WorldWideScience

Sample records for bluetongue virus serotype

  1. Experimental infection of white-tailed deer with bluetongue virus serotype 8

    NARCIS (Netherlands)

    Drolet, B.S.; Reister, L.M.; Mecham, J.O.; Wilson, W.C.; Nol, P.; Vercauteren, K.C.; Rijn, van P.A.; Bowen, R.A.

    2013-01-01

    Bluetongue (BT) is an insect-transmitted, economically important disease of domestic and wild ruminants. Although only five of the 26 reported bluetongue virus (BTV) serotypes are considered endemic to the USA, 10 exotic serotypes have been isolated primarily in the southeastern region of the

  2. European bluetongue serotype 8

    NARCIS (Netherlands)

    Drolet, Barbara S.; Reister-Hendricks, Lindsey M.; Podell, Brendan K.; Breitenbach, Jonathan E.; Mcvey, D.S.; Rijn, van Piet A.; Bowen, Richard A.

    2016-01-01

    Bluetongue virus (BTV) is an orbivirus transmitted by biting midges (Culicoides spp.) that can result in moderate to high morbidity and mortality primarily in sheep and white-tailed deer. Although only 5 serotypes of BTV are considered endemic to the United States, as many as 11 incursive

  3. [Bluetongue disease in Swiss sheep breeds: clinical signs after experimental infection with bluetongue virus serotype 8].

    Science.gov (United States)

    Worwa, G; Thür, B; Griot, C; Hofmann, M; MacLachlan, J N; Chaignat, V

    2008-10-01

    Clinical disease of bluetongue (BT) in sheep may differ depending on breed, age and immunity of infected sheep and may also vary between serotype and strain of BT virus (BTV). Since there are no data available on the susceptibility of Swiss sheep breeds for BT, we performed experimental infection of the 4 most common Swiss sheep breeds and the highly susceptible Poll Dorset sheep with the BTV serotype 8 (BTV-8) circulating in Northern Europe since 2006. Clinical signs were assessed regarding severity, localisation, progression and time point of their appearance. The results clearly show that the Swiss sheep breeds investigated were susceptible to BTV-8 infection. They developed moderate, BT-characteristic symptoms, which were similar to those observed in Poll Dorset sheep. Regardless of breed, the majority of infected animals showed fever, swelling of the head as well as erosions of the mouth and subcutaneous haemorrhages.

  4. VP2-serotyped live-attenuated bluetongue virus without NS3/NS3a expression provided serotype-specific protection and enables DIVA.

    NARCIS (Netherlands)

    Feenstra, F.; Maris-Veldhuis, M.A.; Daus, F.J.; Tacken, M.G.J.; Moormann, R.J.M.; Gennip, van H.G.P.; Rijn, van P.A.

    2014-01-01

    Bluetongue virus (BTV) causes Bluetongue in ruminants and is transmitted by Culicoides biting midges. Vaccination is the most effective measure to control vector borne diseases; however, there are 26 known BTV serotypes showing little cross protection. The BTV serotype is mainly determined by genome

  5. Isolation and evolutionary analysis of Australasian topotype of bluetongue virus serotype 4 from India.

    Science.gov (United States)

    Reddy, Y V; Susmitha, B; Patil, S; Krishnajyothi, Y; Putty, K; Ramakrishna, K V; Sunitha, G; Devi, B V; Kavitha, K; Deepthi, B; Krovvidi, S; Reddy, Y N; Reddy, G H; Singh, K P; Maan, N S; Hemadri, D; Maan, S; Mertens, P P; Hegde, N R; Rao, P P

    2018-04-01

    Bluetongue (BT) is a Culicoides-borne disease caused by several serotypes of bluetongue virus (BTV). Similar to other insect-borne viral diseases, distribution of BT is limited to distribution of Culicoides species competent to transmit BTV. In the tropics, vector activity is almost year long, and hence, the disease is endemic, with the circulation of several serotypes of BTV, whereas in temperate areas, seasonal incursions of a limited number of serotypes of BTV from neighbouring tropical areas are observed. Although BTV is endemic in all the three major tropical regions (parts of Africa, America and Asia) of the world, the distribution of serotypes is not alike. Apart from serological diversity, geography-based diversity of BTV genome has been observed, and this is the basis for proposal of topotypes. However, evolution of these topotypes is not well understood. In this study, we report the isolation and characterization of several BTV-4 isolates from India. These isolates are distinct from BTV-4 isolates from other geographical regions. Analysis of available BTV seg-2 sequences indicated that the Australasian BTV-4 diverged from African viruses around 3,500 years ago, whereas the American viruses diverged relatively recently (1,684 CE). Unlike Australasia and America, BTV-4 strains of the Mediterranean area evolved through several independent incursions. We speculate that independent evolution of BTV in different geographical areas over long periods of time might have led to the diversity observed in the current virus population. © 2017 Blackwell Verlag GmbH.

  6. Molecular epidemiology of bluetongue virus serotype 1 isolated in 2006 from Algeria.

    Science.gov (United States)

    Cêtre-Sossah, C; Madani, H; Sailleau, C; Nomikou, K; Sadaoui, H; Zientara, S; Maan, S; Maan, N; Mertens, P; Albina, E

    2011-12-01

    This study reports on an outbreak of disease that occurred in central Algeria during July 2006. Sheep in the affected area presented clinical signs typical of bluetongue (BT) disease. A total of 5245 sheep in the affected region were considered to be susceptible, with 263 cases and thirty-six deaths. Bluetongue virus (BTV) serotype 1 was isolated and identified as the causative agent. Segments 2, 7 and 10 of this virus were sequenced and compared with other isolates from Morocco, Italy, Portugal and France showing that they all belong to a 'western' BTV group/topotype and collectively represent a western Mediterranean lineage of BTV-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. A novel Bluetongue virus serotype 3 strain in Tunisia, November 2016.

    Science.gov (United States)

    Sghaier, S; Lorusso, A; Portanti, O; Marcacci, M; Orsini, M; Barbria, M E; Mahmoud, A S; Hammami, S; Petrini, A; Savini, G

    2017-06-01

    Since 1998, southern Europe has experienced multiple incursions of different serotypes and topotypes of Bluetongue virus, a vector-borne transmitted virus, the causative agent of Bluetongue (BT), a major disease of ruminants. Some of these incursions originated from northern Africa, likely because of wind-blown dissemination of infected midges. In this report, we describe the detection and whole genome characterization of a novel BTV-3 strain identified in a symptomatic sheep in Tunisia. Sequences were immediately deposited with the GenBank Database under Accession Nos KY432369-KY432378. Alert and preparedness are requested to face the next vector seasons in northern Africa and the potential incursion of this novel strain in southern Europe. © 2017 Blackwell Verlag GmbH.

  8. Susceptibility of in vitro produced hatched bovine blastocysts to infection with bluetongue virus serotype 8

    Directory of Open Access Journals (Sweden)

    Vandaele Leen

    2011-01-01

    Full Text Available Abstract Bluetongue virus serotype 8 (BTV-8, which caused an epidemic in ruminants in central Western Europe in 2006 and 2007, seems to differ from other bluetongue serotypes in that it can spread transplacentally and has been associated with an increased incidence of abortion and other reproductive problems. For these reasons, and also because BTV-8 is threatening to spread to other parts of the world, there is a need for more information on the consequences of infection during pregnancy. The aim of the present study was to investigate whether hatched (i.e. zona pellucida-free in vitro produced bovine blastocysts at 8-9 days post insemination are susceptible to BTV-8 and whether such infection induces cell death as indicated by apoptosis. Exposure of hatched in vitro produced bovine blastocysts for 1 h to a medium containing 103.8 or 104.9 TCID50 of the virus resulted in active viral replication in between 25 and 100% of the cells at 72 h post exposure. The infected blastocysts also showed growth arrest as evidenced by lower total cell numbers and a significant level of cellular apoptosis. We conclude from this in vitro study that some of the reproductive problems that are reported when cattle herds are infected with BTV-8 may be attributed to direct infection of blastocysts and other early-stage embryos in utero.

  9. Transplacental and oral transmission of wild-type bluetongue virus serotype 8 in cattle after experimental infection

    NARCIS (Netherlands)

    Backx, A.; Heutink, C.G.; Rooij, van E.M.A.; Rijn, van P.A.

    2009-01-01

    Potential vertical transmission of wild-type bluetongue virus serotype 8 (BTV-8) in cattle was explored in this experiment. We demonstrated transplacental transmission of wild-type BTV-8 in one calf and oral infection with BTV-8 in another calf. Following the experimental BTV-8 infection of seven

  10. Virological and pathological findings in Bluetongue virus serotype 8 infected sheep.

    Science.gov (United States)

    Worwa, Gabriella; Hilbe, Monika; Chaignat, Valérie; Hofmann, Martin A; Griot, Christian; Ehrensperger, Felix; Doherr, Marcus G; Thür, Barbara

    2010-08-26

    Twenty-seven sheep of the four most common Swiss breeds and the English breed Poll Dorset were experimentally infected with a northern European field strain of bluetongue virus serotype 8 (BTV-8). Animals of all breeds developed clinical signs, viremia and pathological lesions, demonstrating that BTV-8 is fully capable of replicating and inducing bluetongue disease (BT) in the investigated sheep. Necropsy performed between 10 and 16 days post-infectionem (d.p.i.) revealed BT-typical hemorrhages, effusions, edema, erosions and activation of lymphatic tissues. Hemorrhages on the base of the Arteria pulmonalis and the left Musculus papillaris subauricularis were frequently present. Histology confirmed the macroscopical findings. Using a score system, clinical manifestation and pathology were found to be significantly related. Furthermore, clinical signs and fever were shown to be indicative for the concurrent presence of high amounts of viral ribonucleic acid (RNA) in blood. Spleen, lung, lymph nodes and tonsils from all animals were analyzed regarding viral RNA loads and infectivity using real-time reverse transcriptase PCR (rRT-PCR) and virus isolation in cell culture, respectively. The highest amount of viral RNA was detected in spleen and lung and rRT-PCR revealed to be a more sensitive method for virus detection compared to virus isolation. A long-term follow-up was performed with three sheep showing that BTV-8 viral RNA in blood was present up to 133 d.p.i. and in certain tissues even on 151 d.p.i. No significant breed-related differences were observed concerning clinicopathological picture and viremia, and the Swiss sheep were as susceptible to BTV-8 infection as Poll Dorset sheep, demonstrating a remarkably high virulence of BTV-8 for indigenous sheep breeds. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Experimental infection of South American camelids with bluetongue virus serotype 8.

    Science.gov (United States)

    Schulz, Claudia; Eschbaumer, Michael; Rudolf, Miriam; König, Patricia; Keller, Markus; Bauer, Christian; Gauly, Matthias; Grevelding, Christoph G; Beer, Martin; Hoffmann, Bernd

    2012-01-27

    Bluetongue (BT) is an infectious, non-contagious disease of wild and domestic ruminants. It is caused by bluetongue virus (BTV) and transmitted by Culicoides biting midges. Since 1998, BT has been emerging throughout Europe, threatening not only the naïve ruminant population. Historically, South American camelids (SAC) were considered to be resistant to BT disease. However, recent fatalities related to BTV in captive SAC have raised questions about their role in BTV epidemiology. Data on the susceptibility of SAC to experimental infection with BTV serotype 8 (BTV-8) were collected in an animal experiment. Three alpacas (Vicugna pacos) and three llamas (Lama glama) were experimentally infected with BTV-8. They displayed very mild clinical signs. Seroconversion was first measured 6-8 days after infection (dpi) by ELISA, and neutralising antibodies appeared 10-13 dpi. BTV-8 RNA levels in blood were very low, and quickly cleared after seroconversion. However, spleens collected post-mortem were still positive for BTV RNA, over 71 days after the last detection in blood samples. Virus isolation was only possible from blood samples of two alpacas by inoculation of highly sensitive interferon alpha/beta receptor-deficient (IFNAR(-/-)) mice. An in vitro experiment demonstrated that significantly lower amounts of BTV-8 adsorb to SAC blood cells than to bovine blood cells. Although this experiment showed that SAC are generally susceptible to a BTV-8 infection, it indicates that these species play a negligible role in BTV epidemiology. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Identification and differentiation of the twenty six bluetongue virus serotypes by RT-PCR amplification of the serotype-specific genome segment 2.

    Directory of Open Access Journals (Sweden)

    Narender S Maan

    Full Text Available Bluetongue (BT is an arthropod-borne viral disease, which primarily affects ruminants in tropical and temperate regions of the world. Twenty six bluetongue virus (BTV serotypes have been recognised worldwide, including nine from Europe and fifteen in the United States. Identification of BTV serotype is important for vaccination programmes and for BTV epidemiology studies. Traditional typing methods (virus isolation and serum or virus neutralisation tests (SNT or VNT are slow (taking weeks, depend on availability of reference virus-strains or antisera and can be inconclusive. Nucleotide sequence analyses and phylogenetic comparisons of genome segment 2 (Seg-2 encoding BTV outer-capsid protein VP2 (the primary determinant of virus serotype were completed for reference strains of BTV-1 to 26, as well as multiple additional isolates from different geographic and temporal origins. The resulting Seg-2 database has been used to develop rapid (within 24 h and reliable RT-PCR-based typing assays for each BTV type. Multiple primer-pairs (at least three designed for each serotype were widely tested, providing an initial identification of serotype by amplification of a cDNA product of the expected size. Serotype was confirmed by sequencing of the cDNA amplicons and phylogenetic comparisons to previously characterised reference strains. The results from RT-PCR and sequencing were in perfect agreement with VNT for reference strains of all 26 BTV serotypes, as well as the field isolates tested. The serotype-specific primers showed no cross-amplification with reference strains of the remaining 25 serotypes, or multiple other isolates of the more closely related heterologous BTV types. The primers and RT-PCR assays developed in this study provide a rapid, sensitive and reliable method for the identification and differentiation of the twenty-six BTV serotypes, and will be updated periodically to maintain their relevance to current BTV distribution and

  13. Humoral response to 2 inactivated bluetongue virus serotype-8 vaccines in South American camelids.

    Science.gov (United States)

    Zanolari, P; Bruckner, L; Fricker, R; Kaufmann, C; Mudry, M; Griot, C; Meylan, M

    2010-01-01

    Bluetongue virus serotype 8 (BTV-8) has caused disease in domestic ruminants in several countries of northern Europe since 2006. In 2008 a mass-vaccination program was launched in most affected countries using whole virus inactivated vaccines. To evaluate 2 inactivated vaccines (Bovilis BTV 8; BTVPUR AlSap8) for immunogenicity and safety against BTV-8 in South American camelids (SAC) in a field trial. Forty-two SAC (25 Alpacas, 17 Llamas) aged between 1 and 16 years. The animals were vaccinated twice at intervals of 21 days. They were observed clinically for adverse local, systemic, or both reactions throughout the trial. Blood samples collected on days 0, 14, 21, 43, and 156 after vaccination were tested for the presence of BTV-8 virus by real time-polymerase chain reaction and of specific antibodies by competitive ELISA and a serum neutralization test. All vaccinated animals developed antibodies to BTV-8 after the 2nd administration of the vaccine. No adverse effects were observed except for moderate local swellings at the injection site, which disappeared within 21 days. Slightly increased body temperatures were only observed in the first 2 days after vaccination. The BTV was not detected in any of the samples analyzed. The administration of the 2 inactivated commercial vaccines was safe and induced seroconversion against BTV-8 in all vaccinated animals. The results of this study suggest that 2 doses injected 3 weeks apart is a suitable vaccination regimen for SAC.

  14. Evidence for transmission of bluetongue virus serotype 26 through direct contact.

    Directory of Open Access Journals (Sweden)

    Carrie Batten

    Full Text Available The aim of this study was to assess the mechanisms of transmission of bluetongue virus serotype 26 (BTV-26 in goats. A previous study, which investigated the pathogenicity and infection kinetics of BTV-26 in goats, unexpectedly revealed that one control goat may have been infected through a direct contact transmission route. To investigate the transmission mechanisms of BTV-26 in more detail an experimental infection study was carried out in which three goats were infected with BTV-26, three goats were kept uninfected, but were housed in direct contact with the infected goats, and an additional four goats were kept in indirect contact separated from infected goats by metal gates. This barrier allowed the goats to have occasional face-to-face contact in the same airspace, but feeding, watering, sampling and environmental cleaning was carried out separately. The three experimentally infected goats did not show clinical signs of BTV, however high levels of viral RNA were detected and virus was isolated from their blood. At 21 dpi viral RNA was detected in, and virus was isolated from the blood of the three direct contact goats, which also seroconverted. The four indirect barrier contact goats remained uninfected throughout the duration of the experiment. In order to assess replication in a laboratory model species of Culicoides biting midge, more than 300 Culicoides sonorensis were fed a BTV-26 spiked blood meal and incubated for 7 days. The dissemination of BTV-26 in individual C. sonorensis was inferred from the quantity of virus RNA and indicated that none of the insects processed at day 7 possessed transmissible infections. This study shows that BTV-26 is easily transmitted through direct contact transmission between goats, and the strain does not seem to replicate in C. sonorensis midges using standard incubation conditions.

  15. Determination of the minimum protective dose for bluetongue virus serotype 2 and 8 vaccines in sheep

    Directory of Open Access Journals (Sweden)

    Jacob Modumo

    2012-08-01

    Full Text Available Recent outbreaks of bluetongue virus (BTV serotypes 2 and 8 in many European countries provided an opportunity to investigate the possibility of improving the safety of the modified live vaccines administered mainly in South Africa. Modified live vaccines (MLV released at a titre of 5 x 104 PFU/mL, raised concerns and prompted the need to determine the minimum titre which will still be protective and also safe. The BTV serotypes 2 and 8 vaccines were produced at the following titres: 102 PFU/mL, 103 PFU/mL and 104 PFU/mL, and were injected into 24 sheep which were then monitored. Blood was collected on days 0, 3, 6, 9, 12, 15, 18, 21, 25, 28 and 4 months post vaccination, for seroconversion and viraemia studies. These sheep were later challenged at 4 months post vaccination using BTV infected cell culture material, they were then observed and bled and again tested for viraemia. There was no viraemia post vaccination, however, a febrile reaction did occur and seroconversion was demonstrated at low titres for both BTV 2 and 8. Although viraemia was demonstrated post challenge, sheep vaccinated with the low titre BTV 2 vaccine showed more than a 90% protection index at a lower titre of 103 PFU/mL, compared with BTV 8 that showed a protection index above 90% at all the titres used. It is recommended that for BTV 2 vaccine, sheep should be vaccinated at a titre of 103 PFU/mL and at a titre of 102 PFU/mL with BTV 8 vaccine.

  16. Determination of the minimum protective dose for bluetongue virus serotype 2 and 8 vaccines in sheep.

    Science.gov (United States)

    Modumo, Jacob; Venter, Estelle H

    2012-08-03

    Recent outbreaks of bluetongue virus (BTV) serotypes 2 and 8 in many European countries provided an opportunity to investigate the possibility of improving the safety of the modified live vaccines administered mainly in South Africa. Modified live vaccines (MLV) released at a titre of 5 x 104 PFU/mL, raised concerns and prompted the need to determine the minimum titre which will still be protective and also safe. The BTV serotypes 2 and 8 vaccines were produced at the following titres: 102 PFU/mL, 103 PFU/mL and 104 PFU/mL, and were injected into 24 sheep which were then monitored. Blood was collected on days 0, 3, 6, 9, 12, 15, 18, 21, 25, 28 and 4 months post vaccination, for seroconversion and viraemia studies. These sheep were later challenged at 4 months post vaccination using BTV infected cell culture material, they were then observed and bled and again tested for viraemia. There was no viraemia post vaccination, however, a febrile reaction did occur and seroconversion was demonstrated at low titres for both BTV 2 and 8. Although viraemia was demonstrated post challenge, sheep vaccinated with the low titre BTV 2 vaccine showed more than a 90% protection index at a lower titre of 103 PFU/mL, compared with BTV 8 that showed a protection index above 90% at all the titres used. It is recommended that for BTV 2 vaccine, sheep should be vaccinated at a titre of 103 PFU/mL and at a titre of 102 PFU/mL with BTV 8 vaccine.

  17. Determination of the minimum protective dose for bluetongue virus serotype 2 and 8 vaccines in sheep

    Directory of Open Access Journals (Sweden)

    Jacob Modumo

    2012-04-01

    Full Text Available Recent outbreaks of bluetongue virus (BTV serotypes 2 and 8 in many European countries provided an opportunity to investigate the possibility of improving the safety of the modified live vaccines administered mainly in South Africa. Modified live vaccines (MLV released at a titre of 5 x 104 PFU/mL, raised concerns and prompted the need to determine the minimum titre which will still be protective and also safe. The BTV serotypes 2 and 8 vaccines were produced at the following titres: 102 PFU/mL, 103 PFU/mL and 104 PFU/mL, and were injected into 24 sheep which were then monitored. Blood was collected on days 0, 3, 6, 9, 12, 15, 18, 21, 25, 28 and 4 months post vaccination, for seroconversion and viraemia studies. These sheep were later challenged at 4 months post vaccination using BTV infected cell culture material, they were then observed and bled and again tested for viraemia. There was no viraemia post vaccination, however, a febrile reaction did occur and seroconversion was demonstrated at low titres for both BTV 2 and 8. Although viraemia was demonstrated post challenge, sheep vaccinated with the low titre BTV 2 vaccine showed more than a 90% protection index at a lower titre of 103 PFU/mL, compared with BTV 8 that showed a protection index above 90% at all the titres used. It is recommended that for BTV 2 vaccine, sheep should be vaccinated at a titre of 103 PFU/mL and at a titre of 102 PFU/mL with BTV 8 vaccine.

  18. The spread of bluetongue virus serotype 8 in Great Britain and its control by vaccination.

    Directory of Open Access Journals (Sweden)

    Camille Szmaragd

    2010-02-01

    Full Text Available Bluetongue (BT is a viral disease of ruminants transmitted by Culicoides biting midges and has the ability to spread rapidly over large distances. In the summer of 2006, BTV serotype 8 (BTV-8 emerged for the first time in northern Europe, resulting in over 2000 infected farms by the end of the year. The virus subsequently overwintered and has since spread across much of Europe, causing tens of thousands of livestock deaths. In August 2007, BTV-8 reached Great Britain (GB, threatening the large and valuable livestock industry. A voluntary vaccination scheme was launched in GB in May 2008 and, in contrast with elsewhere in Europe, there were no reported cases in GB during 2008.Here, we use carefully parameterised mathematical models to investigate the spread of BTV in GB and its control by vaccination. In the absence of vaccination, the model predicted severe outbreaks of BTV, particularly for warmer temperatures. Vaccination was predicted to reduce the severity of epidemics, with the greatest reduction achieved for high levels (95% of vaccine uptake. However, even at this level of uptake the model predicted some spread of BTV. The sensitivity of the predictions to vaccination parameters (time to full protection in cattle, vaccine efficacy, the shape of the transmission kernel and temperature dependence in the transmission of BTV between farms was assessed.A combination of lower temperatures and high levels of vaccine uptake (>80% in the previously-affected areas are likely to be the major contributing factors in the control achieved in England in 2008. However, low levels of vaccination against BTV-8 or the introduction of other serotypes could result in further, potentially severe outbreaks in future.

  19. Serological survey of bluetongue virus serotype-8 infection in South American camelids in Switzerland (2007-2008).

    Science.gov (United States)

    Zanolari, P; Chaignat, V; Kaufmann, C; Mudry, M; Griot, C; Thuer, B; Meylan, M

    2010-01-01

    Outbreak of bluetongue virus serotype-8 (BTV-8) infection in domestic ruminants in Northern Europe. To investigate the South American camelids' (SAC) susceptibility to BTV-8 infection, their role in the epidemiology of the disease, and the use of currently available serological screening tests in SAC in an endemic region. Three hundred and fifty-four unvaccinated and 27 vaccinated SAC (170 llamas, 201 alpacas), ranging in age from 1 month to 17 years between June and August 2008. The SAC originated from 44 herds throughout the country, representing 10% of the Swiss SAC population. Prospective, observational study of a convenience sample of SAC. Serum samples were analyzed with 2 serological screening tests. When results diverged, a 3rd ELISA was carried out for confirmation (ID Screen Bluetongue Competition ELISA kit). All sera from the 354 unvaccinated animals were negative in the endemic region. Reliable seroconversion was observed after administration of 2 doses of vaccine. This study suggests a low susceptibility of SAC to BTV-8 despite the presence of the virus in the cattle and small ruminant population, indicating that SAC do not play a major role in the epidemiology of BTV-8. Furthermore, these results indicate that commercially available serological tests for BTV-8 can be used in SAC.

  20. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  1. A side effect of decreased fertility associated with vaccination against bluetongue virus serotype 8 in Holstein dairy cows.

    Science.gov (United States)

    Nusinovici, Simon; Seegers, Henri; Joly, Alain; Beaudeau, François; Fourichon, Christine

    2011-08-01

    Inactivated virus vaccines have been widely used to control bluetongue after introduction of serotype 8 of the bluetongue virus (BTV) in northern Europe in 2006. To evaluate vaccination, quantitative knowledge of its possible side effects is needed. One current adverse reaction with inactivated vaccines is a rise in body temperature, which could reduce cow reproductive performance. The objective of this study was to quantify a possible side effect of vaccination on fertility before the implantation of the embryo of dairy cows under field conditions. The study was performed on herds that were not exposed to BTV. Fertility was assessed by return-to-service following artificial insemination (AI). Biological assumptions for a possible side effect of vaccination were conception failure and embryonic death. Associations between return-to-service rates and vaccine injections were assessed using mixed-logistic regression models and survival analysis. Two models were considered: a 3-week-return-to-service model comparing cows vaccinated between 3 days before and 16 days after AI and unvaccinated cows (assuming an effect on conception failure or early embryonic death), and a 90-day-return-to-service model comparing cows vaccinated between 3 days before and 42 days after AI and unvaccinated cows (assuming an effect on conception failure, early or late embryonic death). Only cows receiving a second vaccine injection between 2 and 7 days after AI had a significantly higher risk of 3-week-return-to-service (RR=1.19 [1.07-1.33]). This corresponds to an increase of return-to-service by 4 percentage points. A side effect of vaccination could be due to early embryonic death. The slight side effect on fertility associated with vaccination was low compared to effects of BTV-8 exposure on fertility. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Protection of Spanish Ibex (Capra pyrenaica) against Bluetongue Virus Serotypes 1 and 8 in a Subclinical Experimental Infection

    Science.gov (United States)

    Lorca-Oró, Cristina; Pujols, Joan; García-Bocanegra, Ignacio; Mentaberre, Gregorio; Granados, José Enrique; Solanes, David; Fandos, Paulino; Galindo, Iván; Domingo, Mariano; Lavín, Santiago; López-Olvera, Jorge Ramón

    2012-01-01

    Many wild ruminants such as Spanish ibex (Capra pyrenaica) are susceptible to Bluetongue virus (BTV) infection, which causes disease mainly in domestic sheep and cattle. Outbreaks involving either BTV serotypes 1 (BTV-1) and 8 (BTV-8) are currently challenging Europe. Inclusion of wildlife vaccination among BTV control measures should be considered in certain species. In the present study, four out of fifteen seronegative Spanish ibexes were immunized with a single dose of inactivated vaccine against BTV-1, four against BTV-8 and seven ibexes were non vaccinated controls. Seven ibexes (four vaccinated and three controls) were inoculated with each BTV serotype. Antibody and IFN-gamma responses were evaluated until 28 days after inoculation (dpi). The vaccinated ibexes showed significant (P<0.05) neutralizing antibody levels after vaccination compared to non vaccinated ibexes. The non vaccinated ibexes remained seronegative until challenge and showed neutralizing antibodies from 7 dpi. BTV RNA was detected in the blood of non vaccinated ibexes from 2 to the end of the study (28 dpi) and in target tissue samples obtained at necropsy (8 and 28 dpi). BTV-1 was successfully isolated on cell culture from blood and target tissues of non vaccinated ibexes. Clinical signs were unapparent and no gross lesions were found at necropsy. Our results show for the first time that Spanish ibex is susceptible and asymptomatic to BTV infection and also that a single dose of vaccine prevents viraemia against BTV-1 and BTV-8 replication. PMID:22666321

  3. Protection of Spanish Ibex (Capra pyrenaica against Bluetongue virus serotypes 1 and 8 in a subclinical experimental infection.

    Directory of Open Access Journals (Sweden)

    Cristina Lorca-Oró

    Full Text Available Many wild ruminants such as Spanish ibex (Capra pyrenaica are susceptible to Bluetongue virus (BTV infection, which causes disease mainly in domestic sheep and cattle. Outbreaks involving either BTV serotypes 1 (BTV-1 and 8 (BTV-8 are currently challenging Europe. Inclusion of wildlife vaccination among BTV control measures should be considered in certain species. In the present study, four out of fifteen seronegative Spanish ibexes were immunized with a single dose of inactivated vaccine against BTV-1, four against BTV-8 and seven ibexes were non vaccinated controls. Seven ibexes (four vaccinated and three controls were inoculated with each BTV serotype. Antibody and IFN-gamma responses were evaluated until 28 days after inoculation (dpi. The vaccinated ibexes showed significant (P<0.05 neutralizing antibody levels after vaccination compared to non vaccinated ibexes. The non vaccinated ibexes remained seronegative until challenge and showed neutralizing antibodies from 7 dpi. BTV RNA was detected in the blood of non vaccinated ibexes from 2 to the end of the study (28 dpi and in target tissue samples obtained at necropsy (8 and 28 dpi. BTV-1 was successfully isolated on cell culture from blood and target tissues of non vaccinated ibexes. Clinical signs were unapparent and no gross lesions were found at necropsy. Our results show for the first time that Spanish ibex is susceptible and asymptomatic to BTV infection and also that a single dose of vaccine prevents viraemia against BTV-1 and BTV-8 replication.

  4. Antigenic profile of African horse sickness virus serotype 4 VP5 and identification of a neutralizing epitope shared with bluetongue virus and epizootic hemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, J.L.; Langeveld, J.P.M.; Venteo, A.

    1999-01-01

    African horse sickness virus (AHSV) causes a fatal disease in horses. The virus capsid is composed of a double protein layer, the outermost of which is formed by two proteins: VP2 and VP5. VP2 is known to determine the serotype of the virus and to contain the neutralizing epitopes. The biological...... in a plaque reduction assay were generated. To dissect the antigenic structure of AHSV VP5, the protein was cloned in Escherichia coil using the pET3 system. The immunoreactivity of both MAbs, and horse and rabbit polyclonal antisera, with 17 overlapping fragments from VP5 was analyzed. The most....... Neutralizing epitopes were defined at positions 85-92 (PDPLSPGE) for MAb 10AE12 and at 179-185 (EEDLRTR) for MAb 10AC6. Epitope 10AE12 is highly conserved between the different orbiviruses. MAb 10AE12 was able to recognize bluetongue virus VP5 and epizootic hemorrhagic disease virus VP5 by several techniques...

  5. Bluetongue virus with mutated genome segment 10 to differentiate infected from vaccinated animals: A genetic DIVA approach

    NARCIS (Netherlands)

    Rijn, van P.A.; Water, van de S.G.P.; Gennip, van H.G.P.

    2013-01-01

    Bluetongue virus (BTV) includes 24 serotypes and recently even more serotypes are proposed. Mass vaccination campaigns highlight the need for differential diagnostics in vaccinated populations. Bluetongue disease is routinely diagnosed by serological and virological tests by which differentiation

  6. Sequence analysis of bluetongue virus serotype 8 from the Netherlands 2006 and comparison to other European strains

    NARCIS (Netherlands)

    Maan, S.; Maan, N.S.; Ross-Smith, N.; Batten, C.; Shaw, A.E.; Anthony, S.; Samual, A.R.; Darpel, K.E.; Veronesi, E.; Oura, C.A.L.; Singh, K.P.; Nomikou, K.; Potgieter, A.; Attoui, H.; Rooij, van E.M.A.; Rijn, van P.A.; Clercq, K.; Vandenbussche, F.; Zientara, S.; Breard, E.; Sailleau, C.; Beer, M.; Hoffmann, B.; Mellor, P.S.; Mertens, P.P.C.

    2008-01-01

    During 2006 the first outbreak of bluetongue ever recorded in northern Europe started in Belgium and the Netherlands, spreading to Luxemburg, Germany and north-east France. The virus overwintered (2006¿2007) reappearing during May¿June 2007 with greatly increased severity in affected areas,

  7. Development of a real-time RT-PCR assay based on primer-probe energy transfer for the detection of all serotypes of bluetongue virus

    DEFF Research Database (Denmark)

    Leblanc, N; Rasmussen, Thomas Bruun; Fernandez, J

    2010-01-01

    A real-time RT-PCR assay based on the primer–probe energy transfer (PriProET) was developed to detect all 24 serotypes of bluetongue virus (BTV). BTV causes serious disease, primarily in sheep, but in other ruminants as well. A distinguishing characteristic of the assay is its tolerance toward...... tests showed no positive results for heterologous pathogens. The assay was tested on clinical samples from BTV 8 outbreaks in Sweden and Denmark in 2008. The lowest detection limit for that serotype, determined with PCR standards, was 57 genome copies. The assay sensitivity for some other serotypes...... that circulate currently in Europe was also determined. BTV 2, 4, 9 and 16 were tested on available cell culture samples and the detection limits were 109, 12, 13 and 24 copies, respectively. This assay provides an important tool for early and rapid detection of a wide range of BTV strains, including emerging...

  8. Role of wild ruminants in the epidemiology of bluetongue virus serotypes 1, 4 and 8 in Spain

    Directory of Open Access Journals (Sweden)

    García-Bocanegra Ignacio

    2011-07-01

    Full Text Available Abstract Although the importance of wild ruminants as potential reservoirs of bluetongue virus (BTV has been suggested, the role played by these species in the epidemiology of BT in Europe is still unclear. We carried out a serologic and virologic survey to assess the role of wild ruminants in the transmission and maintenance of BTV in Andalusia (southern Spain between 2006 and 2010. A total of 473 out of 1339 (35.3% wild ruminants analyzed showed antibodies against BTV by both ELISA and serum neutralization test (SNT. The presence of neutralizing antibodies to BTV-1 and BTV-4 were detected in the four species analyzed (red deer, roe deer, fallow deer and mouflon, while seropositivity against BTV-8 was found in red deer, fallow deer and mouflon but not in roe deer. Statistically significant differences were found among species, ages and sampling regions. BTV RNA was detected in twenty-one out of 1013 wild ruminants (2.1% tested. BTV-1 and BTV-4 RNA were confirmed in red deer and mouflon by specific rRT-PCR. BTV-1 and BTV-4 seropositive and RNA positive wild ruminants, including juveniles and sub-adults, were detected years after the last outbreak was reported in livestock. In addition, between the 2008/2009 and the 2010/2011 hunting seasons, the seroprevalence against BTV-1, BTV-4 and BTV-8 increased in the majority of provinces, and these serotypes were detected in many areas where BTV outbreaks were not reported in domestic ruminants. The results indicate that wild ruminants seem to be implicated in the dissemination and persistence of BTV in Spain.

  9. Cost analysis of bluetongue virus serotype 8 surveillance and vaccination programmes in Austria from 2005 to 2013.

    Science.gov (United States)

    Pinior, Beate; Lebl, Karin; Firth, Clair; Rubel, Franz; Fuchs, Reinhard; Stockreiter, Simon; Loitsch, Angelika; Köfer, Josef

    2015-11-01

    This study was designed to evaluate the costs between 2005 and 2013 of the national bluetongue virus (BTV) surveillance and vaccination programmes before, during and after the BTV serotype 8 (BTV-8) outbreak in Austria commencing in 2008. In addition to an assessment of the temporal development of costs, a spatial cost analysis was performed. Within the context of this study, the term 'costs' refers to actual financial expenditure and imputed monetary costs for contributions in-kind. Costs were financed directly by the private-public sectors, by the European Commission (EC), and (in-kind) by responsible national institutions and individuals (e.g. blood sampling by veterinarians). The total net cost of the BTV-8 surveillance and vaccination programmes arising from the outbreak amounted to €22.8 million (0.86% of the national agricultural Gross Value Added), of which 32% was allocated to surveillance and 68% to the vaccination programme. Of the total programme costs, the EC supplied €4.9 million, while the remaining costs (€18 million) were directly financed from national resources. Of the latter, €14.5 million was classed as public costs, including €2 million contributions in-kind, and €3.4 million as private costs. The assessment of the costs revealed heterogeneous temporal and spatial distributions. The methodology of this analysis might assist decision makers in calculating costs for other surveillance and intervention programmes. The assessment of contributions in-kind is of importance to public authorities as it increases visibility of the available resources and shows how they have been employed. This study also demonstrates the importance of tracking changing costs per payer over time. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Potential role of proinflammatory cytokines in the pathogenetic mechanisms of vascular lesions in goats naturally infected with bluetongue virus serotype 1.

    Science.gov (United States)

    Sánchez-Cordón, P J; Pedrera, M; Risalde, M A; Molina, V; Rodríguez-Sánchez, B; Núñez, A; Sánchez-Vizcaíno, J M; Gómez-Villamandos, J C

    2013-06-01

    In vitro studies have demonstrated that bluetongue virus (BTV)-induced vasoactive mediators could contribute to the endothelial cells dysfunction and increased vascular permeability responsible of lesions characteristic of bluetongue (BT) like oedema, haemorrhages and ischaemic necrosis in different tissues. However, few in vivo studies have been carried out to clarify the causes of these lesions. The aim of this study was to elucidate in vivo the pathogenetic mechanisms involved in the appearance of vascular lesions in different organs during BT. For this purpose, tissue samples from goats naturally infected with bluetongue virus serotype 1 (BTV-1) were taken for histopathological and immunohistochemical studies to determine the potential role of proinflammatory cytokines (tumour necrosis factor alpha, TNFα and interleukin one alpha, IL-1α) in the increased vascular permeability and their relationship with the presence of virus. Gross and histopathological examination revealed the presence of vascular damage leading to generalized oedema and haemorrhages. Immunohistochemical studies displayed that endothelial injury may have been due to the direct pathogenic effect of BTV infection on endothelial cells or may be a response to inflammatory mediators released by virus-infected endothelial cells and, possibly, other cell types such as monocytes/macrophages. These preliminary results of what appears to be the first in vivo study of tissue damage in small BT-infected ruminants suggest a direct link between the appearance of vascular changes and the presence of BTV-induced vasoactive cytokines. © Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of Canadian Food Inspection Agency.

  11. Cross-sectional study of bluetongue virus serotype 8 infection in South American camelids in Germany (2008/2009).

    Science.gov (United States)

    Schulz, Claudia; Eschbaumer, Michael; Ziller, Mario; Wäckerlin, Regula; Beer, Martin; Gauly, Matthias; Grevelding, Christoph G; Hoffmann, Bernd; Bauer, Christian

    2012-11-09

    Bluetongue (BT) is a major disease of ruminant livestock that can have a substantial impact on income and animal welfare. In South American camelids (SAC), fatalities related to bluetongue virus (BTV) infection were reported in Germany and France during the recent BTV-8 and BTV-1 epizootics, which raised concern about the role of SAC in the epidemiology of BTV. Therefore, a large-scale serological and virological study was conducted in Germany from autumn 2008 to spring 2009. Risk factors associated with BTV infection were analysed by multiple logistic regression. These included age, species, gender and housing arrangements of SAC as well as the location of the herds and the presence of ruminants on farms.Altogether, 249 (14.3%) of 1742 SAC were found seropositive by BTV ELISA, and 43 (47.3%) of the 91 herds had at least one BTV-seropositive SAC. However, no BTV RNA was detected in any of the seropositive samples. Seroprevalence depended on the sampling region and probably on age, but not on any other analysed risk factors associated with BTV infection in ruminants. The highest seroprevalence was found in the west of Germany where the BTV-8 epizootic started in 2006. Recorded BTV-8 related disease and fatalities are discussed. Although the prevalence of BTV-8 antibodies was high in some regions, the virological results indicate that SAC play a negligible role in the epidemiology of this virus infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Whole genome sequence analysis of recently circulating Bluetongue virus serotype 11 strains from the United States including two domestic canine isolates

    Science.gov (United States)

    Bluetongue virus (BTV) is a vector-transmitted pathogen that that typically infects and causes disease in domestic and wild ruminants. BTV is also known to infect domestic canines as discovered when dogs were vaccinated with a BTV-contaminated vaccine. Canine BTV infections have been documented thro...

  13. Bluetongue Virus Serotype 1 Outbreak in the Basque Country (Northern Spain) 2007–2008. Data Support a Primary Vector Windborne Transport

    Science.gov (United States)

    García-Lastra, Rodrigo; Leginagoikoa, Iratxe; Plazaola, Jose M.; Ocabo, Blanca; Aduriz, Gorka; Nunes, Telmo; Juste, Ramón A.

    2012-01-01

    Background Bluetongue (BT) is a vector-borne disease of ruminants that has expanded its traditional global distribution in the last decade. Recently, BTV-1 emerged in Southern Spain and caused several outbreaks in livestock reaching the north of the country. The aim of this paper was to review the emergence of BTV-1 in the Basque Country (Northern Spain) during 2007 and 2008 analyzing the possibility that infected Culicoides were introduced into Basque Country by winds from the infected areas of Southern Spain. Methodology/Principal Findings We use a complex HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model to draw wind roses and backward wind trajectories. The analysis of winds showed September 28 to October 2 as the only period for the introduction of infected midges in the Basque Country. These wind trajectories crossed through the areas affected by serotype 1 on those dates in the South of the Iberian Peninsula. Additionally meteorological data, including wind speed and humidity, and altitude along the trajectories showed suitable conditions for Culicoides survival and dispersion. Conclusions/Significance An active infection in medium-long distance regions, wind with suitable speed, altitude and trajectory, and appropriate weather can lead to outbreaks of BTV-1 by transport of Culicoides imicola, not only over the sea (as reported previously) but also over the land. This shows that an additional factor has to be taken into account for the control of the disease which is currently essentially based on the assumption that midges will only spread the virus in a series of short hops. Moreover, the epidemiological and serological data cannot rule out the involvement of other Culicoides species in the spread of the infection, especially at a local level. PMID:22479628

  14. Bluetongue virus serotype 1 outbreak in the Basque Country (Northern Spain 2007-2008. Data support a primary vector windborne transport.

    Directory of Open Access Journals (Sweden)

    Rodrigo García-Lastra

    Full Text Available BACKGROUND: Bluetongue (BT is a vector-borne disease of ruminants that has expanded its traditional global distribution in the last decade. Recently, BTV-1 emerged in Southern Spain and caused several outbreaks in livestock reaching the north of the country. The aim of this paper was to review the emergence of BTV-1 in the Basque Country (Northern Spain during 2007 and 2008 analyzing the possibility that infected Culicoides were introduced into Basque Country by winds from the infected areas of Southern Spain. METHODOLOGY/PRINCIPAL FINDINGS: We use a complex HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory model to draw wind roses and backward wind trajectories. The analysis of winds showed September 28 to October 2 as the only period for the introduction of infected midges in the Basque Country. These wind trajectories crossed through the areas affected by serotype 1 on those dates in the South of the Iberian Peninsula. Additionally meteorological data, including wind speed and humidity, and altitude along the trajectories showed suitable conditions for Culicoides survival and dispersion. CONCLUSIONS/SIGNIFICANCE: An active infection in medium-long distance regions, wind with suitable speed, altitude and trajectory, and appropriate weather can lead to outbreaks of BTV-1 by transport of Culicoides imicola, not only over the sea (as reported previously but also over the land. This shows that an additional factor has to be taken into account for the control of the disease which is currently essentially based on the assumption that midges will only spread the virus in a series of short hops. Moreover, the epidemiological and serological data cannot rule out the involvement of other Culicoides species in the spread of the infection, especially at a local level.

  15. Structural constraints in the packaging of bluetongue virus genomic segments

    OpenAIRE

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C.; Roy, Polly

    2014-01-01

    : The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by bioche...

  16. Possible routes of introduction of bluetongue serotype 8 virus into the epicentre of the 2006 epidemic in north-western Europe

    NARCIS (Netherlands)

    Mintiens, K.; Meroc, E.; Mellor, P.S.; Staubach, C.; Gerbier, G.; Elbers, A.R.W.; Hendrickx, G.; Clercq, K.

    2008-01-01

    In August 2006, bluetongue (BT) was notified in The Netherlands on several animal holdings. This was the onset of a rapidly spreading BT-epidemic in north-western Europe (latitude >51°N) that affected cattle and sheep holdings in The Netherlands, Belgium, Germany, France and Luxembourg. The

  17. Deep sequencing as a method of typing bluetongue virus isolates.

    Science.gov (United States)

    Rao, Pavuluri Panduranga; Reddy, Yella Narasimha; Ganesh, Kapila; Nair, Shreeja G; Niranjan, Vidya; Hegde, Nagendra R

    2013-11-01

    Bluetongue (BT) is an economically important endemic disease of livestock in tropics and subtropics. In addition, its recent spread to temperate regions like North America and Northern Europe is of serious concern. Rapid serotyping and characterization of BT virus (BTV) is an essential step in the identification of origin of the virus and for controlling the disease. Serotyping of BTV is typically performed by serum neutralization, and of late by nucleotide sequencing. This report describes the near complete genome sequencing and typing of two isolates of BTV using Illumina next generation sequencing platform. Two of the BTV RNAs were multiplexed with ten other unknown samples. Viral RNA was isolated and fragmented, reverse transcribed, the cDNA ends were repaired and ligated with a multiplex oligo. The genome library was amplified using primers complementary to the ligated oligo and subjected to single and paired end sequencing. The raw reads were assembled using a de novo method and reference-based assembly was performed based on the contig data. Near complete sequences of all segments of BTV were obtained with more than 20× coverage, and single read sequencing method was sufficient to identify the genotype and serotype of the virus. The two viruses used in this study were typed as BTV-1 and BTV-9E. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Toggenburg Orbivirus, a new bluetongue virus: initial detection, first observations in field and experimental infection of goats and sheep.

    Science.gov (United States)

    Chaignat, Valérie; Worwa, Gabriella; Scherrer, Nicole; Hilbe, Monika; Ehrensperger, Felix; Batten, Carrie; Cortyen, Mandy; Hofmann, Martin; Thuer, Barbara

    2009-07-02

    A novel bluetongue virus termed "Toggenburg Orbivirus" (TOV) was detected in two Swiss goat flocks. This orbivirus was characterized by sequencing of 7 of its 10 viral genome segments. The sequencing data revealed that this virus is likely to represent a new serotype of bluetongue virus [Hofmann, M.A., Renzullo, S., Mader, M., Chaignat, V., Worwa, G., Thuer, B., 2008b. Genetic characterization of Toggenburg Orbivirus (TOV) as a tentative 25th serotype of bluetongue virus, detected in goats from Switzerland. Emerg. Infect. Dis. 14, 1855-1861]. In the field, no clinical signs were observed in TOV-infected adult goats; however, several stillborn and weak born kids were reported. Although born during a period of extremely low vector activity, one of these kids was found to be antibody and viral genome positive and died 3.5 weeks postpartum. Experimental infection of goats and sheep, using TOV-positive field blood samples, was performed to assess the pathogenicity of this virus. Goats did not show any clinical or pathological signs, whereas in sheep mild bluetongue-like clinical signs were observed. Necropsy of sheep demonstrated bluetongue-typical hemorrhages in the wall of the pulmonary artery. Viral RNA was detected in organs, e.g. spleen, palatine tonsils, lung and several lymph nodes of three experimentally infected animals. Unlike other bluetongue virus serotypes, it was not possible to propagate the virus, either from naturally or experimentally infected animals in any of the tested mammalian or insect cell lines or in embryonated chicken eggs. In small ruminants, TOV leads to mild bluetongue-like symptoms. Further investigations about prevalence of this virus are needed to increase the knowledge on its epidemiology.

  19. Structural constraints in the packaging of bluetongue virus genomic segments.

    Science.gov (United States)

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C; Roy, Polly

    2014-10-01

    The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by biochemical data analysis suggested that a conformational motif formed by interaction of the 5' and 3' ends of the molecule was necessary and sufficient for packaging. A similar structural signal was also identified in S8 of BTV serotype 1. Furthermore, the same conformational analysis of secondary structures for positive-sense ssRNAs was used to generate a chimeric segment that maintained the putative packaging motif but contained unrelated internal sequences. This chimeric segment was packaged successfully, confirming that the motif identified directs the correct packaging of the segment. © 2014 The Authors.

  20. The molecular biology of Bluetongue virus replication.

    Science.gov (United States)

    Patel, Avnish; Roy, Polly

    2014-03-01

    The members of Orbivirus genus within the Reoviridae family are arthropod-borne viruses which are responsible for high morbidity and mortality in ruminants. Bluetongue virus (BTV) which causes disease in livestock (sheep, goat, cattle) has been in the forefront of molecular studies for the last three decades and now represents the best understood orbivirus at a molecular and structural level. The complex nature of the virion structure has been well characterised at high resolution along with the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell as well as the protein and genome sequestration required for it; and the role of host proteins in virus entry and virus release. More recent developments of Reverse Genetics and Cell-Free Assembly systems have allowed integration of the accumulated structural and molecular knowledge to be tested at meticulous level, yielding higher insight into basic molecular virology, from which the rational design of safe efficacious vaccines has been possible. This article is centred on the molecular dissection of BTV with a view to understanding the role of each protein in the virus replication cycle. These areas are important in themselves for BTV replication but they also indicate the pathways that related viruses, which includes viruses that are pathogenic to man and animals, might also use providing an informed starting point for intervention or prevention. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The evolutionary dynamics of bluetongue virus.

    Science.gov (United States)

    Carpi, Giovanna; Holmes, Edward C; Kitchen, Andrew

    2010-06-01

    Bluetongue virus (BTV) is a midge-borne member of the genus Orbivirus that causes an eponymous debilitating livestock disease of great agricultural impact and which has expanded into Europe in recent decades. Reassortment among the ten segments comprising the double-stranded (ds) RNA genome of BTV has played an important role in generating the epidemic strains of this virus in Europe. In this study, we investigated the dynamics of BTV genome segment evolution utilizing time-structured data sets of complete sequences from four segments, totalling 290 sequences largely sampled from ruminant hosts. Our analysis revealed that BTV genome segments generally evolve under strong purifying selection and at substitution rates that are generally lower (mean rates of approximately 0.5-7 x 10(-4) nucleotide substitutions per site, per year) than vector-borne positive-sense viruses with single-strand (ss) RNA genomes. These also represent the most robust estimates of the nucleotide substitution rate in a dsRNA virus generated to date. Additionally, we determined that patterns of geographic structure and times to most recent common ancestor differ substantially between each segment, including a relatively recent origin for the diversity of segment 10 within the past millennium. Together, these findings demonstrate the effect of reassortment to decouple the evolutionary dynamics of BTV genome segments.

  2. Epidemiological characteristics and clinicopathological features of bluetongue in sheep and cattle, during the 2014 BTV serotype 4 incursion in Greece.

    Science.gov (United States)

    Katsoulos, Panagiotis-Dimitrios; Giadinis, Nektarios D; Chaintoutis, Serafeim C; Dovas, Chrysostomos I; Kiossis, Evangelos; Tsousis, Georgios; Psychas, Vassilios; Vlemmas, Ioannis; Papadopoulos, Theologos; Papadopoulos, Orestis; Zientara, Stéphan; Karatzias, Harilaos; Boscos, Constantinos

    2016-03-01

    During 2014, an outbreak of Bluetongue virus (BTV) infections attributed to serotype 4 occurred in Greece and spread to south-eastern Europe. In the present article, the clinical and epidemiological data of 15 sheep flocks and 5 dairy cattle herds affected in Greece are described. In sheep, the most frequent clinical signs observed were fever, hyporexia, and edema of the face. A number of clinically affected sheep had chronic laminitis resulting in chronic lameness. Confirmation of suspect clinical cases was performed using BTV-specific real-time RT-PCR, and serotype 4-specific RT-PCR. The average morbidity of bluetongue in the sheep flocks was estimated to be 15.3 % (95 % C.I. 6.8-23.8 %) and the average mortality and case fatality were 4.5 % (95 % C.I. 1.5-7.6 %) and 32.0 % (95 % C.I. 18.1-42.9 %), respectively. The BTV seroprevalence and the ratio of clinical manifestations-to-infections determined in seven of these flocks, were on average 36.5 % (95 % C.I. 15.7-57.3 %) and 24.6 % (95 % C.I. 12.8-36.3 %). BTV ratio of clinical manifestations-to-infections was higher in the imported western European sheep breeds examined compared to the local ones. In dairy cattle, the average herd prevalence of viremia was 48.8 % (95 % C.I. 15.3-82.4 %) and none had signs associated with bluetongue. The results of this study indicate that the 2014 Greek BTV-4 has significant impact on the health status and the viability of sheep in affected flocks but does not cause clinical signs in cattle, despite the high prevalence of viremia.

  3. No evidence of bluetongue virus in Switzerland.

    Science.gov (United States)

    Cagienard, A; Thür, B; Griot, C; Hamblin, C; Stärk, K D C

    2006-08-25

    We report the results of the first survey for antibody against bluetongue virus (BTV) that was conducted in Switzerland in the year 2003. In a nationwide cross-sectional study with partial verification, 2437 cattle sera collected from 507 herds were analysed using competitive enzyme-linked immunosorbent assays (c-ELISA). To adjust for misclassification, 158 sera, including 86 that were recorded equivocal in Switzerland, were sent to the Office Internationale des Epizooties designated regional reference laboratory in the UK for confirmation. No BTV antibody was detected in any of these samples, confirming the absence of BTV from Switzerland in 2003. The specificity of the c-ELISA used in Switzerland for individual Swiss cattle was calculated to be 96.5%. The mean herd sensitivity achieved in our survey ranged from 78.9% to 98.8% depending on the with-in herd prevalence and test sensitivity used for the calculations. The cumulated confidence level achieved with the survey based on a minimal expected prevalence of 2%, was 99.99% and therefore it was concluded that there was no evidence of BTV circulation in Switzerland in 2003.

  4. Replication-Deficient Particles: New Insights into the Next Generation of Bluetongue Virus Vaccines.

    Science.gov (United States)

    Celma, Cristina C; Stewart, Meredith; Wernike, Kerstin; Eschbaumer, Michael; Gonzalez-Molleda, Lorenzo; Breard, Emmanuel; Schulz, Claudia; Hoffmann, Bernd; Haegeman, Andy; De Clercq, Kris; Zientara, Stephan; van Rijn, Piet A; Beer, Martin; Roy, Polly

    2017-01-01

    Bluetongue virus (BTV) is endemic in many parts of the world, often causing severe hemorrhagic disease in livestock. To date, at least 27 different serotypes have been recognized. Vaccination against all serotypes is necessary to protect susceptible animals and to prevent onward spread of the virus by insect vectors. In our previous studies, we generated replication-deficient (disabled infectious single-cycle [DISC]) virus strains for a number of serotypes and reported preliminary data on their protective efficacy in animals. In this report, to advance the DISC vaccines to the marketplace, we investigated different parameters of these DISC vaccines. First, we demonstrated the genetic stabilities of these vaccine strains and also the complementing cell line. Subsequently, the optimal storage conditions of vaccines, including additives, temperature, and desiccation, were determined and their protective efficacies in animals confirmed. Furthermore, to test if mixtures of different vaccine strains could be tolerated, we tested cocktails of DISC vaccines in combinations of three or six different serotypes in sheep and cattle, the two natural hosts of BTV. Groups of sheep vaccinated with a cocktail of six different vaccines were completely protected from challenge with individual virulent serotypes, both in early challenge and after 5 months of challenge without any clinical disease. There was no interference in protection between the different vaccines. Protection was also achieved in cattle with a mixture of three vaccine strains, albeit at a lesser level than in sheep. Our data support and validate the suitability of these virus strains as the next-generation vaccines for BTV. Bluetongue (BT) is a debilitating and in many cases lethal disease that affects ruminants of economic importance. Classical vaccines that afford protection against bluetongue virus, the etiological agent, are not free from secondary and undesirable effects. A surge in new approaches to produce

  5. Bluetongue

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose

    2017-01-01

    it was highlighted that under the current surveillance policy bluetongue circulation might occur undetected. For the safe movement of animals, newborn ruminants from vaccinated mothers with neutralising antibodies can be considered protected against infection, although a protective titre threshold cannot...... be identified. The presence of colostral antibodies interferes with the vaccine immunisation in the newborn for more than 3 months after birth, whereas the minimum time after vaccination of animal to be considered immune can be up to 48 days. The knowledge about vectors ecology, mechanisms of over...

  6. Enhanced infectivity of bluetongue virus in cell culture by centrifugation.

    OpenAIRE

    Sundin, D R; Mecham, J O

    1989-01-01

    The effects of centrifugation of the infection of cell culture with bluetongue virus (BTV) were investigated. Baby hamster kidney cells were infected with BTV with or without centrifugation. Viral antigen was detected by immunofluorescence at 24 h in both centrifuged and noncentrifuged cultures. However, after 24 h of infection, the production of PFU in centrifuged cell cultures was 10- to 20-fold greater than that seen in cultures not centrifuged. In addition, centrifugation enhanced the dir...

  7. Economics of vaccinating extensively managed sheep flocks against Bluetongue disease

    Science.gov (United States)

    Bluetongue is a serious and recurring threat to sheep producers throughout the world. In the western United States, bluetongue virus (BTV) is transmitted by biting midges in late summer and early autumn, just before lambs are sent to market. No vaccine is currently sold for the most common serotype ...

  8. The use of infrared thermography as a non-invasive method for fever detection in sheep infected with bluetongue virus.

    Science.gov (United States)

    Pérez de Diego, Ana C; Sánchez-Cordón, Pedro J; Pedrera, Miriam; Martínez-López, Beatriz; Gómez-Villamandos, José C; Sánchez-Vizcaíno, José M

    2013-10-01

    Fever, which is closely linked to viraemia, is considered to be both the main and the earliest clinical sign in sheep infected with bluetongue virus (BTV). The aim of this study was to evaluate the potential use of infrared thermography (IRT) for early detection of fever in sheep experimentally infected with bluetongue virus serotype 1 (BTV-1) and serotype 8 (BTV-8). This would reduce animal stress during experimental assays and assist in the development of a screening method for the identification of fever in animals suspected of being infected with BTV. Rectal and infrared eye temperatures were collected before and after BTV inoculation. The two temperature measures were positively correlated (r=0.504, Pinfrared temperatures was observed when temperatures were above physiological levels. IRT discriminated between febrile and non-febrile sheep with a sensitivity of 85% and specificity of 97%. The results showed that eye temperature measured using IRT was a useful non-invasive method for the assessment of fever in sheep infected with BTV under experimental conditions. Further research is required to evaluate the use of IRT under field conditions to identify potentially infected animals in bluetongue surveillance programmes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Bluetongue virus nonstructural protein NS3/NS3a is not essential for virus replication

    NARCIS (Netherlands)

    Gennip, van H.G.P.; Water, van de S.G.P.; Rijn, van P.A.

    2014-01-01

    Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is

  10. RNA Elements in Open Reading Frames of the Bluetongue Virus Genome Are Essential for Virus Replication

    NARCIS (Netherlands)

    Feenstra, F.; Gennip, van H.G.P.; Water, van de S.G.P.; Rijn, van P.A.

    2014-01-01

    Members of the Reoviridae family are non-enveloped multi-layered viruses with a double stranded RNA genome consisting of 9 to 12 genome segments. Bluetongue virus is the prototype orbivirus (family Reoviridae, genus Orbivirus), causing disease in ruminants, and is spread by Culicoides biting midges.

  11. EFSA Panel on Animal Health and Welfare (AHAW); Scientific Opinion on bluetongue serotype 8

    DEFF Research Database (Denmark)

    Bøtner, Anette; Oura, Chris; Saegerman, Claude

    and the contamination of semen are also observed for several serotypes of modified live virus (MLV) vaccines and for some cell culture/egg passaged strains. These two features may have an impact on the epidemiology of the disease, since they may increase the ability of BTV-8 to survive the winter period, for example...

  12. Expected net benefit of vaccinating rangeland sheep against bluetongue virus using a modified-live versus killed virus vaccine

    Science.gov (United States)

    Recurring outbreaks of bluetongue virus in large rangeland sheep flocks in the Intermountain West of the United States have prompted questions about the economic benefits and costs of vaccinating individual flocks against bluetongue disease. We use enterprise budgets and stochastic simulation to est...

  13. Widespread Reassortment Shapes the Evolution and Epidemiology of Bluetongue Virus following European Invasion.

    Directory of Open Access Journals (Sweden)

    Kyriaki Nomikou

    2015-08-01

    Full Text Available Genetic exchange by a process of genome-segment 'reassortment' represents an important mechanism for evolutionary change in all viruses with segmented genomes, yet in many cases a detailed understanding of its frequency and biological consequences is lacking. We provide a comprehensive assessment of reassortment in bluetongue virus (BTV, a globally important insect-borne pathogen of livestock, during recent outbreaks in Europe. Full-genome sequences were generated and analysed for over 150 isolates belonging to the different BTV serotypes that have emerged in the region over the last 5 decades. Based on this novel dataset we confirm that reassortment is a frequent process that plays an important and on-going role in evolution of the virus. We found evidence for reassortment in all ten segments without a significant bias towards any particular segment. However, we observed biases in the relative frequency at which particular segments were associated with each other during reassortment. This points to selective constraints possibly caused by functional relationships between individual proteins or genome segments and genome-wide epistatic interactions. Sites under positive selection were more likely to undergo amino acid changes in newly reassorted viruses, providing additional evidence for adaptive dynamics as a consequence of reassortment. We show that the live attenuated vaccines recently used in Europe have repeatedly reassorted with field strains, contributing to their genotypic, and potentially phenotypic, variability. The high degree of plasticity seen in the BTV genome in terms of segment origin suggests that current classification schemes that are based primarily on serotype, which is determined by only a single genome segment, are inadequate. Our work highlights the need for a better understanding of the mechanisms and epidemiological consequences of reassortment in BTV, as well as other segmented RNA viruses.

  14. Detection in and circulation of Bluetongue virus among domestic ruminants in Madagascar.

    Science.gov (United States)

    Andriamandimby, Soa Fy; Viarouge, Cyril; Ravalohery, Jean-Pierre; Reynes, Jean-Marc; Sailleau, Corinne; Tantely, Michael Luciano; Elissa, Nohal; Cardinale, Eric; Sall, Amadou Alpha; Zientara, Stephan; Heraud, Jean-Michel

    2015-04-17

    So far, no published data was available concerning the circulation of Bluetongue virus (BTV) in Madagascar. During a survey on Rift Valley Fever, we were able to detect a virus belonging to BTV. Therefore, we conducted a study aiming at characterizing molecularly the BTV isolated and assess the importance of circulation of BTV in Madagascar. A total of 4393 sera from ruminants selected randomly by stratification and sampled in 30 districts of Madagascar were tested for BTV. Moreover, 175 cattle were followed during 11 months. Phylogenetic analyses were performed from virus isolated from unfed pools of mosquitoes. Overall, the estimated mean seroprevalence of infection at the national level was 95.9% (95% CI: [95.2-96.5]) in cattle and 83.7% (95% CI: [81.4-85.9]) in small ruminants. Estimation of incidence rate was 54 per 100 cattle-years assuming that the incidence rate is constant all year along. Phylogenetic analyses revealed that BTV detected belong to serotype 2. In conclusion, our results showed that BTV is endemic in Madagascar and highly prevalent among cattle. In our study we did not work on the vector involved in transmission of BTV in cattle. Thus, research should be conducted to better describe epidemiology of BTV in Madagascar including vectors and assess economic impact of the disease associated to BTV infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Prevalence of serotype specific antibody to equine encephalosis virus in Thoroughbred yearlings South Africa (1999-2004

    Directory of Open Access Journals (Sweden)

    P. G. Howell

    2008-08-01

    Full Text Available Cohorts of yearlings were sampled over a period of 6 years in a retrospective serological survey to establish the annual prevalence of serotype specific antibody to equine encephalosis virus on Thoroughbred stud farms distributed within defined geographical regions of South Africa. Seasonal seroprevalence varied between 3.6% and 34.7%, revealing both single and multiple serotype infections in an individual yearling. During the course of this study serotypes 1 and 6 were most frequently and extensively identified while the remaining serotypes 2, 3, 4, 5 and 7 were all identified as sporadic and localized in fections affecting only individual horses. This study of the seasonal prevalence of equine encephalosis virus has a corollary and serves as a useful model in the seasonal incidence of the serotypes of African horse sickness and bluetongue in regions where the respective diseases are endemic.

  16. Field observations during the Bluetongue serotype 8 epidemic in 2006 II. Morbidity and mortality rate, case fatality and clinical recovery in sheep and cattle in the Netherlands

    NARCIS (Netherlands)

    Elbers, A.R.W.; Backx, A.; Mintiens, K.; Gerbier, G.; Staubach, C.; Hendrickx, G.; Spek, van der A.N.

    2008-01-01

    Data collected in the Netherlands during the Bluetongue serotype 8 (BTV-8) epidemic indicated that in outbreak cattle herds, predominantly dairy and nursing cows were clinically affected and not young stock, beef cattle, beef calves, or breeding animals. In outbreak sheep flocks, mainly ewes and ¿

  17. VP2-segment sequence analysis of some isolates of bluetongue virus recovered in the Mediterranean basin during the 1998-2003 outbreak.

    Science.gov (United States)

    Potgieter, A C; Monaco, F; Mangana, O; Nomikou, K; Yadin, H; Savini, G

    2005-11-01

    The complete nucleotide sequences of the VP2 segments of bluetongue virus (BTV) isolates recovered from Italy, Greece and Israel, from 1998 to 2003, were determined. Phylogenetic analysis of these sequences, those from related viruses and the South African vaccine strains, were used to determine the probable geographic origin of BTV incursions into Italy. Results indicated that viruses from each of the four serotypes isolated in Italy (2, 4, 9 and 16) possibly had a different origin. Analysis of the bluetongue virus serotype 2 (BTV-2) isolates gave evidence that this serotype probably moved from Tunisia. BTV-4 results showed probable incursion from the southwest and not from Greece or Israel. BTV-9 isolates clearly have an eastern origin (most probably Greece), whereas BTV-16 isolates are indistinguishable from the BTV-16 live attenuated vaccine strain. The phylogenetic findings were supported by polyacrylamide gel electrophoresis (PAGE) analysis of the complete amplified genome of each isolate except for BTV-16 Italian field isolate, which showed a slightly different PAGE profile. A combination of the complete VP2 sequencing and PAGE analysis of complete genomes, allowed not only phylogenetic analysis, but also vaccine detection and assessment of reassortment events.

  18. Disabled infectious single animal (DISA) vaccine against Bluetongue by deletion of viroporin-like NS3/NS3a expression is effective, safe, and enables differentiation of infected from vaccinated animals (DIVA)

    Science.gov (United States)

    The prototype virus species of the genus Orbivirus (family Reoviridae) is bluetongue virus (BTV) consisting of at least 27 serotypes. Bluetongue is a noncontagious haemorrhagic disease of ruminants spread by competent species of Culicoides biting midges in large parts of the world leading to huge ec...

  19. A Multiplex Real-time Reverse Transcription Polymerase Chain Reaction Assay for Detection and Differentiation of Bluetongue Virus and Epizootic Hemorrhagic Disease Virus Serogroups

    Science.gov (United States)

    Bluetongue virus (BTV) causes disease in domestic and wild ruminants resulting in significant economic loss. The closely related Epizootic hemorrhagic diseases virus (EHDV) has been associated with bluetongue-like disease in cattle. Although US EHDV strains have not been experimentally proven to cau...

  20. Dengue Virus Serotype 4, Northeastern Peru, 2008

    Science.gov (United States)

    Forshey, Brett M.; Morrison, Amy C.; Cruz, Cristhopher; Rocha, Claudio; Vilcarromero, Stalin; Guevara, Carolina; Camacho, Daria E.; Alava, Araceli; Madrid, César; Beingolea, Luis; Suarez, Víctor; Comach, Guillermo

    2009-01-01

    In 2008, dengue virus serotype 4 (DENV-4) emerged in northeastern Peru, causing a large outbreak and displacing DENV-3, which had predominated for the previous 6 years. Phylogenetic analysis of 2008 and 2009 isolates support their inclusion into DENV-4 genotype II, forming a lineage distinct from strains that had previously circulated in the region. PMID:19891873

  1. Long-term dynamics of bluetongue virus in wild ruminants: relationship with outbreaks in livestock in Spain, 2006-2011.

    Directory of Open Access Journals (Sweden)

    Cristina Lorca-Oró

    Full Text Available Wild and domestic ruminants are susceptible to Bluetongue virus (BTV infection. Three BTV serotypes (BTV-4, BTV-1 and BTV-8 have been detected in Spain in the last decade. Even though control strategies have been applied to livestock, BTV circulation has been frequently detected in wild ruminant populations in Spain. The aim of the present study is to assess the role for wild ruminants in maintaining BTV after the vaccination programs in livestock in mainland Spain. A total of 931 out 1,914 (48.6% serum samples, collected from eight different wild ruminant species between 2006 and 2011, were BTV positive by ELISA. In order to detect specific antibodies against BTV-1, BTV-4 and BTV-8, positive sera were also tested by serumneutralisation test (SNT. From the ELISA positive samples that could be tested by SNT (687 out of 931, 292 (42.5% showed neutralising antibodies against one or two BTV serotypes. For each BTV serotype, the number of outbreaks in livestock (11,857 outbreaks in total was modelled with pure autoregressive models and the resulting smoothed values, representing the predicted number of BTV outbreaks in livestock at municipality level, were positively correlated with BTV persistence in wild species. The strength of this relationship significantly decreased as red deer (Cervus elaphus population abundance increased. In addition, BTV RNA was detected by real time RT-PCR in 32 out of 311 (10.3% spleen samples from seropositive animals. Although BT outbreaks in livestock have decreased substantially after vaccination campaigns, our results indicated that wild ruminants have been exposed to BTV in territories where outbreaks in domestic animals occurred. The detection of BTV RNA and spatial association between BT outbreaks in livestock and BTV rates in red deer are consistent with the hypothesis of virus circulation and BTV maintenance within Iberian wild ruminant populations.

  2. Using remote sensing and machine learning for the spatial modelling of a bluetongue virus vector

    Science.gov (United States)

    Van doninck, J.; Peters, J.; De Baets, B.; Ducheyne, E.; Verhoest, N. E. C.

    2012-04-01

    Bluetongue is a viral vector-borne disease transmitted between hosts, mostly cattle and small ruminants, by some species of Culicoides midges. Within the Mediterranean basin, C. imicola is the main vector of the bluetongue virus. The spatial distribution of this species is limited by a number of environmental factors, including temperature, soil properties and land cover. The identification of zones at risk of bluetongue outbreaks thus requires detailed information on these environmental factors, as well as appropriate epidemiological modelling techniques. We here give an overview of the environmental factors assumed to be constraining the spatial distribution of C. imicola, as identified in different studies. Subsequently, remote sensing products that can be used as proxies for these environmental constraints are presented. Remote sensing data are then used together with species occurrence data from the Spanish Bluetongue National Surveillance Programme to calibrate a supervised learning model, based on Random Forests, to model the probability of occurrence of the C. imicola midge. The model will then be applied for a pixel-based prediction over the Iberian peninsula using remote sensing products for habitat characterization.

  3. Establishment of an early warning system against bluetongue virus in Switzerland.

    Science.gov (United States)

    Racloz, V; Straver, R; Kuhn, M; Thur, B; Vanzetti, T; Stärk, K D C; Griot, C; Cagienard, A

    2006-11-01

    Bluetongue (BT) is a vector-borne animal disease of economical importance due to the international trade restrictions likely to be put into place in a country once the infection is discovered. The presence of BT and its vectors in countries adjacent to Switzerland stresses the need of implementing a surveillance system and to raise disease awareness among potential stakeholders. A national survey in Switzerland 2003 indicated freedom of Bluetongue virus (BTV), although a single individual of the main BT vector Culicoides imicola was caught in the canton of Ticino. The survey also demonstrated that potential BT vectors, C. obsoletus and C. pulicaris are locally abundant in Switzerland. Therefore, a new surveillance method based on sentinel herds in high risk areas was implemented in 2004 for the early detection of both an incursion of BT vectors into Switzerland, and potential virus circulation among cattle.

  4. Prevalence of bluetongue virus infection and associated risk factors among cattle in North Kordufan State, Western Sudan.

    Science.gov (United States)

    Adam, Ibrahim A; Abdalla, Mohamed A; Mohamed, Mohamed E H; Aradaib, Imadeldin E

    2014-04-24

    Bluetongue virus causes febrile disease in sheep and a fatal hemorrhagic infection in North American White-tailed deer. However, in cattle the disease is typically asymptomatic and no clinical overt disease is associated with bluetongue infection. Bluetongue virus activity has been detected in Khartoum, Sennar and South Darfur states of the Sudan. Currently, no information is available in regard to previous exposure of livestock to Bluetongue virus in North Kordufan State, the largest livestock producing region in the country. The present study was conducted to determine the prevalence of bluetongue antibodies and to identify the potential risk factors associated with the presence of bluetongue antibodies among cattle in North Kordufan State, Sudan. A total of 299 bovine blood samples were collected randomly from six localities in North Kordufan State and were tested by enzyme-linked immunosorbent assay (ELISA) for detection of BTV-specific immunoglobulin G (IgG) antibodies. The serological evidence of Bluetongue virus infection was observed in 58 out of 299 cows, accounting for a 19.4% prevalence rate among cattle in North Kordufan State. Older cattle (>2 years of age) had four times the odds to be infected with BTV compared to young cattle (OR = 4.309, CI = 1.941-9.567, p-value = 0.01). Application of preventive measures, such as spraying or dipping with insecticide protects cattle against Bluetongue infection. Application of vector control measures decreased the odds for bluetongue seropositivity by 7 times (OR = 7.408, CI = 3.111-17.637, p-value = 0.01). The results of this study indicated that age and application of routine insecticides are influential risk factors for seroprevalence of Bluetongue in cattle. Surveillance of Bluetongue virus should be extended to include other susceptible animals and to study the distribution of the insect vectors in the region to better predict and respond to BTV outbreak in the State of North Kordufan

  5. Sensing and control of bluetongue virus infection in epithelial cells via RIG-I and MDA5 helicases.

    Science.gov (United States)

    Chauveau, Emilie; Doceul, Virginie; Lara, Estelle; Adam, Micheline; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Desprat, Alexandra; Meyer, Gilles; Schwartz-Cornil, Isabelle; Ruscanu, Suzana; Charley, Bernard; Zientara, Stéphan; Vitour, Damien

    2012-11-01

    Bluetongue virus (BTV), an arthropod-borne member of the Reoviridae family, is a double-stranded RNA virus that causes an economically important livestock disease that has spread across Europe in recent decades. Production of type I interferon (alpha/beta interferon [IFN-α/β]) has been reported in vivo and in vitro upon BTV infection. However, the cellular sensors and signaling pathways involved in this process remain unknown. Here we studied the mechanisms responsible for the production of IFN-β in response to BTV serotype 8. Upon BTV infection of A549 cells, expression of IFN-β and other proinflammatory cytokines was strongly induced at both the protein and mRNA levels. This response appeared to be dependent on virus replication, since exposure to UV-inactivated virus failed to induce IFN-β. We also demonstrated that BTV infection activated the transcription factors IFN regulatory factor 3 and nuclear factor κB. We investigated the role of several pattern recognition receptors in this response and showed that expression of IFN-β was greatly reduced after small-interfering-RNA-mediated knockdown of the RNA helicase encoded by retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5). In contrast, silencing of MyD88, Toll-like receptor 3, or the recently described DexD/H-box helicase DDX1 sensor had no or a weak effect on IFN-β induction, suggesting that the RIG-I-like receptor pathway is specifically engaged for BTV sensing. Moreover, we also showed that overexpression of either RIG-I or MDA5 impaired BTV expression in infected A549 cells. Overall, this indicates that RIG-I and MDA5 can both contribute to the recognition and control of BTV infection.

  6. [Bluetongue disease reaches Switzerland].

    Science.gov (United States)

    Hofmann, M; Griot, C; Chaignat, V; Perler, L; Thür, B

    2008-02-01

    Since 2006 bluetongue disease is rapidly spreading across Europe and reached Switzerland in October 2007. In the present article a short overview about the disease and the virus is given, and the first three clinical bluetongue disease cases in cattle, and the respective laboratory findings are presented.

  7. [Vaccination against bluetongue: safety and immune response in the field].

    Science.gov (United States)

    Bruckner, L; Fricker, R; Hug, M; Hotz, R; Muntwyler, J; Iten, C; Griot, C

    2009-03-01

    Bluetongue, caused by the bluetongue virus serotype 8 has rapidly spread through Europe since 2006. The first cases in Switzerland were detected in October 2007. The European Union and Switzerland launched a vaccination campaign in June 2008. This study aims to demonstrate the safety and the immune response of the three vaccines used in Switzerland under practical conditions in the field. The trial was carried out in cattle, sheep and goats. Based on the results of this study recommendations for the 2009 campaign are presented.

  8. A DIVA system based on the detection of antibodies to non-structural protein 3 (NS3) of Bluetongue virus

    OpenAIRE

    2009-01-01

    Abstract Vaccination programs for the control of bluetongue (BT) in ruminants have limitations due to difficulties in differentiating between vaccinated and virus infected animals (DIVA). To overcome this problem a DIVA test that looks at a differential immune response to bluetongue virus (BTV) non-structural protein 3 (NS3) was developed. The NS3 encoding gene of strain BTV4/22045/PT04 was inserted into expression vector pET-28a and expressed in Escherichia coli strain JM109. Reco...

  9. Laboratory infection of the mosquito, Toxorhynchites brevipalpis (Diptera, Culicidae), with bluetongue virus.

    Science.gov (United States)

    Jennings, M; Boorman, J; Mellor, P S

    1984-01-01

    The use of Toxorhynchites brevipalpis as a system for the propagation and isolation of bluetongue virus (BTV) was investigated. BTV was found to multiply in T. brevipalpis after infection by intrathoracic inoculation. Virus concentrations of up to 6.9 log 10 TCID50 per mosquito were found within 7 days of infection and were maintained for at least 6 days. Virus could be detected by an indirect fluorescent antibody test applied to head and thorax tissue smears. These results are comparable to those obtained after inoculation of Culicoides variipennis with the same virus. Comparison of T. brevipalpis and baby hamster kidney (BHK) cells as systems for isolation of BTV showed that there was little difference in sensitivity between the two systems for the stock BTV used. Field samples were not available for test. It was concluded that the use of T. brevipalpis as an isolation system for BTV would have no apparent advantage if BHK cells were available.

  10. Prevalence of bluetongue virus antibodies and associated risk factors among cattle in East Darfur State, Western Sudan.

    Science.gov (United States)

    Khair, Hadia Om; Adam, Ibrahim A; Bushara, Shakir B; Eltom, Kamal H; Musa, Nasreen O; Aradaib, Imadeldin E

    2014-02-07

    Bluetongue virus (BTV) is an insect-transmitted virus, which causes bluetongue disease (BT) in sheep and a fatal hemorrhagic infection in North American white-tailed deer. However, in cattle the disease is typically asymptomatic and no overt clinical signs of disease appear to be associated with BTV infection. Serological evidence and isolation of different BTV serotypes have been reported in Sudan, however, no information is currently available in regard to previous exposure of Sudanese livestock to BTV infection in East Darfur State, Sudan. To determine the prevalence of BTV antibodies and to identify the potential risk factors associated with BTV infection among cattle in East Darfur State, Sudan. A total of 224 blood samples were collected randomly from five localities in East Darfur State, Sudan. The serum samples were screened for detection of BTV-specific immunoglobulin G (IgG) antibodies using a competitive enzyme-linked immunosorbent assay (c-ELISA). Serological evidence of BTV infection was observed in 150 out of 224 animals accounting for a 67% prevalence rate among cattle in East Darfur State. Older cattle (>2 years of age) were six times more likely to be infected with BTV (OR = 6.62, CI = 2.87-15.26, p-value = 0.01). Regarding animal source (contact with other herds) as a risk factor, it was shown that cattle purchased from market or introduced from other herds were 3 times at higher risk of being infected with BTV (OR = 3.87, CI = 1.07-13.87, p value = 0.03). Exposure of cattle to the insect vector increased the risk of contracting BTV infection by six times compared to non-exposed cattle (OR = 6.44, CI = 1.53-27.08, p value = 0.01). The present study indicated that age, animal source and the intensity of the insect vector are influential risk factors for BTV infection in cattle in the Darfur region. Surveillance for BTV infection should be extended to include other susceptible ruminants and to study the distribution of the insect vectors to better

  11. The Immatures of Culicoides trilineatus (Diptera: Ceratopogonidae) Potential Vector of the Bluetongue Virus.

    Science.gov (United States)

    Diaz, F; Mangudo, C; Spinelli, G R; Gleiser, R M; Ronderos, M M

    2018-03-05

    The fourth instar larva and pupa of Culicoides trilineatus Fox (Diptera, Ceratopogonidae), a species considered as potential vector of the bluetongue virus in Central and South America, are described, illustrated, and photomicrographed for the first time by using binocular, phase-contrast, and scanning electron microscopy. The immatures were collected by using a siphon bottle in tree holes in Salta Province, Argentina, transported to the laboratory, and there reared to the adult's emergence. They are compared with the immatures of Culicoides debilipalpis Lutz (Diptera, Ceratopogonidae), another Neotropical species that develops in tree holes. Details on larval biology and habitat are given.

  12. The use of recombinant DNA technology for the development of a bluetongue virus subunit vaccine

    International Nuclear Information System (INIS)

    Huismans, H.

    1985-01-01

    The double-standed RNA gene coding for the surface antigen responsible for inducing neutralising anti-bodies has been isolated, converted to DNA, and cloned in the plasmid pBR322. So far, only plasmids containing inserts smaller than the gene have been obtained. The recombinant plasmids were isolated by screening for specific antibiotic resistance markers and characterized by size, restriction enzymes and hybridization with a 32 P-labelled DNA probe made with BTV-m RNA as template. Possible strategies for the development of a bluetongue virus submit vaccine are discussed

  13. Toxorhynchites-fluorescent antibody system for the detection of bluetongue virus from Culicoides midges (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Habibur Rahman, A; Manickam, R

    1997-12-01

    A new system, the Toxorhynchites-fluorescent antibody (TFA) test in which the larvae of Toxorhynchites splendens mosquitoes were used for the detection of bluetongue virus (BTV) from Culicoides midges, was developed. Twenty-seven pools of Culicoides midges were collected from bluetongue-prone areas of Tamil Nadu by use of the light-trap and suction-trap methods. A suspension of each pool was injected intrathoracically into T. splendens IV instar larvae and inoculated onto Vero cell monolayers. An indirect fluorescent antibody technique and an immunoperoxidase test were used to detect BTV antigen in smears of crushed midges, crushed larval head smears after incubation for 7 d at 28 degrees and cell monolayers showing cytopathic effects 48 h post inoculation. The suspensions were also injected intravenously into embryonated chicken eggs, and the characteristic BTV-induced lesion(s), viz. cherry-red appearance of embryos, were observed after 48 h. Virus was confirmed by a qualitative neutralization test conducted simultaneously in embryonated chicken eggs. A total of seven out of 27 samples (26%) were positive for the presence of BTV antigen in all the diagnostic systems used. Since BTV propagates readily in experimentally infected T. splendens larvae and the BTV antigen can be detected by the fluorescent antibody technique with a sensitivity comparable to that for virus propagated in tissue culture and embryonated eggs, the TFA system can be adopted as a new method for the isolation of BTV from vectors. The advantages of the TFA system are discussed.

  14. Dengue virus serotype in Aceh Province

    Directory of Open Access Journals (Sweden)

    Paisal

    2015-06-01

    Full Text Available WHO estimated 50 million dengue infections happen every year in the world. In Indonesia, there were 90,245 DHF cases on 2012 with 816 deaths. In the Province of Aceh, 2,269 cases happened in the same year. This study aimed to identify dengue virus serotype in Aceh. Sampling was done in Kota Banda Aceh Hospital, Kota Lhokseumawe Hospital, Kabupaten Aceh Tamiang Hospital, Kabupaten Aceh Barat Hospital, and Kabupaten Simeulue Hospital between May to December 2012. This was a clinical laboratory research with observation design using cross sectional approach. Research’s population was sample from patients with dengue clinical symptom. Using purposive sampling technique, we have collected 100 samples from the five hospitals (20 samples from each hospital. From RT-PCR, we found 16 positive samples (9 samples were DENV-4, 3 samples were DENV-1, 2 samples were DENV-2, and 2 samples were DENV-3.

  15. Disa vaccines for Bluetongue: A novel vaccine approach for insect-borne diseases

    Science.gov (United States)

    Bluetongue virus (BTV) lacking functional NS3/NS3a protein is named Disabled Infectious Single Animal (DISA) vaccine. The BT DISA vaccine platform is broadly applied by exchange of serotype specific proteins. BT DISA vaccines are produced in standard cell lines in established production facilities, ...

  16. Did vaccination slow the spread of bluetongue in France?

    Directory of Open Access Journals (Sweden)

    Maryline Pioz

    Full Text Available Vaccination is one of the most efficient ways to control the spread of infectious diseases. Simulations are now widely used to assess how vaccination can limit disease spread as well as mitigate morbidity or mortality in susceptible populations. However, field studies investigating how much vaccines decrease the velocity of epizootic wave-fronts during outbreaks are rare. This study aimed at investigating the effect of vaccination on the propagation of bluetongue, a vector-borne disease of ruminants. We used data from the 2008 bluetongue virus serotype 1 (BTV-1 epizootic of southwest France. As the virus was newly introduced in this area, natural immunity of livestock was absent. This allowed determination of the role of vaccination in changing the velocity of bluetongue spread while accounting for environmental factors that possibly influenced it. The average estimated velocity across the country despite restriction on animal movements was 5.4 km/day, which is very similar to the velocity of spread of the bluetongue virus serotype 8 epizootic in France also estimated in a context of restrictions on animal movements. Vaccination significantly reduced the propagation velocity of BTV-1. In comparison to municipalities with no vaccine coverage, the velocity of BTV-1 spread decreased by 1.7 km/day in municipalities with immunized animals. For the first time, the effect of vaccination has been quantified using data from a real epizootic whilst accounting for environmental factors known to modify the velocity of bluetongue spread. Our findings emphasize the importance of vaccination in limiting disease spread across natural landscape. Finally, environmental factors, specifically those related to vector abundance and activity, were found to be good predictors of the velocity of BTV-1 spread, indicating that these variables need to be adequately accounted for when evaluating the role of vaccination on bluetongue spread.

  17. Did vaccination slow the spread of bluetongue in France?

    Science.gov (United States)

    Pioz, Maryline; Guis, Hélène; Pleydell, David; Gay, Emilie; Calavas, Didier; Durand, Benoît; Ducrot, Christian; Lancelot, Renaud

    2014-01-01

    Vaccination is one of the most efficient ways to control the spread of infectious diseases. Simulations are now widely used to assess how vaccination can limit disease spread as well as mitigate morbidity or mortality in susceptible populations. However, field studies investigating how much vaccines decrease the velocity of epizootic wave-fronts during outbreaks are rare. This study aimed at investigating the effect of vaccination on the propagation of bluetongue, a vector-borne disease of ruminants. We used data from the 2008 bluetongue virus serotype 1 (BTV-1) epizootic of southwest France. As the virus was newly introduced in this area, natural immunity of livestock was absent. This allowed determination of the role of vaccination in changing the velocity of bluetongue spread while accounting for environmental factors that possibly influenced it. The average estimated velocity across the country despite restriction on animal movements was 5.4 km/day, which is very similar to the velocity of spread of the bluetongue virus serotype 8 epizootic in France also estimated in a context of restrictions on animal movements. Vaccination significantly reduced the propagation velocity of BTV-1. In comparison to municipalities with no vaccine coverage, the velocity of BTV-1 spread decreased by 1.7 km/day in municipalities with immunized animals. For the first time, the effect of vaccination has been quantified using data from a real epizootic whilst accounting for environmental factors known to modify the velocity of bluetongue spread. Our findings emphasize the importance of vaccination in limiting disease spread across natural landscape. Finally, environmental factors, specifically those related to vector abundance and activity, were found to be good predictors of the velocity of BTV-1 spread, indicating that these variables need to be adequately accounted for when evaluating the role of vaccination on bluetongue spread.

  18. Complete Genome Sequences of Five Bluetongue Virus (BTV) Vaccine Strains from a Commercial Live Attenuated Vaccine, a BTV-4 Field Strain from South Africa, and a Reassortant Strain Isolated from Experimentally Vaccinated Cattle

    Science.gov (United States)

    Coetzee, Peter; le Grange, Misha; Venter, Estelle H.

    2016-01-01

    This is a report of the complete genome sequences of plaque-selected isolates of each of the five virus strains included in a South African commercial trivalent bluetongue virus (BTV) attenuated live virus vaccine, a BTV-4 field strain isolated from Rustenburg, South Africa, in 2011, and a bluetongue reassortant (bluetongue virus 4 strain 4/O. aries-tc/ZAF/11/OBP-115) isolated from experimentally vaccinated cattle. Full-genome sequencing and phylogenetic analyses show that the bluetongue virus 9 strain 9/B. taurus-tc/ZAF/15/Onderstepoort_B02b is a reassortant virus containing segments from both BTV-9 and BTV-8. PMID:27340051

  19. Standardization and application of real-time polymerase chain reaction for rapid detection of bluetongue virus

    Directory of Open Access Journals (Sweden)

    I. Karthika Lakshmi

    2018-04-01

    Full Text Available Aim: The present study was designed to standardize real-time polymerase chain reaction (PCR for detecting the bluetongue virus from blood samples of sheep collected during outbreaks of bluetongue disease in the year 2014 in Andhra Pradesh and Telangana states of India. Materials and Methods: A 10-fold serial dilution of Plasmid PUC59 with bluetongue virus (BTV NS3 insert was used to plot the standard curve. BHK-21 and KC cells were used for in vitro propagation of virus BTV-9 at a TCID50/ml of 105 ml and RNA was isolated by the Trizol method. Both reverse transcription -PCR and real-time PCR using TaqMan probe were carried out with RNA extracted from virus-spiked culture medium and blood to compare the sensitivity by means of finding out the limit of detection (LoD. The results were verified by inoculating the detected and undetected dilutions onto cell cultures with further cytological (cytopathic effect and molecular confirmation (by BTV-NS1 group-specific PCR. The standardized technique was then applied to field samples (blood for detecting BTV. Results: The slope of the standard curve obtained was -3.23, and the efficiency was 103%. The LoD with RT-PCR was 8.269Ex103 number of copies of plasmid, whereas it was 13 with real-time PCR for plasmid dilutions. Similarly, LoD was determined for virus-spiked culture medium, and blood with both the types of PCR and the values were 103 TCID 50/ml and 104 TCID 50/ml with RT-PCR and 10° TCID 50/ml and 102 TCID 50/ml with real-time PCR, respectively. The standardized technique was applied to blood samples collected from BTV suspected animals; 10 among 20 samples were found positive with Cq values ranging from 27 to 39. The Cq value exhibiting samples were further processed in cell cultures and were confirmed to be BT positive. Likewise, Cq undetected samples on processing in cell cultures turned out to be BTV negative. Conclusion: Real-time PCR was found to be a very sensitive as well as reliable method

  20. Dengue viruses cluster antigenically but not as discrete serotypes

    NARCIS (Netherlands)

    L. Katzelnick (Leah); J.M. Fonville (Judith); G.D. Gromowski (Gregory D.); J.B. Arriaga (Jose Bustos); A. Green (Angela); S.L. James (Sarah ); L. Lau (Louis); M. Montoya (Magelda); C. Wang (Chunling); L.A. Van Blargan (Laura A.); C.A. Russell (Colin); H.M. Thu (Hlaing Myat); T.C. Pierson (Theodore C.); P. Buchy (Philippe); J.G. Aaskov (John G.); J.L. Muñoz-Jordán (Jorge L.); N. Vasilakis (Nikos); R.V. Gibbons (Robert V.); R.B. Tesh (Robert B.); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); A. Durbin (Anna); C.P. Simmons (Cameron P.); E.C. Holmes (Edward C.); E. Harris (Eva); S.S. Whitehead (Stephen S.); D.J. Smith (Derek James)

    2015-01-01

    textabstractThe four genetically divergent dengue virus (DENV) types are traditionally classified as serotypes. Antigenic and genetic differences among the DENV types influence disease outcome, vaccine-induced protection, epidemic magnitude, and viral evolution.We scharacterized antigenic diversity

  1. Protective Efficacy in Sheep of Adenovirus-Vectored Vaccines against Bluetongue Virus Is Associated with Specific T Cell Responses

    Science.gov (United States)

    Martín, Verónica; Pascual, Elena; Avia, Miguel; Peña, Lourdes; Valcárcel, Félix; Sevilla, Noemí

    2015-01-01

    Bluetongue virus (BTV) is an economically important Orbivirus of the Reoviridae family that causes a hemorrhagic disease in ruminants. Its control has been achieved by inactivated-vaccines that have proven to protect against homologous BTV challenge although unable to induce long-term immunity. Therefore, a more efficient control strategy needs to be developed. Recombinant adenovirus vectors are lead vaccine candidates for protection of several diseases, mainly because of their potency to induce potent T cell immunity. Here we report the induction of humoral and T-cell mediated responses able to protect animals against BTV challenge by recombinant replication-defective human adenovirus serotype 5 (Ad5) expressing either VP7, VP2 or NS3 BTV proteins. First we used the IFNAR(-/-) mouse model system to establish a proof of principle, and afterwards we assayed the protective efficacy in sheep, the natural host of BTV. Mice were completely protected against BTV challenge, developing humoral and BTV-specific CD8+- and CD4+-T cell responses by vaccination with the different rAd5. Sheep vaccinated with Ad5-BTV-VP2 and Ad5-BTV-VP7 or only with Ad5-BTV-VP7 and challenged with BTV showed mild disease symptoms and reduced viremia. This partial protection was achieved in the absence of neutralizing antibodies but strong BTV-specific CD8+ T cell responses in those sheep vaccinated with Ad5-BTV-VP7. These data indicate that rAd5 is a suitable vaccine vector to induce T cell immunity during BTV vaccination and provide new data regarding the relevance of T cell responses in protection during BTV infection. PMID:26619062

  2. Effectiveness and Cost Efficiency of Different Surveillance Components for Proving Freedom and Early Detection of Disease: Bluetongue Serotype 8 in Cattle as Case Study for Belgium, France and the Netherlands.

    Science.gov (United States)

    Welby, S; van Schaik, G; Veldhuis, A; Brouwer-Middelesch, H; Peroz, C; Santman-Berends, I M; Fourichon, C; Wever, P; Van der Stede, Y

    2017-12-01

    Quick detection and recovery of country's freedom status remain a constant challenge in animal health surveillance. The efficacy and cost efficiency of different surveillance components in proving the absence of infection or (early) detection of bluetongue serotype 8 in cattle populations within different countries (the Netherlands, France, Belgium) using surveillance data from years 2006 and 2007 were investigated using an adapted scenario tree model approach. First, surveillance components (sentinel, yearly cross-sectional and passive clinical reporting) within each country were evaluated in terms of efficacy for substantiating freedom of infection. Yearly cross-sectional survey and passive clinical reporting performed well within each country with sensitivity of detection values ranging around 0.99. The sentinel component had a sensitivity of detection around 0.7. Secondly, how effective the components were for (early) detection of bluetongue serotype 8 and whether syndromic surveillance on reproductive performance, milk production and mortality data available from the Netherlands and Belgium could be of added value were evaluated. Epidemic curves were used to estimate the timeliness of detection. Sensitivity analysis revealed that expected within-herd prevalence and number of herds processed were the most influential parameters for proving freedom and early detection. Looking at the assumed direct costs, although total costs were low for sentinel and passive clinical surveillance components, passive clinical surveillance together with syndromic surveillance (based on reproductive performance data) turned out most cost-efficient for the detection of bluetongue serotype 8. To conclude, for emerging or re-emerging vectorborne disease that behaves such as bluetongue serotype 8, it is recommended to use passive clinical and syndromic surveillance as early detection systems for maximum cost efficiency and sensitivity. Once an infection is detected and eradicated

  3. Influence of Cellular Trafficking Pathway on Bluetongue Virus Infection in Ovine Cells

    Directory of Open Access Journals (Sweden)

    Bishnupriya Bhattacharya

    2015-05-01

    Full Text Available Bluetongue virus (BTV, a non-enveloped arbovirus, causes hemorrhagic disease in ruminants. However, the influence of natural host cell proteins on BTV replication process is not defined. In addition to cell lysis, BTV also exits non-ovine cultured cells by non-lytic pathways mediated by nonstructural protein NS3 that interacts with virus capsid and cellular proteins belonging to calpactin and ESCRT family. The PPXY late domain motif known to recruit NEDD4 family of HECT ubiquitin E3 ligases is also highly conserved in NS3. In this study using a mixture of molecular, biochemical and microscopic techniques we have analyzed the importance of ovine cellular proteins and vesicles in BTV infection. Electron microscopic analysis of BTV infected ovine cells demonstrated close association of mature particles with intracellular vesicles. Inhibition of Multi Vesicular Body (MVB resident lipid phosphatidylinositol-3-phosphate resulted in decreased total virus titre suggesting that the vesicles might be MVBs. Proteasome mediated inhibition of ubiquitin or modification of virus lacking the PPXY in NS3 reduced virus growth. Thus, our study demonstrated that cellular components comprising of MVB and exocytic pathways proteins are involved in BTV replication in ovine cells.

  4. An investigation into the possibility of bluetongue virus transmission by transfer of infected ovine embryos

    Directory of Open Access Journals (Sweden)

    Estelle H. Venter

    2011-02-01

    Full Text Available Bluetongue (BT, a disease that affects mainly sheep, causes economic losses owing to not only its deleterious effects on animals but also its associated impact on the restriction of movement of livestock and livestock germplasm. The causative agent, bluetongue virus (BTV, can occur in the semen of rams and bulls at the time of peak viraemia and be transferred to a developing foetus. The risk of the transmission of BTV by bovine embryos is negligible if the embryos are washed according to the International Embryo Transfer Society (IETS protocol. Two experiments were undertaken to determine whether this holds for ovine embryos that had been exposed to BTV. Firstly, the oestrus cycles of 12 ewes were synchronised and the 59 embryos that were obtained were exposed in vitro to BTV-2 and BTV-4 at a dilution of 1 x 102.88 and 1 x 103.5 respectively. In the second experiment, embryos were recovered from sheep at the peak of viraemia. A total of 96 embryos were collected from BTV-infected sheep 21 days after infection. In both experiments half the embryos were washed and treated with trypsin according to the IETS protocol while the remaining embryos were neither washed nor treated. All were tested for the presence of BTV using cell culture techniques. The virus was detected after three passages in BHK-21 cells only in one wash bath in the first experiment and two unwashed embryos exposed to BTV-4 at a titre of 1 x 103.5. No embryos or uterine flush fluids obtained from viraemic donors used in the second experiment were positive for BTV after the standard washing procedure had been followed. The washing procedure of the IETS protocol can thus clear sheep embryos infected with BTV either in vitro or in vivo.

  5. Prevalence of bluetongue virus antibodies in sheep from Distrito Federal, Brazil
    Prevalência de anticorpos contra o vírus da língua azul em ovinos do Distrito Federal

    OpenAIRE

    Aurora Maria Guimarães Gouveia; Vitor Salvador Picão Gonçalves; Andrey Pereira Lage; Zélia Inês Portela Lobato; Alessandro de Sá Guimarães; Fernanda Coura Morcatti; Elaine Maria Seles Dorneles; Marcos Bryan Heinemann

    2012-01-01

    The aims of the present study were to determine the prevalence of bluetongue virus antibodies in sheep from Distrito Federal. Sera from 606 sheep of 18 herds were submitted to the agar-gel immunodiffusion for bluetongue virus antibodies. The prevalences of bluetongue infection found in Distrito Federal were 100% (CI 95%: 84.67 to 100.00) for flocks and 52.37% (389/606) (CI 95%: 35.76 to 68.98) for animals. Thus, data from the present study showed that infection by bluetongue virus is highly w...

  6. All Serotypes of Dengue Viruses Circulating in Kuala Lumpur, Malaysia

    OpenAIRE

    M.H. Chew; M.M. Rahman; J. Jelip; M.R. Hassan; I. Isahak

    2012-01-01

    Dengue is a severe disease caused by dengue virus (DENV), transmitted to human being by infected Aedes mosquitoes. It is a major public health concern in Southeast Asia due to its fatality in the form of hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The objective of the study was to isolate and identify dengue virus serotypes prevalent in endemic areas of Kuala Lumpur and Selangor in Malaysia by virus culture, indirect immunoflurecent assay and molecular techniques. A total number ...

  7. Culicoides midge bites modulate the host response and impact on bluetongue virus infection in sheep.

    Science.gov (United States)

    Pages, Nonito; Bréard, Emmanuel; Urien, Céline; Talavera, Sandra; Viarouge, Cyril; Lorca-Oro, Cristina; Jouneau, Luc; Charley, Bernard; Zientara, Stéphan; Bensaid, Albert; Solanes, David; Pujols, Joan; Schwartz-Cornil, Isabelle

    2014-01-01

    Many haematophagous insects produce factors that help their blood meal and coincidently favor pathogen transmission. However nothing is known about the ability of Culicoides midges to interfere with the infectivity of the viruses they transmit. Among these, Bluetongue Virus (BTV) induces a hemorrhagic fever- type disease and its recent emergence in Europe had a major economical impact. We observed that needle inoculation of BTV8 in the site of uninfected C. nubeculosus feeding reduced viraemia and clinical disease intensity compared to plain needle inoculation. The sheep that developed the highest local inflammatory reaction had the lowest viral load, suggesting that the inflammatory response to midge bites may participate in the individual sensitivity to BTV viraemia development. Conversely compared to needle inoculation, inoculation of BTV8 by infected C. nubeculosus bites promoted viraemia and clinical symptom expression, in association with delayed IFN- induced gene expression and retarded neutralizing antibody responses. The effects of uninfected and infected midge bites on BTV viraemia and on the host response indicate that BTV transmission by infected midges is the most reliable experimental method to study the physio-pathological events relevant to a natural infection and to pertinent vaccine evaluation in the target species. It also leads the way to identify the promoting viral infectivity factors of infected Culicoides in order to possibly develop new control strategies against BTV and other Culicoides transmitted viruses.

  8. Bluetongue: a historical and epidemiological perspective with the emphasis on South Africa

    Directory of Open Access Journals (Sweden)

    Coetzee Peter

    2012-09-01

    Full Text Available Abstract Bluetongue (BT is a non-contagious, infectious, arthropod transmitted viral disease of domestic and wild ruminants that is caused by the bluetongue virus (BTV, the prototype member of the Orbivirus genus in the family Reoviridae. Bluetongue was first described in South Africa, where it has probably been endemic in wild ruminants since antiquity. Since its discovery BT has had a major impact on sheep breeders in the country and has therefore been a key focus of research at the Onderstepoort Veterinary Research Institute in Pretoria, South Africa. Several key discoveries were made at this Institute, including the demonstration that the aetiological agent of BT was a dsRNA virus that is transmitted by Culicoides midges and that multiple BTV serotypes circulate in nature. It is currently recognized that BT is endemic throughout most of South Africa and 22 of the 26 known serotypes have been detected in the region. Multiple serotypes circulate each vector season with the occurrence of different serotypes depending largely on herd-immunity. Indigenous sheep breeds, cattle and wild ruminants are frequently infected but rarely demonstrate clinical signs, whereas improved European sheep breeds are most susceptible. The immunization of susceptible sheep remains the most effective and practical control measure against BT. In order to protect sheep against multiple circulating serotypes, three pentavalent attenuated vaccines have been developed. Despite the proven efficacy of these vaccines in protecting sheep against the disease, several disadvantages are associated with their use in the field.

  9. Serotype specific primers and gel-based RT-PCR assays for 'typing' African horse sickness virus: identification of strains from Africa.

    Directory of Open Access Journals (Sweden)

    Narender S Maan

    Full Text Available African horse sickness is a devastating, transboundary animal disease, that is 'listed' by the Office International des Epizooties (OIE. Although attenuated, inactivated and subunit vaccines have been developed for African horse sickness virus (AHSV, these are serotype-specific and their effective deployment therefore relies on rapid and reliable identification of virus type. AHSV serotype is controlled by the specificity of interactions between neutralising antibodies, and components of the outer-capsid, particularly protein VP2 (encoded by AHSV genome segment 2 (Seg-2. We report the development and evaluation of novel gel based reverse transcription-PCR (RT-PCR assays targeting AHSV Seg-2, which can be used to very significantly increase the speed and reliability of detection and identification (compared to virus neutralisation tests of the nine serotypes of AHSV. Primer sets were designed targeting regions of Seg-2 that are conserved between strains within each of the AHSV serotype (types 1 to 9. These assays were evaluated using multiple AHSV strains from the orbivirus reference collection at IAH (www.reoviridae.org/dsRNA_virus_proteins/ReoID/AHSV-isolates.htm. In each case the Seg-2 primers showed a high level of specificity and failed to cross-amplify the most closely related heterologous AHSV types, or other related orbiviruses (such as bluetongue virus (BTV, or equine encephalosis virus (EEV. The assays are rapid and sensitive, and can be used to detect and type viral RNA in blood, tissue samples, or cultivated viral suspensions within 24 h. They were used to identify AHSV strains from recent outbreaks in sub-Saharan African countries. These methods also generate cDNAs suitable for sequencing and phylogenetic analyses of Seg-2, identifying distinct virus lineages within each virus-type and helping to identify strain movements/origins. The RT-PCR methods described here provide a robust and versatile tool for rapid and specific detection

  10. Co-evolution in a putative bundling signal of bluetongue and epizootic hemorrhagic disease viruses.

    Science.gov (United States)

    Suzuki, Yoshiyuki

    2017-04-04

    Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) possess a genome of 10 segmented RNAs (S1-S10), one copy of each of which is considered to be packaged in a virion. This selective packaging is thought to be mediated by supramolecular complex formation of the 10 RNAs, through intermolecular base pairing of complementary nucleotide sequences termed the bundling signal. Here, the whole genomic sequences of BTV and EHDV isolates were analyzed to identify co-evolving pairs of complementary nucleotide sequences within and between genomic segments. One co-evolving pair was identified within S5 and another between S5 and S10. The co-evolving pair between S5 and S10, consisting of six bases in each segment, was a candidate for a bundling signal and was identical to one of two putative bundling signals reported in a previous experimental study, validating the effectiveness of the method used in the present study. The six bases in S10 were confirmed to be located in a loop at the end of a stable stem. Although the six bases in S5 were located in a loop at the end of a stem of only four bases long, the complementary nucleotide sequences constituting this stem were, remarkably, the co-evolving pair within S5. These results highlight the importance not only of loops but also of stems in the intermolecular base pairing of bundling signals.

  11. Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus.

    Directory of Open Access Journals (Sweden)

    Eva Calvo-Pinilla

    Full Text Available Bluetongue virus (BTV belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/- mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+ T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.

  12. Replication-Deficient Particles: New Insights into the Next Generation of Bleutongue Virus Vaccines

    NARCIS (Netherlands)

    Celma, Cristina C.; Stewart, Meredith; Wernike, Kerstine; Eschbaumer, Michael; Gonzalez-Molleda, Lorenzo; Breard, Emmanuel; Schulz, Claudia; Hoffmann, Bernd; Haegeman, Andy; Clercq, De Kris; Rijn, van P.A.

    2017-01-01

    Bluetongue virus (BTV) is endemic in many parts of the world, often causing severe haemorrhagic disease in livestock. To date, at least 27 different serotypes have been recognized. Vaccination against all serotypes is necessary to protect susceptible animals and to prevent onward spread of the virus

  13. Establishment of a bluetongue virus infection model in mice that are deficient in the alpha/beta interferon receptor.

    Directory of Open Access Journals (Sweden)

    Eva Calvo-Pinilla

    Full Text Available Bluetongue (BT is a noncontagious, insect-transmitted disease of ruminants caused by the bluetongue virus (BTV. A laboratory animal model would greatly facilitate the studies of pathogenesis, immune response and vaccination against BTV. Herein, we show that adult mice deficient in type I IFN receptor (IFNAR((-/- are highly susceptible to BTV-4 and BTV-8 infection when the virus is administered intravenously. Disease was characterized by ocular discharges and apathy, starting at 48 hours post-infection and quickly leading to animal death within 60 hours of inoculation. Infectious virus was recovered from the spleen, lung, thymus, and lymph nodes indicating a systemic infection. In addition, a lymphoid depletion in spleen, and severe pneumonia were observed in the infected mice. Furthermore, IFNAR((-/- adult mice immunized with a BTV-4 inactivated vaccine showed the induction of neutralizing antibodies against BTV-4 and complete protection against challenge with a lethal dose of this virus. The data indicate that this mouse model may facilitate the study of BTV pathogenesis, and the development of new effective vaccines for BTV.

  14. Expected Net Benefit of Vaccinating Rangeland Sheep against Bluetongue Virus Using a Modified-Live versus Killed Virus Vaccine.

    Science.gov (United States)

    Munsick, Tristram R; Peck, Dannele E; Ritten, John P; Jones, Randall; Jones, Michelle; Miller, Myrna M

    2017-01-01

    Recurring outbreaks of bluetongue virus in domestic sheep of the US Intermountain West have prompted questions about the economic benefits and costs of vaccinating individual flocks against bluetongue (BT) disease. We estimate the cost of a BT outbreak on a representative rangeland sheep operation in the Big Horn Basin of the state of Wyoming using enterprise budgets and stochastic simulation. The latter accounts for variability in disease severity and lamb price, as well as uncertainty about when an outbreak will occur. We then estimate the cost of purchasing and administering a BT vaccine. Finally, we calculate expected annual net benefit of vaccinating under various outbreak intervals. Expected annual net benefit is calculated for both a killed virus (KV) vaccine and modified-live virus vaccine, using an observed price of $0.32 per dose for modified-live and an estimated price of $1.20 per dose for KV. The modified-live vaccine's expected annual net benefit has a 100% chance of being positive for an outbreak interval of 5, 10, or 20 years, and a 77% chance of being positive for a 50-year interval. The KV vaccine's expected annual net benefit has a 97% chance of being positive for a 5-year outbreak interval, and a 42% chance of being positive for a 10-year interval. A KV vaccine is, therefore, unlikely to be economically attractive to producers in areas exposed less frequently to BT disease. A modified-live vaccine, however, requires rigorous authorization before legal use can occur in Wyoming. To date, no company has requested to manufacture a modified-live vaccine for commercial use in Wyoming. The KV vaccine poses less risk to sheep reproduction and less risk of unintentional spread, both of which facilitate approval for commercial production. Yet, our results show an economically consequential tradeoff between a KV vaccine's relative safety and higher cost. Unless the purchase price is reduced below our assumed $1.20 per dose, producer adoption of a KV

  15. Zika Virus-Induced Antibody Response Enhances Dengue Virus Serotype 2 Replication In Vitro.

    Science.gov (United States)

    Kawiecki, Anna B; Christofferson, Rebecca C

    2016-11-01

    Zika virus has emerged in the Americas, where dengue virus is endemic. Among the 4 serotypes of dengue virus, antibody-dependent enhancement is thought to enhance viral replication and disease severity. Reports suggest that anti-dengue virus antibody may enhance Zika virus replication. We investigated whether Zika virus antibodies enhance dengue virus replication, by exposing C57Bl/6 mice to Zika virus. Polyclonal serum was verified for strong Zika virus-neutralizing, dengue virus-subneutralizing capacity. Then we determined the enhancement capabilities of Zika virus-immune serum for dengue virus in vitro. We showed that Zika virus antibodies have the ability to enhance dengue virus infections, which is important, because in many Zika virus-affected areas, dengue virus is expected to remain endemic. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Imported dengue virus serotype 1 from Madeira to Finland 2012.

    Science.gov (United States)

    Huhtamo, E; Korhonen, Em; Vapalahti, O

    2013-02-21

    Imported dengue cases originating from the Madeiran outbreak are increasingly reported. In 2012 five Finnish travellers returning from Madeira were diagnosed with dengue fever. Viral sequence data was obtained from two patients. The partial C-preM sequences (399 and 396 bp respectively) were found similar to that of an autochthonous case from Madeira. The partial E-gene sequence (933 bp) which was identical among the two patients grouped phylogenetically with South American strains of dengue virus serotype 1.

  17. Seroprevalence and S7 gene characterization of bluetongue virus in the West of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Khezri

    Full Text Available Aim: The objective of this study was conducted to determine the seroprevalence and S7 gene characterization of BTV of sheep in the West of Iran, during 2007-2008. Materials and Methods: A total 372 sheep blood samples were collected from known seropositive regions in the West of Iran. Anti-BTV antibodies were detected in the serum samples by group specific, c-ELISA. Extractions of the dsRNA from whole blood samples were carried out. The One-step RT-PCR kit was used for the detection of S7 BTV gene in the blood samples. PCR products of the first amplification (RT-PCR were used; template in the nested PCR. Products were separated by 1.2% Agarose gel electrophoresis. Nested PCR products of S7 segment from positive samples and the reference strain; BTV1 (RSA vvvv/01 were prepared for sequencing. All sequences were subjected to multiple sequence alignments and phylogenetic analysis. Results: The results showed widespread presence of the anti-BTV antibodies in the province's sheep population, where 46.77% of the tested sera were positive on ELISA. Bluetongue viruses were diagnosed in some animals by RT-PCR and nested PCR, by targeting S7 segment. This genome segment was sequenced and analyzed in four samples as a conserved gene in BTV serogroup. This group was very similar to the West BTV strains from US, Africa and Europe. This clustered was categorized with BTV4 from Turkey. Conclusion: Increases in epidemic disease may constitute a serious problem for Iran's rural economy in future, and the situation is likely to worsen in the next few years as the proportion of unvaccinated livestock increases. [Vet World 2012; 5(9.000: 549-555

  18. Climate change and the spread of vector-borne diseases: using approximate Bayesian computation to compare invasion scenarios for the bluetongue virus vector Culicoides imicola in Italy

    NARCIS (Netherlands)

    Mardulyn, P.; Goffredo, M.; Conte, A.; Hendrickx, G.; Meiswinkel, R.; Balenghien, T.; Sghaier, S.; Lohr, Y.; Gilbert, M.

    2013-01-01

    Bluetongue (BT) is a commonly cited example of a disease with a distribution believed to have recently expanded in response to global warming. The BT virus is transmitted to ruminants by biting midges of the genus Culicoides, and it has been hypothesized that the emergence of BT in Mediterranean

  19. Simulating spread of Bluetongue Virus by flying vectors between hosts on pasture

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Bødker, Rene; Enøe, Claes

    2012-01-01

    and display search behavior to locate areas with hosts. We also include wind spread of vectors, host movements, and vector seasonality. Results show that temperature and seasonality of vectors determines the period in which an incursion of Bluetongue may lead to epidemic spread in Denmark. Within this period...

  20. Bluetongue disease and seroprevalence in South American camelids from the northwestern region of the United States.

    Science.gov (United States)

    Allen, Andrew J; Stanton, James B; Evermann, James F; Fry, Lindsay M; Ackerman, Melissa G; Barrington, George M

    2015-03-01

    In late summer/early fall of 2013, 2 South American camelids from central Washington were diagnosed with fatal bluetongue viral disease, an event which is rarely reported. A 9-year-old intact male llama (Lama glama), with a 1-day history of anorexia, recumbency, and dyspnea before death. Abundant foam discharged from the mouth and nostrils, and the lungs were severely edematous on postmortem examination. Histologically, there was abundant intra-alveolar edema with fibrin. Hemorrhage and edema disrupted several other organs. Bluetongue viral RNA was detected by reverse transcription polymerase chain reaction (RT-PCR), and serotype 11 was identified by sequencing a segment of the VP2 outer capsid gene. Approximately 1 month later, at a site 150 miles north of the index case, a 2-year-old female alpaca with similar, acutely progressive clinical signs was reported. A postmortem examination was performed, and histologic lesions from the alpaca were similar to those of the llama, and again serotype 11 was detected by PCR. The occurrence of bluetongue viral infection and disease is described in the context of seasonal Bluetongue virus activity within the northwestern United States and southwestern Canada. © 2015 The Author(s).

  1. Seroprevalence and Risk Factors of Bluetongue Virus Infection in Tibetan Sheep and Yaks in Tibetan Plateau, China.

    Science.gov (United States)

    Ma, Jian-Gang; Zhang, Xiao-Xuan; Zheng, Wen-Bin; Xu, Ying-Tian; Zhu, Xing-Quan; Hu, Gui-Xue; Zhou, Dong-Hui

    2017-01-01

    Bluetongue (BT), caused by bluetongue virus (BTV), is an arthropod-borne viral disease in ruminants. However, information about BTV infection in yaks in China is limited. Moreover, no such data concerning BTV in Tibetan sheep is available. Therefore, 3771 serum samples were collected from 2187 Tibetan sheep and 1584 yaks between April 2013 and March 2014 from Tibetan Plateau, western China, and tested for BTV antibodies using a commercially available ELISA kit. The overall seroprevalence of BTV was 17.34% (654/3771), with 20.3% (443/2187) in Tibetan sheep and 13.3% (211/1584) in yaks. In the Tibetan sheep group, the seroprevalence of BTV in Luqu, Maqu, Tianzhu, and Nyingchi Prefecture was 20.3%, 20.8%, 20.5%, and 19.1%, respectively. The seroprevalence of BTV in different season groups varied from 16.5% to 23.4%. In the yak group, BTV seroprevalence was 12.6%, 15.5%, and 11.0% in Tianzhu, Maqu, and Luqu counties, respectively. The seroprevalence in different seasons was 12.6%, 15.5%, 15.4%, and 9.0% in spring, summer, autumn, and winter, respectively. The season was the major risk factor concerning BTV infection in yaks ( P Tibetan sheep and yaks provides baseline information for controlling BT in ruminants in western China.

  2. Anthropogenic and meteorological factors influence vector abundance and prevalence of bluetongue virus infection of dairy cattle in California.

    Science.gov (United States)

    Mayo, Christie E; Gardner, Ian A; Mullens, Bradley A; Barker, Christopher M; Gerry, Alec C; Guthrie, Alan J; MacLachlan, N James

    2012-03-23

    Bluetongue is an economically important arboviral disease of ruminants that is transmitted by hematophagous Culicoides midges. In light of dramatic recent changes in the global distribution of bluetongue virus (BTV), the goals of this study were to re-evaluate the prevalence of BTV infection of cattle and abundance of Culicoides midges on individual dairy farms in California. A serosurvey of adult dairy cattle confirmed that BTV infection is prevalent throughout much of the state, although the coastal northwestern region remains free of infection and prevalence varies markedly among farms in the remainder of the state. Intensive sampling for one year of 4 farms in the northern Central Valley of California showed that the abundance of Culicoides midges was markedly different and coincided with the prevalence of BTV infection of sentinel cattle on each farm. Mean maximum and minimum temperatures and other meteorological parameters were similar on all 4 farms, thus we speculate that particular management practices were responsible for both the increased midge abundance and prevalence of BTV infection of cattle at individual farms. Specifically, it is concluded that variation in vector abundance at individual farms most likely is the result of waste-water lagoon and irrigation management practices, leading to higher BTV infection rates among livestock held on farms with more waste-water lagoons and greater acreage of land for waste-water irrigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Seroprevalence of bluetongue disease in sheep in west and northwest provinces of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Khezri

    2013-09-01

    Full Text Available The objective of this study was to describe the seroprevalence rates of bluetongue virus (BTV in sheep in west and northwest provinces of Iran. Bluetongue virus, an economically important orbivirus of the Reoviridae family, causes a hemorrhagic disease mainly in sheep and occasionally in cattle and some species of deer. Bluetongue virus is transmitted between its mammalian hosts by certain species of biting midges (Culicoides spp. and it can infect all ruminant species. Overall, 26 serotypes have been reported around the world. Due to its economic impact, bluetongue (BT is an Office of International des Epizooties (OIE-listed disease. A total of 756 sera samples collected during 2007-2008, were available. Sera were tested with competitive enzyme-linked immunosorbent assay (C-ELISA. The seroprevalence rate in sheep was 40.87%. The rate of positivity in sheep in west and northwest was 46.10% and 33.75%, respectively. The highest prevalence of antibodies in serum was in West Azerbaijan (64.86%, and lower was in Ardabil (23.77%.

  4. Identification of a natural human serotype 3 parainfluenza virus

    Directory of Open Access Journals (Sweden)

    Wang Xiao-Jing

    2011-02-01

    Full Text Available Abstract Parainfluenza virus is an important pathogen threatening the health of animals and human, which brings human many kinds of disease, especially lower respiratory tract infection involving infants and young children. In order to control the virus, it is necessary to fully understand the molecular basis resulting in the genetic diversity of the virus. Homologous recombination is one of mechanisms for the rapid change of genetic diversity. However, as a negative-strand virus, it is unknown whether the recombination can naturally take place in human PIV. In this study, we isolated and identified a mosaic serotype 3 human PIV (HPIV3 from in China, and also provided several putative PIV mosaics from previous reports to reveal that the recombination can naturally occur in the virus. In addition, two swine PIV3 isolates transferred from cattle to pigs were found to have mosaic genomes. These results suggest that homologous recombination can promote the genetic diversity and potentially bring some novel biologic characteristics of HPIV.

  5. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Science.gov (United States)

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  6. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  7. Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV.

    Science.gov (United States)

    French, T J; Roy, P

    1990-04-01

    The L3 and M7 genes of bluetongue virus (BTV), which encode the two major core proteins of the virus (VP3 and VP7, respectively), were inserted into a baculovirus dual-expression transfer vector and a recombinant baculovirus expressing both foreign genes isolated following in vivo recombination with wild-type Autographa californica nuclear polyhedrosis virus DNA. Spodoptera frugiperda insect cells infected with the recombinant synthesized large amounts of BTV corelike particles. These particles have been shown to be similar to authentic BTV cores in terms of size, appearance, stoichiometric arrangement of VP3 to VP7 (ratio, 2:15), and the predominance of VP7 on the surface of the particles. In infected insect cells, the corelike particles were observed in paracrystalline arrays. The formation of these structures indicates that neither the BTV double-stranded viral RNA species nor the associated minor core proteins are necessary for assembly of cores in insect cells. Furthermore, the three BTV nonstructural proteins NS1, NS2, and NS3, are not required to assist or direct the formation of empty corelike particles from VP3 and VP7.

  8. Meningitis Associated with Simultaneous Infection by Multiple Dengue Virus Serotypes in Children, Brazil.

    Science.gov (United States)

    Marinho, Paula Eillanny Silva; Bretas de Oliveira, Danilo; Candiani, Talitah Michel Sanchez; Crispim, Ana Paula Correia; Alvarenga, Pedro Paulo Martins; Castro, Fabrizia Cristina Dos Santos; Abrahão, Jonatas Santos; Rios, Maria; Coimbra, Roney Santos; Kroon, Erna Geessien

    2017-01-01

    To determine the causes of viral meningitis, we analyzed 22 cerebrospinal fluid samples collected during the 2014-2015 dengue epidemics in Brazil. We identified 3 serotypes of dengue virus (DENV-1, -2, and -3), as well as co-infection with 2 or 3 serotypes. We also detected the Asian II genotype of DENV-2.

  9. Possible over-wintering of bluetongue virus in Culicoides populations in the Onderstepoort area, Gauteng, South Africa

    Directory of Open Access Journals (Sweden)

    Jumari Steyn

    2016-10-01

    Full Text Available Several studies have demonstrated the ability of certain viruses to overwinter in arthropod vectors. The over-wintering mechanism of bluetongue virus (BTV is unknown. One hypothesis is over-wintering within adult Culicoides midges (Diptera; Ceratopogonidae that survive mild winters where temperatures seldom drop below 10 °C. The reduced activity of midges and the absence of outbreaks during winter may create the impression that the virus has disappeared from an area. Light traps were used in close association with horses to collect Culicoides midges from July 2010 to September 2011 in the Onderstepoort area, in Gauteng Province, South Africa. More than 500 000 Culicoides midges were collected from 88 collections and sorted to species level, revealing 26 different Culicoides species. Culicoides midges were present throughout the 15 month study. Nine Culicoides species potentially capable of transmitting BTV were present during the winter months. Midges were screened for the presence of BTV ribonucleic acid (RNA with the aid of a real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR assay. In total 91.2% of midge pools tested positive for BTV RNA. PCR results were compared with previous virus isolation results (VI that demonstrated the presence of viruses in summer and autumn months. The results indicate that BTV-infected Culicoides vectors are present throughout the year in the study area. Viral RNA-positive midges were also found throughout the year with VI positive midge pools only in summer and early autumn. Midges that survive mild winter temperatures could therefore harbour BTV but with a decreased vector capacity. When the population size, biting rate and viral replication decrease, it could stop BTV transmission. Over-wintering of BTV in the Onderstepoort region could therefore result in re-emergence because of increased vector activity rather than reintroduction from outside the region.

  10. Structure based modification of Bluetongue virus helicase protein VP6 to produce a viable VP6-truncated BTV

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Eiko [Microbiology and Immunology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe-City 657-8501 (Japan); Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT (United Kingdom); Leon, Esther; Matthews, Steve J. [Division of Molecular Biosciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Roy, Polly, E-mail: polly.roy@lshtm.ac.uk [Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT (United Kingdom)

    2014-09-05

    Highlights: • NMR analysis on BTV VP6 reveals two large loop regions. • The loss of a loop (aa 34–130) does not affect the overall fold of the protein. • A region of VP6 (aa 34–92) is not required for BTV replication. • A region of VP6 (aa 93–130) plays an essential role in the virus replication. - Abstract: Bluetongue virus core protein VP6 is an ATP hydrolysis dependent RNA helicase. However, despite much study, the precise role of VP6 within the viral capsid and its structure remain unclear. To investigate the requirement of VP6 in BTV replication, we initiated a structural and biological study. Multinuclear nuclear magnetic resonance spectra were assigned on his-tagged full-length VP6 (329 amino acid residues) as well as several truncated VP6 variants. The analysis revealed a large structured domain with two large loop regions that exhibit significant conformational exchange. One of the loops (amino acid position 34–130) could be removed without affecting the overall fold of the protein. Moreover, using a BTV reverse genetics system, it was possible to demonstrate that the VP6-truncated BTV was viable in BHK cells in the absence of any helper VP6 protein, suggesting that a large portion of this loop region is not absolutely required for BTV replication.

  11. Entomological research on the vectors of bluetongue disease and the monitoring of activity of Culicoides in the Prishtinë region of Kosova

    OpenAIRE

    Betim Berisha; Izedin Goga; William P. Taylor; Kurtesh Sherifi; Anthony J. Wilsmore; Driton Çaushi; Beqë Hulaj

    2010-01-01

    Clinical bluetongue (BT) caused by BT virus serotype 9 (BTV‑9) was observed in Kosova in 2001 and, although subsequently no further clinical cases was diagnosed, its continuing presence has been demonstrated by serological tests in cattle, sheep and goats. In this study, light traps were placed in stables near Prishtinë to identify possible vectors of BTV in Kosova. Samples were collected from October 2004 until the end of 2006. Culicoides were identified and speciated and results were plotte...

  12. Determination of Genotype of Dengue Virus Serotype 1 by Using Primer Design

    Directory of Open Access Journals (Sweden)

    Cita Christine Mayorita

    2014-06-01

    Full Text Available Dengue fever has become a worldwide health problem. This disease occurs more and more frequently and often cause death, especially in some Asian countries including Indonesia. The purpose of this study was to determine the genotype of dengue virus serotype 1 in Indonesia by using primer design as a base to take part in the development of diagnostics and vaccines of the dengue virus. This research consisted of 100 respondents; male and female aged 14-60 years. All samples were selected by consecutive sampling and dengue viruses used in this study were randomly selected in March-December 2010. The next step was sequencing process in January-October 2011 in the Department of Microbiology FKUI by using cross sectional design. The result of this study was dengue virus serotype 1 strains from Indonesia belonged to genotype 4. Keywords: genotype of dengue virus serotype 1, Indonesia, diagnostic, vaccine

  13. The prevalence of dengue virus serotypes in asymptomatic blood donors reveals the emergence of serotype 4 in Saudi Arabia.

    Science.gov (United States)

    Ashshi, Ahmed Mohamed

    2017-06-09

    Transmission of dengue virus (DENV) through blood transfusion has been documented and hence screening for DENV during blood donation has been recently recommended by the American Association of Blood Banks and Centres of Disease Control and Prevention. DENV is endemic in the Western province of the Kingdom of Saudi Arabia (KSA) and serotypes 1, 2 and 3, but not 4, have been detected. However, little is known regarding the rates of DENV during blood donation in the kingdom. The aim of this study was therefore to measure the prevalence of dengue virus and its serotypes in eligible Saudi blood donors in the endemic Western region of KSA. This was a cross-sectional study and serum samples were collected from 910 eligible Saudi male blood donors. DENV IgM and IgG antibodies were measured serologically by ELISA while viral serotypes were detected by a single step IVD CE certified multiplex RT-PCR kit. The overall prevalence was 39 and 5.5% for IgG+ and IgM+, respectively. There were 12 (1.3%) with exclusively IgM+, 317 (34.8%) exclusively IgG+ and 38 (4.2%) with dual IgM+/IgG+ donors. The overall prevalence was 3.2% (n = 29) and 2.3% (n = 21) for primary and secondary infections. PCR was positive in 5.5% (n = 50) and, DENV-2 (n = 24; 48%) was the most frequent serotype and was significantly higher than DENV-1 (20%; P = 0.02) and DENV-3 (2%; P = 0.1 × 10 -5 ) but not DENV-4 (30%; P = 0.2). There was no significant difference between both DENV-4 and DENV-1 (P = 0.4). The combination of the PCR and serology findings showed that 22 (2.4%) and 28 (3.1%) donors had primary and secondary viremic infections, respectively. The detected rates of DENV by PCR suggest a potential high risk of viral transmission by blood transfusion. To the best of our knowledge, this study is the first to report the detection of DENV-4 serotype in Saudi Arabia. More studies are required to measure the precise prevalence of DENV serotypes and their potential

  14. Foot-and-mouth disease virus serotype SAT 3 in long-horned Ankole calf, Uganda.

    Science.gov (United States)

    Dhikusooka, Moses Tefula; Tjørnehøj, Kirsten; Ayebazibwe, Chrisostom; Namatovu, Alice; Ruhweza, Simon; Siegismund, Hans Redlef; Wekesa, Sabenzia Nabalayo; Normann, Preben; Belsham, Graham J

    2015-01-01

    After a 16-year interval, foot-and-mouth disease virus serotype SAT 3 was isolated in 2013 from an apparently healthy long-horned Ankole calf that grazed close to buffalo in Uganda. The emergent virus strain is ≈20% different in nucleotide sequence (encoding VP1 [viral protein 1]) from its closest relatives isolated previously from buffalo in Uganda.

  15. Foot-and-Mouth Disease Virus Serotype SAT 3 in Long-Horned Ankole Calf, Uganda

    DEFF Research Database (Denmark)

    Dhikusooka, Moses Tefula; Tjørnehøj, Kirsten; Ayebazibwe, Chrisostom

    2015-01-01

    After a 16-year interval, foot-and-mouth disease virus serotype SAT 3 was isolated in 2013 from an apparently healthy long-horned Ankole calf that grazed close to buffalo in Uganda. The emergent virus strain is ≈20% different in nucleotide sequence (encoding VP1 [viral protein 1]) from its closest...

  16. Multiple Origins of Foot-and-Mouth Disease Virus Serotype Asia 1 Outbreaks, 2003?2007

    OpenAIRE

    Valarcher, Jean-Francois; Knowles, Nick J.; Zakharov, Valery; Scherbakov, Alexey; Zhang, Zhidong; Shang, You-Jun; Liu, Zai-Xin; Liu, Xiang-Tao; Sanyal, Aniket; Hemadri, Divakar; Tosh, Chakradhar; Rasool, Thaha J.; Pattnaik, Bramhadev; Schumann, Kate R.; Beckham, Tammy R.

    2009-01-01

    We investigated the molecular epidemiology of foot-and-mouth disease virus (FMDV) serotype Asia 1, which caused outbreaks of disease in Asia during 2003?2007. Since 2004, the region affected by outbreaks of this serotype has increased from disease-endemic countries in southern Asia (Afghanistan, India, Iran, Nepal, Pakistan) northward to encompass Kyrgyzstan, Tajikistan, Uzbekistan, several regions of the People?s Republic of China, Mongolia, Eastern Russia, and North Korea. Phylogenetic anal...

  17. Population Genetic Structure and Potential Incursion Pathways of the Bluetongue Virus Vector Culicoides brevitarsis (Diptera: Ceratopogonidae) in Australia

    Science.gov (United States)

    Tay, W. T.; Kerr, P. J.; Jermiin, L. S.

    2016-01-01

    Culicoides brevitarsis is a vector of the bluetongue virus (BTV), which infects sheep and cattle. It is an invasive species in Australia with an assumed Asian/South East Asian origin. Using one mitochondrial marker (i.e., part of the cytochrome oxidase subunit I gene) and six nuclear markers, we inferred population genetic structure and possible incursion pathways for Australian C. brevitarsis. Nine mitochondrial haplotypes, with low nucleotide sequence diversity (0.0–0.7%) among these, were identified in a sample of 70 individuals from seven sites. Both sets of markers revealed a homogeneous population structure, albeit with evidence of isolation by distance and two genetically distinct clusters distributed along a north-to-south cline. No evidence of a cryptic species complex was found. The geographical distribution of the mitochondrial haplotypes is consistent with at least two incursion pathways into Australia since the arrival of suitable livestock hosts. By contrast, 15 mitochondrial haplotypes, with up to four times greater nucleotide sequence diversity (0.0–2.9%) among these, were identified in a sample of 16 individuals of the endemic C. marksi (sampled from a site in South Australia and another in New South Wales). A phylogenetic tree inferred using the mitochondrial marker revealed that the Australian and Japanese samples of C. brevitarsis are as evolutionarily different from one another as some of the other Australian species (e.g., C. marksi, C. henryi, C. pallidothorax) are. The phylogenetic tree placed four of the species endemic to Australia (C. pallidothorax, C. bundyensis, C. marksi, C. henryi) in a clade, with a fifth such species (C. bunrooensis) sharing a common ancestor with that clade and a clade comprising two Japanese species (C. verbosus, C. kibunensis). PMID:26771743

  18. Indoor activity of Culicoides associated with livestock in the bluetongue virus (BTV) affected region of northern France during autumn 2006.

    Science.gov (United States)

    Baldet, T; Delécolle, J C; Cêtre-Sossah, C; Mathieu, B; Meiswinkel, R; Gerbier, G

    2008-10-15

    In August 2006, bluetongue virus (BTV) was detected in the Netherlands, Belgium, western Germany, Luxembourg and northern France for the first time. Consequently, a longitudinal entomological study was conducted in the affected region of northern France (Ardennes) throughout the autumn of 2006. Data on the spatio-temporal distribution of Culicoides (Diptera: Ceratopogonidae) associated with livestock were collected and an attempt was made to identify the vector(s) involved in BTV transmission by means of virus detection in wild-caught biting midges. Weekly sampling using standardized Onderstepoort-type blacklight traps were performed simultaneously both outdoors and indoors in one BTV-free and three BTV-affected farms between September and December 2006. Culicoides were sorted according to farm, location (outdoors vs. indoors), time point (in weeks), species and physiological stage. BTV detection was conducted by RT-PCR on monospecific pools of non-bloodfed parous female Culicoides. The principal results showed: (i) the absence of the Mediterranean vector, C. imicola, (ii) the relatively low abundance of C. dewulfi and C. pulicaris, (iii) the widespread occurrence and abundance of C. obsoletus/C. scoticus with longevity and behaviour compatible with BTV transmission, and (iv) all Culicoides pools tested for BTV were negative. In France, the very low levels of BTV-8 circulation were probably due to the limited introduction of the virus from affected neighbouring countries, and not due to the absence of local vector populations. A key finding has been the substantiation, for the first time, that Culicoides, and particularly the potential vectors C. obsoletus/C. scoticus and C. dewulfi, can be active at night inside livestock buildings and not only outside, as originally believed. The endophagic tendencies of members of the Obsoletus group are discussed in light of the prolonged period of BTV transmission during the autumn of 2006 and the risk of BTV overwintering and

  19. Multiple Origins of Foot-and-Mouth Disease Virus Serotype Asia 1 Outbreaks, 2003–2007

    Science.gov (United States)

    Valarcher, Jean-Francois; Zakharov, Valery; Scherbakov, Alexey; Zhang, Zhidong; Shang, You-Jun; Liu, Zai-Xin; Liu, Xiang-Tao; Sanyal, Aniket; Hemadri, Divakar; Tosh, Chakradhar; Rasool, Thaha J.; Pattnaik, Bramhadev; Schumann, Kate R.; Beckham, Tammy R.; Linchongsubongkoch, Wilai; Ferris, Nigel P.; Roeder, Peter L.; Paton, David J.

    2009-01-01

    We investigated the molecular epidemiology of foot-and-mouth disease virus (FMDV) serotype Asia 1, which caused outbreaks of disease in Asia during 2003–2007. Since 2004, the region affected by outbreaks of this serotype has increased from disease-endemic countries in southern Asia (Afghanistan, India, Iran, Nepal, Pakistan) northward to encompass Kyrgyzstan, Tajikistan, Uzbekistan, several regions of the People’s Republic of China, Mongolia, Eastern Russia, and North Korea. Phylogenetic analysis of complete virus capsid protein 1 (VP1) gene sequences demonstrated that the FMDV isolates responsible for these outbreaks belonged to 6 groups within the Asia 1 serotype. Some contemporary strains were genetically closely related to isolates collected historically from the region as far back as 25 years ago. Our analyses also indicated that some viruses have spread large distances between countries in Asia within a short time. PMID:19624919

  20. Multiple origins of foot-and-mouth disease virus serotype Asia 1 outbreaks, 2003-2007.

    Science.gov (United States)

    Valarcher, Jean Francois; Knowles, Nick J; Zakharov, Valery; Scherbakov, Alexey; Zhang, Zhidong; Shang, You Jun; Liu, Zai Xin; Liu, Xiang Tao; Sanyal, Aniket; Hemadri, Divakar; Tosh, Chakradhar; Rasool, Thaha J; Pattnaik, Bramhadev; Schumann, Kate R; Beckham, Tammy R; Linchongsubongkoch, Wilai; Ferris, Nigel P; Roeder, Peter L; Paton, David J

    2009-07-01

    We investigated the molecular epidemiology of foot-and-mouth disease virus (FMDV) serotype Asia 1, which caused outbreaks of disease in Asia during 2003-2007. Since 2004, the region affected by outbreaks of this serotype has increased from disease-endemic countries in southern Asia (Afghanistan, India, Iran, Nepal, Pakistan) northward to encompass Kyrgyzstan, Tajikistan, Uzbekistan, several regions of the People's Republic of China, Mongolia, Eastern Russia, and North Korea. Phylogenetic analysis of complete virus capsid protein 1 (VP1) gene sequences demonstrated that the FMDV isolates responsible for these outbreaks belonged to 6 groups within the Asia 1 serotype. Some contemporary strains were genetically closely related to isolates collected historically from the region as far back as 25 years ago. Our analyses also indicated that some viruses have spread large distances between countries in Asia within a short time.

  1. El Niño-Southern Oscillation, local weather and occurrences of dengue virus serotypes

    Science.gov (United States)

    Huang, Xiaodong; Clements, Archie C. A.; Williams, Gail; Devine, Gregor; Tong, Shilu; Hu, Wenbiao

    2015-11-01

    Severe dengue fever is usually associated with secondary infection by a dengue virus (DENV) serotype (1 to 4) that is different to the serotype of the primary infection. Dengue outbreaks only occur following importations of DENV in Cairns, Australia. However, the majority of imported cases do not result in autochthonous transmission in Cairns. Although DENV transmission is strongly associated with the El Niño-Southern Oscillation (ENSO) climate cycle and local weather conditions, the frequency and potential risk factors of infections with the different DENV serotypes, including whether or not they differ, is unknown. This study used a classification tree model to identify the hierarchical interactions between Southern Oscillation Index (SOI), local weather factors, the presence of imported serotypes and the occurrence of the four autochthonous DENV serotypes from January 2000-December 2009 in Cairns. We found that the 12-week moving average of SOI and the 2-week moving average of maximum temperature were the most important factors influencing the variation in the weekly occurrence of the four DENV serotypes, the likelihoods of the occurrence of the four DENV serotypes may be unequal under the same environmental conditions, and occurrence may be influenced by changes in global and local environmental conditions in Cairns.

  2. Concurrent infections by all four dengue virus serotypes during an outbreak of dengue in 2006 in Delhi, India

    Directory of Open Access Journals (Sweden)

    Guleria Randeep

    2008-01-01

    Full Text Available Abstract Background Co-circulation of multiple dengue virus serotypes has been reported from many parts of the world including India, however concurrent infection with more than one serotype of dengue viruses in the same individual is rarely documented. An outbreak of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS occurred in and around Delhi in 2006. This is the first report from India with high percentage of concurrent infections with different dengue virus serotypes circulating during one outbreak. Results Acute phase sera from patients were tested for the presence of dengue virus RNA by RT-PCR assay. Of the 69 samples tested for dengue virus RNA, 48 (69.5% were found to be positive. All the four dengue virus serotypes were found to be co-circulating in this outbreak with DENV-3 being the predominant serotype. In addition in 9 of 48 (19% dengue virus positive samples, concurrent infection with more than one dengue virus serotype were identified. Conclusion This is the first report in which concurrent infections with different dengue virus serotypes is being reported during an outbreak from India. Delhi is now truly hyperendemic for dengue.

  3. Ring trial 2016 for Bluetongue virus detection by real-time RT-PCR in France.

    Science.gov (United States)

    Sailleau, Corinne; Viarouge, Cyril; Breard, Emmanuel; Vitour, Damien; Zientara, Stephan

    2017-05-01

    Since the unexpected emergence of BTV-8 in Northern Europe and the incursion of BTV-8 and 1 in France in 2006-2007, molecular diagnosis has considerably evolved. Several real-time RT-PCR (rtRT-PCR) methods have been developed and published, and are currently being used in many countries across Europe for BTV detection and typing. In France, the national reference laboratory (NRL) for orbiviruses develops and validates 'ready-to-use' kits with private companies for viral RNA detection. The regional laboratories network that was set up to deal with a heavy demand for analyses has used these available kits. From 2007, ring tests were organized to monitor the performance of the French laboratories. This study presents the results of 63 regional laboratories in the ring trial organized in 2016. Blood samples were sent to the laboratories. Participants were asked to use the rtRT-PCR methods in place in their laboratory, for detection of all BTV serotypes and specifically BTV-8. The French regional laboratories are able to detect and genotype BTV in affected animals. Despite the use of several methods (i.e. RNA extraction and different commercial rtRT-PCRs), the network is homogeneous. The ring trial demonstrated that the French regional veterinary laboratories have reliable and robust BTV diagnostic tools for BTV genome detection.

  4. 9 CFR 113.303 - Bluetongue Vaccine.

    Science.gov (United States)

    2010-01-01

    ... virus titer using the titration method used in paragraph (c)(2) of this section. To be eligible for... Master Seed shall be tested for transmissibility and reversion to virulence in sheep using a method... TCID50 of bluetongue virus or another method acceptable to Animal and Plant Health Inspection Service. (2...

  5. Dengue Virus Serotype 2 Established in Northern Mozambique (2015-2016).

    Science.gov (United States)

    Oludele, John; Lesko, Birgitta; Mahumane Gundane, Isabel; de Bruycker-Nogueira, Fernanda; Muianga, Argentina; Ali, Sadia; Mula, Flora; Chelene, Imelda; Falk, Kerstin I; Barreto Dos Santos, Flávia; Gudo, Eduardo Samo

    2017-11-01

    After the report of an outbreak of dengue virus serotype 2 in 2014 in Nampula and Pemba cities, northern Mozambique, a surveillance system was established by the National Institute of Health. A study was performed during 2015-2016 to monitor the trend of the outbreak and confirm the circulating serotype of dengue virus (DENV). After the inclusion of consenting patients who met the case definition, samples from 192 patients were tested for the presence of nonstructural protein 1 antigen, and 60/192 (31%) samples were positive. Further analysis included DENV IgM antibodies, with 39 (20%) IgM positive cases. Reverse transcriptase (RT) PCR was performed for identification of the prevailing DENV serotype; 21/23 tested samples were DENV-2 positive, with DENV-2 present in both affected cities. When sequencing DENV, phenotype Cosmopolitan was identified. The surveillance indicates ongoing spread of DENV-2 in northern Mozambique 2 years after the first report of the outbreak.

  6. Capsid Modified Bluetongue Virus 16 (BTV16 as a Virulytic Oncotherapy Agent

    Directory of Open Access Journals (Sweden)

    Taghi Naserpour Farivar

    2017-03-01

    Full Text Available Objective Using potential viruses to destroy cancer cells has a long history, but recent advances in molecular biology raised hopes for successful use of these viruses again. Methods Octreotate sequence was inserted into the neutralization region (R1& R2 in vp2 protein of capsid segment in 10 segmented genome of BTV in 304 - 368 position. T7 BTV RNA transcripts were extracted. Cancerous cultured cells were transfected with wild and modified BTV to recover BTV with cDNA-derived genome segments. Results The results of all the performed experiments revealed that treatment of AGS cell lines with VP2 modified BTV16, which targeted cell surface of cancerous cells, significantly increased apoptosis in cancer infected cells. Conclusions Modified VP2 BTV16 may be used as a potential virulytic oncotherapy agent in AGS cells.

  7. Fowl adenovirus serotype 9 vectored vaccine for protection of avian influenza virus

    Science.gov (United States)

    A fowl adenovirus serotype 9, a non-pathogenic large double stranded DNA virus, was developed as a viral vector to express influenza genes as a potential vaccine. Two separate constructs were developed that expressed either the hemagglutinin gene of A/Chicken/Jalisco/2012 (H7) or A/ Chicken/Iowa/20...

  8. Genetic analysis of foot-and-mouth disease virus serotype A of ...

    Indian Academy of Sciences (India)

    ... leader protease (Lpro) and capsid-coding sequences (P1) constitute approximately 3 kb of the foot-and-mouth disease virus (FMDV). We studied the phylogenetic relationship of 46 FMDV serotype A isolates of Indian origin collected during the period 1968–2005 and also eight vaccine strains using the neighbour-joining ...

  9. Detection of Multiple Serotypes of Foot-and Mouth Disease Virus in ...

    African Journals Online (AJOL)

    Seventy five (75%) foot-and-mouth diseases virus (FMDV) isolates stored at the laboratory were reserotyped. The isolates were obtained from the African buffalo (Syncerus caffer) eland (Taurotragus orynx), pigs and cattle during the period from 1971- to 2001. Serotypes O, A, SAT1 and SAT2 were identified from the cattle ...

  10. Optimization of a method for the detection of immunopotentiating antibodies against serotype 1 of dengue virus

    International Nuclear Information System (INIS)

    Soto Garita, Claudio

    2014-01-01

    An immunopotentiation trial has used sera from dengue seropositive patients from Costa Rica's endemic areas. The detection and semi-quantification of immunopotentiating antibodies were optimized against dengue virus serotype 1. The cell line K562 (human erythromyeloblastoid leukemia cells) has been more efficient than the U937 (human histiocytic lymphoma cells). A more adequate detection of immunopotentiating antibodies was determined. The optimal infection and virus-antibody incubation parameters are demonstrated for the detection of immunopotentiating antibodies with the immunostaining technique. The immuno-optimized assay has allowed the detection and semi-quantification of immunopotentiating antibodies against serotype 1 of dengue virus. Samples of strong positive, weak positive and dengue negative sera are analyzed. The end has been to evaluate the usefulness in the detection and semi-quantification of immunopotentiating antibodies. The presence of immunopotentiating antibodies was demonstrated against dengue virus serotype 1 in endemic zones of Costa Rica, to complement with the evaluation of the other existing serotypes is recommended [es

  11. Rapid Identification of Dengue Virus Serotypes Using Monoclonal Antibodies in an Indirect Immunofluorescence Test.

    Science.gov (United States)

    1982-06-18

    encephalitis(TBH-28), West Nile(E-101), Yellow fever (French neurotropic and 17D strains), and Zika. Two Sandfly Fever viruses (213452 and Candiru) were...derived ascitic fluid, DEN-2 HMAF which reacts with all four dengue serotypes, flavivirus HMAF (equal portions of DEN-2, Yellow fever , St. Louis...Igarashi, A., 1978. Isolation of a Singh’s Aedes albopictus cell clone sensitive to dengue and chikungunya viruses. J. Gen. Virol., 40: 531-544. 23

  12. Isolation of serotype-specific antibodies against dengue virus non-structural protein 1 using phage display and application in a multiplexed serotyping assay.

    Directory of Open Access Journals (Sweden)

    Kebaneilwe Lebani

    Full Text Available The multidimensional nature of dengue virus (DENV infections, which can be caused by four distinct serotypes of the virus, complicates the sensitivity of assays designed for the diagnosis of infection. Different viral markers can be optimally detected at different stages of infection. Of particular clinical importance is the early identification of infection, which is pivotal for disease management and the development of blood screening assays. Non-structural protein 1 (NS1 is an early surrogate marker of infection and its detection in serum coincides with detectable viraemia. The aim of this work was to isolate and characterise serotype-specific monoclonal antibodies that bind to NS1 for each of the four DENV serotypes. This was achieved using phage display and a subtractive biopanning strategy to direct the antibody selection towards serotype-specific epitopes. This antibody isolation strategy has advantages over immunisation techniques where it is difficult to avoid antibody responses to cross-reactive, immunodominant epitopes. Serotype specificity to recombinant antigen for each of the antibodies was confirmed by Enzyme Linked Immunosorbent Assay (ELISA and Surface Plasmon Resonance. Confirmation of binding to native DENV NS1 was achieved using ELISA and immunofluorescence assay on DENV infected Vero cells. No cross-reactivity with Zika or Kunjin viruses was observed. A previously isolated pan-reactive antibody that binds to an immunodominant epitope was able to pair with each of the serotype-specific antibodies in a sandwich ELISA, indicating that the serotype specific antibodies bind to epitopes which are all spatially distinct from the immunodominant epitope. These antibodies were suitable for use in a multiplexed assay for simultaneous detection and serotyping of DENV NS1 in human serum. This work demonstrates that phage display coupled with novel biopanning strategies is a valuable in vitro methodology for isolation of binders that can

  13. Isolation of serotype-specific antibodies against dengue virus non-structural protein 1 using phage display and application in a multiplexed serotyping assay.

    Science.gov (United States)

    Lebani, Kebaneilwe; Jones, Martina L; Watterson, Daniel; Ranzoni, Andrea; Traves, Renee J; Young, Paul R; Mahler, Stephen M

    2017-01-01

    The multidimensional nature of dengue virus (DENV) infections, which can be caused by four distinct serotypes of the virus, complicates the sensitivity of assays designed for the diagnosis of infection. Different viral markers can be optimally detected at different stages of infection. Of particular clinical importance is the early identification of infection, which is pivotal for disease management and the development of blood screening assays. Non-structural protein 1 (NS1) is an early surrogate marker of infection and its detection in serum coincides with detectable viraemia. The aim of this work was to isolate and characterise serotype-specific monoclonal antibodies that bind to NS1 for each of the four DENV serotypes. This was achieved using phage display and a subtractive biopanning strategy to direct the antibody selection towards serotype-specific epitopes. This antibody isolation strategy has advantages over immunisation techniques where it is difficult to avoid antibody responses to cross-reactive, immunodominant epitopes. Serotype specificity to recombinant antigen for each of the antibodies was confirmed by Enzyme Linked Immunosorbent Assay (ELISA) and Surface Plasmon Resonance. Confirmation of binding to native DENV NS1 was achieved using ELISA and immunofluorescence assay on DENV infected Vero cells. No cross-reactivity with Zika or Kunjin viruses was observed. A previously isolated pan-reactive antibody that binds to an immunodominant epitope was able to pair with each of the serotype-specific antibodies in a sandwich ELISA, indicating that the serotype specific antibodies bind to epitopes which are all spatially distinct from the immunodominant epitope. These antibodies were suitable for use in a multiplexed assay for simultaneous detection and serotyping of DENV NS1 in human serum. This work demonstrates that phage display coupled with novel biopanning strategies is a valuable in vitro methodology for isolation of binders that can discern amongst

  14. Correlation of Serotype-Specific Dengue Virus Infection with Clinical Manifestations

    Science.gov (United States)

    Halsey, Eric S.; Marks, Morgan A.; Gotuzzo, Eduardo; Fiestas, Victor; Suarez, Luis; Vargas, Jorge; Aguayo, Nicolas; Madrid, Cesar; Vimos, Carlos; Kochel, Tadeusz J.; Laguna-Torres, V. Alberto

    2012-01-01

    Background Disease caused by the dengue virus (DENV) is a significant cause of morbidity throughout the world. Although prior research has focused on the association of specific DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) with the development of severe outcomes such as dengue hemorrhagic fever and dengue shock syndrome, relatively little work has correlated other clinical manifestations with a particular DENV serotype. The goal of this study was to estimate and compare the prevalence of non-hemorrhagic clinical manifestations of DENV infection by serotype. Methodology and Principal Findings Between the years 2005–2010, individuals with febrile disease from Peru, Bolivia, Ecuador, and Paraguay were enrolled in an outpatient passive surveillance study. Detailed information regarding clinical signs and symptoms, as well as demographic information, was collected. DENV infection was confirmed in patient sera with polyclonal antibodies in a culture-based immunofluorescence assay, and the infecting serotype was determined by serotype-specific monoclonal antibodies. Differences in the prevalence of individual and organ-system manifestations were compared across DENV serotypes. One thousand seven hundred and sixteen individuals were identified as being infected with DENV-1 (39.8%), DENV-2 (4.3%), DENV-3 (41.5%), or DENV-4 (14.4%). When all four DENV serotypes were compared with each other, individuals infected with DENV-3 had a higher prevalence of musculoskeletal and gastrointestinal manifestations, and individuals infected with DENV-4 had a higher prevalence of respiratory and cutaneous manifestations. Conclusions/Significance Specific clinical manifestations, as well as groups of clinical manifestations, are often overrepresented by an individual DENV serotype. PMID:22563516

  15. Dengue Virus Serotypes Circulating in Khyber Pakhtunkhwa Province, Pakistan, 2013-2015.

    Science.gov (United States)

    Suleman, Muhammad; Faryal, Rani; Alam, Muhammad Masroor; Sharif, Salmaan; Shaukat, Shahzad; Aamir, Uzma Bashir; Khurshid, Adnan; Angez, Mehar; Umair, Massab; Sufian, Mian Muhammad; Arshad, Yasir; Zaidi, Syed Sohail Zahoor

    2017-03-01

    From 2013 to 2015, the National Institute of Health, Pakistan, received 1,270 blood samples of suspected dengue cases reported from inpatient and outpatient departments of various hospitals in Khyber Pakhtunkhwa (KPK) province. In this study, we determined the circulating dengue virus (DENV) serotypes using real-time reverse transcriptase (RT)-PCR to understand the serotype-based epidemiology of DENV. All four serotypes (DENV-1 [6%], DENV-2 [33%], DENV-3 [47%], and DENV-4 [0.1%]) were found circulating during the study period. Our findings suggest the need for an active surveillance system coupled with the laboratory diagnosis, especially in the chronic endemic areas of the country. Public awareness programs are needed for effective control and prevention of outbreaks in the future.

  16. Discrepancy between Hepatitis C Virus Genotypes and NS4-Based Serotypes: Association with Their Subgenomic Sequences

    Directory of Open Access Journals (Sweden)

    Nan Nwe Win

    2017-01-01

    Full Text Available Determination of hepatitis C virus (HCV genotypes plays an important role in the direct-acting agent era. Discrepancies between HCV genotyping and serotyping assays are occasionally observed. Eighteen samples with discrepant results between genotyping and serotyping methods were analyzed. HCV serotyping and genotyping were based on the HCV nonstructural 4 (NS4 region and 5′-untranslated region (5′-UTR, respectively. HCV core and NS4 regions were chosen to be sequenced and were compared with the genotyping and serotyping results. Deep sequencing was also performed for the corresponding HCV NS4 regions. Seventeen out of 18 discrepant samples could be sequenced by the Sanger method. Both HCV core and NS4 sequences were concordant with that of genotyping in the 5′-UTR in all 17 samples. In cloning analysis of the HCV NS4 region, there were several amino acid variations, but each sequence was much closer to the peptide with the same genotype. Deep sequencing revealed that minor clones with different subgenotypes existed in two of the 17 samples. Genotyping by genome amplification showed high consistency, while several false reactions were detected by serotyping. The deep sequencing method also provides accurate genotyping results and may be useful for analyzing discrepant cases. HCV genotyping should be correctly determined before antiviral treatment.

  17. Limited cross-reactivity of mouse monoclonal antibodies against Dengue virus capsid protein among four serotypes

    Directory of Open Access Journals (Sweden)

    Noda M

    2012-11-01

    Full Text Available Megumi Noda,1 Promsin Masrinoul,1 Chaweewan Punkum,1 Chonlatip Pipattanaboon,2,3 Pongrama Ramasoota,2,4 Chayanee Setthapramote,2,3 Tadahiro Sasaki,6 Mikiko Sasayama,1 Akifumi Yamashita,1,5 Takeshi Kurosu,6 Kazuyoshi Ikuta,6 Tamaki Okabayashi11Mahidol-Osaka Center for Infectious Diseases, 2Center of Excellence for Antibody Research, 3Department of Microbiology and Immunology, 4Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; 5Graduate School of Life Science, Tohoku University, Sendai, Miyagi, 6Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, JapanBackground: Dengue illness is one of the important mosquito-borne viral diseases in tropical and subtropical regions. Four serotypes of dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4 are classified in the Flavivirus genus of the family Flaviviridae. We prepared monoclonal antibodies against DENV capsid protein from mice immunized with DENV-2 and determined the cross-reactivity with each serotype of DENV and Japanese encephalitis virus.Methods and results: To clarify the relationship between the cross-reactivity of monoclonal antibodies and the diversity of these viruses, we examined the situations of flaviviruses by analyses of phylogenetic trees. Among a total of 60 prepared monoclonal antibodies specific for DENV, five monoclonal antibodies stained the nuclei of infected cells and were found to be specific to the capsid protein. Three were specific to DENV-2, while the other two were cross-reactive with DENV-2 and DENV-4. No monoclonal antibodies were cross-reactive with all four serotypes. Phylogenetic analysis of DENV amino acid sequences of the capsid protein revealed that DENV-2 and DENV-4 were clustered in the same branch, while DENV-1 and DENV-3 were clustered in the other branch. However, these classifications of the capsid protein were different from those of the

  18. Co-circulation and co-infections of all dengue virus serotypes in Hyderabad, India 2014.

    Science.gov (United States)

    Vaddadi, K; Gandikota, C; Jain, P K; Prasad, V S V; Venkataramana, M

    2017-09-01

    The burden of dengue virus infections increased globally during recent years. Though India is considered as dengue hyper-endemic country, limited data are available on disease epidemiology. The present study includes molecular characterization of dengue virus strains occurred in Hyderabad, India, during the year 2014. A total of 120 febrile cases were recruited for this study, which includes only children and 41 were serologically confirmed for dengue positive infections using non-structural (NS1) and/or IgG/IgM ELISA tests. RT-PCR, nucleotide sequencing and evolutionary analyses were carried out to identify the circulating serotypes/genotypes. The data indicated a high percent of severe dengue (63%) in primary infections. Simultaneous circulation of all four serotypes and co-infections were observed for the first time in Hyderabad, India. In total, 15 patients were co-infected with more than one dengue serotype and 12 (80%) of them had severe dengue. One of the striking findings of the present study is the identification of serotype Den-1 as the first report from this region and this strain showed close relatedness to the Thailand 1980 strains but not to any of the strains reported from India until now. Phylogenetically, all four strains of the present study showed close relatedness to the strains, which are reported to be high virulent.

  19. Vector competence of Malaysian Aedes albopictus with and without Wolbachia to four dengue virus serotypes.

    Science.gov (United States)

    Joanne, Sylvia; Vythilingam, Indra; Teoh, Boon-Teong; Leong, Cherng-Shii; Tan, Kim-Kee; Wong, Meng-Li; Yugavathy, Nava; AbuBakar, Sazaly

    2017-09-01

    To determine the susceptibility status of Aedes albopictus with and without Wolbachia to the four dengue virus serotypes. Two newly colonised colonies of Ae. albopictus from the wild were used for the study. One colony was naturally infected with Wolbachia while in the other Wolbachia was removed by tetracycline treatment. Both colonies were orally infected with dengue virus-infected fresh blood meal. Dengue virus load was measured using quantitative RT-PCR at four-time intervals in the salivary glands, midguts and ovaries. Wolbachia did not significantly affect Malaysian Ae. albopictus dengue infection or the dissemination rate for all four dengue virus serotypes. Malaysian Ae. albopictus had the highest replication kinetics for DENV-1 and the highest salivary gland and midgut infection rate for DENV-4. Wolbachia, which naturally exists in Malaysian Ae. albopictus, does not significantly affect dengue virus replication. Malaysian Ae. albopictus is susceptible to dengue virus infections and capable of transmitting dengue virus, especially DENV-1 and DENV-4. Removal of Wolbachia from Malaysian Ae. albopictus would not reduce their susceptibility status. © 2017 John Wiley & Sons Ltd.

  20. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes.

    Science.gov (United States)

    Wang, Jinhui; Faust, Susan M; Rabinowitz, Joseph E

    2011-05-01

    Delivery is at the heart of gene therapy. Viral DNA delivery systems are asked to avoid the immune system, transduce specific target cell types while avoiding other cell types, infect dividing and non-dividing cells, insert their cargo within the host genome without mutagenesis or to remain episomal, and efficiently express transgenes for a substantial portion of a lifespan. These sought-after features cannot be associated with a single delivery system, or can they? The Adeno-associated virus family of gene delivery vehicles has proven to be highly malleable. Pseudotyping, using AAV serotype 2 terminal repeats to generate designer shells capable of transducing selected cell types, enables the packaging of common genomes into multiple serotypes virions to directly compare gene expression and tropism. In this review the ability to manipulate this virus will be examined from the inside out. The influence of host cell factors and organism biology including the immune response on the molecular fate of the viral genome will be discussed as well as differences in cellular trafficking patterns and uncoating properties that influence serotype transduction. Re-engineering the prototype vector AAV2 using epitope insertion, chemical modification, and molecular evolution not only demonstrated the flexibility of the best-studied serotype, but now also expanded the tool kit for molecular modification of all AAV serotypes. Current AAV research has changed its focus from examination of wild-type AAV biology to the feedback of host cell/organism on the design and development of a new generation of recombinant AAV delivery vehicles. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy". Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Full-length infectious clone of a low passage dengue virus serotype 2 from Brazil

    Directory of Open Access Journals (Sweden)

    Jefferson José da Silva Santos

    2015-01-01

    Full Text Available Full-length dengue virus (DENV cDNA clones are an invaluable tool for many studies, including those on the development of attenuated or chimeric vaccines and on host-virus interactions. Furthermore, the importance of low passage DENV infectious clones should be highlighted, as these may harbour critical and unique strain-specific viral components from field-circulating isolates. The successful construction of a functional Brazilian low passage DENV serotype 2 full-length clone through homologous recombination reported here supports the use of a strategy that has been shown to be highly useful by our group for the development of flavivirus infectious clones and replicons.

  2. Emergence of Dengue virus serotype 3 on Mayotte Island, Indian ...

    African Journals Online (AJOL)

    A serosurvey carried out in 2006 in Mayotte, a French overseas collectivity in the Indian Ocean, confirmed previous circulation of dengue virus (DENV) on the island, but since the set up of a laboratory-based surveillance of dengue-like illness in 2007, no case of DENV has been confirmed. In response to an outbreak of ...

  3. Evolutionary analysis of serotype A foot-and-mouth disease viruses circulating in Pakistan and Afghanistan during 2002–2009

    DEFF Research Database (Denmark)

    Jamal, Syed Muhammad; Ferrari, Giancarlo; Ahmed, Safia

    2011-01-01

    of FMDV serotype A in the region. The A22/Iraq FMDV vaccine is antigenically distinct from the A-Iran05BAR-08 viruses. Mapping of the amino acid changes between the capsid proteins of the A22/Iraq vaccine strain and the A-Iran05BAR-08 viruses onto the A22/Iraq capsid structure identified candidate amino......Foot-and-mouth disease (FMD) is endemic in Pakistan and Afghanistan. Three different serotypes of the virus, namely O, A and Asia-1, are responsible for the outbreaks of this disease in these countries. In the present study, the nucleotide-coding sequences for the VP1 capsid protein (69 samples......) or for all four capsid proteins (P1, seven representative samples) of the serotype A FMD viruses circulating in Pakistan and Afghanistan were determined. Phylogenetic analysis of the foot-and-mouth disease virus (FMDV) VP1-coding sequences from these countries collected between 2002 and 2009 revealed...

  4. Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination.

    Science.gov (United States)

    Nivarthi, Usha K; Kose, Nurgun; Sapparapu, Gopal; Widman, Douglas; Gallichotte, Emily; Pfaff, Jennifer M; Doranz, Benjamin J; Weiskopf, Daniela; Sette, Alessandro; Durbin, Anna P; Whitehead, Steve S; Baric, Ralph; Crowe, James E; de Silva, Aravinda M

    2017-03-01

    The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination. IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody responses

  5. Antiviral Activity of Novel Quinoline Derivatives against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2018-03-01

    Full Text Available Dengue virus causes dengue fever, a debilitating disease with an increasing incidence in many tropical and subtropical territories. So far, there are no effective antivirals licensed to treat this virus. Here we describe the synthesis and antiviral activity evaluation of two compounds based on the quinoline scaffold, which has shown potential for the development of molecules with various biological activities. Two of the tested compounds showed dose-dependent inhibition of dengue virus serotype 2 in the low and sub micromolar range. The compounds 1 and 2 were also able to impair the accumulation of the viral envelope glycoprotein in infected cells, while showing no sign of direct virucidal activity and acting possibly through a mechanism involving the early stages of the infection. The results are congruent with previously reported data showing the potential of quinoline derivatives as a promising scaffold for the development of new antivirals against this important virus.

  6. Spinal nociceptive circuit analysis with recombinant adeno-associated viruses: the impact of serotypes and promoters.

    Science.gov (United States)

    Haenraets, Karen; Foster, Edmund; Johannssen, Helge; Kandra, Vinnie; Frezel, Noémie; Steffen, Timothy; Jaramillo, Valeria; Paterna, Jean-Charles; Zeilhofer, Hanns Ulrich; Wildner, Hendrik

    2017-09-01

    Recombinant adeno-associated virus (rAAV) vector-mediated gene transfer into genetically defined neuron subtypes has become a powerful tool to study the neuroanatomy of neuronal circuits in the brain and to unravel their functions. More recently, this methodology has also become popular for the analysis of spinal cord circuits. To date, a variety of naturally occurring AAV serotypes and genetically modified capsid variants are available but transduction efficiency in spinal neurons, target selectivity, and the ability for retrograde tracing are only incompletely characterized. Here, we have compared the transduction efficiency of seven commonly used AAV serotypes after intraspinal injection. We specifically analyzed local transduction of different types of dorsal horn neurons, and retrograde transduction of dorsal root ganglia (DRG) neurons and of neurons in the rostral ventromedial medulla (RVM) and the somatosensory cortex (S1). Our results show that most of the tested rAAV vectors have similar transduction efficiency in spinal neurons. All serotypes analyzed were also able to transduce DRG neurons and descending RVM and S1 neurons via their spinal axon terminals. When comparing the commonly used rAAV serotypes to the recently developed serotype 2 capsid variant rAAV2retro, a > 20-fold increase in transduction efficiency of descending supraspinal neurons was observed. Conversely, transgene expression in retrogradely transduced neurons was strongly reduced when the human synapsin 1 (hSyn1) promoter was used instead of the strong ubiquitous hybrid cytomegalovirus enhancer/chicken β-actin promoter (CAG) or cytomegalovirus (CMV) promoter fragments. We conclude that the use of AAV2retro greatly increases transduction of neurons connected to the spinal cord via their axon terminals, while the hSyn1 promoter can be used to minimize transgene expression in retrogradely connected neurons of the DRG or brainstem. Cover Image for this issue: doi. 10.1111/jnc.13813.

  7. Evolutionary Analysis of Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India.

    Directory of Open Access Journals (Sweden)

    Nazia Afreen

    2016-03-01

    Full Text Available Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.

  8. Evolutionary Analysis of Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India.

    Science.gov (United States)

    Afreen, Nazia; Naqvi, Irshad H; Broor, Shobha; Ahmed, Anwar; Kazim, Syed Naqui; Dohare, Ravins; Kumar, Manoj; Parveen, Shama

    2016-03-01

    Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.

  9. [Phylogenetic analysis of envelope gene of dengue virus serotype 2 in Guangzhou, 2001-2015].

    Science.gov (United States)

    Liu, Y; Jiang, L Y; Luo, L; Cao, Y M; Jing, Q L; Yang, Z C

    2017-01-10

    Objective: To investigate the molecular characteristics of dengue virus serotype 2 (DENV2) in Guangzhou during 2001-2015, and analyze the E gene of the strains isolated, the phylogenetic tree and molecular clock were constructed to know about the evolution of the strains. Methods: The serum samples of the patients were detected by real time PCR, and positive samples were used to isolate dengue virus by using C6/36 cells. The E gene of the isolated strains were sequenced. The phylogenetic tree was constructed by using software Mega 4.0, and the molecular clock was drawn by using software BEASTv1.8.2. Results: Twenty-six dengue virus strains were isolated between 2001 and 2015. They were all clustered into 2 genotypes, i.e. cosmopolitan genotype and Asian genotype Ⅰ. The strains isolated in Guangzhou shared high homology with Southeast Asian strains. The cosmopolitan genotype was divided into 2 sub-genotype at about 46 and 35 years ago. The substitution rate of dengue virus serotype 2 in Guangzhou was 7.1 × 10(-4) per year per site. Conclusions: There were close relationship between the Guangzhou strains and Southeast Asian strains. Guangzhou was at high risk of imported dengue fever, outbreak of dengue hemorrhagic fever and dengue shock syndrome. There might be two ways of introduction of cosmopolitan genotype. The substitution rate of the strains in Guangzhou was similar to that in the neighbor countries.

  10. Oral susceptibility of Aedes aegypti (Diptera: Culicidae) from Senegal for dengue serotypes 1 and 3 viruses.

    Science.gov (United States)

    Gaye, Alioune; Faye, Oumar; Diagne, Cheikh T; Faye, Ousmane; Diallo, Diawo; Weaver, Scott C; Sall, Amadou A; Diallo, Mawlouth

    2014-11-01

    To investigate the potential for domestic and wild populations of Aedes aegypti from Dakar and Kedougou to develop a disseminated infection after exposure to DENV-3 and DENV-1. We have exposed sylvatic and urban population of Ae. aegypti from Senegal to bloomeals containing dengue serotype 1 and 3. At different incubation period, individual mosquito legs/wings and bodies were tested for virus presence using real time RT-PCR to estimate the infection and dissemination rates. The data indicated low susceptibility to DENV-3 (infection: 2.4-15.2%, and dissemination rates: 0-8.3%) and higher susceptibility to DENV-1 (infection and dissemination rates up to 50%). Aedes aegypti from Senegal seem able to develop a disseminated infection of DENV-1 and DENV-3. Further studies are needed to test their ability to transmit the two serotypes. © 2014 John Wiley & Sons Ltd.

  11. Natural strain variation and antibody neutralization of dengue serotype 3 viruses.

    Directory of Open Access Journals (Sweden)

    Wahala M P B Wahala

    2010-03-01

    Full Text Available Dengue viruses (DENVs are emerging, mosquito-borne flaviviruses which cause dengue fever and dengue hemorrhagic fever. The DENV complex consists of 4 serotypes designated DENV1-DENV4. Following natural infection with DENV, individuals develop serotype specific, neutralizing antibody responses. Monoclonal antibodies (MAbs have been used to map neutralizing epitopes on dengue and other flaviviruses. Most serotype-specific, neutralizing MAbs bind to the lateral ridge of domain III of E protein (EDIII. It has been widely assumed that the EDIII lateral ridge epitope is conserved within each DENV serotype and a good target for vaccines. Using phylogenetic methods, we compared the amino acid sequence of 175 E proteins representing the different genotypes of DENV3 and identified a panel of surface exposed amino acids, including residues in EDIII, that are highly variant across the four DENV3 genotypes. The variable amino acids include six residues at the lateral ridge of EDIII. We used a panel of DENV3 mouse MAbs to assess the functional significance of naturally occurring amino acid variation. From the panel of antibodies, we identified three neutralizing MAbs that bound to EDIII of DENV3. Recombinant proteins and naturally occurring variant viruses were used to map the binding sites of the three MAbs. The three MAbs bound to overlapping but distinct epitopes on EDIII. Our empirical studies clearly demonstrate that the antibody binding and neutralization capacity of two MAbs was strongly influenced by naturally occurring mutations in DENV3. Our data demonstrate that the lateral ridge "type specific" epitope is not conserved between strains of DENV3. This variability should be considered when designing and evaluating DENV vaccines, especially those targeting EDIII.

  12. Vector competence of Aedes albopictus from Houston, Texas, for dengue serotypes 1 to 4, yellow fever and Ross River viruses.

    Science.gov (United States)

    Mitchell, C J; Miller, B R; Gubler, D J

    1987-09-01

    A combination of virus infection and transmission experiments showed that a Houston, Texas strain of Aedes albopictus is a competent vector for dengue (DEN), yellow fever (YF) and Ross River (RR) viruses. However, at 14 days incubation, DEN virus infection rates in a Puerto Rican strain of Aedes aegypti were significantly higher for each of the four DEN serotypes, except DEN-1, than in Houston Ae. albopictus fed simultaneously on the same virus suspensions. The degree of correlation between disseminated DEN infection rates in Houston Ae. albopictus and transmission to an in vitro system ranged from 42 to 88% for the four DEN serotypes. No significant difference was noted in YF virus infection rates or transmission rates in the two mosquito species fed on the same virus suspensions and incubated for the same time period. Also, RR virus infection and transmission rates in Houston and Hawaiian strains of Ae. albopictus were generally comparable.

  13. Influenza A Virus Infection Predisposes Hosts to Secondary Infection with Different Streptococcus pneumoniae Serotypes with Similar Outcome but Serotype-Specific Manifestation

    Science.gov (United States)

    Sharma-Chawla, Niharika; Sender, Vicky; Kershaw, Olivia; Gruber, Achim D.; Volckmar, Julia; Henriques-Normark, Birgitta

    2016-01-01

    Influenza A virus (IAV) and Streptococcus pneumoniae are major causes of respiratory tract infections, particularly during coinfection. The synergism between these two pathogens is characterized by a complex network of dysregulated immune responses, some of which last until recovery following IAV infection. Despite the high serotype diversity of S. pneumoniae and the serotype replacement observed since the introduction of conjugate vaccines, little is known about pneumococcal strain dependency in the enhanced susceptibility to severe secondary S. pneumoniae infection following IAV infection. Thus, we studied how preinfection with IAV alters host susceptibility to different S. pneumoniae strains with various degrees of invasiveness using a highly invasive serotype 4 strain, an invasive serotype 7F strain, and a carrier serotype 19F strain. A murine model of pneumococcal coinfection during the acute phase of IAV infection showed a significantly increased degree of pneumonia and mortality for all tested pneumococcal strains at otherwise sublethal doses. The incidence and kinetics of systemic dissemination, however, remained bacterial strain dependent. Furthermore, we observed strain-specific alterations in the pulmonary levels of alveolar macrophages, neutrophils, and inflammatory mediators ultimately affecting immunopathology. During the recovery phase following IAV infection, bacterial growth in the lungs and systemic dissemination were enhanced in a strain-dependent manner. Altogether, this study shows that acute IAV infection predisposes the host to lethal S. pneumoniae infection irrespective of the pneumococcal serotype, while the long-lasting synergism between IAV and S. pneumoniae is bacterial strain dependent. These results hold implications for developing tailored therapeutic treatment regimens for dual infections during future IAV outbreaks. PMID:27647871

  14. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family

    Energy Technology Data Exchange (ETDEWEB)

    Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie; Gatchalian, Jovylyn; Cornillez-Ty, Cromwell; Kuhn, Peter (Scripps)

    2010-03-04

    With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication by processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.

  15. Bluetongue, Schmallenberg - what is next? : Culicoides-borne viral diseases in the 21st Century

    NARCIS (Netherlands)

    Koenraadt, Constantianus Jm; Balenghien, Thomas; Carpenter, Simon; Ducheyne, Els; Elbers, Armin Rw; Fife, Mark; Garros, Claire; Ibáñez-Justicia, Adolfo; Kampen, Helge; Kormelink, Richard Jm; Losson, Bertrand; van der Poel, Wim Hm; De Regge, Nick; van Rijn, Piet A; Sanders, Christopher; Schaffner, Francis; Sloet van Oldruitenborgh-Oosterbaan, Marianne M|info:eu-repo/dai/nl/075234394; Takken, Willem; Werner, Doreen; Seelig, Frederik

    2014-01-01

    In the past decade, two pathogens transmitted by Culicoides biting midges (Diptera: Ceratopogonidae), bluetongue virus and Schmallenberg virus, have caused serious economic losses to the European livestock industry, most notably affecting sheep and cattle. These outbreaks of arboviral disease have

  16. Bluetongue, Schmallenberg - what is next? Culicoides-borne viral diseases in the 21st Century

    NARCIS (Netherlands)

    Koenraadt, C.J.M.; Balenghien, T.; Carpenter, S.; Ducheyne, E.; Elbers, A.R.W.; Fife, M.; Garros, C.; Ibanez-Justicia, A.; Kampen, H.; Kormelink, R.J.M.; Losson, B.; Poel, van der W.H.M.; Regge, de N.; Rijn, van P.A.; Sanders, C.; Schaffner, F.; Sloet van Oldruitenborgh-Oosterbaan, M.M.; Takken, W.; Werner, D.; Seelig, F.

    2014-01-01

    In the past decade, two pathogens transmitted by Culicoides biting midges (Diptera: Ceratopogonidae), bluetongue virus and Schmallenberg virus, have caused serious economic losses to the European livestock industry, most notably affecting sheep and cattle. These outbreaks of arboviral disease have

  17. Adenoassociated Virus Serotype 9-Mediated Gene Therapy for X-Linked Adrenoleukodystrophy

    OpenAIRE

    Gong, Yi; Mu, Dakai; Prabhakar, Shilpa; Moser, Ann; Musolino, Patricia; Ren, JiaQian; Breakefield, Xandra O; Maguire, Casey A; Eichler, Florian S

    2015-01-01

    X-linked adrenoleukodystrophy (X-ALD) is a devastating neurological disorder caused by mutations in the ABCD1 gene that encodes a peroxisomal ATP-binding cassette transporter (ABCD1) responsible for transport of CoA-activated very long-chain fatty acids (VLCFA) into the peroxisome for degradation. We used recombinant adenoassociated virus serotype 9 (rAAV9) vector for delivery of the human ABCD1 gene (ABCD1) to mouse central nervous system (CNS). In vitro, efficient delivery of ABCD1 gene was...

  18. Virus-like particle secretion and genotype-dependent immunogenicity of dengue virus serotype 2 DNA vaccine.

    Science.gov (United States)

    Galula, Jedhan U; Shen, Wen-Fan; Chuang, Shih-Te; Chang, Gwong-Jen J; Chao, Day-Yu

    2014-09-01

    Dengue virus (DENV), composed of four distinct serotypes, is the most important and rapidly emerging arthropod-borne pathogen and imposes substantial economic and public health burdens. We constructed candidate vaccines containing the DNA of five of the genotypes of dengue virus serotype 2 (DENV-2) and evaluated the immunogenicity, the neutralizing (Nt) activity of the elicited antibodies, and the protective efficacy elicited in mice immunized with the vaccine candidates. We observed a significant correlation between the level of in vitro virus-like particle secretion, the elicited antibody response, and the protective efficacy of the vaccines containing the DNA of the different DENV genotypes in immunized mice. However, higher total IgG antibody levels did not always translate into higher Nt antibodies against homologous and heterologous viruses. We also found that, in contrast to previous reports, more than 50% of total IgG targeted ectodomain III (EDIII) of the E protein, and a substantial fraction of this population was interdomain highly neutralizing flavivirus subgroup-cross-reactive antibodies, such as monoclonal antibody 1B7-5. In addition, the lack of a critical epitope(s) in the Sylvatic genotype virus recognized by interdomain antibodies could be the major cause of the poor protection of mice vaccinated with the Asian 1 genotype vaccine (pVD2-Asian 1) from lethal challenge with virus of the Sylvatic genotype. In conclusion, although the pVD2-Asian 1 vaccine was immunogenic, elicited sufficient titers of Nt antibodies against all DENV-2 genotypes, and provided 100% protection against challenge with virus of the homologous Asian 1 genotype and virus of the heterologous Cosmopolitan genotype, it is critical to monitor the potential emergence of Sylvatic genotype viruses, since vaccine candidates under development may not protect vaccinated humans from these viruses. Five genotype-specific dengue virus serotype 2 (DENV-2) DNA vaccine candidates were

  19. Climate change and the spread of vector-borne diseases: using approximate Bayesian computation to compare invasion scenarios for the bluetongue virus vector Culicoides imicola in Italy.

    Science.gov (United States)

    Mardulyn, Patrick; Goffredo, Maria; Conte, Annamaria; Hendrickx, Guy; Meiswinkel, Rudolf; Balenghien, Thomas; Sghaier, Soufien; Lohr, Youssef; Gilbert, Marius

    2013-05-01

    Bluetongue (BT) is a commonly cited example of a disease with a distribution believed to have recently expanded in response to global warming. The BT virus is transmitted to ruminants by biting midges of the genus Culicoides, and it has been hypothesized that the emergence of BT in Mediterranean Europe during the last two decades is a consequence of the recent colonization of the region by Culicoides imicola and linked to climate change. To better understand the mechanism responsible for the northward spread of BT, we tested the hypothesis of a recent colonization of Italy by C. imicola, by obtaining samples from more than 60 localities across Italy, Corsica, Southern France, and Northern Africa (the hypothesized source point for the recent invasion of C. imicola), and by genotyping them with 10 newly identified microsatellite loci. The patterns of genetic variation within and among the sampled populations were characterized and used in a rigorous approximate Bayesian computation framework to compare three competing historical hypotheses related to the arrival and establishment of C. imicola in Italy. The hypothesis of an ancient presence of the insect vector was strongly favoured by this analysis, with an associated P ≥ 99%, suggesting that causes other than the northward range expansion of C. imicola may have supported the emergence of BT in southern Europe. Overall, this study illustrates the potential of molecular genetic markers for exploring the assumed link between climate change and the spread of diseases. © 2013 Blackwell Publishing Ltd.

  20. Coinfections of Sudanese dairy cattle with bovine herpes virus 1, bovine viral diarrhea virus, bluetongue virus and bovine herpes virus 4 and their relation to reproductive disorders

    Directory of Open Access Journals (Sweden)

    Amira M. Elhassan

    2016-12-01

    Reults: The meta-analysis of the data indicated high seroprevalence of coinfections with various combinations of these agents; only few animals were singly infected. An infection with BHV-1 was observed to be higher than the prevalence of associations between BHV-1 and the other three viral agents. Prevalence of seropositivities to coinfection with BHV-1/BTV; BHV-1/BVD; BHV-1/BTV/BVD were the highest while seropositivities prevalences that involved BHV-4 were much lower. The highest abortion rates were encountered in coinfections with BHV-1/BVD/BTV (31% and BHV-1/BVD/BTV/BHV-4 (30% while most infertility cases were noticed in coinfection with BHV-1/BVD/BTV (44% and BHV-1/BVD/BTV/BHV-4 (21%, and coinfections with the four viruses were encountered in most of the death after birth cases (25%. Overall mixed infections with BHV-1/BVD/BTV (34% and BHV-1/BVD/BTV/BHV-4 (22.5% were involved in the majority of reproductive problems studied. Conclusion: Mixed infections constitutes the vast majority of cases and are involved in the majority of reproductive disorders investigated. The high prevalence of seropositivity to all of the four viruses should call for an intervention strategy to reduce the impact of these viruses. [J Adv Vet Anim Res 2016; 3(4.000: 332-337

  1. Nucleotide substitutions in dengue virus serotypes from Asian and American countries: insights into intracodon recombination and purifying selection

    Science.gov (United States)

    2013-01-01

    Background Dengue virus (DENV) infection represents a significant public health problem in many subtropical and tropical countries. Although genetically closely related, the four serotypes of DENV differ in antigenicity for which cross protection among serotypes is limited. It is also believed that both multi-serotype infection as well as the evolution of viral antigenicity may have confounding effects in increased dengue epidemics. Numerous studies have been performed that investigated genetic diversity of DENV, but the precise mechanism(s) of dengue virus evolution are not well understood. Results We investigated genome-wide genetic diversity and nucleotide substitution patterns in the four serotypes among samples collected from different countries in Asia and Central and South America and sequenced as part of the Genome Sequencing Center for Infectious Diseases at the Broad Institute. We applied bioinformatics, statistical and coalescent simulation methods to investigate diversity of codon sequences of DENV samples representing the four serotypes. We show that fixation of nucleotide substitutions is more prominent among the inter-continental isolates (Asian and American) of serotypes 1, 2 and 3 compared to serotype 4 isolates (South and Central America) and are distributed in a non-random manner among the genes encoded by the virus. Nearly one third of the negatively selected sites are associated with fixed mutation sites within serotypes. Our results further show that of all the sites showing evidence of recombination, the majority (~84%) correspond to sites under purifying selection in the four serotypes. The analysis further shows that genetic recombination occurs within specific codons, albeit with low frequency (< 5% of all recombination sites) throughout the DENV genome of the four serotypes and reveals significant enrichment (p < 0.05) among sites under purifying selection in the virus. Conclusion The study provides the first evidence for intracodon

  2. The B Cell Response to Foot-and-Mouth Disease Virus in Cattle following Sequential Vaccination with Multiple Serotypes

    Science.gov (United States)

    Carr, B. Veronica; Kotecha, Abhay; van den Born, Erwin; Stuart, David I.; Hammond, John A.

    2017-01-01

    ABSTRACT Foot-and-mouth disease virus (FMDV) is a highly contagious viral disease. Antibodies are pivotal in providing protection against FMDV infection. Serological protection against one FMDV serotype does not confer interserotype protection. However, some historical data have shown that interserotype protection can be induced following sequential FMDV challenge with multiple FMDV serotypes. In this study, we have investigated the kinetics of the FMDV-specific antibody-secreting cell (ASC) response following homologous and heterologous inactivated FMDV vaccination regimes. We have demonstrated that the kinetics of the B cell response are similar for all four FMDV serotypes tested following a homologous FMDV vaccination regime. When a heterologous vaccination regime was used with the sequential inoculation of three different inactivated FMDV serotypes (O, A, and Asia1 serotypes) a B cell response to FMDV SAT1 and serotype C was induced. The studies also revealed that the local lymphoid tissue had detectable FMDV-specific ASCs in the absence of circulating FMDV-specific ASCs, indicating the presence of short-lived ASCs, a hallmark of a T-independent 2 (TI-2) antigenic response to inactivated FMDV capsid. IMPORTANCE We have demonstrated the development of intraserotype response following a sequential vaccination regime of four different FMDV serotypes. We have found indication of short-lived ASCs in the local lymphoid tissue, further evidence of a TI-2 response to FMDV. PMID:28228594

  3. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone.

    Science.gov (United States)

    Osorio, Jorge E; Wallace, Derek; Stinchcomb, Dan T

    2016-01-01

    Dengue fever is caused by infection with one of four dengue virus (DENV) serotypes (DENV-1-4), necessitating tetravalent dengue vaccines that can induce protection against all four DENV. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) comprises an attenuated DENV-2 strain plus chimeric viruses containing the prM and E genes of DENV-1, -3 and -4 cloned into the attenuated DENV-2 'backbone'. In Phase 1 and 2 studies, TDV was well tolerated by children and adults aged 1.5-45 years, irrespective of prior dengue exposure; mild injection-site symptoms were the most common adverse events. TDV induced neutralizing antibody responses and seroconversion to all four DENV as well as cross-reactive T cell-mediated responses that may be necessary for broad protection against dengue fever.

  4. Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype

    Directory of Open Access Journals (Sweden)

    Kimberly A. Dowd

    2016-08-01

    Full Text Available Recent epidemics of Zika virus (ZIKV have been associated with congenital malformation during pregnancy and Guillain-Barré syndrome. There are two ZIKV lineages (African and Asian that share >95% amino acid identity. Little is known regarding the ability of neutralizing antibodies elicited against one lineage to protect against the other. We investigated the breadth of the neutralizing antibody response following ZIKV infection by measuring the sensitivity of six ZIKV strains to neutralization by ZIKV-confirmed convalescent human serum or plasma samples. Contemporary Asian and early African ZIKV strains were similarly sensitive to neutralization regardless of the cellular source of virus. Furthermore, mouse immune serum generated after infection with African or Asian ZIKV strains was capable of neutralizing homologous and heterologous ZIKV strains equivalently. Because our study only defines a single ZIKV serotype, vaccine candidates eliciting robust neutralizing antibody responses should inhibit infection of both ZIKV lineages, including strains circulating in the Americas.

  5. Serosurveillance and factors associated with the presence of antibodies against bluetongue virus in dairy cattle in two eco-zones of Nepal.

    Science.gov (United States)

    Gaire, T N; Karki, S; Dhakal, I P; Khanal, D R; Bowen, R A

    2016-12-01

    Cattle play an important role in the epidemiology of bluetongue (BT) by acting as reservoir hosts. However, the status of BT virus (BTV) in dairy cattle in Nepal is unknown. The objective of this study was to estimate the prevalence of BTV antibodies in dairy cattle in two eco-zones of Nepal, and to identify the factors associated with virus exposure. The authors conducted a cross-sectional serosurvey from March 2012 through February 2013 by sampling 131 dairy cattle from seven clusters (villages) in the Chitwan district in the Terai region (southern lowlands) and the Lamjung district in the Hills region (the middle part of Nepal). Of the 131 serum samples tested, 29.3% (95% confidence interval [CI]: 21.5-37.2) were positive for BTV antibodies. Herd-level seroprevalence was 45.7% (95% CI: 30.9-61.0). Bivariate analysis indicated a positive association between seroconversion to BTV and age, and an association with breed of cattle after controlling for clustering of animals within herds. Based on this model, cattle were more likely to become seropositive as they aged. Crossbred cattle were more likely to be seropositive than those of exotic breeds (odds ratio [OR] = 4.6; 95% CI: 1.5-14.1). The results indicate widespread exposure of dairy cattle to BTV in Nepal. The authors suggest that dairy cattle should be included in the surveillance plan for BTV infection in Nepal and that it is important to educate farmers about the possible impacts of this disease. © OIE (World Organisation for Animal Health), 2016.

  6. Vector competence of Culicoides sonorensis (Diptera: Ceratopogonidae to epizootic hemorrhagic disease virus serotype 7

    Directory of Open Access Journals (Sweden)

    Ruder Mark G

    2012-10-01

    Full Text Available Abstract Background Culicoides sonorensis (Diptera: Ceratopogonidae is a vector of epizootic hemorrhagic disease virus (EHDV serotypes 1 and 2 in North America, where these viruses are well-known pathogens of white-tailed deer (WTD and other wild ruminants. Although historically rare, reports of clinical EHDV infection in cattle have increased in some parts of the world over the past decade. In 2006, an EHDV-7 epizootic in cattle resulted in economic loss for the Israeli dairy industry. White-tailed deer are susceptible to EHDV-7 infection and disease; however, this serotype is exotic to the US and the susceptibility of C. sonorensis to this cattle-virulent EHDV is not known. The objective of the study was to determine if C. sonorensis is susceptible to EHDV-7 infection and is a competent vector. Methods To evaluate the susceptibility of C. sonorensis, midges were fed on EHDV-7 infected WTD, held at 22 ± 1°C, and processed individually for virus isolation and titration on 4–16 days post feeding (dpf. Midges with a virus titer of ≥102.7 median tissue culture infective doses (TCID50/midge were considered potentially competent. To determine if infected C. sonorensis were capable of transmitting EHDV-7 to a host, a susceptible WTD was then fed on by a group of 14–16 dpf midges. Results From 4–16 dpf, 45% (156/350 of midges that fed on WTD with high titer viremia (>107 TCID50/ml were virus isolation-positive, and starting from 10–16 dpf, 32% (35/109 of these virus isolation-positive midges were potentially competent (≥102.7 TCID50/midge. Midges that fed on infected deer transmitted the virus to a susceptible WTD at 14–16 dpf. The WTD developed viremia and severe clinical disease. Conclusion This study demonstrates that C. sonorensis is susceptible to EHDV-7 infection and can transmit the virus to susceptible WTD, thus, C. sonorensis should be considered a potential vector of EHDV-7. Together with previous work, this study demonstrates

  7. Detection and differentiation of CVI988 (Rispens vaccine) from other serotype 1 Marek's disease viruses.

    Science.gov (United States)

    Gimeno, Isabel M; Dunn, John R; Cortes, Aneg L; El-Gohary, Abd El-Galil; Silva, Robert F

    2014-06-01

    The serotype 1 Marek's disease virus (MDV) is the causative agent for Marek's disease (MD), a lymphoproliferative disease of chickens of great concern to the poultry industry. CVI988 (Rispens vaccine), an attenuated serotype 1 MDV, is currently the most efficacious commercially available vaccine for preventing MD. However, it is difficult to detect and differentiate CVI988 when other serotype 1 MDVs are present. To facilitate the detection of CVI988, we developed two sets of primers for a mismatch amplification mutation assay (MAMA) PCR that targeted the single nulceotide polymorphism associated with the H19 epitope of the phosphorylated protein 38 gene. The PCR was very specific. One primer set (oncogenic primers) amplified DNA from 15 different serotype 1 MDVs except CVI988. The other primer set (CVI988 primers) amplified DNA from CVI988 but not from any of the other 15 serotype 1 MDVs. A real-time PCR assay was developed using MAMA primers, and specificity and sensitivity was evaluated in vitro and in vivo. Mixtures of plasmids (CVI988 plasmid and oncogenic plasmid) at various concentrations were used to evaluate the sensitivity/specificity of MAMA primers in vitro. Both primer setswere able to amplify as little as one copy of their respective plasmid. Oncogenic primers were highly specific and only amplified CVI988 plasmid when the concentration of oncogenic plasmid was very low (1 X 10(1)) and CVI988 plasmid was very high (1 X 10(6)). Specificity of CVI988 primers was not as high because they could amplify oncogenic plasmids when the concentration of CVI988 plasmid was 1 x 10(3) and the concentration of oncogenic 1 x 10(2). Validation of MAMA primers in in vivo samples demonstrated that oncogenic primers can be used for both early diagnosis of MD in feather pulp (FP) samples collected at 3 wk of age and confirmation of MD diagnosis in tumors. CVI988 primers could be used to monitor CVI988 vaccination in samples with a low load of oncogenic MDV DNA (latently

  8. Functional Transplant of a Dengue Virus Serotype 3 (DENV3)-Specific Human Monoclonal Antibody Epitope into DENV1.

    Science.gov (United States)

    Messer, William B; Yount, Boyd L; Royal, Scott R; de Alwis, Ruklanthi; Widman, Douglas G; Smith, Scott A; Crowe, James E; Pfaff, Jennifer M; Kahle, Kristen M; Doranz, Benjamin J; Ibarra, Kristie D; Harris, Eva; de Silva, Aravinda M; Baric, Ralph S

    2016-05-15

    The four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms. Dengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they neutralize the virus

  9. Population genomics of dengue virus serotype 4: insights into genetic structure and evolution.

    Science.gov (United States)

    Waman, Vaishali P; Kasibhatla, Sunitha Manjari; Kale, Mohan M; Kulkarni-Kale, Urmila

    2016-08-01

    The spread of dengue disease has become a global public health concern. Dengue is caused by dengue virus, which is a mosquito-borne arbovirus of the genus Flavivirus, family Flaviviridae. There are four dengue virus serotypes (1-4), each of which is known to trigger mild to severe disease. Dengue virus serotype 4 (DENV-4) has four genotypes and is increasingly being reported to be re-emerging in various parts of the world. Therefore, the population structure and factors shaping the evolution of DENV-4 strains across the world were studied using genome-based population genetic, phylogenetic and selection pressure analysis methods. The population genomics study helped to reveal the spatiotemporal structure of the DENV-4 population and its primary division into two spatially distinct clusters: American and Asian. These spatial clusters show further time-dependent subdivisions within genotypes I and II. Thus, the DENV-4 population is observed to be stratified into eight genetically distinct lineages, two of which are formed by American strains and six of which are formed by Asian strains. Episodic positive selection was observed in the structural (E) and non-structural (NS2A and NS3) genes, which appears to be responsible for diversification of Asian lineages in general and that of modern lineages of genotype I and II in particular. In summary, the global DENV-4 population is stratified into eight genetically distinct lineages, in a spatiotemporal manner with limited recombination. The significant role of adaptive evolution in causing diversification of DENV-4 lineages is discussed. The evolution of DENV-4 appears to be governed by interplay between spatiotemporal distribution, episodic positive selection and intra/inter-genotype recombination.

  10. Identification and Characterization of Marek’s Disease Virus Serotype 1 Using Molecular Approaches

    Directory of Open Access Journals (Sweden)

    Risza Hartawan

    2015-03-01

    Full Text Available Marek’s disease is an important disease in the commercial poultry farm and causes significant economical loss. The disease is characterized by syndrome of paralysis and neoplastic formation in various organs and tissues in the host. The etiological agent is Marek’s disease virus serotype 1 (MDV-1. Eventhough the outbreaks in the field are well controlled by vaccination, several cases in the vaccinated flocks indicating virus evolution into more pathogenic strains. Therefore, monitoring of the disease circumstance in the field is indispensable for guiding better policies in disease controlling program. This paper describes several molecular methods that have been developed for identification and characterization of MDV-1. The identification and characterization of newly found virus strain in the field can be done by in vivo challenge test which is a conventional method especially to determine pathogenecity. However, this method requires several stages with time consuming procedures. The development of alternative methods for identification and characterization of MDV-1 viruses has been conducted mainly using molecular biology approach. Several molecular methods give satisfying result and have been implemented in both laboratory and field condition.

  11. An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes

    Directory of Open Access Journals (Sweden)

    Swaminathan Sathyamangalam

    2007-02-01

    Full Text Available Abstract Background Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype. Results This work stems from the emergence of (i the DEN virus envelope (E domain III (EDIII as the most important region of the molecule from a vaccine perspective and (ii the adenovirus (Ad as a promising vaccine vector platform. We describe the construction of a recombinant, replication-defective Ad (rAd vector encoding a chimeric antigen made of in-frame linked EDIIIs of DEN virus serotypes 2 and 4. Using this rAd vector, in conjunction with a plasmid vector encoding the same chimeric bivalent antigen, in a prime-boost strategy, we show that it is possible to elicit equipotent neutralizing and T cell responses specific to both DEN serotypes 2 and 4. Conclusion Our data support the hypothesis that a DEN vaccine targeting more than one serotype may be based on a single DNA-based vector to circumvent viral interference. This work lays the foundation for developing a single Ad vector encoding EDIIIs of all four DEN serotypes to evoke a balanced immune response against each one of them. Thus, this work has

  12. Genome sequence of foot-and-mouth disease virus serotype O lineage ind-2001d collected in Vietnam in 2015

    Science.gov (United States)

    Foot-and-mouth disease (FMD) is endemic in several countries in Asia and Africa and is considered one of the most important livestock diseases worldwide. Three serotypes of FMD virus (A, O and Asia1) contribute to endemicity in mainland Southeast Asia. In 2015, FMDV lineage Ind-2001 was detected for...

  13. Genetic diversity of foot-and-mouth disease virus serotype O in Pakistan and Afghanistan, 1997–2009

    DEFF Research Database (Denmark)

    Jamal, Syed Muhammad; Ferrari, Giancarlo; Ahmed, Safia

    2011-01-01

    Foot-and-mouth disease (FMD) is endemic in Pakistan and Afghanistan; serotypes O, A and Asia-1 of the virus are responsible for the outbreaks in these countries with FMDV type O usually being the most common. In the present study, the nucleotide sequences encoding the FMDV capsid protein VP1 from...

  14. Assessment of Adeno-Associated Virus Serotype Tropism in Human Retinal Explants.

    Science.gov (United States)

    Wiley, Luke A; Burnight, Erin R; Kaalberg, Emily E; Jiao, Chunhua; Riker, Megan J; Halder, Jennifer A; Luse, Meagan A; Han, Ian C; Russell, Stephen R; Sohn, Elliott H; Stone, Edwin M; Tucker, Budd A; Mullins, Robert F

    2018-02-23

    Advances in the discovery of the causes of monogenic retinal disorders, combined with technologies for the delivery of DNA to the retina, offer enormous opportunities for the treatment of previously untreatable blinding diseases. However, for gene augmentation to be most effective, vectors that have the correct cell-type specificity are needed. While animal models are very useful, they often exhibit differences in retinal cell surface receptors compared to the human retina. This study evaluated the use of an ex vivo organotypic explant system to test the transduction efficiency and tropism of seven different adeno-associated virus type 2 (AAV2) serotypes in the human retina and retinal pigment epithelium-choroid-AAV2/1, AAV2/2, AAV2/4, AAV2/5, AAV2/6, AAV2/8, and AAV2/9-all driving expression of GFP under control of the cytomegalovirus promoter. After 7 days in culture, it was found that AAV2/4 and AAV2/5 were particularly efficient at transducing photoreceptor cells and that AAV2/5 was highly specific to the outer nuclear layer, whereas AAV2/8 displayed consistently low transduction of photoreceptors. To validate the authenticity of the organotypic culture system, the transduction of the same set of AAVs was also compared in a pig model, in which sub-retinal injections in vivo were compared to cultured and transduced organotypic cultures ex vivo. This study shows how different AAV serotypes behave in the human retina and provides insight for further investigation of each of these serotypes for gene augmentation-based treatment of inherited retinal degeneration.

  15. Detection and serotyping of dengue virus in serum samples by multiplex reverse transcriptase PCR-ligase detection reaction assay.

    Science.gov (United States)

    Das, S; Pingle, M R; Muñoz-Jordán, J; Rundell, M S; Rondini, S; Granger, K; Chang, G-J J; Kelly, E; Spier, E G; Larone, D; Spitzer, E; Barany, F; Golightly, L M

    2008-10-01

    The detection and successful typing of dengue virus (DENV) from patients with suspected dengue fever is important both for the diagnosis of the disease and for the implementation of epidemiologic control measures. A technique for the multiplex detection and typing of DENV serotypes 1 to 4 (DENV-1 to DENV-4) from clinical samples by PCR-ligase detection reaction (LDR) has been developed. A serotype-specific PCR amplifies the regions of genes C and E simultaneously. The two amplicons are targeted in a multiplex LDR, and the resultant fluorescently labeled ligation products are detected on a universal array. The assay was optimized using 38 DENV strains and was evaluated with 350 archived acute-phase serum samples. The sensitivity of the assay was 98.7%, and its specificity was 98.4%, relative to the results of real-time PCR. The detection threshold was 0.017 PFU for DENV-1, 0.004 PFU for DENV-2, 0.8 PFU for DENV-3, and 0.7 PFU for DENV-4. The assay is specific; it does not cross-react with the other flaviviruses tested (West Nile virus, St. Louis encephalitis virus, Japanese encephalitis virus, Kunjin virus, Murray Valley virus, Powassan virus, and yellow fever virus). All but 1 of 26 genotypic variants of DENV serotypes in a global DENV panel from different geographic regions were successfully identified. The PCR-LDR assay is a rapid, sensitive, specific, and high-throughput technique for the simultaneous detection of all four serotypes of DENV.

  16. Circulating serotypes of dengue virus and their incursion into non-endemic areas of Pakistan; a serious threat.

    Science.gov (United States)

    Ali, Amjad; Ahmad, Habib; Idrees, Muhammad; Zahir, Fazli; Ali, Ijaz

    2016-08-26

    Dengue virus is circulating in Pakistan since 1994, which causes major and minor outbreaks in many areas of the country. The incidence of dengue in Pakistan in past years mainly restricted to parts of Sindh and Punjab provinces. As such, a severe dengue outbreak appeared in Pakistan in 2011, particularly in Punjab province with Lahore as the most hit city (290 deaths). In 2013, for the first time in the history of Pakistan, dengue outbreak erupted in Swat District, Khyber Pakhtunkhwa, which claimed more than 57 lives. Hence this study was conducted to document circulating serotypes of dengue virus in Pakistan in 2011 and 2013 dengue outbreaks in two different territories/areas of the country. In total, 1340 blood samples from people having dengue (ELISA positive) and/or dengue like symptoms from various cities/areas of Punjab and Swat, Khyber Pakhtunkhwa (KP) were collected and analyzed by reverse transcription polymerase chain reaction (RT-PCR) using serotype specific primers. The results indicated that all the four dengue virus serotypes were circulating in Punjab Province with highest frequency of DENV-2 (41.64 %) and DENV-3 (41.05 %). Similarly, DENV-2 (41.66 %) and DENV-3 (35.0 %) were dominant serotypes detected in KP-based people lived in Punjab. On the other hand only DENV-2 (40.0 %) and DENV-3 (60.0 %) were detected in Swat District. Furthermore an important observation noted in this study was mixed infection of DENV-2 and DENV-3 in Punjab in 2011 (3.81 %) and in people from KP infected in Punjab (8.33 %) which may account for the high mortality and morbidity rates as compared to previous outbreaks. Over all male population was mostly infected as compared to females and people in the age group between 15 to 45 was the highest infected group. The findings of this study indicate that all four serotypes of dengue virus are circulating in Punjab whereas serotypes 2 and 3 introduced for the first time into Swat, KP in 2013; about 600 km away from Lahore

  17. Identification of the Galactose Binding Domain of the Adeno-Associated Virus Serotype 9 Capsid

    Science.gov (United States)

    Bell, Christie L.; Gurda, Brittney L.; Van Vliet, Kim; Agbandje-McKenna, Mavis

    2012-01-01

    Adeno-associated virus serotype 9 (AAV9) vectors show promise for gene therapy of a variety of diseases due to their ability to transduce multiple tissues, including heart, skeletal muscle, and the alveolar epithelium of the lung. In addition, AAV9 is unique compared to other AAV serotypes in that it is capable of surpassing the blood-brain barrier and transducing neurons in the brain and spinal cord. It has recently been shown that AAV9 uses galactose as a receptor to transduce many different cell types in vitro, as well as cells of the mouse airway in vivo. In this study, we sought to identify the specific amino acids of the AAV9 capsid necessary for binding to galactose. By site-directed mutagenesis and cell binding assays, plus computational ligand docking studies, we discovered five amino acids, including N470, D271, N272, Y446, and W503, which are required for galactose binding that form a pocket at the base of the protrusions around the icosahedral 3-fold axes of symmetry. The importance of these amino acids for tissue tropism was also confirmed by in vivo studies in the mouse lung. Identifying the interactions necessary for AAV9 binding to galactose may lead to advances in vector engineering. PMID:22514350

  18. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia.

    Science.gov (United States)

    Tian, Huaiyu; Sun, Zhe; Faria, Nuno Rodrigues; Yang, Jing; Cazelles, Bernard; Huang, Shanqian; Xu, Bo; Yang, Qiqi; Pybus, Oliver G; Xu, Bing

    2017-08-01

    The incidence of dengue has grown dramatically in recent decades worldwide, especially in Southeast Asia and the Americas with substantial transmission in 2014-2015. Yet the mechanisms underlying the spatio-temporal circulation of dengue virus (DENV) serotypes at large geographical scales remain elusive. Here we investigate the co-circulation in Asia of DENV serotypes 1-3 from 1956 to 2015, using a statistical framework that jointly estimates migration history and quantifies potential predictors of viral spatial diffusion, including socio-economic, air transportation and maritime mobility data. We find that the spread of DENV-1, -2 and -3 lineages in Asia is significantly associated with air traffic. Our analyses suggest the network centrality of air traffic hubs such as Thailand and India contribute to seeding dengue epidemics, whilst China, Cambodia, Indonesia, and Singapore may establish viral diffusion links with multiple countries in Asia. Phylogeographic reconstructions help to explain how growing air transportation networks could influence the dynamics of DENV circulation.

  19. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia.

    Directory of Open Access Journals (Sweden)

    Huaiyu Tian

    2017-08-01

    Full Text Available The incidence of dengue has grown dramatically in recent decades worldwide, especially in Southeast Asia and the Americas with substantial transmission in 2014-2015. Yet the mechanisms underlying the spatio-temporal circulation of dengue virus (DENV serotypes at large geographical scales remain elusive. Here we investigate the co-circulation in Asia of DENV serotypes 1-3 from 1956 to 2015, using a statistical framework that jointly estimates migration history and quantifies potential predictors of viral spatial diffusion, including socio-economic, air transportation and maritime mobility data. We find that the spread of DENV-1, -2 and -3 lineages in Asia is significantly associated with air traffic. Our analyses suggest the network centrality of air traffic hubs such as Thailand and India contribute to seeding dengue epidemics, whilst China, Cambodia, Indonesia, and Singapore may establish viral diffusion links with multiple countries in Asia. Phylogeographic reconstructions help to explain how growing air transportation networks could influence the dynamics of DENV circulation.

  20. Low diversity of foot-and-mouth disease serotype C virus in Kenya: evidence for probable vaccine strain re-introductions in the field

    DEFF Research Database (Denmark)

    Sangula, Abraham; Siegismund, Hans; Belsham, Graham

    2011-01-01

    Most viruses are maintained by complex processes of evolution that enable them to survive but also complicate efforts to achieve their control. In this paper, we study patterns of evolution in foot-and-mouth disease (FMD) serotype C virus isolates from Kenya, one of the few places in the world...... of serotype C FMD virus and the use of vaccination as a control measure in Kenya are discussed....

  1. Serotype-Specific Transmission and Waning Immunity of Endemic Foot-and-Mouth Disease Virus in Cameroon.

    Directory of Open Access Journals (Sweden)

    Laura W Pomeroy

    Full Text Available Foot-and-mouth disease virus (FMDV causes morbidity and mortality in a range of animals and threatens local economies by acting as a barrier to international trade. The outbreak in the United Kingdom in 2001 that cost billions to control highlighted the risk that the pathogen poses to agriculture. In response, several mathematical models have been developed to parameterize and predict both transmission dynamics and optimal disease control. However, a lack of understanding of the multi-strain etiology prevents characterization of multi-strain dynamics. Here, we use data from FMDV serology in an endemic setting to probe strain-specific transmission and immunodynamics. Five serotypes of FMDV affect cattle in the Far North Region of Cameroon. We fit both catalytic and reverse catalytic models to serological data to estimate the force of infection and the rate of waning immunity, and to detect periods of sustained transmission. For serotypes SAT2, SAT3, and type A, a model assuming life-long immunity fit better. For serotypes SAT1 and type O, the better-fit model suggests that immunity may wane over time. Our analysis further indicates that type O has the greatest force of infection and the longest duration of immunity. Estimates for the force of infection were time-varying and indicated that serotypes SAT1 and O displayed endemic dynamics, serotype A displayed epidemic dynamics, and SAT2 and SAT3 did not sustain local chains of transmission. Since these results were obtained from the same population at the same time, they highlight important differences in transmission specific to each serotype. They also show that immunity wanes at rates specific to each serotype, which influences patterns of local persistence. Overall, this work shows that viral serotypes can differ significantly in their epidemiological and immunological characteristics. Patterns and processes that drive transmission in endemic settings must consider complex viral dynamics for

  2. Some epitopes conservation in non structural 3 protein dengue virus serotype 4

    Directory of Open Access Journals (Sweden)

    Tegar A. P. Siregar

    2016-03-01

    conservation ofT and B cell epitope in NS3 protein among DENV-4 strains and four serotypes DENV of Indonesia strains.Methods: Research was held at the Department of Microbiology, Faculty of Medicine, UniversitasIndonesia, June 2013 to April 2014. NS3 amino acid sequence of DENV-4 081 strain was obtained afterNS3 gene of DENV-4 081 PCR products were sequenced. T and B cell epitopes of NS3 protein of DENV-4081 strain were analysed and compared to NS3 proteins of 124 DENV-4 strains around the world and fourserotypes of Indonesia strains. World strains were isolated from America (i.e. Venezuela, Colombia, etc.and Asia (i.e. China, Singapore, etc.. For the comparison, T and B cell epitope positions of NS3 proteinwere obtained from published report.Results: Eight positions of T cell epitopes and two positions of B cell epitopes of NS3 DENV-4 081 wereidentical and conserved to NS3 protein of 124 DENV-4 strains around the world. B cell epitope of NS3 DENV-4 081 protein at aa 537-544 was found identical and conserved to four serotypes DENV of Indonesia strains.Conclusion: This wide conservation of T and B epitopes in almost all DENV-4 strains around the worldand all serotypes of Indonesia strains. (Health Science Journal of Indonesia 2015;6:126-31Keywords: dengue virus, NS3 protein, T cell epitope, B cell epitope

  3. Genetic diversity and evolution of dengue virus serotype 3: A comparative genomics study.

    Science.gov (United States)

    Waman, Vaishali P; Kale, Mohan M; Kulkarni-Kale, Urmila

    2017-04-01

    Dengue virus serotype 3 (DENV-3), one of the four serotypes of Dengue viruses, is geographically diverse. There are five distinct genotypes (I-V) of DENV-3. Emerging strains and lineages of DENV-3 are increasingly being reported. Availability of genomic data for DENV-3 strains provides opportunity to study its population structure. Complete genome sequences are available for 860 strains of four genotypes (I, II, III and V) isolated worldwide and were analyzed using population genetics and evolutionary approaches to map landscape of genomic diversity. DENV-3 population is observed to be stratified into five major subpopulations. Genotype I and II formed independent subpopulations while genotype III is subdivided into three subpopulations (GIII-a, GIII-b and GIII-c) and is therefore heterogeneous. Genotypes I, II and GIII-a subpopulations comprise of Asian strains whereas GIII-c comprises of American strains. GIII-b subpopulation includes mainly of American strains along with a few strains from Sri Lanka. Genetic admixture is predominantly observed in Sri Lankan strains of genotype III and all strains of genotype V. Inter-genotype recombination was observed to occur in non-structural region of several Asian strains whereas extent of recombination was limited in American strains. Significant positive selection was found to be operational on all genes and observed to be the main driving force of genetic diversity. Positive selection was strongly operational on the branches leading to Asian genotypes and helped to delineate the genetic differences between Asian and American lineages. Thus, inter-genotype recombination, migration and adaptive evolution are the major determinants of evolution of DENV-3. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Anti-dengue virus serotype 2 activity and mode of action of a novel peptide.

    Science.gov (United States)

    Chew, M-F; Tham, H-W; Rajik, M; Sharifah, S H

    2015-10-01

    To identify a novel antiviral peptide against dengue virus serotype 2 (DENV-2) by screening a phage display peptide library and to evaluate its in vitro antiviral activity and mode of action. A phage display peptide library was biopanned against purified DENV-2 and resulted in the identification and selection of a peptide (peptide gg-ww) for further investigation. ELISA was performed, and peptide gg-ww was shown to possess the highest binding affinity against DENV-2. Thus, peptide gg-ww was synthesized for cytotoxicity and antiviral assays. Virus plaque reduction assay, real-time PCR and immunofluorescence assay were used to investigate the inhibitory effect of peptide gg-ww on DENV-2 infection in Vero cells. Three different assays (pre-, simultaneous and post-treatments assays) were performed to investigate the peptide's mode of action. Results indicated that peptide gg-ww possessed strong antiviral activity with a ~96% inhibition rate, which was achieved at 250 μmol l(-1) . Viral replication was inhibited during a simultaneous treatment assay, indicating that the entry of the virus was impeded by this peptide. Peptide gg-ww displayed antiviral action against DENV-2 by targeting an early stage of viral replication (i.e. during viral entry). Peptide gg-ww may represent a new therapeutic candidate for the treatment of DENV infections and is a potential candidate to be developed as a peptide drug. © 2015 The Society for Applied Microbiology.

  5. Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa

    DEFF Research Database (Denmark)

    Bachanek-Bankowska, Katarzyna; Mero, Herieth R.; Wadsworth, Jemma

    2016-01-01

    Rapid, reliable and accurate diagnostic methods provide essential support to programmes that monitor and control foot-and-mouth disease (FMD). While pan-specific molecular tests for FMD virus (FMDV) detection are well established and widely used in endemic and FMD-free countries, current serotyping...... virus could still be serotyped using these assays. These serotype-specific real-time RT-PCR assays can detect and characterise FMDVs currently circulating in East Africa and hence improve disease control in this region....... the VP1-coding region that share high intra-lineage identity, but do not cross-react with FMD viruses from other serotypes that circulate in the region. These serotype-specific assays operate with the same thermal profile as the pan-diagnostic tests making it possible to run them in parallel to produce...

  6. A clathrin independent macropinocytosis-like entry mechanism used by bluetongue virus-1 during infection of BHK cells.

    Directory of Open Access Journals (Sweden)

    Sarah Gold

    2010-06-01

    Full Text Available Acid dependent infection of Hela and Vero cells by BTV-10 occurs from within early-endosomes following virus uptake by clathrin-mediated endocytosis (Forzan et al., 2007: J Virol 81: 4819-4827. Here we report that BTV-1 infection of BHK cells is also dependent on a low endosomal pH; however, virus entry and infection were not inhibited by dominant-negative mutants of Eps15, AP180 or the 'aa' splice variant of dynamin-2, which were shown to inhibit clathrin-mediated endocytosis. In addition, infection was not inhibited by depletion of cellular cholesterol, which suggests that virus entry is not mediated by a lipid-raft dependent process such as caveolae-mediated endocytosis. Although virus entry and infection were not inhibited by the dominant-negative dynamin-2 mutant, entry was inhibited by the general dynamin inhibitor, dynasore, indicating that virus entry is dynamin dependent. During entry, BTV-1 co-localised with LAMP-1 but not with transferrin, suggesting that virus is delivered to late-endosomal compartments without first passing through early-endosomes. BTV-1 entry and infection were inhibited by EIPA and cytochalasin-D, known macropinocytosis inhibitors, and during entry virus co-localised with dextran, a known marker for macropinocytosis/fluid-phase uptake. Our results extend earlier observations with BTV-10, and show that BTV-1 can infect BHK cells via an entry mechanism that is clathrin and cholesterol-independent, but requires dynamin, and shares certain characteristics in common with macropinocytosis.

  7. Pathogenesis of experimental vesicular stomatitis virus (New Jersey serotype) infection in the deer mouse (Peromyscus maniculatus).

    Science.gov (United States)

    Cornish, T E; Stallknecht, D E; Brown, C C; Seal, B S; Howerth, E W

    2001-07-01

    The pathogenesis of vesicular stomatitis virus (VSV) infection has not been investigated previously in native New World rodents that may have a role in the epidemiology of the disease. In the present study, 45 juvenile and 80 adult deer mice (Peromyscus maniculatus) were inoculated intranasally with VSV New Jersey serotype (VSV-NJ) and examined sequentially over a 7-day period. Virus was detected by means of immunohistochemistry and in situ hybridization in all tissues containing histologic lesions. Viral antigen and mRNA were observed initially in olfactory epithelium neurons, followed by olfactory bulbs and more caudal olfactory pathways in the brain. Virus also was detected throughout the ventricular system in the brain and central canal of the spinal cord. These results support both viral retrograde transneuronal transport and viral spread within the ventricular system. Other tissues containing viral antigen included airway epithelium and macrophages in the lungs, cardiac myocytes, and macrophages in cervical lymph nodes. In a second experiment, 15 adult, 20 juvenile, and 16 nestling deer mice were inoculated intradermally with VSV-NJ. Adults were refractory to infection by this route; however, nestlings and juveniles developed disseminated central nervous system infections. Viral antigen also was detected in cardiac myocytes and lymph node macrophages in these animals. Viremia was detected by virus isolation in 35/72 (49%) intranasally inoculated juvenile and adult mice and in 17/36 (47%) intradermally inoculated nestlings and juveniles from day 1 to day 3 postinoculation. The documentation of viremia in these animals suggests that they may have a role in the epidemiology of vector-borne vesicular stomatitis.

  8. Co-circulating serotypes in a dengue fever outbreak: Differential hematological profiles and phylogenetic relationships among viruses.

    Science.gov (United States)

    Carmo, Andreia Moreira Dos Santos; Suzuki, Rodrigo Buzinaro; Cabral, Aline Diniz; Costa, Renata Torres da; Massari, Gabriela Pena; Riquena, Michele Marcondes; Fracasso, Helio Augusto Alves; Eterovic, Andre; Marcili, Arlei; Sperança, Márcia Aparecida

    2017-05-01

    Dengue virus, represented by four distinct, genetically diverse serotypes, is the etiologic agent of asymptomatic to severe hemorrhagic diseases. The spatiotemporal dynamics of dengue serotypes and its association to specific diseases vary among the different regions worldwide. By 2007, and in São Paulo State, Brazil, dengue-case concentration in urban centers had changed to increased incidence in small- and medium-sized towns, the case of Marília. The aim of this article was to distinguish dengue serotypes circulating during the 2007 Marília outbreak and define their association to demographic and hematological patient profiles, as well as the phylogenetic relationships among the different viruses. PCR amplicons corresponding to the junction of capsid and dengue pre-membrane encoding genes, obtained from dengue serologically positive patients, were sequenced. Hematological and demographic data of patients with different Dengue serotypes were evaluated by univariate and bivariate statistics. Dengue PCR sequences were used in phylogenetic relationships analyzed for maximum parsimony. Molecular typing confirmed co-circulation of the dengue serotypes 1 (DENV1) and 3 (DENV3), which presented divergent correlation patterns with regard to hematological descriptors. The increase in atypical lymphocytes, a likely indication of virus load, could be significantly associated to a decrease in leukocyte counts in the DENV3 group and platelet in the DENV1. Phylogenetic reconstitution revealed the introduction of DENV1 from northern Brazil and local divergence of DENV3 by either microevolution or viral introduction from other geographical regions or both. Dengue dynamics showed regional molecular-epidemiologic specificity, which has important implications for introduction of vaccines, disease management, and transmission control. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV serotype Asia1

    Directory of Open Access Journals (Sweden)

    Alam SM

    2013-08-01

    Full Text Available SM Sabbir Alam,1 Ruhul Amin,1 Mohammed Ziaur Rahman,2 M Anwar Hossain,1 Munawar Sultana11Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Dhaka, BangladeshAbstract: Foot and mouth disease virus (FMDV, with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.Keywords: protein modeling, antigenic sites, sequence variation

  10. The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion.

    Science.gov (United States)

    Lerch, Thomas F; Xie, Qing; Chapman, Michael S

    2010-07-20

    Adeno-associated viruses (AAVs) are leading candidate vectors for human gene therapy. AAV serotypes have broad cellular tropism and use a variety of cellular receptors. AAV serotype 3 binds to heparan sulfate proteoglycan prior to cell entry and is serologically distinct from other serotypes. The capsid features that distinguish AAV-3B from other serotypes are poorly understood. The structure of AAV-3B has been determined to 2.6A resolution from twinned crystals of an infectious virus. The most distinctive structural features are located in regions implicated in receptor and antibody binding, providing insights into the cell entry mechanisms and antigenic nature of AAVs. We show that AAV-3B has a lower affinity for heparin than AAV-2, which can be rationalized by the distinct features of the AAV-3B capsid. The structure of AAV-3B provides an additional foundation for the future engineering of improved gene therapy vectors with modified receptor binding or antigenic characteristics. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Multiple recombinants in two dengue virus, serotype-2 isolates from patients from Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Cisneros Alejandro

    2009-12-01

    Full Text Available Abstract Background Dengue (DEN is a serious cause of mortality and morbidity in the world including Mexico, where the infection is endemic. One of the states with the highest rate of dengue cases is Oaxaca. The cause of DEN is a positive-sense RNA virus, the dengue virus (DENV that evolves rapidly increasing its variability due to the absence of a repair mechanism that leads to approximately one mutational event per genome replication; which results in enhancement of viral adaptation, including the escape from host immune responses. Additionally, recombination may play a role in driving the evolution of DENV, which may potentially affect virulence and cause host tropism changes. Recombination in DENV has not been described in Mexican strains, neither has been described the relevance in virus evolution in an endemic state such as Oaxaca where the four serotypes of DENV are circulating. Results To study whether there are isolates from Oaxaca having recombination, we obtained the sequence of 6 different isolates of DENV-2 Asian/American genotype from the outbreak 2005-6, one clone of the C(91-prM-E-NS1(2400 structural genes, and 10 clones of the E gene from the isolate MEX_OAX_1656_05. Evidence of recombination was found by using different methods along with two softwares: RDP3 and GARD. The Oaxaca MEX_OAX_1656_05 and MEX_OAX_1038_05 isolates sequenced in this study were recombinant viruses that incorporate the genome sequence from the Cosmopolitan genotype. Furthermore, the clone of the E gene namely MEX_OAX_165607_05 from this study was also recombinant, incorporating genome sequence from the American genotype. Conclusions This is the first report of recombination in DENV-2 in Mexico. Given such a recombinant activity new genomic combinations were produced, this could play a significant role in the DENV evolution and must be considered as a potentially important mechanism generating genetic variation in this virus with serious implications for

  12. Multiple recombinants in two dengue virus, serotype-2 isolates from patients from Oaxaca, Mexico.

    Science.gov (United States)

    Perez-Ramirez, Gerardo; Diaz-Badillo, Alvaro; Camacho-Nuez, Minerva; Cisneros, Alejandro; Munoz, Maria de Lourdes

    2009-12-15

    Dengue (DEN) is a serious cause of mortality and morbidity in the world including Mexico, where the infection is endemic. One of the states with the highest rate of dengue cases is Oaxaca. The cause of DEN is a positive-sense RNA virus, the dengue virus (DENV) that evolves rapidly increasing its variability due to the absence of a repair mechanism that leads to approximately one mutational event per genome replication; which results in enhancement of viral adaptation, including the escape from host immune responses. Additionally, recombination may play a role in driving the evolution of DENV, which may potentially affect virulence and cause host tropism changes. Recombination in DENV has not been described in Mexican strains, neither has been described the relevance in virus evolution in an endemic state such as Oaxaca where the four serotypes of DENV are circulating. To study whether there are isolates from Oaxaca having recombination, we obtained the sequence of 6 different isolates of DENV-2 Asian/American genotype from the outbreak 2005-6, one clone of the C(91)-prM-E-NS1(2400) structural genes, and 10 clones of the E gene from the isolate MEX_OAX_1656_05. Evidence of recombination was found by using different methods along with two softwares: RDP3 and GARD. The Oaxaca MEX_OAX_1656_05 and MEX_OAX_1038_05 isolates sequenced in this study were recombinant viruses that incorporate the genome sequence from the Cosmopolitan genotype. Furthermore, the clone of the E gene namely MEX_OAX_165607_05 from this study was also recombinant, incorporating genome sequence from the American genotype. This is the first report of recombination in DENV-2 in Mexico. Given such a recombinant activity new genomic combinations were produced, this could play a significant role in the DENV evolution and must be considered as a potentially important mechanism generating genetic variation in this virus with serious implications for the vaccines and drugs formulation as occurs for other

  13. Morphometric discrimination of two sympatric sibling species in the Palaearctic region, Culicoides obsoletus Meigen and C. scoticus Downes & Kettle (Diptera: Ceratopogonidae), vectors of bluetongue and Schmallenberg viruses.

    Science.gov (United States)

    Kluiters, G; Pagès, N; Carpenter, S; Gardès, L; Guis, H; Baylis, M; Garros, C

    2016-05-04

    Some Palaearctic biting midge species (subgenus Avaritia) have been implicated as vectors of bluetongue virus in northern Europe. Separation of two species (C. obsoletus and C. scoticus) is considered difficult morphologically and, often, these female specimens are grouped in entomological studies. However, species-specific identification is desirable to understand their life history characteristics, assess their roles in disease transmission or measure their abundance during arboviral outbreaks. This study aims to investigate whether morphometric identification techniques can be applied to female C. obsoletus and C. scoticus individuals trapped at different geographical regions and time periods during the vector season. C. obsoletus and C. scoticus were collected using light-suction traps from the UK, France and Spain, with two geographical locations sampled per country. A total of 759 C. obsoletus/C. scoticus individuals were identified using a molecular assay based on the cytochrome c oxidase subunit I gene. Fifteen morphometric measurements were taken from the head, wings and abdomen of slide-mounted specimens, and ratios calculated between these measurements. Multivariate analyses explored whether a combination of morphometric variables could lead to accurate species identification. Finally, Culicoides spp. collected in France at the start, middle and end of the adult vector season were compared, to determine whether seasonal variation exists in any of the morphometric measurements. The principal component analyses revealed that abdominal characteristics: length and width of the smaller and larger spermathecae, and the length of the chitinous plates and width between them, are the most reliable morphometric characteristics to differentiate between the species. Seasonal variation in the size of each species was observed for head and wing measurements, but not abdominal measurements. Geographical variation in the size of Culicoides spp. was also observed and is

  14. Complete Genome Sequences of Four Foot-and-Mouth Disease Viruses of Serotype South African Territories 1 (SAT 1), Topotype X, Isolated from Cattle in Nigeria in 2015.

    Science.gov (United States)

    Vandenbussche, Frank; Mathijs, Elisabeth; Ularamu, Hussaini G; Ehizibolo, David O; Haegeman, Andy; Lefebvre, David; Lazarus, David D; Wungak, Yiltawe S; De Vleeschauwer, Annebel R; Van Borm, Steven; De Clercq, Kris

    2017-10-19

    The complete genome sequences of four foot-and-mouth disease viruses of South African territories 1 (SAT 1) serotype are reported. These viruses originate from an outbreak in Nigeria in 2015 and belong to the novel SAT 1 topotype X from the west and central African virus pool. Copyright © 2017 Vandenbussche et al.

  15. Immune transcript variations among Aedes aegypti populations with distinct susceptibility to dengue virus serotype 2.

    Science.gov (United States)

    Carvalho-Leandro, D; Ayres, C F J; Guedes, D R D; Suesdek, L; Melo-Santos, M A V; Oliveira, C F; Cordeiro, M T; Regis, L N; Marques, E T; Gil, L H; Magalhaes, T

    2012-11-01

    The innate immune response of insects is one of the factors that may dictate their susceptibility to viral infection. Two immune signaling pathways, Toll and JAK-STAT, and the RNA interference (RNAi) pathway are involved in Aedes aegypti responses against dengue virus (DENV), however natural differences in these antiviral defenses among mosquito populations have not been studied. Here, two field Ae. aegypti populations from distinct ecological environments, one from Recife and the other from Petrolina (Brazil), and a laboratory strain were studied for their ability to replicate a primary isolate of dengue virus serotype 2 (DENV-2). Virus infectivity and replication were determined in insect tissues collected after viral exposure through reverse-transcription real time PCR (RT-PCR). The expression of a transcript representing these defense mechanisms (Toll, JAK-STAT and RNAi) in the midgut and fat body was studied with RT-PCR to evaluate variations in innate immune mechanisms possibly employed against DENV. Analyses of infection rates indicated that the field populations were more susceptible to DENV-2 infection than the lab strain. There were distinct expression patterns among mosquito populations, in both control and infected insects. Moreover, lower expression of immune molecules in DENV-2-infected insects compared to controls was observed in the two field populations. These results suggest that natural variations in vector competence against DENV may be partly due to differences in mosquito defense mechanisms, and that the down-regulation of immune transcripts after viral infection depends on the insect strain. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Serological and molecular evidence of bluetongue in sheep and ...

    African Journals Online (AJOL)

    Dr Molalegne Bitew

    2013-05-08

    May 8, 2013 ... India. A total of 91 (58 sheep and 33 goats) were included in this study. Both males and females of different age groups were part of the study. Sample ..... Evaluation of a commercial competitive ELISA test kit for the detection of group- specific antibodies to bluetongue virus. J. Vet. Diagn. Invest. 5:336-. 340.

  17. Diversity and transboundary mobility of serotype O foot-and-mouth disease virus in East Africa: Implications for vaccination policies

    DEFF Research Database (Denmark)

    Balinda, Sheila; Sangula, Abraham; Heller, Rasmus

    2010-01-01

    Foot-and-mouth disease (FMD) virus serotype O has been responsible for most reported outbreaks of the disease in East Africa. A sustained campaign for the past 40 years to control FMD mainly by vaccination, combined with quarantine and zoosanitary measures has been undertaken with limited success...... the dominant evolutionary force. Cross-border disease transmission within the region has been suggested with probable incursions of topotypes EA-3 and EA-4 into Kenya and Uganda from neighboring Ethiopia and Sudan. We conclude that the vaccines have probably been effective in controlling EA-1, but less so....... We investigated the genetic relationships among serotype O strains in eastern Africa using complete VP1 coding region sequences obtained from 46 FMD virus isolates collected in Kenya in the years 1964–2008 and 8 Ugandan isolates collected between 1999 and 2006. In addition, 21 selected FMDV sequences...

  18. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S. (Oregon HSU)

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  19. Molecular characterization of serotype Asia-1 foot-and-mouth disease viruses in Pakistan and Afghanistan; emergence of a new genetic Group and evidence for a novel recombinant virus

    DEFF Research Database (Denmark)

    Jamal, Syed Muhammad; Ferrari, Giancarlo; Ahmed, Safia

    2011-01-01

    appropriate vaccine selection and tracing of outbreaks.The present study characterized foot-and-mouth disease serotype Asia-1 viruses circulating in Pakistan and Afghanistan during the period 1998–2009. Phylogenetic analysis of FMDV type Asia-1 revealed that three different genetic Groups of serotype Asia-1...... genome sequences, from FMD viruses of serotypes Asia-1 and A that are currently circulating in Pakistan, we have identified an interserotypic recombinant virus, which has the VP2-VP3-VP1-2A coding sequences derived from a Group-VII Asia-1 virus and the remainder of the genome from a serotype A virus...... of the A-Iran05AFG-07 sub-lineage. The Asia-1 FMDVs currently circulating in Pakistan and Afghanistan are not efficiently neutralized by antisera raised against the Asia-1/Shamir vaccine strain. Thus, new Asia-1 vaccine strains may be required to block the spread of the current Asia-1 viruses....

  20. Production of recombinant non-structural protein-3 hydrophobic domain deletion (NS3ΔHD) protein of bluetongue virus from prokaryotic expression system as an efficient diagnostic reagent.

    Science.gov (United States)

    Mohanty, Nihar Nalini; Chacko, Nirmal; Biswas, Sanchay Kumar; Chand, Karam; Pandey, Awadh Bihari; Mondal, Bimalendu; Hemadri, Divakar; Shivachandra, Sathish Bhadravati

    2016-09-01

    Serological diagnostics for bluetongue (BT), which is an infectious, non-contagious and arthropod-borne virus disease of ruminants, are primarily dependent on availability of high quality native or recombinant antigen(s) based on either structural/non-structural proteins in sufficient quantity. Non-structural proteins (NS1-NS4) of BT virus are presumed candidate antigens in development of DIVA diagnostics. In the present study, NS3 fusion gene encoding for NS3 protein containing the N- and C-termini with a deletion of two hydrophobic domains (118A to S141 aa and 162S to A182 aa) and intervening variable central domain (142D to K161 aa) of bluetongue virus 23 was constructed, cloned and over-expressed using prokaryotic expression system. The recombinant NS3ΔHD fusion protein (∼38 kDa) including hexa-histidine tag on its both termini was found to be non-cytotoxic to recombinant Escherichia coli cells and purified by affinity chromatography. The purified rNS3ΔHD fusion protein was found to efficiently detect BTV-NS3 specific antibodies in indirect-ELISA format with diagnostic sensitivity (DSn = 94.4%) and specificity (DSp = 93.9%). The study indicated the potential utility of rNS3ΔHD fusion protein as candidate diagnostic reagent in developing an indirect-ELISA for sero-surveillance of animals for BTV antibodies under DIVA strategy, wherever monovalent/polyvalent killed BT vaccine formulations devoid of NS proteins are being practiced for immunization. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. How does increasing immunity change spread kernel parameters in subsequent outbreaks? – A simulation study on Bluetongue Virus

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Bødker, Rene; Enøe, Claes

    estimate on how future epidemics could proceed under similar conditions. However, a number of variables influence the spread of vector borne diseases. If one of these changes significantly after an outbreak, it needs to be incorporated into the model to improve the prediction on future outbreaks. Examples...... of such changes are: vaccinations, acquired immunity, vector density and control, meteorological variations, wind pattern, and so on. Including more and more variables leads to a more process oriented model. A full process oriented approach simulates the movement of virus between vectors and host, describing...... density and motion of vectors/hosts, climatic variables, and so on will theoretically be able to describe an outbreak under any circumstances. It will most likely contain parameters not very well established, and is also very heavy in computer time. Nevertheless, we have tried to create a relatively...

  2. Adenoassociated virus serotype 9-mediated gene therapy for x-linked adrenoleukodystrophy.

    Science.gov (United States)

    Gong, Yi; Mu, Dakai; Prabhakar, Shilpa; Moser, Ann; Musolino, Patricia; Ren, JiaQian; Breakefield, Xandra O; Maguire, Casey A; Eichler, Florian S

    2015-05-01

    X-linked adrenoleukodystrophy (X-ALD) is a devastating neurological disorder caused by mutations in the ABCD1 gene that encodes a peroxisomal ATP-binding cassette transporter (ABCD1) responsible for transport of CoA-activated very long-chain fatty acids (VLCFA) into the peroxisome for degradation. We used recombinant adenoassociated virus serotype 9 (rAAV9) vector for delivery of the human ABCD1 gene (ABCD1) to mouse central nervous system (CNS). In vitro, efficient delivery of ABCD1 gene was achieved in primary mixed brain glial cells from Abcd1-/- mice as well as X-ALD patient fibroblasts. Importantly, human ABCD1 localized to the peroxisome, and AAV-ABCD1 transduction showed a dose-dependent effect in reducing VLCFA. In vivo, AAV9-ABCD1 was delivered to Abcd1-/- mouse CNS by either stereotactic intracerebroventricular (ICV) or intravenous (IV) injections. Astrocytes, microglia and neurons were the major target cell types following ICV injection, while IV injection also delivered to microvascular endothelial cells and oligodendrocytes. IV injection also yielded high transduction of the adrenal gland. Importantly, IV injection of AAV9-ABCD1 reduced VLCFA in mouse brain and spinal cord. We conclude that AAV9-mediated ABCD1 gene transfer is able to reach target cells in the nervous system and adrenal gland as well as reduce VLCFA in culture and a mouse model of X-ALD.

  3. Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus.

    Science.gov (United States)

    Vanheule, Vincent; Vervaeke, Peter; Mortier, Anneleen; Noppen, Sam; Gouwy, Mieke; Snoeck, Robert; Andrei, Graciela; Van Damme, Jo; Liekens, Sandra; Proost, Paul

    2016-01-15

    Chemokines attract leukocytes to sites of infection in a G protein-coupled receptor (GPCR) and glycosaminoglycan (GAG) dependent manner. Therefore, chemokines are crucial molecules for proper functioning of our antimicrobial defense mechanisms. In addition, some chemokines have GPCR-independent defensin-like antimicrobial activities against bacteria and fungi. Recently, high affinity for GAGs has been reported for the positively charged COOH-terminal region of the chemokine CXCL9. In addition to CXCL9, also CXCL12γ has such a positively charged COOH-terminal region with about 50% positively charged amino acids. In this report, we compared the affinity of COOH-terminal peptides of CXCL9 and CXCL12γ for GAGs and KD values in the low nM range were detected. Several enveloped viruses such as herpesviruses, hepatitis viruses, human immunodeficiency virus (HIV), dengue virus (DENV), etc. are known to bind to GAGs such as the negatively charged heparan sulfate (HS). In this way GAGs are important for the initial contacts between viruses and host cells and for the infection of the cell. Thus, inhibiting the virus-cell interactions, by blocking GAG-binding sites on the host cell, might be a way to target multiple virus families and resistant strains. This article reports that the COOH-terminal peptides of CXCL9 and CXCL12γ have antiviral activity against DENV serotype 2, clinical and laboratory strains of herpes simplex virus (HSV)-1 and respiratory syncytial virus (RSV). Moreover, we show that CXCL9(74-103) competes with DENV envelope protein domain III for binding to heparin. These short chemokine-derived peptides may be lead molecules for the development of novel antiviral agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8+T cell response.

    Science.gov (United States)

    Culshaw, Abigail; Ladell, Kristin; Gras, Stephanie; McLaren, James E; Miners, Kelly L; Farenc, Carine; van den Heuvel, Heleen; Gostick, Emma; Dejnirattisai, Wanwisa; Wangteeraprasert, Apirath; Duangchinda, Thaneeya; Chotiyarnwong, Pojchong; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Dong, Tao; Rossjohn, Jamie; Mongkolsapaya, Juthathip; Price, David A; Screaton, Gavin R

    2017-11-01

    Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8 + T cell populations specific for variants of the nonstructural protein epitope NS3 133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3 133 -DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2 + TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2 + TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.

  5. A Chinese isolate of barley yellow dwarf virus-PAV represents a third distinct species within the PAV serotype.

    Science.gov (United States)

    Liu, F; Wang, X; Liu, Y; Xie, J; Gray, S M; Zhou, G; Gao, B

    2007-01-01

    The complete nucleotide sequence of barley yellow dwarf virus (BYDV) PAV-CN genomic RNA was determined. This represents the seventh complete genome sequence of a BYDV-PAV serotype. The genome organization of PAV-CN was comparable to that of other BYDV-PAV serotypes, but the nucleotide sequence of full genome was only 76.9-80.3% similar. Sequence similarity of individual open reading frames and untranslated regions (UTR) between PAV-CN and other PAV isolates ranged from 37.9 to 98.2%. Overall, PAV-CN was most similar to BYDV-PAS, which belongs to one of two distinct species within the PAV serotype of BYDV, although the 5' UTR and ORF1 of PAV-CN was most similar to BYDV-GAV, another member of the genus Luteovirus that is not serologically related to BYDV-PAV. These data suggest that PAV-CN may have undergone a recombination event with GAV and that PAV-CN represents a third distinct species within the PAV serotype of BYDV.

  6. A Luminex-based single DNA fragment amplification assay as a practical tool for detecting and serotyping dengue virus.

    Science.gov (United States)

    Cabral-Castro, Mauro Jorge; Peralta, Regina Helena Saramago; Cavalcanti, Marta Guimarães; Puccioni-Sohler, Marzia; Carvalho, Valéria Lima; da Costa Vasconcelos, Pedro Fernando; Peralta, José Mauro

    2016-10-01

    Dengue is a mosquito-borne viral infection that can evolve from subclinical to severe forms of disease. Early recognition during initial primary and secondary infections correlates with a reduced case-fatality rate in susceptible groups. The aim of this study was to standardize a DNA hybridization assay based on the Luminex technology for detecting and serotyping dengue virus (DENV). Reference DENVs representing the four different serotypes were used as controls to standardize the test. For validation, 16 DENV isolates obtained from a reference laboratory were analyzed in a double-blind manner to validate the test. Sixty blood samples from patients suspected of having dengue fever were used to evaluate the methodology after the validation step, and the results were compared with the reference semi-nested RT-PCR. Additionally, five human samples of each Zika and Chikungunya confirmed patients were used for specificity analysis. The Luminex-based assay correctly identified all 16 DENV isolates. In the evaluation step, the results of the RT-PCR/Luminex assay showed a concordance of 86.7% with those of the semi-nested RT-PCR. None of other virus infection samples was amplified. This is the first description of a hybridization assay that can discriminate the four DENV serotypes using probes against a single DENV sequence. The results indicated that the RT-PCR/Luminex DENV assay designed and evaluated in this study is a valuable additional tool for the early and rapid detection and serotyping of DENV, which could, in the future, be applied to new targets such as the Zika and Chikungunya viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development and Evaluation of a Rapid Antigen Detection and Serotyping Lateral Flow Antigen Detection System for Foot-and-Mouth Disease Virus.

    Directory of Open Access Journals (Sweden)

    Kazuki Morioka

    Full Text Available We developed a lateral flow strip using monoclonal antibodies (MAbs which allows for rapid antigen detection and serotyping of foot-and-mouth disease virus (FMDV. This FMDV serotyping strip was able to detect all 7 serotypes and distinguish serotypes O, A, C and Asia1. Its sensitivities ranged from 10(3 to 10(4 of a 50% tissue culture infectious dose of each FMDV stain; this is equal to those of the commercial product Svanodip (Boehringer Ingelheim Svanova, Uppsala, Sweden, which can detect all seven serotypes of FMDV, but does not distinguish them. Our evaluation of the FMDV serotyping strip using a total of 118 clinical samples (vesicular fluids, vesicular epithelial emulsions and oral and/or nasal swabs showed highly sensitive antigen detection and accuracy in serotyping in accordance with ELISA or RT-PCR. To the best of our knowledge, this is the first report on any FMDV serotyping strip that provides both rapid antigen detection and serotyping of FMDV at the same time on one strip without extra devices. This method will be useful in both FMD-free countries and FMD-infected countries, especially where laboratory diagnosis cannot be carried out.

  8. Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera.

    Directory of Open Access Journals (Sweden)

    Ruklanthi de Alwis

    2014-10-01

    Full Text Available Dengue viruses (DENV are mosquito-borne flaviviruses of global importance. DENV exist as four serotypes, DENV1-DENV4. Following a primary infection, individuals produce DENV-specific antibodies that bind only to the serotype of infection and other antibodies that cross-react with two or more serotypes. People exposed to a secondary DENV infection with another serotype are at greater risk of developing more severe forms of dengue disease. The increased risk of severe dengue in people experiencing repeat DENV infections appear to be due, at least in part, to the ability of pre-existing serotype cross-reactive antibodies to form virus-antibody complexes that can productively infect Fcγ receptor-bearing target cells. While the theory of antibody-dependent enhancement (ADE is supported by several human and small animal model studies, the specific viral antigens and epitopes recognized by enhancing human antibodies after natural infections have not been fully defined. We used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primary DENV-immune human sera. The effects of removing specific antibody populations on ADE were tested both in vitro using K562 cells and in vivo using the AG129 mouse model. Removal of serotype cross-reactive antibodies ablated enhancement of heterotypic virus infection in vitro and antibody-enhanced mortality in vivo. Further depletion studies using recombinant viral antigens showed that although the removal of DENV E-specific antibodies using recombinant E (rE protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining. Competition ADE studies using prM-specific Fab fragments in human immune sera showed that both rE-specific and prM-specific antibodies in primary DENV-immune sera significantly contribute to enhancement of heterotypic DENV infection in vitro. Identification of the targets of DENV-enhancing antibodies should contribute to

  9. Species D human adenovirus type 9 exhibits better virus-spread ability for antitumor efficacy among alternative serotypes.

    Directory of Open Access Journals (Sweden)

    Junji Uchino

    Full Text Available Species C human adenovirus serotype 5 (HAdV-C5 is widely used as a vector for cancer gene therapy, because it efficiently transduces target cells. A variety of HAdV-C5 vectors have been developed and tested in vitro and in vivo for cancer gene therapy. While clinical trials with HAdV-C5 vectors resulted in effective responses in many cancer patients, administration of HAdV-C5 vectors to solid tumors showed responses in a limited area. A biological barrier in tumor mass is considered to hinder viral spread of HAdV-C5 vectors from infected cells. Therefore, efficient virus-spread from an infected tumor cell to surrounding tumor cells is required for successful cancer gene therapy. In this study, we compared HAdV-C5 to sixteen other HAdV serotypes selected from species A to G for virus-spread ability in vitro. HAdV-D9 showed better virus-spread ability than other serotypes, and its viral progeny were efficiently released from infected cells during viral replication. Although the HAdV-D9 fiber protein contains a binding site for coxsackie B virus and adenovirus receptor (CAR, HAdV-D9 showed expanded tropism for infection due to human CAR (hCAR-independent attachment to target cells. HAdV-D9 infection effectively killed hCAR-negative cancer cells as well as hCAR-positive cancer cells. These results suggest that HADV-D9, with its better virus-spread ability, could have improved therapeutic efficacy in solid tumors compared to HAdV-C5.

  10. Characterization of foot-and-mouth disease viruses (FMDVs) from Ugandan cattle outbreaks during 2012-2013: evidence for circulation of multiple serotypes.

    Science.gov (United States)

    Namatovu, Alice; Tjørnehøj, Kirsten; Belsham, Graham J; Dhikusooka, Moses T; Wekesa, Sabenzia N; Muwanika, Vincent B; Siegismund, Hans R; Ayebazibwe, Chrisostom

    2015-01-01

    To investigate the foot-and-mouth disease virus (FMDV) serotypes circulating in Uganda's cattle population, both serological and virological analyses of samples from outbreaks that occurred during 2012-2013 were performed. Altogether, 79 sera and 60 oropharyngeal fluid (OP)/tissue/oral swab samples were collected from herds with reported FMD outbreaks in seven different Ugandan districts. Overall, 61/79 (77%) of the cattle sera were positive for antibodies against FMDV by PrioCHECK FMDV NS ELISA and solid phase blocking ELISA detected titres ≥ 80 for serotypes O, SAT 1, SAT 2 and SAT 3 in 41, 45, 30 and 45 of these 61 seropositive samples, respectively. Virus neutralisation tests detected the highest levels of neutralising antibodies (titres ≥ 45) against serotype O in the herds from Kween and Rakai districts, against SAT 1 in the herd from Nwoya district and against SAT 2 in the herds from Kiruhura, Isingiro and Ntungamo districts. The isolation of a SAT 2 FMDV from Isingiro was consistent with the detection of high levels of neutralising antibodies against SAT 2; sequencing (for the VP1 coding region) indicated that this virus belonged to lineage I within this serotype, like the currently used vaccine strain. From the Wakiso district 11 tissue/swab samples were collected; serotype A FMDV, genotype Africa (G-I), was isolated from the epithelial samples. This study shows that within a period of less than one year, FMD outbreaks in Uganda were caused by four different serotypes namely O, A, SAT 1 and SAT 2. Therefore, to enhance the control of FMD in Uganda, there is need for efficient and timely determination of outbreak virus strains/serotypes and vaccine matching. The value of incorporating serotype A antigen into the imported vaccines along with the current serotype O, SAT 1 and SAT 2 strains should be considered.

  11. Application of polymerase chain reaction to differentiate herpes simplex virus 1 and 2 serotypes in culture negative intraocular aspirates

    Directory of Open Access Journals (Sweden)

    Shyamal G

    2005-01-01

    Full Text Available Purpose: To standardize and apply a polymerase chain reaction (PCR on the glycoprotein D gene to differentiate Herpes simplex virus (HSV 1 & 2 serotypes in culture negative intraocular specimens. Methods: Twenty-one intraocular fluids collected from 19 patients were subjected to cultures for HSV and uniplex PCR (uPCR for DNA polymerase gene. To differentiate HSV serotypes, as 1 & 2, a seminested PCR (snPCR targeting the glycoprotein D gene was standardised and applied onto 21 intraocular fluids. The specificity of the snPCR was verified by application onto ATCC strains of HSV 1 and 2, clinical isolates and DNA sequencing of the amplified products. All specimens were also tested for the presence of cytomegalovirus (CMV and varicella zoster virus (VZV by nucleic acid amplification methods. Results: Four of the 21 intraocular fluids were positive for HSV by uPCR. snPCR detected HSV in three additional specimens (total of seven specimens, and identified three as HSV 1 and four as HSV 2. DNA sequencing of PCR products showed 100% homology with the standard strains of HSV 1 and 2 respectively. None of the samples were positive in culture. Among the other patients, CMV DNA was detected in two and VZV DNA in five others. Conclusions: The standardized snPCR can be applied directly onto the culture negative specimens for rapid differentiation of HSV serotypes.

  12. Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV.

    Science.gov (United States)

    Kopp, Sarah J; Ranaivo, Hantamalala R; Wilcox, Douglas R; Karaba, Andrew H; Wainwright, Mark S; Muller, William J

    2014-12-01

    Outcomes of neonates with herpes simplex virus (HSV) encephalitis are worse after infection with HSV-2 when compared with HSV-1. The proteins herpes virus entry mediator (HVEM) and nectin-1 mediate HSV entry into susceptible cells. Prior studies have shown receptor-dependent differences in pathogenesis that depend on route of inoculation and host developmental age. We investigated serotype-related differences in HSV disease and their relationship to entry receptor availability in a mouse model of encephalitis. Mortality was attenuated in 7-d-old, wild-type (WT) mice inoculated with HSV-1(F) when compared with HSV-2(333). No serotype-specific differences were seen after inoculation of adult mice. HSV-1 pathogenesis was also attenuated relative to HSV-2 in newborn but not adult mice lacking HVEM or nectin-1. HSV-2 requires nectin-1 for encephalitis in adult but not newborn mice; in contrast, nectin-1 was important for HSV-1 pathogenesis in both age groups. Early viral replication was independent of age, viral serotype, or mouse genotype, suggesting host responses influence outcomes. In this regard, significantly greater amounts of inflammatory mediators were detected in brain homogenates from WT newborns 2 d after infection compared with adults and receptor-knockout newborns. Dysregulation of inflammatory responses induced by infection may influence the severity of HSV encephalitis.

  13. A small molecule inhibitor of dengue virus type 2 protease inhibits the replication of all four dengue virus serotypes in cell culture.

    Science.gov (United States)

    Raut, Rajendra; Beesetti, Hemalatha; Tyagi, Poornima; Khanna, Ira; Jain, Swatantra K; Jeankumar, Variam U; Yogeeswari, Perumal; Sriram, Dharmarajan; Swaminathan, Sathyamangalam

    2015-02-08

    Dengue has emerged as the most significant of arboviral diseases in the 21st century. It is endemic to >100 tropical and sub-tropical countries around the world placing an estimated 3.6 billion people at risk. It is caused by four genetically similar but antigenically distinct, serotypes of dengue viruses. There is neither a vaccine to prevent nor a drug to treat dengue infections, at the present time. The major objective of this work was to explore the possibility of identifying a small molecule inhibitor of the dengue virus protease and assessing its ability to suppress viral replication in cultured cells. We cloned, expressed and purified recombinant dengue virus type 2 protease. Using an optimized and validated fluorogenic peptide substrate cleavage assay to monitor the activity of this cloned dengue protease we randomly screened ~1000 small molecules from an 'in-house' library to identify potential dengue protease inhibitors. A benzimidazole derivative, named MB21, was found to be the most potent in inhibiting the cloned protease (IC₅₀ = 5.95 μM). In silico docking analysis indicated that MB21 binds to the protease in the vicinity of the active site. Analysis of kinetic parameters of the enzyme reaction suggested that MB21 presumably functions as a mixed type inhibitor. Significantly, this molecule identified as an inhibitor of dengue type 2 protease was also effective in inhibiting each one of the four serotypes of dengue viruses in infected cells in culture, based on analysis of viral antigen synthesis and infectious virus production. Interestingly, MB21 did not manifest any discernible cytotoxicity. This work strengthens the notion that a single drug molecule can be effective against all four dengue virus serotypes. The molecule MB21 could be a potential candidate for 'hit-to-lead' optimization, and may pave the way towards developing a pan-dengue virus antiviral drug.

  14. Seroprevalence study of Equine rhinitis B virus (ERBV) in Australian weanling horses using serotype-specific ERBV enzyme-linked immunosorbent assays.

    Science.gov (United States)

    Horsington, Jacquelyn; Hartley, Carol A; Gilkerson, James R

    2013-09-01

    Respiratory infections are a major burden in the performance horse industry. Equine rhinitis B virus (ERBV) has been isolated from horses displaying clinical respiratory disease, and ERBV-neutralizing antibodies have been detected in 50-80% of horses in reported surveys. Current ERBV isolation and detection methods may underestimate the number of ERBV-positive animals and do not identify multiple serotype infections. The aim of the current study was to develop a serotyping ERBV antibody-detection enzyme-linked immunosorbent assay (ELISA) and examine the seroprevalence of ERBV in a group of Australian weanling horses. ELISAs with high sensitivity and specificity were developed. The seroprevalence of ERBV in the weanling horses was high (74-86%); ERBV-3 antibodies were most prevalent (58-62%) and ERBV-2 antibodies were least prevalent (10-16%). Many horses were seropositive to 2 or more serotypes. All 3 serotypes of ERBV were detected, and concurrent positivity to multiple serotypes was common.

  15. Molecular surveillance of dengue in Semarang, Indonesia revealed the circulation of an old genotype of dengue virus serotype-1.

    Directory of Open Access Journals (Sweden)

    Sukmal Fahri

    Full Text Available Dengue disease is currently a major health problem in Indonesia and affects all provinces in the country, including Semarang Municipality, Central Java province. While dengue is endemic in this region, only limited data on the disease epidemiology is available. To understand the dynamics of dengue in Semarang, we conducted clinical, virological, and demographical surveillance of dengue in Semarang and its surrounding regions in 2012. Dengue cases were detected in both urban and rural areas located in various geographical features, including the coastal and highland areas. During an eight months' study, a total of 120 febrile patients were recruited, of which 66 were serologically confirmed for dengue infection using IgG/IgM ELISA and/or NS1 tests. The cases occurred both in dry and wet seasons. Majority of patients were under 10 years old. Most patients were diagnosed as dengue hemorrhagic fever, followed by dengue shock syndrome and dengue fever. Serotyping was performed in 31 patients, and we observed the co-circulation of all four dengue virus (DENV serotypes. When the serotypes were correlated with the severity of the disease, no direct correlation was observed. Phylogenetic analysis of DENV based on Envelope gene sequence revealed the circulation of DENV-2 Cosmopolitan genotype and DENV-3 Genotype I. A striking finding was observed for DENV-1, in which we found the co-circulation of Genotype I with an old Genotype II. The Genotype II was represented by a virus strain that has a very slow mutation rate and is very closely related to the DENV strain from Thailand, isolated in 1964 and never reported in other countries in the last three decades. Moreover, this virus was discovered in a cool highland area with an elevation of 1,001 meters above the sea level. The discovery of this old DENV strain may suggest the silent circulation of old virus strains in Indonesia.

  16. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization.

    Directory of Open Access Journals (Sweden)

    William B Messer

    Full Text Available Dengue viruses (DENV are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I, Thailand 1995 (genotype II, Sri Lanka 1989 and Cuba 2002 (genotype III and Puerto Rico 1977 (genotype IV. We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools

  17. Phylogenetic analyses of the polyprotein coding sequences of serotype O foot-and-mouth disease viruses in East Africa: evidence for interserotypic recombination

    Directory of Open Access Journals (Sweden)

    Balinda Sheila N

    2010-08-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is endemic in East Africa with the majority of the reported outbreaks attributed to serotype O virus. In this study, phylogenetic analyses of the polyprotein coding region of serotype O FMD viruses from Kenya and Uganda has been undertaken to infer evolutionary relationships and processes responsible for the generation and maintenance of diversity within this serotype. FMD virus RNA was obtained from six samples following virus isolation in cell culture and in one case by direct extraction from an oropharyngeal sample. Following RT-PCR, the single long open reading frame, encoding the polyprotein, was sequenced. Results Phylogenetic comparisons of the VP1 coding region showed that the recent East African viruses belong to one lineage within the EA-2 topotype while an older Kenyan strain, K/52/1992 is a representative of the topotype EA-1. Evolutionary relationships between the coding regions for the leader protease (L, the capsid region and almost the entire coding region are monophyletic except for the K/52/1992 which is distinct. Furthermore, phylogenetic relationships for the P2 and P3 regions suggest that the K/52/1992 is a probable recombinant between serotypes A and O. A bootscan analysis of K/52/1992 with East African FMD serotype A viruses (A21/KEN/1964 and A23/KEN/1965 and serotype O viral isolate (K/117/1999 revealed that the P2 region is probably derived from a serotype A strain while the P3 region appears to be a mosaic derived from both serotypes A and O. Conclusions Sequences of the VP1 coding region from recent serotype O FMDVs from Kenya and Uganda are all representatives of a specific East African lineage (topotype EA-2, a probable indication that hardly any FMD introductions of this serotype have occurred from outside the region in the recent past. Furthermore, evidence for interserotypic recombination, within the non-structural protein coding regions, between FMDVs of serotypes A

  18. Emergence and Distribution of Foot-and-Mouth Disease Virus Serotype A and O in Bangladesh.

    Science.gov (United States)

    Nandi, S P; Rahman, M Z; Momtaz, S; Sultana, M; Hossain, M A

    2015-06-01

    Foot-and-mouth disease (FMD) is endemic in Bangladesh and is predominantly due to FMDV serotype O. In 2012, FMD outbreaks were identified in five different districts of Bangladesh. Of 56 symptomatic cattle epithelial tissue samples, diagnostic PCR assay based on 5'-URT detected 38 FMDV infections. Viral genotyping targeting VP1-encoding region confirmed emergence of two distinct serotypes, A and O with an abundance of serotype A in Chittagong and Gazipur districts and serotype O in Pabna and Faridpur. Only single lineage of both A and O was retrieved from samples of five different regions. Sequencing and phylogenetic analysis of VP1 sequences revealed that serotype O sequences were closely related to the Ind 2001 sublineage of Middle East-South Asia (ME-SA) topotype that was previously circulating in Bangladesh, and serotype A sequences belonging to the genotype VII that was dominant in India during the last decade. The results suggest that extensive cross-border animal movement from neighbouring countries is the most likely source of FMDV serotypes in Bangladesh. © 2013 Blackwell Verlag GmbH.

  19. Genetic diversity of serotype A foot-and-mouth disease viruses in Kenya from 1964 to 2013; implications for control strategies in eastern Africa

    DEFF Research Database (Denmark)

    Wekesa, Sabenzia N.; Sangula, Abraham K.; Belsham, Graham

    2014-01-01

    Serotype A is the most genetically and antigenically diverse of the foot-and-mouth disease virus (FMDV) serotypes. Records of its occurrence in Kenya date back to 1952 and the antigenic diversity of the outbreak viruses in this region is reflected by the current use of two different vaccine strains...... across the region of eastern Africa was apparent. Continuous surveillance for the virus, coupled to genetic and antigenic characterization is recommended for improved regional control strategies....... between 1964 and 2013 were determined. Coalescent-based methods were used to infer times of divergence of the virus strains and the evolutionary rates alongside 27 other serotype A FMDV sequences from Genbank and the World Reference Laboratory (WRL). This study represents the first comprehensive genetic...

  20. Economic comparison of the monitoring programmes for bluetongue vectors in Austria and Switzerland.

    Science.gov (United States)

    Pinior, B; Brugger, K; Köfer, J; Schwermer, H; Stockreiter, S; Loitsch, A; Rubel, F

    2015-05-02

    With the bluetongue virus serotype 8 (BTV-8) outbreak in 2006, vector monitoring programmes (according to EU regulation 1266/2007) were implemented by European countries to obtain information on the spatial distribution of vectors and the vector-free period. This study investigates the vector monitoring programmes in Austria and Switzerland by performing a retrospective cost analysis for the period 2006-2010. Two types of costs were distinguished: costs financed directly via the national bluetongue programmes and costs contributed in-kind by the responsible institutions and agricultural holdings. The total net costs of the monitoring programme in Austria amounted to €1,415,000, whereby in Switzerland the costs were valued at €94,000. Both countries followed the legislation complying with requirements, but differed in regard to sampling frequency, number of trap sites and sampling strategy. Furthermore, the surface area of Austria is twice the area of Switzerland although the number of ruminants is almost the same in both countries. Thus, for comparison, the costs were normalised with regard to the sampling frequency and the number of trap sites. Resulting costs per trap sample comprised €164 for Austria and €48 for Switzerland. In both countries, around 50 per cent of the total costs can be attributed to payments in-kind. The benefit of this study is twofold: first, veterinary authorities may use the results to improve the economic efficiency of future vector monitoring programmes. Second, the analysis of the payment in-kind contribution is of great importance to public authorities as it makes the available resources visible and demonstrates how they have been used. British Veterinary Association.

  1. Taraxacum officinale and Urtica dioica extracts inhibit dengue virus serotype 2 replication in vitro.

    Science.gov (United States)

    Flores-Ocelotl, María R; Rosas-Murrieta, Nora H; Moreno, Diego A; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Domínguez, Fabiola; Santos-López, Gerardo

    2018-03-16

    Urtica dioica, Taraxacum officinale, Calea integrifolia and Caesalpinia pulcherrima are widely used all over the world for treatment of different illnesses. In Mexico, these plants are traditionally used to alleviate or counteract rheumatism and inflammatory muscle diseases. In the present study we evaluated the activity of aqueous and methanolic extracts of these four plants, on the replication of dengue virus serotype 2 (DENV2). Extraction process was carried out in a Soxtherm® system at 60, 85 and 120 °C; a chemical fractionation in silica gel chromatography was performed and compounds present in the active fractions were identified by HPLC-DAD-ESI/MSn. The cytotoxic concentration and the inhibitory effect of extracts or fractions on the DENV2 replication were analyzed in the BHK-21 cell line (plaque forming assay). The half maximal inhibitory concentration (IC 50 ) and the selectivity index (SI) were calculated for the extracts and fractions. The methanolic extracts at 60 °C of T. officinale and U. dioica showed the higher inhibitory effects on DENV2 replication. After the chemical fractionation, the higher activity fraction was found for U. dioica and T. officinale, presenting IC 50 values of 165.7 ± 3.85 and 126.1 ± 2.80 μg/ml, respectively; SI values were 5.59 and 6.01 for each fraction. The compounds present in T. officinale, were luteolin and caffeoylquinic acids derivatives and quercertin diclycosides. The compounds in the active fraction of U. dioica, were, chlorogenic acid, quercertin derivatives and flavonol glycosides (quercetin and kaempferol). Two fractions from U. dioica and T. officinale methanolic extracts with anti-dengue activity were found. The compounds present in both fractions were identified, several recognized molecules have demonstrated activity against other viral species. Subsequent biological analysis of the molecules, alone or in combination, contained in the extracts will be carried out to develop therapeutics

  2. Efficient Transduction of Vascular Endothelial Cells with Recombinant Adeno-Associated Virus Serotype 1 and 5 Vectors

    Science.gov (United States)

    CHEN, SIFENG; KAPTURCZAK, MATTHIAS; LOILER, SCOTT A.; ZOLOTUKHIN, SERGEI; GLUSHAKOVA, OLENA Y.; MADSEN, KIRSTEN M.; SAMULSKI, RICHARD J.; HAUSWIRTH, WILLIAM W.; CAMPBELL-THOMPSON, MARTHA; BERNS, KENNETH I.; FLOTTE, TERENCE R.; ATKINSON, MARK A.; TISHER, C. CRAIG

    2006-01-01

    Recombinant adeno-associated virus (rAAV) has become an attractive tool for gene therapy because of its ability to transduce both dividing and nondividing cells, elicit a limited immune response, and the capacity for imparting long-term transgene expression. Previous studies have utilized rAAV serotype 2 predominantly and found that transduction of vascular cells is relatively inefficient. The purpose of the present study was to evaluate the transduction efficiency of rAAV serotypes 1 through 5 in human and rat aortic endothelial cells (HAEC and RAEC). rAAV vectors with AAV2 inverted terminal repeats containing the human α1-antitrypsin (hAAT) gene were transcapsidated using helper plasmids to provide viral capsids for the AAV1 through 5 serotypes. True type rAAV2 and 5 vectors encoding β-galactosidase or green fluorescence protein were also studied. Infection with rAAV1 resulted in the most efficient transduction in both HAEC and RAEC compared to other serotypes (p < 0.001) at 7 days posttransduction. Interestingly, expression was increased in cells transduced with rAAV5 to levels surpassing rAAV1 by day 14 and 21. Transduction with rAAV1 was completely inhibited by removal of sialic acid with sialidase, while heparin had no effect. These studies are the first demonstration that sialic acid residues are required for rAAV1 transduction in endothelial cells. Transduction of rat aortic segments ex vivo and in vivo demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors, in comparison to rAAV2. These results suggest the unique potential of rAAV1 and rAAV5-based vectors for vascular-targeted gene-based therapeutic strategies. OVERVIEW SUMMARY Gene delivery to the vasculature has significant potential as a therapeutic strategy for several cardiovascular disorders including atherosclerosis, hypertension, angiogenesis, and chronic vascular rejection of transplanted organs. However, limited advances have been

  3. Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes

    Directory of Open Access Journals (Sweden)

    Vaishali P. Waman

    2016-08-01

    Full Text Available Background Dengue is one of the most common arboviral diseases prevalent worldwide and is caused by Dengue viruses (genus Flavivirus, family Flaviviridae. There are four serotypes of Dengue Virus (DENV-1 to DENV-4, each of which is further subdivided into distinct genotypes. DENV-2 is frequently associated with severe dengue infections and epidemics. DENV-2 consists of six genotypes such as Asian/American, Asian I, Asian II, Cosmopolitan, American and sylvatic. Comparative genomic study was carried out to infer population structure of DENV-2 and to analyze the role of evolutionary and spatiotemporal factors in emergence of diversifying lineages. Methods Complete genome sequences of 990 strains of DENV-2 were analyzed using Bayesian-based population genetics and phylogenetic approaches to infer genetically distinct lineages. The role of spatiotemporal factors, genetic recombination and selection pressure in the evolution of DENV-2 is examined using the sequence-based bioinformatics approaches. Results DENV-2 genetic structure is complex and consists of fifteen subpopulations/lineages. The Asian/American genotype is observed to be diversified into seven lineages. The Asian I, Cosmopolitan and sylvatic genotypes were found to be subdivided into two lineages, each. The populations of American and Asian II genotypes were observed to be homogeneous. Significant evidence of episodic positive selection was observed in all the genes, except NS4A. Positive selection operational on a few codons in envelope gene confers antigenic and lineage diversity in the American strains of Asian/American genotype. Selection on codons of non-structural genes was observed to impact diversification of lineages in Asian I, cosmopolitan and sylvatic genotypes. Evidence of intra/inter-genotype recombination was obtained and the uncertainty in classification of recombinant strains was resolved using the population genetics approach. Discussion Complete genome-based analysis

  4. Mapping of a dengue virus neutralizing epitope critical for the infectivity of all serotypes: insight into the neutralization mechanism.

    Science.gov (United States)

    Thullier, P; Demangel, C; Bedouelle, H; Mégret, F; Jouan, A; Deubel, V; Mazié, J C; Lafaye, P

    2001-08-01

    Dengue virus infections are a growing public health concern and strategies to control the spread of the virus are urgently needed. The murine monoclonal antibody 4E11 might be of interest, since it neutralizes dengue viruses of all serotypes by binding to the 296-400 segment of the major dengue virus envelope glycoprotein (DE). When phage-displayed peptide libraries were screened by affinity for 4E11, phage clone C1 was selected with a 50% frequency. C1 shared three of nine residues with DE(306-314) and showed significant reactivity to 4E11 in ELISA. C1-induced antibodies cross-reacted with DE(296-400) in mice, suggesting that it was a structural equivalent of the native epitope of 4E11 on DE. Accordingly, 4E11 bound to the DE(306-314) synthetic peptide and this reaction was inhibited by DE(296-400). Moreover, DE(306-314) could block dengue virus infection of target cells in an in vitro assay. A three-dimensional model of DE revealed that the three amino acids shared by DE(296-400) and C1 were exposed to the solvent and suggested that most of the amino acids comprising the 4E11 epitope were located in the DE(306-314) region. Since 4E11 blocked the binding of DE(296-400) to heparin, which is a highly sulfated heparan sulfate (HSHS) molecule, 4E11 may act by neutralizing the interaction of DE(306-314) with target cell-displayed HSHS. Our data suggest that the DE(306-314) segment is critical for the infectivity of all dengue virus serotypes and that molecules that block the binding of DE(306-314) to HSHS may be antiviral reagents of therapeutic interest.

  5. Bovine adenovirus serotype 3 utilizes sialic acid as a cellular receptor for virus entry

    OpenAIRE

    Li, Xiaoxin; Bangari, Dinesh S.; Sharma, Anurag; Mittal, Suresh K.

    2009-01-01

    Bovine adenovirus serotype 3 (BAd3) and porcine adenovirus serotype 3 (PAd3) entry into the host cells is independent of Coxsackievirus -adenovirus receptor and integrins. The role of sialic acid in BAd3 and PAd3 entry was investigated. Removal of sialic acid by neuraminidase, or blocking sialic acid by wheat germ agglutinin lectin significantly inhibited BAd3, but not PAd3, transduction of Madin Darby bovine kidney cells. Maackia amurensis agglutinin or Sambucus nigra (elder) agglutinin trea...

  6. Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections.

    Directory of Open Access Journals (Sweden)

    Kuan-Meng Soo

    Full Text Available Dengue virus (DENV infection is currently a major cause of morbidity and mortality in the world; it has become more common and virulent over the past half-century and has gained much attention. Thus, this review compared the percentage of severe cases of both primary and secondary infections with different serotypes of dengue virus.Data related to the number of cases involving dengue fever (DF, dengue hemorrhagic fever (DHF, dengue shock syndrome (DSS or severe dengue infections caused by different serotypes of dengue virus were obtained by using the SCOPUS, the PUBMED and the OVID search engines with the keywords "(dengue* OR dengue virus* AND (severe dengue* OR severity of illness index* OR severity* OR DF* OR DHF* OR DSS* AND (serotypes* OR serogroup*", according to the MESH terms suggested by PUBMED and OVID.Approximately 31 studies encompassing 15,741 cases reporting on the dengue serotypes together with their severity were obtained, and meta-analysis was carried out to analyze the data. This study found that DENV-3 from the Southeast Asia (SEA region displayed the greatest percentage of severe cases in primary infection (95% confidence interval (CI, 31.22-53.67, 9 studies, n = 598, I2 = 71.53%, whereas DENV-2, DENV-3, and DENV-4 from the SEA region, as well as DENV-2 and DENV-3 from non-SEA regions, exhibited the greatest percentage of severe cases in secondary infection (95% CI, 11.64-80.89, 4-14 studies, n = 668-3,149, I2 = 14.77-96.20%. Moreover, DENV-2 and DENV-4 from the SEA region had been found to be more highly associated with dengue shock syndrome (DSS (95% CI, 10.47-40.24, 5-8 studies, n = 642-2,530, I2 = 76.93-97.70%, while DENV-3 and DENV-4 from the SEA region were found to be more highly associated with dengue hemorrhagic fever (DHF (95% CI, 31.86-54.58, 9 studies, n = 674-2,278, I2 = 55.74-88.47%, according to the 1997 WHO dengue classification. Finally, DENV-2 and DENV-4 from the SEA region were discovered to be more highly

  7. Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections.

    Science.gov (United States)

    Soo, Kuan-Meng; Khalid, Bahariah; Ching, Siew-Mooi; Chee, Hui-Yee

    2016-01-01

    Dengue virus (DENV) infection is currently a major cause of morbidity and mortality in the world; it has become more common and virulent over the past half-century and has gained much attention. Thus, this review compared the percentage of severe cases of both primary and secondary infections with different serotypes of dengue virus. Data related to the number of cases involving dengue fever (DF), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS) or severe dengue infections caused by different serotypes of dengue virus were obtained by using the SCOPUS, the PUBMED and the OVID search engines with the keywords "(dengue* OR dengue virus*) AND (severe dengue* OR severity of illness index* OR severity* OR DF* OR DHF* OR DSS*) AND (serotypes* OR serogroup*)", according to the MESH terms suggested by PUBMED and OVID. Approximately 31 studies encompassing 15,741 cases reporting on the dengue serotypes together with their severity were obtained, and meta-analysis was carried out to analyze the data. This study found that DENV-3 from the Southeast Asia (SEA) region displayed the greatest percentage of severe cases in primary infection (95% confidence interval (CI), 31.22-53.67, 9 studies, n = 598, I2 = 71.53%), whereas DENV-2, DENV-3, and DENV-4 from the SEA region, as well as DENV-2 and DENV-3 from non-SEA regions, exhibited the greatest percentage of severe cases in secondary infection (95% CI, 11.64-80.89, 4-14 studies, n = 668-3,149, I2 = 14.77-96.20%). Moreover, DENV-2 and DENV-4 from the SEA region had been found to be more highly associated with dengue shock syndrome (DSS) (95% CI, 10.47-40.24, 5-8 studies, n = 642-2,530, I2 = 76.93-97.70%), while DENV-3 and DENV-4 from the SEA region were found to be more highly associated with dengue hemorrhagic fever (DHF) (95% CI, 31.86-54.58, 9 studies, n = 674-2,278, I2 = 55.74-88.47%), according to the 1997 WHO dengue classification. Finally, DENV-2 and DENV-4 from the SEA region were discovered to be more highly

  8. Development of a foot-and-mouth disease virus serotype A empty capsid subunit vaccine using silkworm (Bombyx mori pupae.

    Directory of Open Access Journals (Sweden)

    Zhiyong Li

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of cloven-hoofed animals that inflicts severe economic losses in the livestock industry. In 2009, FMDV serotype A caused outbreaks of FMD in cattle in China. Although an inactivated virus vaccine has proven effective to control FMD, its use may lead to new disease outbreaks due to a possible incomplete inactivation of the virus during the manufacturing process. Here, we expressed the P1-2A and the 3C coding regions of a serotype A FMDV field isolate in silkworm pupae (Bombyx mori and evaluated the immunogenicity of the expression products. Four of five cattle vaccinated with these proteins developed high titers of FMDV-specific antibody and were completely protected against virulent homologous virus challenge with 10,000 50% bovine infectious doses (BID(50. Furthermore, the 50% bovine protective dose (PD(50 test was performed to assess the bovine potency of the empty capsid subunit vaccine and was shown to achieve 4.33 PD(50 per dose. These data provide evidence that silkworm pupae can be used to express immunogenic FMDV proteins. This strategy might be used to develop a new generation of empty capsid subunit vaccines against a variety of diseases.

  9. Foot-and-mouth disease virus serotypes detected in Tanzania from 2003 to 2010: Conjectured status and future prospects

    Directory of Open Access Journals (Sweden)

    Christopher J. Kasanga

    2012-06-01

    Full Text Available This study was conducted to investigate the presence of foot-and-mouth disease virus (FMDV in different geographic locations of Tanzania. Epithelial tissues and fluids (n = 364 were collected from cattle exhibiting oral and foot vesicular lesions suggestive of FMD and submitted for routine FMD diagnosis. The analysis of these samples collected during the period of 2002 and 2010 was performed by serotype-specific antigen capture ELISA to determine the presence of FMDV. The results of this study indicated that 167 out of 364 (46.1% of the samples contained FMDV antigen. Of the 167 positive samples, 37 (28.4% were type O, 7 (4.1% type A, 45 (21.9% SAT 1 and 79 (45.6% SAT 2. Two FMDV serotypes (O and SAT 2 were widely distributed throughout Tanzania whilst SAT 1 and A types were only found in the Eastern zone. Our findings suggest that serotypes A, O, SAT 1 and SAT 2 prevail in Tanzania and are associated with the recent FMD outbreaks. The lack of comprehensive animal movement records and inconsistent vaccination programmes make it difficult to determine the exact source of FMD outbreaks or to trace the transmission of the disease over time. Therefore, further collection and analysis of samples from domestic and wild animals are being undertaken to investigate the genetic and antigenic characteristics of the circulating strains, so that a rational method to control FMD in Tanzania and the neighbouring countries can be recommended.

  10. Isolation of dengue virus serotype 4 genotype II from a patient with high viral load and a mixed Th1/Th17 inflammatory cytokine profile in South Brazil.

    Science.gov (United States)

    Kuczera, Diogo; Bavia, Lorena; Mosimann, Ana Luiza Pamplona; Koishi, Andrea Cristine; Mazzarotto, Giovanny Augusto Camacho Antevere; Aoki, Mateus Nóbrega; Mansano, Ana Maria Ferrari; Tomeleri, Ediléia Inês; Costa Junior, Wilson Liuti; Miranda, Milena Menegazzo; Lo Sarzi, Maria; Pavanelli, Wander Rogério; Conchon-Costa, Ivete; Duarte Dos Santos, Claudia Nunes; Bordignon, Juliano

    2016-06-06

    We report the isolation and characterization of dengue virus (DENV) serotype 4 from a resident of Santa Fé, state of Paraná, South Brazil, in March 2013. This patient presented with hemorrhagic manifestations, high viral load and, interestingly, a mixed Th1/Th17 cytokine profile. The patient presented with classical dengue symptoms, such as fever, rash, myalgia, arthralgia, and hemorrhagic manifestations including petechiae, gum bleeding and a positive tourniquet test result. A serum sample obtained 1 day after the initial appearance of clinical symptoms was positive for NS1 viral antigen, but this sample was negative for both IgM and IgG against DENV. Dengue virus infection was confirmed by isolation of the virus from C6/36 cells, and dengue virus serotyping was performed via one-step RT-PCR. The infection was confirmed to be caused by a serotype 4 dengue virus. Additionally, based on multiple alignment and phylogeny analyses of its complete genome sequence, the viral strain was classified as genotype II (termed LRV13/422). Moreover, a mixed Th1/Th17 cytokine profile was detected in the patient's serum, and this result demonstrated significant inflammation. Biological characterization of the virus via in vitro assays comparing LRV13/422 with a laboratory-adapted reference strain of dengue virus serotype 4 (TVP/360) showed that LRV13/422 infects both vertebrate and invertebrate cell lines more efficiently than TVP/360. However, LRV13/422 was unable to inhibit type I interferon responses, as suggested by the results obtained for other dengue virus strains. Furthermore, LRV13/422 is the first completely sequenced serotype 4 dengue virus isolated in South Brazil. The high viral load and mixed Th1/Th17 cytokine profile observed in the patient's serum could have implications for the development of the hemorrhagic signs observed, and these potential relationships can now be further studied using suitable animal models and/or in vitro systems.

  11. Reconstructing geographical movements and host species transitions of foot-and-mouth disease virus serotype SAT 2.

    Science.gov (United States)

    Hall, Matthew D; Knowles, Nick J; Wadsworth, Jemma; Rambaut, Andrew; Woolhouse, Mark E J

    2013-10-22

    Of the three foot-and-mouth-disease virus SAT serotypes mainly confined to sub-Saharan Africa, SAT 2 is the strain most often recorded in domestic animals and has caused outbreaks in North Africa and the Middle East six times in the last 25 years, with three apparently separate events occurring in 2012. This study updates the picture of SAT 2 phylogenetics by using all available sequences for the VP1 section of the genome available at the time of writing and uses phylogeographic methods to trace the origin of all outbreaks occurring north of the Sahara since 1990 and identify patterns of spread among countries of endemicity. Transitions between different host species are also enumerated. Outbreaks in North Africa appear to have origins in countries immediately south of the Sahara, whereas those in the Middle East are more often from East Africa. The results of the analysis of spread within sub-Saharan Africa are consistent with it being driven by relatively short-distance movements of animals across national borders, and the analysis of host species transitions supports the role of the African buffalo (Syncerus caffer) as an important natural reservoir. Foot-and-mouth disease virus is a livestock pathogen of major economic importance, with seven distinct serotypes occurring globally. The SAT 2 serotype, endemic in sub-Saharan Africa, has caused a number of outbreaks in North Africa and the Middle East during the last decades, including three separate incidents in 2012. A comprehensive analysis of all available RNA sequences for SAT 2 has not been published for some years. In this work, we performed this analysis using all previously published sequences and 49 newly determined examples. We also used phylogenetic methods to infer the source country for all outbreaks occurring outside sub-Saharan Africa since 1990 and to reconstruct the spread of viral lineages between countries where it is endemic and movements between different host species.

  12. Bluetongue vector species of Culicoides in Switzerland.

    Science.gov (United States)

    Cagienard, A; Griot, C; Mellor, P S; Denison, E; Stärk, K D C

    2006-06-01

    Switzerland is historically recognized by the Office Internationale des Epizooties as free from bluetongue disease (BT) because of its latitude and climate. With bluetongue virus (BTV) moving north from the Mediterranean, an entomological survey was conducted in Switzerland in 2003 to assess the potential of the BTV vectors present. A total of 39 cattle farms located in three geographical regions, the Ticino region, the Western region and the region of the Grisons, were monitored during the vector season. Farms were located in areas at high risk of vector introduction and establishment based on the following characteristics: annual average temperature > 12.5 degrees C, average annual humidity >or= 60%, cattle farm. Onderstepoort black light traps were operated at the cattle farms generally for one night in July and one night in September. A total of 56 collections of Culicoides (Diptera: Ceratopogonidae) were identified morphologically. Only one single individual of Culicoides (Avaritia) imicola, the major Old World vector of BTV, was found in July 2003 in the Ticino region, one of the southernmost regions of Switzerland. In the absence of further specimens of C. imicola from Switzerland it is suggested that this individual may be a vagrant transported by wind from regions to the south of the country where populations of this species are known to occur. Alternative potential BTV vectors of the Culicoides (Culicoides) pulicaris and Culicoides (Avaritia) obsoletus complexes were abundant in all sampled regions with individual catches exceeding 70 000 midges per trap night.

  13. First confirmation of foot and mouth disease virus serotype SAT-1 in cattle and small ruminants in Ethiopia in 2007/08.

    Science.gov (United States)

    Legesse, Yoseph; Asfaw, Yilkal; Sahle, Mesfin; Ayelet, Gelagay; Jenberie, Shiferaw; Negussie, Haileleul

    2013-06-01

    The study was conducted in three regional states of Ethiopia: Amhara, Oromia, and the Southern Nations Nationalities and people regional state from August 2007 to April 2008 with the objective of identifying the foot and mouth disease virus (FMDV) serotypes circulating in the region. Two serotypes were recorded from epithelial tissue and oesophageal-pharyngeal (OP) fluid that were taken from outbreaks in study regions of Ethiopia. Serotype O FMDV was identified in Girar Jarso, Yabello, and Ankesha Guagusa districts while SAT-1 was isolated in Surma and Maji districts from tissue samples and this was the first report of the FMDV serotype in Ethiopia. Similarly, the OP fluid samples were found positive for SAT-1 FMDV in Maji and Surma districts.

  14. Characterization of foot-and-mouth disease viruses from Ugandan cattle outbreaks during 2012-2013: Evidence for circulation of multiple serotypes

    DEFF Research Database (Denmark)

    Namatovu, Alice; Tjørnehøj, Kirsten; Belsham, Graham

    2015-01-01

    To investigate the foot-and-mouth disease virus (FMDV) serotypes circulating in Uganda’s cattle population, both serological and virological analyses of samples from outbreaks that occurred during 2012-2013 were performed. Altogether, 79 sera and 60 oropharyngeal fluid (OP)/tissue/oral swab samples...... were collected from herds with reported FMD outbreaks in seven different Ugandan districts. Overall, 61/79 (77%) of the cattle sera were positive for antibodies against FMDV by PrioCHECK® FMDV NS ELISA and solid phase blocking ELISA detected titres ≥ 80 for serotypes O, SAT 1, SAT 2 and SAT 3 in 41, 45...... used vaccine strain. From the Wakiso district 11 tissue/swab samples were collected; serotype A FMDV, genotype Africa (G-I), was isolated from the epithelial samples. This study shows that within a period of less than one year, FMD outbreaks in Uganda were caused by four different serotypes namely O, A...

  15. Comparison of multiplex RT-PCR and real-time HybProbe assay for serotyping of dengue virus using reference strains and clinical samples from India

    Directory of Open Access Journals (Sweden)

    Anita Chakravarti

    2016-01-01

    Full Text Available Background: Dengue virus serotyping is crucial from clinical management and epidemiological point of view. Aims: To compare efficacy of two molecular detection and typing methods, namely, multiplex reverse transcription polymerase chain reaction (RT-PCR and real-time Hybprobe assay using a panel of known dilution of four reference Dengue virus strains and a panel of sera collected from clinically suspected dengue patients. Settings: This study was conducted at a tertiary-care teaching hospital in Delhi, India. Materials and Methods: Dengue serotype specific virus strains were used as prototypes for serotyping assays. Viral load was quantified by quantitative real time reverse transcription polymerase chain reaction (qRT-PCR. Acute phase serum samples were collected from 79 patients with clinically suspected Dengue fever on their first day of presentation during September-October 2012. Viral RNA from serum and cell culture supernatant was extracted. Reverse transcription was carried out. Quantitative detection of DENV RNA from reference strain culture supernatants and each of the 79 patient samples by real-time PCR was performed using light cycler Taqman master mix kit. Serotyping was done by multiplex RT-PCR assay and Hybprobe assay. Results: The multiplex RT-PCR assay, though found to be 100% specific, couldn't serotype either patient or reference strains with viral load less than 1000 RNA copies/ml. The Hybprobe assay was found to have 100% specificity and had a lower limit of serotype detection of merely 3.54 RNA copies/ml. Conclusions: HybProbe assay has an important role especially in situations where serotyping is to be performed in clinical samples with low viral load.

  16. Infección por el virus de la Lengua azul: activación de señales celulares que inducen apoptosis Bluetongue virus infection: signaling pathway activated during apoptosis

    Directory of Open Access Journals (Sweden)

    E. Mortola

    2009-09-01

    Full Text Available El virus de la Lengua azul (VLA es un ARN virus de doble cadena que induce apoptosis tanto en cultivos celulares como en tejidos blanco. Con el fin de dilucidar el mecanismo de apoptosis en la infección por el VLA, en el presente trabajo examinamos en detalle, por la técnica de Western blot, las señales celulares de caspasas, Bax, citocromo c, Smac/DIABLO y factor nuclear kappa B (NF-kB que se activan en la infección viral. Hemos comprobado que luego de la infección in vitro con el VLA, se detectó la activación de la caspasa 8 y con ello el mecanismo extrínseco de la apoptosis. También detectamos por primera vez no sólo la activación de miembros de la familia Bcl-2 (Bax, sino también la liberación del citocromo c y la proteína Smac/DIABLO, confirmando que en la infección por el VLA está involucrado el mecanismo secuencial intrínseco de la apoptosis. Asimismo, demostramos que la infección por el VLA activa el NF-kB y que la apoptosis es sustancialmente reducida mediante la inhibición del mismo. La activación de las señales celulares tales como Bax, citocromo c, Smac/DIABLO y NF-kB presentados en este trabajo, esclarecen los mecanismos apoptóticos durante la infección por el VLA para una mayor comprensión del papel primario que juega la apoptosis en la patogénesis del virus.Bluetongue (BTV is a double-stranded RNA virus that induces apoptosis both in mammalian cell cultures and in target tissues. To elucidate the apoptosis pathways in BTV infection, we have examined in detail the apoptosis mechanism by examination of caspases, Bax, cytochrome c, Smac/DIABLO and NF-kB signalling pathways. In this report, after cell infection with BTV, the activation of caspase 8 was detected, proving the extrinsic receptor binding apoptotic pathway. Apoptosis followed a sequential pathway involving the detection of activated Bcl-2 family members. Furthermore, its translocation to the mitochondria, as well as the release of cytochrome c and

  17. Development of tailored real-time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth disease virus lineages circulating in the Middle East

    DEFF Research Database (Denmark)

    Reid, Scott M.; Mioulet, Valerie; Knowles, Nick J.

    2014-01-01

    Rapid and accurate diagnosis is essential for effective control of foot-and-mouth disease (FMD). In countries where FMD is endemic, identification of the serotypes of the causative virus strains is important for vaccine selection and tracing the source of outbreaks. In this study, real-time reverse...... transcription polymerase chain reaction (rRT-PCR) assays using primer/probe sets designed from the VP1 coding region of the virus genomes were developed for the specific detection of serotype O, A and Asia-1 FMD viruses (FMDVs) circulating in the Middle East. These assays were evaluated using representative...... field samples of serotype O strains belonging exclusively to the PanAsia-2 lineage, serotype A strains of the Iran-05 lineage and serotype Asia-1 viruses from three relevant sub-groups. When RNA extracted from archival and contemporary field strains was tested using one- or two-step rRT-PCR assays, all...

  18. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using direct homologous challenge

    Science.gov (United States)

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularl...

  19. Enhancing the sensitivity of Dengue virus serotype detection by RT-PCR among infected children in India.

    Science.gov (United States)

    Ahamed, Syed Fazil; Vivek, Rosario; Kotabagi, Shalini; Nayak, Kaustuv; Chandele, Anmol; Kaja, Murali-Krishna; Shet, Anita

    2017-06-01

    Dengue surveillance relies on reverse transcription-polymerase chain reaction (RT-PCR), for confirmation of dengue virus (DENV) serotypes. We compared efficacies of published and modified primer sets targeting envelope (Env) and capsid-premembrane (C-prM) genes for detection of circulating DENV serotypes in southern India. Acute samples from children with clinically-diagnosed dengue were used for RT-PCR testing. All samples were also subjected to dengue serology (NS1 antigen and anti-dengue-IgM/IgG rapid immunochromatographic assay). Nested RT-PCR was performed on viral RNA using three methods targeting 654bp C-prM, 511bp C-prM and 641bp Env regions, respectively. RT-PCR-positive samples were validated by population sequencing. Among 171 children with suspected dengue, 121 were dengue serology-positive and 50 were dengue serology-negative. Among 121 serology-positives, RT-PCR detected 91 (75.2%) by CprM654, 72 (59.5%) by CprM511, and 74 (61.1%) by Env641. Among 50 serology-negatives, 10 (20.0%) were detected by CprM654, 12 (24.0%) by CprM511, and 11 (22.0%) by Env641. Overall detection rate using three methods sequentially was 82.6% (100/121) among serology-positive and 40.0% (20/50) among serology-negative samples; 6.6% (8/120) had co-infection with multiple DENV serotypes. We conclude that detection of acute dengue was enhanced by a modified RT-PCR method targeting the 654bp C-prM region, and further improved by using all three methods sequentially. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characterization of soluble RNA-dependent RNA polymerase from dengue virus serotype 2: The polyhistidine tag compromises the polymerase activity.

    Science.gov (United States)

    Kamkaew, Maliwan; Chimnaronk, Sarin

    2015-08-01

    The viral RNA polymerase is an attractive target for inhibition in the treatment of viral infections. In the case of dengue virus (DENV), a member of the genus Flavivirus, the RNA-dependent RNA polymerase (RdRp) activity resides in the C-terminal two-thirds of non-structural protein (NS) 5 responsible for the de novo synthesis of the viral RNA genome. Among four distinct, but closely related dengue serotypes, serotype 2 (DENV-2) produces more severe diseases than other serotypes. It has been reported that bacterial production of the recombinant DENV-2 RdRp was difficult due to its low expression and solubility levels. To facilitate functional and structural analyses, we here demonstrate complete protocols for overexpression and purification of soluble DENV-2 RdRp, increasing protein yields by a remarkable 10 times compared to earlier reports. Three different forms of DENV-2 RdRp as either N- or C-terminally His-tagged fusions, or without tag, were purified to homogeneity. We show here that the presence of both the N- and C-terminal His-tag had a deleterious effect on polymerase activity and, in contrast to earlier studies, our non-tagged RdRp did not require manganese ions to activate RNA polymerization. We also determined an apparent Kd value of 53nM for binding to the 5'-UTR RNA by surface plasmon resonance (SPR). Our work provide a more suitable material for basic research of viral RdRp and for drug development. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A single nine-amino acid peptide induces virus-specific, CD8+ human cytotoxic T lymphocyte clones of heterogeneous serotype specificities

    OpenAIRE

    1995-01-01

    It is generally accepted that virus-specific CD8+ cytotoxic T lymphocytes (CTLs) recognize nine-amino acid peptides in conjunction with HLA class I molecules. We recently reported that dengue virus- specific CD8+ CTLs of two different serotype specificities, which were established by stimulation with dengue virus, recognize a single nine- amino acid peptide of the nonstructural protein NS3 of dengue virus type 4 (D4V) in an HLA-B35-restricted fashion. To further analyze the relationships betw...

  2. Time-Varying, Serotype-Specific Force of Infection of Dengue Virus

    Science.gov (United States)

    2014-05-20

    andR0)weused the1,000 sampled stepsof the chain to create1,000estimates of f. This formedanempirical estimate of the posterior distribution of f. For...Markov chains for exploring posterior distributions. Ann Stat 22(4): 1701–1728. 35. Roberts GO, Rosenthal JS (2009) Examples of adaptive MCMC . J...y, longitudinal DENV serological dataset from Iquitos, Peru (11,703 individuals, 38,416 samples , and 22,301 serotype- specific DENV infections from

  3. Serological evidence for transmission of multiple dengue virus serotypes in Papua New Guinea and West Papua prior to 1963.

    Directory of Open Access Journals (Sweden)

    Dagwin Luang-Suarkia

    2017-04-01

    Full Text Available Little is known about the natural history of dengue in Papua New Guinea (PNG. We assessed dengue virus (DENV-specific neutralizing antibody profiles in serum samples collected from northern and southern coastal areas and the highland region of New Guinea between 1959 and 1963. Neutralizing antibodies were demonstrated in sera from the northern coast of New Guinea: from Sabron in Dutch New Guinea (now known as West Papua and from four villages in East Sepik in what is now PNG. Previous monotypic infection with DENV-1, DENV-2, and DENV-4 was identified, with a predominance of anti-DENV-2 neutralizing antibody. The majority of positive sera demonstrated evidence of multiple previous DENV infections and neutralizing activity against all four serotypes was detected, with anti-DENV-2 responses being most frequent and of greatest magnitude. No evidence of previous DENV infection was identified in the Asmat villages of the southern coast and a single anti-DENV-positive sample was identified in the Eastern Highlands of PNG. These findings indicate that multiple DENV serotypes circulated along the northern coast of New Guinea at different times in the decades prior to 1963 and support the notion that dengue has been a significant yet neglected tropical infection in PNG for many decades.

  4. Serological evidence for transmission of multiple dengue virus serotypes in Papua New Guinea and West Papua prior to 1963.

    Science.gov (United States)

    Luang-Suarkia, Dagwin; Ernst, Timo; Alpers, Michael P; Garruto, Ralph; Smith, David; Imrie, Allison

    2017-04-01

    Little is known about the natural history of dengue in Papua New Guinea (PNG). We assessed dengue virus (DENV)-specific neutralizing antibody profiles in serum samples collected from northern and southern coastal areas and the highland region of New Guinea between 1959 and 1963. Neutralizing antibodies were demonstrated in sera from the northern coast of New Guinea: from Sabron in Dutch New Guinea (now known as West Papua) and from four villages in East Sepik in what is now PNG. Previous monotypic infection with DENV-1, DENV-2, and DENV-4 was identified, with a predominance of anti-DENV-2 neutralizing antibody. The majority of positive sera demonstrated evidence of multiple previous DENV infections and neutralizing activity against all four serotypes was detected, with anti-DENV-2 responses being most frequent and of greatest magnitude. No evidence of previous DENV infection was identified in the Asmat villages of the southern coast and a single anti-DENV-positive sample was identified in the Eastern Highlands of PNG. These findings indicate that multiple DENV serotypes circulated along the northern coast of New Guinea at different times in the decades prior to 1963 and support the notion that dengue has been a significant yet neglected tropical infection in PNG for many decades.

  5. Evolutionary analysis of foot-and-mouth disease virus serotype SAT 1 isolates from east Africa suggests two independent introductions from southern Africa.

    Science.gov (United States)

    Sangula, Abraham K; Belsham, Graham J; Muwanika, Vincent B; Heller, Rasmus; Balinda, Sheila N; Masembe, Charles; Siegismund, Hans R

    2010-11-30

    In East Africa, foot-and-mouth disease virus serotype SAT 1 is responsible for occasional severe outbreaks in livestock and is known to be maintained within the buffalo populations. Little is known about the evolutionary forces underlying its epidemiology in the region. To enhance our appreciation of the epidemiological status of serotype SAT 1 virus in the region, we inferred its evolutionary and phylogeographic history by means of genealogy-based coalescent methods using 53 VP1 coding sequences covering a sampling period from 1948-2007. The VP1 coding sequence of 11 serotype SAT 1 FMD viruses from East Africa has been determined and compared with known sequences derived from other SAT 1 viruses from sub-Saharan Africa. Purifying (negative) selection and low substitution rates characterized the SAT 1 virus isolates in East Africa. Two virus groups with probable independent introductions from southern Africa were identified from a maximum clade credibility tree. One group was exclusive to Uganda while the other was present within Kenya and Tanzania. Our results provide a baseline characterization of the inter-regional spread of SAT 1 in sub-Saharan Africa and highlight the importance of a regional approach to trans-boundary animal disease control in order to monitor circulating strains and apply appropriate vaccines.

  6. Specific genetic markers for detecting subtypes of dengue virus serotype-2 in isolates from the states of Oaxaca and Veracruz, Mexico

    Science.gov (United States)

    Gardella-Garcia, Catalina E; Perez-Ramirez, Gerardo; Navarrete-Espinosa, Joel; Cisneros, Alejandro; Jimenez-Rojas, Fabiola; Ramírez-Palacios, Luis R; Rosado-Leon, Rocio; Camacho-Nuez, Minerva; Munoz, Maria de L

    2008-01-01

    Background Dengue (DEN) is an infectious disease caused by the DEN virus (DENV), which belongs to the Flavivirus genus in the family Flaviviridae. It has a (+) sense RNA genome and is mainly transmitted to humans by the vector mosquito Aedes aegypti. Dengue fever (DF) and dengue hemorrhagic fever (DHF) are caused by one of four closely related virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4). Epidemiological and evolutionary studies have indicated that host and viral factors are involved in determining disease outcome and have proved the importance of viral genotype in causing severe epidemics. Host immune status and mosquito vectorial capacity are also important influences on the severity of infection. Therefore, an understanding of the relationship between virus variants with altered amino acids and high pathogenicity will provide more information on the molecular epidemiology of DEN. Accordingly, knowledge of the DENV serotypes and genotypes circulating in the latest DEN outbreaks around the world, including Mexico, will contribute to understanding DEN infections. Results 1. We obtained 88 isolates of DENV, 27 from Oaxaca and 61 from Veracruz. 2. Of these 88 isolates, 16 were serotype 1; 62 serotype 2; 7 serotype 3; and 2 serotype 4. One isolate had 2 serotypes (DENV-2 and -1). 3. Partial nucleotide sequences of the genes encoding C- prM (14 sequences), the NS3 helicase domain (7 sequences), the NS5 S-adenosyl methionine transferase domain (7 sequences) and the RNA-dependent RNA polymerase (RdRp) domain (18 sequences) were obtained. Phylogenetic analysis showed that DENV-2 isolates belonged to the Asian/American genotype. In addition, the Asian/American genotype was divided into two clusters, one containing the isolates from 2001 and the other the isolates from 2005–2006 with high bootstrap support of 94%. Conclusion DENV-2 was the predominant serotype in the DF and DHF outbreak from 2005 to 2006 in Oaxaca State as well as in the 2006 outbreak in Veracruz

  7. Why German farmers have their animals vaccinated against Bleutongue virus serotype 8: Results of a questionnaire survey

    NARCIS (Netherlands)

    Gethmann, J.; Zilow, V.; Probst, C.; Elbers, A.R.W.; Conraths, F.J.

    2015-01-01

    In response to the Bluetongue disease epidemic in 2006–2007, Germany started in 2008 a country-wide mandatory vaccination campaign. By 2009 the number of new outbreaks had decreased so that vaccination became voluntary in 2010. We conducted a questionnaire survey in cattle and sheep farms in three

  8. Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses

    International Nuclear Information System (INIS)

    Hu, H.-P.; Hsieh, S.-C.; King, C.-C.; Wang, W.-K.

    2007-01-01

    In this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibited by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more dengue viral sequences available from different outbreaks worldwide, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates

  9. An External Loop Region of Domain III of Dengue Virus Type 2 Envelope Protein Is Involved in Serotype-Specific Binding to Mosquito but Not Mammalian Cells

    OpenAIRE

    Hung, Jan-Jong; Hsieh, Meng-Ti; Young, Ming-Jer; Kao, Chuan-Liang; King, Chwan-Chuen; Chang, Wen

    2004-01-01

    Dengue virus (DV) is a flavivirus and infects mammalian cells through mosquito vectors. This study investigates the roles of domain III of DV type 2 envelope protein (EIII) in DV binding to the host cell. Recombinant EIII interferes with DV infection to BHK21 and C6/36 cells by blocking dengue virion adsorption to these cells. Inhibition of EIII on BHK21 cells was broad with no serotype specificity; however, inhibition of EIII on C6/36 cells was relatively serotype specific. Soluble heparin c...

  10. Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread

    Science.gov (United States)

    Ramey, Andy M.; Reeves, Andrew B.; Ogawa, Haruko; Ip, Hon S.; Imai, Kunitoshi; Bui, V. N.; Yamaguchi, Emi; Silko, N. Y.; Afonso, C.L.

    2013-01-01

    Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.

  11. The use of serotype 1-and serotype 3-specific polymerase chain reaction for the detection of Marek's disease virus in chickens

    DEFF Research Database (Denmark)

    Handberg, Kurt; Nielsen, Ole L.; Jørgensen, Poul Henrik

    2001-01-01

    was applied to samples collected from four commercial table egg layer flocks of young stock or pullets vaccinated with either serotype 1 (CVI988) or serotype 3 (HVT) vaccine. These flocks had various clinical signs of Marek's disease. MDV-1 was detected in buffy-coat cells, spleen, liver, skin, feather tips...... and ovaries. The detection of MDV in feather tips appeared to be as sensitive as co-cultivation of buffy-coat cells, although an inhibiting factor was observed in extracts from feather tips of non-white chickens. This inhibition could be overcome in most extracts by applying a bovine serum albumen...

  12. Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review

    Science.gov (United States)

    Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad

    2016-01-01

    The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process. PMID:27239109

  13. Proteomic analysis reveals the enhancement of human serum apolipoprotein A-1(APO A-1) in individuals infected with multiple dengue virus serotypes.

    Science.gov (United States)

    Manchala, Nageswar Reddy; Dungdung, Ranjeet; Pilankatta, Rajendra

    2017-10-01

    Human serum protein profiling of the individual infected with multiple dengue virus serotypes for identifying the potential biomarkers and to investigate the cause for the severity of dengue virus infection. Dengue virus NS1-positive serum samples were pooled into two groups (S2 and S3) based on the molecular serotyping and number of heterotypic infections. The pooled serum samples were subjected to two-dimensional gel electrophoresis (2DGE) to identify the differentially expressed proteins. The peptide masses of upregulated protein were detected by matrix-assisted laser desorption-ionisation time-of-flight MALDI-TOF mass spectrometry and analysed by MASCOT search engine. The results were compared with the control group (S1). The commonly upregulated protein was validated by quantitative ELISA and compared with control as well as single serotypic infected samples. Based on 2DGE, total thirteen proteins were differentially upregulated in S2 and S3 groups as compared to control. Some of the upregulated proteins were involved in mediating the complement activation of immune response. The apolipoprotein A-1 (APO A-1) was upregulated in S2 and S3 groups. Upon validation, APO A-1 levels were increased in line with the number of heterotypic infection of dengue viruses. Heterotypic infection of dengue viruses upregulate the serum proteins involved in the complement pathway in the early phase of infection. There was a significant increase in the level of APO A-1 in three different serotypic infections of dengue virus as compared to control. Further, the role of APO-A1 can be explored in elucidating the mechanism of dengue pathogenesis. © 2017 John Wiley & Sons Ltd.

  14. Genetic analysis of foot-and-mouth disease virus serotype A of ...

    Indian Academy of Sciences (India)

    Prakash

    collected during the period 1968–2005 and also eight vaccine strains using the neighbour-joining tree and Bayesian tree methods. The viruses were .... in 0.04 M phosphate buffer and made up as a 10% suspension. The suspension ...... type A viruses isolated from the 1994 and 1995 foci in Sao Paulo. Brazil; Vet. Microbiol.

  15. Analysis of recombinant, multivalent dengue virus containing envelope (E proteins from serotypes-1, -3 and -4 and expressed in baculovirus

    Directory of Open Access Journals (Sweden)

    Fedik A. Rantam

    2015-01-01

    Full Text Available Dengue virus has four serotypes that cause a public health problem in Indonesia. Currently, there is no preventative vaccine for this disease, but some model vaccines are in development. The envelop (E protein genes from three isolates of dengue virus (DENV-1, -3 and -4 were isolated, cloned into Escherichia coli and then sub-cloned into a baculovirus vector before co-transfection into Sf9 cells. Recombinant E genes were inserted between the Smal and Sacl sites of the plasmid, adjacent to the baculoviral structural gene, polyhedrin. The sequence of recombinant E gene was relatively stable with 97–98% homology, although there were amino acid substitutions in some regions. The recombinant protein was more antigenic when exposed to polyclonal sera from infected humans than sera from immunized mice, but its binding to monoclonal antibodies IgG1a and IgG2b was stronger than other isotopes, including IgM, IgG and Ig1b. Recombinant E protein induced cellular immune responses in immunized mice, as demonstrated by lymphocyte secretion of IL-3. This study indicates that recombinant E protein expressed in a baculovirus system can induce humoral and cellular immune responses.

  16. Efficacy of synthetic peptide candidate vaccines against serotype-A foot-and-mouth disease virus in cattle.

    Science.gov (United States)

    Zhang, Zhongwang; Pan, Li; Ding, Yaozhong; Zhou, Peng; Lv, Jianliang; Chen, Haotai; Fang, Yuzhen; Liu, Xinsheng; Chang, Huiyun; Zhang, Jie; Shao, Junjun; Lin, Tong; Zhao, Furong; Zhang, Yongguang; Wang, Yonglu

    2015-02-01

    Foot-and-mouth disease (FMD) remains a major threat to livestock worldwide, especially in developing countries. To improve the efficacy of vaccination against FMD, various types of vaccines have been developed, including synthetic peptide vaccines. We designed three synthetic peptide vaccines, 59 to 87 aa in size, based on immunogenic epitopes in the VP1, 3A, and 3D proteins of the A/HuBWH/CHA/2009 strain of the foot-and-mouth disease virus (FMDV), corresponding to amino acid positions 129 to 169 of VP1, 21 to 35 of 3A, and 346 to 370 of 3D. The efficacies of the vaccines were evaluated in cattle and guinea pigs challenged with serotype-A FMDV. All of the vaccines elicited the production of virus-neutralizing antibodies. The PB peptide, which contained sequences corresponding to positions 129 to 169 of V P1 and 346 to 370 of 3D, demonstrated the highest levels of immunogenicity and immunoprotection against FMDV. Two doses of 50 μg of the synthetic PB peptide vaccine provided 100% protection against FMDV infection in guinea pigs, and a single dose of 100 μg provided 60% protection in cattle. These findings provide empirical data for facilitating the development of synthetic peptide vaccines against FMD.

  17. Genetic signatures coupled with lineage shift characterise endemic evolution of Dengue virus serotype 2 during 2015 outbreak in Delhi, India.

    Science.gov (United States)

    Choudhary, Manish Chandra; Gupta, Ekta; Sharma, Shvetank; Hasnain, Nadeem; Agarwala, Pragya

    2017-07-01

    In 2015, New Delhi witnessed a massive outbreak of Dengue virus (DENV) resulting in high morbidity and mortality. We report the molecular characterisation of the dominant circulating DENV strain to understand its evolution and dispersal. DENV infections were diagnosed by detection of IgM/NS1 antigen, and serotyping was performed by C-PrM PCR. Envelope gene was amplified, and variation(s) in envelope gene were analysed. Phylogenetic tree construction, time-based phylogeny and origin of DENV were analysed. Site-specific selection pressure of envelope gene variants was analysed. Confirmed DENV infection was observed in 11.34% (32 of 282) cases, while PCR positivity for C-PrM region was observed in 54.16% (13 of 24) of NS1 antigen-positive cases. All samples belonged to serotype 2 and cosmopolitan genotype. Phylogenetic analysis using envelope gene revealed segregation of cosmopolitan genotype strains into specific lineages. The Indian strains clustered separately forming a distinct monophyletic lineage (lineage III) with a signature amino acid substitution viz., I162V and R288K. Selection pressure analysis revealed that 215D, 288R and 304K were positively selected sites. The rate of nucleotide substitution was 6.93 × 10 -4 substitutions site-1 year-1 with time to most common ancestor was around 10 years with JX475906 (Hyderabad strain) and JN030345 (Singapore strain) as its most probable ancestor. We observed evolution of a distinct lineage of DENV-2 strains on the Indian subcontinent with possible changes in endemic circulating dengue strains that might give rise to more pathogenic strains. © 2017 John Wiley & Sons Ltd.

  18. Complexity of Neutralizing Antibodies against Multiple Dengue Virus Serotypes after Heterotypic Immunization and Secondary Infection Revealed by In-Depth Analysis of Cross-Reactive Antibodies.

    Science.gov (United States)

    Tsai, Wen-Yang; Durbin, Anna; Tsai, Jih-Jin; Hsieh, Szu-Chia; Whitehead, Stephen; Wang, Wei-Kung

    2015-07-01

    The four serotypes of dengue virus (DENV) cause the most important and rapidly emerging arboviral diseases in humans. The recent phase 2b and 3 studies of a tetravalent dengue vaccine reported a moderate efficacy despite the presence of neutralizing antibodies, highlighting the need for a better understanding of neutralizing antibodies in polyclonal human sera. Certain type-specific (TS) antibodies were recently discovered to account for the monotypic neutralizing activity and protection after primary DENV infection. The nature of neutralizing antibodies after secondary DENV infection remains largely unknown. In this study, we examined sera from 10 vaccinees with well-documented exposure to first and second DENV serotypes through heterotypic immunization with live-attenuated vaccines. Higher serum IgG avidities to both exposed and nonexposed serotypes were found after secondary immunization than after primary immunization. Using a two-step depletion protocol to remove different anti-envelope antibodies, including group-reactive (GR) and complex-reactive (CR) antibodies separately, we found GR and CR antibodies together contributed to more than 50% of neutralizing activities against multiple serotypes after secondary immunization. Similar findings were demonstrated in patients after secondary infection. Anti-envelope antibodies recognizing previously exposed serotypes consisted of a large proportion of GR antibodies, CR antibodies, and a small proportion of TS antibodies, whereas those recognizing nonexposed serotypes consisted of GRand CR antibodies. These findings have implications for sequential heterotypic immunization or primary immunization of DENV-primed individuals as alternative strategies for DENV vaccination. The complexity of neutralizing antibodies after secondary infection provides new insights into the difficulty of their application as surrogates of protection. The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in

  19. Serotype identification and VP1 coding sequence analysis of foot-and-mouth disease virus from outbreaks in Eastern and Northern Uganda in 2008/9

    DEFF Research Database (Denmark)

    Kasambula, L.; Belsham, Graham; Siegismund, H. R.

    2012-01-01

    was to identify the serotype and compare the variable protein (VP)1 coding sequences of the viruses responsible for FMD outbreaks during 2008 and 2009, to trace the transmission pathways of the disease in Uganda. Probang and epithelial swab samples were collected from cattle with clinical signs of FMD in the two......In April 2008, foot-and-mouth disease (FMD) outbreaks were reported in Kamuli district of the eastern region of Uganda. Soon after lifting the quarantines in this area, further FMD outbreaks were reported in northern Uganda, which spread to more than 10 districts. The aim of this study...... identified. BLAST searches and phylogenetic analysis of the complete variable protein (VP)1 coding sequences revealed that they belonged to serotype O, topotype EA-2. The close similarity between the virus sequences suggested introduction from a single source. We therefore conclude that FMD in the northern...

  20. Sero-prevalence study of bluetongue infection in sheep and goats in ...

    African Journals Online (AJOL)

    Result of this study showed that small ruminant dwelling in and around the small ruminant breed improvement centers are exposed to bluetongue virus. In the present study areas there were no observation of clinical cases in any species of animals. This indicates that local breed of animals are resistant to clinical disease of ...

  1. Lower activation-induced T-cell apoptosis is related to the pathological immune response in secondary infection with hetero-serotype dengue virus.

    Science.gov (United States)

    Yang, Wang; Yan, Huacheng; Ma, Yuling; Yu, Tiantian; Guo, Hongxia; Kuang, Yuchan; Ren, Ruiwen; Li, Jintao

    2016-03-01

    The available evidence suggests that dengue virus-specific T lymphocytes and cytokine storm play a pivotal role in the immunopathogenesis of plasma leakage. Investigations are underway to identify the immune profiles associated with increased or decreased risk for severe disease. In this study, CD14+ cells from the peripheral blood mononuclear cells (PBMCs) of patients who recovered from DENV-1 infection were infected with DENV-1 or DENV-2 and co-cultured with memory T cells. We found that secondary infection with DENV-2 suppresses the cell reproductive capacity but forms more cell clones and more functional cells to produce more proinflammatory factors (IFN-γ, TNF-α, IL-6, IL-8, IL-12 and IL-17) and less regulatory cytokines (IL-10, TGF-β) which results in higher viral replication compared to secondary infection with DENV-1. Memory dengue virus-specific T cells which are induced in a primary dengue virus infection are reactivated by the heterologous serotype of dengue virus and antigen-presenting cells (APCs) during a secondary infection. Dramatically, less apoptosis and more continuous activation of T cells in secondary infection with hetero-serotype DENV were observed. This discovery which has not been reported previously may be the reasonable and vital interpretation for the cytokine storm and severe symptoms observed in secondary infection with DENV. In summary, secondary infection with hetero-serotype DENV elicits the relatively pathological immune response while secondary infection with homologous-serotype DENV induces the relatively protective immune response by activation-induced cell death (AICD) of T cells. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Evolutionary analysis of foot-and-mouth disease virus serotype SAT 1 isolates from east africa suggests two independent introductions from southern africa

    DEFF Research Database (Denmark)

    Sangula, Abraham K.; Belsham, Graham; Muwanika, Vincent B.

    2010-01-01

    Background: In East Africa, foot-and-mouth disease virus serotype SAT 1 is responsible for occasional severe outbreaks in livestock and is known to be maintained within the buffalo populations. Little is known about the evolutionary forces underlying its epidemiology in the region. To enhance our...... 1 FMD viruses from East Africa has been determined and compared with known sequences derived from other SAT 1 viruses from sub-Saharan Africa. Purifying (negative) selection and low substitution rates characterized the SAT 1 virus isolates in East Africa. Two virus groups with probable independent...... introductions from southern Africa were identified from a maximum clade credibility tree. One group was exclusive to Uganda while the other was present within Kenya and Tanzania. Conclusions: Our results provide a baseline characterization of the inter-regional spread of SAT 1 in sub-Saharan Africa...

  3. Development of a novel quantitative real-time RT-PCR assay for the simultaneous detection of all serotypes of Foot-and-mouth disease virus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; de Stricker, K.

    2003-01-01

    Foot-and-mouth disease virus (FMDV) spreads extremely fast and the need for rapid and robust diagnostic virus detection systems was obvious during the recent European epidemic. Using a novel real-time RT-PCR system based on primer-probe energy transfer (PriProET) we present here an assay targeting...... to detect FMDV in materials from both cattle and buffalo. When compared to traditional virus cultivation the virus detection sensitivity was similar but the RT-PCR method can provide a laboratory result much faster than virus cultivation. The real-time PCR method confirms the identity of the amplicon...... by melting point analysis for added specificity and at the same time allows the detection of mutations in the probe region. As such, the described new method is suitable for the robust real-time detection of index cases caused by any serotype of FMDV....

  4. Schmallenberg virus infection of ruminants: challenges and opportunities for veterinarians

    Directory of Open Access Journals (Sweden)

    Claine F

    2015-06-01

    Full Text Available François Claine, Damien Coupeau, Laetitia Wiggers, Benoît Muylkens, Nathalie Kirschvink Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS, University of Namur (UNamur, Namur, Belgium Abstract: In 2011, European ruminant flocks were infected by Schmallenberg virus (SBV leading to transient disease in adult cattle but abortions and congenital deformities in calves, lambs, and goat kids. SBV belonging to the Simbu serogroup (family Bunyaviridae and genus Orthobunyavirus was first discovered in the same region where bluetongue virus serotype 8 (BTV-8 emerged 5 years before. Both viruses are transmitted by biting midges (Culicoides spp. and share several similarities. This paper describes the current knowledge of temporal and geographical spread, molecular virology, transmission and susceptible species, clinical signs, diagnosis, prevention and control, impact on ruminant health, and productivity of SBV infection in Europe, and compares SBV infection with BTV-8 infection in ruminants. Keywords: Schmallenberg virus, Europe, ruminants, review

  5. Optimization and Validation of a Plaque Reduction Neutralization Test for the Detection of Neutralizing Antibodies to Four Serotypes of Dengue Virus Used in Support of Dengue Vaccine Development

    Science.gov (United States)

    Timiryasova, Tatyana M.; Bonaparte, Matthew I.; Luo, Ping; Zedar, Rebecca; Hu, Branda T.; Hildreth, Stephen W.

    2013-01-01

    A dengue plaque reduction neutralization test (PRNT) to measure dengue serotype–specific neutralizing antibodies for all four virus serotypes was developed, optimized, and validated in accordance with guidelines for validation of bioanalytical test methods using human serum samples from dengue-infected persons and persons receiving a dengue vaccine candidate. Production and characterization of dengue challenge viruses used in the assay was standardized. Once virus stocks were characterized, the dengue PRNT50 for each of the four serotypes was optimized according to a factorial design of experiments approach for critical test parameters, including days of cell seeding before testing, percentage of overlay carboxymethylcellulose medium, and days of incubation post-infection to generate a robust assay. The PRNT50 was then validated and demonstrated to be suitable to detect and measure dengue serotype-specific neutralizing antibodies in human serum samples with acceptable intra-assay and inter-assay precision, accuracy/dilutability, specificity, and with a lower limit of quantitation of 10. PMID:23458954

  6. Seroepidemiology of bluetongue in South Bengal

    Directory of Open Access Journals (Sweden)

    Arkendu Halder

    2016-01-01

    Full Text Available Aim: With the aim of revealing the epidemiological intricacies of bluetongue (BT in the southern part of West Bengal state, the present study was undertaken to assess seroprevalence of BT along with identification of the vector of the disease, i.e., Culicoides midges available in the region in their breeding season with conducive environmental factors, if any. Materials and Methods: A total of 1509 (sheep-504, goat-1005 samples were collected from three different agroclimatic zones of South Bengal viz. new alluvial, red laterite and coastal saline. To detect anti-BT antibodies in the collected serum samples, indirect-enzyme-linked immunosorbent assay (i-ELISA was performed. Culicoides midges were collected from those agro-climatic zones of South Bengal for species identification. The meteorological parameters, viz. temperature (maximum and minimum, rainfall and relative humidity of three agro-climatic zones of South Bengal were analyzed for the months of July to December during 2010-2013. Results: The overall seropositivity was 33.13% and 30.24% in sheep and goat, respectively as assessed by i-ELISA. In South Bengal, the predominant species of Culicoides found were Culicoides schultzei, Culicoides palpifer and Culicoides definitus. Conclusion: Since virus transmitting species of Culicoides midges could be detected in South Bengal, besides high seropositivity in ruminants, the possibility of circulating BT virus in South Bengal is quite imminent.

  7. Phylogenetic analyses of the polyprotein coding sequences of serotype O foot-and-mouth disease viruses in East Africa: evidence for interserotypic recombination

    DEFF Research Database (Denmark)

    Balinda, Sheila; Siegismund, Hans; Muwanika, Vincent

    2010-01-01

    evolutionary relationships and processes responsible for the generation and maintenance of diversity within this serotype. FMD virus RNA was obtained from six samples following virus isolation in cell culture and in one case by direct extraction from an oropharyngeal sample. Following RT-PCR, the single long....... Evolutionary relationships between the coding regions for the leader protease (L), the capsid region and almost the entire coding region are monophyletic except for the K/52/1992 which is distinct. Furthermore, phylogenetic relationships for the P2 and P3 regions suggest that the K/52/1992 is a probable...

  8. Genetic analysis of foot-and-mouth disease virus serotype A of ...

    Indian Academy of Sciences (India)

    Prakash

    Virus maintenance medium was prepared by adding 10 ml of adult bovine serum, 50 ml of 4.4 M sodium bicarbonate solution and 40 ml of sterile distilled water to 900 ml of. Glasgow Eagle medium containing Earle salts. The sterility of the medium was confirmed by inoculation into soyabean casein digest medium and ...

  9. Serological Evidence of Influenza A virus serotypes (H1 N1 and H5 ...

    African Journals Online (AJOL)

    Keywords: H1N1 and H5N1 influenza A, chicken Sera, Nigeria. One hundred sera samples from chicken flocks showing respiratory distress but failed to respond to treatment against chronic respiratory disease (CRD) were tested for avian influenza virus antibodies. The sera samples were collected from 5, 32, and 21 weeks ...

  10. The influence of dengue virus serotype-2 infection on Aedes aegypti (Diptera: Culicidae motivation and avidity to blood feed.

    Directory of Open Access Journals (Sweden)

    Rafael Maciel-de-Freitas

    Full Text Available BACKGROUND: Dengue virus (DENV is transmitted by Aedes aegypti, a species that lives in close association with human dwellings. The behavior of DENV-infected mosquitoes needs further investigation, especially regarding the potential influence of DENV on mosquito biting motivation and avidity. METHODOLOGY/PRINCIPAL FINDINGS: We orally challenged 4-5 day-old Ae. aegypti females with a low passage DENV serotype -2 (DENV-2 to test whether the virus influences motivation to feed (the likelihood that a mosquito obtains a blood-meal and the size of its blood meal and avidity (the likelihood to re-feed after an interrupted first blood-meal. To assay motivation, we offered mosquitoes an anesthetized mouse for 2, 3, 4 or 5 minutes 7 or 14 days after the initial blood meals and measured the time they started feeding. 60.5% of the unexposed mosquitoes fed on the mouse, but only 40.5% of the positive ones did. Exposed but negative mosquitoes behaved similarly to unexposed ones (55.0% feeding. Thus DENV-2 infection decreased the mosquitoes' motivation to feed. To assay avidity, we offered the same mosquitoes a mouse two hours after the first round of feeding, and we measured the time at which they started probing. The exposed (positive or negative mosquitoes were more likely to re-feed than the unexposed ones and, in particular, the size of the previous blood-meal that kept mosquitoes from re-feeding was larger in the exposed than in the unexposed mosquitoes. Thus, DENV-2 infection increased mosquito avidity. CONCLUSIONS/SIGNIFICANCE: DENV-2 significantly decreased the mosquitoes' motivation to feed, but increased their avidity (even after taking account the amount of blood previously imbibed. As these are important components of transmission, we expect that the changes of the blood-feeding behaviour impact the vectorial capacity Ae. aegypti for dengue.

  11. The influence of dengue virus serotype-2 infection on Aedes aegypti (Diptera: Culicidae) motivation and avidity to blood feed.

    Science.gov (United States)

    Maciel-de-Freitas, Rafael; Sylvestre, Gabriel; Gandini, Mariana; Koella, Jacob C

    2013-01-01

    Dengue virus (DENV) is transmitted by Aedes aegypti, a species that lives in close association with human dwellings. The behavior of DENV-infected mosquitoes needs further investigation, especially regarding the potential influence of DENV on mosquito biting motivation and avidity. We orally challenged 4-5 day-old Ae. aegypti females with a low passage DENV serotype -2 (DENV-2) to test whether the virus influences motivation to feed (the likelihood that a mosquito obtains a blood-meal and the size of its blood meal) and avidity (the likelihood to re-feed after an interrupted first blood-meal). To assay motivation, we offered mosquitoes an anesthetized mouse for 2, 3, 4 or 5 minutes 7 or 14 days after the initial blood meals and measured the time they started feeding. 60.5% of the unexposed mosquitoes fed on the mouse, but only 40.5% of the positive ones did. Exposed but negative mosquitoes behaved similarly to unexposed ones (55.0% feeding). Thus DENV-2 infection decreased the mosquitoes' motivation to feed. To assay avidity, we offered the same mosquitoes a mouse two hours after the first round of feeding, and we measured the time at which they started probing. The exposed (positive or negative) mosquitoes were more likely to re-feed than the unexposed ones and, in particular, the size of the previous blood-meal that kept mosquitoes from re-feeding was larger in the exposed than in the unexposed mosquitoes. Thus, DENV-2 infection increased mosquito avidity. DENV-2 significantly decreased the mosquitoes' motivation to feed, but increased their avidity (even after taking account the amount of blood previously imbibed). As these are important components of transmission, we expect that the changes of the blood-feeding behaviour impact the vectorial capacity Ae. aegypti for dengue.

  12. Higher infection of dengue virus serotype 2 in human monocytes of patients with G6PD deficiency.

    Directory of Open Access Journals (Sweden)

    Yuan-Chang Chao

    Full Text Available The prevalence of glucose-6-phosphate dehydrogenase (G6PD deficiency is high in Asia. An ex vivo study was conducted to elucidate the association of G6PD deficiency and dengue virus (DENV infection when many Asian countries are hyper-endemic. Human monocytes from peripheral mononuclear cells collected from 12 G6PD-deficient patients and 24 age-matched controls were infected with one of two DENV serotype 2 (DENV-2 strains-the New Guinea C strain (from a case of dengue fever or the 16681 strain (from a case of dengue hemorrhagic fever with a multiplicity of infection of 0.1. The infectivity of DENV-2 in human monocytes was analyzed by flow cytometry. Experimental results indicated that the monocytes of G6PD-deficient patients exhibited a greater levels of infection with DENV-2 New Guinea C strain than did those in healthy controls [mean+/-SD:33.6%+/-3.5 (27.2% approximately 39.2% vs 20.3%+/-6.2 (8.0% approximately 30.4%, P<0.01]. Similar observations were made of infection with the DENV-2 16681 strain [40.9%+/-3.9 (35.1% approximately 48.9% vs 27.4%+/-7.1 (12.3% approximately 37.1%, P<0.01]. To our knowledge, this study demonstrates for the first time higher infection of human monocytes in G6PD patients with the dengue virus, which may be important in increasing epidemiological transmission and perhaps with the potential to develop more severe cases pathogenically.

  13. Ethanol extracts of Cassia grandis and Tabernaemontana cymosa inhibit the in vitro replication of dengue virus serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina Hernández-Castro

    2015-02-01

    Full Text Available Objective: To determine the antiviral activity of ethanol extracts derived from Cassia grandis leaves and Tabernaemontana cymosa bark against two dengue virus (DENV serotype 2 strains DENV-2/NG and DENV-2/1 6681 in two cell lines susceptible to infection, VERO and U937. Methods: The cytotoxic concentration 50 (CC50 was assessed using the MTT method, and the effective concentration 50 (EC50 was determined using the technique of inhibiting the production of infectious viral particles by the plating method. Further testing of dose-response inhibition was performed, and three experimental approaches were evaluated (pre-, trans- and posttreatment to determine the effect of the extracts according to the time of administration. Finally, a preliminary phytochemical analysis for both extracts was performed. Results: The cytotoxicity of the extracts was low (CC50>300 µg/mL, and the U937 cell line was more sensitive to the antiproliferative effect of both extracts. When the virus strain-dependent selectivities of the extracts were compared, it was found that both extracts were more selective in cultures infected with the DENV-2/NG strain than in those infected with the DENV-2/16681 strain. A dose-dependent inhibitory effect of the extracts was not observed in any of the evaluations. Finally, the highest inhibition was detected with the post-treatment approach with the Tabernaemontana cymosa extract (99.9% in both cell lines. Conclusions: A therapy with compounds derived from these extracts would inhibit viral replication and affect steps after viral internalization.

  14. Preliminary bluetongue Transmission with the sheep ked Melophagus ovinus (L.).

    Science.gov (United States)

    Luedke, A J; Jochim, M M; Bowne, J G

    1965-09-01

    Five experiments indicated that the sheep ked MELOPHAGUS OVINUS (L.), can transmit bluetongue virus (BTV) in sheep. It was not determined whether these were mechanical or biological transmissions, although the results suggested mechanical transmission. Sheep keds were manually transferred from a BTV-host sheep to 18 susceptible test sheep. Of these, 10 were positive (5 with mild reactions), 6 questionable, and 2 negative for BTV. Three of the mildly reacting sheep and 3 of the questionable sheep had highly intensified reactions on challenge inoculation. Five of the positive sheep were immune on challenge inoculation. Blood from 2 positive reactors was subpassaged into susceptible sheep, which reacted with typical disease signs.

  15. Preliminary Bluetongue Transmissions with the Sheep Ked Melophagus Ovinus (L.)*

    Science.gov (United States)

    Luedke, A. J.; Jochim, M. M.; Bowne, J. G.

    1965-01-01

    Five experiments indicated that the sheep ked MELOPHAGUS OVINUS (L.), can transmit bluetongue virus (BTV) in sheep. It was not determined whether these were mechanical or biological transmissions, although the results suggested mechanical transmission. Sheep keds were manually transferred from a BTV-host sheep to 18 susceptible test sheep. Of these, 10 were positive (5 with mild reactions), 6 questionable, and 2 negative for BTV. Three of the mildly reacting sheep and 3 of the questionable sheep had highly intensified reactions on challenge inoculation. Five of the positive sheep were immune on challenge inoculation. Blood from 2 positive reactors was subpassaged into susceptible sheep, which reacted with typical disease signs. PMID:4221988

  16. Apparently nonspecific enzyme elevations after portal vein delivery of recombinant adeno-associated virus serotype 2 vector in hepatitis C virus-infected chimpanzees.

    Science.gov (United States)

    Flotte, Terence R; Goetzmann, Jason; Caridi, James; Paolillo, Joseph; Conlon, Thomas J; Potter, Mark; Mueller, Christian; Byrne, Barry J

    2008-07-01

    Hepatic gene transfer is envisioned as a substitute for protein replacement therapies, many of which are derived from blood products. Thus, the target populations may have a high prevalence of blood-borne pathogens, such as hepatitis C virus (HCV). We sought to determine whether the safety of recombinant adeno-associated virus serotype 2 (rAAV2) would be altered by preexisting HCV infection. Doses of approximately 1 x 10(13) vector genomes of an rAAV2-chimpanzee alpha(1)-antitrypsin (rAAV2-cAAT) vector were injected into the portal vein of each of three HCV genome-positive (HCV+) chimpanzees and three HCV-negative (HCV-) controls. Acute safety studies were performed up to 90 days after vector administration, along with analyses of the peripheral blood and liver tissue for rAAV2-cAAT genomes. Vector genome copy numbers in blood and liver tissue were similar in both groups. All animals demonstrated increases in liver and muscle enzyme levels after the pretreatment liver biopsy (5 days before vector injection) and after the vector injection. However, HCV+ animals demonstrated a substantially greater rise in aspartate aminotransferase, alanine aminotransferase, and creatinine phosphokinase values than HCV- animals. Histopathology demonstrated abnormal lipid accumulation (steatosis) in the hepatocytes of HCV+ animals, both before and after vector injection. These data indicate an increased susceptibility to subclinical liver toxicity from portal vein injection of rAAV2 in the presence of HCV infection.

  17. A simple, inexpensive, robust and sensitive dot-blot assay for equal detection of the nonstructural-1 glycoprotein of all dengue virus serotypes.

    Science.gov (United States)

    Falconar, Andrew K I; Romero-Vivas, Claudia M E

    2013-04-22

    Detection of dengue virus (DENV) soluble/excreted (s/e) form of the nonstructural-1 (NS1) glycoprotein in patient acute-phase sera is ideal for diagnosis. The commercially-available detection assays are, however, too expensive for routine use and have low specificity, particularly for the s/e NS1 glycoprotein of DENV-2 and DENV-4, which are important causes of lethal human disease worldwide. Mouse monoclonal antibodies (MAbs) were generated and screened against s/e NS1 glycoprotein purified from each DENV serotype to obtain those that reacted equally with each serotype, but not with yellow fever virus (YFV) s/e NS1 glycoprotein or human serum proteins. One MAb, MAb 2C4.6, was further tested against these DENV glycoproteins in human sera using simple, peroxidase-labelled secondary antibody/substrate-developed dot-blot assays. Optimal quenching of endogenous human serum peroxidases was attained using 3% H(2)O(2) in H(2)0 for 5 min. MAb 2C4.6 showed an acceptable detection sensitivity of simple, inexpensive (US$ 0.05/sample), robust, sensitive and relatively rapid assays, using improved MAbs such as MAb 2C4.6, should be ideal for the diagnosis of all DENV serotypes in DENV endemic regions.

  18. Specific genetic markers for detecting subtypes of dengue virus serotype-2 in isolates from the states of Oaxaca and Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Camacho-Nuez Minerva

    2008-07-01

    Full Text Available Abstract Background Dengue (DEN is an infectious disease caused by the DEN virus (DENV, which belongs to the Flavivirus genus in the family Flaviviridae. It has a (+ sense RNA genome and is mainly transmitted to humans by the vector mosquito Aedes aegypti. Dengue fever (DF and dengue hemorrhagic fever (DHF are caused by one of four closely related virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4. Epidemiological and evolutionary studies have indicated that host and viral factors are involved in determining disease outcome and have proved the importance of viral genotype in causing severe epidemics. Host immune status and mosquito vectorial capacity are also important influences on the severity of infection. Therefore, an understanding of the relationship between virus variants with altered amino acids and high pathogenicity will provide more information on the molecular epidemiology of DEN. Accordingly, knowledge of the DENV serotypes and genotypes circulating in the latest DEN outbreaks around the world, including Mexico, will contribute to understanding DEN infections. Results 1. We obtained 88 isolates of DENV, 27 from Oaxaca and 61 from Veracruz. 2. Of these 88 isolates, 16 were serotype 1; 62 serotype 2; 7 serotype 3; and 2 serotype 4. One isolate had 2 serotypes (DENV-2 and -1. 3. Partial nucleotide sequences of the genes encoding C- prM (14 sequences, the NS3 helicase domain (7 sequences, the NS5 S-adenosyl methionine transferase domain (7 sequences and the RNA-dependent RNA polymerase (RdRp domain (18 sequences were obtained. Phylogenetic analysis showed that DENV-2 isolates belonged to the Asian/American genotype. In addition, the Asian/American genotype was divided into two clusters, one containing the isolates from 2001 and the other the isolates from 2005–2006 with high bootstrap support of 94%. Conclusion DENV-2 was the predominant serotype in the DF and DHF outbreak from 2005 to 2006 in Oaxaca State as well as in the 2006

  19. Broad antiviral activity of carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Marijke M F Alen

    Full Text Available BACKGROUND: Dendritic cells (DC, present in the skin, are the first target cells of dengue virus (DENV. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN is present on DC and recognizes N-glycosylation sites on the E-glycoprotein of DENV. Thus, the DC-SIGN/E-glycoprotein interaction can be considered as an important target for inhibitors of viral replication. We evaluated various carbohydrate-binding agents (CBAs against all four described serotypes of DENV replication in Raji/DC-SIGN(+ cells and in monocyte-derived DC (MDDC. METHODOLOGY/PRINCIPAL FINDINGS: A dose-dependent anti-DENV activity of the CBAs Hippeastrum hybrid (HHA, Galanthus nivalis (GNA and Urtica dioica (UDA, but not actinohivin (AH was observed against all four DENV serotypes as analyzed by flow cytometry making use of anti-DENV antibodies. Remarkably, the potency of the CBAs against DENV in MDDC cultures was significantly higher (up to 100-fold than in Raji/DC-SIGN(+ cells. Pradimicin-S (PRM-S, a small-size non-peptidic CBA, exerted antiviral activity in MDDC but not in Raji/DC-SIGN(+ cells. The CBAs act at an early step of DENV infection as they bind to the viral envelope of DENV and subsequently prevent virus attachment. Only weak antiviral activity of the CBAs was detected when administered after the virus attachment step. The CBAs were also able to completely prevent the cellular activation and differentiation process of MDDC induced upon DENV infection. CONCLUSIONS/SIGNIFICANCE: The CBAs exerted broad spectrum antiviral activity against the four DENV serotypes, laboratory-adapted viruses and low passage clinical isolates, evaluated in Raji/DC-SIGN(+ cells and in primary MDDC.

  20. Development and laboratory validation of a lateral flow device for the detection of serotype SAT 2 foot-and-mouth disease viruses in clinical samples.

    Science.gov (United States)

    Ferris, Nigel P; Nordengrahn, Ann; Hutchings, Geoffrey H; Paton, David J; Kristersson, Therese; Brocchi, Emiliana; Grazioli, Santina; Merza, Malik

    2010-02-01

    A lateral flow device (LFD) for the detection of foot-and-mouth disease virus (FMDV) of the SAT 2 serotype was developed using a monoclonal antibody (Mab 2H6). The performance of the LFD was evaluated in the laboratory on suspensions of vesicular epithelia: 305 positive for FMDV type SAT 2 from suspected cases of vesicular disease collected from 30 countries and 1002 samples shown to be negative for FMDV type SAT 2 collected from 67 countries between 1968 and 2008. The diagnostic sensitivity of the LFD for FMDV type SAT 2 was higher at 88% compared to 79% obtained by the reference method of antigen ELISA, and the diagnostic specificity of the LFD was approximately 99% compared to 100% for the ELISA. The device recognized FMDV strains of wide diversity within the FMDV SAT 2 serotype and gave a superior performance for their detection compared to the 1F10 LFD which had been developed previously and shown to perform less well for the detection of FMDVs of this particular serotype. Reactions in the SAT 2 2H6 LFD with the viruses of other FMDV serotypes and swine vesicular disease (which produces a clinically indistinguishable syndrome in pigs), did not occur. These data illustrate the potential for the LFD to be employed to complement the 1F10 device next to the animal in the pen-side diagnosis of FMD, for providing rapid and objective support to veterinarians in their clinical judgment of the disease and for specific confirmation of a FMDV type SAT 2 infection. 2009 Elsevier B.V. All rights reserved.

  1. A West Nile virus CD4 T cell epitope improves the immunogenicity of dengue virus serotype 2 vaccines.

    Science.gov (United States)

    Hughes, Holly R; Crill, Wayne D; Davis, Brent S; Chang, Gwong-Jen J

    2012-03-15

    Flaviviruses, such as dengue virus (DENV) and West Nile virus (WNV), are among the most prevalent human disease-causing arboviruses world-wide. As they continue to expand their geographic range, multivalent flavivirus vaccines may become an important public health tool. Here we describe the immune kinetics of WNV DNA vaccination and the identification of a CD4 epitope that increases heterologous flavivirus vaccine immunogenicity. Lethal WNV challenge two days post-vaccination resulted in 90% protection with complete protection by four days, and was temporally associated with a rapid influx of activated CD4 T cells. CD4 T cells from WNV vaccinated mice could be stimulated from epitopic regions in the envelope protein transmembrane domain. Incorporation of this WNV epitope into DENV-2 DNA and virus-like particle vaccines significantly increased neutralizing antibody titers. Incorporating such potent epitopes into multivalent flavivirus vaccines could improve their immunogenicity and may help alleviate concerns of imbalanced immunity in multivalent vaccine approaches. Published by Elsevier Inc.

  2. Seroprevalence of bluetongue in ruminants of Jharkhand

    Directory of Open Access Journals (Sweden)

    Pinky Tigga

    2015-03-01

    Full Text Available Aim: This study was carried out to assess the presence of anti-bluetongue (BT antibodies in sheep, goat and cattle of different agro-climatic zones of Jharkhand. Materials and Methods: Serum samples were collected from apparently healthy as well as suspected sheep, goat and cattle from different districts of Jharkhand covering different agro-climatic zones. Serum samples were screened by indirect enzyme linked immunosorbent assay (iELISA for detecting anti-BT antibodies. Results: Out of a total of 480 animal serum samples (sheep-190, goats-210 and cattle-80 screened, 83 (43.68% of sheep, 91 (43.33% of goat and 46 (57.50% of cattle sera were found positive. The % positivity ranged between 41% and 51% in different agro-climatic zones. The results showed slight higher seroprevalence, although not significantly, in cattle than sheep and goats in different agro-climatic zones of Jharkhand. Conclusions: The above data indicate widespread prevalence of BT virus antibodies in studied areas. The incidence of BT is not detected officially, so far. The present seroprevalence status of BT in Jharkhand indicates presence of BT infection in the state for the first time.

  3. Spatial analysis of bluetongue cases and vaccination of Swiss cattle in 2008 and 2009.

    Science.gov (United States)

    Willgert, Katriina J E; Schroedle, Birgit; Schwermer, Heinzpeter

    2011-05-01

    Bluetongue (BT) is a vector-borne viral disease of ruminants. The infection is widespread globally with major implications for international animal trade and production. In 2006, BT virus serotype 8 (BTV-8) was encountered in Europe for the first time, causing extensive production losses and death in susceptible livestock. Following the appearance of BTV-8 in Switzerland in 2007, a compulsory vaccination programme was launched in the subsequent year. Due to social factors and difficulties to reach animals on high pasture, the regional vaccination coverage varied across the country in both 2008 and 2009. In this study, the effect of vaccination on the spatial occurrence of BTV-8 and the associated relative disease risk in Switzerland in 2008 and 2009 were investigated by a spatial Bayesian hierarchical approach. Bayesian posterior distributions were obtained by integrated nested Laplace approximations, a promising alternative to commonly used Markov chain Monte Carlo methods. The number of observed BTV-8 outbreaks in Switzerland decreased notably from 2008 to 2009. However, only a non-significant association between vaccination coverage and the probability of a spatial unit being infected with BTV-8 was identified using the model developed for this study. The relative disease risk varied significantly across the country, with a higher relative risk of BTV-8 infection in western and north-western Switzerland where environmental conditions are more suitable for vector presence and viral transmission. Examination of the spatial correlation between disease occurrence, control measures and associated ecological factors can be valuable in the evaluation and development of disease control programmes, allowing prioritisation of areas with a high relative risk of disease.

  4. Cissampelos pareira Linn: Natural Source of Potent Antiviral Activity against All Four Dengue Virus Serotypes.

    Science.gov (United States)

    Sood, Ruchi; Raut, Rajendra; Tyagi, Poornima; Pareek, Pawan Kumar; Barman, Tarani Kanta; Singhal, Smita; Shirumalla, Raj Kumar; Kanoje, Vijay; Subbarayan, Ramesh; Rajerethinam, Ravisankar; Sharma, Navin; Kanaujia, Anil; Shukla, Gyanesh; Gupta, Y K; Katiyar, Chandra K; Bhatnagar, Pradip K; Upadhyay, Dilip J; Swaminathan, Sathyamangalam; Khanna, Navin

    2015-12-01

    Dengue, a mosquito-borne viral disease, poses a significant global public health risk. In tropical countries such as India where periodic dengue outbreaks can be correlated to the high prevalence of the mosquito vector, circulation of all four dengue viruses (DENVs) and the high population density, a drug for dengue is being increasingly recognized as an unmet public health need. Using the knowledge of traditional Indian medicine, Ayurveda, we developed a systematic bioassay-guided screening approach to explore the indigenous herbal bio-resource to identify plants with pan-DENV inhibitory activity. Our results show that the alcoholic extract of Cissampelos pariera Linn (Cipa extract) was a potent inhibitor of all four DENVs in cell-based assays, assessed in terms of viral NS1 antigen secretion using ELISA, as well as viral replication, based on plaque assays. Virus yield reduction assays showed that Cipa extract could decrease viral titers by an order of magnitude. The extract conferred statistically significant protection against DENV infection using the AG129 mouse model. A preliminary evaluation of the clinical relevance of Cipa extract showed that it had no adverse effects on platelet counts and RBC viability. In addition to inherent antipyretic activity in Wistar rats, it possessed the ability to down-regulate the production of TNF-α, a cytokine implicated in severe dengue disease. Importantly, it showed no evidence of toxicity in Wistar rats, when administered at doses as high as 2g/Kg body weight for up to 1 week. Our findings above, taken in the context of the human safety of Cipa, based on its use in Indian traditional medicine, warrant further work to explore Cipa as a source for the development of an inexpensive herbal formulation for dengue therapy. This may be of practical relevance to a dengue-endemic resource-poor country such as India.

  5. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia

    DEFF Research Database (Denmark)

    Jamal, Syed M.; Belsham, Graham

    2015-01-01

    Asia,A-Iran05 and Asia-1 (Group-II and Group-VII (Sindh-08)). In addition, field samples from Iran and Bulgaria, containing FMDVs belonging to the O-PanAsiaANT-10 subline-agewere also tested. Each of the three primer/probe sets was designed to be specific for just one of the serotypes O, A and Asia-1 of FMDV...... and serotyping of the FMDVs currently circulating in West Eurasia. These assays were evaluated, in parallel with pan-FMDV diagnosticassays and earlier serotype-specific assays, using field samples originating from Pakistan and Afghanistan containing FMD viruses belonging to different sublineages of OPan...

  6. Comparison of sequences of hypervariable region (HVR subunit S-1 gene of field isolate I-37 infectious bronchitis virus with Connecticut serotype

    Directory of Open Access Journals (Sweden)

    N.L.P Indi Dharmayanti

    2003-06-01

    Full Text Available Infectious Bronchitis is a contagious and acute respiratory disease in chickens caused by infectious bronchitis virus (IBV.Antigenic differences in IBV are associated with changes in the sequence of the spike glycoprotein (S. The subunit S1 which demonstrates more sequence variability than S-2 have been identified as hypervariable region (HVR-1 and 2. There were several IB virus field isolates included I-37 have been identified in Indonesia by serum neutralization method. However, gene sequence variation in HVR subunit S-1 had not yet been identified. Isolate I-37 was close to the serotype Connecticut 46 (Conn 46. The aim of this study is to identify sequence variation of HVR subunit S-1 gene of isolate I-37 produced by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR and sequencing. Several procedures were carried out in the study including virus titration, propagation and was concentrated from the allantoic fluid infected with IBV. Then, RNA was extracted for RTPCR. urther the product was sequnced and its homology with IBV references from GenBank was compared by GenMac version 8.0. Result showed that isolate I-37 produced 515 bp of amplification product. Isolate I-37 and Conn 46 are same serotype, yet their HVR subunit S-1 nucleotides and amino acids (protein differ by 6.9% and 15.6% respectively. It might be concluded that isolate I-37 was variant of Conn 46.

  7. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin.

    Science.gov (United States)

    Pan, Ankita; Saw, Wuan Geok; Subramanian Manimekalai, Malathy Sony; Grüber, Ardina; Joon, Shin; Matsui, Tsutomu; Weiss, Thomas M; Grüber, Gerhard

    2017-05-01

    Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174 PPAVP 179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.

  8. Development and validation of a foot-and-mouth disease virus SAT serotype-specific 3ABC assay to differentiate infected from vaccinated animals.

    Science.gov (United States)

    Chitray, M; Grazioli, S; Willems, T; Tshabalala, T; De Vleeschauwer, A; Esterhuysen, J J; Brocchi, E; De Clercq, K; Maree, F F

    2018-05-01

    The effective control of foot-and-mouth disease (FMD) requires sensitive, specific and rapid diagnostic tools. However, the control and eradication of FMD in Africa is complicated by, among other factors, the existence of five of the seven FMD virus (FMDV) serotypes, including the SAT-serotypes 1, 2 and 3 that are genetically and antigenically the most variable FMDV serotypes. A key diagnostic assay to enable a country to re-gain its FMD-free status and for FMD surveillance, is the 3ABC or the non-structural protein (NSP) enzyme-linked immunosorbent assay (ELISA). Although many kits are available to detect 3ABC antibodies, none has been developed specifically for the variable SAT serotypes. This study designed a SAT-specific NSP ELISA and determined whether this assay could better detect NSP-specific antibodies from FMDV SAT-infected livestock. The assay's performance was compared to validated NSP assays (PrioCheck®-NSP and IZSLER-NSP), using panels of field and experimental sera, vaccinated and/or infected with FMDV SAT1, SAT2 or SAT3. The sensitivity () of the SAT-NSP was estimated as 76% (70%, 81%) whereas the specificity was 96% (95%, 98%) at a 95% confidence interval. The sensitivity and specificity were comparable to the commercial NSP assays, PrioCheck®-NSP (82% and 99%, respectively) and IZSLER-NSP (78% and 98%, respectively). Good correlations were observed for all three assays. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Comparative whole genome analysis of dengue virus serotype-2 strains differing in trans-endothelial cell leakage induction in vitro.

    Science.gov (United States)

    Singh, Sneha; Anupriya, M G; Sreekumar, Easwaran

    2017-08-01

    The role of genetic differences among dengue virus (DENV) in causing increased microvascular permeability is less explored. In the present study, we compared two closely related DENV serotype-2 strains of Cosmopolitan genotype for their in vitro infectivity phenotype and ability to induce trans-endothelial leakage. We found that these laboratory strains differed significantly in infecting human microvascular endothelial cells (HMEC-1) and hepatocytes (Huh7), two major target cells of DENV in in vivo infections. There was a reciprocal correlation in infectivity and vascular leakage induced by these strains, with the less infective strain inducing more trans-endothelial cell leakage in HMEC-1 monolayer upon infection. The cells infected with the strain capable of inducing more permeability were found to secrete more Non-Structural protein (sNS1) into the culture supernatant. A whole genome analysis revealed 37 predicted amino acid changes and changes in the secondary structure of 3' non-translated region between the strains. But none of these changes involved the signal sequence coded by the C-terminal of the Envelope protein and the two glycosylation sites within the NS1 protein critical for its secretion, and the N-terminal NS2A sequence important for surface targeting of NS1. The strain that secreted lower levels of NS1 and caused less leakage had two mutations within the NS1 protein coding region, F103S and T146I that significantly changed amino acid properties. A comparison of the sequences of the two strains with published sequences of various DENV strains known to cause clinically severe dengue identified a number of amino acid changes which could be implicated as possible key genetic differences. Our data supports the earlier observations that the vascular leakage induction potential of DENV strains is linked to the sNS1 levels. The results also indicate that viral genetic determinants, especially the mutations within the NS1 coding region, could affect this

  10. Simultaneous detection and differentiation of dengue virus serotypes 1-4, Japanese encephalitis virus, and West Nile virus by a combined reverse-transcription loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Yin Jianhua

    2011-07-01

    Full Text Available Abstract Background Rapid identification and differentiation of mosquito-transmitted flaviviruses in acute-phase sera of patients and field-caught vector mosquitoes are important for the prediction and prevention of large-scale epidemics. Results We developed a flexible reverse-transcription loop-mediated isothermal amplification (RT-LAMP unit for the detection and differentiation of dengue virus serotypes 1-4 (DENV1-4, Japanese encephalitis virus (JEV, and West Nile virus (WNV. The unit efficiently amplified the viral genomes specifically at wide ranges of viral template concentrations, and exhibited similar amplification curves as monitored by a real-time PCR engine. The detection limits of the RT-LAMP unit were 100-fold higher than that of RT-PCR in 5 of the six flaviviruses. The results on specificity indicated that the six viruses in the assay had no cross-reactions with each other. By examining 66 viral strains of DENV1-4 and JEV, the unit identified the viruses with 100% accuracy and did not cross-react with influenza viruses and hantaviruses. By screening a panel of specimens containing sera of 168 patients and 279 pools of field-caught blood sucked mosquitoes, results showed that this unit is high feasible in clinical settings and epidemiologic field, and it obtained results 100% correlated with real-time RT-PCR. Conclusions The RT-LAMP unit developed in this study is able to quickly detect and accurately differentiate the six kinds of flaviviruses, which makes it extremely feasible for screening these viruses in acute-phase sera of the patients and in vector mosquitoes without the need of high-precision instruments.

  11. Complete genome sequence of a non-pathogenic strain of Fowl Adenovirus serotype 11: Minimal genomic differences between pathogenic and non-pathogenic viruses.

    Science.gov (United States)

    Absalón, Angel E; Morales-Garzón, Andrés; Vera-Hernández, Pedro F; Cortés-Espinosa, Diana V; Uribe-Ochoa, Sara M; García, Laura J; Lucio-Decanini, Eduardo

    2017-01-15

    In this study, we conducted the clinicopathological characterization of a non-pathogenic FAdV-D serotype 11 strain MX95, isolated from healthy chickens, and its entire genome was sequenced. Experiments in SPF chickens revealed that the strain is a non-pathogenic virus that did not cause death at challenge doses of 1×10 6 TCID50. Additionally, the infection in SPF chickens caused no apparent damage in most of the organs analyzed by necropsy and histopathology, but it did cause inclusion body hepatitis; nevertheless it did not generate severe infectious clinical symptoms. The virus was detected in several chicken organs, including the lymphoid organs, by real-time polymerase chain reaction (PCR) until 42 days. The genome of FAdV-11 MX95 has a size of 44,326bp, and it encodes 36 open reading frames (ORFs). Comparative analysis of the genome indicated only 0.8% dissimilarity with a highly virulent serotype 11 that was previously reported. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Optimization of a magnetic capture RT-LAMP assay for fast and real-time detection of potato virus Y and differentiation of N and O serotypes.

    Science.gov (United States)

    Treder, Krzysztof; Chołuj, Joanna; Zacharzewska, Bogumiła; Babujee, Lavanya; Mielczarek, Mateusz; Burzyński, Adam; Rakotondrafara, Aurélie M

    2018-02-01

    Potato virus Y (PVY) infection has been a global challenge for potato production and the leading cause of downgrading and rejection of seed crops for certification. Accurate and timely diagnosis is a key for effective disease control. Here, we have optimized a reverse transcription loop-mediated amplification (RT-LAMP) assay to differentiate the PVY O and N serotypes. The RT-LAMP assay is based on isothermal autocyclic strand displacement during DNA synthesis. The high specificity of this method relies heavily on the primer sets designed for the amplification of the targeted regions. We designed specific primer sets targeting a region within the coat protein gene that contains nucleotide signatures typical for O and N coat protein types, and these primers differ in their annealing temperature. Combining this assay with total RNA extraction by magnetic capture, we have established a highly sensitive, simplified and shortened RT-LAMP procedure as an alternative to conventional nucleic acid assays for diagnosis. This optimized procedure for virus detection may be used as a preliminary test for identifying the viral serotype prior to investing time and effort in multiplex RT-PCR tests when a specific strain is needed.

  13. Virtual screening of commercial cyclic peptides as NS2B-NS3 protease inhibitor of dengue virus serotype 2 through molecular docking simulation

    Science.gov (United States)

    Nasution, M. A. F.; Aini, R. N.; Tambunan, U. S. F.

    2017-04-01

    A disease caused by dengue virus infection has become one of the major health problems in the world, particularly in Asia, Africa, and South America. This disease has become endemic in more than 100 countries, and approximately 100 million cases occur each year with 2.5 billion people or 40% of the world population at risk of having this virus infection. Therefore, we need an antiviral drug that can inhibit the activity of the enzymes that involved in the virus replication in the body. Lately, the peptide-based drug design has been developed and proved to have interesting pharmacological properties. This study uses commercially cyclic peptides that have already marketed. The purpose of this study is to screen the commercial cyclic peptides that can be used as an inhibitor of the NS2B-NS3 protease of dengue virus serotype 2 (DENV-2) through molecular docking simulations. Inhibition of NS3 protease enzyme can lead to enzymatic inhibition activity so the formed polyprotein from the translation of RNA cannot be cut into pieces and remain in the long strand form. Consequently, proteins that are vital for the sustainability of dengue virus replication cannot be formed. This research resulted in [alpha]-ANF (1-28), rat, Brain Natriuretic Peptide, porcine, Atrial Natriuretic Factor (3-28) (human) and Atrial Natriuretic Peptide (126-150) (rat) as the best drug candidate for inhibiting the NS2B-NS3 protease of DENV-2.

  14. Entomological research on the vectors of bluetongue disease and the monitoring of activity of Culicoides in the Prishtinë region of Kosova

    Directory of Open Access Journals (Sweden)

    Betim Berisha

    2010-12-01

    Full Text Available Clinical bluetongue (BT caused by BT virus serotype 9 (BTV‑9 was observed in Kosova in 2001 and, although subsequently no further clinical cases was diagnosed, its continuing presence has been demonstrated by serological tests in cattle, sheep and goats. In this study, light traps were placed in stables near Prishtinë to identify possible vectors of BTV in Kosova. Samples were collected from October 2004 until the end of 2006. Culicoides were identified and speciated and results were plotted against temperature data. Samples contained Obsoletus and Pulicaris Complexes but not C. imicola. The first specimens of Culicoides were collected in April and they continued to be detected until November. Generally, Obsoletus Complex was present in the largest numbers, with the exception of the middle of the year when the Pulicaris Complex predominated. The number of Culicoides trapped was directly linked to temperature (p<0.05 and records indicated that Culicoides activity ceased when minimum temperatures fell below 0°C; activity recommenced when minimum temperatures rose to approximately 6°C. These results indicate that there was a lack of a vector for BTV during winter for a period lasting approximately five months.

  15. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina; Subramanian Manimekalai, Malathy Sony; Zhao, Yongqian; Chandramohan, Arun; Srinivasan Anand, Ganesh; Matsui, Tsutomu; Weiss, Thomas M.; Vasudevan, Subhash G.; Grüber, Gerhard

    2015-10-31

    Infection by the four serotypes ofDengue virus(DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all fourDengue virusserotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented.

  16. Using animal performance data to evidence the under-reporting of case herds during an epizootic: application to an outbreak of bluetongue in cattle.

    Directory of Open Access Journals (Sweden)

    Simon Nusinovici

    Full Text Available Following the emergence of the Bluetongue virus serotype 8 (BTV-8 in France in 2006, a surveillance system (both passive and active was implemented to detect and follow precociously the progression of the epizootic wave. This system did not allow a precise estimation of the extent of the epizootic. Infection by BTV-8 is associated with a decrease of fertility. The objective of this study was to evaluate whether a decrease in fertility can be used to evidence the under-reporting of cases during an epizootic and to quantify to what extent non-reported cases contribute to the total burden of the epizootic. The cow fertility in herds in the outbreak area (reported or not was monitored around the date of clinical signs. A geostatistical interpolation method was used to estimate a date of clinical signs for non-reported herds. This interpolation was based on the spatiotemporal dynamic of confirmed case herds reported in 2007. Decreases in fertility were evidenced for both types of herds around the date of clinical signs. In non-reported herds, the decrease fertility was large (60% of the effect in reported herds, suggesting that some of these herds have been infected by the virus during 2007. Production losses in non-reported infected herds could thus contribute to an important part of the total burden of the epizootic. Overall, results indicate that performance data can be used to evidence the under-reporting during an epizootic. This approach could be generalized to pathogens that affect cattle's performance, including zoonotic agents such as Coxiella burnetii or Rift Valley fever virus.

  17. Evaluation of the Protection Efficacy of a Serotype 1 Marek's Disease Virus-Vectored Bivalent Vaccine Against Infectious Laryngotracheitis and Marek's Disease.

    Science.gov (United States)

    Gimeno, Isabel M; Cortes, Aneg L; Faiz, Nik M; Hernandez-Ortiz, Byron A; Guy, James S; Hunt, Henry D; Silva, Robert F

    2015-06-01

    Laryngotracheitis (LT) is a highly contagious respiratory disease of chickens that produces significant economic losses to the poultry industry. Traditionally, LT has been controlled by administration of modified live vaccines. In recent years, the use of recombinant DNA-derived vaccines using turkey herpesvirus (HVT) and fowlpox virus has expanded, as they protect not only against the vector used but also against LT. However, HVT-based vaccines confer limited protection against challenge, with emergent very virulent plus Marek's disease virus (vv+MDV). Serotype 1 vaccines have been proven to be the most efficient against vv+MDV. In particular, deletion of oncogene MEQ from the oncogenic vvMDV strain Md5 (BACδMEQ) resulted in a very efficient vaccine against vv+MDV. In this work, we have developed two recombinant vaccines against MD and LT by using BACδMEQ as a vector that carries either the LT virus (LTV) gene glycoprotein B (gB; BACΔMEQ-gB) or LTV gene glycoprotein J (gJ; BACδMEQ-gJ). We have evaluated the protection that these recombinant vaccines confer against MD and LT challenge when administered alone or in combination. Our results demonstrated that both bivalent vaccines (BACΔMEQ-gB and BACδMEQ-gJ) replicated in chickens and were safe to use in commercial meat-type chickens bearing maternal antibodies against MDV. BACΔMEQ-gB protected as well as a commercial recombinant (r)HVT-LT vaccine against challenge with LTV. However, BACδMEQ-gJ did not protect adequately against LT challenge or increase protection conferred by BACΔMEQ-gB when administered in combination. On the other hand, both BACΔMEQ-gB and BACδMEQ-gJ, administered alone or in combination, protected better against an early challenge with vv+MDV strain 648A than commercial strains of rHVT-LT or CVI988. Our results open a new avenue in the development of recombinant vaccines by using serotype 1 MDV as vectors.

  18. Serotyping of foot and mouth disease virus and Pasteurella multocida from Indian gaurs (Bos gaurus), concurrently infected with foot and mouth disease and haemorrhagic septicaemia.

    Science.gov (United States)

    Chandranaik, Basavegowdanadoddi Marinaik; Hegde, Raveendra; Shivashankar, Beechagondahalli Papanna; Giridhar, Papanna; Muniyellappa, Handenahally Kaverappa; Kalge, Rajeshwar; Sumathi, Benamanahalli Raju; Nithinprabhu, Kumble; Chandrashekara, Narasimhaiah; Manjunatha, Venkataramanappa; Jaisingh, Nirupama; Mayanna, Asha; Chandrakala, Gowda Kallenahalli; Kanaka, Sermaraja; Venkatesha, Mudalagiri Dasappagupta

    2015-06-01

    We report the serotyping of foot-and-mouth disease virus (FMDV) and Pasteurella multocida from Indian gaurs which were concurrently infected with foot-and-mouth disease (FMD) and haemorrhagic septicaemia. Bannerghatta biological park (BBP), a national park located in the outskirts of Bengaluru city, Karnataka, India, is bordered by several villages. These villages witnessed massive outbreaks of FMD which spread rapidly to the herbivores at BBP. Post-mortem was conducted on carcasses of two Indian gaurs that died with symptoms of FMD. The salient gross findings included extensive vesicular lesions on the tongue, gums, cheeks, upper palate and hooves. Haemorrhagic tracheitis and ecchymotic haemorrhages on the heart were characteristic. The vesicular lesions of oral cavity were positive for 'O' type of FMD virus by sandwich enzyme-linked immuno sorbent assay (ELISA). The heart blood and spleen samples yielded growth of pure cultures of P. multocida. The isolates were typed as P. multocida type B using KTSP61 and KTT72 primers yielding specific amplicons of 620 bp. The phylogenetic analysis of the isolates was carried by sequencing of 1.4-Kbp nucleotides on the 16S ribosomal RNA (rRNA) gene of the isolates.

  19. Divergence of the dengue virus type 2 Cosmopolitan genotype associated with two predominant serotype shifts between 1 and 2 in Surabaya, Indonesia, 2008-2014.

    Science.gov (United States)

    Kotaki, Tomohiro; Yamanaka, Atsushi; Mulyatno, Kris Cahyo; Churrotin, Siti; Sucipto, Teguh Hari; Labiqah, Amaliah; Ahwanah, Nur Laila Fitriati; Soegijanto, Soegeng; Kameoka, Masanori; Konishi, Eiji

    2016-01-01

    Indonesia is one of the biggest dengue endemic countries, and, thus, is an important place to investigate the evolution of dengue virus (DENV). We have continuously isolated DENV in Surabaya, the second biggest city in Indonesia, since 2008. We previously reported sequential changes in the predominant serotype from DENV type 2 (DENV-2) to DENV type 1 (DENV-1) in November 2008 and from DENV-1 to DENV-2 in July 2013. The predominance of DENV-2 continued in 2014, but not in 2015. We herein phylogenetically investigated DENV-2 transitions in Surabaya between 2008 and 2014 to analyze the divergence and evolution of DENV-2 concomitant with serotype shifts. All DENV-2 isolated in Surabaya were classified into the Cosmopolitan genotype, and further divided into 6 clusters. Clusters 1-3, dominated by Surabaya strains, were defined as the "Surabaya lineage". Clusters 4-6, dominated by strains from Singapore, Malaysia, and many parts of Indonesia, were the "South East Asian lineage". The most recent common ancestor of these strains existed in 1988, coinciding with the time that an Indonesian dengue outbreak took place. Cluster 1 appeared to be unique because no other DENV-2 isolate was included in this cluster. The predominance of DENV-2 in 2008 and 2013-14 were caused by cluster 1, whereas clusters 2 and 3 sporadically emerged in 2011 and 2012. The characteristic amino acids of cluster 1, E-170V and E-282Y, may be responsible for its prevalence in Surabaya. No amino acid difference was observed in the envelope region between strains in 2008 and 2013-14, suggesting that the re-emergence of DENV-2 in Surabaya was due to the loss or decrease of herd immunity in the 5-year period when DENV-2 subsided. The South East Asian lineage primarily emerged in Surabaya in 2014, probably imported from other parts of Indonesia or foreign countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Multiple dengue serotypes and high frequency of dengue hemorrhagic fever at two tertiary care hospitals in Lahore during the 2008 dengue virus outbreak in Punjab, Pakistan.

    Science.gov (United States)

    Humayoun, Malik Asif; Waseem, Tariq; Jawa, Ali A; Hashmi, Mubashar S; Akram, Javed

    2010-09-01

    The objective of this study was to investigate the clinical characteristics of patients with dengue viral infection during the 2008 outbreak in Lahore in order to better understand the clinical pattern and severity of disease in Lahore. We analyzed the clinical characteristics of 110 patients infected with dengue virus; data were collected on standardized data collection sheets at two tertiary care hospitals from September to December 2008. Dengue infection was confirmed serologically or by real-time polymerase chain reaction (RT-PCR). Out of the total of 110 dengue infected patients, 70 were male and 40 were female. The most common symptoms included fever (100%), myalgia (68.2%), headache (55.5%), nausea (39.1%), skin rash (53.6%), mucocutaneous hemorrhagic manifestations (58.2%), and ocular pain (20%). Classic dengue fever (DF) was seen in 41.8% of the patients, 56.4% had dengue hemorrhagic fever (DHF), and only 1.8% developed dengue shock syndrome (DSS). The mean duration of fever was 6 days. Thrombocytopenia, leukopenia, and abnormal aspartate aminotransferase (AST)/alanine aminotransferase (ALT) were more frequently encountered in DHF and DSS as compared to DF. Viral RNA detection was done by RT-PCR in 17 patients. Ten patients had DEN4, five had DEN2, and two had DEN3 serotypes. The majority of the patients recovered completely without complications. The high frequency of DHF during the 2008 outbreak and the presence of three different dengue serotypes, emphasize the need to prevent and control dengue infection. Health authorities should consider strengthening surveillance for dengue infection, given the potential for future outbreaks with increased severity. It is also suggested that primary care physicians should be educated regarding recognition of DHF and to identify patients at high risk of developing DHF and DSS. Copyright © 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells.

    Science.gov (United States)

    Hung, Jan-Jong; Hsieh, Meng-Ti; Young, Ming-Jer; Kao, Chuan-Liang; King, Chwan-Chuen; Chang, Wen

    2004-01-01

    Dengue virus (DV) is a flavivirus and infects mammalian cells through mosquito vectors. This study investigates the roles of domain III of DV type 2 envelope protein (EIII) in DV binding to the host cell. Recombinant EIII interferes with DV infection to BHK21 and C6/36 cells by blocking dengue virion adsorption to these cells. Inhibition of EIII on BHK21 cells was broad with no serotype specificity; however, inhibition of EIII on C6/36 cells was relatively serotype specific. Soluble heparin completely blocks binding of EIII to BHK21 cells, suggesting that domain III binds mainly to cell surface heparan sulfates. This suggestion is supported by the observation that EIII binds very weakly to gro2C and sog9 mutant mammalian cell lines that lack heparan sulfate. In contrast, heparin does not block binding of EIII to mosquito cells. Furthermore, a synthetic peptide that includes amino acids (aa) 380 to 389 of EIII, IGVEPGQLKL, inhibits binding of EIII to C6/36 but not BHK21 cells. This peptide corresponds to a lateral loop region on domain III of E protein, indicating a possible role of this loop in binding to mosquito cells. In summary, these results suggest that EIII plays an important role in binding of DV type 2 to host cells. In addition, EIII interacts with heparan sulfates when binding to BHK21 cells, and a loop region containing aa 380 to 389 of EIII may participate in DV type 2 binding to C6/36 cells.

  2. Phage-Displayed Peptides Selected to Bind Envelope Glycoprotein Show Antiviral Activity against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2017-01-01

    Full Text Available Dengue virus is a growing public health threat that affects hundreds of million peoples every year and leave huge economic and social damage. The virus is transmitted by mosquitoes and the incidence of the disease is increasing, among other causes, due to the geographical expansion of the vector’s range and the lack of effectiveness in public health interventions in most prevalent countries. So far, no highly effective vaccine or antiviral has been developed for this virus. Here we employed phage display technology to identify peptides able to block the DENV2. A random peptide library presented in M13 phages was screened with recombinant dengue envelope and its fragment domain III. After four rounds of panning, several binding peptides were identified, synthesized, and tested against the virus. Three peptides were able to block the infectivity of the virus while not being toxic to the target cells. Blind docking simulations were done to investigate the possible mode of binding, showing that all peptides appear to bind domain III of the protein and may be mostly stabilized by hydrophobic interactions. These results are relevant to the development of novel therapeutics against this important virus.

  3. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis.

    Directory of Open Access Journals (Sweden)

    Xian Lin

    Full Text Available Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2. The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine-cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion.

  4. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis.

    Science.gov (United States)

    Lin, Xian; Huang, Canhui; Shi, Jian; Wang, Ruifang; Sun, Xin; Liu, Xiaokun; Zhao, Lianzhong; Jin, Meilin

    2015-01-01

    Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2). The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine-cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion.

  5. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis

    Science.gov (United States)

    Shi, Jian; Wang, Ruifang; Sun, Xin; Liu, Xiaokun; Zhao, Lianzhong; Jin, Meilin

    2015-01-01

    Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2). The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine–cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion. PMID:25906258

  6. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice.

    Directory of Open Access Journals (Sweden)

    Viswanathan Ramasamy

    2018-01-01

    Full Text Available Dengue is one of the fastest spreading vector-borne diseases, caused by four antigenically distinct dengue viruses (DENVs. Antibodies against DENVs are responsible for both protection as well as pathogenesis. A vaccine that is safe for and efficacious in all people irrespective of their age and domicile is still an unmet need. It is becoming increasingly apparent that vaccine design must eliminate epitopes implicated in the induction of infection-enhancing antibodies.We report a Pichia pastoris-expressed dengue immunogen, DSV4, based on DENV envelope protein domain III (EDIII, which contains well-characterized serotype-specific and cross-reactive epitopes. In natural infection, <10% of the total neutralizing antibody response is EDIII-directed. Yet, this is a functionally relevant domain which interacts with the host cell surface receptor. DSV4 was designed by in-frame fusion of EDIII of all four DENV serotypes and hepatitis B surface (S antigen and co-expressed with unfused S antigen to form mosaic virus-like particles (VLPs. These VLPs displayed EDIIIs of all four DENV serotypes based on probing with a battery of serotype-specific anti-EDIII monoclonal antibodies. The DSV4 VLPs were highly immunogenic, inducing potent and durable neutralizing antibodies against all four DENV serotypes encompassing multiple genotypes, in mice and macaques. DSV4-induced murine antibodies suppressed viremia in AG129 mice and conferred protection against lethal DENV-4 virus challenge. Further, neither murine nor macaque anti-DSV4 antibodies promoted mortality or inflammatory cytokine production when passively transferred and tested in an in vivo dengue disease enhancement model of AG129 mice.Directing the immune response to a non-immunodominant but functionally relevant serotype-specific dengue epitope of the four DENV serotypes, displayed on a VLP platform, can help minimize the risk of inducing disease-enhancing antibodies while eliciting effective tetravalent

  7. Foot-and-Mouth Disease Virus Serotype O Phylodynamics: Genetic Variability Associated with Epidemiological Factors in Pakistan

    DEFF Research Database (Denmark)

    Brito, B. P.; Perez, A. M.; Jamal, S. M.

    2013-01-01

    One of the most challenging aspects of foot-and-mouth disease (FMD) control is the high genetic variability of the FMD virus (FMDV). In endemic settings such as the Indian subcontinent, this variability has resulted in the emergence of pandemic strains that have spread widely and caused devastating...... outbreaks in disease-free areas. In countries trying to control and eradicate FMD using vaccination strategies, the constantly evolving and wide diversity of field FMDV strains is an obstacle for identifying vaccine strains that are successful in conferring protection against infection with field viruses...... from this study will contribute to the understanding of FMDV variability and to the design of FMD control strategies in Pakistan. Viruses sequenced here also provide the earliest reported isolate from the Pan Asia IIANT-10 sublineage, which has caused several outbreaks in the Middle East and spread...

  8. Quantitative Proteomic Analysis of BHK-21 Cells Infected with Foot-and-Mouth Disease Virus Serotype Asia 1.

    Directory of Open Access Journals (Sweden)

    Hui-Chen Guo

    Full Text Available Stable isotope labeling with amino acids in cell culture (SILAC was used to quantitatively study the host cell gene expression profile, in order to achieve an unbiased overview of the protein expression changes in BHK-21 cells infected with FMDV serotype Asia 1. The SILAC-based approach identified overall 2,141 proteins, 153 of which showed significant alteration in the expression level 6 h post FMDV infection (57 up-regulated and 96 down-regulated. Among these proteins, six cellular proteins, including three down-regulated (VPS28, PKR, EVI5 and three up-regulated (LYPLA1, SEC62 and DARs, were selected according to the significance of the changes and/or the relationship with PKR. The expression level and pattern of the selected proteins were validated by immunoblotting and confocal microscopy. Furthermore, the functions of these cellular proteins were assessed by small interfering RNA-mediated depletion, and their functional importance in the replication of FMDV was demonstrated by western blot, reverse transcript PCR (RT-PCR and 50% Tissue Culture Infective Dose (TCID50. The results suggest that FMDV infection may have effects on the expression of specific cellular proteins to create more favorable conditions for FMDV infection. This study provides novel data that can be utilized to understand the interactions between FMDV and the host cell.

  9. Genetic Diversity and New Lineages of Dengue Virus Serotypes 3 and 4 in Returning Travelers, Germany, 2006-2015.

    Science.gov (United States)

    Shihada, Sami; Emmerich, Petra; Thomé-Bolduan, Corinna; Jansen, Stephanie; Günther, Stephan; Frank, Christina; Schmidt-Chanasit, Jonas; Cadar, Daniel

    2017-02-01

    During 2006-2015, we analyzed 70 dengue virus (DENV) strains isolated from febrile travelers returning to Germany. High genetic diversity, including multiple co-circulating DENV lineages and emerging new lineages of DENV-3 and DENV-4, was demonstrated. Our passive surveillance system based on returning travelers yielded substantial information on DENV diversity.

  10. Innocuity of a commercial live attenuated vaccine for epizootic hemorrhagic disease virus serotype 2 in late-term pregnant cows.

    Science.gov (United States)

    Spedicato, Massimo; Carmine, Irene; Teodori, Liana; Leone, Alessandra; Portanti, Ottavio; Marini, Valeria; Pisciella, Maura; Lorusso, Alessio; Savini, Giovanni

    2016-03-14

    Epizootic hemorrhagic disease (EHD) is an arthropod-borne infectious viral disease sustained by the epizootic hemorrhagic disease virus (EHDV). The only commercially available and currently used vaccines are manufactured for EHDV-2 in Japan, either live or inactivated vaccines. In this study we tested the innocuity for fetuses of the live attenuated EHDV-2 vaccine in five late-term pregnant cows. Whole blood and serum samples were collected from dams and screened for the presence of EHDV-2 RNA, infectious virus and antibodies. After calving, whole blood and serum samples collected from calves, before and after colostrum intake, were also tested for antibodies and for virus detection. In dams, neither fever nor clinical signs were observed. All of them seroconverted and a strong humoral response was detected throughout the sampling period. All blood samples tested negative for EHDV-2 except for one sample collected from a dam 11 days post-vaccination which tested positive at virus isolation at the third cell passage following two rounds of blind passages. Although they had free access to colostrum, calves tested serologically negative for EHDV-2 during the entire course of the experiment. Overall, the tested live attenuated vaccine can be safely administered to late-term pregnant cows as it was not demonstrated to cross the placental barrier. The safety of the live-attenuated vaccine is further confirmed by the emergence of Ibaraki virus in 2013 in Japan which is apparently not related to the spread of the vaccine strain currently used in Japan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Immunization with electroporation enhances the protective effect of a DNA vaccine candidate expressing prME antigen against dengue virus serotype 2 infection.

    Science.gov (United States)

    Chen, Hui; Zheng, Xiaoyan; Wang, Ran; Gao, Na; Sheng, Ziyang; Fan, Dongying; Feng, Kaihao; Liao, Xianzheng; An, Jing

    2016-10-01

    We aimed to use the dengue virus (DV) serotype 2 as a proof of principal for testing the efficacy of a DNA vaccine candidate via in vivo electroporation in mice and rabbits prior to the development of a tetravalent vaccine. Different dosages of DNA pVAX1-D2ME encoding DV2 prME genes were vaccinated in mice via intramuscular injection or in vivo electroporation, immune responses and protection were determined. In DNA-vaccinated rabbits via electroporation, antibody titer and protein expression were tested. In mice, 50μg of pVAX1-D2ME via electroporation elicited effective anti-DV2 responses and conferred significant protection against DV2 challenge. Moreover, anti-DV2 IgG and neutralizing antibodies were successfully induced in rabbits immunized with pVAX1-D2ME via electroporation and the expression of the interest protein was observed at local sites. Enhanced immunogenicity and protective effect conferred by pVAX1-D2ME via electroporation show great promise for the development of a dengue tetravalent DNA vaccine. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Developmental stage determines efficiency of gene transfer to muscle satellite cells by in utero delivery of adeno-associated virus vector serotype 2/9

    Directory of Open Access Journals (Sweden)

    David H Stitelman

    2014-01-01

    Full Text Available Efficient gene transfer to muscle stem cells (satellite cells has not been achieved despite broad transduction of skeletal muscle by systemically administered adeno-associated virus serotype 2/9 (AAV-9 in mice. We hypothesized that cellular migration during fetal development would make satellite cells accessible for gene transfer following in utero intravascular injection. We injected AAV-9 encoding green fluorescent protein (GFP marker gene into the vascular space of mice ranging in ages from post-coital day 12 (E12 to postnatal day 1 (P1. Satellite cell transduction was examined using: immunohistochemistry and confocal microscopy, satellite cell migration assay, myofiber isolation and FACS analysis. GFP positive myofibers were detected in all mature skeletal muscle groups and up to 100% of the myofibers were transduced. We saw gestational variation in cardiac and skeletal muscle expression. E16 injection resulted in 27.7 ± 10.0% expression in satellite cells, which coincides with the timing of satellite cell migration, and poor satellite cell expression before and after satellite cell migration (E12 and P1. Our results demonstrate that efficient gene expression is achieved in differentiated myofibers and satellite cells after injection of AAV-9 in utero. These findings support the potential of prenatal gene transfer for muscle based treatment strategies.

  13. Inflammation and Immune Response of Intra-Articular Serotype 2 Adeno-Associated Virus or Adenovirus Vectors in a Large Animal Model

    Directory of Open Access Journals (Sweden)

    Akikazu Ishihara

    2012-01-01

    Full Text Available Intra-articular gene therapy has potential for the treatment of osteoarthritis and rheumatoid arthritis. To quantify in vitro relative gene transduction, equine chondrocytes and synovial cells were treated with adenovirus vectors (Ad, serotype 2 adeno-associated virus vectors (rAAV2, or self-complementary (sc AAV2 vectors carrying green fluorescent protein (GFP. Using 6 horses, bilateral metacarpophalangeal joints were injected with Ad, rAAV2, or scAAV2 vectors carrying GFP genes to assess the in vivo joint inflammation and neutralizing antibody (NAb titer in serum and joint fluid. In vitro, the greater transduction efficiency and sustained gene expression were achieved by scAAV2 compared to rAAV2 in equine chondrocytes and synovial cells. In vivo, AAV2 demonstrated less joint inflammation than Ad, but similar NAb titer. The scAAV2 vectors can induce superior gene transduction than rAAV2 in articular cells, and both rAAV2 and scAAV2 vectors were showed to be safer for intra-articular use than Ad vectors.

  14. Secretion of dengue virus envelope protein ectodomain from mammalian cells is dependent on domain II serotype and affects the immune response upon DNA vaccination.

    Science.gov (United States)

    Slon Campos, J L; Poggianella, M; Marchese, S; Bestagno, M; Burrone, O R

    2015-11-01

    Dengue virus (DENV) is currently among the most important human pathogens and affects millions of people throughout the tropical and subtropical regions of the world. Although it has been a World Health Organization priority for several years, there is still no efficient vaccine available to prevent infection. The envelope glycoprotein (E), exposed on the surface on infective viral particles, is the main target of neutralizing antibodies. For this reason it has been used as the antigen of choice for vaccine development efforts. Here we show a detailed analysis of factors involved in the expression, secretion and folding of E ectodomain from all four DENV serotypes in mammalian cells, and how this affects their ability to induce neutralizing antibody responses in DNA-vaccinated mice. Proper folding of E domain II (DII) is essential for efficient E ectodomain secretion, with DIII playing a significant role in stabilizing soluble dimers. We also show that the level of protein secreted from transfected cells determines the strength and efficiency of antibody responses in the context of DNA vaccination and should be considered a pivotal feature for the development of E-based DNA vaccines against DENV.

  15. Experimental evidence for competitive growth advantage of genotype VII over VI: implications for foot-and-mouth disease virus serotype A genotype turnover in nature.

    Science.gov (United States)

    Mohapatra, J K; Subramaniam, S; Singh, N K; Sanyal, A; Pattnaik, B

    2012-04-01

    In India, systematic genotype replacement has been observed for serotype A foot-and-mouth disease virus. After a decade of co-circulation of genotypes VI and VII, genotype VII emerged as the single dominant genotype since 2001. To derive possible explanations for such epochal evolution dynamics, in vitro intergenotype growth competition experiments involving both co- and superinfection regimes were conducted. Coinfection of BHK-21 cells demonstrated abrupt loss in the genotype VI viral load with commensurate increase in the load of genotype VII as measured by the genotype differentiating ELISA, RT-PCR and real-time RT-PCR. The superinfection dynamics was shaped by temporal spacing of infection, where the invading genotype VII took more number of passages than coinfection to eventually overtake the resident genotype VI. It was speculated that such superior replicative fitness of genotype VII could have been a possible factor for the ultimate dominance of genotype VII in nature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Impact of the emergence and re-emergence of different dengue viruses' serotypes in Rio de Janeiro, Brazil, 2010 to 2012.

    Science.gov (United States)

    Heringer, Manoela; Nogueira, Rita Maria R; de Filippis, Ana Maria B; Lima, Monique R Q; Faria, Nieli R C; Nunes, Priscila C G; Nogueira, Fernanda B; dos Santos, Flávia B

    2015-04-01

    Rio de Janeiro (RJ) has been of major importance for the epidemiology of dengue viruses (DENVs) in Brazil. After the DENV 1-4 introductions in 1986, 1990, 2000 and 2011, respectively, the state has suffered explosive epidemics. We aimed to describe laboratorial, epidemiological and clinical aspects due to the emergence and re-emergence of distinct DENV in a 2-year period. Suspected dengue cases (n=2833), including 190 fatal cases, were submitted to virus isolation, RT-PCR and non-structural 1 (NS1) antigen capture ELISA, IgM antibody-capture (MAC)-ELISA and IgG-ELISA. Case confirmation was 47.5%. MAC-ELISA confirmed 32.6% of the cases, RT-PCR confirmed 56.3%; DENV was recovered in 33.1% of samples inoculated and NS1 ELISA confirmed 27.5% of the cases. DENV-2 was prevalent in 2010, DENV-1 in 2011 and DENV-4 in 2012. Individuals infected by DENV-3 and over 65 years-old, and children 15 years-old and under infected by DENV-2 had a significantly higher risk of developing a severe disease. Fatal cases confirmed (n=67) were due to DENV-1 (26.8%), DENV-2 (14.9%), DENV-3 (2.9%) and DENV-4 (7.4%). It has been shown here that viral emergences or re-emergences may play different roles in the disease epidemiology, especially when many serotypes co-circulate. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Adeno-Associated Virus Serotype 8 Gene Transfer Rescues a Neonatal Lethal Murine Model of Propionic Acidemia

    Science.gov (United States)

    Chandler, Randy J.; Chandrasekaran, Suma; Carrillo-Carrasco, Nuria; Senac, Julien S.; Hofherr, Sean E.; Barry, Michael A.

    2011-01-01

    Abstract Propionic acidemia (PA) is an autosomal recessive disorder of metabolism caused by a deficiency of propionyl-coenzyme A carboxylase (PCC). Despite optimal dietary and cofactor therapy, PA patients still suffer from lethal metabolic instability and experience multisystemic complications. A murine model of PA (Pcca–/–) of animals that uniformly die within the first 48 hr of life was used to determine the efficacy of adeno-associated viral (AAV) gene transfer as a potential therapy for PA. An AAV serotype 8 (AAV8) vector was engineered to express the human PCCA cDNA and delivered to newborn mice via an intrahepatic injection. Greater than 64% of the Pcca–/– mice were rescued after AAV8-mediated gene transfer and survived until day of life 16 or beyond. Western analysis of liver extracts showed that PCC was completely absent from Pcca–/– mice but was restored to greater than wild-type levels after AAV gene therapy. The treated Pcca–/– mice also exhibited markedly reduced plasma levels of 2-methylcitrate compared with the untreated Pcca–/– mice, which indicates significant PCC enzymatic activity was provided by gene transfer. At the time of this report, the oldest treated Pcca–/– mice are over 6 months of age. In summary, AAV gene delivery of PCCA effectively rescues Pcca–/– mice from neonatal lethality and substantially ameliorates metabolic markers of the disease. These experiments demonstrate a gene transfer approach using AAV8 that might be used as a treatment for PA, a devastating and often lethal disorder desperately in need of new therapeutic options. PMID:20950151

  18. Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes.

    Science.gov (United States)

    Chan, Hui-Ting; Xiao, Yuhong; Weldon, William C; Oberste, Steven M; Chumakov, Konstantin; Daniell, Henry

    2016-11-01

    The WHO recommends complete withdrawal of oral polio vaccine (OPV) type 2 by April 2016 globally and replacing with at least one dose of inactivated poliovirus vaccine (IPV). However, high-cost, limited supply of IPV, persistent circulating vaccine-derived polioviruses transmission and need for subsequent boosters remain unresolved. To meet this critical need, a novel strategy of a low-cost cold chain-free plant-made viral protein 1 (VP1) subunit oral booster vaccine after single IPV dose is reported. Codon optimization of the VP1 gene enhanced expression by 50-fold in chloroplasts. Oral boosting of VP1 expressed in plant cells with plant-derived adjuvants after single priming with IPV significantly increased VP1-IgG1 and VP1-IgA titres when compared to lower IgG1 or negligible IgA titres with IPV injections. IgA plays a pivotal role in polio eradication because of its transmission through contaminated water or sewer systems. Neutralizing antibody titres (~3.17-10.17 log 2 titre) and seropositivity (70-90%) against all three poliovirus Sabin serotypes were observed with two doses of IPV and plant-cell oral boosters but single dose of IPV resulted in poor neutralization. Lyophilized plant cells expressing VP1 stored at ambient temperature maintained efficacy and preserved antigen folding/assembly indefinitely, thereby eliminating cold chain currently required for all vaccines. Replacement of OPV with this booster vaccine and the next steps in clinical translation of FDA-approved antigens and adjuvants are discussed. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. A novel dengue virus serotype 1 vaccine candidate based on Japanese encephalitis virus vaccine strain SA14-14-2 as the backbone.

    Science.gov (United States)

    Yang, Huiqiang; Li, Zhushi; Lin, Hua; Wang, Wei; Yang, Jian; Liu, Lina; Zeng, Xianwu; Wu, Yonglin; Yu, Yongxin; Li, Yuhua

    2016-06-01

    To develop a potential dengue vaccine candidate, a full-length cDNA clone of a novel chimeric virus was constructed using recombinant DNA technology, with Japanese encephalitis virus (JEV) vaccine strain SA14-14-2 as the backbone, with its premembrane (prM) and envelope (E) genes substituted by their counterparts from dengue virus type 1 (DENV1). The chimeric virus (JEV/DENV1) was successfully recovered from primary hamster kidney (PHK) cells by transfection with the in vitro transcription products of JEV/DENV1 cDNA and was identified by complete genome sequencing and immunofluorescent staining. No neuroinvasiveness of this chimeric virus was observed in mice inoculated by the subcutaneous route (s.c.) or by the intraperitoneal route (i.p.), while some neurovirulence was displayed in mice that were inoculated directly by the intracerebral route (i.c.). The chimeric virus was able to stimulate high-titer production of antibodies against DENV1 and provided protection against lethal challenge with neuroadapted dengue virus in mice. These results suggest that the chimeric virus is a promising dengue vaccine candidate.

  20. Bluetongue surveillance in Switzerland in 2003: a serological and entomological survey.

    Science.gov (United States)

    Cagienard, A; Dall'Acqua, F; Thür, B; Mellor, P S; Denison, E; Griot, C; Stärk, K D C

    2004-01-01

    At present, Switzerland is considered officially free from bluetongue (BT) disease. Recently reported outbreaks have recorded BT moving north as far as latitude 44 degrees 30'N in Europe and 49 degrees N in Kazakhstan. The absence of clinical disease does not prove freedom from BT virus (BTV) infection. In addition, the occurrence and distribution of the only known biological vector, certain species of Culicoides biting midges (Diptera: Ceratopogonidae), is poorly understood for Switzerland. Consequently the Swiss Veterinary Office initiated a project on BT surveillance in April 2003 on cattle farms. The study comprised serological and entomological activities; initial results are presented.

  1. Infecciones concurrentes por dos serotipos del virus dengue durante un brote en el noroeste de Perú, 2008 Concurrent infections by two dengue virus serotypes during an outbreak in northwestern Peru, 2008

    Directory of Open Access Journals (Sweden)

    Enrique Mamani

    2010-03-01

    Full Text Available Objetivo. Describir la existencia de infecciones concurrentes por diferentes serotipos del virus dengue (DENV en un brote ocurrido en el noroeste de Perú durante el 2008. Materiales y métodos. Se analizó 73 muestras séricas de pacientes con dengue en un brote en el noroeste de Perú entre mayo y junio de 2008. Para la serotipificación del DENV se utilizó técnicas de biología molecular; así, primero se realizó la extracción del ARN con el kit QIAamp viral RNA Mini, luego se realizó la transcripción inversa y amplificación de los fragmentos de ADNc viral mediante las técnicas de reacción en cadena de la polimerasa con transcriptasa inversa (RT-PCR multiplex y de RT-Anidada PCR (RT-Nested PCR, y finalmente de realizó el secuenciamiento genético de los fragmentos de ADNc viral utilizando el kit Big Dye Terminator v.3,1. Resultados. Los 73 casos de dengue presentaron infecciones por diferentes serotipos: 34 (46,6% por DENV-3, 29 (39,7% por DENV-1, 4 (5,5% por DENV-4 y 6 casos (8,2% por DENV-1 y DENV-3. Las manifestaciones clínicas más frecuentes fueron fiebre y cefalea (100%, mialgia (94,5%, dolor ocular (83,6%, artralgia (78,1%, escalofríos (63,0%, nauseas/vómitos (38,4%, prueba de lazo positiva (30,1% y erupción cutánea (20,5%. Los pacientes con infecciones concurrentes presentaron cuadros leves, excepto una paciente que presentó prueba de lazo positivo y sangrado genital. Conclusión. Es el primer reporte de pacientes peruanos con infecciones concurrentes por dos serotipos del DENV sin formas graves de la enfermedad.Objetives. To establish the existence of concurrent infections by different dengue virus (DENV serotypes in an outbreak in the Northwestern in Peru during 2008. Material and methods. 73 serum samples from patients with dengue were analyzed during an outbreak that occurred in Northwestern in Peru between May and June 2008. Molecular biology techniques were used to serotype the DENV, thus, firstly the viral RNA

  2. An "on-matrix" digestion procedure for AP-MS experiments dissects the interplay between complex-conserved and serotype-specific reactivities in Dengue virus-human plasma interactome.

    Science.gov (United States)

    Ramos, Yassel; Huerta, Vivian; Martín, Dayron; Palomares, Sucel; Yero, Alexis; Pupo, Dianne; Gallien, Sebastien; Martín, Alejandro M; Pérez-Riverol, Yasset; Sarría, Mónica; Guirola, Osmany; Chinea, Glay; Domon, Bruno; González, Luis Javier

    2017-07-13

    The interactions between the four Dengue virus (DENV) serotypes and plasma proteins are crucial in the initial steps of viral infection to humans. Affinity purification combined with quantitative mass spectrometry analysis, has become one of the most powerful tools for the investigation on novel protein-protein interactions. Using this approach, we report here that a significant number of bait-interacting proteins do not dissociate under standard elution conditions, i.e. acid pH and chaotropic agents, and that this problem can be circumvented by using the "on-matrix" digestion procedure described here. This procedure enabled the identification of 16 human plasma proteins interacting with domain III from the envelope protein of DENV serotypes 1, 3 and 4 that would have not been detected otherwise and increased the known DIIIE interactors in human plasma to 59 proteins. Selected Reaction Monitoring analysis evidenced DENV interactome in human plasma is rather conserved although significant differences on the reactivity of viral serotypes with specific proteins do exist. A comparison between the serotype-dependent profile of reactivity and the conservation pattern of amino acid residues suggests an evolutionary selection of highly conserved interactions with the host and other interactions mediated for surface regions of higher variability. False negative results on the identification of interacting proteins in pull-down experiments compromise the subsequent interpretation of results and the formulation of a working hypothesis for the derived future work. In this study we demonstrate the presence of bait-interacting proteins reluctant to dissociate under elution conditions of acid pH and presence of chaotropics. We propose the direct proteolytic digestion of proteins while still bound to the affinity matrix ("on-matrix" digestion) and evaluate the impact of this methodology in the comparative study of the interactome of the four serotypes of Dengue virus mediated by

  3. Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 alphal-antitrypsin (AAT) vector in AAT-deficient adults.

    Science.gov (United States)

    Brantly, Mark L; Spencer, L Terry; Humphries, Margaret; Conlon, Thomas J; Spencer, Carolyn T; Poirier, Amy; Garlington, Wendy; Baker, Dawn; Song, Sihong; Berns, Kenneth I; Muzyczka, Nicholas; Snyder, Richard O; Byrne, Barry J; Flotte, Terence R

    2006-12-01

    A phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 (rAAV2) alpha1-antitrypsin (AAT) vector was performed in 12 AAT-deficient adults, 10 of whom were male. All subjects were either homozygous for the most common AAT mutation (a missense mutation designated PI*Z) or compound heterozygous for PI*Z and another mutation known to cause disease. There were four dose cohorts, ranging from 2.1 x 10(12) vector genomes (VG) to 6.9 x 10(13) VG, with three subjects per cohort. Subjects were injected sequentially in a dose-escalating fashion with a minimum of 14 days between patients. Subjects who had been receiving AAT protein replacement discontinued that therapy 28 days before vector administration. There were no vector-related serious adverse events in any of the 12 participants. Vector DNA sequences were detected in the blood between 1 and 3 days after injection in nearly all patients receiving doses of 6.9 x 10(12) VG or higher. Anti-AAV2 capsid antibodies were present and rose after vector injection, but no other immune responses were detected. One subject who had not been receiving protein replacement exhibited low-level expression of wild-type M-AAT in the serum (82 nM), which was detectable 30 days after receiving an injection of 2.1 x 10(13) VG. Unfortunately, residual but declining M-AAT levels from the washout of the protein replacement elevated background levels sufficiently to obscure any possible vector expression in that range in most of the other individuals in the higher dose cohorts.

  4. In vivo gene knockdown in rat dorsal root ganglia mediated by self-complementary adeno-associated virus serotype 5 following intrathecal delivery.

    Directory of Open Access Journals (Sweden)

    Qinghao Xu

    Full Text Available We report here in adult rat viral vector mediate-gene knockdown in the primary sensory neurons and the associated cellular and behavior consequences. Self-complementary adeno-associated virus serotype 5 (AAV5 was constructed to express green fluorescent protein (GFP and a small interfering RNA (siRNA targeting mammalian target of rapamycin (mTOR. The AAV vectors were injected via an intrathecal catheter. We observed profound GFP expression in lumbar DRG neurons beginning at 2-week post-injection. Of those neurons, over 85% were large to medium-diameter and co-labeled with NF200, a marker for myelinated fibers. Western blotting of mTOR revealed an 80% reduction in the lumbar DRGs (L4-L6 of rats treated with the active siRNA vectors compared to the control siRNA vector. Gene knockdown became apparent as early as 7-day post-injection and lasted for at least 5 weeks. Importantly, mTOR knockdown occurred in large (NF200 and small-diameter neurons (nociceptors. The viral administration induced an increase of Iba1 immunoreactivity in the DRGs, which was likely attributed to the expression of GFP but not siRNA. Rats with mTOR knockdown in DRG neurons showed normal general behavior and unaltered responses to noxious stimuli. In conclusion, intrathecal AAV5 is a highly efficient vehicle to deliver siRNA and generate gene knockdown in DRG neurons. This will be valuable for both basic research and clinic intervention of diseases involving primary sensory neurons.

  5. Altitudinal variation and bio-climatic variables influencing the potential distribution of Culicoides orientalis Macfie, 1932, suspected vector of Bluetongue virus across the North Eastern Himalayan belt of Sikkim.

    Science.gov (United States)

    Mukhopadhyay, Emon; Hazra, Surajit; Saha, Goutam Kumar; Banerjee, Dhriti

    2017-12-01

    Culicoides orientalis was first recorded from Sikkim, in the year 1963, but no evidence based disease outbreak were available. In the last 50 years, 260 Bluetongue disease outbreaks caused by Culicoides species have been evidenced from India. Moreover, in recent years with increase of average temperature worldwide and increase in longevity of arthropod vectors like Culicoides along with a geographical range shift to new suitable warmer regions has increased the potentiality of vector borne disease outbreak throughout the world. The Himalayan range of Sikkim in India is a biodiversity hotspot and is extremely sensitive to such global climate changes. An attempt has been made to evaluate the altitude, climate and environmental data on selected study sites of Sikkim for a period of two years (2014-2015) for discerning potential distribution of C.orientalis in this region. The altitude, temperature, precipitation and potential distribution range maps of C. orientalis showed the areas of highest species abundance within the altitudinal range of 550-1830m, with some species extending its range up to 3750m, with average precipitation of 2010-2590mm and mean temperature of 11-18°C. The Maximum Entropy Modelling (MaxEnt) and the Jackknife test of the MaxEnt model further revealed that the major contributing factors governing C. orientalis distribution are annual precipitation (78.8%), followed by precipitation of driest quarter (8.3%) and mean temperature of the warmest quarter (3.3%). Accuracy of the study was evaluated by the area under the curve (AUC=0.860). The Biplot on F 1 -F 2 axes (N=16, α=0.05) in the PCA showed the linear depiction of all the variables considered in our study, major contributors were annual precipitation, precipitation of driest quarter and mean temperature of warmest quarter being the primary factors governing species distribution, as analogous to results of the MaxEnt model. This study would help in developing strategies for monitoring and

  6. Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non-human primates.

    Science.gov (United States)

    McBurney, Sean P; Sunshine, Justine E; Gabriel, Sarah; Huynh, Jeremy P; Sutton, William F; Fuller, Deborah H; Haigwood, Nancy L; Messer, William B

    2016-06-24

    We describe the preclinical development of a dengue virus vaccine targeting the dengue virus serotype 2 (DENV2) envelope domain III (EDIII). This study provides proof-of-principle that a dengue EDIII protein scaffold/DNA vaccine can protect against dengue challenge. The dengue vaccine (EDIII-E2) is composed of both a protein particle and a DNA expression plasmid delivered simultaneously via intramuscular injection (protein) and gene gun (DNA) into rhesus macaques. The protein component can contain a maximum of 60 copies of EDIII presented on a multimeric scaffold of Geobacillus stearothermophilus E2 proteins. The DNA component is composed of the EDIII portion of the envelope gene cloned into an expression plasmid. The EDIII-E2 vaccine elicited robust antibody responses to DENV2, with neutralizing antibody responses detectable following the first boost and reaching titers of greater than 1:100,000 following the second and final boost. Vaccinated and naïve groups of macaques were challenged with DENV2. All vaccinated macaques were protected from detectable viremia by infectious assay, while naïve animals had detectable viremia for 2-7 days post-challenge. All naïve macaques had detectable viral RNA from day 2-10 post-challenge. In the EDIII-E2 group, three macaques were negative for viral RNA and three were found to have detectable viral RNA post challenge. Viremia onset was delayed and the duration was shortened relative to naïve controls. The presence of viral RNA post-challenge corresponded to a 10-30-fold boost in neutralization titers 28 days post challenge, whereas no boost was observed in the fully protected animals. Based on these results, we determine that pre-challenge 50% neutralization titers of >1:6000 correlated with sterilizing protection against DENV2 challenge in EDIII-E2 vaccinated macaques. Identification of the critical correlate of protection for the EDIII-E2 platform in the robust non-human primate model lays the groundwork for further

  7. Effects of adeno-associated virus serotype and tissue-specific expression on circulating biomarkers of propionic acidemia.

    Science.gov (United States)

    Guenzel, Adam J; Hillestad, Matthew L; Matern, Dietrich; Barry, Michael A

    2014-09-01

    Propionic acidemia (PA) is an autosomal recessive inborn error of metabolism caused by deficiency of propionyl-CoA carboxylase (PCC). This enzyme is composed of six PCCA and six PCCB subunits and mediates a critical step in catabolism of odd chain fatty acids and certain amino acids. Current treatment options for PA are limited to stringent dietary restriction of protein consumption and some patients undergo elective liver transplantation. We previously generated a hypomorphic model of PA, designated Pcca(-/-)(A138T), with 2% of wild-type enzyme activity that mimics many aspects of the human disease. In this study, we used the differing tissue tropisms of adeno-associated virus (AAV) to probe the ability of liver or muscle-directed gene therapy to treat systemic aspects of this disease that affects many cell types. Systemic therapy with muscle-biased AAV1, liver-biased AAV8, and broadly tropic AAVrh10 mediated significant biochemical corrections in circulating propionylcarnitine (C3) and methyl citrate by all vectors. The innate tissue bias of AAV1 and AAV8 gene expression was made more specific by the use of muscle-specific muscle creatine kinase (specifically MCK6) and hepatocyte-specific transthyretin (TTR) promoters, respectively. Under these targeted conditions, both vectors mediated significant long-term correction of circulating metabolites, demonstrating that correction of muscle and likely other tissue types in addition to liver is necessary to fully correct pathology caused by PA. Liver-specific AAV8-TTR-PCCA mediated better correction than AAV1-MCK-PCCA. These data suggest that targeted gene therapy may be a viable alternative to liver transplantation for PA. They also demonstrate the effects of tissue-specific and broad gene therapy on a cell autonomous systemic genetic disease.

  8. Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens.

    Directory of Open Access Journals (Sweden)

    Wayne D Crill

    Full Text Available Dengue virus (DENV is a serious mosquito-borne pathogen causing significant global disease burden, either as classic dengue fever (DF or in its most severe manifestation dengue hemorrhagic fever (DHF. Nearly half of the world's population is at risk of dengue disease and there are estimated to be millions of infections annually; a situation which will continue to worsen with increasing expansion of the mosquito vectors and epidemic DF/DHF. Currently there are no available licensed vaccines or antivirals for dengue, although significant effort has been directed toward the development of safe and efficacious dengue vaccines for over 30 years. Promising vaccine candidates are in development and testing phases, but a better understanding of immune responses to DENV infection and vaccination is needed. Humoral immune responses to DENV infection are complex and may exacerbate pathogenicity, yet are essential for immune protection. In this report, we develop DENV-2 envelope (E protein epitope-specific antigens and measure immunoglobulin responses to three distinct epitopes in DENV-2 infected human serum samples. Immunoglobulin responses to DENV-2 infection exhibited significant levels of individual variation. Antibody populations targeting broadly cross-reactive epitopes centered on the fusion peptide in structural domain II were large, highly variable, and greater in primary than in secondary DENV-2 infected sera. E protein domain III cross-reactive immunoglobulin populations were similarly variable and much larger in IgM than in IgG. DENV-2 specific domain III IgG formed a very small proportion of the antibody response yet was significantly correlated with DENV-2 neutralization, suggesting that the highly protective IgG recognizing this epitope in murine studies plays a role in humans as well. This report begins to tease apart complex humoral immune responses to DENV infection and is thus important for improving our understanding of dengue disease

  9. Full Genome Characterisation of Bluetonge Virus Seroptype 6 from the Netherlands 2008 and Comparison to Other Field and Vaccine Strains

    NARCIS (Netherlands)

    Maan, S.; Maan, N.S.; Rijn, van P.A.; Gennip, van H.G.P.; Sanders, A.A.; Wright, I.M.; Batten, C.; Hoffmann, B.; Eschbaumer, M.; Oura, C.A.L.; Potgieter, C.; Nomikou, K.; Mertens, P.P.C.

    2010-01-01

    In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8 vaccine (during May-June 2008). Bluetongue virus (BTV)

  10. Definition of the region on NS3 which contains multiple epitopes recognized by dengue virus serotype-cross-reactive and flavivirus-cross-reactive, HLA-DPw2-restricted CD4+ T cell clones.

    Science.gov (United States)

    Okamoto, Y; Kurane, I; Leporati, A M; Ennis, F A

    1998-04-01

    The epitopes recognized by six CD4+ CD8- cytotoxic T lymphocyte (CTL) clones established from a dengue-3 virus-immune donor were defined. (i) Three CTL clones, JK10, JK34 and JK39, were cross-reactive for dengue virus types 1-4. (ii) One clone, JK28, was cross-reactive for dengue virus types 1-4 and West Nile virus. (iii) Two clones, JK26 and JK49, were cross-reactive for dengue virus types 1-4, West Nile virus and yellow fever virus. The clones, except for JK49, recognized the same epitope on NS3 in an HLA-DPw2-restricted fashion. The smallest synthetic peptide recognized by the five CTL clones was a 10 aa peptide which comprises aa 255-264 on dengue virus NS3. JK49 recognized the overlapping epitope which comprises aa 257-266 in an HLA-DPw2-restricted fashion. Analysis of T cell receptor (TCR) usage by these T cell clones revealed that (i) JK10 and JK34 use V alpha11, and JK34 and JK28 use V beta23, and (ii) the amino acid sequences of the V(D)J junctional region of the TCR were different among these five CTL clones. There were, however, single amino acid conservations among TCRs of some of these T cell clones. These results indicate that the region on NS3 which comprises aa 255-266 contains multiple epitopes recognized by dengue serotype-cross-reactive and flavivirus-cross-reactive CD4+ CTL in an HLA-DPw2-restricted fashion and that a single epitope can be recognized by T cells which have heterogeneous virus specificities.

  11. Dengue Virus NS Proteins Inhibit RIG-I/MAVS Signaling by Blocking TBK1/IRF3 Phosphorylation: Dengue Virus Serotype 1 NS4A Is a Unique Interferon-Regulating Virulence Determinant

    Science.gov (United States)

    Dalrymple, Nadine A.; Cimica, Velasco

    2015-01-01

    ABSTRACT Dengue virus (DENV) replication is inhibited by the prior addition of type I interferon or by RIG-I agonists that elicit RIG-I/MAVS/TBK1/IRF3-dependent protective responses. DENV infection of primary human endothelial cells (ECs) results in a rapid increase in viral titer, which suggests that DENV inhibits replication-restrictive RIG-I/interferon beta (IFN-β) induction pathways within ECs. Our findings demonstrate that DENV serotype 4 (DENV4) nonstructural (NS) proteins NS2A and NS4B inhibited RIG-I-, MDA5-, MAVS-, and TBK1/IKKε-directed IFN-β transcription (>80%) but failed to inhibit IFN-β induction directed by STING or constitutively active IRF3-5D. Expression of NS2A and NS4B dose dependently inhibited the phosphorylation of TBK1 and IRF3, which suggests that they function at the level of TBK1 complex activation. NS2A and NS4B from DENV1/2/4, as well as the West Nile virus NS4B protein, commonly inhibited TBK1 phosphorylation and IFN-β induction. A comparative analysis of NS4A proteins across DENVs demonstrated that DENV1, but not DENV2 or DENV4, NS4A proteins uniquely inhibited TBK1. These findings indicate that DENVs contain conserved (NS2A/NS4B) and DENV1-specific (NS4A) mechanisms for inhibiting RIG-I/TBK1-directed IFN responses. Collectively, our results define DENV NS proteins that restrict IRF3 and IFN responses and thereby facilitate DENV replication and virulence. Unique DENV1-specific NS4A regulation of IFN induction has the potential to be a virulence determinant that contributes to the increased severity of DENV1 infections and the immunodominance of DENV1 responses during tetravalent DENV1-4 vaccination. PMID:25968648

  12. Identification of a dengue virus type 2 (DEN-2) serotype-specific B-cell epitope and detection of DEN-2-immunized animal serum samples using an epitope-based peptide antigen.

    Science.gov (United States)

    Wu, Han-Chung; Jung, Mei-Ying; Chiu, Chien-Yu; Chao, Ting-Ting; Lai, Szu-Chia; Jan, Jia-Tsrong; Shaio, Men-Fang

    2003-10-01

    In this study, a serotype-specific monoclonal antibody (mAb), D(2) 16-1 (Ab4), against dengue virus type 2 (DEN-2) was generated. The specificity of Ab4, which recognized DEN-2 non-structural protein 1, was determined by ELISA, immunofluorescence and immunoblotting analyses. The serotype-specific B-cell epitope of Ab4 was identified further from a random phage-displayed peptide library; selected phage clones reacted specifically with Ab4 and did not react with other mAbs. Immunopositive phage clones displayed a consensus motif, His-Arg/Lys-Leu/Ile, and a synthetic peptide corresponding to the phage-displayed peptide bound specifically to Ab4. The His and Arg residues in this epitope were found to be crucial for peptide binding to Ab4 and binding activity decreased dramatically when these residues were changed to Leu. The epitope-based synthetic peptide not only identified serum samples from DEN-2-immunized mice and rabbits by ELISA but also differentiated clearly between serum samples from DEN-2- and Japanese encephalitis virus-immunized mice. This mAb and its epitope-based peptide antigen will be useful for serologic diagnosis of DEN-2 infection. Furthermore, DEN-2 epitope identification makes it feasible to dissect antibody responses to DEN and to address the role of antibodies in the pathogenesis of primary and secondary DEN-2 infections.

  13. Prevalencia de anticuerpos neutralizantes contra los serotipos del virus dengue en universitarios de Tabasco, México Prevalence of neutralizing antibodies to dengue virus serotypes in university students from Tabasco, Mexico

    Directory of Open Access Journals (Sweden)

    Gilma Guadalupe Sánchez-Burgos

    2008-10-01

    Full Text Available OBJETIVO: Determinar la seroprevalencia de anticuerpos neutralizantes de los serotipos del virus dengue en estudiantes universitarios de Tabasco, México, durante los meses de septiembre a noviembre del año 2005. MATERIAL Y MÉTODOS: Se determinó la presencia de IgG contra el virus en el suero de estudiantes que acudieron al centro clínico de la universidad; en los sueros positivos se determinaron los anticuerpos neutralizantes mediante el ensayo de reducción de placa lítica. RESULTADOS: La prevalencia de IgG contra el dengue fue de 9.1%; de esta proporción, los anticuerpos neutralizantes fueron DENV-1 (20%, DENV-2 (100%, DENV-3 (4% y DENV-4 (68%. CONCLUSIONES: Este estudio muestra que el serotipo transmitido con mayor frecuencia en el estado de Tabasco es el DENV-2, aunque no ha sido el aislado con más frecuencia. La elevada prevalencia de anticuerpos neutralizantes contra el DENV-4, al parecer de reacción cruzada, podría explicar la baja circulación de este serotipo en Tabasco.OBJECTIVE: Determine the seroprevalence of neutralizing antibodies to dengue virus in students from the state university of Tabasco, Mexico. MATERIAL AND METHODS: A transversal study was conducted of serum collected from students between September and November, 2005. The sera were screened for anti-dengue IgG and those that had evidence of dengue antibodies were analyzed by a plaque reduction neutralization test. RESULTS: Prevalence of anti-dengue IgG was 9.1%. The frequency of neutralizing antibodies was 100% for DENV-2, 68% for DENV-4, 20% for DENV-1, and 4 % for DENV-3. CONCLUSIONS: We found that in this population, DENV-2 circulates more than DENV-3 despite the fact that DENV-3 is more frequently isolated. Unexpectedly, neutralizing antibodies against DENV-4 were frequently found even though this serotype is almost extinct; thus, it is probable that cross-immunity could suppress DEN-4 transmission, as has been suggested.

  14. Identification of two epitopes on the dengue 4 virus capsid protein recognized by a serotype-specific and a panel of serotype-cross-reactive human CD4+ cytotoxic T-lymphocyte clones.

    OpenAIRE

    Gagnon, S J; Zeng, W; Kurane, I; Ennis, F A

    1996-01-01

    We analyzed the CD4+ T-lymphocyte response of a donor who had received an experimental live-attenuated dengue 4 virus (D4V) vaccine. Bulk culture proliferative responses of peripheral blood mononuclear cells (PBMC) to noninfectious dengue virus (DV) antigens showed the highest proliferation to D4V antigen, with lesser, cross-reactive proliferation to D2V antigen. We established CD4+ cytotoxic T-lymphocyte clones (CTL) by stimulation with D4 antigen. Using recombinant baculovirus antigens, we ...

  15. Sellers’ Revisited: A Big Data Reassessment of Historical Outbreaks of Bluetongue and African Horse Sickness due to the Long-Distance Wind Dispersion of Culicoides Midges

    Directory of Open Access Journals (Sweden)

    Peter A. Durr

    2017-07-01

    Full Text Available The possibility that outbreaks of bluetongue (BT and African horse sickness (AHS might occur via long-distance wind dispersion (LDWD of their insect vector (Culicoides spp. was proposed by R. F. Sellers in a series of papers published between 1977 and 1991. These investigated the role of LDWD by means of visual examination of the wind direction of synoptic weather charts. Based on the hypothesis that simple wind direction analysis, which does not allow for wind speed, might have led to spurious conclusions, we reanalyzed six of the outbreak scenarios described in Sellers’ papers. For this reanalysis, we used a custom-built Big Data application (“TAPPAS” which couples a user-friendly web-interface with an established atmospheric dispersal model (“HYSPLIT”, thus enabling more sophisticated modeling than was possible when Sellers undertook his analyzes. For the two AHS outbreaks, there was strong support from our reanalysis of the role of LDWD for that in Spain (1966, and to a lesser degree, for the outbreak in Cyprus (1960. However, for the BT outbreaks, the reassessments were more complex, and for one of these (western Turkey, 1977 we could discount LDWD as the means of direct introduction of the virus. By contrast, while the outbreak in Cyprus (1977 showed LDWD was a possible means of introduction, there is an apparent inconsistency in that the outbreaks were localized while the dispersion events covered much of the island. For Portugal (1956, LDWD from Morocco on the dates suggested by Sellers is very unlikely to have been the pathway for introduction, and for the detection of serotype 2 in Florida (1982, LDWD from Cuba would require an assumption of a lengthy survival time of the midges in the air column. Except for western Turkey, the BT reanalyses show the limitation of LDWD modeling when used by itself, and indicates the need to integrate susceptible host population distribution (and other covariate data into the modeling process

  16. Pneumonia due to pandemic (H1N1) 2009 influenza virus and Klebsiella pneumoniae capsular serotype K16 in a patient with nasopharyngeal cancer.

    Science.gov (United States)

    Lai, Chih-Cheng; Lee, Pei-Lin; Tan, Che-Kim; Huang, Yu-Tsung; Kao, Chiang-Lian; Wang, Jin-Town; Hsueh, Po-Ren

    2012-10-01

    Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus and group A Streptoccocus, but no Klebsiella pneumoniae were responsible for bacterial coinfections during the 2009 and previous influenza pandemics. We hereby report a case with concurrent bacteremic pneumonia due to an unusual capsular serotype K16 K. pneumoniae and pandemic (H1N1) 2009 influenza in a patient with nasopharyngeal cancer. Such a coinfection has not previously been described. Copyright © 2012. Published by Elsevier B.V.

  17. Animal viral diseases and global change: Bluetongue and West Nile fever as paradigms

    Directory of Open Access Journals (Sweden)

    Miguel Angel eJimenez-Clavero

    2012-06-01

    Full Text Available Environmental changes have an undoubted influence on the appearance, distribution and evolution of infectious diseases, and notably on those transmitted by vectors. Global change refers to environmental changes arising from human activities affecting the fundamental mechanisms operating in the biosphere. This paper discusses the changes observed in recent times with regard to some important arboviral (arthropod-borne viral diseases of animals, and the role global change could have played in these variations. Two of the most important arboviral diseases of animals, bluetongue and West Nile fever/encephalitis, have been selected as models. In both cases, in the last 15 years an important leap forward has been observed, which has lead to considering them emerging diseases in different parts of the world. Bluetongue, affecting domestic ruminants, has recently afflicted livestock in Europe in an unprecedented epizootic, causing enormous economic losses. West Nile fever/encephalitis affects wildlife (birds, domestic animals (equines and humans, thus, beyond the economic consequences of its occurrence, as a zoonotic disease, it poses an important public health threat. West Nile virus has expanded in the last 12 years worldwide, and particularly in the Americas, where it first occurred in 1999, extending throughout the Americas relentlessly since then, causing a severe epidemic of disastrous consequences for public health, wildlife and livestock. In Europe, West Nile virus is known long time ago, but it is since the last years of the XXth century that its incidence has risen substantially. Circumstances such as global warming, changes in land use and water management, increase in travel, trade of animals, and others, can have an important influence in the observed changes in both diseases. The following question is raised: What is the contribution of global changes to the current increase of these diseases in the world?

  18. Sero-epidemiology of bluetongue in Algerian ruminants

    African Journals Online (AJOL)

    BMH Labo SPA

    2016-05-18

    May 18, 2016 ... the herds and lack of Culicoides controls strategies were the major risk factors for bluetongue sero- positivity in Algerian ruminant ... coastline at the Mediterranean Sea; most of the coastal area. (northern region) is hilly, .... Culicoides control measures in disease prevention strategy may play a key role in ...

  19. Adeno-Associated Virus Serotype 9–Driven Expression of BAG3 Improves Left Ventricular Function in Murine Hearts With Left Ventricular Dysfunction Secondary to a Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Tijana Knezevic, PhD

    2016-12-01

    Full Text Available Mutations in Bcl-2–associated athanogene 3 (BAG3 were associated with skeletal muscle dysfunction and dilated cardiomyopathy. Retro-orbital injection of an adeno-associated virus serotype 9 expressing BAG3 (rAAV9-BAG3 significantly (p < 0.0001 improved left ventricular ejection fraction, fractional shortening, and stroke volume 9 days post-injection in mice with cardiac dysfunction secondary to a myocardial infarction. Furthermore, myocytes isolated from mice 3 weeks after injection showed improved cell shortening, enhanced systolic [Ca2+]i and increased [Ca2+]i transient amplitudes, and increased maximal L-type Ca2+ current amplitude. These results suggest that BAG3 gene therapy may provide a novel therapeutic option for the treatment of heart failure.

  20. Monitoring of biting midges (Diptera: Ceratopogonidae: Culicoides Latreille) on farms in Sweden during the emergence of the 2008 epidemic of bluetongue

    DEFF Research Database (Denmark)

    Nielsen, Søren Achim; Nielsen, Boy Overgaard; Chirico, Jan

    2010-01-01

    In light of the emergence of bluetongue in northern Europe, populations of Culicoides species were monitored in 2007-2008 by means of Onderstepoort blacklight suction traps operating at livestock farms in Sweden. The location of the 22 sampling sites ranged from about latitude 55°N to about 68°N....... A total of 61,669 male and female Culicoides were captured, of which, 52,319 were trapped outside the farms and 9,350 in byres or livestock sheds. Thirty-three Culicoides species were recorded, of which, 30 were new to Sweden. The species and their relative abundance and spatial distribution on sites...... are presented. Two species incriminated as vectors of bluetongue virus, viz. Culicoides obsoletus (about 38%) and Culicoides scoticus (about 36%), were predominant and common in the environment of livestock farms practically all over the Swedish mainland, penetrating far north to at least 65°N. The two species...

  1. Vaccination of volunteers with low-dose, live-attenuated, dengue viruses leads to serotype-specific immunologic and virologic profiles.

    Science.gov (United States)

    Lindow, Janet C; Durbin, Anna P; Whitehead, Stephen S; Pierce, Kristen K; Carmolli, Marya P; Kirkpatrick, Beth D

    2013-07-18

    There are currently no vaccines or therapeutics to prevent dengue disease which ranges in severity from asymptomatic infections to life-threatening illness. The National Institute of Allergy and Infectious Diseases (NIAID) Division of Intramural Research has developed live, attenuated vaccines to each of the four dengue serotypes (DENV-1-DENV-4). Two doses (10PFU and 1000PFU) of three monovalent vaccines were tested in human clinical trials to compare safety and immunogenicity profiles. DEN4Δ30 had been tested previously at multiple doses. The three dengue vaccine candidates tested (DEN1Δ30, DEN2/4Δ30, and DEN3Δ30/31) were very infectious, each with a human infectious dose 50%≤ 10PFU. Further, infectivity rates ranged from 90 to 100% regardless of dose, excepting DEN2/4Δ30 which dropped from 100% at the 1000PFU dose to 60% at the 10PFU dose. Mean geometric peak antibody titers did not differ significantly between doses for DEN1Δ30 (92 ± 19 vs. 214 ± 97, p=0.08); however, significant differences were observed between the 10PFU and 1000PFU doses for DEN2/4Δ30, 19 ± 9 vs. 102 ± 25 (p=0.001), and DEN3Δ30/31, 119 ± 135 vs. 50 ± 50 (p=0.046). No differences in the incidences of rash, neutropenia, or viremia were observed between doses for any vaccines, though the mean peak titer of viremia for DEN1Δ30 was higher at the 1000PFU dose (0.5 ± 0 vs. 1.1 ± 0.1, p=0.007). These data demonstrate that a target dose of 1000PFU for inclusion of each dengue serotype into a tetravalent vaccine is likely to be safe and generate a balanced immune response for all serotypes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Vaccination of Volunteers with Low-Dose, Live-Attenuated, Dengue Viruses Leads to Serotype-specific Immunologic and Virologic Profiles

    Science.gov (United States)

    Lindow, Janet C.; Durbin, Anna P.; Whitehead, Stephen S.; Pierce, Kristen K.; Carmolli, Marya P.; Kirkpatrick, Beth D.

    2013-01-01

    There are currently no vaccines or therapeutics to prevent dengue disease which ranges in severity from asymptomatic infections to life-threatening illness. The National Institute of Allergy and Infectious Diseases (NIAID) Division of Intramural Research has developed live, attenuated vaccines to each of the four dengue serotypes (DENV-1 – DENV-4). Two doses (10 PFU and 1000 PFU) of three monovalent vaccines were tested in human clinical trials to compare safety and immunogenicity profiles. DEN4Δ30 had been tested previously at multiple doses. The three dengue vaccine candidates tested (DEN1Δ30, DEN2/4Δ30, and DEN3Δ30/31) were very infectious, each with a Human Infectious Dose 50% ≤ 10 PFU. Further, infectivity rates ranged from 90 −100% regardless of dose, excepting DEN2/4Δ30 which dropped from 100% at the 1000 PFU dose to 60% at the 10 PFU dose. Mean geometric peak antibody titers did not differ significantly between doses for DEN1Δ30 (92 ± 19 vs. 214 ± 97, p = 0.08); however, significant differences were observed between the 10 PFU and 1000 PFU doses for DEN2/4Δ30, 19 ± 9 vs. 102 ± 25 (p = 0.001), and DEN3Δ30/31, 119 ± 135 vs. 50 ± 50 (p=0.046). No differences in the incidences of rash, neutropenia, or viremia were observed between doses for any vaccines, though the mean peak titer of viremia for DEN1Δ30 was higher at the 1000 PFU dose (0.5 ± 0 vs. 1.1 ± 0.1, p = 0.007). These data demonstrate that atarget dose of 1000 PFU for inclusion of each dengue serotype into a tetravalent vaccine is likely to be safe and generate a balanced immune response for all serotypes. PMID:23735680

  3. Identification of two epitopes on the dengue 4 virus capsid protein recognized by a serotype-specific and a panel of serotype-cross-reactive human CD4+ cytotoxic T-lymphocyte clones.

    Science.gov (United States)

    Gagnon, S J; Zeng, W; Kurane, I; Ennis, F A

    1996-01-01

    We analyzed the CD4+ T-lymphocyte response of a donor who had received an experimental live-attenuated dengue 4 virus (D4V) vaccine. Bulk culture proliferative responses of peripheral blood mononuclear cells (PBMC) to noninfectious dengue virus (DV) antigens showed the highest proliferation to D4V antigen, with lesser, cross-reactive proliferation to D2V antigen. We established CD4+ cytotoxic T-lymphocyte clones (CTL) by stimulation with D4 antigen. Using recombinant baculovirus antigens, we identified seven CTL clones that recognized D4V capsid protein. Six of these CTL clones were cross-reactive between D2 and D4, and one clone was specific for D4. Using synthetic peptides, we found that the D4V-specific CTL clone recognized an epitope between amino acids (aa) 47 and 55 of the capsid protein, while the cross-reactive CTL clones each recognized epitopes in a separate location, between aa 83 and 92, which is conserved between D2V and D4V. This region of the capsid protein induced a variety of CD4+ T-cell responses, as indicated by the fact that six clones which recognized a peptide spanning this region showed heterogeneity in their recognition of truncations of this same peptide. The bulk culture response of the donor's PBMC to the epitope peptide spanning aa 84 to 92 was also examined. Peptides containing this epitope induced proliferation of the donor's PBMC in bulk culture, but peptides not containing the entire epitope did not induce proliferation. Also, PBMC stimulated in bulk culture with noninfectious D4V antigen lysed autologous target cells pulsed with peptides containing aa 84 to 92. These results indicate that this donor exhibits memory CD4+ T-cell responses directed against the DV capsid protein and suggest that the response to the capsid protein is dominant not only in vitro at the clonal level but in bulk culture responses as well. Since previous studies have indicated that the CTL responses to DV infection seem to be directed mainly against the

  4. Robust and Balanced Immune Responses to All 4 Dengue Virus Serotypes Following Administration of a Single Dose of a Live Attenuated Tetravalent Dengue Vaccine to Healthy, Flavivirus-Naive Adults.

    Science.gov (United States)

    Kirkpatrick, Beth D; Durbin, Anna P; Pierce, Kristen K; Carmolli, Marya P; Tibery, Cecilia M; Grier, Palmtama L; Hynes, Noreen; Diehl, Sean A; Elwood, Dan; Jarvis, Adrienne P; Sabundayo, Beulah P; Lyon, Caroline E; Larsson, Catherine J; Jo, Matthew; Lovchik, Janece M; Luke, Catherine J; Walsh, Mary C; Fraser, Ellen A; Subbarao, Kanta; Whitehead, Steven S

    2015-09-01

    The 4 serotypes of dengue virus, DENV-1-4, are the leading cause of arboviral disease globally. The ideal dengue vaccine would provide protection against all serotypes after a single dose. Two randomized, placebo-controlled trials were performed with 168 flavivirus-naive adults to demonstrate the safety and immunogenicity of a live attenuated tetravalent dengue vaccine (TV003), compared with those of a second tetravalent vaccine with an enhanced DENV-2 component (TV005), and to evaluate the benefit of a booster dose at 6 months. Safety data, viremia, and neutralizing antibody titers were evaluated. A single dose of TV005 elicited a tetravalent response in 90% of vaccinees by 3 months after vaccination and a trivalent response in 98%. Compared with TV003, the higher-dose DENV-2 component increased the observed frequency of immunogenicity to DENV-2 in the TV005 trial. Both the first and second doses were well tolerated. Neither vaccine viremia, rash, nor a significant antibody boost were observed following a second dose. A single subcutaneous dose of TV005 dengue vaccine is safe and induces a tetravalent antibody response at an unprecedented frequency among vaccinees. A second dose has limited benefit and appears to be unnecessary. Studies to confirm these findings and assess vaccine efficacy will now move to populations in regions where DENV transmission is endemic. NCT01072786 and NCT01436422. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. The nucleotide sequence of the RNA-2 of an isolate of the English serotype of tomato black ring virus: RNA recombination in the history of nepoviruses.

    Science.gov (United States)

    Le Gall, O L; Lanneau, M; Candresse, T; Dunez, J

    1995-05-01

    The RNA-2 of a carrot isolate from the English serotype of tomato black ring nepovirus (TBRV-ED) has been sequenced. It is 4618 nucleotides long and contains one open reading frame encoding a polypeptide of 1344 amino acids. The 5' non-coding region contains three repetitions of a stem-loop structure also conserved in TBRV-Scottish and grapevine chrome mosaic nepovirus (GCMV). The coat protein domain was mapped to the carboxy-terminal one-third of the polyprotein. Sequence comparisons indicate that TBRV-ED RNA-2 probably arose by an RNA recombination event that resulted in the exchange of the putative movement protein gene between TBRV and GCMV.

  6. Evaluation of different adjuvants formulations for bluetongue vaccine

    OpenAIRE

    Macedo, Ludmila Branco; Lobato, Zélia Inês Portela; Fialho, Sílvia Ligório; Viott, Aline de Marco; Guedes, Roberto Maurício Carvalho; Silva-Cunha, Armando

    2013-01-01

    This study investigated the adjuvant potential of W/O/W multiple emulsions and microemulsions, comparing them with traditional aluminum hydroxide and oil-in-water emulsion adjuvants against bluetongue vaccine (BTV). Local inflammatory reactions were assessed in rabbits by measuring the temperature of the animals and the skin thickness at the site of application. Antibodies titers were determined by serum-neutralization test. Histological analyses of lesions at the site of adjuvants applicatio...

  7. The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan.

    Science.gov (United States)

    Tsai, Cheng-Hui; Chen, Tien-Huang; Lin, Cheo; Shu, Pei-Yun; Su, Chien-Ling; Teng, Hwa-Jen

    2017-11-07

    We evaluated the impact of temperature and Wolbachia infection on vector competence of the local Aedes aegypti and Ae. albopictus populations of southern Taiwan in the laboratory. After oral infection with dengue serotype 1 virus (DENV-1), female mosquitoes were incubated at temperatures of 10, 16, 22, 28 and 34 °C. Subsequently, salivary gland, head, and thorax-abdomen samples were analyzed for their virus titer at 0, 5, 10, 15, 20, 25 and 30 days post-infection (dpi) by real-time RT-PCR. The results showed that Ae. aegypti survived significantly longer and that dengue viral genome levels in the thorax-abdomen (10 3.25 ± 0.53 -10 4.09 ± 0.71 PFU equivalents/ml) and salivary gland samples (10 2.67 ± 0.33 -10 3.89 ± 0.58 PFU equivalents/ml) were significantly higher at high temperature (28-34 °C). The survival of Ae. albopictus was significantly better at 16 or 28 °C, but the virus titers from thorax-abdomen (10 0.70 -10 2.39 ± 1.31 PFU equivalents/ml) and salivary gland samples (10 0.12 ± 0.05 -10 1.51 ± 0.31 PFU equivalents/ml) were significantly higher at 22-28 °C. Within viable temperature ranges, the viruses were detectable after 10 dpi in salivary glands and head tissues in Ae. aegypti and after 5-10 dpi in Ae. albopictus. Vector competence was measured in Ae. albopictus with and without Wolbachia at 28 °C. Wolbachia-infected mosquitoes survived significantly better and carried lower virus titers than Wolbachia-free mosquitoes. Wolbachia coinfections (92.8-97.2%) with wAlbA and wAlbB strains were commonly found in a wild population of Ae. albopictus. In southern Taiwan, Ae. aegypti is the main vector of dengue and Ae. albopictus has a non-significant role in the transmission of dengue virus due to the high prevalence of Wolbachia infection in the local mosquito population of southern Taiwan.

  8. The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Hui Tsai

    2017-11-01

    Full Text Available Abstract Background We evaluated the impact of temperature and Wolbachia infection on vector competence of the local Aedes aegypti and Ae. albopictus populations of southern Taiwan in the laboratory. Results After oral infection with dengue serotype 1 virus (DENV-1, female mosquitoes were incubated at temperatures of 10, 16, 22, 28 and 34 °C. Subsequently, salivary gland, head, and thorax-abdomen samples were analyzed for their virus titer at 0, 5, 10, 15, 20, 25 and 30 days post-infection (dpi by real-time RT-PCR. The results showed that Ae. aegypti survived significantly longer and that dengue viral genome levels in the thorax-abdomen (103.25 ± 0.53–104.09 ± 0.71 PFU equivalents/ml and salivary gland samples (102.67 ± 0.33–103.89 ± 0.58 PFU equivalents/ml were significantly higher at high temperature (28–34 °C. The survival of Ae. albopictus was significantly better at 16 or 28 °C, but the virus titers from thorax-abdomen (100.70–102.39 ± 1.31 PFU equivalents/ml and salivary gland samples (100.12 ± 0.05–101.51 ± 0.31 PFU equivalents/ml were significantly higher at 22–28 °C. Within viable temperature ranges, the viruses were detectable after 10 dpi in salivary glands and head tissues in Ae. aegypti and after 5–10 dpi in Ae. albopictus. Vector competence was measured in Ae. albopictus with and without Wolbachia at 28 °C. Wolbachia-infected mosquitoes survived significantly better and carried lower virus titers than Wolbachia-free mosquitoes. Wolbachia coinfections (92.8–97.2% with wAlbA and wAlbB strains were commonly found in a wild population of Ae. albopictus. Conclusions In southern Taiwan, Ae. aegypti is the main vector of dengue and Ae. albopictus has a non-significant role in the transmission of dengue virus due to the high prevalence of Wolbachia infection in the local mosquito population of southern Taiwan.

  9. Co-circulation of two extremely divergent serotype SAT 2 lineages in Kenya highlights challenges to foot-and-mouth disease control

    DEFF Research Database (Denmark)

    Sangula, Abraham; Belsham, Graham; Muwanika, Vincent

    2010-01-01

    Amongst the SAT serotypes of foot-and-mouth disease virus (FMDV), the SAT 2 serotype is the most widely distributed throughout sub-Saharan Africa. Kenyan serotype SAT 2 viruses have been reported to display the highest genetic diversity for the serotype globally. This complicates diagnosis...... and control, and it is essential that patterns of virus circulation are known in order to overcome these difficulties. This study was undertaken to establish patterns of evolution of FMDV serotype SAT 2 in Kenya using complete VP1 coding sequences in a dataset of 65 sequences from Africa, collected over...

  10. Viral Haemorrhagic Septicaemia Virus

    DEFF Research Database (Denmark)

    Olesen, Niels Jørgen; Skall, Helle Frank

    2013-01-01

    This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus.......This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus....

  11. Sero-prevalence study of bluetongue infection in sheep and goats in ...

    African Journals Online (AJOL)

    of bluetongue is also seen in cattle but also recorded in elk, white-tailed deer, pronghorn antelope, camels and other wild ruminants. The disease is not con- tagious and is transmitted biologically by certain species of culicoides (Du Toit,. 1944). Bluetongue infection is seasonal because Culicoides life depends on the.

  12. Emergence of the Asian 1 genotype of dengue virus serotype 2 in viet nam: in vivo fitness advantage and lineage replacement in South-East Asia.

    Directory of Open Access Journals (Sweden)

    Thi Ty Hang Vu

    2010-07-01

    Full Text Available A better description of the extent and structure of genetic diversity in dengue virus (DENV in endemic settings is central to its eventual control. To this end we determined the complete coding region sequence of 187 DENV-2 genomes and 68 E genes from viruses sampled from Vietnamese patients between 1995 and 2009. Strikingly, an episode of genotype replacement was observed, with Asian 1 lineage viruses entirely displacing the previously dominant Asian/American lineage viruses. This genotype replacement event also seems to have occurred within DENV-2 in Thailand and Cambodia, suggestive of a major difference in viral fitness. To determine the cause of this major evolutionary event we compared both the infectivity of the Asian 1 and Asian/American genotypes in mosquitoes and their viraemia levels in humans. Although there was little difference in infectivity in mosquitoes, we observed significantly higher plasma viraemia levels in paediatric patients infected with Asian 1 lineage viruses relative to Asian/American viruses, a phenotype that is predicted to result in a higher probability of human-to-mosquito transmission. These results provide a mechanistic basis to a marked change in the genetic structure of DENV-2 and more broadly underscore that an understanding of DENV evolutionary dynamics can inform the development of vaccines and anti-viral drugs.

  13. Construction and preliminary investigation of a novel dengue serotype 4 chimeric virus using Japanese encephalitis vaccine strain SA14-14-2 as the backbone.

    Science.gov (United States)

    Li, Zhushi; Yang, Huiqiang; Yang, Jian; Lin, Hua; Wang, Wei; Liu, Lina; Zhao, Yu; Liu, Li; Zeng, Xianwu; Yu, Yongxin; Li, Yuhua

    2014-10-13

    For the purpose of developing a novel dengue vaccine candidate, recombinant plasmids were constructed which contained the full length cDNA clone of Japanese encephalitis (JE) vaccine strain SA14-14-2 with its premembrane (PreM) and envelope (E) genes replaced by the counterparts of dengue virus type 4 (DENV4). By transfecting the in vitro transcription products of the recombinant plasmids into BHK-21 cells, a chimeric virus JEV/DENV4 was successfully recovered. The chimeric virus was identified by complete genome sequencing, Western blot and immunofluorescent staining. Growth characteristics revealed it was well adapted to primary hamster kidney (PHK) cells. Its genetic stability was investigated and only one unintentional mutation in 5'-untranslated region (5'-UTR) was found after 20 passages in PHK cells. Neurotropism, neurovirulence and immunogenicity of the chimeric virus were tested in mice. Besides, the influence of JE vaccine pre-immunization on the neutralizing antibody level induced by the chimeric virus was illuminated. To our knowledge, this is the first chimeric virus incorporating the JE vaccine stain SA14-14-2 and DENV4. It is probably a potential candidate to compose a tetravalent dengue chimeric vaccine. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A Novel, Rapid Assay for Detection and Differentiation of Serotype-Specific Antibodies to Venezuelan Equine Encephalitis Complex Alphaviruses

    National Research Council Canada - National Science Library

    Wang, Eryu; Paessler, Slobodan; Smith, Darci R; Coffey, Lark L; Kang, Wenli; Estrada-Franco, Jose; Weaver, Scott C; Aguilar, Patricia V; Pfeffer, Martin; Olson, James

    2005-01-01

    ... of Venezuelan equine encephalitis (VEE) virus. Two monoclonal antibodies that differentially recognize epizootic versus enzootic VEE virus epitopes were used to measure the serotype-specific blocking abilities of antibodies in sera of naturally...

  15. [Risk assessment of bluetongue disease incursion into Germany using geographic information system (GIS)].

    Science.gov (United States)

    Koslowsky, Sylvia; Staubach, Christoph; Kramer, Mathias; Wieler, Lothar H

    2004-01-01

    Using a geographic information system (GIS), by analysis of the relationship between the spatial distribution of cattle density and the risk factors temperature, altitude and rainfall, we defined geographical habitats enabling optimal development and competence of Culicoides spp. to transmit Bluetongue-Virus (BTV): Risk zones (low, high, highest risk) were identified mainly in Baden-Württemberg, Hessen and Rheinland-Pfalz if persistently infected ruminants are imported into these zones in summer (June to August mainly), based on the current climatic conditions, BTD outbreaks are considered a real possibility. Overwintering of the virus seems unlikely. However, global warming will lead to a steady increase of the size of the risk zones. In addition, the possibility of primary outbreaks increases. The reason for this is not only the expected northern shift of Culicoides imicola, but in addition an increasing vector competence of domestic Culicoides species. We therefore recommend the storage of vaccines as well as conducting ecological studies analysing the presence of Culicoides vectors. Using the data from these studies, it will be possible to produce updated quantitative risk assessment via GIS.

  16. Seroepidemiological investigation of foot-and-mouth disease virus serotypes in cattle around Lake Mburo National Park in South-Western Uganda

    DEFF Research Database (Denmark)

    Mwiine, Frank Norbert; Ayebazibwe, Chrisostom; Alexandersen, Søren

    2010-01-01

    Foot-and-mouth disease (FMD) outbreaks in cattle occur annually in Uganda. In this study the authors investigated antibodies against FMD virus (FMDV) in cattle in surrounding areas of Lake Mburo National Park in South-western Uganda. Two hundred and eleven serum samples from 23 cattle herds were...

  17. Early detection and visualization of human adenovirus serotype 5-viral vectors carrying foot-and-mouth disease virus or luciferase transgenes in cell lines and bovine tissues

    Science.gov (United States)

    Recombinant replication-defective human adenovirus type 5 (Ad5) vaccines containing capsid-coding regions from foot-and-mouth disease virus (FMDV) have been demonstrated to induce effective immune responses and provide homologous protective immunity against FMDV in cattle. However, basic mechanisms ...

  18. Ns1 is a key protein in the vaccine composition to protect Ifnar(-/- mice against infection with multiple serotypes of African horse sickness virus.

    Directory of Open Access Journals (Sweden)

    Francisco de la Poza

    Full Text Available African horse sickness virus (AHSV belongs to the genus Orbivirus. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA expressing VP2 and NS1 proteins from AHSV-4. IFNAR((-/- mice inoculated with DNA/rMVA-VP2,-NS1 from AHSV-4 in an heterologous prime-boost vaccination strategy generated significant levels of neutralizing antibodies specific of AHSV-4. In addition, vaccination stimulated specific T cell responses against the virus. The vaccine elicited partial protection against an homologous AHSV-4 infection and induced cross-protection against the heterologous AHSV-9. Similarly, IFNAR((-/- mice vaccinated with an homologous prime-boost strategy with rMVA-VP2-NS1 from AHSV-4 developed neutralizing antibodies and protective immunity against AHSV-4. Furthermore, the levels of immunity were very high since none of vaccinated animals presented viraemia when they were challenged against the homologous AHSV-4 and very low levels when they were challenged against the heterologous virus AHSV-9. These data suggest that the immunization with rMVA/rMVA was more efficient in protection against a virulent challenge with AHSV-4 and both strategies, DNA/rMVA and rMVA/rMVA, protected against the infection with AHSV-9. The inclusion of the protein NS1 in the vaccine formulations targeting AHSV generates promising multiserotype vaccines.

  19. Quantitative Detection of the Foot-And-Mouth Disease Virus Serotype O 146S Antigen for Vaccine Production Using a Double-Antibody Sandwich ELISA and Nonlinear Standard Curves.

    Directory of Open Access Journals (Sweden)

    Xia Feng

    Full Text Available The efficacy of an inactivated foot-and-mouth disease (FMD vaccine is mainly dependent on the integrity of the foot-and-mouth disease virus (FMDV particles. At present, the standard method to quantify the active component, the 146S antigen, of FMD vaccines is sucrose density gradient (SDG analysis. However, this method is highly operator dependent and difficult to automate. In contrast, the enzyme-linked immunosorbent assay (ELISA is a time-saving technique that provides greater simplicity and sensitivity. To establish a valid method to detect and quantify the 146S antigen of a serotype O FMD vaccine, a double-antibody sandwich (DAS ELISA was compared with an SDG analysis. The DAS ELISA was highly correlated with the SDG method (R2 = 0.9215, P<0.01. In contrast to the SDG method, the DAS ELISA was rapid, robust, repeatable and highly sensitive, with a minimum quantification limit of 0.06 μg/mL. This method can be used to determine the effective antigen yields in inactivated vaccines and thus represents an alternative for assessing the potency of FMD vaccines in vitro. But it still needs to be prospectively validated by analyzing a new vaccine preparation and determining the proper protective dose followed by an in vivo vaccination-challenge study to confirm the ELISA findings.

  20. No evidence for involvement of sheep in the epidemiology of cattle virulent epizootic hemorrhagic disease virus.

    Science.gov (United States)

    Kedmi, M; Levi, S; Galon, N; Bomborov, V; Yadin, H; Batten, C; Klement, E

    2011-03-24

    Epizootic hemorrhagic disease virus (EHDV) is an Orbivirus. While not previously considered as an important disease in cattle, several EHDV serotypes (EHDV-6 and 7) have recently been implicated in disease outbreaks. The involvement of sheep in the epidemiology of EHDV is still not understood. In this study we compared the prevalence of antibodies to EHDV and bluetongue virus (BTV) in sheep to their prevalence in cattle after an outbreak of EHDV that occurred in Israel during 2006. Sixty-six sheep and lambs scattered in seven herds were compared to 114 cows and calves scattered in 13 dairy cattle herds, matched to the sheep herds by location. While antibody prevalence to EHDV was high in cattle (35.2% within the outbreak zone) no evidence of exposure to EHDV was found in sheep (p<0.0001). Antibodies to BTV were apparent in both cattle and sheep though in the former it was significantly higher (63.2%, 16.7% respectively, p<0.0001), suggesting higher exposure of cattle to biting Culicoides midges. Taken together, these results imply that sheep have a negligible role in the epidemiology of EHDV. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo

    OpenAIRE

    Williams, Katherine L.; Wahala, Wahala M.P.B.; Orozco, Susana; de Silva, Aravinda M.; Harris, Eva

    2012-01-01

    The envelope (E) protein of dengue virus (DENV) is composed of three domains (EDI, EDII, EDIII) and is the main target of neutralizing antibodies. Many monoclonal antibodies that bind EDIII strongly neutralize DENV. However in vitro studies indicate that anti-EDIII antibodies contribute little to the neutralizing potency of human DENV-immune serum. In this study, we assess the role of anti-EDIII antibodies in mouse and human DENV-immune serum in neutralizing or enhancing DENV infection in mic...

  2. Antiviral Effect of Sub Fraction Cassia alata Leaves Extract to Dengue Virus Serotype-2 strain New Guinea C in Human Cell Line Huh-7 it-1

    Science.gov (United States)

    Angelina, Marissa; Hanafi, Muhammad; Suyatna, Franciscus D.; Mirawati S., T.; Ratnasari, Shirley; Ernawati Dewi, Beti

    2017-12-01

    Dengue virus (DENV) is one of the most common viral infections found Indonesia and tropical regions, and no specific antiviral for DENV. Indonesia has several of herbal medicine that were not explored of their potency as antiviral DENV. This study was done to evaluate the activity and toxicity of 4 derived fractions: Hexane (CA1), ethyl acetate (CA2), buthanol (CA3 ) and water (CA4) of Cassia alata leaf extract (CA) as an antiviral drug to DENV. The DENV was treated with various concentration of extract and added to Huh-7 it-1. The decrease of virus titer was determined by Focus assay. The toxicity of extract was measured by MTT assay. In our previous study, we found that CA on Huh-7 cells showed IC50, CC50 and SI values of <10 μg/mL, 323.45 μg/mL, and more than 32.3, respectively. For the fractions, CA3 showed best antiviral activity among other, with IC50, CC50 and SI of <10 μg/mL, 645.8 μg/mL, and more than 64.5, respectively. CA and CA3 were proven to possess antiviral activity that is potent when tested against DENV-2. Future study was needed to explore the inhibition mechanism and compound of CA that have potency as antiviral drug to DENV.

  3. Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: The search for a window for potential therapeutic efficacy.

    Science.gov (United States)

    Watanabe, Satoru; Chan, Kitti Wing-Ki; Dow, Geoffrey; Ooi, Eng Eong; Low, Jenny G; Vasudevan, Subhash G

    2016-03-01

    Although the antiviral drug celgosivir, an α-glucosidase I inhibitor, is highly protective when given twice daily to AG129 mice infected with dengue virus, a similar regimen of twice daily dosing did not significantly reduce serum viral loads in patients in a recent clinical trial. This failure presumably might reflect the initiation of treatment when patients were already viremic. To better mimic the clinical setting, we used viruses isolated from patients to develop new mouse models of DENV1 and DENV2 infection and employed the models to test the twice daily treatment, begun either on the day of infection or on the third day post-infection, when the mice had peak of viremia. We found that, although the treatment started on day 0 was effective on viral load reduction, it provided no benefit when begun on day 3, indicating that in vivo antiviral efficacy becomes less prominent once viremia reaches the peak level. To determine if the therapeutic regimen in humans could be improved, we tested regimen of four-times daily treatment and found that the treatment significantly reduced viremia, suggesting that a similar regimen may be effective in a human clinical trial. A new clinical trial to investigate an altered dosing regimen has been approved (NCT02569827). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Optimal serotype compositions for Pneumococcal conjugate vaccination under serotype replacement.

    Science.gov (United States)

    Nurhonen, Markku; Auranen, Kari

    2014-02-01

    Pneumococcal conjugate vaccination has proved highly effective in eliminating vaccine-type pneumococcal carriage and disease. However, the potential adverse effects of serotype replacement remain a major concern when implementing routine childhood pneumococcal conjugate vaccination programmes. Applying a concise predictive model, we present a ready-to-use quantitative tool to investigate the implications of serotype replacement on the net effectiveness of vaccination against invasive pneumococcal disease (IPD) and to guide in the selection of optimal vaccine serotype compositions. We utilise pre-vaccination data on pneumococcal carriage and IPD and assume partial or complete elimination of vaccine-type carriage, its replacement by non-vaccine-type carriage, and stable case-to-carrier ratios (probability of IPD per carriage episode). The model predicts that the post-vaccination IPD incidences in Finland for currently available vaccine serotype compositions can eventually decrease among the target age group of children replacement through herd effects, the decrease among the older population is predicted to be much less (20-40%). We introduce a sequential algorithm for the search of optimal serotype compositions and assess the robustness of inferences to uncertainties in data and assumptions about carriage and IPD. The optimal serotype composition depends on the age group of interest and some serotypes may be highly beneficial vaccine types in one age category (e.g. 6B in children), while being disadvantageous in another. The net effectiveness will be improved only if the added serotype has a higher case-to-carrier ratio than the average case-to-carrier ratio of the current non-vaccine types and the degree of improvement in effectiveness depends on the carriage incidence of the serotype. The serotype compositions of currently available pneumococcal vaccines are not optimal and the effectiveness of vaccination in the population at large could be improved by including

  5. Analysis of the acute phase responses of Serum Amyloid A, Haptoglobin and Type 1 Interferon in cattle experimentally infected with foot-and-mouth disease virus serotype O

    DEFF Research Database (Denmark)

    Stenfeldt, Carolina; Heegaard, Peter M. H.; Stockmarr, Anders

    2011-01-01

    A series of challenge experiments were performed in order to investigate the acute phase responses to foot-and-mouth disease virus (FMDV) infection in cattle and possible implications for the development of persistently infected "carriers". The host response to infection was investigated through...... periods exceeding 28 days in order to determine the carrier-status of individual animals. The systemic host response to FMDV in infected animals was evaluated in comparison to similar measurements in sera from 6 mock-inoculated control animals.There was a significant increase in serum concentrations...... of both APPs and type 1 IFN in infected animals coinciding with the onset of viremia and clinical disease. The measured parameters declined to baseline levels within 21 days after inoculation, indicating that there was no systemically measurable inflammatory reaction related to the carrier state of FMD...

  6. Cost distribution of bluetongue surveillance and vaccination programmes in Austria and Switzerland (2007–2016)

    Science.gov (United States)

    Pinior, Beate; Loitsch, Angelika; Stockreiter, Simon; Hutter, Sabine; Richter, Veronika; Lebl, Karin; Schwermer, Heinzpeter; Käsbohrer, Annemarie

    2018-01-01

    Bluetongue virus (BTV) is an emerging transboundary disease in Europe, which can cause significant production losses among ruminants. The analysis presented here assessed the costs of BTV surveillance and vaccination programmes in Austria and Switzerland between 2007 and 2016. Costs were compared with respect to time, type of programme, geographical area and who was responsible for payment. The total costs of the BTV vaccination and surveillance programmes in Austria amounted to €23.6 million, whereas total costs in Switzerland were €18.3 million. Our analysis demonstrates that the costs differed between years and geographical areas, both within and between the two countries. Average surveillance costs per animal amounted to approximately €3.20 in Austria compared with €1.30 in Switzerland, whereas the average vaccination costs per animal were €6.20 in Austria and €7.40 in Switzerland. The comparability of the surveillance costs is somewhat limited, however, due to differences in each nation’s surveillance (and sampling) strategy. Given the importance of the export market for cattle production, investments in such programmes are more justified for Austria than for Switzerland. The aim of the retrospective assessment presented here is to assist veterinary authorities in planning and implementing cost-effective and efficient control strategies for emerging livestock diseases. PMID:29363572

  7. Cost distribution of bluetongue surveillance and vaccination programmes in Austria and Switzerland (2007-2016).

    Science.gov (United States)

    Pinior, Beate; Firth, Clair L; Loitsch, Angelika; Stockreiter, Simon; Hutter, Sabine; Richter, Veronika; Lebl, Karin; Schwermer, Heinzpeter; Käsbohrer, Annemarie

    2018-03-03

    Bluetongue virus (BTV) is an emerging transboundary disease in Europe, which can cause significant production losses among ruminants. The analysis presented here assessed the costs of BTV surveillance and vaccination programmes in Austria and Switzerland between 2007 and 2016. Costs were compared with respect to time, type of programme, geographical area and who was responsible for payment. The total costs of the BTV vaccination and surveillance programmes in Austria amounted to €23.6 million, whereas total costs in Switzerland were €18.3 million. Our analysis demonstrates that the costs differed between years and geographical areas, both within and between the two countries. Average surveillance costs per animal amounted to approximately €3.20 in Austria compared with €1.30 in Switzerland, whereas the average vaccination costs per animal were €6.20 in Austria and €7.40 in Switzerland. The comparability of the surveillance costs is somewhat limited, however, due to differences in each nation's surveillance (and sampling) strategy. Given the importance of the export market for cattle production, investments in such programmes are more justified for Austria than for Switzerland. The aim of the retrospective assessment presented here is to assist veterinary authorities in planning and implementing cost-effective and efficient control strategies for emerging livestock diseases. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Serological status of Canadian cattle for brucellosis, anaplasmosis, and bluetongue in 2007-2008.

    Science.gov (United States)

    Paré, Julie; Geale, Dorothy W; Koller-Jones, Maria; Hooper-McGrevy, Kathleen; Golsteyn-Thomas, Elizabeth J; Power, Christine A

    2012-09-01

    A national bovine serological survey was conducted to confirm that the prevalence of brucellosis, bluetongue, and anaplasmosis does not exceed 0.02% (95% confidence) in live cattle in Canada. Sampling consisted of a systematic random sample of 15 482 adult cattle slaughtered in federally inspected abattoirs, stratified by province. Samples were tested to detect antibodies for brucellosis, bluetongue, and anaplasmosis. All samples were negative for brucellosis. Three samples were seroreactors to bluetongue, 2 of which originated from the Okanagan Valley in British Columbia and 1 from Ontario, which after follow-up, was considered an atypical result. A total of 244 samples were seroreactors to Anaplasma and follow-up identified infection in Saskatchewan, Manitoba, and Quebec. In conclusion, the Canadian cattle population remains free of brucellosis and free of bluetongue outside the Okanagan Valley. Canada is no longer free of anaplasmosis and will be unable to claim freedom until eradication measures are completed.

  9. The distinct distribution and phylogenetic characteristics of dengue virus serotypes/genotypes during the 2013 outbreak in Yunnan, China: Phylogenetic characteristics of 2013 dengue outbreak in Yunnan, China.

    Science.gov (United States)

    Wang, Binghui; Yang, Henglin; Feng, Yue; Zhou, Hongning; Dai, Jiejie; Hu, Yunzhang; Zhang, Li; Wang, Yajuan; Baloch, Zulqarnain; Xia, Xueshan

    2016-01-01

    Since 2000, sporadic imported cases of dengue fever were documented almost every year in Yunnan Province, China. Unexpectedly, a large-scale outbreak of dengue virus (DENV) infection occurred from August to December 2013, with 1538 documented cases. In the current study, 81 dengue-positive patient samples were collected from Xishuangbanna, the southernmost prefecture of the Yunnan province, and 23 from Dehong, the westernmost prefecture of the Yunnan province. The full-length envelope genes were amplified and sequenced. Phylogenetic analysis revealed that nine strains (39.1%) and 14 strains (60.9%) from the Dehong prefecture were classified as genotype I of DENV-1 and Asian I genotype of DENV-2, respectively. All strains from Xishuangbanna were identified as genotype II of DENV-3. Bayesian coalescent analysis indicates that the outbreak originated from bordering southeastern Asian countries. These three epidemic genotypes were predicted to originate in Thailand and then migrate into Yunnan through different routes. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zheng

    2017-05-01

    Full Text Available Dengue virus (DV is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  11. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice.

    Science.gov (United States)

    Zheng, Xiaoyan; Chen, Hui; Wang, Ran; Fan, Dongying; Feng, Kaihao; Gao, Na; An, Jing

    2017-01-01

    Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  12. In vivo expression of human ATP:cob(I)alamin adenosyltransferase (ATR) using recombinant adeno-associated virus (rAAV) serotypes 2 and 8.

    Science.gov (United States)

    Erger, Kirsten E; Conlon, Thomas J; Leal, Nicole A; Zori, Robert; Bobik, Thomas A; Flotte, Terence R

    2007-06-01

    Methylmalonic aciduria (MMA) is an autosomal recessive disease with symptoms that include ketoacidosis, lethargy, recurrent vomiting, dehydration, respiratory distress, muscular hypotonia and death due to methylmalonic acid levels that are up to 1000-fold greater than normal. CblB MMA, a subset of the mutations leading to MMA, is caused by a deficiency in the enzyme cob(I)alamin adenosyltransferase (ATR). No animal model currently exists for this disease. ATR functions within the mitochondria matrix in the final conversion of cobalamin into coenzyme B(12), adenosylcobalamin (AdoCbl). AdoCbl is a required coenzyme for the mitochondrial enzyme methylmalonyl-CoA mutase (MCM). The human ATR cDNA was cloned into a recombinant adeno-associated virus (rAAV) vector and packaged into AAV 2 or 8 capsids and delivered by portal vein injection to C57/Bl6 mice at a dose of 1 x 10(10) and 1 x 10(11) particles. Eight weeks post-injection RNA, genomic DNA and protein were then extracted and analyzed. Using primer pairs specific to the cytomegalovirus (CMV) enhancer/chicken beta-actin (CBAT) promoter within the rAAV vectors, genome copy numbers were found to be 0.03, 2.03 and 0.10 per cell in liver for the rAAV8 low dose, rAAV8 high dose and rAAV2 high dose, respectively. Western blotting performed on mitochondrial protein extracts demonstrated protein levels were comparable to control levels in the rAAV8 low dose and rAAV2 high dose animals and 3- to 5-fold higher than control levels were observed in high dose animals. Immunostaining demonstrated enhanced transduction efficiency of hepatocytes to over 40% in the rAAV8 high dose animals, compared to 9% and 5% transduction in rAAV2 high dose and rAAV8 low dose animals, respectively. These data demonstrate the feasibility of efficient ATR gene transfer to the liver as a prelude to future gene therapy experiments.

  13. Experimental infection of mice with avian paramyxovirus serotypes 1 to 9.

    Directory of Open Access Journals (Sweden)

    Sunil K Khattar

    2011-02-01

    Full Text Available The nine serotypes of avian paramyxoviruses (APMVs are frequently isolated from domestic and wild birds worldwide. APMV-1, also called Newcastle disease virus, was shown to be attenuated in non-avian species and is being developed as a potential vector for human vaccines. In the present study, we extended this evaluation to the other eight serotypes by evaluating infection in BALB/c mice. Mice were inoculated intranasally with a prototype strain of each of the nine serotypes and monitored for clinical disease, gross pathology, histopathology, virus replication and viral antigen distribution, and seroconversion. On the basis of multiple criteria, each of the APMV serotypes except serotype 5 was found to replicate in mice. Five of the serotypes produced clinical disease and significant weight loss in the following order of severity: 1, 2>6, 9>7. However, disease was short-lived. The other serotypes produced no evident clinical disease. Replication of all of the APMVs except APMV-5 in the nasal turbinates and lungs was confirmed by the recovery of infectious virus and by substantial expression of viral antigen in the epithelial lining detected by immunohistochemistry. Trace levels of infectious APMV-4 and -9 were detected in the brain of some animals; otherwise, no virus was detected in the brain, small intestine, kidney, or spleen. Histologically, infection with the APMVs resulted in lung lesions consistent with broncho-interstitial pneumonia of varying severity that were completely resolved at 14 days post infection. All of the mice infected with the APMVs except APMV-5 produced serotype-specific HI serum antibodies, confirming a lack of replication of APMV-5. Taken together, these results demonstrate that all APMV serotypes except APMV-5 are capable of replicating in mice with minimal disease and pathology.

  14. Inferring Protective CD8+ T-Cell Epitopes for NS5 Protein of Four Serotypes of Dengue Virus Chinese Isolates Based on HLA-A, -B and -C Allelic Distribution: Implications for Epitope-Based Universal Vaccine Design.

    Directory of Open Access Journals (Sweden)

    Jiandong Shi

    Full Text Available Dengue is one of the most globally serious vector-borne infectious diseases in tropical and subtropical areas for which there are currently no effective vaccines. The most highly conserved flavivirus protein, NS5, is an indispensable target of CD8+ T-cells, making it an ideal vaccine design target. Using the Immune Epitope Database (IEDB, CD8+ T-cell epitopes of the dengue virus (DENV NS5 protein were predicted by genotypic frequency of the HLA-A,-B, and-C alleles in Chinese population. Antigenicity scores of all predicted epitopes were analyzed using VaxiJen v2.0. The IEDB analysis revealed that 116 antigenic epitopes for HLA-A (21,-B (53, and-C (42 had high affinity for HLA molecules. Of them, 14 had 90.97-99.35% conversancy among the four serotypes. Moreover, five candidate epitopes, including 200NS5210 (94.84%, A*11:01, 515NS5525 (98.71%, A*24:02, 225NS5232 (99.35%, A*33:03, 516NS5523 (98.71%, A*33:03, and 284NS5291 (98.06%, A*33:03, were presented by HLA-A. Four candidate epitopes, including 234NS5241 (96.77%, B*13:01, 92NS599 (98.06%, B*15:01, B*15:02, and B*46:01, 262NS5269 (92.90%, B*38:02, and 538NS5547 (90.97%, B*51:01, were presented by HLA-B. Another 9 candidate epitopes, including 514NS5522 (98.71%, C*01:02, 514NS5524 (98.71%, C*01:02 and C*14:02, 92NS599 (98.06%, C*03:02 and C*15:02, 362NS5369 (44.84%, C*03:04 and C*08:01, 225NS5232 (99.35%, C*04:01, 234NS5241(96.77%, C*04:01, 361NS5369 (94.84%, C*04:01, 515NS5522 (98.71%, C*14:02, 515NS5524 (98.71%, C*14:02, were presented by HLA-C. Further data showed that the four-epitope combination of 92NS599 (B*15:01, B*15:02, B*46:01, C*03:02 and C*15:02, 200NS5210 (A*11:01, 362NS5369 (C*03:04, C*08:01, and 514NS5524 (C*01:02, C*14:02 could vaccinate >90% of individuals in China. Further in vivo study of our inferred novel epitopes will be needed for a T-cell epitope-based universal vaccine development that may prevent all four China-endemic DENV serotypes.

  15. Evaluation of different adjuvants formulations for bluetongue vaccine

    Directory of Open Access Journals (Sweden)

    Ludmila Branco Macedo

    2013-12-01

    Full Text Available This study investigated the adjuvant potential of W/O/W multiple emulsions and microemulsions, comparing them with traditional aluminum hydroxide and oil-in-water emulsion adjuvants against bluetongue vaccine (BTV. Local inflammatory reactions were assessed in rabbits by measuring the temperature of the animals and the skin thickness at the site of application. Antibodies titers were determined by serum-neutralization test. Histological analyses of lesions at the site of adjuvants application were done. Results showed that multiple emulsion and microemulsion maintained their stability even in the presence of complex components and presented adequate characteristics for subcutaneous administration. They were able to induce immune response against BTV, but it was smaller than the traditional adjuvants. Despite microemulsion adjuvant showed lower antibodies titre, it was easier to prepare more stable at 4°C and it was the only one that did not induce any local reaction.

  16. Bluetongue control using vaccines: the experience of Emilia Romagna, Italy.

    Science.gov (United States)

    Santi, A; Piccolomini, L Loli; Viappiani, P; Tamba, M; Calabrese, R; Massirio, I

    2004-01-01

    In 2003, thirty municipalities of the provinces of Parma, Reggio Emilia and Modena in the Emilia Romagna region of Italy, bordering the region of Tuscany, were included in the national bluetongue (BT) vaccination programme, using monovalent live-attenuated type 2 vaccine. The purpose of the study was to evaluate the organisation of a vaccination programme designed by the Regional Veterinary Service and the relative cost of the campaign, as a large number of animals were involved. To better evaluate the real cost of the campaign, costs sustained by the Reggio Emilia Local Sanitary Unit were specifically analysed. BT vaccination of all domestic ruminants is a very expensive operation (euro9.20 per vaccinated animal). Consequently, to evaluate the need for a vaccination campaign in a new area, the risk of disease spread, as well as the cost of the operation, should be considered.

  17. A Tetravalent Dengue Vaccine Based on a Complex Adenovirus Vector Provides Significant Protection in Rhesus Monkeys against All Four Serotypes of Dengue Virus▿

    OpenAIRE

    Raviprakash, Kanakatte; Wang, Danher; Ewing, Dan; Holman, David H.; Block, Karla; Woraratanadharm, Jan; Chen, Lan; Hayes, Curtis; Dong, John Y.; Porter, Kevin

    2008-01-01

    Nearly a third of the human population is at risk of infection with the four serotypes of dengue viruses, and it is estimated that more than 100 million infections occur each year. A licensed vaccine for dengue viruses has become a global health priority. A major challenge to developing a dengue vaccine is the necessity to produce fairly uniform protective immune responses to all four dengue virus serotypes. We have developed two bivalent dengue virus vaccines, using a complex adenovirus vect...

  18. A mosaic adenovirus possessing serotype Ad5 and serotype Ad3 knobs exhibits expanded tropism

    International Nuclear Information System (INIS)

    Takayama, Koichi; Reynolds, Paul N.; Short, Joshua J.; Kawakami, Yosuke; Adachi, Yasuo; Glasgow, Joel N.; Rots, Marianne G.; Krasnykh, Victor; Douglas, Joanne T.; Curiel, David T.

    2003-01-01

    The efficiency of cancer gene therapy with recombinant adenoviruses based on serotype 5 (Ad5) has been limited partly because of variable, and often low, expression by human primary cancer cells of the primary cellular-receptor which recognizes the knob domain of the fiber protein, the coxsackie and adenovirus receptor (CAR). As a means of circumventing CAR deficiency, Ad vectors have been retargeted by utilizing chimeric fibers possessing knob domains of alternate Ad serotypes. We have reported that ovarian cancer cells possess a primary receptor for Ad3 to which the Ad3 knob binds independently of the CAR-Ad5 knob interaction. Furthermore, an Ad5-based chimeric vector, designated Ad5/3, containing a chimeric fiber proteins possessing the Ad3 knob, demonstrates CAR-independent tropism by virtue of targeting the Ad3 receptor. Based on these findings, we hypothesized that a mosaic virus possessing both the Ad5 knob and the Ad3 knob on the same virion could utilize either primary receptor, resulting in expanded tropism. In this study, we generated a dual-knob mosaic virus by coinfection of 293 cells with Ad5-based and Ad5/3-based vectors. Characterization of the resultant virions confirmed the incorporation of both Ad5 and Ad3 knobs in the same particle. Furthermore, this mosaic virus was able to utilize either receptor, CAR and the Ad3 receptor, for virus attachment to cells. Enhanced Ad infectivity with the mosaic virus was shown in a panel of cell lines, with receptor profiles ranging from CAR-dominant to Ad3 receptor-dominant. Thus, this mosaic virus strategy may offer the potential to improve Ad-based gene therapy approaches by infectivity enhancement and tropism expansion

  19. Dengue virus-specific cross-reactive CD8+ human cytotoxic T lymphocytes.

    OpenAIRE

    Bukowski, J F; Kurane, I; Lai, C J; Bray, M; Falgout, B; Ennis, F A

    1989-01-01

    Stimulation with live dengue virus of peripheral blood mononuclear cells from a dengue virus type 4-immune donor generated virus-specific, serotype-cross-reactive, CD8+, class I-restricted cytotoxic T lymphocytes (CTL) capable of lysing dengue virus-infected cells and cells pulsed with dengue virus antigens of all four serotypes. These CTL lysed autologous fibroblasts infected with vaccinia virus-dengue virus recombinant viruses containing the E gene or several nonstructural dengue virus type...

  20. Optimal Serotype Compositions for Pneumococcal Conjugate Vaccination under Serotype Replacement

    Science.gov (United States)

    Nurhonen, Markku; Auranen, Kari

    2014-01-01

    Pneumococcal conjugate vaccination has proved highly effective in eliminating vaccine-type pneumococcal carriage and disease. However, the potential adverse effects of serotype replacement remain a major concern when implementing routine childhood pneumococcal conjugate vaccination programmes. Applying a concise predictive model, we present a ready-to-use quantitative tool to investigate the implications of serotype replacement on the net effectiveness of vaccination against invasive pneumococcal disease (IPD) and to guide in the selection of optimal vaccine serotype compositions. We utilise pre-vaccination data on pneumococcal carriage and IPD and assume partial or complete elimination of vaccine-type carriage, its replacement by non-vaccine-type carriage, and stable case-to-carrier ratios (probability of IPD per carriage episode). The model predicts that the post-vaccination IPD incidences in Finland for currently available vaccine serotype compositions can eventually decrease among the target age group of children vaccine types in one age category (e.g. 6B in children), while being disadvantageous in another. The net effectiveness will be improved only if the added serotype has a higher case-to-carrier ratio than the average case-to-carrier ratio of the current non-vaccine types and the degree of improvement in effectiveness depends on the carriage incidence of the serotype. The serotype compositions of currently available pneumococcal vaccines are not optimal and the effectiveness of vaccination in the population at large could be improved by including new serotypes in the vaccine (e.g. 22 and 9N). PMID:24550722

  1. Infection of human islets of Langerhans with two strains of Coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway.

    Science.gov (United States)

    Anagandula, Mahesh; Richardson, Sarah J; Oberste, M Steven; Sioofy-Khojine, Amir-Babak; Hyöty, Heikki; Morgan, Noel G; Korsgren, Olle; Frisk, Gun

    2014-08-01

    Type 1 diabetes mellitus is believed to be triggered, in part, by one or more environmental factors and human enteroviruses (HEVs) are among the candidates. Therefore, this study has examined whether two strains of HEV may differentially affect the induction of genes involved in pathways leading to the synthesis of islet hormones, chemokines and cytokines in isolated, highly purified, human islets. Isolated, purified human pancreatic islets were infected with strains of Coxsackievirus B1.Viral replication and the degree of CPE/islet dissociation were monitored. The expression of insulin, glucagon, CXCL10, TLR3, IF1H1, CCL5, OAS-1, IFNβ, and DDX58 was analyzed. Both strains replicated in islets but only one of strain caused rapid islet dissociation/CPE. Expression of the insulin gene was reduced during infection of islets with either viral strain but the gene encoding glucagon was unaffected. All genes analyzed which are involved in viral sensing and the development of innate immunity were induced by Coxsackie B viruses, with the notable exception of TLR3. There was no qualitative difference in the expression pattern between each strain but the magnitude of the response varied between donors. The lack of virus induced expression of TLR3, together with the differential regulation of IF1H1, OAS1 and IFNβ, (each of which has polymorphic variants influence the predisposition to type 1 diabetes), that might result in defective clearance of virus from islet cells. The reduced expression of the insulin gene and the unaffected expression of the gene encoding glucagon by Coxsackie B1 infection is consistent with the preferential β-cell tropism of the virus. © 2013 Wiley Periodicals, Inc.

  2. Animal viral diseases and global change: bluetongue and West Nile fever as paradigms.

    Science.gov (United States)

    Jiménez-Clavero, Miguel Á

    2012-01-01

    Environmental changes have an undoubted influence on the appearance, distribution, and evolution of infectious diseases, and notably on those transmitted by vectors. Global change refers to environmental changes arising from human activities affecting the fundamental mechanisms operating in the biosphere. This paper discusses the changes observed in recent times with regard to some important arboviral (arthropod-borne viral) diseases of animals, and the role global change could have played in these variations. Two of the most important arboviral diseases of animals, bluetongue (BT) and West Nile fever/encephalitis (WNF), have been selected as models. In both cases, in the last 15 years an important leap forward has been observed, which has lead to considering them emerging diseases in different parts of the world. BT, affecting domestic ruminants, has recently afflicted livestock in Europe in an unprecedented epizootic, causing enormous economic losses. WNF affects wildlife (birds), domestic animals (equines), and humans, thus, beyond the economic consequences of its occurrence, as a zoonotic disease, it poses an important public health threat. West Nile virus (WNV) has expanded in the last 12 years worldwide, and particularly in the Americas, where it first occurred in 1999, extending throughout the Americas relentlessly since then, causing a severe epidemic of disastrous consequences for public health, wildlife, and livestock. In Europe, WNV is known long time ago, but it is since the last years of the twentieth century that its incidence has risen substantially. Circumstances such as global warming, changes in land use and water management, increase in travel, trade of animals, and others, can have an important influence in the observed changes in both diseases. The following question is raised: What is the contribution of global changes to the current increase of these diseases in the world?

  3. A spatial simulation model for the dispersal of the bluetongue vector Culicoides brevitarsis in Australia.

    Directory of Open Access Journals (Sweden)

    Joel K Kelso

    Full Text Available The spread of Bluetongue virus (BTV among ruminants is caused by movement of infected host animals or by movement of infected Culicoides midges, the vector of BTV. Biologically plausible models of Culicoides dispersal are necessary for predicting the spread of BTV and are important for planning control and eradication strategies.A spatially-explicit simulation model which captures the two underlying population mechanisms, population dynamics and movement, was developed using extensive data from a trapping program for C. brevitarsis on the east coast of Australia. A realistic midge flight sub-model was developed and the annual incursion and population establishment of C. brevitarsis was simulated. Data from the literature was used to parameterise the model.The model was shown to reproduce the spread of C. brevitarsis southwards along the east Australian coastline in spring, from an endemic population to the north. Such incursions were shown to be reliant on wind-dispersal; Culicoides midge active flight on its own was not capable of achieving known rates of southern spread, nor was re-emergence of southern populations due to overwintering larvae. Data from midge trapping programmes were used to qualitatively validate the resulting simulation model.The model described in this paper is intended to form the vector component of an extended model that will also include BTV transmission. A model of midge movement and population dynamics has been developed in sufficient detail such that the extended model may be used to evaluate the timing and extent of BTV outbreaks. This extended model could then be used as a platform for addressing the effectiveness of spatially targeted vaccination strategies or animal movement bans as BTV spread mitigation measures, or the impact of climate change on the risk and extent of outbreaks. These questions involving incursive Culicoides spread cannot be simply addressed with non-spatial models.

  4. Genetic characterization and molecular identification of the bloodmeal sources of the potential bluetongue vector Culicoides obsoletus in the Canary Islands, Spain

    Directory of Open Access Journals (Sweden)

    Martínez-de la Puente Josué

    2012-07-01

    Full Text Available Abstract Background Culicoides (Diptera: Ceratopogonidae biting midges are vectors for a diversity of pathogens including bluetongue virus (BTV that generate important economic losses. BTV has expanded its range in recent decades, probably due to the expansion of its main vector and the presence of other autochthonous competent vectors. Although the Canary Islands are still free of bluetongue disease (BTD, Spain and Europe have had to face up to a spread of bluetongue with disastrous consequences. Therefore, it is essential to identify the distribution of biting midges and understand their feeding patterns in areas susceptible to BTD. To that end, we captured biting midges on two farms in the Canary Islands (i to identify the midge species in question and characterize their COI barcoding region and (ii to ascertain the source of their bloodmeals using molecular tools. Methods Biting midges were captured using CDC traps baited with a 4-W blacklight (UV bulb on Gran Canaria and on Tenerife. Biting midges were quantified and identified according to their wing patterns. A 688 bp segment of the mitochondrial COI gene of 20 biting midges (11 from Gran Canaria and 9 from Tenerife were PCR amplified using the primers LCO1490 and HCO2198. Moreover, after selected all available females showing any rest of blood in their abdomen, a nested-PCR approach was used to amplify a fragment of the COI gene from vertebrate DNA contained in bloodmeals. The origin of bloodmeals was identified by comparison with the nucleotide-nucleotide basic alignment search tool (BLAST. Results The morphological identification of 491 female biting midges revealed the presence of a single morphospecies belonging to the Obsoletus group. When sequencing the barcoding region of the 20 females used to check genetic variability, we identified two haplotypes differing in a single base. Comparison analysis using the nucleotide-nucleotide basic alignment search tool (BLAST showed that both

  5. Simultaneous circulation of all four dengue serotypes in Manaus, State of Amazonas, Brazil in 2011

    Directory of Open Access Journals (Sweden)

    Michele de Souza Bastos

    2012-06-01

    Full Text Available INTRODUCTION: Manaus, the capital city of the state of Amazon with nearly 2 million inhabitants, is located in the middle of the Amazon rain forest and has suffered dengue outbreaks since 1998. METHODS: In this study, blood samples were investigated using reverse transcriptase-polymerase chain reaction (RT-PCR, aimed at identifying dengue virus serotypes. RESULTS: Acute phase sera from 432 patients were tested for the presence of dengue virus. Out of the 432 patients, 137 (31.3% were found to be positive. All the four dengue virus serotypes were observed. CONCLUSIONS: The simultaneous circulation of the four dengue serotypes is described for the first time in Manaus and in Brazil.

  6. Cellulose-based diagnostic devices for diagnosing serotype-2 dengue fever in human serum.

    Science.gov (United States)

    Wang, Hsi-Kai; Tsai, Cheng-Han; Chen, Kuan-Hung; Tang, Chung-Tao; Leou, Jiun-Shyang; Li, Pi-Chun; Tang, Yin-Liang; Hsieh, Hsyue-Jen; Wu, Han-Chung; Cheng, Chao-Min

    2014-02-01

    Here, two types of cellulose-based in vitro diagnostic devices are demonstrated for the diagnosis of dengue virus infection in both buffer system and human serum: 1) paper-based ELISA for providing the semiquantitative information of the disease activity of serotype-2 dengue fever to healthcare persons (i.e., monitoring the disease activity with a specific serotype in single patients); 2) lateral flow immunoassays to screen for infection with serotype-2 dengue fever (i.e., rapid YES or NO diagnosis prepared for large populations, in terms of global public health). Paper-based ELISA (specific to serotype-2 dengue fever), which builds off of our previous studies and a revised previous ELISA procedure, owns multiple advantages: 1) high sensitivity (about 40 times higher than the current ELISA-based approaches, due to our therapeutic-based monoclonal antibody) and specificity (specific to dengue virus serotype-2 nonstructural protein-1 antigens); 2) tiny amount of sample and reagent used for single tests; 3) short operating duration (i.e., rapid diagnostic device); and, 4) inexpensiveness (appropriate for use in all developing and underdeveloped nations of the world). Due to the higher sensitivity and shorter operating duration of paper-based ELISA (compared with conventional ELISA, and lateral flow immunoassays also performed in this study), this study has not only been able to perform the diagnosis of dengue virus serotype-2 nonstructural protein-1 antigens in both buffer system and human serum but also to evaluate dengue virus serotype-2 envelope proteins in the buffer system, thus successfully achieving the first such use of these proteins as the target antigen for the development of diagnostic tools. These results provide a more comprehensive understanding for the genesis of dengue fever diagnostic tools (through antibody-antigen recognition). Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Co-circulation of two extremely divergent serotype SAT 2 lineages in Kenya highlights challenges to foot-and-mouth disease control.

    Science.gov (United States)

    Sangula, A K; Belsham, G J; Muwanika, V B; Heller, R; Balinda, S N; Siegismund, H R

    2010-10-01

    Amongst the SAT serotypes of foot-and-mouth disease virus (FMDV), the SAT 2 serotype is the most widely distributed throughout sub-Saharan Africa. Kenyan serotype SAT 2 viruses have been reported to display the highest genetic diversity for the serotype globally. This complicates diagnosis and control, and it is essential that patterns of virus circulation are known in order to overcome these difficulties. This study was undertaken to establish patterns of evolution of FMDV serotype SAT 2 in Kenya using complete VP1 coding sequences in a dataset of 65 sequences from Africa, collected over a period of 50 years. Two highly divergent lineages were observed to co-circulate, and occasional trans-boundary spread was inferred, emphasizing the value of constant monitoring and characterization of field strains for improved diagnosis and appropriate vaccine application as well as the need for regional approaches to control.

  8. Homology and conservation of amino acids in E-protein sequences of dengue serotypes

    Directory of Open Access Journals (Sweden)

    Ramesh Venkatachalam

    2014-09-01

    Full Text Available Objective: To identify the homology and phylogenetic relationship among the four dengue virus (DENV serotypes, and conservation of amino acid in E-proteins and to find out the phylogenetic relationship among the strains of four DENV serotypes. Methods: Clustal W analysis for homology and phylogram, European molecular biology open software suite for pairwise alignment of amino acid sequences and BLAST-P analysis for various strains of four DENV serotypes were carried out. Results: Homology of E-protein sequences of four DENV serotypes indicated a close relationship of DENV-1 with DENV-3. DENV-2 showed close relationship with DENV-1 and -3 forming a single cluster whereas DENV-4 alone formed group with a single serotype. In the multiple sequence alignment, 19 amino acid conserved groups were observed. BLAST-P analysis showed more number of 100% similarity among DENV-1 and -3 strains whereas only few strains showed 100% similarity in DENV-4. However, 100% similarity was absent among the DENV-3 strains. Conclusions: From the present study, phylogenetically all the four DENV serotypes were related but DENV-1, -2 and -3 were very closely related whereas DENV-4 was somewhat distant from the other three serotypes.

  9. Use of mapping and statistical modelling for the prediction of bluetongue occurrence in Switzerland based on vector biology.

    Science.gov (United States)

    Racloz, Vanessa; Presi, Patrick; Vounatsou, Penelope; Schwermer, Heinzpeter; Casati, Simona; Vanzetti, Tullio; Griot, Christian; Stärk, Katarina D C

    2007-01-01

    Due to the spread of bluetongue (BT) in Europe in the last decade, a sentinel surveillance programme was initiated for Switzerland in 2003, consisting of serological sampling of sentinel cattle tested for BT virus antibodies, as well as entomological trapping of Culicoides midges from June until October. The aim of this study was to create a 'suitability map' of Switzerland, indicating areas of potential disease occurrence based on the biological parameters of Obsoletus Complex habitat. Data on Culicoides catches from insect traps together with various environmental parameters were recorded and analysed. A multiple regression analysis was performed to determine correlation between the environmental conditions and vector abundance. Meteorological data were collected from 50 geo-referenced weather stations across Switzerland and maps of temperature, precipitation and altitude were created. A range of values of temperature, precipitation and altitude influencing vector biology were obtained from the literature. The final combined map highlighted areas in Switzerland which are most suitable for vector presence, hence implying a higher probability of disease occurrence given the presence of susceptible animals. The results confirmed the need for an early warning system for the surveillance of BT disease and its vectors in Switzerland.

  10. Blue Tongue Virus

    African Journals Online (AJOL)

    Anupama

    thromboses and necrosis of infected tissues (Erasmus,. 1975) (Figure 1). In sheep, the onset of the disease is .... the skin to the local lymph nodes (Hemati et al., 2009), the sites of initial virus replication (MacLachlan, 2004). .... effects and provide protection against challenge with virulent virus of the same serotype. Animals ...

  11. Control of Newcastle disease virus

    Science.gov (United States)

    Newcastle disease virus (NDV), also know as avian paramyxovirus serotype 1, is an important poultry pathogen worldwide. In naive poultry, the virulent forms of the virus cause high mortality. Because of this the virus is reportable to the World Organization for Animal Health and can be an important ...

  12. Avian paramyxovirus serotype 1 strains of low virulence with unusual fusion protein cleavage sites isolated from poultry species

    Science.gov (United States)

    Avian paramyxo-serotype-1 viruses (APMV1) with fusion cleavage sites containing two basic amino acids and a phenylalanine (F) at position 117 have been isolated from poultry species in two states from 2007-2009. The intracerebral pathogenicity indices for these viruses are of low virulence at 0.00 ...

  13. Evaluation of different embryonating bird eggs and cell cultures for isolation efficiency of avian influenza A virus and avian paramyxovirus serotype 1 from real-time reverse transcription polymerase chain reaction--positive

    Science.gov (United States)

    Two hundred samples collected from Anseriformes, Charadriiformes, Gruiformes, and Galliformes were assayed using real-time reverse transcriptase polymerase chain reaction (RRT-PCR) for presence of avian influenza virus and avian paramyxovirus-1. Virus isolation using embryonating chicken eggs, embr...

  14. Modelling spread of Bluetongue and other vector borne diseases in Denmark and evaluation of intervention strategies

    DEFF Research Database (Denmark)

    Græsbøll, Kaare

    that describes spread of disease using vectors or hosts as agents of the spread. The model is run with bluetongue as the primary case study, and it is demonstrated how an epidemic outbreak of bluetongue 8 in Denmark is sensitive to the use of pasture, climate, vaccination, vector abundance, and flying parameters......The main outcome of this PhD project is a generic model for non-contagious infectious vector-borne disease spread by one vector species between up to two species of hosts distributed on farms and pasture. The model features a within-herd model of disease, combined with a triple movement kernel....... In constructing a more process oriented agent-based approach to spread modeling new parameters describing vector behavior were introduced. When these vector flying parameters have been quantified by experiments, this model can be implemented on areas naïve to the modeled disease with a high predictive power...

  15. African horse sickness virus (AHSV) with a deletion of 77 amino acids in NS3/NS3a protein is not virulent and a safe promising AHS Disabled Infectious Single Animal (DISA) vaccine platform.

    Science.gov (United States)

    van Rijn, Piet A; Maris-Veldhuis, Mieke A; Potgieter, Christiaan A; van Gennip, René G P

    2018-04-05

    African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. Currently, nine serotypes have been defined showing limited cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African Horse Sickness (AHS) in equids with a mortality up to 95% in naïve domestic horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates are competent vectors of closely related bluetongue virus. AHS outbreaks cause huge economic losses in developing countries. In the developed world, outbreaks will result in losses in the equestrian industry and will have an enormous emotional impact on owners of pet horses. Live-attenuated vaccine viruses (LAVs) have been developed, however, safety of these LAVs are questionable due to residual virulence, reversion to virulence, and risk on virulent variants by reassortment between LAVs or with field AHSV. Research aims vaccines with improved profiles. Reverse genetics has recently being developed for AHSV and has opened endless possibilities including development of AHS vaccine candidates, such as Disabled Infectious Single Animal (DISA) vaccine. Here, virulent AHSV5 was recovered and its high virulence was confirmed by experimental infection of ponies. 'Synthetically derived' virulent AHSV5 with an in-frame deletion of 77 amino acids codons in genome segment 10 encoding NS3/NS3a protein resulted in similar in vitro characteristics as published NS3/NS3a knockout mutants of LAV strain AHSV4LP. In contrast to its highly virulent ancestor virus, this deletion AHSV5 mutant (DISA5) was completely safe for ponies. Two vaccinations with DISA5 as well as two vaccinations with DISA vaccine based on LAV strain AHSV4LP showed protection against lethal homologous AHSV. More research is needed to further improve efficacy, to explore the AHS DISA vaccine platform for all nine serotypes, and to study the vaccine profile

  16. PCR specific for Actinobacillus pleuropneumoniae serotype 3

    DEFF Research Database (Denmark)

    Zhou, L.; Jones, S.C.P.; Angen, Øystein

    2008-01-01

    , but the method has liminations, for example, cross-reactions between serotypes 3, 6, and 8. This study describes the development of a serotype 3-specific PCR, based on the capsule locus, which can be used in a multiplex format with the organism's specific gene apxIV. The PCR test was evaluated on 266 strains...

  17. Serotyping of Actinobacillus pleuropneumoniae serotype 5 strains using a monoclonal-based polystyrene agglutination test

    DEFF Research Database (Denmark)

    Dubreuil, J.D.; Letellier, A.; Stenbæk, Eva

    1996-01-01

    A polystyrene agglutination test has been developed for serotyping Actinobacillus pleuropneumoniae serotype 5a and 5b strains. Protein A-coated polystyrene microparticles were sensitized with a murine monoclonal antibody recognizing an epitope on serotype 5 LPS-O chain as shown by SDS-PAGE and We......A polystyrene agglutination test has been developed for serotyping Actinobacillus pleuropneumoniae serotype 5a and 5b strains. Protein A-coated polystyrene microparticles were sensitized with a murine monoclonal antibody recognizing an epitope on serotype 5 LPS-O chain as shown by SDS...... suspension of bacterial cells grown for 18 h. All A, pleuropneumoniae strains had been previously serotyped using standard procedures, The polystyrene agglutination test was rapid (less than 3 min) and easy to perform. Overall a very good correlation (97.3%) with the standard techniques was found...

  18. Heterologous HA DNA vaccine prime--inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses.

    Science.gov (United States)

    Wang, Shixia; Parker, Chris; Taaffe, Jessica; Solórzano, Alicia; García-Sastre, Adolfo; Lu, Shan

    2008-07-04

    The trivalent inactivated vaccine (TIV) is used to prevent seasonal influenza virus infection in humans, however, the immunogenicity of this vaccine may be influenced by the priming effect of previous influenza vaccinations or exposure to antigenically related influenza viruses. The current study examines the immunogenicity of a clinically licensed TIV in rabbits naïve to influenza antigens. Animals were immunized with either the licensed TIV, a bivalent (H1 and H3) HA DNA vaccine or the combination of both. Temporal and peak level serum anti-influenza virus IgG responses were determined by enzyme-linked immunosorbent assay (ELISA). Functional antibody responses were measured by hemagglutination inhibition and microneutralization against either A/NewCaledonia//20/99 (H1N1) or A/Panama/2007/99 (H3N2) influenza viruses. Our results demonstrate that the immunogenicity of the TIV is low in sero-negative animals. More significantly, the heterologous DNA prime-TIV boost regimen was more immunogenic than the homologous prime-boost using either TIV or DNA vaccines alone. This finding justifies further investigation of HA DNA vaccines as a priming immunogen for the next generation of vaccines against seasonal or pandemic influenza virus infections.

  19. A serotype-specific polymerase chain reaction for identification of Pasteurella multocida serotype 1

    Science.gov (United States)

    Rocke, Tonie E.; Smith, Susan R.; Miyamoto, Amy; Shadduck, Daniel J.

    2002-01-01

    A serotype-specific polymerase chain reaction (PCR) assay was developed for detection and identification of Pasteurella multocida serotype 1, the causative agent of avian cholera in wild waterfowl. Arbitrarily primed PCR was used to detect DNA fragments that distinguish serotype 1 from the other 15 serotypes of P. multocida (with the exception of serotype 14). Oligonucleotide primers were constructed from these sequences, and a PCR assay was optimized and evaluated. PCR reactions consistently resulted in amplification products with reference strains 1 and 14 and all other serotype 1 strains tested, with cell numbers as low as 2.3 cells/ml. No amplification products were produced with other P. multocida serotypes or any other bacterial species tested. To compare the sensitivity and further test the specificity of this PCR assay with traditional culturing and serotyping techniques, tissue samples from 84 Pekin ducks inoculated with field strains of P. multocida and 54 wild lesser snow geese collected during an avian cholera outbreak were provided by other investigators working on avian cholera. PCR was as sensitive (58/64) as routine isolation (52/64) in detecting and identifying P. multocida serotype 1 from the livers of inoculated Pekins that became sick or died from avian cholera. No product was amplified from tissues of 20 other Pekin ducks that received serotypes other than type 1 (serotype 3, 12 × 3, or 10) or 12 control birds. Of the 54 snow geese necropsied and tested for P. multocida, our PCR detected and identified the bacteria from 44 compared with 45 by direct isolation. The serotype-specific PCR we developed was much faster and less labor intensive than traditional culturing and serotyping procedures and could result in diagnosis of serotype 1 pasteurellosis within 24 hr of specimen submission.

  20. Adrenal gland infection by serotype 5 adenovirus requires coagulation factors.

    Directory of Open Access Journals (Sweden)

    Lucile Tran

    Full Text Available Recombinant, replication-deficient serotype 5 adenovirus infects the liver upon in vivo, systemic injection in rodents. This infection requires the binding of factor X to the capsid of this adenovirus. Another organ, the adrenal gland is also infected upon systemic administration of Ad, however, whether this infection is dependent on the cocksackie adenovirus receptor (CAR or depends on the binding of factor X to the viral capsid remained to be determined. In the present work, we have used a pharmacological agent (warfarin as well as recombinant adenoviruses lacking the binding site of Factor X to elucidate this mechanism in mice. We demonstrate that, as observed in the liver, adenovirus infection of the adrenal glands in vivo requires Factor X. Considering that the level of transduction of the adrenal glands is well-below that of the liver and that capsid-modified adenoviruses are unlikely to selectively infect the adrenal glands, we have used single-photon emission computed tomography (SPECT imaging of gene expression to determine whether local virus administration (direct injection in the kidney could increase gene transfer to the adrenal glands. We demonstrate that direct injection of the virus in the kidney increases gene transfer in the adrenal gland but liver transduction remains important. These observations strongly suggest that serotype 5 adenovirus uses a similar mechanism to infect liver and adrenal gland and that selective transgene expression in the latter is more likely to be achieved through transcriptional targeting.

  1. Estimating the temporal and spatial risk of bluetongue related to the incursion of infected vectors into Switzerland.

    Science.gov (United States)

    Racloz, V; Venter, G; Griot, C; Stärk, K D C

    2008-10-15

    The design of veterinary and public health surveillance systems has been improved by the ability to combine Geographical Information Systems (GIS), mathematical models and up to date epidemiological knowledge. In Switzerland, an early warning system was developed for detecting the incursion of the bluetongue disease virus (BT) and to monitor the frequency of its vectors. Based on data generated by this surveillance system, GIS and transmission models were used in order to determine suitable seasonal vector habitat locations and risk periods for a larger and more targeted surveillance program. Combined thematic maps of temperature, humidity and altitude were created to visualize the association with Culicoides vector habitat locations. Additional monthly maps of estimated basic reproduction number transmission rates (R0) were created in order to highlight areas of Switzerland prone to higher BT outbreaks in relation to both vector activity and transmission levels. The maps revealed several foci of higher risk areas, especially in northern parts of Switzerland, suitable for both vector presence and vector activity for 2006.Results showed a variation of R0 values comparing 2005 and 2006 yet suggested that Switzerland was at risk of an outbreak of BT, especially if the incursion arrived in a suitable vector activity period. Since the time of conducting these analyses, this suitability has proved to be the case with the recent outbreaks of BT in northern Switzerland. Our results stress the importance of environmental factors and their effect on the dynamics of a vector-borne disease. In this case, results of this model were used as input parameters for creating a national targeted surveillance program tailored to both the spatial and the temporal aspect of the disease and its vectors. In this manner, financial and logistic resources can be used in an optimal way through seasonally and geographically adjusted surveillance efforts. This model can serve as a tool for other

  2. Estimating the temporal and spatial risk of bluetongue related to the incursion of infected vectors into Switzerland

    Directory of Open Access Journals (Sweden)

    Griot C

    2008-10-01

    Full Text Available Abstract Background The design of veterinary and public health surveillance systems has been improved by the ability to combine Geographical Information Systems (GIS, mathematical models and up to date epidemiological knowledge. In Switzerland, an early warning system was developed for detecting the incursion of the bluetongue disease virus (BT and to monitor the frequency of its vectors. Based on data generated by this surveillance system, GIS and transmission models were used in order to determine suitable seasonal vector habitat locations and risk periods for a larger and more targeted surveillance program. Results Combined thematic maps of temperature, humidity and altitude were created to visualize the association with Culicoides vector habitat locations. Additional monthly maps of estimated basic reproduction number transmission rates (R0 were created in order to highlight areas of Switzerland prone to higher BT outbreaks in relation to both vector activity and transmission levels. The maps revealed several foci of higher risk areas, especially in northern parts of Switzerland, suitable for both vector presence and vector activity for 2006. Results showed a variation of R0 values comparing 2005 and 2006 yet suggested that Switzerland was at risk of an outbreak of BT, especially if the incursion arrived in a suitable vector activity period. Since the time of conducting these analyses, this suitability has proved to be the case with the recent outbreaks of BT in northern Switzerland. Conclusion Our results stress the importance of environmental factors and their effect on the dynamics of a vector-borne disease. In this case, results of this model were used as input parameters for creating a national targeted surveillance program tailored to both the spatial and the temporal aspect of the disease and its vectors. In this manner, financial and logistic resources can be used in an optimal way through seasonally and geographically adjusted

  3. Complete genome sequence of avian paramyxovirus (APMV serotype 5 completes the analysis of nine APMV serotypes and reveals the longest APMV genome.

    Directory of Open Access Journals (Sweden)

    Arthur S Samuel

    2010-02-01

    Full Text Available Avian paramyxoviruses (APMV consist of nine known serotypes. The genomes of representatives of all APMV serotypes except APMV type 5 have recently been fully sequenced. Here, we report the complete genome sequence of the APMV-5 prototype strain budgerigar/Kunitachi/74.APMV-5 Kunitachi virus is unusual in that it lacks a virion hemagglutinin and does not grow in the allantoic cavity of embryonated chicken eggs. However, the virus grew in the amniotic cavity of embryonated chicken eggs and in twelve different established cell lines and two primary cell cultures. The genome is 17,262 nucleotides (nt long, which is the longest among members of genus Avulavirus, and encodes six non-overlapping genes in the order of 3'N-P/V/W-M-F-HN-L-5' with intergenic regions of 4-57 nt. The genome length follows the 'rule of six' and contains a 55-nt leader sequence at the 3'end and a 552 nt trailer sequence at the 5' end. The phosphoprotein (P gene contains a conserved RNA editing site and is predicted to encode P, V, and W proteins. The cleavage site of the F protein (G-K-R-K-K-R downward arrowF conforms to the cleavage site motif of the ubiquitous cellular protease furin. Consistent with this, exogenous protease was not required for virus replication in vitro. However, the intracerebral pathogenicity index of APMV-5 strain Kunitachi in one-day-old chicks was found to be zero, indicating that the virus is avirulent for chickens despite the presence of a polybasic F cleavage site.Phylogenetic analysis of the sequences of the APVM-5 genome and proteins versus those of the other APMV serotypes showed that APMV-5 is more closely related to APMV-6 than to the other APMVs. Furthermore, these comparisons provided evidence of extensive genome-wide divergence that supports the classification of the APMVs into nine separate serotypes. The structure of the F cleavage site does not appear to be a reliable indicator of virulence among APMV serotypes 2-9. The availability of

  4. Dengue serotype cross-reactive, anti-E protein antibodies confound specific immune memory for one year after infection

    Directory of Open Access Journals (Sweden)

    Ying Xiu eToh

    2014-08-01

    Full Text Available Dengue virus has four serotypes and is endemic globally in tropical countries. Neither a specific treatment nor an approved vaccine is available, and correlates of protection are not established. The standard neutralization assay cannot differentiate between serotype-specific and serotype cross-reactive antibodies in patients early after infection, leading to an overestimation of the long-term serotype-specific protection of an antibody response. It is known that the cross-reactive response in patients is temporary but few studies have assessed kinetics and potential changes in serum antibody specificity over time. To better define the specificity of polyclonal antibodies during disease and after recovery, longitudinal samples from patients with primary or secondary DENV-2 infection were collected over a period of one year. We found that serotype cross-reactive antibodies peaked three weeks after infection and subsided within one year. Since secondary patients rapidly produced antibodies specific for the virus envelope (E protein, an E-specific ELISA was superior compared to a virus particle-specific ELISA to identify patients with secondary infections. Dengue infection triggered a massive activation and mobilization of both naïve and memory B cells possibly from lymphoid organs into the blood, providing an explanation for the surge of circulating plasmablasts and the increase in cross-reactive E protein-specific antibodies.

  5. Experimental infection of hamsters with avian paramyxovirus serotypes 1 to 9

    Directory of Open Access Journals (Sweden)

    Samuel Arthur S

    2011-02-01

    Full Text Available Abstract Avian paramyxoviruses (APMVs are frequently isolated from domestic and wild birds throughout the world and are separated into nine serotypes (APMV-1 to -9. Only in the case of APMV-1, the infection of non-avian species has been investigated. The APMVs presently are being considered as human vaccine vectors. In this study, we evaluated the replication and pathogenicity of all nine APMV serotypes in hamsters. The hamsters were inoculated intranasally with each virus and monitored for clinical disease, pathology, histopathology, virus replication, and seroconversion. On the basis of one or more of these criteria, each of the APMV serotypes was found to replicate in hamsters. The APMVs produced mild or inapparent clinical signs in hamsters except for APMV-9, which produced moderate disease. Gross lesions were observed over the pulmonary surface of hamsters infected with APMV-2 & -3, which showed petechial and ecchymotic hemorrhages, respectively. Replication of all of the APMVs except APMV-5 was confirmed in the nasal turbinates and lungs, indicating a tropism for the respiratory tract. Histologically, the infection resulted in lung lesions consistent with bronchointerstitial pneumonia of varying severity and nasal turbinates with blunting or loss of cilia of the epithelium lining the nasal septa. The majority of APMV-infected hamsters exhibited transient histological lesions that self resolved by 14 days post infection (dpi. All of the hamsters infected with the APMVs produced serotype-specific HI or neutralizing antibodies, confirming virus replication. Taken together, these results demonstrate that all nine known APMV serotypes are capable of replicating in hamsters with minimal disease and pathology.

  6. Milk concentration improves Bluetongue antibody detection by use of an indirect ELISA.

    Science.gov (United States)

    Chaignat, Valérie; Nitzsche, Sabine; Schärrer, Sara; Feyer, Dora; Schwermer, Heinzpeter; Thur, Barbara

    2010-07-14

    A national Bluetongue antibody surveillance in cattle through bulk milk was conducted in Switzerland between July 2007 and June 2008. Using ID Screen Bluetongue Milk ELISA (ID VET, Montpellier, France), samples from 15 out of 210 dairy farms at least once gave a positive result. In only three of these herds bluetongue positive animals were found. Therefore, specificity for bulk milk was not as good as expected and when individual milk samples were tested, it was even lower. As further investigations of positive results were time-consuming and no other ELISA was available at that time, we aimed at discriminating false from true positive samples with a confirmatory test using a protein precipitation method followed by retesting with the same ELISA. Additionally, we examined whether testing of single milk samples can reliably be used to assess status of cows, and whether sampling at the beginning or at the end of milking, as well as freezing and thawing of the milk could influence the performance of the test. Screening with ID VET milk ELISA and confirmatory testing after protein precipitation yielded a clear increase of specificity without any loss of sensitivity in both bulk and single milk samples. This testing scheme allowed minimizing follow-up investigations by blood testing. Antibody levels in plasma and milk showed a good correlation. Tested by logistic regression, none of the possible influencing factors (time point of sample collection, freezing, or milk content of the samples) had a significant influence on the test performance. (c) 2009 Elsevier B.V. All rights reserved.

  7. Assessment of contemporary genetic diversity and inter-taxa/inter-region exchange of avian paramyxovirus serotype 1 in wild birds sampled in North America

    Science.gov (United States)

    Avian paramyxovirus serotype 1 (APMV-1) viruses are globally distributed, infect wild, peridomestic, and domestic birds, and sometimes lead to outbreaks of disease. Thus, the maintenance, evolution, and spread of APMV-1 viruses are relevant to avian health. In this study we sequenced the fusion gen...

  8. Dengue E Protein Domain III-Based DNA Immunisation Induces Strong Antibody Responses to All Four Viral Serotypes.

    Directory of Open Access Journals (Sweden)

    Monica Poggianella

    Full Text Available Dengue virus (DENV infection is a major emerging disease widely distributed throughout the tropical and subtropical regions of the world affecting several millions of people. Despite constants efforts, no specific treatment or effective vaccine is yet available. Here we show a novel design of a DNA immunisation strategy that resulted in the induction of strong antibody responses with high neutralisation titres in mice against all four viral serotypes. The immunogenic molecule is an engineered version of the domain III (DIII of the virus E protein fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences were also codon-optimised for expression in mammalian cells. While DIII alone is very poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and secreted at high levels, thus inducing strong antibody responses. Mice were immunised using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA, and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all sera showed reactivity to a recombinant DIII version and the recombinant E protein produced and secreted from mammalian cells in a mono-biotinylated form when tested in a conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-capture ELISA and specific for each serotype as revealed by the low cross-reactive and cross-neutralising activities. The serotype specific sera did not induce antibody dependent enhancement of infection (ADE in non-homologous virus serotypes. A tetravalent immunisation protocol in mice showed induction of neutralising antibodies against all four dengue serotypes as well.

  9. The phylogenetic analysis of VP1 genomic region in foot-and-mouth disease virus serotype O isolates in Sri Lanka reveals the existence of 'Srl-97', a newly named endemic lineage.

    Science.gov (United States)

    Abeyratne, S A E; Amarasekera, S S C; Ranaweera, L T; Salpadoru, T B; Thilakarathne, S M N K; Knowles, N J; Wadsworth, J; Puvanendiran, S; Kothalawala, H; Jayathilake, B K; Wijithasiri, H A; Chandrasena, M M P S K; Sooriyapathirana, S D S S

    2018-01-01

    Foot and mouth disease (FMD) has devastated the cattle industry in Sri Lanka many times in the past. Despite its seriousness, limited attempts have been made to understand the disease to ameliorate its effects-current recommendation for vaccines being based solely on immunological assessments rather than on molecular identification. The general belief is that the cattle population in Sri Lanka acquired the FMD virus (FMDV) strains via introductions from India. However, there could be endemic FMDV lineages circulating in Sri Lanka. To infer the phylogenetic relationships of the FMDV strains in the island, we sequenced the VP1 genomic region of the virus isolates collected during the 2014 outbreak together with a few reported cases in 2012 and 1997 and compared them to VP1 sequences from South Asia. The FMDV strains collected in the 2014 outbreak belonged to the lineage, Ind-2001d, of the topotype, ME-SA. The strains collected in 2012 and 1997 belonged to another lineage called 'unnamed' by the World Reference Laboratory for Foot and Mouth Disease (WRLFMD). Based on the present analysis, we designate the lineage 'unnamed' as Srl-97 which we found endemic to Sri Lanka. The evolutionary rates of Srl-97 and Ind-2001d in Sri Lanka were estimated to be 0.0004 and 0.0046 substitutions/site/year, respectively, suggesting that Srl-97 evolves slowly.

  10. The Mondrian Matrix: Culicoides prevalence and seasonal abundance during the 2006-2008 epizootic of bluetongue in the Netherlands

    NARCIS (Netherlands)

    Meiswinkel, R.; Scolamacchia, F.; Dik, M.; Mudde, J.; Dijkstra, E.; Ven, van der I.J.K.; Elbers, A.R.W.

    2014-01-01

    During the northern Europe epidemic of bluetongue (BT), Onderstepoort-type blacklight traps were used to capture Culicoides Latreille (Diptera: Ceratopogonidae) biting midges weekly between November 2006 and December 2008 on 21 livestock farms in the Netherlands. Proven and potential vectors for the

  11. Complete genome sequences of four avian paramyxoviruses of serotype 10 isolated from Rockhopper Penguins on the Falkland Islands

    Science.gov (United States)

    The first complete genome sequences of four Avian paramyxovirus serotype 10 (APMV-10) isolates are described here. The viruses were isolated from Rockhopper Penguins sampled in 2007 on the Falkland Islands. All four genomes are 15,456 nucleotides in length and phylogenetic analyses show them to be c...

  12. Serotype and genetic diversity of human rhinovirus strains that circulated in Kenya in 2008.

    Science.gov (United States)

    Milanoi, Sylvia; Ongus, Juliette R; Gachara, George; Coldren, Rodney; Bulimo, Wallace

    2016-05-01

    Human rhinoviruses (HRVs) are a well-established cause of the common cold and recent studies indicated that they may be associated with severe acute respiratory illnesses (SARIs) like pneumonia, asthma, and bronchiolitis. Despite global studies on the genetic diversity of the virus, the serotype diversity of these viruses across diverse geographic regions in Kenya has not been characterized. This study sought to characterize the serotype diversity of HRV strains that circulated in Kenya in 2008. A total of 517 archived nasopharyngeal samples collected in a previous respiratory virus surveillance program across Kenya in 2008 were selected. Participants enrolled were outpatients who presented with influenza-like (ILI) symptoms. Real-time RT-PCR was employed for preliminary HRV detection. HRV-positive samples were amplified using RT-PCR and thereafter the nucleotide sequences of the amplicons were determined followed by phylogenetic analysis. Twenty-five percent of the samples tested positive for HRV. Phylogenetic analysis revealed that the Kenyan HRVs clustered into three main species comprising HRV-A (54%), HRV-B (12%), and HRV-C (35%). Overall, 20 different serotypes were identified. Intrastrain sequence homology among the Kenyan strains ranged from 58% to 100% at the nucleotide level and 55% to 100% at the amino acid level. These results show that a wide range of HRV serotypes with different levels of nucleotide variation were present in Kenya. Furthermore, our data show that HRVs contributed substantially to influenza-like illness in Kenya in 2008. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  13. Genome wide evolutionary analyses reveal serotype specific patterns of positive selection in selected Salmonella serotypes.

    Science.gov (United States)

    Soyer, Yeşim; Orsi, Renato H; Rodriguez-Rivera, Lorraine D; Sun, Qi; Wiedmann, Martin

    2009-11-14

    The bacterium Salmonella enterica includes a diversity of serotypes that cause disease in humans and different animal species. Some Salmonella serotypes show a broad host range, some are host restricted and exclusively associated with one particular host, and some are associated with one particular host species, but able to cause disease in other host species and are thus considered "host adapted". Five Salmonella genome sequences, representing a broad host range serotype (Typhimurium), two host restricted serotypes (Typhi [two genomes] and Paratyphi) and one host adapted serotype (Choleraesuis) were used to identify core genome genes that show evidence for recombination and positive selection. Overall, 3323 orthologous genes were identified in all 5 Salmonella genomes analyzed. Use of four different methods to assess homologous recombination identified 270 genes that showed evidence for recombination with at least one of these methods (false discovery rate [FDR] positive selection (FDR positive selection in other bacteria. A total of 8, 16, 7, and 5 genes showed evidence for positive selection in Choleraesuis, Typhi, Typhimurium, and Paratyphi branch analyses, respectively. Sequencing and evolutionary analyses of four genes in an additional 42 isolates representing 23 serotypes confirmed branch specific positive selection and recombination patterns. Our data show that, among the four serotypes analyzed, (i) less than 10% of Salmonella genes in the core genome show evidence for homologous recombination, (ii) a number of Salmonella genes are under positive selection, including genes that appear to contribute to virulence, and (iii) branch specific positive selection contributes to the evolution of host restricted Salmonella serotypes.

  14. Dengue virus protein recognition by virus-specific murine CD8+ cytotoxic T lymphocytes.

    OpenAIRE

    Rothman, A L; Kurane, I; Lai, C J; Bray, M; Falgout, B; Men, R; Ennis, F A

    1993-01-01

    The identification of the protein targets for dengue virus-specific T lymphocytes may be useful for planning the development of subunit vaccines against dengue. We studied the recognition by murine dengue virus-specific major histocompatibility complex class I-restricted, CD8+ cytotoxic T lymphocytes (CTL) of dengue virus proteins using recombinant vaccinia viruses containing segments of the dengue virus genome. CTL from H-2k mice recognized a single serotype-cross-reactive epitope on the non...

  15. Avian Paramyxovirus Serotype-1: A Review of Disease Distribution, Clinical Symptoms, and Laboratory Diagnostics

    Directory of Open Access Journals (Sweden)

    Nichole L. Hines

    2012-01-01

    Full Text Available Avian paramyxovirus serotype-1 (APMV-1 is capable of infecting a wide range of avian species leading to a broad range of clinical symptoms. Ease of transmission has allowed the virus to spread worldwide with varying degrees of virulence depending on the virus strain and host species. Classification systems have been designed to group isolates based on their genetic composition. The genetic composition of the fusion gene cleavage site plays an important role in virulence. Presence of multiple basic amino acids at the cleavage site allows enzymatic cleavage of the fusion protein enabling virulent viruses to spread systemically. Diagnostic tests, including virus isolation, real-time reverse-transcription PCR, and sequencing, are used to characterize the virus and identify virulent strains. Genetic diversity within APMV-1 demonstrates the need for continual monitoring for changes that may arise requiring modifications to the molecular assays to maintain their usefulness for diagnostic testing.

  16. Vesicular stomatitis virus (indiana 2 serotype as experimental model to study acute encephalitis – morphological features Vírus da estomatite vesicular (sorotipo indiana 2 como modelo experimental para o estudo de encefalite aguda – aspectos morfológicos

    Directory of Open Access Journals (Sweden)

    Florêncio Figueiredo Cavalcanti Neto

    2003-10-01

    Full Text Available The Vesicular Stomatitis Virus (VSV is a Vesiculovirus of the Rhabdoviridae family that infects mammals and causes vesicular lesions similar to those of foot-and-mouth disease. VSV experimental encephalitis can be induced in rodents and the symptoms are similar to those observed in rabies. However, the lesions observed in the animals´ encephalon are different. Inclusion bodies are not observed. There is necrosis, particularly in the region of the olfactory bulb, and, in some cases, ventriculitis. It was observed that the time pattern of VSV dissemination and the morphological aspects of the lesions are similar to those described in literature. The virus seems to be disseminated through the brain ventricles, being multiplied in the ependyma cells and in the neurons, besides using retrograde and anterograde transport. It was noticed that, due to the facility of virus manipulation, this experimental model has been used in innumerable research studies in several fields. If, on the one hand there are plenty of reports on the infection pathogenesis, on the other hand there are many gaps involving, for instance, aspects about virus transmission, recovery of infected animals and participation of glial cells in the acute as well as in the recovery phases.   O vírus da estomatite vesicular (VEV é um Vesiculovírus da família Rhabdoviridae que infecta mamíferos e causa lesões vesiculares semelhantes às observadas na febre aftosa. A encefalite experimental pode ser induzida em roedores e os sintomas são semelhantes aos observados na raiva; entretanto, as lesões observadas no encéfalo dos animais são diferentes. Corpúsculos de inclusão não são observados, há necrose especialmente da região do bulbo olfatório e em alguns casos, ventriculite. Observamos que o padrão temporal de disseminação do VEV e os aspectos morfológicos das lesões são similares aos descritos na literatura. O vírus parece se disseminar através dos ventr

  17. Genomic Characterization of Flavobacterium psychrophilum Serotypes and Development of a Multiplex PCR-Based Serotyping Scheme

    Directory of Open Access Journals (Sweden)

    Tatiana Rochat

    2017-09-01

    Full Text Available Flavobacterium psychrophilum is a devastating bacterial pathogen of salmonids reared in freshwater worldwide. So far, serological diversity between isolates has been described but the underlying molecular factors remain unknown. By combining complete genome sequence analysis and the serotyping method proposed by Lorenzen and Olesen (1997 for a set of 34 strains, we identified key molecular determinants of the serotypes. This knowledge allowed us to develop a robust multiplex PCR-based serotyping scheme, which was applied to 244 bacterial isolates. The results revealed a striking association between PCR-serotype and fish host species and illustrate the use of this approach as a simple and cost-effective method for the determination of F. psychrophilum serogroups. PCR-based serotyping could be a useful tool in a range of applications such as disease surveillance, selection of salmonids for bacterial coldwater disease resistance and future vaccine formulation.

  18. Serotyping of Actinobacillus pleuropneumoniae serotype 5 strains using a monoclonal-based polystyrene agglutination test

    DEFF Research Database (Denmark)

    Dubreuil, J.D.; Letellier, A.; Stenbæk, Eva

    1996-01-01

    A polystyrene agglutination test has been developed for serotyping Actinobacillus pleuropneumoniae serotype 5a and 5b strains. Protein A-coated polystyrene microparticles were sensitized with a murine monoclonal antibody recognizing an epitope on serotype 5 LPS-O chain as shown by SDS......-PAGE and Western blotting, A total of 205 A. pleuropneumoniae, strains including all 12 serotype reference strains and 13 strains representing 8 common bacterial species associated with swine or related to A, pleuropneumoniae, were tested by mixing 25 mu L of polystyrene reagent with the same volume of a dense...... suspension of bacterial cells grown for 18 h. All A, pleuropneumoniae strains had been previously serotyped using standard procedures, The polystyrene agglutination test was rapid (less than 3 min) and easy to perform. Overall a very good correlation (97.3%) with the standard techniques was found...

  19. Difference between the abilities of human Fcgamma receptor-expressing CV-1 cells to neutralize American and Asian genotypes of dengue virus 2.

    Science.gov (United States)

    Rodrigo, W W Shanaka I; Rodrigo, W W I S; Alcena, D C; Kou, Z; Kochel, T J; Porter, K R; Comach, G; Rose, R C; Jin, X; Schlesinger, J J

    2009-02-01

    Sera from patients involved in a Peruvian outbreak of dengue virus serotype 1 infection cross-neutralized the American genotype of dengue virus serotype 2 up to 100-fold more efficiently than they did the virulent Asian genotype of dengue virus serotype 2, as determined by a plaque reduction neutralization test (PRNT) with CV-1 fibroblasts modified to express human Fcgamma receptor CD32. The concordant preferential immune enhancement of the Asian genotype of dengue virus serotype 2 in human monocytes suggests that such a modification might strengthen the correlation between the PRNT titer and protection.

  20. Replication, neurotropism, and pathogenicity of avian paramyxovirus serotypes 1-9 in chickens and ducks.

    Directory of Open Access Journals (Sweden)

    Shin-Hee Kim

    Full Text Available Avian paramyxovirus (APMV serotypes 1-9 have been isolated from many different avian species. APMV-1 (Newcastle disease virus is the only well-characterized serotype, because of the high morbidity, mortality, and economic loss caused by highly virulent strains. Very little is known about the pathogenesis, replication, virulence, and tropism of the other APMV serotypes. Here, this was evaluated for prototypes strains of APMV serotypes 2-9 in cell culture and in chickens and ducks. In cell culture, only APMV-1, -3 and -5 induced syncytium formation. In chicken DF1 cells, APMV-3 replicated with an efficiency approaching that of APMV-1, while APMV-2 and -5 replicated to lower, intermediate titers and the others were much lower. Mean death time (MDT assay in chicken eggs and intracerebral pathogenicity index (ICPI test in 1-day-old SPF chicks demonstrated that APMV types 2-9 were avirulent. Evaluation of replication in primary neuronal cells in vitro as well as in the brains of 1-day-old chicks showed that, among types 2-9, only APMV-3 was neurotropic, although this virus was not neurovirulent. Following intranasal infection of 1-day-old and 2-week-old chickens, replication of APMV types 2-9 was mostly restricted to the respiratory tract, although APMV-3 was neuroinvasive and neurotropic (but not neurovirulent and also was found in the spleen. Experimental intranasal infection of 3-week-old mallard ducks with the APMVs did not produce any clinical signs (even for APMV-1 and exhibited restricted viral replication of the APMVs (including APMV-1 to the upper respiratory tract regardless of their isolation source, indicating avirulence of APMV types 1-9 in mallard ducks. The link between the presence of a furin cleavage site in the F protein, syncytium formation, systemic spread, and virulence that has been well-established with APMV-1 pathotypes was not evident with the other APMV serotypes.

  1. The perspective of sweetpotato chlorotic stunt virus in sweetpotato ...

    African Journals Online (AJOL)

    The virus is transmitted by the whitefly species, Bemisia tabaci and Trialeurodes abutilonea, in a semi-persistent fashion. At least two serotypes occur, one, first described from West Africa (SPCSVWA), and the other first described from East Africa (SPCSVEA). Both serotypes have also been found in the Americas.

  2. Human Papilloma Virus Vaccination for Control of Cervical Cancer ...

    African Journals Online (AJOL)

    Erah

    sexually-transmitted infections like Chlamydia spp, and Herpes simplex virus12. HPV serotypes are subdivided into high. (hrHPV) and low risk (lrHPV) according to their propensity for benign or malignant lesions. Serotypes 6 and 11 are the commonest lrHPV types and are responsible for 90% of genital warts1, 13. Infection ...

  3. Detection of an Actinobacillus pleuropneumoniae serotype 2 lipopolysaccharide (LPS) variant

    DEFF Research Database (Denmark)

    Stenbaek, E.I.; HovindHaugen, K.

    1996-01-01

    Until now 12 serotypes of Actinobacillus pleuropneumoniae have been recognized. The specificity of the serotypes reside in the carbohydrate composition of the capsular polysaccharides and lipopolysaccharides (LPS). The LPS of A. pleuropneumoniae serotype 2 is a smooth type LPS with O......-PAGE). The MAI, 102-G02 was directed against an epitope on the O-chain of the LPS and was used to define a new LPS variant of A. pleuropneumoniae serotype 2 (referred to as A. pleuropneumoniae serotype 2X). Investigation of the reactivity of the MAb 102-G02 against an A. pleuropneumoniae serotype 2X field...

  4. A Study of the Immunologic Response to Second Heterotypic Bluetongue Virus Infection in Mice

    Science.gov (United States)

    1983-05-01

    spleen and lymph node), integument (skin), urogenital (kidney and testicle /ovary), muscular (heart and skeletal muscle) and nervous (brain) systems...staining) of the spleen, liver, mesenteric lymph node, skin, kidney, ovary, testicle , heart, skeletal muscle, and brain revealed no significant deviations...EH, Pay JW, Laszlo J, Moore JO: Facilitated light microscopic cytochemical diagnosis 0of acute myelogenous leukemia. Cancer Res 39: 1635, 1979

  5. A novel strain of sacbrood virus of interest to world apiculture.

    Science.gov (United States)

    Roberts, J M K; Anderson, D L

    2014-05-01

    This study has characterised a novel serotype of Sacbrood virus (SBV) infecting Apis mellifera in New Guinea that has emerged in the presence of the introduced European and Asian serotypes, which infect A. mellifera and Apis cerana, respectively. The New Guinea serotype appears to have evolved through mutation of the European serotype with no evidence of recombination between known strains, although recombination was detected in other SBV isolates from Asia. SBV was also confirmed for the first time causing disease in Apis dorsata (giant Asian honeybee) in Indonesia and found to be infected by the Asian serotype. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Emerging opportunities for serotypes of botulinum neurotoxins.

    Science.gov (United States)

    Peng Chen, Zhongxing; Morris, J Glenn; Rodriguez, Ramon L; Shukla, Aparna Wagle; Tapia-Núñez, John; Okun, Michael S

    2012-11-07

    Two decades ago, botulinum neurotoxin (BoNT) type A was introduced to the commercial market. Subsequently, the toxin was approved by the FDA to address several neurological syndromes, involving muscle, nerve, and gland hyperactivity. These syndromes have typically been associated with abnormalities in cholinergic transmission. Despite the multiplicity of botulinal serotypes (designated as types A through G), therapeutic preparations are currently only available for BoNT types A and B. However, other BoNT serotypes are under study for possible clinical use and new clinical indications; To review the current research on botulinum neurotoxin serotypes A-G, and to analyze potential applications within basic science and clinical settings; The increasing understanding of botulinal neurotoxin pathophysiology, including the neurotoxin's effects on specific neuronal populations, will help us in tailoring treatments for specific diagnoses, symptoms and patients. Scientists and clinicians should be aware of the full range of available data involving neurotoxin subtypes A-G.

  7. Serotype Distribution in Non-Bacteremic Pneumococcal Pneumonia

    DEFF Research Database (Denmark)

    Benfield, Thomas; Skovgaard, Marlene; Schønheyder, Henrik Carl

    2013-01-01

    There is limited knowledge of serotypes that cause non-bacteremic pneumococcal pneumonia (NBP). Here we report serotypes, their associated disease potential and coverage of pneumococcal conjugate vaccines (PCV) in adults with NBP and compare these to bacteremic pneumonia (BP).......There is limited knowledge of serotypes that cause non-bacteremic pneumococcal pneumonia (NBP). Here we report serotypes, their associated disease potential and coverage of pneumococcal conjugate vaccines (PCV) in adults with NBP and compare these to bacteremic pneumonia (BP)....

  8. Using farmers' attitude and social pressures to design voluntary Bluetongue vaccination strategies.

    Science.gov (United States)

    Sok, J; Hogeveen, H; Elbers, A R W; Oude Lansink, A G J M

    2016-10-01

    Understanding the context and drivers of farmers' decision-making is critical to designing successful voluntary disease control interventions. This study uses a questionnaire based on the Reasoned Action Approach framework to assess the determinants of farmers' intention to participate in a hypothetical reactive vaccination scheme against Bluetongue. Results suggest that farmers' attitude and social pressures best explained intention. A mix of policy instruments can be used in a complementary way to motivate voluntary vaccination based on the finding that participation is influenced by both internal and external motivation. Next to informational and incentive-based instruments, social pressures, which stem from different type of perceived norms, can spur farmers' vaccination behaviour and serve as catalysts in voluntary vaccination schemes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Analysis of the dengue disease model with two virus strains

    Science.gov (United States)

    Adi-Kusumo, F.; Aini, A. N.; Ridwan, M.

    2014-02-01

    Dengue fever (DF) and dengue haemorrhagic fever (DHF) are the disease caused by the dengue virus which is transmitted to the human by infected female mosquitoes. The disease is endemic in more than 100 countries over the world. Dengue virus has four distinct serotypes which are closely related to each other antigenically. A person who infected by the dengue virus will never be infected again by the same serotype, but he looses immunity from the three other serotypes. Infection with one serotype does not provide cross-protective immunity against to others. Here we assume that there are two serotypes exist in the population. Someone who has recovered from one serotype become susceptible to the other serotype and can be reinfected. In this paper we analyze the model of dengue fever with two infections from the different serotype by linear analysis. Then we study the effect of vaccination to the model. In numerical simulation, we use Runge-Kutta order 4 to integrate the solution of the system.

  10. Two-host, two-vector basic reproduction ratio (R(0 for bluetongue.

    Directory of Open Access Journals (Sweden)

    Joanne Turner

    Full Text Available Mathematical formulations for the basic reproduction ratio (R(0 exist for several vector-borne diseases. Generally, these are based on models of one-host, one-vector systems or two-host, one-vector systems. For many vector borne diseases, however, two or more vector species often co-occur and, therefore, there is a need for more complex formulations. Here we derive a two-host, two-vector formulation for the R(0 of bluetongue, a vector-borne infection of ruminants that can have serious economic consequences; since 1998 for example, it has led to the deaths of well over 1 million sheep in Europe alone. We illustrate our results by considering the situation in South Africa, where there are two major hosts (sheep, cattle and two vector species with differing ecologies and competencies as vectors, for which good data exist. We investigate the effects on R(0 of differences in vector abundance, vector competence and vector host preference between vector species. Our results indicate that R(0 can be underestimated if we assume that there is only one vector transmitting the infection (when there are in fact two or more and/or vector host preferences are overlooked (unless the preferred host is less beneficial or more abundant. The two-host, one-vector formula provides a good approximation when the level of cross-infection between vector species is very small. As this approaches the level of intraspecies infection, a combination of the two-host, one-vector R(0 for each vector species becomes a better estimate. Otherwise, particularly when the level of cross-infection is high, the two-host, two-vector formula is required for accurate estimation of R(0. Our results are equally relevant to Europe, where at least two vector species, which co-occur in parts of the south, have been implicated in the recent epizootic of bluetongue.

  11. First molecular investigation of capsular serotyping and ...

    African Journals Online (AJOL)

    Klebsiella pneumoniae is a well known human pathogen. Although infectious in most nosocomial infections with a high level of resistance, capsular types and circulating hypervirulent strains in our context are not documented. The aims of this study are to identify capsular serotypes and hypervirulent strains circulating at the ...

  12. Molecular serotype and evolutionary lineage of Listeria ...

    African Journals Online (AJOL)

    The molecular serotypes and the evolutionary lineage of Listeria monocytogenes isolated from various foods in Nigeria are yet to be documented. Consequently, popular uncooked food items known locally as Okazi Utazi, Onugbu, Ogbono, Garri and Egusi obtained from plants botanically known as Gnetum africanum, ...

  13. Phenotypic and molecular characterization of Salmonella serotypes ...

    African Journals Online (AJOL)

    The presence of Salmonella and human pathogens in unpasteurized milk remains a public health hazard. The study reported the phenotypic and molecular characterization of Salmonella serotypes in cow raw milk, cheese and traditional yoghurt marketed for man's consumption in Nigeria. Isolation of Salmonella was done ...

  14. Virulence, serotype and phylogenetic groups of diarrhoeagenic ...

    African Journals Online (AJOL)

    Dr DADIE Thomas

    2014-02-17

    Feb 17, 2014 ... The virulence, serotype and phylogenetic traits of diarrhoeagenic Escherichia coli were detected in 502 strains isolated during digestive infections. Molecular detection of the target virulence genes, rfb gene of operon O and phylogenetic grouping genes Chua, yjaA and TSPE4.C2 was performed.

  15. Carriage rates, circulating serotypes and antibiotic resistance ...

    African Journals Online (AJOL)

    The carriage of Streptococcus pneumoniae, serotypes, antimicrobial susceptibility patterns and disease development are poorly understood in Yei. Availability of affordable antibiotics over the counter, lack of laboratory infrastructure and high rates of penicillin resistance have the potential to aggravate rates of childhood ...

  16. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals.

    Science.gov (United States)

    Reperant, L A; Brown, I H; Haenen, O L; de Jong, M D; Osterhaus, A D M E; Papa, A; Rimstad, E; Valarcher, J-F; Kuiken, T

    2016-07-01

    Companion animals comprise a wide variety of species, including dogs, cats, horses, ferrets, guinea pigs, reptiles, birds and ornamental fish, as well as food production animal species, such as domestic pigs, kept as companion animals. Despite their prominent place in human society, little is known about the role of companion animals as sources of viruses for people and food production animals. Therefore, we reviewed the literature for accounts of infections of companion animals by zoonotic viruses and viruses of food production animals, and prioritized these viruses in terms of human health and economic importance. In total, 138 virus species reportedly capable of infecting companion animals were of concern for human and food production animal health: 59 of these viruses were infectious for human beings, 135 were infectious for food production mammals and birds, and 22 were infectious for food production fishes. Viruses of highest concern for human health included hantaviruses, Tahyna virus, rabies virus, West Nile virus, tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus, Aichi virus, European bat lyssavirus, hepatitis E virus, cowpox virus, G5 rotavirus, influenza A virus and lymphocytic choriomeningitis virus. Viruses of highest concern for food production mammals and birds included bluetongue virus, African swine fever virus, foot-and-mouth disease virus, lumpy skin disease virus, Rift Valley fever virus, porcine circovirus, classical swine fever virus, equine herpesvirus 9, peste des petits ruminants virus and equine infectious anaemia virus. Viruses of highest concern for food production fishes included cyprinid herpesvirus 3 (koi herpesvirus), viral haemorrhagic septicaemia virus and infectious pancreatic necrosis virus. Of particular concern as sources of zoonotic or food production animal viruses were domestic carnivores, rodents and food production animals kept as companion animals. The current list of viruses provides an objective

  17. Genome wide evolutionary analyses reveal serotype specific patterns of positive selection in selected Salmonella serotypes

    Directory of Open Access Journals (Sweden)

    Sun Qi

    2009-11-01

    Full Text Available Abstract Background The bacterium Salmonella enterica includes a diversity of serotypes that cause disease in humans and different animal species. Some Salmonella serotypes show a broad host range, some are host restricted and exclusively associated with one particular host, and some are associated with one particular host species, but able to cause disease in other host species and are thus considered "host adapted". Five Salmonella genome sequences, representing a broad host range serotype (Typhimurium, two host restricted serotypes (Typhi [two genomes] and Paratyphi and one host adapted serotype (Choleraesuis were used to identify core genome genes that show evidence for recombination and positive selection. Results Overall, 3323 orthologous genes were identified in all 5 Salmonella genomes analyzed. Use of four different methods to assess homologous recombination identified 270 genes that showed evidence for recombination with at least one of these methods (false discovery rate [FDR] ompC, a gene encoding an outer membrane protein, which has also been found to be under positive selection in other bacteria. A total of 8, 16, 7, and 5 genes showed evidence for positive selection in Choleraesuis, Typhi, Typhimurium, and Paratyphi branch analyses, respectively. Sequencing and evolutionary analyses of four genes in an additional 42 isolates representing 23 serotypes confirmed branch specific positive selection and recombination patterns. Conclusion Our data show that, among the four serotypes analyzed, (i less than 10% of Salmonella genes in the core genome show evidence for homologous recombination, (ii a number of Salmonella genes are under positive selection, including genes that appear to contribute to virulence, and (iii branch specific positive selection contributes to the evolution of host restricted Salmonella serotypes.

  18. Whole genome analysis of epizootic hemorrhagic disease virus identified limited genome constellations and preferential reassortment.

    Science.gov (United States)

    Anbalagan, Srivishnupriya; Cooper, Elyse; Klumper, Pat; Simonson, Randy R; Hause, Ben M

    2014-02-01

    Epizootic hemorrhagic disease virus (EHDV) is a Culicoides transmitted orbivirus that causes haemorrhagic disease in wild and domestic ruminants. A collection of 44 EHDV isolated from 2008 to 2012 was fully sequenced and analysed phylogenetically. Serotype 2 viruses were the dominant serotype all years except 2012 when serotype 6 viruses represented 63 % of the isolates. High genetic similarity (>94 % identity) between serotype 1 and 2 virus VP1, VP3, VP4, VP6, NS1, NS2 and NS3 segments prevented identification of reassortment events for these segments. Additionally, there was little genetic diversity (>96 % identity) within serotypes for VP2, VP5 and VP7. Preferential reassortment within the homologous serotype was observed for VP2, VP5 and VP7 segments for type 1 and type 2 viruses. In contrast, type 6 viruses were all reassortants containing VP2 and VP5 derived from an exotic type 6 with the remaining segments most similar to type 2 viruses. These results suggest that reassortment between type 1 and type 2 viruses requires conservation of the VP2, VP5 and VP7 segment constellation while type 6 viruses only require VP2 and VP5 and are restricted to type 2-lineage VP7. As type 6 VP2 and VP5 segments were exclusively identified in viruses with type 2-derived VP7, these results suggest functional complementation between type 2 and type 6 VP7 proteins.

  19. Rapid Engineering of Foot-and-Mouth Disease Vaccine and Challenge Viruses.

    Science.gov (United States)

    Lee, Seo-Yong; Lee, Yeo-Joo; Kim, Rae-Hyung; Park, Jeong-Nam; Park, Min-Eun; Ko, Mi-Kyeong; Choi, Joo-Hyung; Chu, Jia-Qi; Lee, Kwang-Nyeong; Kim, Su-Mi; Tark, Dongseob; Lee, Hyang-Sim; Ko, Young-Joon; Seo, Min-Goo; Park, Jung-Won; Kim, Byounghan; Lee, Myoung-Heon; Lee, Jong-Soo; Park, Jong-Hyeon

    2017-08-15

    There are seven antigenically distinct serotypes of foot-and-mouth disease virus (FMDV), each of which has intratypic variants. In the present study, we have developed methods to efficiently generate promising vaccines against seven serotypes or subtypes. The capsid-encoding gene (P1) of the vaccine strain O1/Manisa/Turkey/69 was replaced with the amplified or synthetic genes from the O, A, Asia1, C, SAT1, SAT2, and SAT3 serotypes. Viruses of the seven serotype were rescued successfully. Each chimeric FMDV with a replacement of P1 showed serotype-specific antigenicity and varied in terms of pathogenesis in pigs and mice. Vaccination of pigs with an experimental trivalent vaccine containing the inactivated recombinants based on the main serotypes O, A, and Asia1 effectively protected them from virus challenge. This technology could be a potential strategy for a customized vaccine with challenge tools to protect against epizootic disease caused by specific serotypes or subtypes of FMDV. IMPORTANCE Foot-and-mouth disease (FMD) virus (FMDV) causes significant economic losses. For vaccine preparation, the selection of vaccine strains was complicated by high antigenic variation. In the present study, we suggested an effective strategy to rapidly prepare and evaluate mass-produced customized vaccines against epidemic strains. The P1 gene encoding the structural proteins of the well-known vaccine virus was replaced by the synthetic or amplified genes of viruses of seven representative serotypes. These chimeric viruses generally replicated readily in cell culture and had a particle size similar to that of the original vaccine strain. Their antigenicity mirrored that of the original serotype from which their P1 gene was derived. Animal infection experiments revealed that the recombinants varied in terms of pathogenicity. This strategy will be a useful tool for rapidly generating customized FMD vaccines or challenge viruses for all serotypes, especially for FMD-free countries

  20. Development of Real-Time Reverse Transcriptase PCR Assays for the Detection of Punta Toro Virus and Pichinde Virus

    Science.gov (United States)

    2016-09-09

    tested against a panel of 153 extracted viral nucleic acid samples. West Nile virus (UCC# Flavi022) and dengue virus 154 serotypes 1-4 (UCC# Flavi029...256 phlebotomus fever virus (Sicilian type). Am J Trop Med Hyg 25, 456-462. 257 Birmingham, K., Kenyon, G., 2001. Lassa fever is unheralded problem in

  1. Pasteurella multocida serotype 1 isolated from a lesser snow goose

    Science.gov (United States)

    Samuel, M.D.; Goldberg, Diana R.; Shadduck, D.J.; Price, J.I.; Cooch, E.G.

    1997-01-01

    Pharyngeal swabs were collected from 298 lesser snow geese (Chen caerulescens caerulescens) at Banks Island (Northwest Territories. Canada) in the summer of 1994. Pasteurella multocida serotype 1 was isolated from an adult male bird and P. multocida serotype 3 was isolated from an adult female goose. Pathogenicity of the serotype 1 isolate was confirmed by inoculation in Pekin ducks (Anas platyrhynchos). The serotype 3 isolate was non-pathogenic in Pekin ducks. This is the first documented isolation of pathogenic P. multocida serotype 1 from apparently healthy wild snow geese.

  2. Release of Dengue Virus Genome Induced by a Peptide Inhibitor

    OpenAIRE

    Lok, Shee-Mei; Costin, Joshua M.; Hrobowski, Yancey M.; Hoffmann, Andrew R.; Rowe, Dawne K.; Kukkaro, Petra; Holdaway, Heather; Chipman, Paul; Fontaine, Krystal A.; Holbrook, Michael R.; Garry, Robert F.; Kostyuchenko, Victor; Wimley, William C.; Isern, Sharon; Rossmann, Michael G.

    2012-01-01

    Dengue virus infects approximately 100 million people annually, but there is no available therapeutic treatment. The mimetic peptide, DN59, consists of residues corresponding to the membrane interacting, amphipathic stem region of the dengue virus envelope (E) glycoprotein. This peptide is inhibitory to all four serotypes of dengue virus, as well as other flaviviruses. Cryo-electron microscopy image reconstruction of dengue virus particles incubated with DN59 showed that the virus particles w...

  3. Challenges for Serology-Based Characterization of Foot-and-Mouth Disease Outbreaks in Endemic Areas; Identification of Two Separate Lineages of Serotype O FMDV in Uganda in 2011.

    Science.gov (United States)

    Namatovu, A; Belsham, G J; Ayebazibwe, C; Dhikusooka, M T; Wekesa, S N; Siegismund, H R; Muwanika, V B; Tjørnehøj, K

    2015-10-01

    Control of foot-and-mouth disease (FMD) in Uganda by ring vaccination largely depends on costly trivalent vaccines, and use of monovalent vaccines could improve the cost effectiveness. This, however, requires application of highly specific diagnostic tests. This study investigated outbreaks of FMD in seven Ugandan districts, during 2011, using the PrioCHECK® FMDV NS ELISA, solid-phase blocking ELISAs (SPBEs) and virus neutralization tests (VNTs), together with virological analyses for characterization of the responsible viruses. Two hundred and eighteen (218) cattle and 23 goat sera as well as 82 oropharyngeal fluid/epithelial tissue samples were collected. Some 50% of the cattle and 17% of the goat sera were positive by the PrioCHECK® FMDV NS ELISA, while SPBEs identified titres ≥80 for antibodies against serotype O FMD virus (FMDV) in 51% of the anti-NSP positive cattle sera. However, 35% of the anti-NSP positive cattle sera had SPBE titres ≥80 against multiple serotypes, primarily against serotypes O, SAT 1 and SAT 3. Comparison of SPBEs and VNTs for the detection of antibodies against serotypes O, SAT 1 and SAT 3 in 72 NSP positive cattle sera showed comparable results against serotype O (P = 0.181), while VNTs detected significantly fewer samples positive for antibodies against SAT 1 and SAT 3 than the SPBEs (P < 0.001). Detection of antibodies against serotype O was consistent with the isolation of serotype O FMDVs from 13 samples. Four of these viruses were sequenced and belonged to two distinct lineages within the East Africa-2 (EA-2) topotype, each differing from the currently used vaccine strain (EA-1 topotype). The relationships of these lineages to other serotype O viruses in the Eastern Africa region are discussed. To enhance the control of FMD in Uganda, there is need to improve the specificity of the SAT-SPBEs, perform vaccine matching and implement improved regional FMD control. © 2013 Blackwell Verlag GmbH.

  4. Structural protein relationships among eastern equine encephalitis viruses.

    Science.gov (United States)

    Strizki, J M; Repik, P M

    1994-11-01

    We have re-evaluated the relationships among the polypeptides of eastern equine encephalitis (EEE) viruses using SDS-PAGE and peptide mapping of individual virion proteins. Four to five distinct polypeptide bands were detected upon SDS-PAGE analysis of viruses: the E1, E2 and C proteins normally associated with alphavirus virions, as well as an additional more rapidly-migrating E2-associated protein and a high M(r) (HMW) protein. In contrast with previous findings by others, the electrophoretic profiles of the virion proteins of EEE viruses displayed a marked correlation with serotype. The protein profiles of the 33 North American (NA)-serotype viruses examined were remarkably homogeneous, with variation detected only in the E1 protein of two isolates. In contrast, considerable heterogeneity was observed in the migration profiles of both the E1 and E2 glycoproteins of the 13 South American (SA)-type viruses examined. Peptide mapping of individual virion proteins using limited proteolysis with Staphylococcus aureus V8 protease confirmed that, in addition to the homogeneity evident among NA-type viruses and relative heterogeneity among SA-type viruses, the E1 and E2 proteins of NA- and SA-serotype viruses exhibited serotype-specific structural variation. The C protein was highly conserved among isolates of both virus serotypes. Endoglycosidase analyses of intact virions did not reveal substantial glycosylation differences between the glycoproteins of NA- and SA-serotype viruses. Both the HMW protein and the E2 protein (doublet) of EEE virus appeared to contain, at least in part, high-mannose type N-linked oligosaccharides. No evidence of O-linked glycans was found on either the E1 or the E2 glycoprotein. Despite the observed structural differences between proteins of NA- and SA-type viruses, Western blot analyses utilizing polyclonal antibodies indicated that immunoreactive epitopes appeared to be conserved.

  5. Fatal meningitis in a previously healthy young adult caused by Streptococcus pneumoniae serotype 38: an emerging serotype?

    Directory of Open Access Journals (Sweden)

    Pearse Lisa A

    2005-05-01

    Full Text Available Abstract Background In December 2001, a fatal case of pneumococcal meningitis in a Marine Corps recruit was identified. As pneumococcal vaccine usage in recruit populations is being considered, an investigation was initiated into the causative serotype. Case presentation Traditional and molecular methods were utilized to determine the serotype of the infecting pneumococcus. The pneumococcal isolate was identified as serotype 38 (PS38, a serotype not covered by current vaccine formulations. The global significance of this serotype was explored in the medical literature, and found to be a rare but recognized cause of carriage and invasive disease. Conclusion The potential of PS38 to cause severe disease is documented in this report. Current literature does not support the hypothesis that this serotype is increasing in incidence. However, as we monitor the changing epidemiology of pneumococcal illness in the US in this conjugate era, PS38 might find a more prominent and concerning niche as a replacement serotype.

  6. Simultaneous administration of two human-rhesus rotavirus reassortant strains of VP7 serotype 1 and 2 specificity to infants and young children.

    Science.gov (United States)

    Wright, P F; King, J; Araki, K; Kondo, Y; Thompson, J; Tollefson, S J; Kobayashi, M; Kapikian, A Z

    1991-08-01

    Two rotavirus vaccine strains representing VP7 serotypes 1 and 2 derived by reassortment between a rhesus rotavirus master strain, MMU18006, and either of two human rotavirus strains were administered simultaneously to infants and young children to assess potential interactions between strains. Children were observed in a day care setting for 10 days after vaccine administration for clinical symptoms, evidence of vaccine transmission, and patterns of viral shedding. Serum and local antibody responses were measured. The ratio of input virus strongly influenced the amount of each strain recovered from the child. Regardless of dose of virus administered, the neutralizing antibody response to the VP7 glycoprotein, the serotype determinant, was diminished in a bivalent preparation compared with a monovalent vaccine. Additional strategies must be sought to induce immunity against the multiple serotypes of human rotavirus before broad immunity will be established.

  7. Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector.

    Science.gov (United States)

    Burgin, Laura; Ekström, Marie; Dessai, Suraje

    2017-07-01

    Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge's flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods.

  8. Les porcheries : réservoirs des Culicoides (Diptera : Ceratopogonidae, vecteurs des virus de la Maladie de la Langue bleue et de Schmallenberg ?

    Directory of Open Access Journals (Sweden)

    Zimmer, JY.

    2014-01-01

    Full Text Available Pig farms: reservoirs of vectors of Bluetongue and Schmallenberg viruses?. Bluetongue (BT is a vector-borne disease that affects domestic and wild ruminants. Since its recent outbreak in northern Europe, this viral disease has caused considerable economic losses. The biological vectors of the bluetongue virus are biting midges belonging to the genus Culicoides (Diptera: Ceratopogonidae. Several light trapping campaigns targeting these adult midges have been previously conducted in Belgium within cattle and sheep farms, but none have been performed inside pig farms. This study therefore aims to assess, using light traps, the levels of Culicoides populations that may have been present inside two Belgian pig farms during the fall and winter of 2008. The presence of (potential Culicoides vector species was demonstrated inside the pig buildings during the fall: 8 and 749 specimens belonging to 2 and 7 species were respectively trapped inside the pigsties, with the majority being Obsoletus complex females. The opening up of the buildings seemed to strongly influence their presence. Observation of the females' nutritional status suggests that these midges were likely to have fed or to have laid eggs inside the pig farms, despite the fact that pig's blood could not be identified in the abdomen of engorged females and that pig manure did not reveal the presence of larvae. Pigs could thus be involved in the maintenance of potential vector species populations of the BT virus, or of the new Schmallenberg virus.

  9. Dengue virus-specific, human CD4+ CD8- cytotoxic T-cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones.

    OpenAIRE

    Kurane, I; Brinton, M A; Samson, A L; Ennis, F A

    1991-01-01

    Thirteen dengue virus-specific, cytotoxic CD4+ CD8- T-cell clones were established from a donor who was infected with dengue virus type 3. These clones were examined for virus specificity and human leukocyte antigen (HLA) restriction in cytotoxic assays. Six patterns of virus specificities were determined. Two serotype-specific clones recognized only dengue virus type 3. Two dengue virus subcomplex-specific clones recognized dengue virus types 2, 3, and 4, and one subcomplex-specific clone re...

  10. First molecular identification of the vertebrate hosts of Culicoides imicola in Europe and a review of its blood-feeding patterns worldwide: implications for the transmission of bluetongue disease and African horse sickness.

    Science.gov (United States)

    Martínez-DE LA Puente, J; Navarro, J; Ferraguti, M; Soriguer, R; Figuerola, J

    2017-12-01

    Culicoides (Diptera: Ceratopogonidae) are vectors of pathogens that affect wildlife, livestock and, occasionally, humans. Culicoides imicola (Kieffer, 1913) is considered to be the main vector of the pathogens that cause bluetongue disease (BT) and African horse sickness (AHS) in southern Europe. The study of blood-feeding patterns in Culicoides is an essential step towards understanding the epidemiology of these pathogens. Molecular tools that increase the accuracy and sensitivity of traditional methods have been developed to identify the hosts of potential insect vectors. However, to the present group's knowledge, molecular studies that identify the hosts of C. imicola in Europe are lacking. The present study genetically characterizes the barcoding region of C. imicola trapped on farms in southern Spain and identifies its vertebrate hosts in the area. The report also reviews available information on the blood-feeding patterns of C. imicola worldwide. Culicoides imicola from Spain feed on blood of six mammals that include species known to be hosts of the BT and AHS viruses. This study provides evidence of the importance of livestock as sources of bloodmeals for C. imicola and the relevance of this species in the transmission of BT and AHS viruses in Europe. © 2017 The Royal Entomological Society.

  11. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic...

  12. Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention.

    Science.gov (United States)

    Lynch, Joseph P; Kajon, Adriana E

    2016-08-01

    Adenoviruses (AdVs) are DNA viruses that typically cause mild infections involving the upper or lower respiratory tract, gastrointestinal tract, or conjunctiva. Rare manifestations of AdV infections include hemorrhagic cystitis, hepatitis, hemorrhagic colitis, pancreatitis, nephritis, or meningoencephalitis. AdV infections are more common in young children, due to lack of humoral immunity. Epidemics of AdV infection may occur in healthy children or adults in closed or crowded settings (particularly military recruits). The disease is more severe and dissemination is more likely in patients with impaired immunity (e.g., organ transplant recipients, human immunodeficiency virus infection). Fatality rates for untreated severe AdV pneumonia or disseminated disease may exceed 50%. More than 50 serotypes of AdV have been identified. Different serotypes display different tissue tropisms that correlate with clinical manifestations of infection. The predominant serotypes circulating at a given time differ among countries or regions, and change over time. Transmission of novel strains between countries or across continents and replacement of dominant viruses by new strains may occur. Treatment of AdV infections is controversial, as prospective, randomized therapeutic trials have not been conducted. Cidofovir is the drug of choice for severe AdV infections, but not all patients require treatment. Live oral vaccines are highly efficacious in reducing the risk of respiratory AdV infection and are in routine use in the military in the United States, but currently are not available to civilians. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Dengue serotype immune-interactions and their consequences for vaccine impact predictions

    Directory of Open Access Journals (Sweden)

    José Lourenço

    2016-09-01

    Full Text Available Dengue is one of the most important and wide-spread viral infections affecting human populations. The last few decades have seen a dramatic increase in the global burden of dengue, with the virus now being endemic or near-endemic in over 100 countries world-wide. A recombinant tetravalent vaccine candidate (CYD-TDV has recently completed Phase III clinical efficacy trials in South East Asia and Latin America and has been licensed for use in several countries. The trial results showed moderate-to-high efficacies in protection against clinical symptoms and hospitalisation but with so far unknown effects on transmission and infections per se. Model-based predictions about the vaccine's short- or long-term impact on the burden of dengue are therefore subject to a considerable degree of uncertainty. Furthermore, different immune interactions between dengue's serotypes have frequently been evoked by modelling studies to underlie dengue's oscillatory dynamics in disease incidence and serotype prevalence. Here we show how model assumptions regarding immune interactions in the form of antibody-dependent enhancement, temporary cross-immunity and the number of infections required to develop full immunity can significantly affect the predicted outcome of a dengue vaccination campaign. Our results thus re-emphasise the important gap in our current knowledge concerning the effects of previous exposure on subsequent dengue infections and further suggest that intervention impact studies should be critically evaluated by their underlying assumptions about serotype immune-interactions.

  14. Comparison of an avidin-biotin immunoassay with three commercially available immunofluorescence kits for typing of herpes simplex virus.

    OpenAIRE

    Barnard, D L; Johnson, F B; Richards, D F

    1985-01-01

    An avidin-biotin complex system was compared with three commercially available immunofluorescence kits for serotyping herpes simplex virus isolates from clinical specimens. Sensitivity values showed that the Electro-Nucleonics and Immulok reagents were useful in detecting the presence of virus, whereas the predictive values showed that the Syva and Immulok reagents possessed adequate discrimination between the herpes simplex virus serotypes. The avidin-biotin complex system was equal or super...

  15. The use of oligonucleotide probes for meningococcal serotype characterization

    Directory of Open Access Journals (Sweden)

    SACCHI Claudio Tavares

    1998-01-01

    Full Text Available In the present study we examine the potential use of oligonucleotide probes to characterize Neisseria meningitidis serotypes without the use of monoclonal antibodies (MAbs. Antigenic diversity on PorB protein forms the bases of serotyping method. However, the current panel of MAbs underestimated, by at least 50% the PorB variability, presumably because reagents for several PorB variable regions (VRs are lacking, or because a number of VR variants are not recognized by serotype-defining MAbs12. We analyzed the use of oligonucleotide probes to characterize serotype 10 and serotype 19 of N. meningitidis. The porB gene sequence for the prototype strain of serotype 10 was determined, aligned with 7 other porB sequences from different serotypes, and analysis of individual VRs were performed. The results of DNA probes 21U (VR1-A and 615U (VR3-B used against 72 N. meningitidis strains confirm that VR1 type A and VR3 type B encode epitopes for serotype-defined MAbs 19 and 10, respectively. The use of probes for characterizing serotypes possible can type 100% of the PorB VR diversity. It is a simple and rapid method specially useful for analysis of large number of samples.

  16. Economic analysis of animal disease outbreaks--BSE and Bluetongue disease as examples.

    Science.gov (United States)

    Gethmann, Jörn; Probst, Carolina; Sauter-Louis, Carola; Conraths, Franz Josef

    2015-01-01

    Although there is a long tradition of research on animal disease control, economic evaluation of control measures is rather limited in veterinary medicine. This may, on the one hand, be due to the different types of costs and refunds and the different people and organizations bearing them, such as animal holders, county, region, state or European Union, but it may also be due to the fact that economic analyses are both complex and time consuming. Only recently attention has turned towards economic analysis in animal disease control. Examples include situations, when decisions between different control measures must be taken, especially if alternatives to culling or compulsory vaccination are under discussion. To determine an optimal combination of control measures (strategy), a cost-benefit analysis should be performed. It is not necessary to take decisions only based on the financial impact, but it becomes possible to take economic aspects into account. To this end, the costs caused by the animal disease and the adopted control measures must be assessed. This article presents a brief overview of the methodological approaches used to retrospectively analyse the economic impact of two particular relevant diseases in Germany in the last few years: Blue-tongue disease (BT) and Bovine Spongiform Encephalopathy (BSE).

  17. Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe

    Science.gov (United States)

    Guis, Helene; Caminade, Cyril; Calvete, Carlos; Morse, Andrew P.; Tran, Annelise; Baylis, Matthew

    2012-01-01

    Vector-borne diseases are among those most sensitive to climate because the ecology of vectors and the development rate of pathogens within them are highly dependent on environmental conditions. Bluetongue (BT), a recently emerged arboviral disease of ruminants in Europe, is often cited as an illustration of climate's impact on disease emergence, although no study has yet tested this association. Here, we develop a framework to quantitatively evaluate the effects of climate on BT's emergence in Europe by integrating high-resolution climate observations and model simulations within a mechanistic model of BT transmission risk. We demonstrate that a climate-driven model explains, in both space and time, many aspects of BT's recent emergence and spread, including the 2006 BT outbreak in northwest Europe which occurred in the year of highest projected risk since at least 1960. Furthermore, the model provides mechanistic insight into BT's emergence, suggesting that the drivers of emergence across Europe differ between the South and the North. Driven by simulated future climate from an ensemble of 11 regional climate models, the model projects increase in the future risk of BT emergence across most of Europe with uncertainty in rate but not in trend. The framework described here is adaptable and applicable to other diseases, where the link between climate and disease transmission risk can be quantified, permitting the evaluation of scale and uncertainty in climate change's impact on the future of such diseases. PMID:21697167

  18. Genesis of a novel Shigella flexneri serotype by sequential infection of serotype-converting bacteriophages SfX and SfI

    Directory of Open Access Journals (Sweden)

    Sun Qiangzheng

    2011-12-01

    Full Text Available Abstract Background Shigella flexneri is the major pathogen causing bacillary dysentery. Fifteen serotypes have been recognized up to now. The genesis of new S. flexneri serotypes is commonly mediated by serotype-converting bacteriophages. Untypeable or novel serotypes from natural infections had been reported worldwide but have not been generated in laboratory. Results A new S. flexneri serotype-serotype 1 d was generated when a S. flexneri serotype Y strain (native LPS was sequentially infected with 2 serotype-converting bacteriophages, SfX first and then SfI. The new serotype 1 d strain agglutinated with both serotype X-specific anti-7;8 grouping serum and serotype 1a-specific anti- I typing serum, and differed from subserotypes 1a, 1b and 1c. Twenty four S. flexneri clinical isolates of serotype X were all converted to serotype 1 d by infection with phage SfI. PCR and sequencing revealed that SfI and SfX were integrated in tandem into the proA-yaiC region of the host chromosome. Conclusions These findings suggest a new S. flexneri serotype could be created in nature. Such a conversion may be constrained by susceptibility of a strain to infection by a given serotype-converting bacteriophage. This finding has significant implications in the emergence of new S. flexneri serotypes in nature.

  19. Precisely Molded Nanoparticle Displaying DENV-E Proteins Induces Robust Serotype-Specific Neutralizing Antibody Responses.

    Directory of Open Access Journals (Sweden)

    Stefan W Metz

    2016-10-01

    Full Text Available Dengue virus (DENV is the causative agent of dengue fever and dengue hemorrhagic fever. The virus is endemic in over 120 countries, causing over 350 million infections per year. Dengue vaccine development is challenging because of the need to induce simultaneous protection against four antigenically distinct DENV serotypes and evidence that, under some conditions, vaccination can enhance disease due to specific immunity to the virus. While several live-attenuated tetravalent dengue virus vaccines display partial efficacy, it has been challenging to induce balanced protective immunity to all 4 serotypes. Instead of using whole-virus formulations, we are exploring the potentials for a particulate subunit vaccine, based on DENV E-protein displayed on nanoparticles that have been precisely molded using Particle Replication in Non-wetting Template (PRINT technology. Here we describe immunization studies with a DENV2-nanoparticle vaccine candidate. The ectodomain of DENV2-E protein was expressed as a secreted recombinant protein (sRecE, purified and adsorbed to poly (lactic-co-glycolic acid (PLGA nanoparticles of different sizes and shape. We show that PRINT nanoparticle adsorbed sRecE without any adjuvant induces higher IgG titers and a more potent DENV2-specific neutralizing antibody response compared to the soluble sRecE protein alone. Antigen trafficking indicate that PRINT nanoparticle display of sRecE prolongs the bio-availability of the antigen in the draining lymph nodes by creating an antigen depot. Our results demonstrate that PRINT nanoparticles are a promising platform for delivering subunit vaccines against flaviviruses such as dengue and Zika.

  20. Adenovirus structural protein IIIa is involved in the serotype specificity of viral DNA packaging.

    Science.gov (United States)

    Ma, Hsin-Chieh; Hearing, Patrick

    2011-08-01

    The packaging of the adenovirus (Ad) genome into a capsid displays serotype specificity. This specificity has been attributed to viral packaging proteins, the IVa2 protein and the L1-52/55K protein. We previously found that the Ad17 L1-52/55K protein was not able to complement the growth of an Ad5 L1-52/55K mutant virus, whereas two other Ad17 packaging proteins, IVa2 and L4-22K, could complement the growth of Ad5 viruses with mutations in the respective genes. In this report, we investigated why the Ad17 L1-52/55K protein was not able to complement the Ad5 L1-52/55K mutant virus. We demonstrate that the Ad17 L1-52/55K protein binds to the Ad5 IVa2 protein in vitro and the Ad5 packaging domain in vivo, activities previously associated with packaging function. The Ad17 L1-52/55K protein also associates with empty Ad5 capsids. Interestingly, we find that the Ad17 L1-52/55K protein is able to complement the growth of an Ad5 L1-52/55K mutant virus in conjunction with the Ad17 structural protein IIIa. The same result was found with the L1-52/55K and IIIa proteins of several other Ad serotypes, including Ad3 and Ad4. The Ad17 IIIa protein associates with empty Ad5 capsids. Consistent with the complementation results, we find that the IIIa protein interacts with the L1-52/55K protein in vitro and associates with the viral packaging domain in vivo. These results underscore the complex nature of virus assembly and genome encapsidation and provide a new model for how the viral genome may tether to the empty capsid during the encapsidation process.

  1. Genomic characterization of Flavobacterium psychrophilum serotypes and development of a multiplex PCR-based serotyping scheme

    DEFF Research Database (Denmark)

    Rochat, Tatiana; Fujiwara-Nagata, Erina; Calvez, Ségolène

    2017-01-01

    Flavobacterium psychrophilum is a devastating bacterial pathogen of salmonids reared in freshwater worldwide. So far, serological diversity between isolates has been described but the underlying molecular factors remain unknown. By combining complete genome sequence analysis and the serotyping me...... for bacterial coldwater disease resistance and future vaccine formulation....

  2. Phenotypic and genomic analysis of serotype 3 Sabin poliovirus vaccine produced in MRC-5 cell substrate.

    Science.gov (United States)

    Alirezaie, Behnam; Taqavian, Mohammad; Aghaiypour, Khosrow; Esna-Ashari, Fatemeh; Shafyi, Abbas

    2011-05-01

    The cell substrate has a pivotal role in live virus vaccines production. It is necessary to evaluate the effects of the cell substrate on the properties of the propagated viruses, especially in the case of viruses which are unstable genetically such as polioviruses, by monitoring the molecular and phenotypical characteristics of harvested viruses. To investigate the presence/absence of mutation(s), the near full-length genomic sequence of different harvests of the type 3 Sabin strain of poliovirus propagated in MRC-5 cells were determined. The sequences were compared with genomic sequences of different virus seeds, vaccines, and OPV-like isolates. Nearly complete genomic sequencing results, however, revealed no detectable mutations throughout the genome RNA-plaque purified (RSO)-derived monopool of type 3 OPVs manufactured in MRC-5. Thirty-six years of experience in OPV production, trend analysis, and vaccine surveillance also suggest that: (i) different monopools of serotype 3 OPV produced in MRC-5 retained their phenotypic characteristics (temperature sensitivity and neuroattenuation), (ii) MRC-5 cells support the production of acceptable virus yields, (iii) OPV replicated in the MRC-5 cell substrate is a highly efficient and safe vaccine. These results confirm previous reports that MRC-5 is a desirable cell substrate for the production of OPV. Copyright © 2011 Wiley-Liss, Inc.

  3. Etiology, pathogenesis and future prospects for developing ...

    African Journals Online (AJOL)

    BTV serotypes are known to occur in Africa, Asia, South America, North America, Middle East, India, and Australia generally between latitudes 35°S and 50°N. It occurs around the Mediterranean in summer, subsiding when temperatures drop in winter. The replication phase of the bluetongue virus (BTV) infection cycle is ...

  4. Reacción en cadena de la polimerasa para la detección rápida y determinación del serotipo de virus del dengue en muestras clínicas Polymerase chain reaction for rapid detection and serotyping of dengue viruses in clinical samples

    Directory of Open Access Journals (Sweden)

    Delfina Rosario

    1998-07-01

    Full Text Available El trabajo que aquí se presenta describe las ventajas de usar la reacción en cadena de la polimerasa con transcriptasa inversa (RCP-TI para detectar e identificar con rapidez virus del dengue en muestras clínicas. Se sometieron directamente a RCP-TI 27 muestras obtenidas de pacientes con fiebre de dengue y fiebre hemorrágica de dengue durante epidemias en Colombia, Nicaragua y Panamá. El ADN de cadena doble obtenido con la RCP-TI se identificó mediante una segunda amplificación (RCP de anidación utilizando cebadores específicos para cada tipo de virus, aislamiento vírico e inmunofluorescencia indirecta (IFI y con electroinmunoensayo enzimático detector de anticuerpos IgM contra el virus del dengue. El genoma vírico amplificado se detectó e identificó en un máximo de 8 horas. Los parámetros calculados para hacer el diagnóstico por RCP-TI, usando el aislamiento vírico y la IFI como estándar de oro, fueron una sensibilidad de 100%; una especificidad de 78%; un valor predictivo positivo de 69% y un valor predictivo negativo de 100%. Cabe notar que dos de los especímenes que dieron resultados positivos a la prueba de RCP-TI anidada y negativos al aislamiento vírico mostraron anticuerpos específicos de tipo IgM. Los resultados de la RCP-TI en general mostraron una estrecha concordancia con los del aislamiento vírico, lo cual sugiere que la RCP es un procedimiento que facilita enormemente el diagnóstico rápido y temprano del dengue.This study describes the benefits of using reverse transcriptase polymerase chain reaction (RT-PCR for the rapid detection and typing of dengue virus in clinical samples. Twenty-seven serum specimens from patients with dengue fever and dengue hemorrhagic fever in Colombia, Nicaragua, and Panama were directly subjected to RT-PCR for the detection of dengue virus. The resulting double-stranded DNA product was typed by a second round of PCR amplification (nested PCR with type specific primers, viral

  5. Protective Role of rAAV-NDI1, Serotype 5, in an Acute MPTP Mouse Parkinson's Model

    Directory of Open Access Journals (Sweden)

    Jennifer Barber-Singh

    2011-01-01

    Full Text Available Defects in mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I have been implicated in a number of acquired and hereditary diseases including Leigh's syndrome and more recently Parkinson's disease. A limited number of strategies have been attempted to repair the damaged complex I with little or no success. We have recently shown that the non-proton-pumping, internal NADH-ubiquinone oxidoreductase (Ndi1 from Saccharomyces cerevisiae (baker's yeast can be successfully inserted into the mitochondria of mice and rats, and the enzyme was found to be fully active. Using recombinant adenoassociated virus vectors (serotype 5 carrying our NDI1 gene, we were able to express the Ndi1 protein in the substantia nigra (SN of C57BL/6 mice with an expression period of two months. The results show that the AAV serotype 5 was highly efficient in expressing Ndi1 in the SN, when compared to a previous model using serotype 2, which led to nearly 100% protection when using an acute MPTP model. It is conceivable that the AAV-serotype5 carrying the NDI1 gene is a powerful tool for proof-of-concept study to demonstrate complex I defects as the causable factor in diseases of the brain.

  6. Prevalence of shigella serotypes and their antimicrobial sensitivity ...

    African Journals Online (AJOL)

    The prevalence of Shigella serotypes and their sensitivity pattern was studied from January 2000 to December 2002 for a period of 3 years. Of the 2420 pediatric diarrhoeal stools screened, 84 Shigella organisms were isolated giving an isolation rate of 3.5%. S.flexneri was the predominant serotype (64%) followed by ...

  7. Antibiotic Susceptibilities and Serotyping of Clinical Streptococcus Agalactiae Isolates

    Directory of Open Access Journals (Sweden)

    Altay Atalay

    2011-11-01

    Full Text Available Objective: Streptococcus agalactiae (Group B streptococci, GBS are frequently responsible for sepsis and meningitis seen in the early weeks of life. GBS may cause perinatal infection and premature birth in pregnant women. The aim of this study was to serotype GBS strains isolated from clinical samples and evaluate their serotype distribution according to their susceptibilities to antibiotics and isolation sites. Material and Methods: One hundred thirty one S. agalactiae strains isolated from the clinical samples were included in the study. Of the strains, 99 were isolated from urine, 20 from soft tissue, 10 from blood and 2 from vaginal swab. Penicillin G and ceftriaxone susceptibilities of GBS were determined by the agar dilution method. Susceptibilities to erythromycin, clindamycin, vancomycin and tetracycline were determined by the Kirby-Bauer method according to CLSI criteria. Serotyping was performed using the latex aglutination method using specific antisera (Ia, Ib, II-VIII. Results: While in 131 GBS strains, serotypes VII and VIII were not detected, the most frequently isolated serotypes were types Ia (36%, III (30.5% and II (13% respectively. Serotype Ia was the most frequently seen serotype in all samples. All GBS isolates were susceptible to penicilin G, ceftriaxone and vancomycin. Among the strains, tetracycline, erythromycin and clindamycin resistance rates were determined as 90%, 14.5%, and 13% respectively. Conclusion: Penicillin is still the first choice of treatment for the infections with all serotypes of S. agalactiae in Turkey.

  8. Serotype sensitivity of a lateral flow immunoassay for cryptococcal antigen.

    Science.gov (United States)

    Gates-Hollingsworth, Marcellene A; Kozel, Thomas R

    2013-04-01

    To meet the needs of a global community, an immunoassay for cryptococcal antigen (CrAg) must have high sensitivity for CrAg of all major serotypes. A new immunoassay for CrAg in lateral flow format was evaluated and found to have a high sensitivity for detection of serotypes A, B, C, and D.

  9. [Use of the cultural variants of Coxsackie A viruses in virological practice].

    Science.gov (United States)

    Seĭbil', V B; Malyshkina, L P; Gracheva, L A; Kozlov, V G

    2012-01-01

    Coxsackie A viruses belong to the enteroviruses, the isolation of which from infectious materials and further cultivation are possible only when laboratory animals are infected. The authors could adapt the strains of 17 of 23 serotypes of these viruses to RD cell culture. The strains of 8 serotypes were additionally adapted to Vero cell culture. The cultural variants of Coxsackle A viruses were used to prepare immune sera. The Bacterial and Viral Agents Enterprise, M. P. Chumakov Institute of Poliomyelitis and Virus Encephalitides, Russian Academy of Medical Sciences, has set up the production of bacterial and viral drugs based on the cultural variants of 5 Coxsackie A virus serotypes. The cultural variants of 14 Coxsackie A virus serotypes were used to carry out a virus neutralization test. Examination of more than 600 children from Moscow and the Moscow Region showed the wide circulation of individual Coxsackie A virus serotypes. It also demonstrated a drastic reduction in Coxsackie A-7 virus circulation in the past 50 years.

  10. Superinfection interference between dengue-2 and dengue-4 viruses in Aedes aegypti mosquitoes.

    Science.gov (United States)

    Muturi, Ephantus J; Buckner, Eva; Bara, Jeffrey

    2017-04-01

    Dengue virus consists of four antigenically distinct serotypes (DENV 1-4) that are transmitted to humans by Aedes aegypti and Aedes albopictus mosquitoes. In many dengue-endemic regions, co-circulation of two or more DENV serotypes is fairly common increasing the likelihood for exposure of the two vectors to multiple serotypes. We used a model system of DENV-2 and DENV-4 to investigate how prior exposure of Aedes aegypti to one DENV serotype affects its susceptibility to another serotype. Aedes aegypti mosquitoes were sequentially infected with DENV-2 and DENV-4 and the infection and dissemination rates for each virus determined. We found that prior infection of Ae. aegypti mosquitoes with DENV-4 rendered them significantly less susceptible to secondary infection with DENV-2. Although the results were not statistically significant, mosquitoes infected with DENV-2 were also less susceptible to secondary infection with DENV-4. The midgut dissemination and population dissemination rates for DENV-2 were significantly higher than those of DENV-4 when either virus was administered 7 days after administration of either a non-infectious blood meal or a blood meal containing a heterologous dengue serotype. These results demonstrate that superinfection interference between DENV serotypes is possible within Ae. aegypti mosquitoes, but its effect on DENV epidemiology may be dependent on the fitness of interacting serotypes. © 2017 John Wiley & Sons Ltd.

  11. Highly Divergent Dengue Virus Type 2 in Traveler Returning from Borneo to Australia.

    Science.gov (United States)

    Liu, Wenjun; Pickering, Paul; Duchêne, Sebastián; Holmes, Edward C; Aaskov, John G

    2016-12-01

    Dengue virus type 2 was isolated from a tourist who returned from Borneo to Australia. Phylogenetic analysis identified this virus as highly divergent and occupying a basal phylogenetic position relative to all known human and sylvatic dengue virus type 2 strains and the most divergent lineage not assigned to a new serotype.

  12. Evaluation of different adjuvants for foot-and-mouth disease vaccine containing all the SAT serotypes

    Directory of Open Access Journals (Sweden)

    M. Cloete

    2008-09-01

    Full Text Available Foot-and-mouth disease (FMD is an economically important disease of cloven-hoofed animals that is primarily controlled by vaccination of susceptible animals and movement restrictions for animals and animal-derived products in South Africa. Vaccination using aluminium hydroxide gel-saponin (AS adjuvanted vaccines containing the South African Territories (SAT serotypes has been shown to be effective both in ensuring that disease does not spread from the endemic to the free zone and in controlling outbreaks in the free zone. Various vaccine formulations containing antigens derived from the SAT serotypes were tested in cattle that were challenged 1 year later. Both the AS and ISA 206B vaccines adjuvanted with saponin protected cattle against virulent virus challenge. The oilbased ISA 206B-adjuvanted vaccine with and without stimulators was evaluated in a field trial and both elicited antibody responses that lasted for 1 year. Furthermore, the ISA 206 adjuvanted FMD vaccine protected groups of cattle against homologous virus challenge at very low payloads, while pigs vaccinated with an emergency ISA 206B-based FMD vaccine containing the SAT 1 vaccine strains were protected against the heterologous SAT 1 outbreak strain.

  13. Laboratory evaluation of the response of Aedes aegypti and Aedes albopictus uninfected and infected with dengue virus to deet

    Science.gov (United States)

    Laboratory studies were conducted to compare the response of Aedes aegypti (L.) and Aedes albopictus (Skuse) adults, uninfected and infected with four serotypes of dengue virus, to a repellent containing 5% deet. The results showed that mosquitoes infected with the four serotypes of dengue respond i...

  14. Dengue virus type 3 in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Nogueira Rita Maria R

    2001-01-01

    Full Text Available Dengue virus type 3 was isolated for the first time in the country as an indigenous case from a 40 year-old woman presenting signs and symptoms of a classical dengue fever in the municipality of Nova Iguaçu, State of Rio de Janeiro. This serotype has been associated with dengue haemorrhagic epidemics and the information could be used to implement appropriate prevention and control measures. Virological surveillance was essential in order to detected this new serotype.

  15. Identification of Adenovirus Serotype 5 Hexon Regions That Interact with Scavenger Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Reeti; Reddy, Vijay S.; Nemerow, Glen R.; Barry, Michael A. (Scripps); (Mayo)

    2012-05-04

    Most of an intravenous dose of species C adenovirus serotype 5 (Ad5) is destroyed by liver Kupffer cells. In contrast, another species C virus, Ad6, evades these cells to mediate more efficient liver gene delivery. Given that this difference in Kupffer cell interaction is mediated by the hypervariable (HVR) loops of the virus hexon protein, we genetically modified each of the seven HVRs of Ad5 with a cysteine residue to enable conditional blocking of these sites with polyethylene glycol (PEG). We show that these modifications do not affect in vitro virus transduction. In contrast, after intravenous injection, targeted PEGylation at HVRs 1, 2, 5, and 7 increased viral liver transduction up to 20-fold. Elimination or saturation of liver Kupffer cells did not significantly affect this increase in the liver transduction. In vitro, PEGylation blocked uptake of viruses via the Kupffer cell scavenger receptor SRA-II. These data suggest that HVRs 1, 2, 5, and 7 of Ad5 may be involved in Kupffer cell recognition and subsequent destruction. These data also demonstrate that this conditional genetic-chemical mutation strategy is a useful tool for investigating the interactions of viruses with host tissues.

  16. Adenovirus serotype 5 vectors with Tat-PTD modified hexon and serotype 35 fiber show greatly enhanced transduction capacity of primary cell cultures.

    Directory of Open Access Journals (Sweden)

    Di Yu

    Full Text Available Recombinant adenovirus serotype 5 (Ad5 vectors represent one of the most efficient gene delivery vectors in life sciences. However, Ad5 is dependent on expression of the coxsackievirus-adenovirus-receptor (CAR on the surface of target cell for efficient transduction, which limits it's utility for certain cell types. Herein we present a new vector, Ad5PTDf35, which is an Ad5 vector having serotype 35 fiber-specificity and Tat-PTD hexon-modification. This vector shows dramatically increased transduction capacity of primary human cell cultures including T cells, monocytes, macrophages, dendritic cells, pancreatic islets and exocrine cells, mesenchymal stem cells and tumor initiating cells. Biodistribution in mice following systemic administration (tail-vein injection show significantly reduced uptake in the liver and spleen of Ad5PTDf35 compared to unmodified Ad5. Therefore, replication-competent viruses with these modifications may be further developed as oncolytic agents for cancer therapy. User-friendly backbone plasmids containing these modifications were developed for compatibility to the AdEasy-system to facilitate the development of surface-modified adenoviruses for gene delivery to difficult-to-transduce cells in basic, pre-clinical and clinical research.

  17. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia

    Directory of Open Access Journals (Sweden)

    Rosalía Pérez-Castro

    2016-04-01

    Full Text Available The Aedes aegypti vector for dengue virus (DENV has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50% and DENV-1 (35%. Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models.

  18. Improved Detection of Nasopharyngeal Cocolonization by Multiple Pneumococcal Serotypes by Use of Latex Agglutination or Molecular Serotyping by Microarray▿†

    Science.gov (United States)

    Turner, Paul; Hinds, Jason; Turner, Claudia; Jankhot, Auscharee; Gould, Katherine; Bentley, Stephen D.; Nosten, François; Goldblatt, David

    2011-01-01

    Identification of Streptococcus pneumoniae in the nasopharynx is critical for an understanding of transmission, estimates of vaccine efficacy, and possible replacement disease. Conventional nasopharyngeal swab (NPS) culture and serotyping (the WHO protocol) is likely to underestimate multiple-serotype carriage. We compared the WHO protocol with methods aimed at improving cocolonization detection. One hundred twenty-five NPSs from an infant pneumococcal-carriage study, containing ≥1 serotype by WHO culture, were recultured in duplicate. A sweep of colonies from o