festivipennis and C. shaklawensis preferred mud rich in organic matters near the water reservoirs. Culicoides imicola Kieffer, 1913, which is the main vector of bluetongue, was not detected in Konya province. The others vectors of bluetongue, C. obsoletus gr. (Meigen, 1818, C. schultzei gr. (Enderlein, 1908 and C. pulicaris (Linnaeus, 1758 were only obtained in little numbers.

  11. Serologic survey for selected arboviruses and other potential pathogens in wildlife from Mexico.

    Science.gov (United States)

    Aguirre, A A; McLean, R G; Cook, R S; Quan, T J

    1992-07-01

    During 1988 and 1989, a serologic survey of wildlife was conducted in northeastern Mexico to determine the presence, prevalence, and distribution of arboviruses and other selected disease agents. Eighty mammal specimens were tested. Antibodies to vesicular stomatitis-Indiana, Venezuelan equine encephalitis-Mena II, Rio Grande virus, and vesicular stomatitis-New Jersey were detected predominantly in small mammals. Deer and mouflon (Ovis musimon) had antibodies to bluetongue and epizootic hemorrhagic disease. Two species had serologic evidence of recent exposure to Francisella tularensis. A white-tailed deer (Odocoileus virginianus) had antibodies to Anaplasma marginale. All specimens tested for antibodies against Yersinia pestis and Brucella abortus were negative. Sera from 315 birds were tested for antibody against five equine encephalitis viruses and six avian pathogens. During 1988, antibodies to Venezuelan equine encephalitis-Mena II, Venezuelan equine encephalitis-TC83, St. Louis encephalitis, eastern equine encephalitis, and western equine encephalitis were detected in birds of several species. Antibodies to Pasteurella multocida and Newcastle disease virus were also detected. Birds from five species presented antibodies to Mycoplasma meleagridis. Specimens tested for M. gallisepticum, M. synoviae, and Chlamydia psittaci were negative. To the best of our knowledge, this survey represents the first serologic evidence of bluetongue, Cache Valley virus, epizootic hemorrhagic disease, Jamestown Canyon virus, vesicular stomatitis-Indiana, vesicular stomatitis-New Jersey, Rio Grande virus, and tularemia reported among wildlife in Mexico.

  12. Morbidity and Mortality of Reptiles Admitted to the Australian Wildlife Health Centre, Healesville Sanctuary, Australia, 2000-13.

    Science.gov (United States)

    Scheelings, T Franciscus

    2015-07-01

    Medical records of 931 reptiles admitted to the Australian Wildlife Health Centre, Healesville Sanctuary, Healesville, Victoria, Australia, from 2000 to 2013 were reviewed to determine the causes of morbidity and mortality. Thirty-nine species were presented; the most common were the common long-neck turtle (Chelodina longicollis; n = 311, 33.4%), the eastern bluetongue lizard (Tiliqua scincoides; n = 224, 4.1%), the blotched bluetongue lizard (Tiliqua nigrolutea; n = 136, 14.6%), and the lowland copperhead (Austrelaps superbus; n = 55, 5.9%). Trauma was the most significant reason for admissions, accounting for 73.0% of cases. This was followed by not injured (11.7%), displacement (6.4%), snake removal (4.2%), human interference (3.1%), introduced species (1.1%), sick/diseased (0.2%), and illegal pet (0.2%). Within the category of trauma, impact with motor vehicle (41.0% of trauma cases) and domestic animal attack (33.2% of trauma cases) were the most common subcategories. Our results indicate that indirect anthropogenic factors are a significant cause of morbidity and mortality in Australian reptiles.

  13. Inactivation of viral agents in bovine serum by gamma irradiation.

    Science.gov (United States)

    House, C; House, J A; Yedloutschnig, R J

    1990-10-01

    Cell culture origin or suckling mouse brain origin viruses of Akabane disease, Aino, bovine ephemeral fever, swine vesicular disease, hog cholera, bluetongue, and minute virus of mice were each suspended in bovine serum. Aliquots (1 mL) were exposed to various doses of gamma radiation from a 60Co source while at -68 degrees C. Aliquots (100-mL) of serum from a steer experimentally infected with foot-and-mouth disease virus were similarly irradiated. The samples were assayed for infectivity in cell culture systems before and after irradiation, and the data points were analyzed by linear regression. The irradiation doses (in megarads) necessary to inactivate one log10 of viral infectivity (D10) was calculated for each virus. D10 is otherwise known as the slope of the regression line. The r2 value, a measure of association with 1.0 = perfect fit, was also calculated for each regression line. The values (D10, r2) for each virus were as follows: Akabane, 0.25, 0.998; Aino, 0.35, 0.997; bovine ephemeral fever, 0.29, 0.961; swine vesicular disease, 0.50, 0.969; foot-and-mouth disease, 0.53, 0.978; hog cholera, 0.55, 0.974; bluetongue, 0.83, 0.958; and minute virus of mice, 1.07, 0.935.

  14. Biotic and abiotic factors influencing distribution and abundance of Culicoides obsoletus group (Diptera: Ceratopogonidae) in central Italy.

    Science.gov (United States)

    De Liberato, C; Farina, F; Magliano, A; Rombolà, P; Scholl, F; Spallucci, V; Scaramozzino, P

    2010-05-01

    In the framework of a bluetongue surveillance program including clinical, serological, and entomological activities, Culicoides biting midges were light trapped weekly in two regions of central Italy, Lazio and Tuscany. In the period January 2002 through December 2005, 3,944 collections were carried out in 189 trap sites distributed in all the provinces of the two regions. Abundance data of C. obsoletus group were analyzed in relation to trap site altitude, distance from the sea, land use, and number of farmed animals. Species seasonality and overall temporal trend were also described. C. obsoletus was distributed over the whole study area, almost in all trapping sites and with high abundances. The species group was dominant among all captured Culicoides, with higher abundances recorded inland and in areas where land cover was partially or completely natural-wooded. Adults on the wing were caught all year round, with peaks in May-June and middle October. The observed trend through years recorded a peak during autumn 2002, in concomitance with a local epidemic of bluetongue.

  15. The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae)

    DEFF Research Database (Denmark)

    Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders

    2013-01-01

    Background Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light...... traps. Methods Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas...... collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups...

  16. Serosurvey for selected viral agents in white rhinoceros (Ceratotherium simum) in Kruger National Park, 2007.

    Science.gov (United States)

    Miller, Michele; Buss, Peter; Joubert, Jenny; Maseko, Nomkhosi; Hofmeyr, Markus; Gerdes, Truuske

    2011-03-01

    One hundred serum samples collected from free-ranging white rhinoceros (Ceratotherium simum) in Kruger National Park (KNP) during the 2007 capture season were selected for measurement of antibody levels to several different vector-borne viral agents. These infectious diseases were chosen to compare with an earlier serosurvey that had been conducted in KNP in rhinos during 1987-1997. Positive antibody titers were found against epizootic hemorrhagic disease (EHD) of deer (8%), Bluetongue (BT) (1%), and Rift Valley fever (RVF) (49%). However, none of the 100 animals tested had detected antibody levels to African horse sickness (AHS). These values were in sharp contrast to those measured in the 1987-1997 survey in KNP white rhinos (AHS 60%, EHD 30%, BT 37%, RVF 0%). Vector-borne viral infection prevalence in white rhinos in the same geographical location appears to vary over time and may be important for monitoring presence of pathogens in an ecosystem.

  17. Optimal vaccination strategies against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    2014-01-01

    Using a process oriented semi-agent based model, we simulated the spread of Bluetongue virus by Culicoides, biting midges, between cattle in Denmark. We evaluated the minimum vaccination cover and minimum cost for eight different preventive vaccination strategies in Denmark. The simulation model...... replicates both a passive and active flight of midges between cattle distributed on pastures and cattle farms in Denmark. A seasonal abundance of midges and temperature dependence of biological processes were included in the model. The eight vaccination strategies were investigated under four different...... grazing conditions. Furthermore, scenarios were tested with three different index locations stratified for cattle density. The cheapest way to vaccinate cattle with a medium risk profile (less than 1000 total affected cattle) was to vaccinate cattle on pasture. Regional vaccination displayed better...

  18. Optimal vaccination scenarios against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    Using a process oriented semi-agent based model we simulated the spread of Bluetongue virus in Denmark. We evaluated the efficiency and minimum vaccination cover for eight different preventive vaccination strategies in Denmark. The simulation model replicates both passive and active flight...... of Culicoides between hosts on pasture and stables in Denmark. Seasonal abundance of midges and temperature dependence on biological processes were included in the model. The eight vaccination scenarios comprised of: All holdings vaccinated to a given percentage, random holdings selected for vaccination, two...... scenarios based on the size of holdings, mosaic vaccination of nearest neighbor farms, vaccination of hosts on pasture, regional vaccination, and trench vaccination from the border to Germany. These eight scenarios were investigated under normal grazing conditions and under a forced housing scenario...

  19. Spatio-temporal abundance and dispersal of Culicoides

    DEFF Research Database (Denmark)

    Kirkeby, Carsten

    . These models need to have proper input regarding the abundance and behavior of the vectors. If no vectors are present in an area, the disease will not spread. Thus the vector abundance is a very important factor for models of vector-borne diseases. This PhD project investigates different key factors important......This PhD project comprises studies of biting midges (Culicoides) in Denmark with regards to vector-borne diseases such as bluetongue virus (BTV) and Schmallenberg virus (SBV). Both diseases are new in northern Europe. In Denmark there was an outbreak of BTV in 2007 and 2008. BTV infects ruminants...... in Denmark. The symptoms of SBV are similar to BTV but also include a high proportion of malformations and stillbirths in lambs. Models of vector-borne diseases can be used to predict an outbreak and evaluate e.g. the optimal control strategy, the economic impact and the number of infected animals...

  20. Prevalence of serotype specific antibody to equine encephalosis virus in Thoroughbred yearlings South Africa (1999-2004

    Directory of Open Access Journals (Sweden)

    P. G. Howell

    2008-08-01

    Full Text Available Cohorts of yearlings were sampled over a period of 6 years in a retrospective serological survey to establish the annual prevalence of serotype specific antibody to equine encephalosis virus on Thoroughbred stud farms distributed within defined geographical regions of South Africa. Seasonal seroprevalence varied between 3.6% and 34.7%, revealing both single and multiple serotype infections in an individual yearling. During the course of this study serotypes 1 and 6 were most frequently and extensively identified while the remaining serotypes 2, 3, 4, 5 and 7 were all identified as sporadic and localized in fections affecting only individual horses. This study of the seasonal prevalence of equine encephalosis virus has a corollary and serves as a useful model in the seasonal incidence of the serotypes of African horse sickness and bluetongue in regions where the respective diseases are endemic.

  1. Vector-borne diseases

    DEFF Research Database (Denmark)

    More, Simon J.; Bicout, Dominique; Bøtner, Anette

    2017-01-01

    After a request from the Europea n Commission, EFSA’s Panel on Animal Health and Welfaresummarised the main characteristics of 36 vector-borne disease s (VBDs) in 36 web-based storymaps.The risk of introduction in the EU through movement of livestock or pets was assessed for eac h of the36 VBDs...... individually, using a semiquantitative Metho d to INTegrate all relevant RISK aspects(MINTRI SK model), which was further modified to a European scale into the EFSA-VBD-RISK-m odel .Only eight of the 36 VBD-agents had an overall rate of introduction in the EU (being the combinationof the rate of entry, vector...... transmission and establishment) which was estimated to be above 0.001introductions per year. These were Crimean-Congo haemorrhagic fever virus, bluetongue virus, WestNile virus, Schmallenberg virus, Hepatozoon canis, Leishmania infantum, Bunyamwera virus andHighlands J. virus. For these eight dise ases...

  2. Schmallenberg virus infection of ruminants: challenges and opportunities for veterinarians

    Directory of Open Access Journals (Sweden)

    Claine F

    2015-06-01

    Full Text Available François Claine, Damien Coupeau, Laetitia Wiggers, Benoît Muylkens, Nathalie Kirschvink Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS, University of Namur (UNamur, Namur, Belgium Abstract: In 2011, European ruminant flocks were infected by Schmallenberg virus (SBV leading to transient disease in adult cattle but abortions and congenital deformities in calves, lambs, and goat kids. SBV belonging to the Simbu serogroup (family Bunyaviridae and genus Orthobunyavirus was first discovered in the same region where bluetongue virus serotype 8 (BTV-8 emerged 5 years before. Both viruses are transmitted by biting midges (Culicoides spp. and share several similarities. This paper describes the current knowledge of temporal and geographical spread, molecular virology, transmission and susceptible species, clinical signs, diagnosis, prevention and control, impact on ruminant health, and productivity of SBV infection in Europe, and compares SBV infection with BTV-8 infection in ruminants. Keywords: Schmallenberg virus, Europe, ruminants, review

  3. Sensitive detection of novel Indian isolate of BTV 21 using ns1 gene based real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Gaya Prasad

    2013-06-01

    Full Text Available Aim: The study was conducted to develop ns1 gene based sensitive real-time RT-PCR assay for diagnosis of India isolates of bluetongue virus (BTV. Materials and Methods: The BTV serotype 21 isolate (KMNO7 was isolated from Andhra Pradesh and propagated in BHK-21 cell line in our laboratory. The Nucleic acid (dsRNA of virus was extracted using Trizol method and cDNA was prepared using a standard protocol. The cDNA was allowed to ns1 gene based group specific PCR to confirm the isolate as BTV. The viral RNA was diluted 10 folds and the detection limit of ns1 gene based RT-PCR was determined. Finally the tenfold diluted viral RNA was subjected to real-time RT-PCR using ns1 gene primer and Taq man probe to standardized the reaction and determine the detection limit. Results: The ns1 gene based group specific PCR showed a single 366bp amplicon in agarose gel electrophoresis confirmed the sample as BTV. The ns1 gene RT-PCR using tenfold diluted viral RNA showed the detection limit of 70.0 fg in 1%agarose gel electrophoresis. The ns1 gene based real time RT-PCR was successfully standardized and the detection limit was found to be 7.0 fg. Conclusion: The ns1 gene based real-time RT-PCR was successfully standardized and it was found to be 10 times more sensitive than conventional RT-PCR. Key words: bluetongue, BTV21, RT-PCR, Real time RT-PCR, ns1 gene [Vet World 2013; 6(8.000: 554-557

  4. Defining an emerging disease.

    Science.gov (United States)

    Moutou, F; Pastoret, P-P

    2015-04-01

    Defining an emerging disease is not straightforward, as there are several different types of disease emergence. For example, there can be a 'real' emergence of a brand new disease, such as the emergence of bovine spongiform encephalopathy in the 1980s, or a geographic emergence in an area not previously affected, such as the emergence of bluetongue in northern Europe in 2006. In addition, disease can emerge in species formerly not considered affected, e.g. the emergence of bovine tuberculosis in wildlife species since 2000 in France. There can also be an unexpected increase of disease incidence in a known area and a known species, or there may simply be an increase in our knowledge or awareness of a particular disease. What all these emerging diseases have in common is that human activity frequently has a role to play in their emergence. For example, bovine spongiform encephalopathy very probably emerged as a result of changes in the manufacturing of meat-and-bone meal, bluetongue was able to spread to cooler climes as a result of uncontrolled trade in animals, and a relaxation of screening and surveillance for bovine tuberculosis enabled the disease to re-emerge in areas that had been able to drastically reduce the number of cases. Globalisation and population growth will continue to affect the epidemiology of diseases in years to come and ecosystems will continue to evolve. Furthermore, new technologies such as metagenomics and high-throughput sequencing are identifying new microorganisms all the time. Change is the one constant, and diseases will continue to emerge, and we must consider the causes and different types of emergence as we deal with these diseases in the future.

  5. Alarcón-Elbal, P.M. & Lucientes, J. 2012. Actualización del catálogo de Culicoides Latreille, 1809 (Diptera, Ceratopogonidae de España. Graellsia 68:353–362. doi:10.3989/graellsia.2012.v68.064. Bilk, S. Schulze, C. Fischer, M. Beer, M. Hlinak, A. & Hoffmann, B. 2012. Organ distribution of Schmallenberg virus RNA in malformed newborns. Vet. Microbiol. 159:236–238. doi:10.1016/j.vetmic.2012.03.035. De Blas, I., Ruiz-Zarzuela, I. & Vallejo, A. 2006. WinEpi: Working In Epidemiology. An Online Epidemiological Tool. Page in Proceedings of the 11th International Symposium on Veterinary Epidemiology and Economics, Cairns, Australia. Cameron, A.R. & Baldock, F.C. 1998. A new probability formula for surveys to substantiate freedom from disease.. Prev. Vet. Med. 34:1–17. Doceul, V., Lara, E., Sailleau, C., Belbis, G. Richardson, J., Bréard, E., Viarouge, C., Dominguez, M., Hendrikx, P., Calavas, D., Desprat, A., Languille, J., Comtet, L., Pourquier, P., Eléouët, J.-F., Delmas, B., Marianneau, P., Vitour, D. & Zientara, S. 2013. Epidemiology, molecular virology and diagnostics of Schmallenberg virus, an emerging orthobunyavirus in Europe.. Vet. Res. 44:1–13. doi:10.1186/1297-9716-44-31. Elbers, A.R.W., Meiswinkel, R., van Weezep, E., Sloet van Oldruitenborgh-Oosterbaan, M.M. & Engbert, A.K. 2013. Schmallenberg Virus in Culicoides spp. Biting Midges, the Netherlands, 2011. Emerg. Infect. Dis. 19:106–109. doi:10.3201/eid1901.121054. Gariglinany, M.-M., Hoffmann, B., Dive, M., Sartelet, A., Bayrou, C., Cassart, D., Beer, M. & Desmecht, D. 2012. Schmallenberg Virus in Calf Born at Term with Porencephaly, Belgium. Emerg. Infect. Dis. 18. doi:10.3201/eid1806.120104. Greiner, E.C., Mo, C.L., Homan, E.J., Gonzalez, J., Oviedo, M.T., Thompson, L.H. & Gibbs, E.P. 1993. Epidemiology of bluetongue in Central America and the Caribbean: initial entomological findings. Regional Bluetongue Team. Med Vet Entomol 7:309–315. doi:10.1111/j.1365-2915.1993.tb00697.x. Hern

    Directory of Open Access Journals (Sweden)

    Marlene Villegas-Salas

    2017-12-01

    Full Text Available Schmallenberg virus affects ruminants, which causes significant economic losses.  The virus is transmitted through vectors of the genus Culicoides; however, other studies do not rule out the possibility of sexual transmission due to its presence in semen. For this reason, the National Service of Animal Health of Costa Rica (SENASA imposed restrictions on the import of semen from animals from the European Union in 2013. Consequently, SENASA conducted a study to determine the presence or absence of antibodies against this virus in bovine, ovine and caprine samples. As a result, no antibodies against this virus were detected in the 748 samples tested. It was concluded that Schmallenberg virus was not circulating in Costa Rican ruminants during the tested period.

  6. Arboviruses pathogenic for domestic and wild animals.

    Science.gov (United States)

    Hubálek, Zdenek; Rudolf, Ivo; Nowotny, Norbert

    2014-01-01

    The objective of this chapter is to provide an updated and concise systematic review on taxonomy, history, arthropod vectors, vertebrate hosts, animal disease, and geographic distribution of all arboviruses known to date to cause disease in homeotherm (endotherm) vertebrates, except those affecting exclusively man. Fifty arboviruses pathogenic for animals have been documented worldwide, belonging to seven families: Togaviridae (mosquito-borne Eastern, Western, and Venezuelan equine encephalilitis viruses; Sindbis, Middelburg, Getah, and Semliki Forest viruses), Flaviviridae (mosquito-borne yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile, Usutu, Israel turkey meningoencephalitis, Tembusu and Wesselsbron viruses; tick-borne encephalitis, louping ill, Omsk hemorrhagic fever, Kyasanur Forest disease, and Tyuleniy viruses), Bunyaviridae (tick-borne Nairobi sheep disease, Soldado, and Bhanja viruses; mosquito-borne Rift Valley fever, La Crosse, Snowshoe hare, and Cache Valley viruses; biting midges-borne Main Drain, Akabane, Aino, Shuni, and Schmallenberg viruses), Reoviridae (biting midges-borne African horse sickness, Kasba, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki, equine encephalosis, Peruvian horse sickness, and Yunnan viruses), Rhabdoviridae (sandfly/mosquito-borne bovine ephemeral fever, vesicular stomatitis-Indiana, vesicular stomatitis-New Jersey, vesicular stomatitis-Alagoas, and Coccal viruses), Orthomyxoviridae (tick-borne Thogoto virus), and Asfarviridae (tick-borne African swine fever virus). They are transmitted to animals by five groups of hematophagous arthropods of the subphyllum Chelicerata (order Acarina, families Ixodidae and Argasidae-ticks) or members of the class Insecta: mosquitoes (family Culicidae); biting midges (family Ceratopogonidae); sandflies (subfamily Phlebotominae); and cimicid bugs (family Cimicidae). Arboviral diseases in endotherm animals may therefore be classified as: tick

  7. Geographic range of vector-borne infections and their vectors: the role of African wildlife.

    Science.gov (United States)

    van Vuuren, M; Penzhorn, B L

    2015-04-01

    The role of African wildlife in the occurrence of vector-borne infections in domestic animals has gained renewed interest as emerging and re-emerging infections occur worldwide at an increasing rate. In Africa, biodiversity conservation and the expansion of livestock production have increased the risk of transmitting vector-borne infections between wildlife and livestock. The indigenous African pathogens with transboundary potential, such as Rift Valley fever virus, African horse sickness virus, bluetongue virus, lumpy skin disease virus, African swine fever virus, and blood-borne parasites have received the most attention. There is no evidence for persistent vector-borne viral infections in African wildlife. For some viral infections, wildlife may act as a reservoir through the inter-epidemic circulation of viruses with mild or subclinical manifestations. Wildlife may also act as introductory or transporting hosts when moved to new regions, e.g. for lumpy skin disease virus, Rift Valley fever virus and West Nile virus. Wildlife may also act as amplifying hosts when exposed to viruses in the early part of the warm season when vectors are active, with spillover to domestic animals later in the season, e.g. with bluetongue and African horse sickness. Some tick species found on domestic animals are more abundant on wildlife hosts; some depend on wildlife hosts to complete their life cycle. Since the endemic stability of a disease depends on a sufficiently large tick population to ensure that domestic animals become infected at an early age, the presence of wildlife hosts that augment tick numbers may be beneficial. Many wild ungulate species are reservoirs of Anaplasma spp., while the role of wildlife in the epidemiology of heartwater (Ehrlichia ruminantium infection) has not been elucidated. Wild ungulates are not usually reservoirs of piroplasms that affect livestock; however, there are two exceptions: zebra, which are reservoirs of Babesia caballi and Theileria

  8. Viral diseases of northern ungulates

    Directory of Open Access Journals (Sweden)

    K. Frölich

    2000-03-01

    Full Text Available This paper describes viral diseases reported in northern ungulates and those that are a potential threat to these species. The following diseases are discussed: bovine viral diarrhoea/mucosal disease (BVD/MD, alphaherpesvirus infections, malignant catarrhal fever (MCF, poxvirus infections, parainfluenza type 3 virus infection, Alvsborg disease, foot-and-mouth disease, epizootic haemorrhage disease of deer and bluetongue disease, rabies, respiratory syncytial virus infection, adenovirus infection, hog-cholera, Aujeszky's disease and equine herpesvirus infections. There are no significant differences in antibody prevalence to BVDV among deer in habitats with high, intermediate and low density of cattle. In addition, sequence analysis from the BVDV isolated from roe deer (Capreolus capreolus showed that this strain was unique within BVDV group I. Distinct BVDV strains might circulate in free-ranging roe deer populations in Germany and virus transmission may be independent of domestic livestock. Similar results have been obtained in a serological survey of alpha-herpesviruses in deer in Germany. Malignant catarrhal fever was studied in fallow deer (Cervus dama in Germany: the seroprevalence and positive PCR results detected in sheep originating from the same area as the antibody-positive deer might indicate that sheep are the main reservoir animals. Contagious ecthyma (CE is a common disease in domestic sheep and goats caused by the orf virus. CE has been diagnosed in Rocky Mountain bighorn sheep (Ovis canadensis, mountain goats (Oreamnos americanus, Dall sheep (Ovis dalli, chamois (Rupkapra rupi-capra, muskox {Ovibos moschatus and reindeer (Rangifer tarandus. Most parainfluenza type 3 virus infections are mild or clinically undetectable. Serological surveys in wildlife have been successfully conducted in many species. In 1985, a new disease was identified in Swedish moose (Alces alces, designated as Alvsborg disease. This wasting syndrome probably

  9. The most likely time and place of introduction of BTV8 into Belgian ruminants.

    Directory of Open Access Journals (Sweden)

    Claude Saegerman

    Full Text Available BACKGROUND: In northern Europe, bluetongue (BT caused by the BT virus (BTV, serotype 8, was first notified in August 2006 and numerous ruminant herds were affected in 2007 and 2008. However, the origin and the time and place of the original introduction have not yet been determined. METHODS AND PRINCIPAL FINDINGS: Four retrospective epidemiological surveys have been performed to enable determination of the initial spatiotemporal occurrence of this emerging disease in southern Belgium: investigations of the first recorded outbreaks near to the disease epicenter; a large anonymous, random postal survey of cattle herds and sheep flocks; a random historical milk tank survey of samples tested with an indirect ELISA and a follow-up survey of non-specific health indicators. The original introduction of BTV into the region probably occurred during spring 2006 near to the National Park of Hautes Fagnes and Eifel when Culicoides become active. CONCLUSIONS/SIGNIFICANCE: The determination of the most likely time and place of introduction of BTV8 into a country is of paramount importance to enhance awareness and understanding and, to improve modeling of vector-borne emerging infectious diseases.

  10. Wild ungulates as sentinel of BTV-8 infection in piedmont areas.

    Science.gov (United States)

    Grego, E; Sossella, M; Bisanzio, D; Stella, M C; Giordana, G; Pignata, L; Tomassone, L

    2014-11-07

    Bluetongue caused by the genotype 8 virus (BTV-8) appeared for the first time in BTV free areas in northern Italy in 2008. The presence of domestic animals outbreaks, abundant wild ungulates populations, and ongoing regional BTV control plans, made this area interesting to evaluate the role of wild ruminants in BTV-8 epidemiology. We analyzed spleen samples from hunted red deer (Cervus elaphus), roe deer (Capreolus capreolus) and Alpine chamois (Rupicapra rupicapra) by quantitative RT-PCR. Samples were collected from 2008 to 2011 in two provinces of Piedmont region. BTV-8 was detected in all ungulate species, confirming their receptivity to the infection. However, the viral load in the positive specimens was low, and decreased from 2008 to 2011. These results, together with the extinction of the epidemic following a regional livestock vaccination campaign, lead to hypothesize that wild ungulates were an epiphenomenon and they had not an important role in the domestic transmission cycle of BTV-8 in this area. In spite of this, wild ruminants appear to be good sentinels of BTV circulation and their monitoring could be useful for surveillance in piedmont areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Quantitative one-step real-time RT-PCR for the fast detection of the four genotypes of PPRV.

    Science.gov (United States)

    Kwiatek, Olivier; Keita, Djénéba; Gil, Patricia; Fernández-Pinero, Jovita; Jimenez Clavero, Miguel Angel; Albina, Emmanuel; Libeau, Genevieve

    2010-05-01

    A one-step real-time Taqman RT-PCR assay (RRT-PCR) for peste des petits ruminants virus (PPRV) was developed to detect the four lineages of PPRV by targeting the nucleoprotein (N) gene of the virus. This new assay was compared to a conventional RT-PCR on reference strains and field materials. Quantitation was performed against a standard based on a synthetic transcript of the NPPR gene for which a minimum of 32 copies per reaction were detected with a corresponding C(t) value of 39. Depending on the lineage involved, the detection limit of RRT-PCR was decreased by one to three log copies relative to the conventional method. The lower stringency occurred with lineage III because of minor nucleotide mismatches within the probe region. The assay did not detect phylogenetically or symptomatically related viruses of ruminants (such as rinderpest, bluetongue, and bovine viral diarrhea viruses). However, it was capable of detecting 20% more positive field samples with low viral RNA loads compared to the conventional PCR method. When compared on a proficiency panel to the method developed by Bao et al. (2008), the sensitivity of the in-house assay was slightly improved on lineage II. It proved significantly faster to perform and hence better adapted for monitoring large numbers of at risk or diseased animals. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Sentinel surveillance systems with special focus on vector-borne diseases.

    Science.gov (United States)

    Racloz, V; Griot, C; Stärk, K D C

    2006-01-01

    In the past few decades, vector-borne diseases have been spreading into countries previously free of these agents. It is necessary for a surveillance method to be tailored to the biology of these agents in order to detect their incursion. Using a sentinel herd system, it is possible to target high-risk areas where occurrence is most probably due to vector presence. Since the 1970s, diseases such as Akabane, vesicular stomatitis and Bluetongue disease have successfully been monitored using cattle herds as sentinels in many countries such as Saudi Arabia, Australia, China, Indonesia, Sultanate of Oman and most recently in countries in Western Europe. This paper reviews the strengths and weaknesses of sentinel herd surveillance systems in general. In order to determine their efficacy, the following criteria were found to be essential: the choice of sentinel locations, sentinel animal, seasonality of sampling and diagnostic testing methods. We conclude that due to its ability to focus on a specific disease, sentinel herd systems have been successful in the early detection of the spread of a targeted agent. This review is used as a basis for recommendations for the development of future sentinel herd systems.

  13. No evidence for involvement of sheep in the epidemiology of cattle virulent epizootic hemorrhagic disease virus.

    Science.gov (United States)

    Kedmi, M; Levi, S; Galon, N; Bomborov, V; Yadin, H; Batten, C; Klement, E

    2011-03-24

    Epizootic hemorrhagic disease virus (EHDV) is an Orbivirus. While not previously considered as an important disease in cattle, several EHDV serotypes (EHDV-6 and 7) have recently been implicated in disease outbreaks. The involvement of sheep in the epidemiology of EHDV is still not understood. In this study we compared the prevalence of antibodies to EHDV and bluetongue virus (BTV) in sheep to their prevalence in cattle after an outbreak of EHDV that occurred in Israel during 2006. Sixty-six sheep and lambs scattered in seven herds were compared to 114 cows and calves scattered in 13 dairy cattle herds, matched to the sheep herds by location. While antibody prevalence to EHDV was high in cattle (35.2% within the outbreak zone) no evidence of exposure to EHDV was found in sheep (p<0.0001). Antibodies to BTV were apparent in both cattle and sheep though in the former it was significantly higher (63.2%, 16.7% respectively, p<0.0001), suggesting higher exposure of cattle to biting Culicoides midges. Taken together, these results imply that sheep have a negligible role in the epidemiology of EHDV. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world.

    Science.gov (United States)

    Tabachnick, W J

    2010-03-15

    Vector-borne pathogens cause enormous suffering to humans and animals. Many are expanding their range into new areas. Dengue, West Nile and Chikungunya have recently caused substantial human epidemics. Arthropod-borne animal diseases like Bluetongue, Rift Valley fever and African horse sickness pose substantial threats to livestock economies around the world. Climate change can impact the vector-borne disease epidemiology. Changes in climate will influence arthropod vectors, their life cycles and life histories, resulting in changes in both vector and pathogen distribution and changes in the ability of arthropods to transmit pathogens. Climate can affect the way pathogens interact with both the arthropod vector and the human or animal host. Predicting and mitigating the effects of future changes in the environment like climate change on the complex arthropod-pathogen-host epidemiological cycle requires understanding of a variety of complex mechanisms from the molecular to the population level. Although there has been substantial progress on many fronts the challenges to effectively understand and mitigate the impact of potential changes in the environment on vector-borne pathogens are formidable and at an early stage of development. The challenges will be explored using several arthropod-borne pathogen systems as illustration, and potential avenues to meet the challenges will be presented.

  15. Culicoides midges (Diptera: Ceratopogonidae as vectors of orbiviruses in Slovakia

    Directory of Open Access Journals (Sweden)

    Adela Sarvašová

    2014-09-01

    Full Text Available In recent years, rapid spread of Culicoides-borne pathogens such as bluetongue (BT and Schmallenberg viruses have been reported in Europe. In this study we examined the Culicoides populations in farms with wild and domestic ruminants in Eastern Slovakia with the aim to confirm the presence of biting midges serving as potential vectors of important pathogens. The main vector complexes were the Obsoletus complex (54%; n=4,209 and the Pulicaris complex (23%; n=1,796. To estimate the relative abundance of the cryptic species of the Obsoletus complex (Culicoides obsoletus, Culicoides scoticus and Culicoides montanus, we performed the multiplex polymerase chain reaction (PCR based on ITS-2 and ITS-1 segments, on 125 midges randomly sampled. The relative abundance of C. obsoletus ranged from 5.26% in the farm with wild ruminants to 85.71% in another farm with cattle and sheep. A total of 112 pools of parous and gravid females belonging to the Obsoletus and Pulicaris complexes were tested for virus detection by the real-time reverse transcription polymerase chain reaction (RT-PCR for BT virus, as well as for the Epizootic Hemorrhagic Disease Virus (EHDV, with negative results.

  16. Barcoding of biting midges in the genus Culicoides: a tool for species determination.

    Science.gov (United States)

    Ander, M; Troell, K; Chirico, J

    2013-09-01

    Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are insect vectors of economically important veterinary diseases such as African horse sickness virus and bluetongue virus. However, the identification of Culicoides based on morphological features is difficult. The sequencing of mitochondrial cytochrome oxidase subunit I (COI), referred to as DNA barcoding, has been proposed as a tool for rapid identification to species. Hence, a study was undertaken to establish DNA barcodes for all morphologically determined Culicoides species in Swedish collections. In total, 237 specimens of Culicoides representing 37 morphologically distinct species were used. The barcoding generated 37 supported clusters, 31 of which were in agreement with the morphological determination. However, two pairs of closely related species could not be separated using the DNA barcode approach. Moreover, Culicoides obsoletus Meigen and Culicoides newsteadi Austen showed relatively deep intraspecific divergence (more than 10 times the average), which led to the creation of two cryptic species within each of C. obsoletus and C. newsteadi. The use of COI barcodes as a tool for the species identification of biting midges can differentiate 95% of species studied. Identification of some closely related species should employ a less conserved region, such as a ribosomal internal transcribed spacer. © 2012 The Royal Entomological Society.

  17. Global climate change and implications for disease emergence.

    Science.gov (United States)

    Slenning, B D

    2010-01-01

    The early consequences of global climate change (GCC) are well documented. However, future impacts on ecosystem health, and on the health of humans, domestic animals, and wildlife, are much less well understood. Evidence of increasing frequency of extreme weather events (the 2003 trans-European heat wave, extended droughts in Australia and South America), of geographic changes in vector-borne disease (bluetongue and hanta viruses emerging in northern Europe, dengue virus expanding in central and northern America), and of altered animal behavioral responses (changes in bird migration patterns and fishery numbers) warrants action. To make valid choices, however, practitioners and decision makers must understand what is known about GCC and what is only theory. There will be a multitude of microbial, vector, and host responses to climate change, for example, and not all organisms will respond similarly or across equal time scales. Unfortunately, for many organisms and ecosystems the scientific community has a relatively poor understanding of current effectors and balances, making it problematic to describe the current situation, let alone to validate future predictions. The need for enhanced basic research and systematic surveillance programs is obvious, but putting such programs into place is daunting. However, the threats are real and fast approaching. What is done in the next few years may be decisive, whether for the good or the ill of all.

  18. Seroprevalence of respiratory viral pathogens of indigenous calves in Western Kenya.

    Science.gov (United States)

    Callaby, R; Toye, P; Jennings, A; Thumbi, S M; Coetzer, J A W; Conradie Van Wyk, I C; Hanotte, O; Mbole-Kariuki, M N; Bronsvoort, B M de C; Kruuk, L E B; Woolhouse, M E J; Kiara, H

    2016-10-01

    Most studies of infectious diseases in East African cattle have concentrated on gastro-intestinal parasites and vector-borne diseases. As a result, relatively little is known about viral diseases, except for those that are clinically symptomatic or which affect international trade such as foot and mouth disease, bluetongue and epizootic haemorrhagic disease. Here, we investigate the seroprevalence, distribution and relationship between the viruses involved in respiratory disease, infectious bovine rhinotracheitis virus (IBR), bovine parainfluenza virus Type 3 (PIV3) and bovine viral diarrhoea virus (BVDV) in East African Shorthorn Zebu calves. These viruses contribute to the bovine respiratory disease complex (BRD) which is responsible for major economic losses in cattle from intensive farming systems as a result of pneumonia. We found that calves experience similar risks of infection for IBR, PIV3, and BVDV with a seroprevalence of 20.9%, 20.1% and 19.8% respectively. We confirm that positive associations exist between IBR, PIV3 and BVDV; being seropositive for any one of these three viruses means that an individual is more likely to be seropositive for the other two viruses than expected by chance. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The salivary secretome of the biting midge, Culicoides sonorensis

    Directory of Open Access Journals (Sweden)

    Christopher J. Lehiy

    2014-06-01

    Full Text Available Culicoides biting midges (Diptera: Ceratopogonidae are hematophagous insects with over 1400 species distributed throughout the world. Many of these species are of particular agricultural importance as primary vectors of bluetongue and Schmallenberg viruses, yet little is known about Culicoides genomics and proteomics. Detailed studies of members from other blood-feeding Dipteran families, including those of mosquito (Culicidae and black fly (Simuliidae, have shown that protein components within the insect’s saliva facilitate the blood feeding process. To determine the protein components in Culicoides sonorensis midges, secreted saliva was collected for peptide sequencing by tandem mass spectrometry. Forty-five secreted proteins were identified, including members of the D7 odorant binding protein family, Kunitz-like serine protease inhibitors, maltase, trypsin, and six novel proteins unique to C. sonorensis. Identifying the complex myriad of proteins in saliva from blood-feeding Dipteran species is critical for understanding their role in blood feeding, arbovirus transmission, and possibly the resulting disease pathogenesis.

  20. Umatilla virus genome sequencing and phylogenetic analysis: identification of stretch lagoon orbivirus as a new member of the Umatilla virus species.

    Directory of Open Access Journals (Sweden)

    Manjunatha N Belaganahalli

    Full Text Available The genus Orbivirus, family Reoviridae, includes 22 species of viruses with genomes composed of ten segments of linear dsRNA that are transmitted between their vertebrate hosts by insects or ticks, or with no identified vectors. Full-genome sequence data are available for representative isolates of the insect borne mammalian orbiviruses (including bluetongue virus, as well as a tick borne avian orbivirus (Great Island virus. However, no sequence data are as yet available for the mosquito borne avian orbiviruses.We report full-length, whole-genome sequence data for Umatilla virus (UMAV, a mosquito borne avian orbivirus from the USA, which belongs to the species Umatilla virus. Comparisons of conserved genome segments 1, 2 and 8 (Seg-1, Seg-2 and Seg-8 - encoding the polymerase-VP1, sub-core 'T2' protein and core-surface 'T13' protein, respectively, show that UMAV groups with the mosquito transmitted mammalian orbiviruses. The highest levels of sequence identity were detected between UMAV and Stretch Lagoon orbivirus (SLOV from Australia, showing that they belong to the same virus species (with nt/aa identity of 76.04%/88.07% and 77.96%/95.36% in the polymerase and T2 genes and protein, respectively. The data presented here has assisted in identifying the SLOV as a member of the Umatilla serogroup. This sequence data reported here will also facilitate identification of new isolates, and epidemiological studies of viruses belonging to the species Umatilla virus.

  1. A Serological Survey of Ruminant Livestock in Kazakhstan During Post-Soviet Transitions in Farming and Disease Control

    Directory of Open Access Journals (Sweden)

    Corteyn A

    2004-12-01

    Full Text Available The results of a serological survey of livestock in Kazakhstan, carried out in 1997–1998, are reported. Serum samples from 958 animals (cattle, sheep and goats were tested for antibodies to foot and mouth disease (FMD, bluetongue (BT, epizootic haemorrhagic disease (EHD, rinderpest (RP and peste des petits ruminants (PPR viruses, and to Brucella spp. We also investigated the vaccination status of livestock and related this to changes in veterinary provision since independence in 1991. For the 2 diseases under official surveillance (FMD and brucellosis our results were similar to official data, although we found significantly higher brucellosis levels in 2 districts and widespread ignorance about FMD vaccination status. The seroprevalence for BT virus was 23%, and seropositive animals were widespread suggesting endemicity, despite the disease not having being previously reported. We found a few seropositives for EHDV and PPRV, which may suggest that these diseases are also present in Kazakhstan. An hierarchical model showed that seroprevalence to FMD and BT viruses were clustered at the farm/village level, rather than at a larger spatial scale. This was unexpected for FMD, which is subject to vaccination policies which vary at the raion (county level.

  2. From risk analysis to risk governance - Adapting to an ever more complex future

    Directory of Open Access Journals (Sweden)

    Dirk U. Pfeiffer

    2014-09-01

    Full Text Available Risk analysis is now widely accepted amongst veterinary authorities and other stakeholders around the world as a conceptual framework for integrating scientific evidence into animal health decision making. The resulting risk management for most diseases primarily involves linking epidemiological understanding with diagnostics and/or vaccines. Recent disease outbreaks such as Nipah virus, SARS, avian influenza H5N1, bluetongue serotype 8 and Schmallenberg virus have led to realising that we need to explicitly take into account the underlying complex interactions between environmental, epidemiological and social factors which are often also spatially and temporally heterogeneous as well as interconnected across affected regions and beyond. A particular challenge is to obtain adequate understanding of the influence of human behaviour and to translate this into effective mechanisms leading to appropriate behaviour change where necessary. Both, the One Health and the ecohealth approaches reflect the need for such a holistic systems perspective, however the current implementation of risk analysis frameworks for animal health and food safety is still dominated by a natural or biomedical perspective of science as is the implementation of control and prevention policies. This article proposes to integrate the risk analysis approach with a risk governance framework which explicitly adds the socio-economic context to policy development and emphasizes the need for organisational change and stakeholder engagement.

  3. Current drivers and future directions of global livestock disease dynamics.

    Science.gov (United States)

    Perry, Brian D; Grace, Delia; Sones, Keith

    2013-12-24

    We review the global dynamics of livestock disease over the last two decades. Our imperfect ability to detect and report disease hinders assessment of trends, but we suggest that, although endemic diseases continue their historic decline in wealthy countries, poor countries experience static or deteriorating animal health and epidemic diseases show both regression and expansion. At a mesolevel, disease is changing in terms of space and host, which is illustrated by bluetongue, Lyme disease, and West Nile virus, and it is also emerging, as illustrated by highly pathogenic avian influenza and others. Major proximate drivers of change in disease dynamics include ecosystem change, ecosystem incursion, and movements of people and animals; underlying these are demographic change and an increasing demand for livestock products. We identify three trajectories of global disease dynamics: (i) the worried well in developed countries (demanding less risk while broadening the circle of moral concern), (ii) the intensifying and market-orientated systems of many developing countries, where highly complex disease patterns create hot spots for disease shifts, and (iii) the neglected cold spots in poor countries, where rapid change in disease dynamics is less likely but smallholders and pastoralists continue to struggle with largely preventable and curable livestock diseases.

  4. Simultaneous detection of five notifiable viral diseases of cattle by single-tube multiplex real-time RT-PCR.

    Science.gov (United States)

    Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2015-06-01

    Multiplexed real-time PCR (qPCR) assays enable the detection of several target genes in a single reaction, which is applicable for simultaneous testing for the most important viral diseases in samples obtained from ruminants with unspecific clinical symptoms. Here, reverse transcription qPCR (RT-qPCR) systems for the detection of bovine viral diarrhoea virus (BVDV) and bluetongue virus (BTV) were combined with an internal control system based on the beta-actin gene. Additionally, a background screening for three further major pathogens of cloven-hoofed animals reportable to the World Organisation for Animal Health, namely foot-and-mouth disease virus, epizootic haemorrhagic disease virus, and Rift Valley fever virus, was integrated using the identical fluorophore for the respective RT-qPCR assays. Every pathogen-specific assay had an analytical sensitivity of at least 100 genome copies per reaction within the multiplex approach, and a series of reference samples and clinical specimens obtained from cattle, but also from small ruminants, were detected reliably. The qPCR systems integrated in the background screening were even not influenced by the simultaneous amplification of very high BVDV and BTV genome copy numbers. The newly developed multiplex qPCR allows the specific and sensitive detection of five of the most important diseases of ruminants and could be used in the context of monitoring programs or for differential diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Trap placement and attractant choice affect capture and create sex and parity biases in collections of the biting midge, Culicoides sonorensis.

    Science.gov (United States)

    McDermott, E G; Mayo, C E; Gerry, A C; Mullens, B A

    2016-09-01

    Culicoides sonorensis Wirth & Jones (Diptera: Ceratopogonidae) is the primary North American vector of bluetongue virus (BTV), which can cause high morbidity and mortality in ruminant livestock or wildlife. Worldwide, most Culicoides surveillance relies on light (usually UV) traps typically placed near animals or larval development sites. However, the trapping method can cause sex, species and parity biases in collections. We collected C. sonorensis from three dairies in California using suction traps baited with CO2 , UV light or CO2  + UV placed near animals, wastewater ponds, or in fields. Higher numbers of parous females were collected using CO2  + UV traps, although this difference was only significant on one dairy. UV traps were poor at collecting nulliparous females, but the addition of UV to a trap increased the abundance of males in a collection. Traps set in open fields collected significantly higher numbers of males and females than in either of the other two locations. In some cases, there was a significant interaction between the trap type and site. We discuss the limitations of traditional trapping methodologies for C. sonorensis and make suggestions for vector surveillance. © 2016 The Royal Entomological Society.

  6. Epidemiological situation of transboundary animal diseases in North African countries-proposition of a regional control strategy.

    Science.gov (United States)

    Kardjadj, Moustafa

    2018-03-01

    The Food and Agricultural Organization (FAO) defined transboundary animal diseases (TADs) as those that are of significant economic, trade, and food security importance for a considerable number of countries. TADs can easily spread to other countries, reach epidemic proportions, and where control, management, or exclusion is required cooperation between several countries. The North African countries are vulnerable to several TADs by virtue of its geographical location, its borders with the Sahel region, and peculiar control constraints on the budgets of the national veterinary services of each country and on the livelihoods of livestock owners across the region. In a narrative approach, we comprehensively described the epidemiology of TADs in North African countries, eradication constraints and control measures adopted to conclude with a proposition of a regional control strategy. Our review uncovered foot-and-mouth disease, peste des petites ruminants, bluetongue, sheep/goats pox, brucellosis, West Nile and Rift Valley fever, as the major TADs in this region, while the major constraints identified were illegal animal movement, communal clashes, unreported outbreaks, poor vaccination coverage, and other factors peculiar to each etiology. Therefore, the establishment of early warning systems and proper implementation of control measures at regional level are highly recommended to the relevant stakeholders involved in TADs control in the region.

  7. Multiplex RT-PCR and Automated Microarray for Detection of Eight Bovine Viruses.

    Science.gov (United States)

    Lung, O; Furukawa-Stoffer, T; Burton Hughes, K; Pasick, J; King, D P; Hodko, D

    2017-12-01

    Microarrays can be a useful tool for pathogen detection as it allow for simultaneous interrogation of the presence of a large number of genetic sequences in a sample. However, conventional microarrays require extensive manual handling and multiple pieces of equipment for printing probes, hybridization, washing and signal detection. In this study, a reverse transcription (RT)-PCR with an accompanying novel automated microarray for simultaneous detection of eight viruses that affect cattle [vesicular stomatitis virus (VSV), bovine viral diarrhoea virus type 1 and type 2, bovine herpesvirus 1, bluetongue virus, malignant catarrhal fever virus, rinderpest virus (RPV) and parapox viruses] is described. The assay accurately identified a panel of 37 strains of the target viruses and identified a mixed infection. No non-specific reactions were observed with a panel of 23 non-target viruses associated with livestock. Vesicular stomatitis virus was detected as early as 2 days post-inoculation in oral swabs from experimentally infected animals. The limit of detection of the microarray assay was as low as 1 TCID 50 /ml for RPV. The novel microarray platform automates the entire post-PCR steps of the assay and integrates electrophoretic-driven capture probe printing in a single user-friendly instrument that allows array layout and assay configuration to be user-customized on-site. © 2016 Her Majesty the Queen in Right of Canada.

  8. Tibet Orbivirus, a novel Orbivirus species isolated from Anopheles maculatus mosquitoes in Tibet, China.

    Science.gov (United States)

    Li, Minghua; Zheng, Yayun; Zhao, Guoyan; Fu, Shihong; Wang, David; Wang, Zhiyu; Liang, Guodong

    2014-01-01

    The genus Orbivirus includes a number of important pathogenic viruses, including Bluetongue virus (BTV), African horse sickness virus (AHSV), and Epizootic hemorrhagic disease virus (EHDV). In this study we describe the isolation and characterization of an Orbivirus strain isolated from Anopheles maculatus mosquitoes collected in Tibet, China. Initial viral screening identified a viral strain (XZ0906) that caused significant cytopathic effect (CPE) in BHK-21 cells, including rounding, cell rupture, and floating. Although CPE was not observed in insect cells (C6/36), these cells supported viral replication. Polyacrylamide gel analysis revealed a genome consisting of 10 segments of double-stranded RNA (dsRNA), with a distribution pattern of 3-3-3-1. 454 high throughput sequencing of culture supernatant was used for viral identification. Complete genome sequencing was performed by Sanger sequencing in combination with 5'-RACE and 3'-RACE. Sequence analysis demonstrated that all 5'- and 3'- untranslated regions (UTRs) for each of the 10 genome segments contained a series of six highly conserved nucleotides. In addition, homology analysis and phylogenetic analysis based on amino acid sequence was completed, and all results show that virus XZ0906 was not a member of any known species or serotype of Orbivirus, indicating it to be a new species within the genus Orbivirus. The isolated Orbivirus strain was designated Tibet Orbivirus, TIBOV to denote the location from which it was isolated. TIBOV is a novel orbivirus species which is isolated from Anopheles maculatus mosquitoes collected in Tibet, China.

  9. Disease survey of free-ranging grey brocket deer (Mazama gouazoubira) in the Gran Chaco, Bolivia.

    Science.gov (United States)

    Deem, Sharon L; Noss, Andrew J; Villarroel, Richard; Uhart, Marcela M; Karesh, William B

    2004-01-01

    Samples from 17 free-ranging hunter-killed grey brocket deer (Mazama gouazoubira) in the Gran Chaco, Bolivia, were collected during June-August 1999. All 17 deer appeared to be in good condition at the time of death. Gross necropsies were performed, serum was collected for serologic evaluation of selected infectious disease agents, and feces and ectoparasites were collected for evaluation of internal and external parasites. Serologic tests were positive for antibodies against bovine respiratory syncytial virus and four Leptospira interrogans serovars, with questionable results for epizootic hemorrhagic disease virus serotypes 1 and 2. No antibodies were detected to Anaplasma marginale, Babesia bigemina, Babesia bovis, Babesia odocoilei, bluetongue virus (serotypes 2, 10, 11, 13, and 17), bovine viral diarrhea virus, Brucella abortus, foot-and-mouth disease virus, infectious bovine rhinotracheitis virus, Mycobacterium avium subsp. paratuberculosis, and parainfluenza-3 virus. Sixty-four percent (7/11) of the deer had endoparasites. Amblyomma spp. ticks were found on seven deer, flies of the family Hippoboscidae on six deer, and lice on six deer.

  10. Serosurvey for selected pathogens in Iberian roe deer

    Directory of Open Access Journals (Sweden)

    Oleaga Álvaro

    2010-11-01

    Full Text Available Abstract Background The roe deer is the most abundant and widespread wild Eurasian cervid. Its populations are expanding and increasingly in contact with livestock. This may affect the distribution of infectious diseases shared with other wild and domestic ungulates. Methods We investigated the antibody seroprevalence against Pestivirus, Herpesvirus, Bluetongue (BT virus, M. avium paratuberculosis (MAP, and Brucella sp. in 519 roe deer from different regions in Spain, south-western Europe. Results No antibodies were detected against BT and Brucella sp. However, antibodies were detected against Pestivirus (1.5%, Herpesvirus (0.2% and MAP (9.2%. MAP antibodies were detected in seven of the eight populations (range 5-16.4%. Conclusions The detection of MAP antibodies in samples from most roe deer populations suggests that contact with MAP is widespread in this wildlife species. The highest prevalence was detected in sites with abundant dairy cattle and frequent use of liquid manure on pastures. Considering the results obtained regarding exposure to different pathogens, we suggest that antibody prevalences in this non-gregarious browser are largely determined by environmental factors, potentially modulating vector populations or pathogen survival in the environment.

  11. Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran.

    Directory of Open Access Journals (Sweden)

    Farhid Hemmatzadeh

    Full Text Available A molecular and serological survey of selected viruses in free-ranging wild ruminants was conducted in 13 different districts in Iran. Samples were collected from 64 small wild ruminants belonging to four different species including 25 Mouflon (Ovis orientalis, 22 wild goat (Capra aegagrus, nine Indian gazelle (Gazella bennettii and eight Goitered gazelle (Gazella subgutturosa during the national survey for wildlife diseases in Iran. Serum samples were evaluated using serologic antibody tests for Peste de petits ruminants virus (PPRV, Pestiviruses [Border Disease virus (BVD and Bovine Viral Diarrhoea virus (BVDV], Bluetongue virus (BTV, Bovine herpesvirus type 1 (BHV-1, and Parainfluenza type 3 (PI3. Sera were also ELISA tested for Pestivirus antigen. Tissue samples including spleen, liver, lung, tonsils, mesenteric and mediastinal lymph nodes and white blood cells (WBCs were tested using polymerase chain reaction (PCR for PPRV, Foot and Mouth Disease virus (FMDV, Pestivirus, BTV, Ovine herpesvirus type 2 (OvHV-2 and BHV-1. Serologic tests were positive for antibodies against PPRV (17%, Pestiviruses (2% and BTV (2%. No antibodies were detected for BHV-1 or PI3, and no Pestivirus antigen was detected. PCR results were positive for PPRV (7.8%, FMDV (11%, BTV (3%, OvHV-2 (31% and BHV-1 (1.5%. None of the samples were positive for Pestiviruses.

  12. The current status of phlebotomine sand flies in Albania and incrimination of Phlebotomus neglectus (Diptera, Psychodidae) as the main vector of Leishmania infantum.

    Science.gov (United States)

    Velo, Enkelejda; Bongiorno, Gioia; Kadriaj, Perparim; Myrseli, Teita; Crilly, James; Lika, Aldin; Mersini, Kujtim; Di Muccio, Trentina; Bino, Silvia; Gramiccia, Marina; Gradoni, Luigi; Maroli, Michele

    2017-01-01

    The incidence of visceral leishmaniasis (VL) in Albania is higher than in other countries of southern Europe, however the role of local sand fly species in the transmission of Leishmania infantum was not addressed conclusively. In 2006, a country-wide collection of sand flies performed in 14 sites selected based on recent occurrence of VL cases showed that Phlebotomus neglectus was by far the most prevalent species (95.6%). Furthermore, 15% of pools made from 422 P. neglectus females tested positive for Leishmania sp. genomic DNA. In the same year, Culicoides trapping was performed for bluetongue disease surveillance in 91 sites of southern Albania, targeting livestock farms regardless recent occurrence of VL in the surveyed areas. In 35 sites where sand flies were collected along with midges, Phlebotomus perfiliewi was the most prevalent among the Phlebotomus species identified, however search for leishmanial DNA in females of this species was unsuccessful. In 2011, sand flies were trapped in 4 sites of north Albania characterized by high VL incidence, and females were dissected to search for Leishmania infections. Both P. neglectus and P. tobbi were collected at high densities. Two positive specimens were detected from a sample of 64 P. neglectus trapped in one site (3.1%). Parasites were successfully cultured from one specimen and characterized as belonging to Leishmania infantum zymodeme MON-1, the only zymodeme so far identified as the agent of human and canine leishmaniasis in the country. Altogether our studies indicate that P. neglectus is the main leishmaniasis vector in Albania.

  13. Effects of climate change on the occurrence and distribution of livestock diseases.

    Science.gov (United States)

    Bett, B; Kiunga, P; Gachohi, J; Sindato, C; Mbotha, D; Robinson, T; Lindahl, J; Grace, D

    2017-02-01

    The planet's mean air and ocean temperatures have been rising over the last century because of increasing greenhouse gas (GHG) emissions. These changes have substantial effects on the epidemiology of infectious diseases. We describe direct and indirect processes linking climate change and infectious diseases in livestock with reference to specific case studies. Some of the studies are used to show a positive association between temperature and expansion of the geographical ranges of arthropod vectors (e.g. Culicoides imicola, which transmits bluetongue virus) while others are used to illustrate an opposite trend (e.g. tsetse flies that transmit a range of trypanosome parasites in sub-Saharan Africa). We further describe a positive association between extreme events: droughts and El Niño/southern oscillation (ENSO) weather patterns and Rift Valley fever outbreaks in East Africa and some adaptation practices used to mitigate the impacts of climate change that may increase risk of exposure to infectious pathogens. We conclude by outlining mitigation and adaptation measures that can be used specifically in the livestock sector to minimize the impacts of climate change-associated livestock diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Development and Characterization of a Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out Supplemental Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S; Danganan, L; Tammero, L; Lenhoff, R; Naraghi-arani, P; Hindson, B

    2007-08-06

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed advanced rapid diagnostics that may be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the potential to improve our nation's ability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect animal populations of high economic importance in the United States. Under 2005 DHS funding we have developed multiplexed (MUX) nucleic-acid-based PCR assays that combine foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease (SVD) and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1 or Infectious Bovine Rhinotracheitus IBR), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus BPSV, Orf of sheep, and Pseudocowpox). Under 2006 funding we have developed a Multiplexed PCR [MUX] porcine assay for detection of FMDV with rule out tests for VESV and SVD foreign animal diseases in addition to one other domestic vesicular animal disease vesicular stomatitis virus (VSV) and one domestic animal disease of swine porcine reproductive and respiratory syndrome (PRRS). We have also developed a MUX bovine assay for detection of FMDV with rule out tests for the two bovine foreign animal diseases malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis virus (VSV), bovine viral diarrhea virus (BVDV), infectious bovine rhinotracheitus virus (BHV-1), bluetongue virus (BTV), and the Parapox

  15. Assessing the mandatory bovine abortion notification system in France using unilist capture-recapture approach.

    Directory of Open Access Journals (Sweden)

    Anne Bronner

    Full Text Available The mandatory bovine abortion notification system in France aims to detect as soon as possible any resurgence of bovine brucellosis. However, under-reporting seems to be a major limitation of this system. We used a unilist capture-recapture approach to assess the sensitivity, i.e. the proportion of farmers who reported at least one abortion among those who detected such events, and representativeness of the system during 2006-2011. We implemented a zero-inflated Poisson model to estimate the proportion of farmers who detected at least one abortion, and among them, the proportion of farmers not reporting. We also applied a hurdle model to evaluate the effect of factors influencing the notification process. We found that the overall surveillance sensitivity was about 34%, and was higher in beef than dairy cattle farms. The observed increase in the proportion of notifying farmers from 2007 to 2009 resulted from an increase in the surveillance sensitivity in 2007/2008 and an increase in the proportion of farmers who detected at least one abortion in 2008/2009. These patterns suggest a raise in farmers' awareness in 2007/2008 when the Bluetongue Virus (BTV was detected in France, followed by an increase in the number of abortions in 2008/2009 as BTV spread across the country. Our study indicated a lack of sensitivity of the mandatory bovine abortion notification system, raising concerns about the ability to detect brucellosis outbreaks early. With the increasing need to survey the zoonotic Rift Valley Fever and Q fever diseases that may also cause bovine abortions, our approach is of primary interest for animal health stakeholders to develop information programs to increase abortion notifications. Our framework combining hurdle and ZIP models may also be applied to estimate the completeness of other clinical surveillance systems.

  16. Spatial and Temporal Distribution of Culicoides Species in Mainland Portugal (2005–2010). Results of the Portuguese Entomological Surveillance Programme

    Science.gov (United States)

    Ramilo, David W.; Amador, Rita; Madeira, Sara; Baptista, Filipa M.; Harrup, Lara E.; Lucientes, Javier; Boinas, Fernando

    2015-01-01

    Bluetongue virus (BTV) is transmitted by Culicoides biting midges and causes an infectious, non-contagious disease of ruminants. It has been rapidly emerging in southern Europe since 1998. In mainland Portugal, strains of BTV belonging to three serotypes have been detected: BTV-10 (1956-1960), BTV-4 (2004-2006 and 2013) and BTV-1 (2007-2012). This paper describes the design, implementation and results of the Entomological Surveillance Programme covering mainland Portugal, between 2005 and 2010, including 5,650 caches. Culicoides imicola Kieffer was mostly found in central and southern regions of Portugal, although it was sporadically detected in northern latitudes. Its peak activity occurred in the autumn and it was active during the winter months in limited areas of the country. Obsoletus group was present at the highest densities in the north although they were found throughout the country in substantial numbers. Culicoides activity occurred all year round but peaked in the spring. A generalized linear mixed model was developed for the analysis of the environmental factors associated with activity of the species of Culicoides suspected vectors of BTV in the country. For C. imicola Kieffer, the most important variables were month, diurnal temperature range (DTR), the number of frost days (FRS) and median monthly temperature (TMP). For the Obsoletus group, the most important factors were month, diurnal temperature range (DTR), and linear and quadratic terms for median monthly temperature (TMP). The results reported can improve our understanding of climatic factors in Culicoides activity influencing their distribution and seasonal pattern. PMID:25906151

  17. An investigation on the Culicoides species composition at seven sites in southern Switzerland.

    Science.gov (United States)

    Casati, S; Racloz, V; Delécolle, J C; Kuhn, M; Mathis, A; Griot, C; Stärk, K D C; Vanzetti, T

    2009-06-01

    In the past decade, there have been regular outbreaks of bluetongue (BT) in many parts of Europe. Owing to the presence of BT disease and its vectors in countries adjacent to Switzerland, an initial entomological survey was conducted in 2003, which established the presence of several midges of the genus Culicoides (Diptera: Ceratopogonidae). Subsequently, a sentinel herd monitoring system was established with the primary entomological aim being the determination and further study of Culicoides population compositions. Insects were collected in 2005 and 2006 at seven sentinel herd sites in the south of Switzerland (canton of Ticino) near the border of Italy, using Onderstepoort-type light traps. This region is botanically and zoologically similar to the Mediterranean and is one of the warmest and most humid areas of the country, hence it is considered a potential access path for BT disease into Switzerland. Collections were made at four cattle farms, two equestrian centres and one goat farm. Sites were sampled four times per month from June to October. Traps were operated from dusk until dawn and samples were collected monthly for analysis through microscopy as well as a Culicoides imicola-specific PCR. Results confirmed the absence of C. imicola (Kieffer) and demonstrated that the potential BT virus vectors are highly abundant, notably: Culicoides obsoletus (Meigen), Culicoides scoticus (Downes & Kettle) and Culicoides dewulfi (Goetghebuer) subgenus Avaritia and Culicoides pulicaris (Linnaeus) subgenus Culicoides. These findings expand the current knowledge of Culicoides population composition in the southern part of the Switzerland. Culicoides cataneii (Clastrier), Culicoides flavipulicaris (Dzhafarov), Culicoides indistinctus (Khalaf), Culicoides nubeculosus (Meigen) and species of the Grisescens complex were reported for the first time in Switzerland.

  18. Serotype specific primers and gel-based RT-PCR assays for 'typing' African horse sickness virus: identification of strains from Africa.

    Directory of Open Access Journals (Sweden)

    Narender S Maan

    Full Text Available African horse sickness is a devastating, transboundary animal disease, that is 'listed' by the Office International des Epizooties (OIE. Although attenuated, inactivated and subunit vaccines have been developed for African horse sickness virus (AHSV, these are serotype-specific and their effective deployment therefore relies on rapid and reliable identification of virus type. AHSV serotype is controlled by the specificity of interactions between neutralising antibodies, and components of the outer-capsid, particularly protein VP2 (encoded by AHSV genome segment 2 (Seg-2. We report the development and evaluation of novel gel based reverse transcription-PCR (RT-PCR assays targeting AHSV Seg-2, which can be used to very significantly increase the speed and reliability of detection and identification (compared to virus neutralisation tests of the nine serotypes of AHSV. Primer sets were designed targeting regions of Seg-2 that are conserved between strains within each of the AHSV serotype (types 1 to 9. These assays were evaluated using multiple AHSV strains from the orbivirus reference collection at IAH (www.reoviridae.org/dsRNA_virus_proteins/ReoID/AHSV-isolates.htm. In each case the Seg-2 primers showed a high level of specificity and failed to cross-amplify the most closely related heterologous AHSV types, or other related orbiviruses (such as bluetongue virus (BTV, or equine encephalosis virus (EEV. The assays are rapid and sensitive, and can be used to detect and type viral RNA in blood, tissue samples, or cultivated viral suspensions within 24 h. They were used to identify AHSV strains from recent outbreaks in sub-Saharan African countries. These methods also generate cDNAs suitable for sequencing and phylogenetic analyses of Seg-2, identifying distinct virus lineages within each virus-type and helping to identify strain movements/origins. The RT-PCR methods described here provide a robust and versatile tool for rapid and specific detection

  19. Effect of climate change on vector-borne disease risk in the UK.

    Science.gov (United States)

    Medlock, Jolyon M; Leach, Steve A

    2015-06-01

    During the early part of the 21st century, an unprecedented change in the status of vector-borne disease in Europe has occurred. Invasive mosquitoes have become widely established across Europe, with subsequent transmission and outbreaks of dengue and chikungunya virus. Malaria has re-emerged in Greece, and West Nile virus has emerged throughout parts of eastern Europe. Tick-borne diseases, such as Lyme disease, continue to increase, or, in the case of tick-borne encephalitis and Crimean-Congo haemorrhagic fever viruses, have changed their geographical distribution. From a veterinary perspective, the emergence of Bluetongue and Schmallenberg viruses show that northern Europe is equally susceptible to transmission of vector-borne disease. These changes are in part due to increased globalisation, with intercontinental air travel and global shipping transport creating new opportunities for invasive vectors and pathogens. However, changes in vector distributions are being driven by climatic changes and changes in land use, infrastructure, and the environment. In this Review, we summarise the risks posed by vector-borne diseases in the present and the future from a UK perspective, and assess the likely effects of climate change and, where appropriate, climate-change adaptation strategies on vector-borne disease risk in the UK. Lessons from the outbreaks of West Nile virus in North America and chikungunya in the Caribbean emphasise the need to assess future vector-borne disease risks and prepare contingencies for future outbreaks. Ensuring that adaptation strategies for climate change do not inadvertently exacerbate risks should be a primary focus for decision makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. First detection of Wolbachia-infected Culicoides (Diptera: Ceratopogonidae in Europe: Wolbachia and Cardinium infection across Culicoides communities revealed in Spain

    Directory of Open Access Journals (Sweden)

    Nonito Pagès

    2017-11-01

    Full Text Available Abstract Background Biting midges of the genus Culicoides (Diptera: Ceratopogonidae transmit pathogens that cause important diseases. No effective technique has been found to properly control either Culicoides spp. abundance or their likelihood to transmit pathogens. Endosymbionts, particularly Wolbachia, represent powerful alternatives to control arthropods of health interest. In arthropods, Wolbachia can reduce vector fitness and vector’s pathogen transmission capacity, thus being a potential target for population reduction and replacement strategies. Results The presence of Wolbachia and Cardinium endosymbionts was screened in Spanish Culicoides spp. populations at livestock premises and natural habitats. The first detection of Wolbachia-infected Culicoides spp. in Europe is reported. The putative Palaearctic vectors for bluetongue and Schmallenberg diseases, C. imicola, C. obsoletus (s.s. and C. pulicaris (s.l., were infected with Wolbachia. Four genetic clusters of closely-related Wolbachia strains from A and B supergroups were detected infecting Culicoides. Cardinium strain of the C-group was detected in C. obsoletus (s.l.. Both endosymbionts, Wolbachia and Cardinium, were detected in Culicoides species of minor epidemiological relevance as well. Higher prevalence of Wolbachia infection was detected in natural habitats, while livestock premises lead to higher prevalence of Cardinium. Significant differences in the prevalence of Wolbachia, but not Cardinium, were also detected between some Culicoides species and between locations. Conclusions The presence of Wolbachia and Cardinium endosymbionts in Culicoides is expected to trigger new research towards the control of Culicoides-transmitted diseases. The results of the present study could have an impact beyond the Culicoides arena because successful Wolbachia transfection is possible even across genus and species barriers.

  1. Evaluation of a continuous indicator for syndromic surveillance through simulation. application to vector borne disease emergence detection in cattle using milk yield.

    Directory of Open Access Journals (Sweden)

    Aurélien Madouasse

    Full Text Available Two vector borne diseases, caused by the Bluetongue and Schmallenberg viruses respectively, have emerged in the European ruminant populations since 2006. Several diseases are transmitted by the same vectors and could emerge in the future. Syndromic surveillance, which consists in the routine monitoring of indicators for the detection of adverse health events, may allow an early detection. Milk yield is routinely measured in a large proportion of dairy herds and could be incorporated as an indicator in a surveillance system. However, few studies have evaluated continuous indicators for syndromic surveillance. The aim of this study was to develop a framework for the quantification of both disease characteristics and model predictive abilities that are important for a continuous indicator to be sensitive, timely and specific for the detection of a vector-borne disease emergence. Emergences with a range of spread characteristics and effects on milk production were simulated. Milk yields collected monthly in 48 713 French dairy herds were used to simulate 576 disease emergence scenarios. First, the effect of disease characteristics on the sensitivity and timeliness of detection were assessed: Spatio-temporal clusters of low milk production were detected with a scan statistic using the difference between observed and simulated milk yields as input. In a second step, the system specificity was evaluated by running the scan statistic on the difference between observed and predicted milk yields, in the absence of simulated emergence. The timeliness of detection depended mostly on how easily the disease spread between and within herds. The time and location of the emergence or adding random noise to the simulated effects had a limited impact on the timeliness of detection. The main limitation of the system was the low specificity i.e. the high number of clusters detected from the difference between observed and predicted productions, in the absence of

  2. Serologic screening for 13 infectious agents in roe deer (Capreolus capreolus) in Flanders.

    Science.gov (United States)

    Tavernier, Paul; Sys, Stanislas U; De Clercq, Kris; De Leeuw, Ilse; Caij, Anne Brigitte; De Baere, Miet; De Regge, Nick; Fretin, David; Roupie, Virginie; Govaerts, Marc; Heyman, Paul; Vanrompay, Daisy; Yin, Lizi; Kalmar, Isabelle; Suin, Vanessa; Brochier, Bernard; Dobly, Alexandre; De Craeye, Stéphane; Roelandt, Sophie; Goossens, Els; Roels, Stefan

    2015-01-01

    In order to investigate the role of roe deer in the maintenance and transmission of infectious animal and human diseases in Flanders, we conducted a serologic screening in 12 hunting areas. Roe deer sera collected between 2008 and 2013 (n=190) were examined for antibodies against 13 infectious agents, using indirect enzyme-linked immunosorbent assay, virus neutralisation, immunofluorescence, or microagglutination test, depending on the agent. High numbers of seropositives were found for Anaplasma phagocytophilum (45.8%), Toxoplasma gondii (43.2%) and Schmallenberg virus (27.9%), the latter with a distinct temporal distribution pattern following the outbreak in domestic ruminants. Lower antibody prevalence was found for Chlamydia abortus (6.7%), tick-borne encephalitis virus (5.1%), Neospora caninum (4.8%), and Mycobacterium avium subsp paratuberculosis (4.1%). The lowest prevalences were found for Leptospira (1.7%), bovine viral diarrhoea virus 1 (1.3%), and Coxiella burnetii (1.2%). No antibodies were found against Brucella sp., bovine herpesvirus 1, and bluetongue virus. A significant difference in seroprevalence between ages (higher in adults >1 year) was found for N. caninum. Four doubtful reacting sera accounted for a significant difference in seroprevalence between sexes for C. abortus (higher in females). Despite the more intensive landscape use in Flanders, the results are consistent with other European studies. Apart from maintaining C. abortus and MAP, roe deer do not seem to play an important role in the epidemiology of the examined zoonotic and domestic animal pathogens. Nevertheless, their meaning as sentinels should not be neglected in the absence of other wild cervid species.

  3. Expert Opinion on the Perceived Effectiveness and Importance of On-Farm Biosecurity Measures for Cattle and Swine Farms in Switzerland.

    Directory of Open Access Journals (Sweden)

    Karin Kuster

    Full Text Available Biosecurity is crucial for safeguarding livestock from infectious diseases. Despite the plethora of biosecurity recommendations, published scientific evidence on the effectiveness of individual biosecurity measures is limited. The objective of this study was to assess the perception of Swiss experts about the effectiveness and importance of individual on-farm biosecurity measures for cattle and swine farms (31 and 30 measures, respectively. Using a modified Delphi method, 16 Swiss livestock disease specialists (8 for each species were interviewed. The experts were asked to rank biosecurity measures that were written on cards, by allocating a score from 0 (lowest to 5 (highest. Experts ranked biosecurity measures based on their importance related to Swiss legislation, feasibility, as well as the effort required for implementation and the benefit of each biosecurity measure. The experts also ranked biosecurity measures based on their effectiveness in preventing an infectious agent from entering and spreading on a farm, solely based on transmission characteristics of specific pathogens. The pathogens considered by cattle experts were those causing Bluetongue (BT, Bovine Viral Diarrhea (BVD, Foot and Mouth Disease (FMD and Infectious Bovine Rhinotracheitis (IBR. Swine experts expressed their opinion on the pathogens causing African Swine Fever (ASF, Enzootic Pneumonia (EP, Porcine Reproductive and Respiratory Syndrome (PRRS, as well as FMD. For cattle farms, biosecurity measures that improve disease awareness of farmers were ranked as both most important and most effective. For swine farms, the most important and effective measures identified were those related to animal movements. Among all single measures evaluated, education of farmers was perceived by the experts to be the most important and effective for protecting both Swiss cattle and swine farms from disease. The findings of this study provide an important basis for recommendation to farmers

  4. Expert Opinion on the Perceived Effectiveness and Importance of On-Farm Biosecurity Measures for Cattle and Swine Farms in Switzerland

    Science.gov (United States)

    Kuster, Karin; Cousin, Marie-Eve; Jemmi, Thomas; Schüpbach-Regula, Gertraud; Magouras, Ioannis

    2015-01-01

    Biosecurity is crucial for safeguarding livestock from infectious diseases. Despite the plethora of biosecurity recommendations, published scientific evidence on the effectiveness of individual biosecurity measures is limited. The objective of this study was to assess the perception of Swiss experts about the effectiveness and importance of individual on-farm biosecurity measures for cattle and swine farms (31 and 30 measures, respectively). Using a modified Delphi method, 16 Swiss livestock disease specialists (8 for each species) were interviewed. The experts were asked to rank biosecurity measures that were written on cards, by allocating a score from 0 (lowest) to 5 (highest). Experts ranked biosecurity measures based on their importance related to Swiss legislation, feasibility, as well as the effort required for implementation and the benefit of each biosecurity measure. The experts also ranked biosecurity measures based on their effectiveness in preventing an infectious agent from entering and spreading on a farm, solely based on transmission characteristics of specific pathogens. The pathogens considered by cattle experts were those causing Bluetongue (BT), Bovine Viral Diarrhea (BVD), Foot and Mouth Disease (FMD) and Infectious Bovine Rhinotracheitis (IBR). Swine experts expressed their opinion on the pathogens causing African Swine Fever (ASF), Enzootic Pneumonia (EP), Porcine Reproductive and Respiratory Syndrome (PRRS), as well as FMD. For cattle farms, biosecurity measures that improve disease awareness of farmers were ranked as both most important and most effective. For swine farms, the most important and effective measures identified were those related to animal movements. Among all single measures evaluated, education of farmers was perceived by the experts to be the most important and effective for protecting both Swiss cattle and swine farms from disease. The findings of this study provide an important basis for recommendation to farmers and

  5. Viroses confundíveis com febre aftosa Viral diseases to be differentiated from foot-and-mouth disease

    Directory of Open Access Journals (Sweden)

    Franklin Riet-Correa

    1996-08-01

    Full Text Available Revisam-se as doenças que devem ser consideradas no diagnóstico diferencial de febre aftosa. Dentre as doenças vesiculares ou erosivas, descrevem-se os principais aspectos relacionados ao diagnóstico da estomatite vesicular, diarréia viral bovina, febre catarral maligna, infecções por herpesvírus bovino 1 e 5, e uma estomatite ulcerativa associada a parvovírus bovino, que ocorreu no Rio Grande do Sul; língua azul, para a qual tem sido detectados anticorpos em bovinos e ovinos do Rio Grande do Sul; mamilite herpética que ocorre em outros Estados do País;peste bovina, que foi diagnosticada e erradicada no Estado de São Paulo em 1921; estomatite popular; e duas doenças exóticas:exantema vesicular e doença vesicular do suíno.Diseases to be considered in the differential diagnosis of foot-and-mouth disease are reviewed. The main aspects relating to the diagnosis of vesicular stomatitis, bovine virus diarrhea, malignant catarrhal fever, bovine herpesvirus 1 and 5, andem ulcerative stomatitis associated with bovine parvovirus are described. Bluetongue, that probably occurs in Rio Grande do Sul because antibodies to the virus have been detected in cattle and sheep; is refered. Bovine ulcerative mammilitis, reported in other Brazilian States, rinderpest, reported and eradicated in the State of São Paulo in 1921, and popular stomatitis are also cited, and so are two exotic diseases: vesicular exanthema and swine vesicular disease.

  6. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques.

    Science.gov (United States)

    Robin, M; Page, P; Archer, D; Baylis, M

    2016-09-01

    African horse sickness (AHS) is an arboviral disease of equids transmitted by Culicoides biting midges. The virus is endemic in parts of sub-Saharan Africa and official AHS disease-free status can be obtained from the World Organization for Animal Health on fulfilment of a number of criteria. AHS is associated with case fatality rates of up to 95%, making an outbreak among naïve horses both a welfare and economic disaster. The worldwide distributions of similar vector-borne diseases (particularly bluetongue disease of ruminants) are changing rapidly, probably due to a combination of globalisation and climate change. There is extensive evidence that the requisite conditions for an AHS epizootic currently exist in disease-free countries. In particular, although the stringent regulations enforced upon competition horses make them extremely unlikely to redistribute the virus, there are great concerns over the effects of illegal equid movement. An outbreak of AHS in a disease free region would have catastrophic effects on equine welfare and industry, particularly for international events such as the Olympic Games. While many regions have contingency plans in place to manage an outbreak of AHS, further research is urgently required if the equine industry is to avoid or effectively contain an AHS epizootic in disease-free regions. This review describes the key aspects of AHS as a global issue and discusses the evidence supporting concerns that an epizootic may occur in AHS free countries, the planned government responses, and the roles and responsibilities of equine veterinarians. © 2016 EVJ Ltd.

  7. Health assessment of wild lowland tapir (Tapirus terrestris) populations in the Atlantic Forest and Pantanal biomes, Brazil (1996-2012).

    Science.gov (United States)

    Medici, Emília Patrícia; Mangini, Paulo Rogerio; Fernandes-Santos, Renata Carolina

    2014-10-01

    Abstract The lowland tapir (Tapirus terrestris) is found in South America and is listed as Vulnerable to Extinction by the International Union for Conservation of Nature, Red List of Threatened Species. Health issues, particularly infectious diseases, are potential threats for the species. Health information from 65 wild tapirs from two Brazilian biomes, Atlantic Forest (AF) and Pantanal (PA), were collected during a long-term study (1996-2012). The study included physic, hematologic and biochemical evaluations, microbiologic cultures, urinalysis, and serologic analyses for antibodies against 13 infectious agents (viral and bacterial). The AF and PA tapirs were significantly different for several hematologic and biochemical parameters. Ten bacteria taxa were identified in the AF and 26 in the PA. Antibodies against five viruses were detected: Bluetongue virus, eastern equine encephalitis virus, western equine encephalitis virus, infectious bovine rhinotracheitis virus, and porcine parvovirus. A high prevalence of exposure to Leptospira interrogans (10 serovars: Autumnalis, Bratislava, Canicola, Copenhageni, Grippotyphosa, Hardjo, Hebdomadis, Icterohaemorrhagiae, Pomona, and Pyrogenes) was detected in both the AF and PA sites. A greater diversity of serovars and higher antibody titers were found in the PA. Statistically significant differences between sites were found for L. interrogans, equine encephalitis virus, and porcine parvovirus. Based on physical evaluations, both AF and PA populations were healthy. The differences in the overall health profile of the AF and PA tapir populations appear to be associated with environmental factors and infectious diseases ecology. The extensive datasets on hematology, biochemistry, urinalysis, and microbiology results from this paper can be used as reference values for wild tapirs.

  8. Expert Opinion on the Perceived Effectiveness and Importance of On-Farm Biosecurity Measures for Cattle and Swine Farms in Switzerland.

    Science.gov (United States)

    Kuster, Karin; Cousin, Marie-Eve; Jemmi, Thomas; Schüpbach-Regula, Gertraud; Magouras, Ioannis

    2015-01-01

    Biosecurity is crucial for safeguarding livestock from infectious diseases. Despite the plethora of biosecurity recommendations, published scientific evidence on the effectiveness of individual biosecurity measures is limited. The objective of this study was to assess the perception of Swiss experts about the effectiveness and importance of individual on-farm biosecurity measures for cattle and swine farms (31 and 30 measures, respectively). Using a modified Delphi method, 16 Swiss livestock disease specialists (8 for each species) were interviewed. The experts were asked to rank biosecurity measures that were written on cards, by allocating a score from 0 (lowest) to 5 (highest). Experts ranked biosecurity measures based on their importance related to Swiss legislation, feasibility, as well as the effort required for implementation and the benefit of each biosecurity measure. The experts also ranked biosecurity measures based on their effectiveness in preventing an infectious agent from entering and spreading on a farm, solely based on transmission characteristics of specific pathogens. The pathogens considered by cattle experts were those causing Bluetongue (BT), Bovine Viral Diarrhea (BVD), Foot and Mouth Disease (FMD) and Infectious Bovine Rhinotracheitis (IBR). Swine experts expressed their opinion on the pathogens causing African Swine Fever (ASF), Enzootic Pneumonia (EP), Porcine Reproductive and Respiratory Syndrome (PRRS), as well as FMD. For cattle farms, biosecurity measures that improve disease awareness of farmers were ranked as both most important and most effective. For swine farms, the most important and effective measures identified were those related to animal movements. Among all single measures evaluated, education of farmers was perceived by the experts to be the most important and effective for protecting both Swiss cattle and swine farms from disease. The findings of this study provide an important basis for recommendation to farmers and

  9. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals.

    Science.gov (United States)

    Reperant, L A; Brown, I H; Haenen, O L; de Jong, M D; Osterhaus, A D M E; Papa, A; Rimstad, E; Valarcher, J-F; Kuiken, T

    2016-07-01

    Companion animals comprise a wide variety of species, including dogs, cats, horses, ferrets, guinea pigs, reptiles, birds and ornamental fish, as well as food production animal species, such as domestic pigs, kept as companion animals. Despite their prominent place in human society, little is known about the role of companion animals as sources of viruses for people and food production animals. Therefore, we reviewed the literature for accounts of infections of companion animals by zoonotic viruses and viruses of food production animals, and prioritized these viruses in terms of human health and economic importance. In total, 138 virus species reportedly capable of infecting companion animals were of concern for human and food production animal health: 59 of these viruses were infectious for human beings, 135 were infectious for food production mammals and birds, and 22 were infectious for food production fishes. Viruses of highest concern for human health included hantaviruses, Tahyna virus, rabies virus, West Nile virus, tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus, Aichi virus, European bat lyssavirus, hepatitis E virus, cowpox virus, G5 rotavirus, influenza A virus and lymphocytic choriomeningitis virus. Viruses of highest concern for food production mammals and birds included bluetongue virus, African swine fever virus, foot-and-mouth disease virus, lumpy skin disease virus, Rift Valley fever virus, porcine circovirus, classical swine fever virus, equine herpesvirus 9, peste des petits ruminants virus and equine infectious anaemia virus. Viruses of highest concern for food production fishes included cyprinid herpesvirus 3 (koi herpesvirus), viral haemorrhagic septicaemia virus and infectious pancreatic necrosis virus. Of particular concern as sources of zoonotic or food production animal viruses were domestic carnivores, rodents and food production animals kept as companion animals. The current list of viruses provides an objective

  10. Rapid detection of novel caprine parainfluenza virus type 3 (CPIV3) using a TaqMan-based RT-qPCR.

    Science.gov (United States)

    Li, Jizong; Li, Wenliang; Mao, Li; Hao, Fei; Yang, Leilei; Zhang, Wenwen; Jiang, Jieyuan

    2016-10-01

    Parainfluenza virus type 3 (PIV3) is one of the most important respiratory pathogens for humans and many animals. A novel caprine PIV3 (CPIV3) was recently identified and isolated from Chinese goat flocks with respiratory disease. In order to develop rapid and sensitive methods for CPIV3 detection in infected goats, a TaqMan RT-qPCR was established in this study based on the primers and probe designed to amplify a 150 nucleotide-long region located within the M gene of the virus. The method was able to detect about 1.0×10(1) DNA copies/μL with an efficiency of 99.6% and a R(2) value of 0.997. There were no cross-reaction observed using this technique against peste des petits ruminants virus (PPRV), border disease virus (BDV), bluetongue virus (BTV) and bovine viral diarrhea virus (BVDV). One hundred and fourteen samples, including nasal swabs, feces swabs, sera, hearts, livers, spleens, lungs, kidneys, tracheas and hilar lymph nodes (HLNs) from six challenged goats, were evaluated by this technique. Using TaqMan RT-qPCR, CPIV3 was positively detected in 51 of 114 samples (44.74%), which was higher than RT-PCR (27.19%, 31/114) and virus isolation (14.9%, 17/114), respectively. The method also gave higher positive detection rate (35%, 42/120) than RT-PCR (28.33%, 34/120) from clinical samples. These data indicated that this method could be used for faster and more accurate monitoring of viral load, disease progression and vaccination efficacy of CPIV3 in goat flocks. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Comparison of chemistry analytes between 2 portable, commercially available analyzers and a conventional laboratory analyzer in reptiles.

    Science.gov (United States)

    McCain, Stephanie L; Flatland, Bente; Schumacher, Juergen P; Clarke Iii, Elsburgh O; Fry, Michael M

    2010-12-01

    Advantages of handheld and small bench-top biochemical analyzers include requirements for smaller sample volume and practicality for use in the field or in practices, but little has been published on the performance of these instruments compared with standard reference methods in analysis of reptilian blood. The aim of this study was to compare reptilian blood biochemical values obtained using the Abaxis VetScan Classic bench-top analyzer and a Heska i-STAT handheld analyzer with values obtained using a Roche Hitachi 911 chemical analyzer. Reptiles, including 14 bearded dragons (Pogona vitticeps), 4 blue-tongued skinks (Tiliqua gigas), 8 Burmese star tortoises (Geochelone platynota), 10 Indian star tortoises (Geochelone elegans), 5 red-tailed boas (Boa constrictor), and 5 Northern pine snakes (Pituophis melanoleucus melanoleucus), were manually restrained, and a single blood sample was obtained and divided for analysis. Results for concentrations of albumin, bile acids, calcium, glucose, phosphates, potassium, sodium, total protein, and uric acid and activities of aspartate aminotransferase and creatine kinase obtained from the VetScan Classic and Hitachi 911 were compared. Results for concentrations of chloride, glucose, potassium, and sodium obtained from the i-STAT and Hitachi 911 were compared. Compared with results from the Hitachi 911, those from the VetScan Classic and i-STAT had variable correlations, and constant or proportional bias was found for many analytes. Bile acid data could not be evaluated because results for 44 of 45 samples fell below the lower linearity limit of the VetScan Classic. Although the 2 portable instruments might provide measurements with clinical utility, there were significant differences compared with the reference analyzer, and development of analyzer-specific reference intervals is recommended. ©2010 American Society for Veterinary Clinical Pathology.

  12. The current status of phlebotomine sand flies in Albania and incrimination of Phlebotomus neglectus (Diptera, Psychodidae as the main vector of Leishmania infantum.

    Directory of Open Access Journals (Sweden)

    Enkelejda Velo

    Full Text Available The incidence of visceral leishmaniasis (VL in Albania is higher than in other countries of southern Europe, however the role of local sand fly species in the transmission of Leishmania infantum was not addressed conclusively. In 2006, a country-wide collection of sand flies performed in 14 sites selected based on recent occurrence of VL cases showed that Phlebotomus neglectus was by far the most prevalent species (95.6%. Furthermore, 15% of pools made from 422 P. neglectus females tested positive for Leishmania sp. genomic DNA. In the same year, Culicoides trapping was performed for bluetongue disease surveillance in 91 sites of southern Albania, targeting livestock farms regardless recent occurrence of VL in the surveyed areas. In 35 sites where sand flies were collected along with midges, Phlebotomus perfiliewi was the most prevalent among the Phlebotomus species identified, however search for leishmanial DNA in females of this species was unsuccessful. In 2011, sand flies were trapped in 4 sites of north Albania characterized by high VL incidence, and females were dissected to search for Leishmania infections. Both P. neglectus and P. tobbi were collected at high densities. Two positive specimens were detected from a sample of 64 P. neglectus trapped in one site (3.1%. Parasites were successfully cultured from one specimen and characterized as belonging to Leishmania infantum zymodeme MON-1, the only zymodeme so far identified as the agent of human and canine leishmaniasis in the country. Altogether our studies indicate that P. neglectus is the main leishmaniasis vector in Albania.

  13. The current status of phlebotomine sand flies in Albania and incrimination of Phlebotomus neglectus (Diptera, Psychodidae) as the main vector of Leishmania infantum

    Science.gov (United States)

    Bongiorno, Gioia; Kadriaj, Perparim; Myrseli, Teita; Crilly, James; Lika, Aldin; Mersini, Kujtim; Di Muccio, Trentina; Bino, Silvia; Gramiccia, Marina; Gradoni, Luigi; Maroli, Michele

    2017-01-01

    The incidence of visceral leishmaniasis (VL) in Albania is higher than in other countries of southern Europe, however the role of local sand fly species in the transmission of Leishmania infantum was not addressed conclusively. In 2006, a country-wide collection of sand flies performed in 14 sites selected based on recent occurrence of VL cases showed that Phlebotomus neglectus was by far the most prevalent species (95.6%). Furthermore, 15% of pools made from 422 P. neglectus females tested positive for Leishmania sp. genomic DNA. In the same year, Culicoides trapping was performed for bluetongue disease surveillance in 91 sites of southern Albania, targeting livestock farms regardless recent occurrence of VL in the surveyed areas. In 35 sites where sand flies were collected along with midges, Phlebotomus perfiliewi was the most prevalent among the Phlebotomus species identified, however search for leishmanial DNA in females of this species was unsuccessful. In 2011, sand flies were trapped in 4 sites of north Albania characterized by high VL incidence, and females were dissected to search for Leishmania infections. Both P. neglectus and P. tobbi were collected at high densities. Two positive specimens were detected from a sample of 64 P. neglectus trapped in one site (3.1%). Parasites were successfully cultured from one specimen and characterized as belonging to Leishmania infantum zymodeme MON-1, the only zymodeme so far identified as the agent of human and canine leishmaniasis in the country. Altogether our studies indicate that P. neglectus is the main leishmaniasis vector in Albania. PMID:28628627

  14. Serologic screening for 13 infectious agents in roe deer (Capreolus capreolus in Flanders

    Directory of Open Access Journals (Sweden)

    Paul Tavernier

    2015-11-01

    Full Text Available Introduction: In order to investigate the role of roe deer in the maintenance and transmission of infectious animal and human diseases in Flanders, we conducted a serologic screening in 12 hunting areas. Materials and methods: Roe deer sera collected between 2008 and 2013 (n=190 were examined for antibodies against 13 infectious agents, using indirect enzyme-linked immunosorbent assay, virus neutralisation, immunofluorescence, or microagglutination test, depending on the agent. Results and discussion: High numbers of seropositives were found for Anaplasma phagocytophilum (45.8%, Toxoplasma gondii (43.2% and Schmallenberg virus (27.9%, the latter with a distinct temporal distribution pattern following the outbreak in domestic ruminants. Lower antibody prevalence was found for Chlamydia abortus (6.7%, tick-borne encephalitis virus (5.1%, Neospora caninum (4.8%, and Mycobacterium avium subsp paratuberculosis (4.1%. The lowest prevalences were found for Leptospira (1.7%, bovine viral diarrhoea virus 1 (1.3%, and Coxiella burnetii (1.2%. No antibodies were found against Brucella sp., bovine herpesvirus 1, and bluetongue virus. A significant difference in seroprevalence between ages (higher in adults >1 year was found for N. caninum. Four doubtful reacting sera accounted for a significant difference in seroprevalence between sexes for C. abortus (higher in females. Conclusions: Despite the more intensive landscape use in Flanders, the results are consistent with other European studies. Apart from maintaining C. abortus and MAP, roe deer do not seem to play an important role in the epidemiology of the examined zoonotic and domestic animal pathogens. Nevertheless, their meaning as sentinels should not be neglected in the absence of other wild cervid species.

  15. Anticipating the Emerging of Some Strategical Infectious Animal Diseases in Indonesia Related to The Effect of Global Warming and Climate Change

    Directory of Open Access Journals (Sweden)

    Sjamsul Bahri

    2011-03-01

    Full Text Available The effect of global warming and climate change is changing the season, included flooding in one area and very dry in other area, changing the temperature and humidity. These changes will trigger changing of the life of biological agent (virus, bacteria, parasites and so on, variety of animal species, variety of vectors as reservoir host of animal with the role of transmitting the disease to other animal species, This condition will trigger the new animal disease (emerging disease or old disease will be re-emerged (re-emerging diseases. This paper will discuss the effect of global warming and climate change on animal diseases in Indonesia such as Bluetongue (BT, Nipah, Japanese encephalitis (JE, West Nile (WN, and Rift Valley fever (RVF. The climate changes such as increasing the earth temperature and rainfall will cause extremely increase of vector population for BT, JE, WN and RVF. In addition, animal transportation and bird migration from one country to others or region will cause changing of ecological system and will open the chance to distribute the diseases. Hence, anticipation on those disease outbreaks should be taken by conducting the surveilance and early detection to those diseases. The possibility of entering Nipah disease in Indonesia should be anticipated because the avaibility of Nipah virus and the reservoir host (Pteropus spp and also pigs as amplifier host in the surrounding area. Other diseases such as, leptospirosis, anthrax and avian influenza (H5N1 are also have a wider potential to distributing the disease related to the climate change in Indonesia.

  16. Aboveground burial for managing catastrophic losses of livestock

    Directory of Open Access Journals (Sweden)

    Gary Alan Flory

    2017-09-01

    Full Text Available Background and Aim: Environmental impacts from carcass management are a significant concern globally. Despite a history of costly, ineffective, and environmentally damaging carcass disposal efforts, large animal carcass disposal methods have advanced little in the past decade. An outbreak today will likely be managed with the same carcass disposal techniques used in the previous decades and will likely result in the same economic, health, and environmental impacts. This article overviews the results of one field test that was completed in Virginia (United States using the aboveground burial (AGB technique and the disposal of 111 foot-and-mouth disease (FMD infected sheep in Tunisia using a similar methodology. Materials and Methods: Researchers in the United States conducted a field test to assess the environmental impact and effectiveness of AGB in decomposing livestock carcasses. The system design included a shallow trench excavated into native soil and a carbonaceous base placed on the bottom of the trenches followed by a single layer of animal carcasses. Excavated soils were subsequently placed on top of the animals, and a vegetative layer was established. A similar methodology was used in Tunisia to manage sheep infected with FMDs, Peste des Petits Ruminants virus, and Bluetongue Virus. Results: The results of the field test in the United States demonstrated a significant carcass degradation during the 1-year period of the project, and the migration of nutrients below the carcasses appears to be limited thereby minimizing the threat of groundwater contamination. The methodology proved practical for the disposal of infected sheep carcasses in Tunisia. Conclusions: Based on the analysis conducted to date, AGB appears to offer many benefits over traditional burial for catastrophic mortality management. Ongoing research will help to identify limitations of the method and determine where its application during large disease outbreaks or natural

  17. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity.

    Science.gov (United States)

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-12-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs

  18. History of Orbivirus research in South Africa

    Directory of Open Access Journals (Sweden)

    Daniel W. Verwoerd

    2012-04-01

    Full Text Available In the early colonial history of South Africa, horses played an important role, both in general transportation and in military operations. Frequent epidemics of African horsesickness (AHS in the 18th century therefore severely affected the economy. The first scientific research on the disease was carried out by Alexander Edington (1892, the first government bacteriologist of the Cape Colony, who resolved the existing confusion that reigned and established its identity as a separate disease. Bluetongue (BT was described for the first time by Duncan Hutcheon in 1880, although it was probably always endemic in wild ruminants and only became a problem when highly susceptible Merino sheep were introduced to the Cape in the late 18th century. The filterability of the AHS virus (AHSV was demonstrated in 1900 by M’Fadyean in London, and that of the BT virus (BTV in 1905 by Theiler at Onderstepoort, thus proving the viral nature of both agents. Theiler developed the first vaccines for both diseases at Onderstepoort. Both vaccines consisted of infective blood followed by hyper-immune serum, and were used for many years. Subsequent breakthroughs include the adaptation to propagation and attenuation in embryonated eggs in the case of BTV and in mouse brains for AHSV. This was followed by the discovery of multiple serotypes of both viruses, the transmission of both by Culicoides midges and their eventual replication in cell cultures. Molecular studies led to the discovery of the segmented double-stranded RNA genomes, thus proving their genetic relationship and leading to their classification in a genus called Orbivirus. Further work included the molecular cloning of the genes of all the serotypes of both viruses and clarification of their relationship to the viral proteins, which led to much improved diagnostic techniques and eventually to the development of a recombinant vaccine, which unfortunately has so far been unsuitable for mass production.

  19. Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses.

    Science.gov (United States)

    Mata, Carlos P; Luque, Daniel; Gómez-Blanco, Josué; Rodríguez, Javier M; González, José M; Suzuki, Nobuhiro; Ghabrial, Said A; Carrascosa, José L; Trus, Benes L; Castón, José R

    2017-12-01

    Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between the two proteins, they have a similar α-helical domain, the structural signature shared with the lineage of the dsRNA bluetongue virus-like viruses. Domain insertions in P2 and P4 preferential sites provide additional functions at the capsid outer surface, probably related to enzyme activity. The P2 insertion has a fold similar to that of gelsolin and profilin, two actin-binding proteins with a function in cytoskeleton metabolism, whereas the P4 insertion suggests protease activity involved in cleavage of the P2 383-residue C-terminal region, absent in the mature viral particle. Our results indicate that the intimate virus-fungus partnership has altered the capsid genome-protective and/or receptor-binding functions. Fungal virus evolution has tended to allocate enzyme activities to the virus capsid outer surface.

  20. [Testing for BTV, BVDV and BHV-1 in blood samples of new world camelids kept in middle Germany].

    Science.gov (United States)

    Locher, Lena; Nieper, Hermann; Volkery, Janine; Fürll, Manfred; Wittek, Thomas

    2010-01-01

    The susceptibility of camelids for infectious agents which may result in severe economic losses or which are strictly regulated for epidemiological reasons in farm animals potentially causes a mutual risk of transmission. This study aimed to investigate the presence of antibodies against bovine herpesvirus 1 (BHV-1), bluetongue virus (BTV) and bovine viral diarrhoea virus (BVDV) as well as the presence of pestivirus antigen in new world camelids in Central Germany. Therefore 107 serum samples from 93 alpacas and lamas from this region which had been obtained from 2007 to 2009 were examined using ELISA, serum neutralisation test, RT-PCR and a pestivirus specific gene probe. All sample were negative for BHV-1 antibodies. Antibodies against BVDV-1 could be detected in four animals, titres reaching from 1:64 to > 1:256. One animal was positive for BTV antibodies in the year 2008. This animal had been tested negative for BTV antibodies in 2007. It can be concluded that up to now, these viruses seem to be of minor importance as pathogens in new world camelids in Central Germany. Therefore the risk of infection originating from new world camelids for production animals could be considered to be rather low in this region at the moment. However, it must be taken into consideration that these animals due to lack of antibodies are fully susceptible in case of occurrence of one of these viruses. For maintenance and improvement of the present status, general hygienic precautions should be applied; direct and indirect contact between animals from different herds must be avoided and virological diagnostic and quarantine should be required trading these animals.

  1. Entomopathogenic Fungus as a Biological Control for an Important Vector of Livestock Disease: The Culicoides Biting Midge

    Science.gov (United States)

    Ansari, Minshad Ali; Pope, Edward C.; Carpenter, Simon; Scholte, Ernst-Jan; Butt, Tariq M.

    2011-01-01

    Background The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. Methodology/Findings Exposure of midges to ‘dry’ conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT50 value for strain V275 was 1.42 days compared to 2.21–3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (108–1011 conidia m−2) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to ‘dry’ conidia and ‘wet’ conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. ‘Dry’ conidia were more effective than ‘wet’ conidia, causing 100% mortality after 5 days. Conclusion/Significance This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of ‘dry’ conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges

  2. Transplacental transmission of BTV-8 in sheep: BTV viraemia, antibody responses and vaccine efficacy in lambs infected in utero.

    Science.gov (United States)

    van der Sluijs, M T W; Schroer-Joosten, D P H; Fid-Fourkour, A; Smit, M; Vrijenhoek, M P; Moulin, V; de Smit, A J; Moormann, R J M

    2013-08-12

    Bluetongue virus (BTV) is an insect vector transmitted virus which causes an economically important disease in ruminants. BTV infection during pregnancy can result in infection of the foetus, which may lead to the birth of persistently infected or immunotolerant offspring. Since persistently infected animals continuously produce large amounts of virus they could be a source of infection for the insect vector. This could significantly influence the epidemiology of the virus and hence might require additional measures to control a BTV outbreak. Therefore, we investigated the potential of BTV-8 to induce persistent infection or immunotolerance in lambs in an experimental setting. Infection of eighteen 70-75 days pregnant ewes with wild type BTV-8 led to the birth of 25 out of 44 BTV RNA positive lambs (foetal infected, FI). All 23 FI lambs born alive also had anti BTV antibodies at birth; infectious virus could be recovered from 5 out of 25 FI lambs. Viral RNA loads decreased rapidly after birth; 19 out of 20 FI lambs that remained in the experiment until week 14 after birth, were RNA negative at that time. Since persistence of BTV-8 infection could not be demonstrated, we investigated whether foetal infection had an effect on protection against a field virus infection and on efficacy of vaccination. To this end, 5 FI lambs and 5 foetal non-infected (FNI) lambs were vaccinated with the inactivated Bovilis(®) BTV-8 vaccine, five months after birth. Three weeks after the vaccination, all lambs were infected with wild type BTV-8. The foetal infection did not interfere with vaccination efficacy. In contrast, foetal BTV-8 infection induced an immune response which afforded protection against BTV challenge comparable to the level of protection induced by vaccination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Schmallenberg Virus Circulation in Culicoides in Belgium in 2012: Field Validation of a Real Time RT-PCR Approach to Assess Virus Replication and Dissemination in Midges

    Science.gov (United States)

    De Regge, Nick; Madder, Maxime; Deblauwe, Isra; Losson, Bertrand; Fassotte, Christiane; Demeulemeester, Julie; Smeets, François; Tomme, Marie; Cay, Ann Brigitte

    2014-01-01

    Indigenous Culicoides biting midges are suggested to be putative vectors for the recently emerged Schmallenberg virus (SBV) based on SBV RNA detection in field-caught midges. Furthermore, SBV replication and dissemination has been evidenced in C. sonorensis under laboratory conditions. After SBV had been detected in Culicoides biting midges from Belgium in August 2011, it spread all over the country by the end of 2011, as evidenced by very high between-herd seroprevalence rates in sheep and cattle. This study investigated if a renewed SBV circulation in midges occurred in 2012 in the context of high seroprevalence in the animal host population and evaluated if a recently proposed realtime RT-PCR approach that is meant to allow assessing the vector competence of Culicoides for SBV and bluetongue virus under laboratory conditions was applicable to field-caught midges. Therefore midges caught with 12 OVI traps in four different regions in Belgium between May and November 2012, were morphologically identified, age graded, pooled and tested for the presence of SBV RNA by realtime RT-PCR. The results demonstrate that although no SBV could be detected in nulliparous midges caught in May 2012, a renewed but short lived circulation of SBV in parous midges belonging to the subgenus Avaritia occured in August 2012 at all four regions. The infection prevalence reached up to 2.86% in the south of Belgium, the region where a lower seroprevalence was found at the end of 2011 than in the rest of the country. Furthermore, a frequency analysis of the Ct values obtained for 31 SBV-S segment positive pools of Avaritia midges showed a clear bimodal distribution with peaks of Ct values between 21–24 and 33–36. This closely resembles the laboratory results obtained for SBV infection of C. sonorensis and implicates indigenous midges belonging to the subgenus Avaritia as competent vectors for SBV. PMID:24466312

  4. Immunogenicity and protective efficacy of recombinant major envelope protein (rH3L) of buffalopox virus in animal models.

    Science.gov (United States)

    Kumar, Amit; Yogisharadhya, Revanaiah; Venkatesan, Gnanavel; Bhanuprakash, Veerakyathappa; Shivachandra, Sathish Bhadravati

    2016-02-01

    Buffalopox virus, a zoonotic Indian vaccinia-like virus, is responsible for contagious disease affecting mainly buffaloes, cattle and humans. H3L gene, encoding for an immunodominant major envelope protein of intracellular mature virion of orthopoxviruses, is highly conserved and found to elicit neutralizing antibodies. Therefore in the present study, the immunogenicity and protective efficacy of the recombinant H3L protein of buffalopox virus in laboratory animal models has been evaluated. A partial H3L gene encoding for the C-terminal truncated ectodomain of H3L protein (1M to I280) of BPXV-Vij/96 strain was cloned, over-expressed and purified as histidine-tagged fusion protein (50 kDa) from Escherichia coli using Ni-NTA affinity chromatography. The purified rH3L protein was further used for active immunization of guinea pig (250 μg/dose) and adult mice (10 μg and 50 μg/dose) with or without adjuvants (alum, Freund's Complete Adjuvant and CpG). Subsequently, a gradual increase in antigen specific serum IgG as well as neutralizing antibody titres measured by using indirect-ELISA and serum neutralization test respectively, was noted in both guinea pigs and mouse models. Suckling mice immunized passively with anti-H3L serum showed 80% pre-exposure prophylaxis upon challenge with virulent buffalopox virus strain. An indirect-ELISA based on rH3L protein showed no cross-reactivity with hyperimmune sera against sheeppox virus (SPPV), goatpox virus (GTPV), orf virus (ORFV), foot- and- mouth disease virus (FMDV), peste des petits ruminants virus (PPRV) and bluetongue virus (BTV) during the course of study. The study highlights the potential utility of rH3L protein as a safer prophylactic and diagnostic reagent for buffalopox. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Species determination of Culicoides biting midges via peptide profiling using matrix-assisted laser desorption ionization mass spectrometry.

    Science.gov (United States)

    Uhlmann, Katrin R; Gibb, Sebastian; Kalkhof, Stefan; Arroyo-Abad, Uriel; Schulz, Claudia; Hoffmann, Bernd; Stubbins, Francesca; Carpenter, Simon; Beer, Martin; von Bergen, Martin; Feltens, Ralph

    2014-08-24

    Culicoides biting midges are vectors of bluetongue and Schmallenberg viruses that inflict large-scale disease epidemics in ruminant livestock in Europe. Methods based on morphological characteristics and sequencing of genetic markers are most commonly employed to differentiate Culicoides to species level. Proteomic methods, however, are also increasingly being used as an alternative method of identification. These techniques have the potential to be rapid and may also offer advantages over DNA-based techniques. The aim of this proof-of-principle study was to develop a simple MALDI-MS based method to differentiate Culicoides from different species by peptide patterns with the additional option of identifying discriminating peptides. Proteins extracted from 7 Culicoides species were digested and resulting peptides purified. Peptide mass fingerprint (PMF) spectra were recorded using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and peak patterns analysed in R using the MALDIquant R package. Additionally, offline liquid chromatography (LC) MALDI-TOF tandem mass spectrometry (MS/MS) was applied to determine the identity of peptide peaks in one exemplary MALDI spectrum obtained using an unfractionated extract. We showed that the majority of Culicoides species yielded reproducible mass spectra with peak patterns that were suitable for classification. The dendrogram obtained by MS showed tentative similarities to a dendrogram generated from cytochrome oxidase I (COX1) sequences. Using offline LC-MALDI-TOF-MS/MS we determined the identity of 28 peptide peaks observed in one MALDI spectrum in a mass range from 1.1 to 3.1 kDa. All identified peptides were identical to other dipteran species and derived from one of five highly abundant proteins due to an absence of available Culicoides data. Shotgun mass mapping by MALDI-TOF-MS has been shown to be compatible with morphological and genetic identification of specimens. Furthermore

  6. Identifying the impacts of climate change on key pests and diseases of plant and animal industries

    International Nuclear Information System (INIS)

    Luck, Jo; Aurambout, Jean-Philippe; Finlay, Kyla; Azuloas, Joe; Constable, Fiona; Rijswijk, Bonny Rowles-Van

    2007-01-01

    Full text: Full text: Climate change is increasingly recognised as a major threat to natural and agricultural systems. Understanding these threats will enable government and primary industries to better prepare and adapt to climate change. While observations of climate change are well documented, the potential effects on pests, pathogens and their hosts are not clearly understood. To address this, a review of the potential impacts on plant biosecurity was undertaken to determine the effects of climate change on the behaviour and distribution of emergent plant pests and pathogens. The review identified increasing C02 and temperature, decreasing frost events, heavy and unseasonal rains, increased humidity, drought, cyclones and hurricanes, and warmer winter temperatures as influencing the behaviour of plant pests and pathogens. To study the effects of these changes in detail, three key plant biosecurity threats were analysed in case studies; wheat stripe rust, silver leaf whitefly and citrus canker. The predicted distribution of citrus canker was examined with increasing temperature scenarios using the bioclimatic model CLIMEX. The model predicted a southerly shift in the geographic range of the causal organism which would threaten the major southern citrus growing regions in future climates. A similar study on Bluetongue disease of sheep, spread by the Culicoides midge, also predicted a southerly shift in the vector's geographic range. Significant limitations were identified with bioclimatic modelling when examining the effects of climate change on pests and diseases. The model was unable to assess the plant and animal response to increasing temperature in conjunction with the pest. Also the influence of temperature on the life cycle of the organism, pathogenicity of strains, competition with other species, host coverage and the general effect on the biology of the organism could not be assessed. To begin to address this, a dynamic model was constructed using daily

  7. Population growth, fecundity, and survivorship in recovering populations of bighorn sheep

    Science.gov (United States)

    Singer, F.J.; Williams, E.; Miller, M.W.; Zeigenfuss, L.C.

    2000-01-01

    The single greatest obstacle to the restoration of large, healthy, populations of bighorn sheep (Ovis canadensis) in the western United States is epizootic outbreaks of bronchopneumonia that may kill 20–100% of the animals in populations. Although the species is capable of rapid initial growth rates following restoration into new habitat (λ = 1.23–1.30 have been observed), these rates of increase are typical only a few years following the release of a population, and then most populations either decline to extirpation or remnant status (Moraxella sp., and parainfluenza-3 and bluetongue (BT) viruses. Pregnancy rates of adult ewes were not different in increasing or decreasing populations (pooled rate = 0.93; p = 0.57), but pregnancy rates of yearlings were lower (0.00 for decreasing vs. 0.33 for increasing populations), initial production of lambs and annual recruitment of lambs was lower (0.14, decreasing vs. 0.66, p < 0.05). Adult survival was lower during the first year of an epizootic, 0.62, in one population, but recovered to 0.85 by the second and subsequent years. Survival of adult rams was variable in diseased populations; in two populations rams appeared to be disproportionately impacted, but in a third population rams survived better during the epizootic. In all the increasing park (unhunted) populations, adult ram survival (0.94 ± 0.01) was higher than adult ewe survival (0.89 ± 0.02) (p = 0.10), in contrast to published information from hunted populations where ram survival was lower. Removal of about 20% of one population for restorations severely impacted one declining population. Removals of 12–20% appeared to be excessive and were not readily compensated for in the Canyonlands National Park desert bighorn population. Disease was a significant limiting factor to restoration of bighorn sheep in the study areas; six of 11 total recovering populations we monitored closely were negatively influenced by apparent disease at some time during

  8. African horse sickness virus (AHSV) with a deletion of 77 amino acids in NS3/NS3a protein is not virulent and a safe promising AHS Disabled Infectious Single Animal (DISA) vaccine platform.

    Science.gov (United States)

    van Rijn, Piet A; Maris-Veldhuis, Mieke A; Potgieter, Christiaan A; van Gennip, René G P

    2018-04-05

    African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. Currently, nine serotypes have been defined showing limited cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African Horse Sickness (AHS) in equids with a mortality up to 95% in naïve domestic horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates are competent vectors of closely related bluetongue virus. AHS outbreaks cause huge economic losses in developing countries. In the developed world, outbreaks will result in losses in the equestrian industry and will have an enormous emotional impact on owners of pet horses. Live-attenuated vaccine viruses (LAVs) have been developed, however, safety of these LAVs are questionable due to residual virulence, reversion to virulence, and risk on virulent variants by reassortment between LAVs or with field AHSV. Research aims vaccines with improved profiles. Reverse genetics has recently being developed for AHSV and has opened endless possibilities including development of AHS vaccine candidates, such as Disabled Infectious Single Animal (DISA) vaccine. Here, virulent AHSV5 was recovered and its high virulence was confirmed by experimental infection of ponies. 'Synthetically derived' virulent AHSV5 with an in-frame deletion of 77 amino acids codons in genome segment 10 encoding NS3/NS3a protein resulted in similar in vitro characteristics as published NS3/NS3a knockout mutants of LAV strain AHSV4LP. In contrast to its highly virulent ancestor virus, this deletion AHSV5 mutant (DISA5) was completely safe for ponies. Two vaccinations with DISA5 as well as two vaccinations with DISA vaccine based on LAV strain AHSV4LP showed protection against lethal homologous AHSV. More research is needed to further improve efficacy, to explore the AHS DISA vaccine platform for all nine serotypes, and to study the vaccine profile

  9. Devising an indicator to detect mid-term abortions in dairy cattle: a first step towards syndromic surveillance of abortive diseases.

    Directory of Open Access Journals (Sweden)

    Anne Bronner

    Full Text Available Bovine abortion surveillance is essential for human and animal health because it plays an important role in the early warning of several diseases. Due to the limited sensitivity of traditional surveillance systems, there is a growing interest for the development of syndromic surveillance. Our objective was to assess whether, routinely collected, artificial insemination (AI data could be used, as part of a syndromic surveillance system, to devise an indicator of mid-term abortions in dairy cattle herds in France. A mid-term abortion incidence rate (MAIR was computed as the ratio of the number of mid-term abortions to the number of female-weeks at risk. A mid-term abortion was defined as a return-to-service (i.e., a new AI taking place 90 to 180 days after the previous AI. Weekly variations in the MAIR in heifers and parous cows were modeled with a time-dependent Poisson model at the département level (French administrative division during the period of 2004 to 2010. The usefulness of monitoring this indicator to detect a disease-related increase in mid-term abortions was evaluated using data from the 2007-2008 episode of bluetongue serotype 8 (BT8 in France. An increase in the MAIR was identified in heifers and parous cows in 47% (n = 24 and 71% (n = 39 of the departements. On average, the weekly MAIR among heifers increased by 3.8% (min-max: 0.02-57.9% when the mean number of BT8 cases that occurred in the previous 8 to 13 weeks increased by one. The weekly MAIR among parous cows increased by 1.4% (0.01-8.5% when the mean number of BT8 cases occurring in the previous 6 to 12 weeks increased by one. These results underline the potential of the MAIR to identify an increase in mid-term abortions and suggest that it is a good candidate for the implementation of a syndromic surveillance system for bovine abortions.

  10. Seasonal variation and impact of waste-water lagoons as larval habitat on the population dynamics of Culicoides sonorensis (Diptera:Ceratpogonidae at two dairy farms in northern California.

    Directory of Open Access Journals (Sweden)

    Christie E Mayo

    Full Text Available The Sacramento (northern Central Valley of California (CA has a hot Mediterranean climate and a diverse ecological landscape that is impacted extensively by human activities, which include the intensive farming of crops and livestock. Waste-water ponds, marshes, and irrigated fields associated with these agricultural activities provide abundant larval habitats for C. sonorensis midges, in addition to those sites that exist in the natural environment. Within this region, C. sonorensis is an important vector of bluetongue (BTV and related viruses that adversely affect the international trade and movement of livestock, the economics of livestock production, and animal welfare. To characterize the seasonal dynamics of immature and adult C. sonorensis populations, abundance was monitored intensively on two dairy farms in the Sacramento Valley from August 2012- to July 2013. Adults were sampled every two weeks for 52 weeks by trapping (CDC style traps without light and baited with dry-ice along N-S and E-W transects on each farm. One farm had large operational waste-water lagoons, whereas the lagoon on the other farm was drained and remained dry during the study. Spring emergence and seasonal abundance of adult C. sonorensis on both farms coincided with rising vernal temperature. Paradoxically, the abundance of midges on the farm without a functioning waste-water lagoon was increased as compared to abundance on the farm with a waste-water lagoon system, indicating that this infrastructure may not serve as the sole, or even the primary larval habitat. Adult midges disappeared from both farms from late November until May; however, low numbers of parous female midges were detected in traps set during daylight in the inter-seasonal winter period. This latter finding is especially critical as it provides a potential mechanism for the "overwintering" of BTV in temperate regions such as northern CA. Precise documentation of temporal changes in the annual

  11. Seasonal variation and impact of waste-water lagoons as larval habitat on the population dynamics of Culicoides sonorensis (Diptera:Ceratpogonidae) at two dairy farms in northern California.

    Science.gov (United States)

    Mayo, Christie E; Osborne, Cameron J; Mullens, Bradley A; Gerry, Alec C; Gardner, Ian A; Reisen, William K; Barker, Christopher M; Maclachlan, N James

    2014-01-01

    The Sacramento (northern Central) Valley of California (CA) has a hot Mediterranean climate and a diverse ecological landscape that is impacted extensively by human activities, which include the intensive farming of crops and livestock. Waste-water ponds, marshes, and irrigated fields associated with these agricultural activities provide abundant larval habitats for C. sonorensis midges, in addition to those sites that exist in the natural environment. Within this region, C. sonorensis is an important vector of bluetongue (BTV) and related viruses that adversely affect the international trade and movement of livestock, the economics of livestock production, and animal welfare. To characterize the seasonal dynamics of immature and adult C. sonorensis populations, abundance was monitored intensively on two dairy farms in the Sacramento Valley from August 2012- to July 2013. Adults were sampled every two weeks for 52 weeks by trapping (CDC style traps without light and baited with dry-ice) along N-S and E-W transects on each farm. One farm had large operational waste-water lagoons, whereas the lagoon on the other farm was drained and remained dry during the study. Spring emergence and seasonal abundance of adult C. sonorensis on both farms coincided with rising vernal temperature. Paradoxically, the abundance of midges on the farm without a functioning waste-water lagoon was increased as compared to abundance on the farm with a waste-water lagoon system, indicating that this infrastructure may not serve as the sole, or even the primary larval habitat. Adult midges disappeared from both farms from late November until May; however, low numbers of parous female midges were detected in traps set during daylight in the inter-seasonal winter period. This latter finding is especially critical as it provides a potential mechanism for the "overwintering" of BTV in temperate regions such as northern CA. Precise documentation of temporal changes in the annual abundance and

  12. Identity and diversity of blood meal hosts of biting midges (Diptera: Ceratopogonidae: Culicoides Latreille in Denmark

    Directory of Open Access Journals (Sweden)

    Lassen Sandra B

    2012-07-01

    Full Text Available Abstract Background Host preference studies in haematophagous insects e.g. Culicoides biting midges are pivotal to assess transmission routes of vector-borne diseases and critical for the development of veterinary contingency plans to identify which species should be included due to their risk potential. Species of Culicoides have been found in almost all parts of the world and known to live in a variety of habitats. Several parasites and viruses are transmitted by Culicoides biting midges including Bluetongue virus and Schmallenberg virus. The aim of the present study was to determine the identity and diversity of blood meals taken from vertebrate hosts in wild-caught Culicoides biting midges near livestock farms. Methods Biting midges were collected at weekly intervals for 20 weeks from May to October 2009 using light traps at four collection sites on the island Sealand, Denmark. Blood-fed female biting midges were sorted and head and wings were removed for morphological species identification. The thoraxes and abdomens including the blood meals of the individual females were subsequently subjected to DNA isolation. The molecular marker cytochrome oxidase I (COI barcode was applied to identify the species of the collected biting midges (GenBank accessions JQ683259-JQ683374. The blood meals were first screened with a species-specific cytochrome b primer pair for cow and if negative with a universal cytochrome b primer pair followed by sequencing to identify mammal or avian blood meal hosts. Results Twenty-four species of biting midges were identified from the four study sites. A total of 111,356 Culicoides biting midges were collected, of which 2,164 were blood-fed. Specimens of twenty species were identified with blood in their abdomens. Blood meal sources were successfully identified by DNA sequencing from 242 (76% out of 320 Culicoides specimens. Eight species of mammals and seven species of birds were identified as blood meal hosts. The

  13. Epizootic of ovine congenital malformations associated with Schmallenberg virus infection.

    Science.gov (United States)

    van den Brom, R; Luttikholt, S J M; Lievaart-Peterson, K; Peperkamp, N H M T; Mars, M H; van der Poel, W H M; Vellema, P

    2012-02-01

    Epizootic outbreaks of congenital malformations in sheep are rare and have, to the best of our knowledge, never been reported before in Europe. This paper describes relevant preliminary findings from the first epizootic outbreak of ovine congenital malformations in the Netherlands. Between 25 November and 20 December 2011, congenital malformations in newborn lambs on sheep farms throughout the country were reported to the Animal Health Service in Deventer. Subsequently, small ruminant veterinary specialists visited these farms and collected relevant information from farmers by means of questionnaires. The deformities varied from mild to severe, and ewes were reported to have given birth to both normal and deformed lambs; both male and female lambs were affected. Most of the affected lambs were delivered at term. Besides malformed and normal lambs, dummy lambs, unable to suckle, were born also on these farms. None of the ewes had shown clinical signs during gestation or at parturition. Dystocia was common, because of the lambs' deformities. Lambs were submitted for post-mortem examination, and samples of brain tissue were collected for virus detection. The main macroscopic findings included arthrogryposis, torticollis, scoliosis and kyphosis, brachygnathia inferior, and mild-to-marked hypoplasia of the cerebrum, cerebellum and spinal cord. Preliminary data from the first ten affected farms suggest that nutritional deficiencies, intoxication, and genetic factors are not likely to have caused the malformations. Preliminary diagnostic analyses of precolostral serum samples excluded border disease virus, bovine viral diarrhoea virus, and bluetongue virus. In December 2011, samples of brain tissue from 54 lambs were sent to the Central Veterinary Institute of Wageningen University Research, Lelystad. Real-time PCR detected the presence of a virus, provisionally named the Schmallenberg virus, in brain tissue from 22 of the 54 lambs, which originated from seven of eight

  14. Diagnosis and epidemiology of animal diseases in Latin America. Proceedings of the final research co-ordination meetings of FAO/IAEA/SIDA co-ordinated research projects

    International Nuclear Information System (INIS)

    1998-11-01

    In 1986 the Animal Production and Health Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture embarked on a programme of support to scientists in developing countries focused on improving animal disease diagnosis through the use of nuclear and related technologies. As part of this programme the Swedish International Development Authority (SIDA) agreed to provide support for a FAO/IAEA Co-ordinated Research Project (CRP) concerned with the introduction and use of such technologies in Latin America. Through this programme, which was entitled Regional Network for Latin America on Animal Disease Diagnosis Using Immunoassays and Labeled DNA Probe Techniques, studies were supported on a number of diseases considered to be of substantial economic and social importance to the region, including brucellosis, tuberculosis, babesiosis, leukosis, bluetongue and chlamydia infection in cattle and psedorabies in pigs. One significant conclusion was that large number of diseases studied limited research findings owing to the lack of a critical mass of scientists studying any one specific disease problem. Thus when in 1991, SIDA agreed to follow-up CRP on Immunoassay Methods for the Diagnosis and Epidemiology of Animal Diseases in Latin America, the work was restricted to three diseases, i.e. foot-and-mouth disease (FMD), bovine brucellosis and bovine babesiosis. In 1994 results were presented in Guadeloupe, Lesser Antilles, France. The outcome of this meeting was the validation of ELISAs for the above mentioned diseases and a recommendation that future research should focus on diagnosis and epidemiology to support existing control and eradication campaigns against the two diseases of major importance in the region (FMD and Brucellosis). A follow-up CRP (1994-1997) entitled the Use of ELISA for Epidemiology and Control of Foot-and-Mouth Disease and Bovine Brucellosis in Latin America focused on the further validation and subsequent use of a

  15. Isolation of Tibet orbivirus from Culicoides and associated infections in livestock in Yunnan, China.

    Science.gov (United States)

    Wang, Jinglin; Li, Huachun; He, Yuwen; Zhou, Yang; Xin, Aiguo; Liao, Defang; Meng, Jinxin

    2017-06-08

    Culicoides-borne orbiviruses, such as bluetongue virus (BTV) and African horse sickness virus (AHSV), are important pathogens that cause animal epidemic diseases leading to significant loss of domestic animals. This study was conducted to identify Culicoides-borne arboviruses and to investigate the associated infections in local livestock in Yunnan, China. Culicoides were collected overnight in Mangshi City using light traps during August 2013. A virus was isolated from the collected Culicoides and grown using baby hamster kidney (BHK-21), Vero, Madin-Darby bovine kidney (MDBK) and Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by polyacrylamide gel (PAGE) analysis. A full-length cDNA copy of the genome was amplified and sequenced. Serological investigations were conducted in local cattle, buffalo and goat using plaque-reduction neutralization tests. We isolated a viral strain (DH13C120) that caused cytopathogenic effects in BHK-21, Vero, MDBK and C6/36 cells. Suckling mice inoculated intracerebrally with DH13C120 showed signs of fatal neurovirulence. PAGE analysis indicated a genome consisting of 10 segments of double-stranded RNA that demonstrated a 3-3-3-1 pattern, similar to the migrating bands of Tibet orbivirus (TIBOV). Phylogenetic analysis of the viral RNA-dependent RNA polymerase (Pol), sub-core-shell (T2, and outer core (T13) proteins revealed that DH13C120 clustered with TIBOV, and the amino acid sequences of DH13C120 virus shared more than 98% identity with TIBOV XZ0906. However, outer capsid protein VP2 and outer capsid protein VP5 shared only 43.1 and 79.3% identity, respectively, indicating that the DH13C120 virus belongs to TIBOV, and it may represent different serotypes with XZ0906. A serosurvey revealed the presence of neutralizing antibodies with 90% plaque-reduction neutralization against TIBOV DH13C120 in local cattle (44%), buffalo (20%), and goat (4%). Four-fold or higher levels of TIBOV-2-neutralizing

  16. Animal production and health newsletter, No. 52, July 2010

    International Nuclear Information System (INIS)

    2010-07-01

    Globalization and climate change have had an unprecedented worldwide impact on emerging and re-emerging animal diseases and zoonoses. Climate change is disrupting natural ecosystems by providing more suitable environments for infectious diseases allowing diseasecausing bacteria, viruses, and fungi to move into new areas where they may harm wild life and domestic species, as well as humans. Diseases that were previously limited only to tropical areas are now spreading to other previously cooler areas, e.g. malaria. Pathogens that were restricted by seasonal weather patterns can invade new areas and find new susceptible species as the climate warms and/or the winters get milder. Insect-borne diseases are now present in temperate areas where the vector insects were non-existent in the past, e.g. trypanosomosis, anaplasmosis, bluetongue. Humans are also at an increased risk from insect-borne diseases such as malaria, dengue, and yellow fever. Warmer temperatures are already enabling insects and microorganisms to invade and reproduce in areas where they once could not due to severely low temperatures and seasonal chills. A small rise in temperatures can produce a 10-fold increase in a mosquito population causing an increase of malaria cases, and hence, malaria is now occurring in several Eastern European countries as well as in the highland areas of countries like Kenya where historically cooler climatic conditions had prevented the breeding of populations of diseasecarrying mosquitoes. Freshwater snails, intermediate hosts for fascioliasis, a disease that affects millions of herbivorous animals and humans can now be observed in areas above 4200 meters above sea level in the highlands of Peru and Bolivia as milder temperatures and altered environment conditions are more favourable to their survival. Important zoonotic diseases such as avian influenza, Lyme disease and Rift Valley fever are also likely to spread. Avian influenza viruses occur naturally in wild birds

  17. Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S M; Danganan, L; Tammero, L; Vitalis, B; Lenhoff, R; Naraghi-arani, P; Hindson, B

    2007-08-06

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed candidate multiplexed assays that may potentially be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the ability to improve our nation's capability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect food and agricultural resources with a diagnostic test which could enhance the nation's capabilities for early detection of a foreign animal disease. In FY2005 with funding from the DHS, LLNL developed the first version (Version 1.0) of a multiplexed (MUX) nucleic-acid-based RT-PCR assay that included signatures for foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases (FADs) of swine, Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease Virus (SVDV), and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus [BPSV], Orf of sheep, and Pseudocowpox). In FY06, LLNL has developed Bovine and Porcine species-specific panel which included existing signatures from Version 1.0 panel as well as new signatures. The MUX RT-PCR porcine assay for detection of FMDV includes the FADs, VESV and SVD in addition to vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome (PRRS). LLNL has also developed a MUX RT-PCR bovine assay for detection of FMDV with rule out tests for the two bovine FADs malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis

  18. Foot & Mouth Disease & Ulcerative/Vesicular Rule-outs: Challenges Encountered in Recent Outbreaks

    Energy Technology Data Exchange (ETDEWEB)

    Hullinger, P

    2008-01-28

    development and subsequent rupturing of vesicles at the coronary band and in the oral cavity. Vesicles and ulcerations can also occur on the mammary gland. Recovery in adult animals usually occurs in 8-15 days. Clinical signs for most serotypes are less dramatic in sheep and goats. Swine can develop very severe coronary band lesions and high mortality in piglets has been observed. One of the challenges of diagnosing FMD is that it may be clinically similar to several other vesicular or ulcerative diseases. FMD is clinically indistinguishable from Vesicular stomatitis, Swine vesicular disease and Vesicular exanthema of swine. It may also resemble Bovine viral diarrhea, Mucosal disease, Infectious bovine rhinotracheitis, Bluetongue, Bovine papular stomatitis, Bovine mammillitis and Rinderpest.