WorldWideScience

Sample records for blue-green alga anabaena

  1. Blue-Green Algae

    Science.gov (United States)

    ... people with hepatitis C or hepatitis B. HIV/AIDS. Research on the effects of blue-green algae in people with HIV/AIDS has been inconsistent. Some early research shows that taking 5 grams of blue-green ...

  2. Solution Structure of Reduced Plastocyanin from the Blue-Green Alga Anabaena Variabilis

    DEFF Research Database (Denmark)

    Led, J.J.; Badsberg, U.; Jørgensen, A.M.

    1996-01-01

    The three-dimensional solution structure of plastocyanin from Anabaena variabilis (A.v. PCu) has been determined by nuclear magnetic resonance spectroscopy. Sixty structures were calculated by distance geometry from 1141 distance restraints and 46 dihedral angle restraints. The distance geometry....... PCu resembles those of other plastocyanins which have been structurally characterized by X-ray diffraction and NMR methods. This holds even though A.v. PCu is longer than any other known plastocyanins, contains far less invariant amino acid residues, and has an overall charge that differs considerably...... from those of other plastocyanins (+1 vs -9 +/- 1 at pH greater than or equal to 7). The most striking feature of the A.v. PCu structure is the absence of the beta-turn, formed at the remote site by residues (58)-(61) in most higher plant plastocyanins. The displacement caused by the absence...

  3. Solution Structure of Reduced Plastocyanin from the Blue-green Alga Anabaena Variabilis

    DEFF Research Database (Denmark)

    Badsberg, Ulla; Jørgensen, Anne Marie M.; Gesmar, Henrik

    1996-01-01

    The three-dimensional solution structure of plastocyanin from Anabaena variabilis (A.v.PCu) has been determined by nuclear magnetic resonance spectroscopy. Sixty structures were calculated by distance geometry from 1141 distance restraints and 46 dihedral angle restraints. The distance geometry...... those of other plastocyanins which have been structurally characterized by X-ray diffraction and NMR methods. This holds even though A.v.PCu is longer than any other known plastocyanins, contains far less invariant amino acid residues, and has an overall charge that differs considerably from those...... of other plastocyanins (+1 vs -9 +/- 1 at pH > or = 7). The most striking feature of the A.v. PCu structure is the absence of the beta-turn, formed at the remote site by residues (58)-(61) in most higher plant plastocyanins. The displacement caused by the absence of this turn is compensated...

  4. The Biology of blue-green algae

    National Research Council Canada - National Science Library

    Carr, Nicholas G; Whitton, B. A

    1973-01-01

    .... This book, extensively illustrated and thoroughly referenced, will provide the source material for students, and experienced as well as new research workers should find it of great value. A series of short appendices summarize details of culture collections, media and some specialized aspects of growing blue-green algae.

  5. Effect of light on the content of photosynthetically active pigments in plants. Pt. 4. Chromatic adaption in blue-green algae Anabaena cylindrica and A. variabilis

    Energy Technology Data Exchange (ETDEWEB)

    Czeczuga, B.

    1986-07-15

    The photosynthetic pigments (chlorophyll a, carotenoids and phycobiliprotein pigments) of two species of the genus Anabaena grown in white, red, yellow, green and blue light were examined. The highest concentration of the cells was observed in the sample with red light in case of the both species, and the smallest with blue light. The biggest amounts of chlorophyll a and carotenoids were included in the cells of samples with the yellow and the smallest in case of the red light. The ratio of two phycobiliproteins is as follows: - in Anabaena cylindrica: the highest amount of C-phycocyanin in the cells was observed in the case of the red light, and C-phycoerytherin was found in the blue light; - in Anabaena variabiles: the highest amount of C-phycocyanien in the cells was found in case of the yellow light, and allophycocyanin was found in the blue light.

  6. Isolation and Characterization of Blue Green Algae from Egyptian ...

    African Journals Online (AJOL)

    meldemellawy

    2014-02-20

    Feb 20, 2014 ... aminotransferase (AMT) domains of the mycE and ndaF genes (Jungblut et al., 2006) allowing detection of microcystin and nodularin-producing cyanobacteria. MATERIALS AND METHODS. Isolation and cultivation of blue green algae. Blue green algae had been isolated from soil of Rice field in river.

  7. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Thomas, Joseph

    1977-01-01

    Recent work using radioactive nitrogen on the blue-green algae of paddy fields has been reviewed. These algae fix dinitrogen and photoassimilate carbon evolving oxygen, thereby augmenting nitrogen and carbon status of the soil and also providing oxygen to the water-logged rice paddies. Further studies using radioactive isotopes 13 N, 24 Na and 22 Na on their nitrogen fixation, nitrogen assimilation pathways; regulation of nitrogenase, heterocysts production and sporulation and sodium transport and metabolism have been carried out and reported. The field application of blue green algae for N 2 fixation was found to increase the status of soil nitrogen and yield of paddy. (M.G.B.)

  8. Symbiotic Blue Green Algae (Azolla): A Potential Bio fertilizer for ...

    African Journals Online (AJOL)

    Symbiotic Blue Green Algae (Azolla): A Potential Bio fertilizer for Paddy Rice Production in Fogera Plain, Northwestern Ethiopia. ... They were maintained and multiplied in plastic containers at Adet in a greenhouse and then inoculated into concrete tanks for testing their adaptability. Both strains were well adapted to Adet ...

  9. Upstream factors affecting Tualatin River algae—Tracking the 2008 Anabaena algae bloom to Wapato Lake, Oregon

    Science.gov (United States)

    Rounds, Stewart A.; Carpenter, Kurt D.; Fesler, Kristel J.; Dorsey, Jessica L.

    2015-12-17

    Significant Findings A large bloom that included floating mats of the blue-green algae Anabaena flos-aquae occurred in the lower 20 miles of the Tualatin River in northwestern Oregon between July 7 and July 17, 2008.

  10. The Biology of blue-green algae

    National Research Council Canada - National Science Library

    Carr, Nicholas G; Whitton, B. A

    1973-01-01

    .... Their important environmental roles, their part in nitrogen fixation and the biochemistry of phototrophic metabolism are some of the attractions of blue-geen algae to an increasing number of biologists...

  11. [Analysis of the cable structure of blue-green algae].

    Science.gov (United States)

    Levin, S A; Potapova, T V; Skulachev, V P; Chaĭlakhian, L M

    1982-01-01

    Peculiarities of electrical responses under local illumination of filamentous cyanobacteria (blue-green algae). Phormidium uncinatum were studied by means of extracellular electrodes. Recording of electrical responses at different distances from the exposure place and comparison of these data with the results obtained on physical model of Ph. uncinatum end expected response parameters computed made it possible to estimate the parameters of the cable which can serve as the object model: RC=440 c/cm2 and lambda min greater than or equal to 0.07 cm. According to these values and taking membrane capacity as C=10(-6) phi/cm2, intracellular resistance Rm=10(7) Ohm and conductivity of the surface membrane G less than or equal to 10(-6) I/Ohm cm2 were estimated.

  12. Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Gantt, E.; Lipschultz, C.A.; Grabowski, J.; Zimmerman, B.K.

    1979-04-01

    A general procedure for the isolation of functionally intact phycobilisomes was devised, based on modifications of previously used procedures. It has been successful with numerous species of red and blue-green algae (Anabaena variabilis, Anacystis nidulans, Agmenellum quadruplicatum, Fremyella diplosiphon, Glaucosphaera vacuolata, Griffithsia pacifica, Nemalion multifidum, Nostoc sp., Phormidium persicinum, Porphyridium cruentum, P. sordidum, P. aerugineum, Rhodosorus marinus). Isolation was carried out in 0.75 molar K-phosphate (pH 6.8 to 7.0) at 20 to 23 C on sucrose step gradients. Lower temperature (4 to 10 C) was usually unfavorable resulting in uncoupling of energy transfer and partial dissociation of the phycobilisomes, sometimes with complete loss of allophycocyanin. Intact phycobilisomes were characterized by fluorescence emission peaks of 670 to 675 nanometers at room temperature, and 678 to 685 nanometers at liquid nitrogen temperature. Uncoupling and subsequent dissociation of phycobilisomes, in lowered ionic conditions, varied with the species and the degree of dissociation but occurred preferentially between phycocyanin and allophycocyanin, or between phycocyanin and phycoerythrin.

  13. Some metabolic pathways in the blue - green alga micro cystis aeruginosa using 14 C - Labelled compounds

    International Nuclear Information System (INIS)

    Mohammed, H.A.K.

    1993-01-01

    Blue - green algae (cyanobacteria) are of world Wied distribution in fresh water, their toxic and nontoxic strains are forming heavy blooms regularly in eutrophic natural water. They grow rapidly under many physicochemical stresses even in many domestic sewage (Skulberg et al., 1984). The toxic and nontoxic strains are morphologically indistin - guishable, so extensive toxicity testing must be taken into consideration and is so much essential because some species are marketed to human consumption as a food. From the toxicological point of view, at least five genera are now known as toxic strains, these are anabaena, nostoc, oscillator, aphanizomenon, micro cystis (Carmichael, 1981; Carmichael and Mahmood, 1984, and carmichael et al, 1985). The toxicity levels of these species are varied widely with regard to site, season, week or even day of collection (Carmichael and Gorham, 1981). Such variability may be correlated to the changes in species composition. The intensive growth of toxin producing organisms in municipal and recreational water supplies affect human health both wild and domestic animals, Livestock, pets, fish and birds in many countries and are suspected to cause the last and smell of drinking water to be unpleasant (Beasley et al, 1983 and carmichael et al, 1985)

  14. Isolation of plasmid from the blue-green alga Spirulina platensis

    Science.gov (United States)

    Qin, Song; Tong, Shun; Zhang, Peijun; Tseng, C. K.

    1993-09-01

    CCC plasmid was isolated from an economically important blue-green alga — Spirulina platensis (1.7×106 dalton from the S6 strain and 1.2×106 dalton from the F3 strain) using a rapid method based on ultrasonic disruption of algal cells and alkaline removal of chromosomal DNA. The difference in the molecular weight of the CCC DNAs from the two strains differing in form suggests that plasmid may be related with the differentiation of algal form. This modified method, which does not use any lysozyme, is a quick and effective method of plasmid isolation, especially for filamentous blue-green algae.

  15. Characterization of blue green algae isolated from Egyptian rice ...

    African Journals Online (AJOL)

    Several species of cyanobacteria has been recognized for its therapeutic value that can be used for treatment of malnutrition, cancer and viral infection. Many natural occurring cyanobacteria are known to produce toxins, for example, species of the genera Microcystis, Nodularia, Nostoc, Anabaena, Aphanizomenon, ...

  16. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    Science.gov (United States)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  17. Modeling the Role of Zebra Mussels in the Proliferation of Blue-green Algae in Saginaw Bay, Lake Huron

    Science.gov (United States)

    Under model assumptions from Saginaw Bay 1991, selective rejection of blue-green algae by zebra mussels appears to be a necessary factor in the enhancement of blue-green algae production in the presence of zebra mussels. Enhancement also appears to depend on the increased sedime...

  18. Effect of blue-green algae on soil nitrogen | Paudel | African Journal ...

    African Journals Online (AJOL)

    Effect of blue-green algae on soil nitrogen. ... African Journal of Biotechnology ... In paddy fields, the death of algal biomass is most frequently associated with soil dessication at the end of the cultivation cycle and algal growth has frequently resulted in a gradual build up of soil fertility with a residual effect on succeeding crop ...

  19. Alteration of the gastrointestinal microbiota of mice by edible blue-green algae.

    Science.gov (United States)

    Rasmussen, H E; Martínez, I; Lee, J Y; Walter, J

    2009-10-01

    To characterize the effect of edible blue-green algae (cyanobacteria) on the gastrointestinal microbiota of mice. C57BL/6J mice were fed a diet supplemented with 0% or 5% dried Nostoc commune, Spirulina platensis or Afanizominon flos-aquae (w/w) for 4 weeks. Molecular fingerprinting of the colonic microbiota using denaturing gradient gel electrophoresis revealed that administration of N. commune induced major alterations in colonic microbiota composition, while administration of S. platensis or A. flos-aquae had a more subtle impact. Community profile analysis revealed that administration of N. commune did not reduce microbial diversity indices of the colonic microbiota. Despite its pronounced effects on the bacterial composition in the colon, total bacterial numbers in the gut of mice fed N. commune were not reduced as assessed by quantitative real-time PCR and bacteriological culture. The results presented here show that administration of blue-green algae, and especially N. commune, alters colonic microbiota composition in mice with limited effects on total bacterial numbers or microbial diversity. Blue-green algae are consumed in many countries as a source of nutrients and to promote health, and they are intensively studied for their pharmaceutical value. Given the importance of the gut microbiota for many host functions, the effects of blue-green algae on gut microbial ecology revealed during this study should be considered when using them as food supplements or when studying their pharmaceutical properties.

  20. The biotechnological ways of blue-green algae complex processing

    OpenAIRE

    Nykyforov, Volodymyr; Malovanyy, Myroslav; Kozlovskaya, Tatyana; Novokhatko, Olha; Digtiar, Sergii

    2016-01-01

    The results of long­term research of various ways and methods of collection and processing of blue­green algae that cause “bloom” of the Dnieper reservoirs were presented. The possibility and feasibility of the blue­green algae biomass processing to biogas by methanogenesis were substantiated. It was found experimentally that preliminary mechanical cavitation of the blue­green algae biomass increases the biogas yield by 21.5 %. It was determined that the biogas produced contains up to 72 % of...

  1. Anatoxin-a and its metabolites in blue-green algae food supplements from Canada and Portugal.

    Science.gov (United States)

    Rawn, Dorothea F K; Niedzwiadek, Barbara; Lau, Benjamin P Y; Saker, Martin

    2007-03-01

    Blue-green algae and spirulina are marketed in health food stores and over the Internet as food supplements in Canada, the United States, and Europe. The reported benefits of consuming these products include improved digestion, strengthening of the immune system, and relief from the symptoms of attention deficit disorder. Some of these products have been found to contain elevated concentrations of microcystins, which are known hepatotoxins. In addition to producing microcystins, Anabaena sp. and Aphanizomenon sp. also produce the potent neurotoxin anatoxin-a. Samples of food supplements containing blue-green algae and spirulina were collected in Portugal and from urban centers across Canada in 2005. Extracts of these supplements were analyzed to determine the presence and concentrations of anatoxin-a and its two main metabolites, dihydroanatoxin-a and epoxyanatoxin-a. Initial analyses were performed using high-performance liquid chromatography (HPLC) with fluorescence detection, and confirmation required the use of LC with tandem mass spectrometry (LC-MS-MS). The HPLC with fluorescence detection indicated no anatoxin-a, but four samples were suspected to contain either dihydroanatoxin-a or epoxyanatoxin-a at 0.1 to 0.2 microg/g. LC-MS-MS results, however, indicated no trace of either transformation product in any sample analyzed. The detection limits for anatoxin-a, dihydroanatoxin-a, and epoxyanatoxin-a were similar for both fluorescence detection (0.2 to 0.3, 0.4 to 1.4, and 0.2 to 1.5 pg on the column, respectively) and mass spectrometry (0.3 to 1.5, 0.3 to 0.8, and 0.5 to 0.8 pg on the column, respectively). Because of the higher specificity of the LC-MS-MS analysis, all tested food supplement samples were considered free of anatoxin-a and its transformation products.

  2. Effect of blue-green algae on soil nitrogen

    African Journals Online (AJOL)

    Yagya Prasad Paudel

    2012-07-31

    Jul 31, 2012 ... Nitrogen fixed by cyanobacteria is released either through exudation or through microbial decomposition after the alga dies. In paddy fields, the death of algal biomass is most frequently associated with soil dessication at the end of the cultivation cycle and algal growth has frequently resulted in a gradual ...

  3. The prospect function of terrestrial nitrogen-fixing blue-green algae on the fixation of desert

    Science.gov (United States)

    Yang, Yusuo; Lei, Jiaqiang

    2003-07-01

    The Terrestrial Nitrogen-fixing Blue-green Algae, which are possessed of both photosynthesis and nitrogen fixation, are the leading organisms in the adverse circumstances. With their typical cell structures and physiological abilities, they are strongly resistant to drought, infertility etc. The growth of Terrestrial Nitrogen-fixing Blue-green Algae can rich the soils in nitrogen and organic compounds, which are benefit to other microbes and plants. Terrestrial Nitrogen-fixing Blue-green Algae are widely distributed in Gurbantunggut Desert. It was estimated that about 40% of the surface of the desert are covered by the "Black Crust". "Black Crust" is mainly occupied by Terrestrial Nitrogen-fixing Blue-green Algae. It is Terrestrial Nitrogen-fixing Blue-green Algae that construct the mechanical crust with a little other algae and fungi through biological, chemical and physical actions. So Terrestrial Nitrogen-fixing Blue-green Algae play an important part in desert fixation. It was analyzed that there are three species of the blue-greens in the "Black Crust": Microcoleus vaginatus(Vauch)Gom.,Scytonema ocellatum Lynbye and Schizothrix mella Gardner. We had isolated Microcoleus vaginatus(Vauch)Gom. and Scytonema ocellatum Lynbye. Some tests had been made to prove the feasibility of the desert fixation of the Blue-greens. Under experiment conditions, the blue-greens grown on the surface of sand, covered the sand quickly after the inoculation, and formed a mechanical fixed surface layer (7 days for Microcoleus vaginatus, 15-21 days for Scytonema ocellatum).

  4. Health Benefits of Blue-Green Algae: Prevention of Cardiovascular Disease and Nonalcoholic Fatty Liver Disease

    OpenAIRE

    Ku, Chai Siah; Yang, Yue; Park, Youngki; Lee, Jiyoung

    2013-01-01

    Blue-green algae (BGA) are among the most primitive life forms on earth and have been consumed as food or medicine by humans for centuries. BGA contain various bioactive components, such as phycocyanin, carotenoids, γ-linolenic acid, fibers, and plant sterols, which can promote optimal health in humans. Studies have demonstrated that several BGA species or their active components have plasma total cholesterol and triglyceride-lowering properties due to their modulation of intestinal cholester...

  5. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    Science.gov (United States)

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  6. Pathophysiology and Toxicokinetic Studies of Blue-Green Algae Intoxication in the Swine Model

    Science.gov (United States)

    1986-11-21

    hepatotoxi-n, Anabaena flos- aguae ,anatoxin-a natoxin-a(s), anticholinesterase, nicotinic agonist -- It. ASTRAT (Cas~rm co i necsmy id ny by bioc...bioassay and the establishment of methods to neutralize algae toxins in potable water. • • ’ ’ a I I I 32: -22- 1. Brooks, V.P. and Codd, G.A. Extraction...by the Freshwater Cvanobaiterir Anabaena flos- agua .. and Studies with Algal Blocs Material Containing Anatoxin-a(s)-in Mice.-Ducks, Pists. and Cattle

  7. Effects of antibiotics and ultraviolet radiation on the halophilic blue-green alga

    International Nuclear Information System (INIS)

    Yopp, J.H.; Albright, G.; Miller, D.M.; Southern Illinois Univ., Carbondale

    1979-01-01

    The effects of a variety of antibiotics, ultraviolet radiation and N-methyl-N-nitro-N-nitro-N-nitrosoguanidine (NTG) on the survival and mutability of the halophilic blue-green alga, Aphanothece halophytica, were determined. The halophile was found extremely sensitive to penicillin G and bacitracin; moderately sensitive to novobiocin, amino acid analogs, chloramphenicol and streptomycin; and tolerant to actidione and hydroxyurea. Ultraviolet and NTG killing curves and photoreactivation capabilities were seimilar to those reported for other members of the Chroococcales. Three stable morphological mutants were obtained by ultraviolet and NTG treatment, the latter being much more efficient in the production of mutants. (orig.)

  8. On the occurrence of blooms of blue-green algae and the associated oceanographic conditions in the Northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Jayaraman, R.

    A survey of the existing literature on the occurrence of special blooms of planktonic algae and the phenomena such as Red Tide in the Northern Indian Ocean has been attempted The paper describes the occurrence of blooms of the blue-green alga...

  9. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Ganesh Kumar, V.; Stalin Dhas, T.; Karthick, V. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Singaravelu, G. [Nanoscience Division, Department of Zoology, Thiruvalluvar University, Vellore 632115 (India); Elanchezhiyan, M. [Department of Microbiology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113 (India)

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet–visible (UV–vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ∼ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus. - Highlights: • Size controlled synthesis of gold nanoparticles from blue green alga Spirulina platensis • Stability of gold nanoparticles at different temperatures • Potent antibacterial efficacy against Gram positive organisms.

  10. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis.

    Science.gov (United States)

    Hayashi, T; Hayashi, K; Maeda, M; Kojima, I

    1996-01-01

    Bioactivity-directed fractionation of a hot H2O extract from a blue-green alga Spirulina platensis led to the isolation of a novel sulfated polysaccharide named calcium spirulan (Ca-SP) as an antiviral principle. This polysaccharide was composed of rhamnose, ribose, mannose, fructose, galactose, xylose, glucose, glucuronic acid, galacturonic acid, sulfate, and calcium. Ca-SP was found to inhibit the replication of several enveloped viruses, including Herpes simplex virus type 1, human cytomegalovirus, measles virus, mumps virus, influenza A virus, and HIV-1. It was revealed that Ca-SP selectively inhibited the penetration of virus into host cells. Retention of molecular conformation by chelation of calcium ion with sulfate groups was suggested to be indispensable to its antiviral effect.

  11. Extraction of Nutraceuticals from Spirulina (Blue-Green Alga): A Bioorganic Chemistry Practice Using Thin-layer Chromatography

    Science.gov (United States)

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J.; Luna-Freire, Kristerson R.; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together…

  12. Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves

    NARCIS (Netherlands)

    Goedheer, J.C.

    1969-01-01

    From fluorescence action spectra, fluorescence spectra and absorption spectra measured at room temperature and at 77 °K of light petroleum (b.p. 40–60°)-treated and normal chloroplasts, it is concluded that: 1. 1. In blue-green and red algae energy transfer from β-carotene to chlorophyll occurs

  13. Isolation and Molecular Identification of Some Blue-Green Algae (Cyanobacteria from Freshwater Sites in Tokat Province of Turkey

    Directory of Open Access Journals (Sweden)

    Tunay Karan

    2017-11-01

    Full Text Available Collected blue-green algae (cyanobacteria from freshwater sites throughout Tokat province and its outlying areas were isolated in laboratory environment and their morphological systematics were determined and also their species identifications were studied by molecular methods. Seven different species of blue-green algae collected from seven different sites were isolated by purifying in cultures in laboratory environment. DNA extractions were made from isolated cells and extracted DNAs were amplified by using PCR. Cyanobacteria specific primers were used to amplify 16S rRNA and phycocyanine gene regions using PCR. Phylogenetic identification of species were conducted by evaluation of obtained sequence analysis data by using computer software. According to species identification by sequence analysis, it was seen that molecular data supports morphological systematics.

  14. Effect of inoculating blue-green algae and Azolla on rice yield

    International Nuclear Information System (INIS)

    Kulasooriya, S.A.

    1985-01-01

    Nitrogen fixing blue-green algae (BGA) and the Azolla-Anaebaena symbiosis are potential alternative sources of nitrogen for lowland rice production. A survey of the literature shows that on the average, when BGA inoculation is effective, a rice yield increase of 14% (450 kg grain ha -1 ) has been observed. However, in Sri Lanka no significant increases in grain yield have been observed due to BGA inoculation. Azolla inoculation in broadcast, transplanted, and avenue transplanted rice gave yield increases of 12, 22 and 48%, and was equivalent to 55 to 80 kg N ha -1 as urea. Azolla was observed to reduce weed growth by 53%. Azolla is easier to establish in rice fields since it can be easily recognized with the naked eye, however, BGA are better able to withstand periods of desiccation which occur in rain-fed rice production. Most algalization experiments have been performed on a ''black box'' basis where only the final grain yield has been measured. Isotope experiments can play a vital role in understanding the processes by which BGA and Azolla increase rice yields. (author)

  15. The hepatoprotective activity of blue green algae in Schistosoma mansoni infected mice.

    Science.gov (United States)

    Mohamed, Azza H; Osman, Gamalat Y; Salem, Tarek A; Elmalawany, Alshimaa M

    2014-10-01

    This study aims to evaluate the immunomodulatory effects of a natural product, blue green algae (BGA) (100 mg/kg BW), alone or combined with praziquantel PZQ (250 mg/kg BW) on granulomatous inflammation, liver histopathology, some biochemical and immunological parameters in mice infected with Schistosoma mansoni. Results showed that the diameter and number of egg granuloma were significantly reduced after treatment of S. mansoni-infected mice with BGA, PZQ and their combination. The histopathological alterations observed in the liver of S. mansoni-infected mice were remarkably inhibited after BGA treatments. BGA decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) as well as the level of total protein (TP) while the level of albumin was increased. Treatment of infected mice with BGA, PZQ as well as their combination led to significant elevation in the activities of hepatic antioxidant enzymes glutathione peroxidase (GPX) and glutathione-S-transferase (GST) as compared with control group. Combination of BGA and PZQ resulted in significant reduction in the level of intercellular adhesion molecules-1 (ICAM-1), vascular adhesion molecules-1 (VCAM-1) and tumor necrosis factor-alpha (TNF-α) when compared to those of the S. mansoni-infected group. Overall, BGA significantly inhibited the liver damage accompanied with schistosomiasis, exhibited a potent antioxidant and immunoprotective activities. This study suggests that BGA can be considered as promising for development a complementary and/or alternative medicine against schistosomiasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Synthesis of gold nanoparticles by blue-green algae Spirulina platensis

    International Nuclear Information System (INIS)

    Kalabegishvili, T.; Kirkesali, E.; Rcheulishvili, A.

    2012-01-01

    The synthesis of gold nanoparticles by one of the many popular microorganisms - blue-green algae Spirulina platensis was studied. The complex of optical and analytical methods was applied for investigation of experimental samples after exposure to chloroaurate (HAuCl 4 ) solution at different doses and for different time intervals. To characterize formed gold nanoparticles UV-vis, TEM, SEM, EDAX, and XRD were used. It was shown that after 1.5-2 days of exposure the extracellular formation of nanoparticles of spherical form and the distribution peak within the interval of 20-30 nm took place. To determine gold concentrations in the Spirulina platensis biomass, neutron activation analysis (NAA) and atomic absorption spectrometry (AAS) were applied. The results obtained evidence that the concentration of gold accumulated by Spirulina biomass is rapidly growing in the beginning, followed by some increase for the next few days. The obtained substance of Spirulina biomass with gold nanoparticles may be used for medical, pharmaceutical, and technological purposes

  17. Health benefits of blue-green algae: prevention of cardiovascular disease and nonalcoholic fatty liver disease.

    Science.gov (United States)

    Ku, Chai Siah; Yang, Yue; Park, Youngki; Lee, Jiyoung

    2013-02-01

    Blue-green algae (BGA) are among the most primitive life forms on earth and have been consumed as food or medicine by humans for centuries. BGA contain various bioactive components, such as phycocyanin, carotenoids, γ-linolenic acid, fibers, and plant sterols, which can promote optimal health in humans. Studies have demonstrated that several BGA species or their active components have plasma total cholesterol and triglyceride-lowering properties due to their modulation of intestinal cholesterol absorption and hepatic lipogenic gene expression. BGA can also reduce inflammation by inhibiting the nuclear factor κ B activity, consequently reducing the production of proinflammatory cytokines. Furthermore, BGA inhibit lipid peroxidation and have free radical scavenging activity, which can be beneficial for the protection against oxidative stress. The aforementioned effects of BGA can contribute to the prevention of metabolic and inflammatory diseases. This review provides an overview of the current knowledge of the health-promoting functions of BGA against cardiovascular disease and nonalcoholic fatty liver disease, which are major health threats in the developed countries.

  18. Diversity and Ecology of the Phytoplankton of Filamentous Blue-Green Algae (Cyanoprokaryota, Nostocales in Bulgarian Standing Waters

    Directory of Open Access Journals (Sweden)

    Plamen Stoyanov

    2013-12-01

    Full Text Available The current study presents data about the diversity and ecology of filamentous blue-green algae, found in the phytoplankton of 42 standing water basins in Bulgaria. We identified 9 species from Cyanoprokaryota, which belong to 5 genera from order Nostocales. Ecological characterization of the identified species has been performed. Data about the physicochemical parameters of the water basins are also provided.

  19. Experimental grounds for developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Pavlov, S.S.; Mosulishvili, L.M.; Belokobyl'skij, A.I.; Kirkesali, E.I.

    2002-01-01

    The possibility of using blue-green algae Spirulina platensis as a matrix for production of the selenium- and iodine-containing pharmaceuticals was studied. The dependence of Se and I accumulation in Spirulina biomass during the cultivation in a nutrient medium loading of above elements was determined more precisely. The dynamics of Spirulina biomass growth was observed with nutrient medium loading of selenium. It is found that Spirulina platensis biomass quality may be used for pharmaceutical purposes

  20. Extraction of nutraceuticals from Spirulina (blue-green alga): A bioorganic chemistry practice using thin-layer chromatography.

    Science.gov (United States)

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J; Luna-Freire, Kristerson R; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together current research, theory, and practice, and always in accordance with pedagogical ideas. © 2015 The International Union of Biochemistry and Molecular Biology.

  1. New chemical constituents from Oryza sativa straw and their algicidal activities against blue-green algae.

    Science.gov (United States)

    Ahmad, Ateeque; Kim, Seung-Hyun; Ali, Mohd; Park, Inmyoung; Kim, Jin-Seog; Kim, Eun-Hye; Lim, Ju-Jin; Kim, Seul-Ki; Chung, Ill-Min

    2013-08-28

    Five new constituents, 5,4'-dihydroxy-7,3'-dimethoxyflavone-4'-O-β-D-xylopyranosyl-(2a→1b)-2a-O-β-D-xylopyranosyl-(2b→1c)-2b-O-β-D-xylopyranosyl-2c-octadecanoate (1), 5,4'-dihydroxy-7,3'-dimethoxyflavone-4'-O-α-D-xylopyranosyl-(2a→1b)-2a-O-α-D-xylopyranosyl-(2b→1c)-2b-O-α-D-xylopyranosyl-(2c→1d)-2c-O-α-D-xylopyranosyl-2d-octadecanoate (2), kaempferol-3-O-α-D-xylopyranosyl-(2a→1b)-2a-O-α-D-xylopyranosyl-(2b→1c)-2b-O-α-D-xylopyranosyl-(2c→1d)-2c-O-α-D-xylopyranosyl-2d-hexadecanoate (3), methyl salicylate-2-O-α-D-xylopyranosyl-(2a→1b)-2a-O-α-D-xylopyranosyl-(2b→1c)-2b-O-α-D-xylopyranosyl-(2c→1d)-2c-O-α-D-xylopyranosyl-(2d→1e)-2d-O-α-D-xylopyranosyl-(2e→1f)-2e-O-α-D-xylopyranosyl-(2f→1g)-2f-O-α-D-xylopyranosyl-(2g→1h)-2g-O-α-D-xylopyranosyl-2h-geranilan-8',10'-dioic acid-1'-oate (4), and oleioyl-β-D-arabinoside (5), along with eight known compounds, were isolated from a methanol extract of Oryza sativa straw. The structures of the new compounds were elucidated using one- and two-dimensional NMR spectroscopies in combination with IR, ESI/MS, and HR-ESI/FTMS. In bioassays with blue-green algae, the efficacies of the algicidal activities of the five new compounds (1-5) were evaluated at concentrations of 1, 10, and 100 mg/L. Compound 5 had the highest growth inhibition (92.6 ± 0.3%) for Microcystis aeruginosa UTEX 2388 at a concentration of 100 ppm (mg/L). Compound 5 has high potential for the ecofriendly control of weeds and algae harmful to water-logged rice.

  2. Blue-green algae in water-cooling reservoirs of Electric and Nuclear Power Stations of Ukraine

    International Nuclear Information System (INIS)

    Shevchenko, T.F.

    1995-01-01

    The comparison of the original data on blue-green algae (Cyanophyta) of coolant water bodies of SRPP on NPP of Ukraine with the information on Cyanophyta of water bodies with the ordinary temperature regime and of the thermal springs has been carried out. The species composition, in tensity of growth, complexes of species dominant in the coolant water bodies differ from those in the water bodies with the ordinary temperature regime. Species of Cyanophyta wide spread in the thermal springs are founded in the coolant water bodies. More than 30 of the species belong to the facultative thermofils

  3. Growth of filamentous blue-green algae at high temperatures: a source of biomass for renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Timourian, H.; Ward, R.L.; Jeffries, T.W.

    1977-08-17

    The growth of filamentous blue-green algae (FBGA) at high temperatures in outdoor, shallow solar ponds is being investigated. The temperature of the 60-m/sup 2/ ponds can be controlled to an average temperature of 45/sup 0/C. The growth of FBGA at high temperatures offers an opportunity, not presently available from outdoor algal ponds or energy farms, to obtain large amounts of biomass. Growth of algae at high temperatures results in higher yields because of increased growth rate, the higher light intensity that can be used before saturating the photosynthetic process, easier maintenance of selected FBGA strains, and fewer predators to decimate culture. Additional advantages of growing FBGA as a source of biomass include: bypassing the limitations of nutrient sources, because FBGA fix their own nitrogen and require only CO/sub 2/ when inorganic nutrients are recycled; toleration of higher salinity and metal ion concentrations; and easier and less expensive harvesting procedures.

  4. Epithermal neutron activation analysis of blue-green algae Spirulina Platensis as a matrix for selenium-containing pharmaceuticals

    International Nuclear Information System (INIS)

    Mosulishvili, L.M.; Kirkesali, E.I.; Belokobyl'skij, A.I.; Khizanishvili, A.I.; Frontas'eva, M.V.; Gundorina, S.F.; Oprea, C.D.

    2000-01-01

    To evaluate the potentiality of the blue-green algae Spirulina Platensis as a matrix for the production of Se-containing pharmaceuticals, the background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p)-reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina Platensis biomass were determined by means of epithermal neutron activation analysis. The possibility of the purpose-oriented incorporation of Se into Spirulina Platensis biomass was demonstrated. The polynomial dependence of the Se accumulation on nutritional medium loading was revealed. The employed analytical technique allows one to reliably control the amount of toxic elements in algae Spirulina Platensis. Based on this study, a conclusion of the possibility to use Spirulina Platensis as a matrix for the production of Se-containing pharmaceuticals was drawn

  5. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization

    International Nuclear Information System (INIS)

    Hu, Zhiquan; Zheng, Yang; Yan, Feng; Xiao, Bo; Liu, Shiming

    2013-01-01

    Pyrolysis experiments of blue-green algae blooms (BGAB) were carried out in a fixed-bed reactor to determine the effects of pyrolysis temperature, particle size and sweep gas flow rate on pyrolysis product yields and bio-oil properties. The pyrolysis temperature, particle size and sweep gas flow rate were varied in the ranges of 300–700 °C, below 0.25–2.5 mm and 50–400 mL min −1 , respectively. The maximum oil yield of 54.97% was obtained at a pyrolysis temperature of 500 °C, particle size below 0.25 mm and sweep gas flow rate of 100 mL min −1 . The elemental analysis and calorific value of the oil were determined, and the chemical composition of the oil was investigated using gas chromatography–mass spectroscopy (GC–MS) technique. The analysis of bio-oil composition showed that bio-oil from BGAB could be a potential source of renewable fuel with a heating value of 31.9 MJ kg −1 . - Highlights: ► Bio-oil production from pyrolysis of blue-green algae blooms in fixed bed reactor. ► Effects of pyrolysis conditions on product distribution were investigated. ► The maximum bio-oil yield reached 54.97 wt %. ► The bio-oil has high heating value and may be suitable as renewable fuel. ► Pyrolysis of algal biomass beneficial for energy recovery, eutrophication control

  6. Effects of blue-green algae extracts on the proliferation of human adult stem cells in vitro: a preliminary study.

    Science.gov (United States)

    Shytle, Douglas R; Tan, Jun; Ehrhart, Jared; Smith, Adam J; Sanberg, Cyndy D; Sanberg, Paul R; Anderson, Jerry; Bickford, Paula C

    2010-01-01

    Adult stem cells are known to have a reduced restorative capacity as we age and are more vulnerable to oxidative stress resulting in a reduced ability of the body to heal itself. We have previously reported that a proprietary nutraceutical formulation, NT-020, promotes proliferation of human hematopoietic stem cells in vitro and protects stem cells from oxidative stress when given chronically to mice in vivo. Because previous reports suggest that the blue green algae, Aphanizomenon flos-aquae (AFA) can modulate immune function in animals, we sought to investigate the effects of AFA on human stem cells in cultures. Two AFA products were used for extraction: AFA whole (AFA-W) and AFA cellular concentrate (AFA-C). Water and ethanol extractions were performed to isolate active compounds for cell culture experiments. For cell proliferation analysis, human bone marrow cells or human CD34+ cells were cultured in 96 well plates and treated for 72 hours with various extracts. An MTT assay was used to estimate cell proliferation. We report here that the addition of an ethanol extract of AFA-cellular concentrate further enhances the stem cell proliferative action of NT-020 when incubated with human adult bone marrow cells or human CD34+ hematopoietic progenitors in culture. Algae extracts alone had only moderate activity in these stem cell proliferation assays. This preliminary study suggests that NT-020 plus the ethanol extract of AFA cellular concentrate may act to promote proliferation of human stem cell populations.

  7. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds.

    Science.gov (United States)

    Koníčková, Renata; Vaňková, Kateřina; Vaníková, Jana; Váňová, Kateřina; Muchová, Lucie; Subhanová, Iva; Zadinová, Marie; Zelenka, Jaroslav; Dvořák, Aleš; Kolář, Michal; Strnad, Hynek; Rimpelová, Silvie; Ruml, Tomáš; J Wong, Ronald; Vítek, Libor

    2014-01-01

    Spirulina platensis is a blue-green alga used as a dietary supplement because of its hypocholesterolemic properties. Among other bioactive substances, it is also rich in tetrapyrrolic compounds closely related to bilirubin molecule, a potent antioxidant and anti-proliferative agent. The aim of our study was to evaluate possible anticancer effects of S. platensis and S. platensis-derived tetrapyrroles using an experimental model of pancreatic cancer. The anti-proliferative effects of S. platensis and its tetrapyrrolic components [phycocyanobilin (PCB) and chlorophyllin, a surrogate molecule for chlorophyll A] were tested on several human pancreatic cancer cell lines and xenotransplanted nude mice. The effects of experimental therapeutics on mitochondrial reactive oxygen species (ROS) production and glutathione redox status were also evaluated. Compared to untreated cells, experimental therapeutics significantly decreased proliferation of human pancreatic cancer cell lines in vitro in a dose-dependent manner (from 0.16 g•L-1 [S. platensis], 60 μM [PCB], and 125 μM [chlorophyllin], p<0.05). The anti-proliferative effects of S. platensis were also shown in vivo, where inhibition of pancreatic cancer growth was evidenced since the third day of treatment (p < 0.05). All tested compounds decreased generation of mitochondrial ROS and glutathione redox status (p = 0.0006; 0.016; and 0.006 for S. platensis, PCB, and chlorophyllin, respectively). In conclusion, S. platensis and its tetrapyrrolic components substantially decreased the proliferation of experimental pancreatic cancer. These data support a chemopreventive role of this edible alga. Furthermore, it seems that dietary supplementation with this alga might enhance systemic pool of tetrapyrroles, known to be higher in subjects with Gilbert syndrome.

  8. Promotive effect of se on the growth and antioxidation of a blue-green alga Spirulina maxima

    Science.gov (United States)

    Zhi-Gang, Zhou; Zhi-Li, Liu

    1998-12-01

    Cultures of a blue-green alga Spirulina maxima (Setch. et Gard.) Geitler with various concentrations of Se in Zarrouk's medium showed that not higher than 40 mg/L Se could promote its growth. The present experiments showed that S. maxima grown under normal conditions, has an oxidant stress defence system for hydrogen peroxide (H2O2) removal, which is the Halliwell-Asada pathway. When 4 to 20 mg/L Se was added to the algal medium, this pathway was replaced by a so-called Sestressed pathway containing GSH peroxidase (GSH-POD). As a result of the occurrence of both higher activity of GSH-POD and lower levels of hydroxyl radical (OH·), the Se-stressed pathway scavenged H2O2 so effectively that the growth of S. maxima was promoted by 4 to 20 mg/L Se. While GSH-POD activity of the alga disappeared at 40 mg/L Se, the recovery of ascorbate peroxidase was observed. The lower levels of ascorbic acid and GSH made the Halliwell-Asada pathway for scavenging H2O2 less effective, while the highest activity of catalase might be responsible in part for the H2O2 removal, causing the level of OH· in S. maxima grown at 40 mg/L Se to be much higher than the OH· level in this alga grown at 4 to 20 mg/L Se, but lower than that in the control. The OH· level changes caused the growth of S. maxima cultured at 40 mg/L Se to increase slightly to close to that of the control.

  9. Therapeutic Effect of C-Phycocyanin Extracted from Blue Green Algae in a Rat Model of Acute Lung Injury Induced by Lipopolysaccharide

    OpenAIRE

    Leung, Pak-on; Lee, Hao-Hsien; Kung, Yu-Chien; Tsai, Ming-Fan; Chou, Tz-Chong

    2013-01-01

    C-Phycocyanin (CPC), extracted from blue green algae, is a dietary nutritional supplement due to its several beneficial pharmacological effects. This study was conducted to evaluate whether CPC protects against lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in rats. Rats were challenged with LPS (5?mg/kg body weight) intratracheally to induce ALI. After 3?h LPS instillation, rats were administrated with CPC (50?mg/kg body weight, i.p.) for another 3?h. Our results showed that post...

  10. Induction of mutations in blue-green alga Anacystis nidulans by consolidated and split UV irradiation

    International Nuclear Information System (INIS)

    Amla, D.V.

    1979-01-01

    Ultraviolet mutability of consolidated and split dose treatment in A. nidulans was investigated with reference to induction of phage- and streptomycin-resistant markers. The consolidated UV treatment induced both the markers about 100-150-fold, whereas under photoreactivating conditions the survival of alga was enhanced and mutation frequency was decreased. The split UV treatment with 6 hr dark incubation between two UV exposures enhanced the survival and mutation frequencies to 500-700 fold above the back-ground level. The data give indirect evidence for the presence of error-prone dark repair system in this organism. (auth.)

  11. Induction of mutations in the blue-green alga Plectonema boryanum Gomont

    International Nuclear Information System (INIS)

    Singh, R.N.; Kashyap, A.K.

    1977-01-01

    Mutations to cyanophage and streptomycin resistance were induced in the filamentous blue-gree alga Plectonema boryanum IU 594 after treatment with ultraviolet irradiation, N-methyl-N'-nitro-Nnitrosoguanidine, acriflavine, 2-aminopurine and caffeine. Phage-resistant mutants were obtained with all the mutagens tested. Their efficiencies were in the order: MNNG>UV>acriflavine >2-AP>caffeine. In contrast, the drug-resistant mutants were not induced by base analogues: the efficiencies were: acriflavine>MNNG>UV. Lethal and mutational lesions induced with UV were efficiently repaired under photo-reactivating conditions whereas post-treatment with caffeine resulted in enhanced mutation frequencies especially at low UV doses. Neither survival nor mutagenesis was enhanced by keeping the MNNG-treated population in subdued light

  12. Food production and gas exchange system using blue-green alga (spirulina) for CELSS

    Science.gov (United States)

    Oguchi, Mitsuo; Otsubo, Koji; Nitta, Keiji; Hatayama, Shigeki

    1987-01-01

    In order to reduce the cultivation area required for the growth of higher plants in space adoption of algae, which have a higher photosynthetic ability, seems very suitable for obtaining oxygen and food as a useful source of high quality protein. The preliminary cultivation experiment for determining optimum cultivation conditions and for obtaining the critical design parameters of the cultivator itself was conducted. Spirulina was cultivated in the 6 liter medium containing a sodium hydrogen carbonate solution and a cultivation temperature controlled using a thermostat. Generated oxygen gas was separated using a polypropyrene porous hollow fiber membrane module. Through this experiment, oxygen gas (at a concentration of more than 46 percent) at a rate of 100 to approx. 150 ml per minute could be obtained.

  13. Concurrently inhibitory and allelopathic effects of allelochemicals secreted by Myriophyllum spicatum on growth of blue-green algae; Hozakinofusamo ga hoshutsushita areropashi busshitsu no aisorui ni taisuru fukugo sayo oyobi areropashi koka no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, S.; Inoue, Y.; Hosomi, M.; Murakami, A. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan)

    1998-10-10

    This paper describes effects of allelochemicals secreted by Myriophyllum spicatum on growth of blue-green algae. In order to propose an effective growth inhibitory method of blue-green algae with less impact on the ecosystem, biological interaction (allelopathy) between large aquatic plants and algae was investigated. Pyrogallic acid, gallic acid, catechin and ellagic acid secreted by M. spicatum provided growth inhibitory effects of blue-green algae (Microcyctis aeruginosa), individually. Complex interaction and allelopathic contribution of these four polyphenols were evaluated. By comparing the actual effects with the expected values, synergetic growth inhibitory effects were recognized by adding four polyphenols at the same time. Furthermore, growth inhibitory effects were evaluated for actual culture solution of M. spicatum and simulated culture solution made by four polyphenols. As a result, it was found that these four polyphenols relate to allelopathy of M. spicatum. 25 refs., 6 figs., 4 tabs.

  14. Mycosporine-like Amino Acids and Other Phytochemicals Directly Detected by High-Resolution NMR on Klamath (Aphanizomenon flos-aquae) Blue-Green Algae.

    Science.gov (United States)

    Righi, Valeria; Parenti, Francesca; Schenetti, Luisa; Mucci, Adele

    2016-09-07

    This study describes for the first time the use of high-resolution nuclear magnetic resonance (NMR) on Klamath (Aphanizomenon flos-aquae, AFA) blue-green algae directly on powder suspension. These algae are considered to be a "superfood", due to their complete nutritional profile that has proved to have important therapeutic effects. The main advantage of NMR spectroscopy is that it permits the detection of a number of metabolites all at once. The Klamath alga metabolome was revealed to be quite complex, and the most peculiar phytochemicals that can be detected directly on algae by NMR are mycosporine-like amino acids (porphyra-334, P334; shinorine, Shi) and low molecular weight glycosides (glyceryl β-d-galactopyranoside, GalpG; glyceryl 6-amino-6-deoxy-α-d-glucopyranoside, ADG), all compounds with a high nutraceutical value. The presence of cis-3,4-DhLys was revealed for the first time. This molecule could be involved in the anticancer properties ascribed to AFA.

  15. Comparative effects of the blue green algae Nodularia spumigena and a lysed extract on detoxification and antioxidant enzymes in the green lipped mussel (Perna viridis)

    International Nuclear Information System (INIS)

    Davies, Warren R.; Siu, William H.L.; Jack, Ralph W.; Wu, Rudolf S.S.; Lam, Paul K.S.; Nugegoda, Dayanthi

    2005-01-01

    Nodularia spumigena periodically proliferates to cause toxic algal blooms with some aquatic animals enduring and consuming high densities of the blue green algae or toxic lysis. N. spumigena contains toxic compounds such as nodularin and lipopolysaccharides. This current work investigates physiological effects of exposure from bloom conditions of N. spumigena cells and a post-bloom lysis. Biochemical and antioxidative biomarkers were comparatively studied over an acute 3-day exposure. In general, a post-bloom N. spumigena lysis caused opposite physiological responses to bloom densities of N. spumigena. Specifically, increases in glutathione (GSH) and glutathione peroxidase (GPx) and decreases in glutathione S-transferase (GST) were observed from the N. spumigena lysis. In contrast, N. spumigena cell densities decreased GSH and increased GST and lipid peroxidation (LPO) in mussels. Findings also suggest that at different stages of a toxic bloom, exposure may result in toxic stress to specific organs in the mussel

  16. Comparative effects of the blue green algae Nodularia spumigena and a lysed extract on detoxification and antioxidant enzymes in the green lipped mussel (Perna viridis)

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Warren R. [Department of Biotechnology and Environmental Biology, RMIT University, Melbourne, Victoria (Australia)]. E-mail: warren.davies@rmit.edu.au; Siu, William H.L. [Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Jack, Ralph W. [Department of Microbiology, University of Otago, Dunedin (New Zealand); Wu, Rudolf S.S. [Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Lam, Paul K.S. [Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Nugegoda, Dayanthi [Department of Biotechnology and Environmental Biology, RMIT University, Melbourne, Victoria (Australia)

    2005-07-01

    Nodularia spumigena periodically proliferates to cause toxic algal blooms with some aquatic animals enduring and consuming high densities of the blue green algae or toxic lysis. N. spumigena contains toxic compounds such as nodularin and lipopolysaccharides. This current work investigates physiological effects of exposure from bloom conditions of N. spumigena cells and a post-bloom lysis. Biochemical and antioxidative biomarkers were comparatively studied over an acute 3-day exposure. In general, a post-bloom N. spumigena lysis caused opposite physiological responses to bloom densities of N. spumigena. Specifically, increases in glutathione (GSH) and glutathione peroxidase (GPx) and decreases in glutathione S-transferase (GST) were observed from the N. spumigena lysis. In contrast, N. spumigena cell densities decreased GSH and increased GST and lipid peroxidation (LPO) in mussels. Findings also suggest that at different stages of a toxic bloom, exposure may result in toxic stress to specific organs in the mussel.

  17. Experimental Substantiation of the Possibility of Developing Selenium- and Iodine-Containing Pharmaceuticals Based on Blue-Green Algae Spirulina Platensis

    CERN Document Server

    Mosulishvili, L M; Belokobylsky, A I; Khisanishvili, L A; Frontasyeva, M V; Pavlov, C C; Gundorina, S F

    2001-01-01

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using -reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loding of the above elements was characterised. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  18. Comparative effects of the blue green algae Nodularia spumigena and a lysed extract on detoxification and antioxidant enzymes in the green lipped mussel (Perna viridis).

    Science.gov (United States)

    Davies, Warren R; Siu, William H L; Jack, Ralph W; Wu, Rudolf S S; Lam, Paul K S; Nugegoda, Dayanthi

    2005-01-01

    Nodularia spumigena periodically proliferates to cause toxic algal blooms with some aquatic animals enduring and consuming high densities of the blue green algae or toxic lysis. N. spumigena contains toxic compounds such as nodularin and lipopolysaccharides. This current work investigates physiological effects of exposure from bloom conditions of N. spumigena cells and a post-bloom lysis. Biochemical and antioxidative biomarkers were comparatively studied over an acute 3-day exposure. In general, a post-bloom N. spumigena lysis caused opposite physiological responses to bloom densities of N. spumigena. Specifically, increases in glutathione (GSH) and glutathione peroxidase (GPx) and decreases in glutathione S-transferase (GST) were observed from the N. spumigena lysis. In contrast, N. spumigena cell densities decreased GSH and increased GST and lipid peroxidation (LPO) in mussels. Findings also suggest that at different stages of a toxic bloom, exposure may result in toxic stress to specific organs in the mussel.

  19. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis

    International Nuclear Information System (INIS)

    Mosulishvili, L.M.; Kirkesali, E.I.; Belokobyl'skij, A.I.; Khizanishvili, A.I.; Frontas'eva, M.V.; Pavlov, S.S.; Gundorina, S.F.

    2001-01-01

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p)-reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loading of the above elements was characterised. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed

  20. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis.

    Science.gov (United States)

    Mosulishvili, L M; Kirkesali, E I; Belokobylsky, A I; Khizanishvili, A I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-08-22

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p) reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in S. platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loading of the above elements was characterized. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  1. In vitro repair of UV- or X-irradiated bacteriophage T4 DNA by extract from blue-green alga Anacystis nidulans

    International Nuclear Information System (INIS)

    Shestakov, S.V.; Postnova, T.I.; Shaknabatian, L.G.

    1975-01-01

    The cell-free extract from the blue-green alga Anacystis nidulans contains enzymes which activate the repair in vitro of transforming DNA of bacteriophage T4 damaged by UV light or X-rays. The repair effect of the extract was observed with double-stranded irradiated DNA but not with denatured irradiated DNA. The level of restoration of the transforming activity depends on the protein concentration in the reaction mixture and on the dose of irradiation. A fraction of DNA lesions induced by X-rays is repaired by a NAD-dependent polynucleotide ligase present in the extract. The repair of UV-induced lesions is most efficient in the presence of magnesium ions, NAD, ATP and the four deoxynucleoside triphosphates. The results indicate that the repair of UV-irradiated DNA is performed with the participation of DNA polymerase and polynucleotide ligase which function in the cell-free extract of the algae on the background of a low deoxyribonuclease activity

  2. The use of 15N-labelled dinitrogen in the study of nitrogen fixation by blue-green algae

    International Nuclear Information System (INIS)

    Jones, J.

    1985-01-01

    Prior to the development of the acetylene reduction technique 15 N was used as the main qualitative and quantitative measure of nitrogen fixation by free-living cyanobacteria in a variety of aquatic and terrestrial habitats. Despite its expense and the technical difficulty, 15 N is a major tool in the study of cyanobacteria, for example, incorporation of 15 N 2 is the definitive test for nitrogen fixation; it is used in the determination of the correct ratio of acetylene reduction to nitrogen fixation, in in situ nitrogen fixation assays, in tracing the formation and fate of extra-cellular nitrogen and in measuring the turnover and grazing rates of cyanobacterial intra-cellular nitrogen. These latter studies show that 15 N-labelled extra-cellular nitrogen can serve as nitrogen sources for a variety of bacteria, fungi, algae and higher plants, and that cyanobacteria are graced and digested by a variety of animals. The turnover rates of cyanobacterial 15 N-labelled cells are dependent on the type of cell, species, environmental conditions and the availability of degrading organisms. The breakdown products are rapidly mineralised and used as nitrogen sources by higher plants. (author)

  3. In vitro and in vivo safety assessment of edible blue-green algae, Nostoc commune var. sphaeroides Kützing and Spirulina plantensis.

    Science.gov (United States)

    Yang, Yue; Park, Youngki; Cassada, David A; Snow, Daniel D; Rogers, Douglas G; Lee, Jiyoung

    2011-07-01

    Blue-green algae (BGA) have been consumed as food and herbal medicine for centuries. However, safety for their consumption has not been well investigated. This study was undertaken to evaluate in vitro and in vivo toxicity of cultivated Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP). Neither NO nor SP contained detectable levels of microcystin (MC)-LA, MC-RR, MC-LW and MC-LR by LC/MS/MS. Cell viability remained ∼70-80% when HepG2 cells were incubated with 0-500 μg/ml of hexane, chloroform, methanol and water-extractable fractions of NO and SP. Four-week-old male and female C57BL/6J mice were fed an AIN-93G/M diet supplemented with 0%, 2.5% or 5% of NO and SP (wt/wt) for 6 months. For both genders, BGA-rich diets did not induce noticeable abnormality in weight gain and plasma alanine aminotransferase (ALT) and aspartate aminotransferase concentrations except a significant increase in plasma ALT levels by 2.5% NO supplementation in male mice at 6 month. Histopathological analysis of livers, however, indicated that BGA did not cause significant liver damage compared with controls. In conclusion, our results suggest that NO and SP are free of MC and the long-term dietary supplementation of up to 5% of the BGA may be consumed without evident toxic side-effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis.

    Science.gov (United States)

    Mishima, T; Murata, J; Toyoshima, M; Fujii, H; Nakajima, M; Hayashi, T; Kato, T; Saiki, I

    1998-08-01

    We have investigated the effect of calcium spirulan (Ca-SP) isolated from a blue-green alga, Spirulina platensis, which is a sulfated polysaccharide chelating calcium and mainly composed of rhamnose, on invasion of B16-BL6 melanoma, Colon 26 M3.1 carcinoma and HT-1080 fibrosarcoma cells through reconstituted basement membrane (Matrigel). Ca-SP significantly inhibited the invasion of these tumor cells through Matrigel/fibronectin-coated filters. Ca-SP also inhibited the haptotactic migration of tumor cells to laminin, but it had no effect on that to fibronectin. Ca-SP prevented the adhesion of B16-BL6 cells to Matrigel and laminin substrates but did not affect the adhesion to fibronectin. The pretreatment of tumor cells with Ca-SP inhibited the adhesion to laminin, while the pretreatment of laminin substrates did not. Ca-SP had no effect on the production and activation of type IV collagenase in gelatin zymography. In contrast, Ca-SP significantly inhibited degradation of heparan sulfate by purified heparanase. The experimental lung metastasis was significantly reduced by co-injection of B16-BL6 cells with Ca-SP. Seven intermittent i.v. injections of 100 microg of Ca-SP caused a marked decrease of lung tumor colonization of B16-BL6 cells in a spontaneous lung metastasis model. These results suggest that Ca-SP, a novel sulfated polysaccharide, could reduce the lung metastasis of B16-BL6 melanoma cells, by inhibiting the tumor invasion of basement membrane probably through the prevention of the adhesion and migration of tumor cells to laminin substrate and of the heparanase activity.

  5. Gelation of edible blue-green algae protein isolate (Spirulina platensis Strain Pacifica): thermal transitions, rheological properties, and molecular forces involved.

    Science.gov (United States)

    Chronakis, I S

    2001-02-01

    Proteins isolated from blue-green algae Spirulina platensis strain Pacifica were characterized by visible absorption, differential scanning calorimetry (DSC), viscometry, and dynamic oscillatory rheological measurements. Unique thermal unfolding, denaturation, aggregation, and gelation of the algal protein isolate are presented. DSC analysis showed that thermal transitions occur at about 67 and 109 degrees C at neutral pH. Calcium chloride stabilized the quaternary structure against denaturation and shifted the transitions at higher temperatures. Viscometric studies of Spirulina protein isolate as a function of temperature showed that the onset of the viscosity increase is closely related to the dissociation-denaturation process. Lower viscosities were observed for the protein solutions dissolved at pH 9 due to an increased protein solubility. Solutions of Spirulina protein isolate form elastic gels during heating to 90 degrees C. Subsequent cooling at ambient temperatures caused a further pronounced increase in the elastic moduli and network elasticity. Spirulina protein isolate has good gelling properties with fairly low minimum critical gelling concentrations of about 1.5 and 2.5 wt % in 0.1 M Tris buffer, pH 7, and with 0.02 M CaCl(2) in the same buffer, respectively. It is suggested that mainly the interactions of exposed hydrophobic regions generate the molecular association, initial aggregation, and gelation of the protein isolate during the thermal treatment. Hydrogen bonds reinforce the network rigidity of the protein on cooling and further stabilize the structure of Spirulina protein gels but alone are not sufficient to form a network structure. Intermolecular sulfhydryl and disulfide bonds were found to play a minor role for the network strength of Spirulina protein gels but affect the elasticity of the structures formed. Both time and temperature at isothermal heat-induced gelation within 40-80 degrees C affect substantially the network formation and

  6. Genetics of blue-green algae

    International Nuclear Information System (INIS)

    Ladha, J.K.; Kumar, H.D.

    1978-01-01

    Mutagenesis and genetics of cyanophyceae are reviewed. Mutant isolation, ultraviolet inactivation, reactivation and production of mutants resistant or sensitive to ultraviolet light, control of gene expression, genetic transfer and mapping are discussed. (UK)

  7. Interaction of pesticides with fresh-water algae

    International Nuclear Information System (INIS)

    Khalil, Z.; Mostafa, I.Y.

    1991-01-01

    The blue-green algae, Anabaena oryzae and phormidium fragile were incubated with radiolabelled carbofuran (2,3-de hydro-2,2-dimethyl-7-benzofuranyl N-methyl carbamate). After filtration, the amounts of radioactivity in tissues and filtrates were analyzed for metabolic products. Of the applied radioactivity, the two algal species were capable of grading 91.4% and 92.1%, respectively. Thin layer chromatographic analysis showed that carbofuran-phenol (2,3-dihydro-7-hydroxy-2,2-dimethyl benzo- furan) was the main metabolite in all fractions. 3-hydroxy-2,2-dimethyl-7-benxofuranyl methyl carbamate and 3-keto benzofuran) were also detected. The parent material accounted for only 3.2% and 0.49% of the applied dose in case of Anabaena oryzae and Phormidium fragile, respectively.2 tab

  8. effect of natural blue-green algal cells lysis on freshwater quality

    African Journals Online (AJOL)

    Compaq

    blue-green algae produced toxins, microcystins, is enhanced by the presence of polyunsaturated fatty acids. Secondarily, it has been reported that unsaturated long- chain fatty acids are toxic to aquatic organisms and known to inhibit fish gill activities resulting into death of fish and other aquatic microorganisms when they.

  9. soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over emphasized as the world is working ... farms further establishes the role of blue green algae in soil nutrients for plant growth. Key words- Soil Fertility, Soil ... with sunlight will promote the growth of soil algae and their contribution to ...

  10. Production and release of selenocyanate by different green freshwater algae in environmental and laboratory samples.

    Science.gov (United States)

    LeBlanc, Kelly L; Smith, Matthew S; Wallschläger, Dirk

    2012-06-05

    In a previous study, selenocyanate was tentatively identified as a biotransformation product when green algae were exposed to environmentally relevant concentrations of selenate. In this follow-up study, we confirm conclusively the presence of selenocyanate in Chlorella vulgaris culture medium by electrospray mass spectrometry, based on selenium's known isotopic pattern. We also demonstrate that the observed phenomenon extends to other green algae (Chlorella kesslerii and Scenedesmus obliquus) and at least one species of blue-green algae (Synechococcus leopoliensis). Further laboratory experiments show that selenocyanate production by algae is enhanced by addition of nitrate, which appears to serve as a source of cyanide produced in the algae. Ultimately, this biotransformation process was confirmed in field experiments where trace amounts of selenocyanate (0.215 ± 0.010 ppb) were observed in a eutrophic, selenium-impacted river with massive algal blooms, which consisted of filamentous green algae (Cladophora genus) and blue-green algae (Anabaena genus). Selenocyanate abundance was low despite elevated selenium concentrations, apparently due to suppression of selenate uptake by sulfate, and insufficient nitrogen concentrations. Finally, trace levels of several other unidentified selenium-containing compounds were observed in these river water samples; preliminary suggestions for their identities include thioselenate and small organic Se species.

  11. Blue green component and integrated urban design

    Directory of Open Access Journals (Sweden)

    Stanković Srđan M.

    2016-01-01

    Full Text Available This paper aims to demonstrate the hidden potential of blue green components, in a synergetic network, not as separate systems, like used in past. The innovative methodology of the project Blue Green Dream is presented through examples of good practice. A new approach in the project initiate thoughtful planning and remodeling of the settlement for the modern man. Professional and scientific public is looking for way to create more healthy and stimulating place for living. However, offered integrative solutions still remain out of urban and architectural practice. Tested technologies in current projects confirmed measurability of innovative approaches and lessons learned. Scientific and professional contributions are summarized in master's and doctoral theses that have been completed or are in process of writing.

  12. Blue-Green Solutions in Urban Development

    Science.gov (United States)

    Karlsson, Caroline; Kalantari, Zahra

    2017-04-01

    With the ongoing urbanisation and increasing pressure for new housing and infrastructure, the nexus of developing compact, energy-efficient and yet liveable and sustainable cities is urgent to address. In this context, blue-green spaces and related ecosystem services (ES) are critical resources that need to be integrated in policy and planning of urban. Among the ES provided by blue-green spaces, regulating ES such as water retention and purification are particularly important in urban areas, affecting water supply and quality, related cultural ES and biodiversity, as well as cities potential to adapt to climate change. Blue-green infrastructure management is considered a sustainable way to reducing negative effects of urbanisation, such as decreasing flood risks, as well as adapting to climate change for example by controlling increasing flood and drought risks. Blue-green infrastructure management can for example create multifunctional surfaces with valuable environmental and social functions and generally handle greenways and ecological networks as important ecosystem service components, for example for stormwater regulation in a sustainable urban drainage system. The Norrström drainage basin (22,000 km2) is a large demonstrator for Blue-green infrastructure management. Both urbanisation and agriculture are extensive within this basin, which includes the Swedish capital Stockholm and is part of the fertile Swedish belt. Together, the relatively high population density combined with agricultural and industrial activities in this region imply large eutrophication and pollution pressures, not least transferred through storm runoff to both inland surface waters and the coastal waters of the Baltic Sea. The ecosystems of this basin provide highly valued but also threatened services. For example, Lake Mälaren is the single main freshwater supply for the Swedish capital Stockholm, as well as a key nutrient retention system that strongly mitigates waterborne nutrient

  13. The evolution of blue-greens and the origins of chloroplasts

    Science.gov (United States)

    Schwartz, R. M.; Dayhoff, M. O.

    1981-01-01

    All of the available molecular data support the theory that the chloroplasts of eukaryote cells were originally free-living blue-greens. Of great interest is what the relationships are between contemporary types of blue-greens and eukaryote chloroplasts and whether the chloroplasts of the various eukaryotes are the result of one or more than one symbiosis. By combining information from phylogenetic trees based on cytochrome c6 and 2Fe-2S ferredoxin sequences, it is shown that the chloroplasts of a number of eukaryote algae as well as the protist Euglena are polyphyletic; the chloroplasts of green algae and the higher plants may be the result of a single symbiosis.

  14. Strategic blue-green communication filters

    Science.gov (United States)

    Rosenberg, W. J.

    1984-04-01

    The project began as an effort to construct narrowband, wide-field-of-view, large-aperture, plastic, birefringent filters suitable for blue-green communications. During the course of the study we investigated the use of crystalline materials in addition to plastic films, and we studied filter design theory in order to find designs more suitable to the blue-green system requirements. In addition, we constructed a quartz, 2A filter for the 1981 SLCAIR experiment. In this report we have included an introduction to the principles of narrowband, wide-field-of-view, birefringent filters. This section is included since the subject matter is not readily available except piecemeal in technical journals. Section 3 is a discussion of the materials which were considered during this study. It contains subsections devoted to crystals, plastics and analog element, respectively. A class of new lossless filter designs is described in Section 4. These designs are expected to provide a basis for high-transmission filters in the future. The operational SLCAIR-81 filter is described in Section 5. It was part of the successful experiment which demonstrated communication to the USN Dolphin, a research submarine. Finally, in Section 6 we describe the non-vignetting filter design which was discovered during this study. It represents a significant throughput advantage for crystal filters used in non-imaging applications.

  15. Blue-green algae in India : a trip report

    OpenAIRE

    Roger, Pierre-Armand; Grant, I.F.; Reddy, P.M.

    1985-01-01

    Rapport de voyage et résultats d'analyses des populations d'algues et de Cyanophycées dans des sols de l'Inde et des croûtes algales. Ce rapport présente également un essai d'évaluation de l'importance de l'utilisation pratique des Cyanophycées en riziculture en Inde. (Résumé d'auteur)

  16. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    Science.gov (United States)

    1985-10-01

    Livestock and dog losses were reported. Signs of toxicity indicate the presence of peptide toxins. Bloom concentrations were extremely heavy, 200-300 g...and Krebs, H.A., 1966. Gluconeogenesis in the perfused rat liver. Biochem. J., 101: 284-292. McLean, E.K., 1970. The toxic actions of pyrrolizidine

  17. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    Science.gov (United States)

    1989-01-15

    Mannich reaction . J. Ora. Chem., _4., 2948-2953. Rabin, P. and A. Darbre (1975). An improved extraction procedure for the endotoxin form Microcystis...acetylcholinesterase (EC 3.1.1.7, AChE) in a reaction outlined in Scheme I: kk 2 k3 EOH + IXr-w EOHIX-- _, )EOI , ) EOH + HOI k_ HX H2 0 where EOH is AChE...of one of the two alkyl groups attached to the phosphorus in a reaction termed ageing (Main, 1960). When an organophosphate ages it is highly resistant

  18. Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: Process optimization by response surface methodology.

    Science.gov (United States)

    Jana, Animesh; Bhattacharya, Priyankari; Swarnakar, Snehasikta; Majumdar, Swachchha; Ghosh, Sourja

    2015-11-01

    Blue green algae Anabaena sp. was cultivated in synthetic arsenite solution to investigate its bio-oxidation potential for arsenic species. Response surface methodology (RSM) was employed based on a 3-level full factorial design considering four factors, viz. initial arsenic (III) concentration, algal dose, temperature and time. Bio-oxidation (%) of arsenic (III) was considered as response for the design. The study revealed that about 100% conversion of As (III) to As (V) was obtained for initial As (III) concentration of 2.5-7.5 mg/L at 30 °C for 72 h of exposure using 3 g/L of algal dose signifying a unique bio-oxidation potential of Anabaena sp. The dissolved CO2 (DCO2) and oxygen (DO) concentration in solution was monitored during the process and based on the data, a probable mechanism was proposed wherein algal cell acts like a catalytic membrane surface and expedites the bio-oxidation process. Bioaccumulation of arsenic, as well as, surface adsorption on algal cell was found considerably low. Lipid content of algal biomass grown in arsenite solution was found slightly lower than that of algae grown in synthetic media. Toxicity effects on algal cells due to arsenic exposure were evaluated in terms of comet assay and chlorophyll a content which indicated DNA damage to some extent along with very little decrease in chlorophyll a content. In summary, the present study explored the potential application of Anabaena sp. as an ecofriendly and sustainable option for detoxification of arsenic contaminated natural water with value-added product generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Blue-green photoluminescence in MCM-41 mesoporous nanotubes

    International Nuclear Information System (INIS)

    Shen, J L; Lee, Y C; Lui, Y L; Cheng, P W; Cheng, C F

    2003-01-01

    Different photoluminescence (PL) techniques have been used to study the blue-green emission from siliceous MCM-41 nanotubes. It was found that the intensity of the blue-green PL is enhanced by rapid thermal annealing (RTA). This enhancement is explained by the generation of twofold-coordinated Si centres and non-bridging oxygen hole centres, in line with the surface properties of MCM-41. On the basis of the analysis of the PL following RTA, polarized PL, and PL excitation, we suggest that the triplet-to-singlet transition of twofold-coordinated silicon centres is responsible for the blue-green PL in MCM-41 nanotubes. (letter to the editor)

  20. Blue-green and green phosphors for lighting applications

    Science.gov (United States)

    Setlur, Anant Achyut; Chandran, Ramachandran Gopi; Henderson, Claire Susan; Nammalwar, Pransanth Kumar; Radkov, Emil

    2012-12-11

    Embodiments of the present techniques provide a related family of phosphors that may be used in lighting systems to generate blue or blue-green light. The phosphors include systems having a general formula of: ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.s- ub.y)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) (I), wherein 0lighting systems, such as LEDs and fluorescent tubes, among others, to produce blue and blue/green light. Further, the phosphors may be used in blends with other phosphors, or in combined lighting systems, to produce white light suitable for illumination.

  1. Distribution and biomass estimation of shell-boring algae in the intertidal area at Goa India

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Sharma, S.; Lande, V.

    and particulate organic carbon (POC) values in cultures of the green alga Gomontia sp. and the blue-green alga Plectonema terebrans, in biomass and POC contribution of these two types of microalgae in shells were calculated....

  2. First report of an Anabaena Bory strain containing microcystin-LR in ...

    African Journals Online (AJOL)

    In South Africa, little is known about the production of microcystin by the genus Anabaena Bory. In April 2012, during a cyanobacterial bloom event in Theewaterskloof Dam, Western Cape province, the plankton was sampled on 10 occasions. The dominant algae belonged to the genus Anabaena, a family of filamentous ...

  3. The response of Anabaena -free Azolla and the symbiotic Azolla to ...

    African Journals Online (AJOL)

    The performance of Anabaena-free (algae free) and symbiotic types of three speeies of Azolla (A. filiculoides, A. pinnata and A. microphylla) were studied in a phytotron at two average temperatures (22 and 33 oC). The growth of both the Anabaena-free and symbiotic types were depressed at a high temperature (33 DC) to ...

  4. Algae

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Giordano, Mario

    2014-01-01

    Roč. 24, č. 13 (2014), s. 590-595 ISSN 0960-9822 Institutional support: RVO:61388971 Keywords : algae * life cycle * evolution Subject RIV: EE - Microbiology, Virology Impact factor: 9.571, year: 2014

  5. Composition of phytoplankton algae in Gubi Reservoir, Bauchi ...

    African Journals Online (AJOL)

    Studies on the distribution, abundance and taxonomic composition of phytoplankton algae in Gubi reservoir were carried out for 12 months (from January to December 1995). Of the 26 algal taxa identified, 14 taxa belonged to the diatoms, 8 taxa were green algae while 4 taxa belonged to the blue-green algae. Higher cell ...

  6. Antibiotic activity of two Anabaena species against four fish ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... Three organic extracts (chloroform, ethyl acetate and n-butanol) of ten cyanobacterial species. (Anabaena solitaria, Anabaena variabilis, Anabaena cylindrical, Anabaena spiroides, Anabaena circinalis, Oscillatoria ornate, Oscillatoria salins, Oscillatoria tenuis, Oscillatoria rubescens and. Oscillatoria ...

  7. Antibiotic activity of two Anabaena species against four fish ...

    African Journals Online (AJOL)

    ... cyanobacterial species (Anabaena solitaria, Anabaena variabilis, Anabaena cylindrical, Anabaena spiroides, Anabaena circinalis, Oscillatoria ornate, Oscillatoria salins, Oscillatoria tenuis, Oscillatoria rubescens and Oscillatoria prolifica) were investigated for their antibacterial activities against 4 fish pathogenic bacterial ...

  8. Blue-Green Colour Categorisation in Mandarin-English Speakers

    Directory of Open Access Journals (Sweden)

    Emily Joanne Hird

    2012-05-01

    Full Text Available Observers are faster to detect a target among a set of distracters if the targets and distracters come from different colour categories. This cross-boundary advantage seems to be limited to the right visual field, which is consistent with the dominance of the left hemisphere for language processing. Here we study whether a similiar visual field advantage is found in Mandarin, a language which uses a logographic system. Forty late Mandarin-English bilinguals performed a blue-green colour categorisation task, in a blocked design, in their first language (L1: Mandarin or second language (L2: English. Eleven colour singletons ranging from blue to green were presented for 160ms, randomly in the left visual field (LVF or in the right visual field (RVF. We find that reaction times at the colour boundary were on average about 100 ms shorter in the LVF compared to the RVF, but only when the task was preformed in Mandarin as opposed to English. The apparent discrepancy with previous findings is conceivably due to the script nature of two languages: Mandarin logographic characters are analysed visuo-orthographically in the right fusiform gyrus [Guo and Burgund 2010, Brain Lang 115].

  9. Stochastic Forecasting of Algae Blooms in Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  10. Spirulina: The Alga That Can End Malnutrition.

    Science.gov (United States)

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  11. The Glaucophyta: the blue-green plants in a nutshell

    Directory of Open Access Journals (Sweden)

    Christopher Jackson

    2015-07-01

    Full Text Available The Glaucophyta is one of the three major lineages of photosynthetic eukaryotes, together with viridiplants and red algae, united in the presumed monophyletic supergroup Archaeplastida. Glaucophytes constitute a key algal lineage to investigate both the origin of primary plastids and the evolution of algae and plants. Glaucophyte plastids possess exceptional characteristics retained from their cyanobacterial ancestor: phycobilisome antennas, a vestigial peptidoglycan wall, and carboxysome-like bodies. These latter two traits are unique among the Archaeplastida and have been suggested as evidence that the glaucophytes diverged earliest during the diversification of this supergroup. Our knowledge of glaucophytes is limited compared to viridiplants and red algae, and this has restricted our capacity to untangle the early evolution of the Archaeplastida. However, in recent years novel genomic and functional data are increasing our understanding of glaucophyte biology. Diverse comparative studies using information from the nuclear genome of Cyanophora paradoxa and recent transcriptomic data from other glaucophyte species provide support for the common origin of Archaeplastida. Molecular and ultrastructural studies have revealed previously unrecognized diversity in the genera Cyanophora and Glaucocystis. Overall, a series of recent findings are modifying our perspective of glaucophyte diversity and providing fresh approaches to investigate the basic biology of this rare algal group in detail.

  12. Pathophysiology and Toxicokinetic Studies of Blue-Green Algae Intoxication in the Swine Model

    Science.gov (United States)

    1991-06-26

    including general tritium exchange, specific tritium exchange, and biosynthesis witsi 14C_ or ’H-labclled aminoacids . None of these proved...instead, the toxin enhanced the response of acetylcholine and antagonized the blockade induced by d-tubocurarine. Also, antx-a(s) did not change the

  13. Pathophysiology and Toxicokinetic Studies of Blue-Green Algae Intoxication in the Swine Model

    Science.gov (United States)

    1987-08-31

    63 VII. Visualization of rat hepatocytes within the pulmonary vasculature via microscopic radiography ....................... 65...saline administration), the thorax was opened and a cannula was placed in the left ventricle. Whole body perfusion and fixation, using Tyrode’s solution

  14. Gamma-ray resistance of the blue-green alga, Synechocystis

    International Nuclear Information System (INIS)

    Gilet, Roland; Girard, Genevieve; Santier, Simone; Ozenda, Paul

    1980-01-01

    The radioresistance of this organism is high: the survival curves can be described by D 0 values between 60 and 85 Gy, and n between 8 and 2,400. In spite of the long shoulder, the dose fractionation does not show any repair of sublethal damage. Keeping the cells in a quiescent phase after irradiation enables the repair of potentially lethal damage [fr

  15. Unicellular mucilaginous blue-green algae (BGA) : impressive blooms but deceptive biofertilizers

    OpenAIRE

    Roger, Pierre-Armand

    1985-01-01

    Les Cyanophycées produisant des colonies mucilagineuses peuvent développer des fleurs d'eau volumineuses dans les rizières. En raison d'une teneur en eau et en cendres élevées l'apport d'azote est faible et n'a pas d'effet notable sur le rendement du riz. (Résumé d'auteur)

  16. An Appreciation of Learning Disabilities: The Value of Blue-Green Algae.

    Science.gov (United States)

    Gerber, Michael M.

    2000-01-01

    This review of the history of learning disabilities (LD) suggests that creation of the LD category has served scientific, if not always, policy purposes. It finds that 40 years of research have produced inventive, creative tools that benefit both investigation and intervention and, most importantly, a better understanding of individual…

  17. Fluorescence action spectra of algae and bean leaves at room and at liquid nitrogen temperatures

    NARCIS (Netherlands)

    Goedheer, J.C.

    1965-01-01

    Fluorescence action spectra were determined, both at room temperature and at liquid nitrogen temperature, with various blue-green, red and green algae, and greening bean leaves. The action spectra of algae were established with samples of low light absorption as well as dense

  18. Studies on allergenic algae of Delhi area: botanical aspects.

    Science.gov (United States)

    Mittal, A; Agarwal, M K; Shivpuri, D N

    1979-04-01

    To study distribution of algae in and around Delhi aerobiological surveys were undertaken for two consecutive years (September, 1972, to August, 1974). The surveys were accomplished by (a) slide exposure method and (b) culture plate exposure method. A total of 850 slides were exposed using Durham's gravity sampling device. Of these, 560 slides were exposed during 1973 (272 slides at two meter and 288 at ten meter height) and the rest (290 slides) were exposed during 1974 at ten meter height. A total of 858 culture plates were exposed (276 for one hour and 282 for two hours) during 1973 and the rest (300 culture plates) were exposed during 1974 at ten meter height for two hours duration only. Air was found to be rich in algae flora during the months of September to November. The dominant forms of algae present were all blue greens. This might be due to the relative greater resistance of blue green algae to unfavorable conditions.

  19. Biological importance of marine algae.

    Science.gov (United States)

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  20. Decay dynamics of blue-green luminescence in meso-porous MCM-41 nanotubes

    International Nuclear Information System (INIS)

    Lee, Y.C.; Liu, Y.L.; Wang, C.K.; Shen, J.L.; Cheng, P.W.; Cheng, C.F.; Ko, C.-H.; Lin, T.Y.

    2005-01-01

    Time-resolved photoluminescence (PL) was performed to investigate the decay of blue-green luminescence in MCM-41 nanotubes. The PL decay exhibits a clear nonexponential profile, which can be fitted by a stretched exponential function. In the temperature range from 50 to 300 K the photogenerated carriers become thermally activated with a characteristic energy of 29 meV, which is an indication of the phonon-assisted nonradiative process. The temperature dependence of the lifetime of PL decay has been explained using a model based on the radiative recombination of localized carriers and the phonon-assisted nonradiative recombination

  1. Limits to depletion of blue-green light stimulated luminescence in feldspars: Implications for quartz dating

    DEFF Research Database (Denmark)

    Jain, M.; Singhvi, A.K.

    2001-01-01

    Feldspar contaminants in quartz aliquots, either as micro-inclusions or as remnant grains (due to inadequate etching) can affect the accuracy and precision of paleodose estimates based on blue-green light stimulated luminescence (BGSL). Such contamination could also alter the shape of the BGSL st...... in a polyminerallic fine grain samples; (3) age estimates based on both quartz and feldspars from the same aliquots, and (4) dating based on feldspar micro-inclusions. (C) 2001 Elsevier Science Ltd. All rights reserved.......Feldspar contaminants in quartz aliquots, either as micro-inclusions or as remnant grains (due to inadequate etching) can affect the accuracy and precision of paleodose estimates based on blue-green light stimulated luminescence (BGSL). Such contamination could also alter the shape of the BGSL......-red stimulation at elevated temperature (220 degreesC) (ETIR) permits depletions of charges in Type (A) and Type (B) to the extent that the feldspar BGSL can be reduced by up to 97% in 5 min. These results offer prospects for (1) improved precision in paleodose estimates based on quartz; (2) BGSL dating of quartz...

  2. EU Climate-KIC Innovation Blue Green Dream Project: Creation of Educational Experience, Communication and Dissemination

    Science.gov (United States)

    Tchiguirinskaia, Ioulia; Gires, Auguste; Vicari, Rosa; Schertzer, Daniel; Maksimovic, Cedo

    2013-04-01

    The combined effects of climate change and increasing urbanization call for a change of paradigm for planning, maintenance and management of new urban developments and retrofitting of existing ones to maximize ecosystem services and increase resilience to the adverse climate change effects. This presentation will discuss synergies of the EU Climate-KIC Innovation Blue Green Dream (BGD) Project in promoting the BGD demonstration and training sites established in participating European countries. The BGD demonstration and training sites show clear benefits when blue and green infrastructures are considered together. These sites present a unique opportunity for community learning and dissemination. Their development and running acts as a hub for engineers, architects, planners and modellers to come together in their design and implementation stage. This process, being captured in a variety of media, creates a corpus of knowledge, anchored in specific examples of different scales, types and dimensions. During the EU Climate-KIC Innovation Blue Green Dream Project, this corpus of knowledge will be used to develop dissemination and training materials whose content will be customised to fit urgent societal needs.

  3. Hydrogen uptake by Azolla-Anabaena

    International Nuclear Information System (INIS)

    Ruschel, A.P.; Freitas, J.R. de; Silva, P.M.

    1984-01-01

    The hydrogen uptake in the Azolla-Anabaena system is studied. Tritium is used as tracer. Plants are incubated under different atmosphere composition: a) Air + 3 H 2 ; b) Air + CO 2 + 3 H 2 + CO; c) Air + 3 H 2 + CO; d) Air + CO 2 + 3 H 2 + CO to study the pathway of absorbed hydrogen in the Azolla - Anabaena system. Azolla-Anabaena showed greater hydrogen uptake under argonium atmosphere than under air. Carbon monoxide decreased hydrogen uptake. There are evidences of recycling of the hydrogen evolved through notrogenease. (Author) [pt

  4. Isolation and antibacterial activity of anabaena phycocyanin

    African Journals Online (AJOL)

    Taghwo

    2013-04-10

    Apr 10, 2013 ... Key words: Anabaena, phycocyanin, liquid chromatogram, antibacterial. INTRODUCTION. Phycocyanins are photosynthetic pigments of cyanobacteria. Pure phycocyanin are widely used as fluorescent labelling reagents (Glazer, 1994; Telford et al.2001), and as natural colorants for food and cosmetics.

  5. Deep 16sRNA sequencing of anterior foregut microbiota from the blue-green sharpshooter (Graphocephala atropunctata)

    Science.gov (United States)

    Graphocephala atropunctata (Signoret) (Hemiptera: Cicadellidae) or the blue-green sharpshooter (BGSS) has been long recognized as the principal native vector of Xylella fastidiosa in coastal, wine-grape growing areas of California. X. fastidiosa is the causative agent of Pierce’s disease of grapevin...

  6. Unusual radioresistance of nitrogen-fixing cultures of Anabaena ...

    Indian Academy of Sciences (India)

    Nitrogen-fixing cultures of two species of the filamentous, heterocystous cyanobacterium Anabaena, namely Anabaena sp. strain L-31 and Anabaena torulosa were found to be highly tolerant to 60Co gamma radiation. ... Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India ...

  7. Dinosaur origin of egg color: oviraptors laid blue-green eggs.

    Science.gov (United States)

    Wiemann, Jasmina; Yang, Tzu-Ruei; Sander, Philipp N; Schneider, Marion; Engeser, Marianne; Kath-Schorr, Stephanie; Müller, Christa E; Sander, P Martin

    2017-01-01

    reconstruction of blue-green eggs for oviraptors. According to the sexual signaling hypothesis, the reconstructed blue-green eggs support the origin of previously hypothesized avian paternal care in oviraptorid dinosaurs. Preserved dinosaur egg color not only pushes the current limits of the vertebrate molecular and associated soft tissue fossil record, but also provides a perspective on the potential application of this unexplored paleontological resource.

  8. Green roof and storm water management policies: monitoring experiments on the ENPC Blue Green Wave

    Science.gov (United States)

    Versini, Pierre-Antoine; Gires, Auguste; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2015-04-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building/parcel scale. Nevertheless, there is no specific policy promoting their implementation neither in Europe nor in France. Moreover they are not taken into account (and usually considered as an impervious area) in the sizing of a retention basin for instance. An interesting example is located in the heart of the Paris-East Cluster for Science and Technology (Champs-sur-Marne, France). Since 2013 a large (1 ha) wavy-form vegetated roof (called bleu green wave) is implemented. Green roof area and impervious areas are connected to a large retention basin, which has been oversized. The blue green wave represents a pioneering site where an initially amenity (decorative) design project has been transformed into a research oriented one. Several measurement campaigns have been conducted to investigate and better understand the hydrological behaviour of such a structure. Rainfall, humidity, wind velocity, water content and temperature have been particularly studied. The data collected are used for several purposes: (i) characterize the spatio-temporal variability of the green roof response, (ii) calibrate and validate a specific model simulating its hydrological behavior. Based on monitoring and modeling results, green roof performances will be quantified. It will be possible to estimate how they can reduce stormwater runoff and how these performances can vary in space and in time depending on green roof configuration, rainfall event characteristics and antecedent conditions. These quantified impacts will be related to regulation rules established by stormwater managers in order to connect the parcel to the sewer network. In the particular case of the building of a retention basin, the integration of green roof in the sizing of the basin will be studied. This work is funded by the European Blue Green Dream project (http://bgd.org.uk/, funded by Climate

  9. Dinosaur origin of egg color: oviraptors laid blue-green eggs

    Directory of Open Access Journals (Sweden)

    Jasmina Wiemann

    2017-08-01

    with our reconstruction of blue-green eggs for oviraptors. According to the sexual signaling hypothesis, the reconstructed blue-green eggs support the origin of previously hypothesized avian paternal care in oviraptorid dinosaurs. Preserved dinosaur egg color not only pushes the current limits of the vertebrate molecular and associated soft tissue fossil record, but also provides a perspective on the potential application of this unexplored paleontological resource.

  10. Effect of selenite on the physiological and morphological properties of the blue-green alga Phormidium luridum var. Olivacea

    Energy Technology Data Exchange (ETDEWEB)

    Sielicki, M.; Burnham, J.C.

    1973-07-05

    Phormidium luridum cultures were treated with sodium selenite in concentrations ranging from 10/sup -6/ M to 10/sup -2/ M. In contrast to the increasing culture turbidity of control and 10/sup -6/ M selenite cultures, the turbidity of the other selenite cultures declined in proportion to time and selenite concentration. Chlorophyll extraction revealed similar results. Photosynthetic activity was inhibited within 6 hr in all cultures except control and 10/sup -6/ M selenite showed a gradual loss of the bright green color and turned semitransparent. Cell-associated granules of reduced selenium were observed at higher selenite concentrations. Other structural changes observed were the presence of intracellular and intercellular spaces, spheroplast formation, and gradual cell lysis. Protein analyses of total cell samples and supernatant fractions confirmed cellular breakdown of selenite-treated algal cells.

  11. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds

    Czech Academy of Sciences Publication Activity Database

    Koníčková, R.; Vaňková, K.; Vaníková, J.; Váňová, K.; Muchová, L.; Subhanová, I.; Zadinová, M.; Zelenka, Jaroslav; Dvořák, Aleš; Kolář, Michal; Strnad, Hynek; Rimpelová, S.; Ruml, T.; Wong, R.J.; Vítek, L.

    2014-01-01

    Roč. 13, č. 2 (2014), s. 273-283 ISSN 1665-2681 Institutional support: RVO:67985823 ; RVO:68378050 Keywords : bilirubin * chlorophyll * heme oxygenase * phycocyanin * phycocyanobilin * Spirulina platensis * tetrapyrroles Subject RIV: FD - Oncology ; Hematology Impact factor: 2.065, year: 2014

  12. Formation of Radioactive Citrulline During PhotosyntheticC14O2-Fixation by Blue-Green Algae

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Pekka; Holm-Hansen, O; Bassham, J A; Calvin, M

    1956-08-28

    Citrilline has been isolated and identified from extracts of Nostoc muscorum. All members of the Cyanophyceae hitherto investigated show a relatively large amount of the CO fixed during photosynthesis in citrulline (ranging as high as 20% in Nostoc) when compared to the trace amounts found in the Chlorophyceae. Nostoc also has the ability to fix C{sup 14} in citrulline during dark fixation, but at a rate slower than in light. As no free urea or arginine was found in Nostoc, it is likely that citrulline is functioning in reactions other than those leading to arginine and urea synthesis. Other possible functions for citrulline are briefly discussed.

  13. Decision Network for Blue Green Solutions to Influence Policy Impact Assessments

    Science.gov (United States)

    Mijic, A.; Theodoropoulos, G.; El Hattab, M. H.; Brown, K.

    2017-12-01

    Sustainable Urban Drainage Systems (SuDS) deliver ecosystems services that can potentially yield multiple benefits to the urban environment. These benefits can be achieved through optimising SUDS' integration with the local environment and water resources, creating so-called Blue Green Solutions (BGS). The BGS paradigm, however, presents several challenges, in particular quantifying the benefits and creating the scientific evidence-base that can persuade high-level decision-makers and stakeholders to implement BGS at large scale. This work presents the development of the easily implemented and tailored-made approach that allows a robust assessment of the BGS co-benefits, and can influence the types of information that are included in policy impact assessments. The Analytic Network Process approach is used to synthesise the available evidence on the co-benefits of the BGS. The approach enables mapping the interactions between individual BGS selection criteria, and creates a platform to assess the synergetic benefits that arise from components interactions. By working with Government departments and other public and private sector stakeholders, this work has produced a simple decision criteria-based network that will enable the co-benefits and trade-offs of BGS to be quantified and integrated into UK policy appraisals.

  14. The Efficacy of Blue-Green Infrastructure for Pluvial Flood Prevention under Conditions of Deep Uncertainty

    Science.gov (United States)

    Babovic, Filip; Mijic, Ana; Madani, Kaveh

    2017-04-01

    Urban areas around the world are growing in size and importance; however, cities experience elevated risks of pluvial flooding due to the prevalence of impermeable land surfaces within them. Urban planners and engineers encounter a great deal of uncertainty when planning adaptations to these flood risks, due to the interaction of multiple factors such as climate change and land use change. This leads to conditions of deep uncertainty. Blue-Green (BG) solutions utilise natural vegetation and processes to absorb and retain runoff while providing a host of other social, economic and environmental services. When utilised in conjunction with Decision Making under Deep Uncertainty (DMDU) methodologies, BG infrastructure provides a flexible and adaptable method of "no-regret" adaptation; resulting in a practical, economically efficient, and socially acceptable solution for flood risk mitigation. This work presents the methodology for analysing the impact of BG infrastructure in the context of the Adaptation Tipping Points approach to protect against pluvial flood risk in an iterative manner. An economic analysis of the adaptation pathways is also conducted in order to better inform decision-makers on the benefits and costs of the adaptation options presented. The methodology was applied to a case study in the Cranbrook Catchment in the North East of London. Our results show that BG infrastructure performs better under conditions of uncertainty than traditional grey infrastructure.

  15. Blue-Green solutions for improving water quality in an urbanizing catchment

    Science.gov (United States)

    Kalantari, Zahra; Sha, Bo; Ferreira, Carla Sofia; Sjöstedt, Carin

    2017-04-01

    With increasing urban population and expanding urban areas, cities have demonstrated great influences on natural resources and the surrounding environment. Urbanization process is generally accompanied by noticeable land use/cover change, such as turning permeable forest area and agricultural land into impervious landscapes like roads, parking lots, commercial and residential areas, leading to major environmental impacts on both the hydrological processes and water quality of the local catchment. Urban areas usually act as major diffuse pollution sources in a catchment. On the one hand, human activities increase the generation and accumulation of pollutants on urban surface; on the other hand, large impervious urban landscape improves the mobilization and transport of pollutants to receiving water body by increasing surface runoff and hydraulic efficiency. This study focuses on how different urbanization patterns would affect surface water quality, in order to examine whether the heterogeneity of urban areas would be an important factor that influencing surface water quality and what impacts it would induce. Furthermore, using coupled hydrological and water quality models, the effect of different blue green solutions including nature remnants and parks, gardens, small forests, wetlands and ponds; on improving the water quality will be investigated.

  16. A blue/green water-based accounting framework for assessment of water security

    Science.gov (United States)

    Rodrigues, Dulce B. B.; Gupta, Hoshin V.; Mendiondo, Eduardo M.

    2014-09-01

    A comprehensive assessment of water security can incorporate several water-related concepts, while accounting for Blue and Green Water (BW and GW) types defined in accordance with the hydrological processes involved. Here we demonstrate how a quantitative analysis of provision probability and use of BW and GW can be conducted, so as to provide indicators of water scarcity and vulnerability at the basin level. To illustrate the approach, we use the Soil and Water Assessment Tool (SWAT) to model the hydrology of an agricultural basin (291 km2) within the Cantareira Water Supply System in Brazil. To provide a more comprehensive basis for decision making, we analyze the BW and GW-Footprint components against probabilistic levels (50th and 30th percentile) of freshwater availability for human activities, during a 23 year period. Several contrasting situations of BW provision are distinguished, using different hydrological-based methodologies for specifying monthly Environmental Flow Requirements (EFRs), and the risk of natural EFR violation is evaluated by use of a freshwater provision index. Our results reveal clear spatial and temporal patterns of water scarcity and vulnerability levels within the basin. Taking into account conservation targets for the basin, it appears that the more restrictive EFR methods are more appropriate than the method currently employed at the study basin. The blue/green water-based accounting framework developed here provides a useful integration of hydrologic, ecosystem and human needs information on a monthly basis, thereby improving our understanding of how and where water-related threats to human and aquatic ecosystem security can arise.

  17. ROx3: Retinal oximetry utilizing the blue-green oximetry method

    Science.gov (United States)

    Parsons, Jennifer Kathleen Hendryx

    The ROx is a retinal oximeter under development with the purpose of non-invasively and accurately measuring oxygen saturation (SO2) in vivo. It is novel in that it utilizes the blue-green oximetry technique with on-axis illumination. ROx calibration tests were performed by inducing hypoxia in live anesthetized swine and comparing ROx measurements to SO 2 values measured by a CO-Oximeter. Calibration was not achieved to the precision required for clinical use, but limiting factors were identified and improved. The ROx was used in a set of sepsis experiments on live pigs with the intention of tracking retinal SO2 during the development of sepsis. Though conclusions are qualitative due to insufficient calibration of the device, retinal venous SO2 is shown to trend generally with central venous SO2 as sepsis develops. The novel sepsis model developed in these experiments is also described. The method of cecal ligation and perforation with additional soiling of the abdomen consistently produced controllable severe sepsis/septic shock in a matter of hours. In addition, the ROx was used to collect retinal images from a healthy human volunteer. These experiments served as a bench test for several of the additions/modifications made to the ROx. This set of experiments specifically served to illuminate problems with various light paths and image acquisition. The analysis procedure for the ROx is under development, particularly automating the process for consistency, accuracy, and time efficiency. The current stage of automation is explained, including data acquisition processes and the automated vessel fit routine. Suggestions for the next generation of device minimization are also described.

  18. Efficiency of blue-green stormwater retrofits for flood mitigation - Conclusions drawn from a case study in Malmö, Sweden.

    Science.gov (United States)

    Haghighatafshar, Salar; Nordlöf, Beatrice; Roldin, Maria; Gustafsson, Lars-Göran; la Cour Jansen, Jes; Jönsson, Karin

    2018-02-01

    Coupled one-dimensional (1D) sewer and two-dimensional (2D) overland flow hydrodynamic models were constructed to evaluate the flood mitigation efficiency of a renowned blue-green stormwater retrofit, i.e. Augustenborg, in Malmö, Sweden. Simulation results showed that the blue-green stormwater systems were effective in controlling local surface flooding in inner-city catchments, having reduced the total flooded surfaces by about 70%. However, basement flooding could still be a potential problem depending on the magnitude of the inflows through combined sewer from upstream areas. Moreover, interactions between blue-green retrofits and the surrounding pipe-system were studied. It was observed that the blue-green retrofits reduced the peak flows by approximately 80% and levelled out the runoff. This is a substantial advantage for downstream pipe-bound catchments, as they do not receive a cloudburst-equivalent runoff from the retrofitted catchment, but a reduced flow corresponding to a much milder rainfall. Blue-green retrofits are more effective if primarily implemented in the upstream areas of a pipe-bound catchment since the resulting reduced runoff and levelled out discharge would benefit the entire network lying downstream. Implementing blue-green retrofits from upstream towards downstream can be considered as a sustainable approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films

    International Nuclear Information System (INIS)

    Zhang Jun; Li Qian; Di Xiaowei; Liu Zhiliang; Xu Gang

    2008-01-01

    Multicolored semiconductor quantum dots have shown great promise for construction of miniaturized light-emitting diodes with compact size, low weight and cost, and high luminescent efficiency. The unique size-dependent luminescent property of quantum dots offers the feasibility of constructing single-color or full-color output light-emitting diodes with one type of material. In this paper, we have demonstrated the facile fabrication of blue-, green-, red- and full-color-emitting semiconductor quantum dot optical films via a layer-by-layer assembly technique. The optical films were constructed by alternative deposition of different colored quantum dots with a series of oppositely charged species, in particular, the new use of cationic starch on glass substrates. Semiconductor ZnSe quantum dots exhibiting blue emission were deposited for fabrication of blue-emitting optical films, while semiconductor CdTe quantum dots with green and red emission were utilized for construction of green- and red-emitting optical films. The assembly of integrated blue, green and red semiconductor quantum dots resulted in full-color-emitting optical films. The luminescent optical films showed very bright emitting colors under UV irradiation, and displayed dense, smooth and efficient luminous features, showing brighter luminescence in comparison with their corresponding quantum dot aqueous colloid solutions. The assembled optical films provide the prospect of miniaturized light-emitting-diode applications.

  20. Clinical results of a new high-phototherapeutic-efficiency blue-green lamp for the management of hyperbilirubinemia

    Science.gov (United States)

    Donzelli, Gian Paolo; Pratesi, Simone; Agati, Giovanni; Fusi, Franco; Pratesi, Riccardo

    1996-01-01

    We report a preliminary study on the introduction of a new, blue-green fluorescent lamp with high phototherapeutic efficiency in the treatment of neonatal hyperbilirubinemia. The lamp (New Lamp) has an emission spectrum, peaked at 490 nm and about 40 nm wide, that was not previously investigated in clinical trials. Our study demonstrates the significantly greater efficacy of the New Lamp in decreasing the bilirubin serum level, in comparison with the most commonly used blue fluorescent lamp. The rate of decline of bilirubin concentration with the New Lamp was twice that with Philips/BB light. The success of the blue-green PT is mainly due to the combined effects of the (1) increase from blue to green of the quantum yield for lumirubin, that is the bilirubin photoproduct rapidly excreted from the organism; (2) corresponding decrease of the configurational photoisomer, formed with high concentration but not excreted from the organism; (3) filtering effect of the skin, which attenuates more blue than green light. Our results represent the first significant improvement of phototherapy efficiency following the development and introduction of the special-blue lamp by Sisson in 1970. The phototherapy exposure time has now been reduced to less than 1-day in preterm infants, ensuring less stress to the infant and less interference with nursing care.

  1. Synthesis, structure, photophysical and electroluminescent properties of a blue-green self-host phosphorescent iridium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Wang, Hua [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Xu, Huixia, E-mail: xuhuixiatyut@163.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Li, Jie; Wu, Yuling; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Xu, Bingshe, E-mail: xubs@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-07-15

    A kind of blue-green self-host phosphorescent iridium(III) complex, (CzPhBI){sub 2}Ir(tfmptz) [CzPhBI = 9-(6-(2-phenyl-1-benzimidazolyl)hexyl)-9-carbazole; tfmptz = 2-(5-trifluoromethyl-1,2,4-triazolyl)pyridine], was designed and synthesized. The synthesized iridium(III) complex was characterized by {sup 1}H NMR, {sup 19}F NMR, FT-IR, elemental analysis and X-ray single-crystal diffraction, respectively. Its thermal properties, optical properties and electrochemical properties were also investigated. The host-free organic electroluminescent devices with the configuration of ITO/MoO{sub 3} (3 nm)/NPB (30 nm)/TAPC (15 nm)/(CzPhBI){sub 2}Ir(tfmptz) (30 nm)/TBPI (30 nm)/LiF (1 nm)/Al (100 nm) had been fabricated. The devices exhibited excellent performance indicating that (CzPhBI){sub 2}Ir(tfmptz) was a promising phosphorescent material. - Highlights: • A blue-green self-host phosphorescent iridium(III) complex was synthesized. • The molecular structure, and photophysical properties were investigated. • Electroluminescent performance in host-free devices were discussed. • The maximum current efficiency 8.2 cd A{sup −1} and the maximum brightness 5420 cd m{sup −2} were achieved.

  2. Floristic account of the marine benthic algae from Jarvis Island and Kingman Reef, Line Islands, Central Pacific

    Directory of Open Access Journals (Sweden)

    Vroom, P.S.

    2012-05-01

    Full Text Available The marine benthic algae from Jarvis Island and Kingman Reef were identified from collections obtained from the Whippoorwill Expedition in 1924, the Itasca Expedition in 1935, the U.S. Coast Guard Cutter Taney in 1938, the Smithsonian Institution’s Pacific Ocean Biological Survey Program in 1964 and the U.S. National Oceanic and Atmospheric Administration’s Reef Assessment and Monitoring Program (RAMP in 2000, 2001, 2002, 2004 and 2006. A total of 124 species, representing 8 Cyanobacteria (blue-green algae, 82 Rhodophyta (red algae, 6 Heterokontophyta (brown algae and 28 Chlorophyta (green algae, are reported from both islands. Seventy-nine and 95 species of marine benthic algae are recorded from Jarvis Island and Kingman Reef, respectively. Of the 124 species, 77 species or 62% (4 blue-green algae, 57 red algae, 2 brown algae and 14 green algae have never before been reported from the 11 remote reefs, atolls and low islands comprising the Line Islands in the Central Pacific.

  3. Aesthetically Pleasing Conjugated Polymer: Fullerene Blends for Blue-Green Solar Cells Via Roll-to-Roll Processing

    DEFF Research Database (Denmark)

    Amb, Chad M.; Craig, Michael R.; Koldemir, Unsal

    2012-01-01

    The practical application of organic photovoltaic (OPV) cells requires high throughput printing techniques in order to attain cells with an area large enough to provide useful amounts of power. However, in the laboratory screening of new materials for OPVs, spin-coating is used almost exclusively...... as a thin-film deposition technique due its convenience. We report on the significant differences between the spin-coating of laboratory solar cells and slot-die coating of a blue-green colored, low bandgap polymer (PGREEN). This is one of the first demonstrations of slot-die-coated polymer solar cells OPVs...... devices with PGREEN: PCBM blends as active light absorbing layers, and compare performance to slot die-coated individual solar cells, and slot-die-coated solar modules consisting of many cells connected in series. We find that the optimum ratio of polymer to PCBM varies significantly when changing from...

  4. A Universal Electron-Transporting/Exciton-Blocking Material for Blue, Green, and Red Phosphorescent Organic Light-Emitting Diodes (OLEDs).

    Science.gov (United States)

    Shih, Cheng-Hung; Rajamalli, Pachaiyappan; Wu, Cheng-An; Hsieh, Wei-Ting; Cheng, Chien-Hong

    2015-05-20

    Three m-terphenyl oxadiazole derivatives, 3,3″-bis(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)-1,1':3',1″-terphenyl (4PyOXD), 3,3″-bis(5-(pyridin-3-yl)-1,3,4-oxadiazol-2-yl)-1,1':3',1″-terphenyl (3PyOXD), and 3,3″-bis(5-phenyl-1,3,4-oxadiazol-2-yl)-1,1':3',1″-terphenyl (PhOXD), were synthesized. They exhibit relatively high electron mobilities compared with those of known electron-transport materials such as TAZ, BAlq, and BCP+Alq3. These materials were then utilized as electron transporters and hole/exciton blockers for blue, green, and red phosphorescent organic light-emitting diodes. The devices exhibited reduced driving voltages, very high efficiency, and negligible roll-off. More importantly, among these three oxadiazole derivatives, PhOXD performed as an ideal electron-transporting material for the blue, green, and red devices with excellent external quantum efficiencies (EQEs, >26%) as well as current and power efficiencies. Using these materials as an electron-transporting/exciton-blocking layer, low roll-off was achieved for the devices, indicative of excellent confinement of the triplet excitons in the emitting layer even at high current densities. At the normal operation brightness of 1000 cd m(-2), the EQEs remained >21.3% for these basic color devices. In addition, the relationships between physical properties and structures of the molecules such as the electron mobility, triplet energy gap, and efficiency can be clearly rationalized.

  5. Butterfly wing colors : glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Giraldo, Marco A.; Leertouwer, Hein L.

    2010-01-01

    The wings of the swordtail butterfly Graphium sarpedon nipponum contain the bile pigment sarpedobilin, which causes blue/green colored wing patches. Locally the bile pigment is combined with the strongly blue-absorbing carotenoid lutein, resulting in green wing patches and thus improving camouflage.

  6. The influence of bubble populations generated under windy conditions on the blue-green light transmission in the upper ocean: An exploratory approach

    Science.gov (United States)

    Wang, Chengan; Tan, Jianyu; Lai, Qingzhi

    2016-12-01

    The “blue-green window” in the ocean plays an important role in functions such as communication between vessels, underwater target identification, and remote sensing. In this study, the transmission process of blue-green light in the upper ocean is analyzed numerically using the Monte Carlo method. First, the effect of total number of photons on the numerical results is evaluated, and the most favorable number is chosen to ensure accuracy without excessive costs for calculation. Then, the physical and mathematical models are constructed. The rough sea surface is generated under windy conditions and the transmission signals are measured in the far field. Therefore, it can be conceptualized as a 1D slab with a rough boundary surface. Under windy conditions, these bubbles form layers that are horizontally homogeneous and decay exponentially with depth under the influence of gravity. The effects of bubble populations on the process of blue-green light transmission at different wind speeds, wavelengths, angle of incidence and chlorophyll-a concentrations are studied for both air-incident and water-incident cases. The results of this study indicate that the transmission process of blue-green light is significantly influenced by bubbles under high wind-speed conditions.

  7. Beneficial changes in biomass and lipid of microalgae Anabaena variabilis facing the ultrasonic stress environment.

    Science.gov (United States)

    Han, Fei; Pei, Haiyan; Hu, Wenrong; Jiang, Liqun; Cheng, Juan; Zhang, Lijie

    2016-06-01

    This study investigated the beneficial effects of ultrasonic treatment on the biomass, lipid and protein of the microalgae Anabaena variabilis. The microalgae after 11days cultivation (initial algae) were treated at the powers of 200, 350 and 500W for 10min and then cultured continuously for 3days (day 12-14). The power of 200W induced the highest lipid content 37.8% on day 12. The subsequent experiments tested the ultrasonic treatment times of 5, 10, 20 and 40min at 200W in the initial algae. The significantly improved lipid content 46.9% and productivity 54.2mg/L/d were obtained almost 1.46 and 1.86times more than that of the control algae respectively after 1day of continuous cultivation at 5min. The proper ultrasonic treatment showed the feasibility and high efficiency in promoting lipid accumulation without negatively influencing the biomass, fatty acid profiles and protein content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The EVNATURB project: toward an operational platform to assess Blue Green Solutions eco-systemic services in urban environment

    Science.gov (United States)

    Schertzer, D. J. M.; Versini, P. A.; Tchiguirinskaia, I.

    2017-12-01

    Urban areas are facing an expected increase in intensity and frequency of extreme weather events due to climate change. Combined with unsustainable urbanization, this should exacerbate the environmental consequences related to the water cycle as stormwater management issues, urban heat island increase and biodiversity degradation. Blue Green Solutions (BGS), such as green roofs, vegetated swales or urban ponds, appear to be particularly efficient to reduce the potential impact of new and existing urban developments with respect to these issues. Based on this statement, the French ANR EVNATURB project aims to develop a platform to assess the eco-systemic services provided by BGS and related with the previously mentioned issues. By proposing a multi-disciplinary consortium coupling monitoring, modelling and prospecting, it attempts to tackle several scientific issues currently limiting BGS wide implementation. Based on high resolution monitored sites and modelling tools, space-time variability of the related physical processes will be studied over a wide range of scales (from the material to the district scale), as well as local social-environmental stakes and constraints, to better consider the complexity of the urban environment. The EVNATURB platform developed during the project is intended for every stakeholder involved in urban development projects (planners, architects, engineering and environmental certification companies…) and will help them to implement BGS and evaluate which ones are the most appropriate for a particular project depending on its environmental objectives and constraints, and particularly for obtaining environmental certification.

  9. A promising blue-green emitting phosphor for white light-emitting diodes prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Yao Shanshan; Li Yuanyuan [State Key Laboratory of Materials Processing and Die and Mould Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xue Lihong, E-mail: xuelh@mail.hust.edu.c [State Key Laboratory of Materials Processing and Die and Mould Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yan Youwei [State Key Laboratory of Materials Processing and Die and Mould Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-02-18

    (Ba{sub 2-x}Eu{sub x})ZnSi{sub 2}O{sub 7} blue-green phosphors were prepared by a sol-gel (SG) process. The crystallization processes of the phosphor precursors were characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TG). The properties of the resulting phosphors were characterized by photoluminescence (PL) spectroscopy. The shape and size of the sample were observed by transmission electron microscopy (TEM). The results of TG and XRD indicate that the (Ba{sub 2-x}Eu{sub x})ZnSi{sub 2}O{sub 7} phosphors crystallize completely at 900 {sup o}C. The emission spectrum shows a single band centered at 500 nm, which corresponds to the 4f{sup 6}5d{sup 1} {yields} 4f{sup 7} transition of Eu{sup 2+}. The excitation spectrum is a broad band extending from 260 to 465 nm, which matches the emission of ultraviolet light-emitting diodes (UV-LEDs). The critical quenching concentration of Eu{sup 2+} in Ba{sub 2}ZnSi{sub 2}O{sub 7}:Eu{sup 2+} phosphor is about 0.10 mol. The value of the critical transfer distance is calculated as 15.1 A. The corresponding concentration quenching mechanism is verified to be the electric multipole-multipole interaction.

  10. A promising blue-green emitting phosphor for white light-emitting diodes prepared by sol-gel method

    International Nuclear Information System (INIS)

    Yao Shanshan; Li Yuanyuan; Xue Lihong; Yan Youwei

    2010-01-01

    (Ba 2-x Eu x )ZnSi 2 O 7 blue-green phosphors were prepared by a sol-gel (SG) process. The crystallization processes of the phosphor precursors were characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TG). The properties of the resulting phosphors were characterized by photoluminescence (PL) spectroscopy. The shape and size of the sample were observed by transmission electron microscopy (TEM). The results of TG and XRD indicate that the (Ba 2-x Eu x )ZnSi 2 O 7 phosphors crystallize completely at 900 o C. The emission spectrum shows a single band centered at 500 nm, which corresponds to the 4f 6 5d 1 → 4f 7 transition of Eu 2+ . The excitation spectrum is a broad band extending from 260 to 465 nm, which matches the emission of ultraviolet light-emitting diodes (UV-LEDs). The critical quenching concentration of Eu 2+ in Ba 2 ZnSi 2 O 7 :Eu 2+ phosphor is about 0.10 mol. The value of the critical transfer distance is calculated as 15.1 A. The corresponding concentration quenching mechanism is verified to be the electric multipole-multipole interaction.

  11. Production of cyanopeptolins, anabaenopeptins, and microcystins by the harmful cyanobacteria Anabaena 90 and Microcystis PCC 7806

    NARCIS (Netherlands)

    Tonk, L.; Welker, M.; Huisman, J.; Visser, P.M.

    2009-01-01

    This study investigated the effects of light intensity, temperature, and phosphorus limitation on the peptide production of the cyanobacteria Microcystis PCC 7806 and Anabaena 90. Microcystis PCC 7806 produced two microcystin variants and three cyanopeptolins, whereas Anabaena 90 produced four

  12. Blue-green eggshell coloration is not a sexually selected signal of female quality in an open-nesting polygynous passerine

    Czech Academy of Sciences Publication Activity Database

    Honza, Marcel; Požgayová, Milica; Procházka, Petr; Cherry, M. I.

    2011-01-01

    Roč. 98, č. 6 (2011), s. 493-499 ISSN 0028-1042 R&D Projects: GA AV ČR IAA600930605; GA AV ČR IAA600930903; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60930519 Keywords : Acrocephalus arundinaceus * Blue-green chroma * Egg colour * Female condition * Great reed warbler * Polygyny Subject RIV: EG - Zoology Impact factor: 2.278, year: 2011

  13. Errors When Extracting Oil from Algae

    Science.gov (United States)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  14. Combustion synthesis and photoluminescence properties of a novel blue-green-emitting Er3+ and Li+ co-doped LaNbTiO6

    International Nuclear Information System (INIS)

    Zhang, Xingshuang; Zhou, Guangjun; Zhou, Juan; Zhou, Haifeng; Kong, Peng; Yu, Zhichao

    2015-01-01

    Graphical abstract: - Highlights: • Novel LaNbTiO 6 : Er 3+ , Li + phosphor was synthesized by sol–gel combustion method. • The LaNbTiO 6 : Er 3+ , Li + phosphor exhibits blue-green emission under UV excitation. • The optimal Er 3+ and Li + concentration are 3% and 1.5%, respectively. • Li + -doping could induce a remarkable increase of photoluminescence intensity. - Abstract: A single-phase blue-green light emitting phosphor, LaNbTiO 6 : Er 3+ , Li + , was synthesized by using a simple and facile sol–gel combustion approach. Its structure and photoluminescence (PL) properties were investigated as a function of Er 3+ and Li + ion concentration. The luminous mechanisms of the Er 3+ doping and Er 3+ /Li + co-doping in the LaNbTiO 6 host were also discussed, including the intra-4f-transitions of Er 3+ and the charge compensation of Li + . The incorporation of Li + ions into LaNbTiO 6 lattice further altered the local structure and symmetry of the crystals field around Er 3+ . Concentration quenching occurred when Er 3+ and Li + reached certain levels. Furthermore, the critical transfer distance of Er 3+ → Er 3+ in the phosphor was calculated. The absolute quantum efficiencies and the fluorescence decay time of the phosphors were studied. The phosphor produced blue-green light, presenting CIE chromaticity coordinates of (0.211, 0.277) and (0.214, 0.320)

  15. Thermally induced defluorination during a mer to fac transformation of a blue-green phosphorescent cyclometalated iridium(III) complex.

    Science.gov (United States)

    Zheng, Yonghao; Batsanov, Andrei S; Edkins, Robert M; Beeby, Andrew; Bryce, Martin R

    2012-01-02

    The new homoleptic tris-cyclometalated [Ir(C^N)(3)] complexes mer-8, fac-8, and fac-9 incorporating γ-carboline ligands are reported. Reaction of 3-(2,4-difluorophenyl)-5-(2-ethylhexyl)-pyrido[4,3-b]indole 6 with iridium(III) chloride under standard cyclometalating conditions gave the homoleptic complex mer-8 in 63% yield. The X-ray crystal structure of mer-8 is described. The Ir-C and Ir-N bonds show the expected bond length alternations for the differing trans influence of phenyl and pyridyl ligands. mer-8 quantitatively isomerized to fac-8 upon irradiation with UV light. However, heating mer-8 at 290 °C in glycerol led to an unusual regioselective loss of one fluorine atom from each of the ligands, yielding fac-9 in 58% yield. fac-8 is thermally very stable: no decomposition was observed when fac-8 was heated in glycerol at 290 °C for 48 h. The γ-carboline system of fac-8 enhances thermal stability compared to the pyridyl analogue fac-Ir(46dfppy)(3)10, which decomposes extensively upon being heated in glycerol at 290 °C for 2 h. Complexes mer-8, fac-8, and fac-9 are emitters of blue-green light (λ(max)(em) = 477, 476, and 494 nm, respectively). The triplet lifetimes for fac-8 and fac-9 are ~4.5 μs at room temperature; solution Φ(PL) values are 0.31 and 0.22, respectively.

  16. Spatial Evaluation of Multiple Benefits to Encourage Multi-Functional Design of Sustainable Drainage in Blue-Green Cities

    Directory of Open Access Journals (Sweden)

    Richard Fenner

    2017-12-01

    Full Text Available Urban drainage systems that incorporate elements of green infrastructure (SuDS/GI are central features in Blue-Green and Sponge Cities. Such approaches provide effective control of stormwater management whilst generating a range of other benefits. However these benefits often occur coincidentally and are not developed or maximised in the original design. Of all the benefits that may accrue, the relevant dominant benefits relating to specific locations and socio-environmental circumstances need to be established, so that flood management functions can be co-designed with these wider benefits to ensure both are achieved during system operation. The paper reviews a number of tools which can evaluate the multiple benefits of SuDS/GI interventions in a variety of ways and introduces new concepts of benefit intensity and benefit profile. Examples of how these concepts can be applied is provided in a case study of proposed SuDS/GI assets in the central area of Newcastle; UK. Ways in which SuDS/GI features can be actively extended to develop desired relevant dominant benefits are discussed; e.g., by (i careful consideration of tree and vegetation planting to trap air pollution; (ii extending linear SuDS systems such as swales to enhance urban connectivity of green space; and (iii managing green roofs for the effective attenuation of noise or carbon sequestration. The paper concludes that more pro-active development of multiple benefits is possible through careful co-design to achieve the full extent of urban enhancement SuDS/GI schemes can offer.

  17. Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat

    International Nuclear Information System (INIS)

    Stober, F.; Lichtenthaler, H.K.

    1992-01-01

    The UV-laser-induced blue, green and red fluorescence-emission spectra were used to characterize the pigment status of etiolated leaves of wheat (Triticum aestivum L.) during a 48 h greening period under white light conditions. Upon UV-light excitation (337 nm) leaves not only show a fluorescence emission in the red spectral region between 650 and 800nm (chlorophyll fluorescence with maxima near 690nm and 735 nm), but also in the blue and green regions between 400 to 570 nm with maxima or shoulders near 450 nm (blue) and 530 nm (green). During greening of etiolated leaves the chlorophyll-fluorescence ratio F690/F735 strongly correlated with the total chlorophyll content and the ratio of the chlorophylls to the carotenoids (a+b/x+c). The ratio of the blue to the green fluorescence F450/F530 was also correlated with the total chlorophyll content and the ratio of chlorophylls to total carotenoids (a+b/x+c). Consequently, there also existed a correlation between the chlorophyll-fluorescence ratio F690/F735 and the ratio of the blue to green fluorescence F450/F530. In contrast, the ratios of the blue to red fluorescences F450/F690 and F450/F735 did not show clear relations to the pigment content of the investigated plants. The particular shape of the UV-laser-induced-fluorescence emission spectra of wheat leaves as well as the dependencies of the fluorescence ratios on the pigment content are due to a partial and differential reabsorption of the emitted fluorescences by the photosynthetic pigments

  18. De novo quence analysis and intact mass measurements for characterization of phycocyanin subunit isoforms from the blue-green alga Aphanizomenon flos-aquae

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Roepstorff, Peter; Zolla, Lello

    2009-01-01

    isothiocyanate (SPITC) and MALDI-TOF/TOF analyses, facilitated the acquisition of sequence information for AFA phycocyanin subunits. In fact, SPITC-derivatized peptides underwent facile fragmentation, predominantly resulting in y-series ions in the MS/MS spectra and often exhibiting uninterrupted sequences of 20...... of phycocyanin subunits was also revealed; subsequently Intact Mass Measurements (IMMs) by both MALDI- and ESI-MS supported the detection of these protein isoforms. Finally, we discuss the evolutionary importance of phycocyanin isoforms in cyanobacteria, suggesting the possible use of the phycocyanin operon...

  19. Origin and evolution of osmoregulatory mechanisms in blue-green algae (cyanobacteria) as a function of metabolic and structural complexity: Reflections of Precambrian paleobiology

    Science.gov (United States)

    Yopp, John H.; Tindall, Donald R.; Pavlicek, Kenneth

    1987-01-01

    Major accomplishments underlying the basic understanding of cyanobacterial resistance to salt tolerance and osmotic stress were made. The methodology proposed included: the tracing of the pathways of formation of osmoregulatory solutes by traditional methods involving C-14 labelled substrates; gas chromatography; amino acid analysis; X-ray analysis using scanning transmission electron microscopy; and most importantly, C-13 labelled substrates, followed by Nuclear Magnetic Resonance (NMR) spectroscopy. It was found that the cyanobacteria employ a diversity of organic, osmoregulatory solutes. Osmoregulatory solutes were found to serve four functions: adjustment of water activity, noninhibition of enzymes; lowering of K sub m of enzymes to allow functioning at normal levels when the intracellular salt accumulates, and extending the pH optimum of enzymes as intracellular pH rises due to proton-potassium ion pump action during osmoregulation. Differences in osmoregulatory solutes may, but are not always, be attributed to differences in nutritional capabilities. The mechanism of osmoregulation and concomitant salt tolerance in halophilic cyanobacteria was elucidated. The activities of betaine and S-Adenosylhomocysteine hydrolase are discussed.

  20. Phylogenetic analysis of the genus Anabaena based on PCR ...

    African Journals Online (AJOL)

    In this study, ten species of Anabaena were used to test the congruence between the traditional morphological classification system and the present molecular classification system. For morphological classification, strains were categorized into two different groups based on the whether or not the akinetes were directly ...

  1. Phylogenetic analysis of the genus Anabaena based on PCR ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... (1995) detected toxin-producing strains of the genera Anabaena and Nostoc in a Finnish lake using STRR sequences. STRR IA sequences showed higher diversity in free-living cyanobacteria. (Rasmussen and Svenning, 1998) and STRR markers showed that the Nostoc symbionts of Gunnera magel-.

  2. Evaluation of microcystin contamination in blue-green algal dietary supplements using a protein phosphatase inhibition-based test kit

    Directory of Open Access Journals (Sweden)

    David W. Marsan

    2018-03-01

    Full Text Available The cyanobacterium Aphanizomenon flos-aquae (AFA, from Upper-Klamath Lake, Oregon, are used to produce blue-green algal (BGA dietary supplements. The periodic co-occurrence of hepatotoxin-producing contaminant species prompted the Oregon Health Division to establish a limit of 1 μg/g microcystin (MC for products sold in Oregon in 1997. At the federal level, the current good manufacturing practice (CGMP regulations for dietary supplements require manufacturers establish a specification, and test, for limits on contaminants that may adulterate finished products. Despite this, several previous international surveys reported MC in BGA supplements in excess of 1 μg/g. The objectives of this study were (1 identify a reliable, easy to use test kit for the detection of MC in dried BGA materials and (2 use this kit to assess the occurrence of MC contamination in AFA-BGA dietary supplements in the U.S. A commercial protein phosphatase inhibition assay (PPIA, based on the enzyme PP2A, was found to have acceptable relative enzyme inhibition and accuracy for the majority of MC variants tested, including those most commonly identified in commercial samples, making the kit fit for purpose. Using the PPIA kit, 51% (26 of 51 distinct AFA-BGA products had MC ≥0.25 μg/g (the detection limit of the kit, 10 products had MC concentrations between 0.5 and 1.0 μg/g, and 4 products exceeded the limit (1.1–2.8 μg/g. LC-MS/MS confirmed PPIA results ≥0.5 μg/g and determined that MC-LA and MC-LR were the main congeners present. PPIA is a reliable method for the detection of MC contamination in dried BGA dietary supplements produced in the U.S. While the majority of AFA-BGA products contained ≥0.25 μg/g MC, most were at or below 1.0 μg/g, suggesting that manufacturers have adopted this level as a specification in these products; however, variability in recommended serving sizes prevented further analysis of consumer exposure based on the concentrations of MC

  3. Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E. [ISOM and Dept. Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Kong, X.; Trampert, A. [Paul-Drude-Institut fuer Festkoeperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2013-05-06

    This work reports on the selective area growth by plasma-assisted molecular beam epitaxy and characterization of InGaN/GaN nanocolumnar heterostructures. The optimization of the In/Ga and total III/V ratios, as well as the growth temperature, provides control on the emission wavelength, either in the blue, green, or red spectral range. An adequate structure tailoring and monolithic integration in a single nanocolumnar heterostructure of three InGaN portions emitting in the red-green-blue colors lead to white light emission.

  4. The Study of Algae

    Science.gov (United States)

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  5. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Kristin Collier Valle

    Full Text Available Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.

  6. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Valle, Kristin Collier; Nymark, Marianne; Aamot, Inga; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Brembu, Tore; Bones, Atle M

    2014-01-01

    Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.

  7. Crystal structure and luminescence properties of the blue-green-emitting Ba9(Lu, Y)2Si6O24:Ce3+phosphor.

    Science.gov (United States)

    Xu, Huawei; Zhou, Zhi; Liu, Yongfu; Liu, Qunxing; He, Zhiyuan; Wang, Shen; Huang, Linyi; Zhu, Hongbo

    2017-08-01

    Samples of the Ba 9 (Lu 2-x Y x )Si 6 O 24 :Ce 3 + (x = 0-2) blue-green phosphors were synthesized by solid-state reactions. All the samples exhibited a rhombohedral crystal structure. As the Y 3 + concentration increased, the diffraction peaks shifted to the small angle region and the lattice parameters increased due to the larger ionic radius of Y 3 + (r = 0.900 Å) compared with that of Lu 3 + (r = 0.861 Å). Under 400 nm excitation, samples exhibited strong blue-green emissions around 490 nm. The emission bands had a slight blue shift that resulted from weak crystal-field splitting with increasing Y 3 + concentration. Luminescence intensity and quantum efficiency (QE) decreased with increasing Y 3 + concentration. The internal QE decreased from 74 to 50% and the external QE decreased from 50 to 34% as x increased from 0 to 2. The thermal stability of the Lu series was better than that of the Y-series. The excitation band peak around 400 nm matched well with the emission light from the efficient near-ultraviolet (NUV) chip. These results indicate promising applications for these NUV-based white light-emitting diodes. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis.

    OpenAIRE

    Thiel, T

    1988-01-01

    Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells. Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of Pi. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a ...

  9. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W Golden

    2004-08-05

    The nitrogen-fixing filamentous cyanobacterium Anabaena sp. strain PCC 7120 is being used as a simple model of microbial development and pattern formation in a multicellular prokaryotic organism. Anabaena reduces atmospheric nitrogen to ammonia in highly specialized, terminally differentiated cells called heterocysts. Anabaena is an important model system because of the multicellular growth pattern, the suspected antiquity of heterocyst development, and the contribution of fixed nitrogen to the environment. We are especially interested in understanding the molecular signaling pathways and genetic regulation that control heterocyst development. In the presence of an external source of reduced nitrogen, the differentiation of heterocysts is inhibited. When Anabaena is grown on dinitrogen, a one-dimensional developmental pattern of single heterocysts separated by approximately ten vegetative cells is established to form a multicellular organism composed of two interdependent cell types. The goal of this project is to understand the signaling and regulatory pathways that commit a vegetative cell to terminally differentiate into a nitrogen-fixing heterocyst. Several genes identified by us and by others were chosen as entry points into the regulatory network. Our research, which was initially focused on transcriptional regulation by group 2 sigma factors, was expanded to include group 3 sigma factors and their regulators after the complete Anabaena genome sequence became available. Surprisingly, no individual sigma factor is essential for heterocyst development. We have used the isolation of extragenic suppressors to study genetic interactions between key regulatory genes such as patS, hetR, and hetC in signaling and developmental pathways. We identified a hetR R223W mutation as a bypass suppressor of patS overexpression. Strains containing the hetR R223W allele fail to respond to pattern formation signals and overexpression of this allele results in a lethal phenotype

  10. Algae Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  11. Biodegradation of polychlorinated biphenyls (PCBs by the novel identified cyanobacterium Anabaena PD-1.

    Directory of Open Access Journals (Sweden)

    Hangjun Zhang

    Full Text Available Polychlorinated biphenyls (PCBs, a class of hazardous pollutants, are difficult to dissipate in the natural environment. In this study, a cyanobacterial strain Anabaena PD-1 showed good resistance against PCB congeners. Compared to a control group, chlorophyll a content decreased 3.7% and 11.7% when Anabaena PD-1 was exposed to 2 and 5 mg/L PCBs for 7 d. This cyanobacterial strain was capable of decomposing PCB congeners which was conclusively proved by determination of chloride ion concentrations in chlorine-free medium. After 7 d, the chloride ion concentrations in PCB-treated groups (1, 2, 5 mg/L were 3.55, 3.05, and 2.25 mg/L, respectively. The genetic information of strain PD-1 was obtained through 16S rRNA sequencing analysis. The GenBank accession number of 16S rRNA of Anabaena PD-1 was KF201693.1. Phylogenetic tree analysis clearly indicated that Anabaena PD-1 belonged to the genus Anabaena. The degradation half-life of Aroclor 1254 by Anabaena PD-1 was 11.36 d; the total degradation rate for Aroclor 1254 was 84.4% after 25 d. Less chlorinated PCB congeners were more likely to be degraded by Anabaena PD-1 in comparison with highly chlorinated congeners. Meta- and para-chlorines in trichlorodiphenyls and tetrachlorobiphenyls were more susceptible to dechlorination than ortho-chlorines during the PCB-degradation process by Anabaena PD-1. Furthermore, Anabaena PD-1 can decompose dioxin-like PCBs. The percent biodegradation of 12 dioxin-like PCBs by strain PD-1 ranged from 37.4% to 68.4% after 25 days. Results above demonstrate that Anabaena PD-1 is a PCB-degrader with great potential for the in situ bioremediation of PCB-contaminated paddy soils.

  12. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W. Golden

    2008-10-17

    The regulation of development and cellular differentiation is important for all multicellular organisms. The nitrogen-fixing filamentous cyanobacterium Anabaena (also Nostoc) sp. PCC 7120 (hereafter Anabaena) provides a model of multicellular microbial development and pattern formation. Anabaena reduces N2 to ammonia in specialized terminally differentiated cells called heterocysts. A one-dimensional developmental pattern of single heterocysts regularly spaced along filaments of photosynthetic vegetative cells is established to form a multicellular organism composed of these two interdependent cell types. This multicellular growth pattern, the distinct phylogeny of cyanobacteria, and the suspected antiquity of heterocyst development make this an important model system. Our long-term goal is to understand the regulatory network required for heterocyst development and nitrogen fixation. This project is focused on two key aspects of heterocyst regulation: one, the mechanism by which HetR controls the initiation of differentiation, and two, the cis and trans acting factors required for expression of the nitrogen-fixation (nif) genes. HetR is thought to be a central regulator of heterocyst development but the partners and mechanisms involved in this regulation are unknown. Our recent results indicate that PatS and other signals that regulate heterocyst pattern cannot interact, directly or indirectly, with a R223W mutant of HetR. We plan to use biochemical and genetic approaches to identify proteins that interact with the HetR protein, which will help reveal the mechanisms underlying its regulation of development. Our second goal is to determine how the nif genes are expressed. It is important to understand the mechanisms controlling nif genes since they represent the culmination of the differentiation process and the essence of heterocyst function. The Anabaena genome lacks the genes required for expression of nif genes present in other organisms such as rpoN (sigma 54

  13. An RNA-Seq Analysis of Grape Plantlets Grown in vitro Reveals Different Responses to Blue, Green, Red LED Light, and White Fluorescent Light.

    Science.gov (United States)

    Li, Chun-Xia; Xu, Zhi-Gang; Dong, Rui-Qi; Chang, Sheng-Xin; Wang, Lian-Zhen; Khalil-Ur-Rehman, Muhammad; Tao, Jian-Min

    2017-01-01

    Using an RNA sequencing (RNA-seq) approach, we analyzed the differentially expressed genes (DEGs) and physiological behaviors of "Manicure Finger" grape plantlets grown in vitro under white, blue, green, and red light. A total of 670, 1601, and 746 DEGs were identified in plants exposed to blue, green, and red light, respectively, compared to the control (white light). By comparing the gene expression patterns with the growth and physiological responses of the grape plantlets, we were able to link the responses of the plants to light of different spectral wavelengths and the expression of particular sets of genes. Exposure to red and green light primarily triggered responses associated with the shade-avoidance syndrome (SAS), such as enhanced elongation of stems, reduced investment in leaf growth, and decreased chlorophyll levels accompanied by the expression of genes encoding histone H3, auxin repressed protein, xyloglucan endotransglycosylase/hydrolase, the ELIP protein, and microtubule proteins. Furthermore, specific light treatments were associated with the expression of a large number of genes, including those involved in the glucan metabolic pathway and the starch and sucrose metabolic pathways; these genes were up/down-regulated in ways that may explain the increase in the starch, sucrose, and total sugar contents in the plants. Moreover, the enhanced root growth and up-regulation of the expression of defense genes accompanied with SAS after exposure to red and green light may be related to the addition of 30 g/L sucrose to the culture medium of plantlets grown in vitro . In contrast, blue light induced the up-regulation of genes related to microtubules, serine carboxypeptidase, chlorophyll synthesis, and sugar degradation and the down-regulation of auxin-repressed protein as well as a large number of resistance-related genes that may promote leaf growth, improve chlorophyll synthesis and chloroplast development, increase the ratio of chlorophyll a (chla

  14. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species

    Directory of Open Access Journals (Sweden)

    Alice Jernigan

    2015-01-01

    Full Text Available Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green and eukaryotic (green and brown algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis, five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata, and one brown algae (Ectocarpus sp. were examined and CE-SSCP electropherogram “fingerprints” were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred.

  15. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar, E-mail: aptesk@barc.gov.in

    2017-01-15

    Highlights: • Response of two native cyanobacterial strains to uranium exposure was studied. • Anabaena L-31 exhibited higher tolerance to uranium as compared to Anabaena 7120. • Uranium exposure differentially affected the proteome profiles of the two strains. • Anabaena L-31 showed better sustenance of photosynthesis and carbon metabolism. • Anabaena L-31 displayed superior oxidative stress defense than Anabaena 7120. - Abstract: Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD{sub 50} dose), following 3 h exposure to 75 μM and 200 μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. Significance: Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120.

  16. Use of Blue-Green Fluorescence and Thermal Imaging in the Early Detection of Sunflower Infection by the Root Parasitic Weed Orobanche cumana Wallr.

    Directory of Open Access Journals (Sweden)

    Carmen M. Ortiz-Bustos

    2017-05-01

    Full Text Available Although the impact of Orobanche cumana Wallr. on sunflower (Helianthus annuus L. becomes evident with emergence of broomrape shoots aboveground, infection occurs early after sowing, the host physiology being altered during underground parasite stages. Genetic resistance is the most effective control method and one of the main goals of sunflower breeding programmes. Blue-green fluorescence (BGF and thermal imaging allow non-destructive monitoring of plant diseases, since they are sensitive to physiological disorders in plants. We analyzed the BGF emission by leaves of healthy sunflower plantlets, and we implemented BGF and thermal imaging in the detection of the infection by O. cumana during underground parasite development. Increases in BGF emission were observed in leaf pairs of healthy sunflowers during their development. Lower BGF was consistently detected in parasitized plants throughout leaf expansion and low pigment concentration was detected at final time, supporting the interpretation of a decrease in secondary metabolites upon infection. Parasite-induced stomatal closure and transpiration reduction were suggested by warmer leaves of inoculated sunflowers throughout the experiment. BGF imaging and thermography could be implemented for fast screening of sunflower breeding material. Both techniques are valuable approaches to assess the processes by which O. cumana alters physiology (secondary metabolism and photosynthesis of sunflower.

  17. Use of Blue-Green Fluorescence and Thermal Imaging in the Early Detection of Sunflower Infection by the Root Parasitic Weed Orobanche cumana Wallr.

    Science.gov (United States)

    Ortiz-Bustos, Carmen M; Pérez-Bueno, María L; Barón, Matilde; Molinero-Ruiz, Leire

    2017-01-01

    Although the impact of Orobanche cumana Wallr. on sunflower ( Helianthus annuus L.) becomes evident with emergence of broomrape shoots aboveground, infection occurs early after sowing, the host physiology being altered during underground parasite stages. Genetic resistance is the most effective control method and one of the main goals of sunflower breeding programmes. Blue-green fluorescence (BGF) and thermal imaging allow non-destructive monitoring of plant diseases, since they are sensitive to physiological disorders in plants. We analyzed the BGF emission by leaves of healthy sunflower plantlets, and we implemented BGF and thermal imaging in the detection of the infection by O. cumana during underground parasite development. Increases in BGF emission were observed in leaf pairs of healthy sunflowers during their development. Lower BGF was consistently detected in parasitized plants throughout leaf expansion and low pigment concentration was detected at final time, supporting the interpretation of a decrease in secondary metabolites upon infection. Parasite-induced stomatal closure and transpiration reduction were suggested by warmer leaves of inoculated sunflowers throughout the experiment. BGF imaging and thermography could be implemented for fast screening of sunflower breeding material. Both techniques are valuable approaches to assess the processes by which O. cumana alters physiology (secondary metabolism and photosynthesis) of sunflower.

  18. Efficient blue-green and green electroluminescent devices obtained by doping iridium complexes into hole-block material as supplementary light-emitting layer

    International Nuclear Information System (INIS)

    Zhou, Liang; Zheng, Youxuan; Deng, Ruiping; Feng, Jing; Song, Mingxing; Hao, Zhaomin; Zhang, Hongjie; Zuo, Jinglin; You, Xiaozeng

    2014-01-01

    In this work, organic electroluminescent (EL) devices with dominant and supplementary light-emitting layers (EMLs) were designed to further improve the EL performances of two iridium III -based phosphorescent complexes, which have been reported to provide EL devices with slow EL efficiency roll-off. The widely used hole-block material 2,2′,2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) was selected as host material to construct the supplementary EML. Compared with single-EML devices, double-EMLs devices showed higher EL efficiencies, higher brightness, and lower operation voltage attributed to wider recombination zone and better balance of carriers. In addition, the insertion of supplementary EML is instrumental in facilitating carriers trapping, thus improving the color purity. Finally, high performance blue-green and green EL devices with maximum current efficiencies of 35.22 and 90.68 cd/A, maximum power efficiencies of 26.36 and 98.18 lm/W, and maximum brightness of 56,678 and 112,352 cd/m 2 , respectively, were obtained by optimizing the doping concentrations. Such a device design strategy extends the application of a double EML device structure and provides a chance to simplify device fabrication processes. -- Highlights: • Electroluminescent devices with supplementary light-emitting layer were fabricated. • Doping concentrations and thicknesses were optimized. • Better balance of holes and electrons causes the enhanced efficiency. • Improved carrier trapping suppresses the emission of host material

  19. Blue-green tunable color of Ce(3+)/Tb(3+) coactivated NaBa3La3Si6O20 phosphor via energy transfer.

    Science.gov (United States)

    Jia, Zhen; Xia, Mingjun

    2016-09-15

    A series of color tunable phosphors NaBa3La3Si6O20:Ce(3+), Tb(3+) were synthesized via the high-temperature solid-state method. NaBa3La3Si6O20 crystallizes in noncentrosymmetric space group Ama2 with the cell parameters of a = 14.9226(4) Å, b = 24.5215(5) Å and c = 5.6241(2) Å by the Rietveld refinement method. The Ce(3+) ions doped NaBa3La3Si6O20 phosphors have a strong absorption band from 260 to 360 nm and show near ultraviolet emission light centered at 378 nm. The Ce(3+) and Tb(3+) ions coactivated phosphors exhibit color tunable emission light from deep blue to green by adjusting the concentration of the Tb(3+) ions. An energy transfer of Ce(3+) → Tb(3+) investigated by the photoluminescence properties and lifetime decay, is demonstrated to be dipole-quadrupole interaction. These results indicate the NaBa3La3Si6O20:Ce(3+), Tb(3+) phosphors can be considered as potential candidates for blue-green components for white light emitting diodes.

  20. Structure of plastocyanin from the cyanobacterium Anabaena variabilis

    DEFF Research Database (Denmark)

    Schmidt, Lars; Christensen, Hans Erik Mølager; Harris, Pernille

    2006-01-01

    Plastocyanin from the cyanobacterium Anabaena variabilis was heterologously produced in E. coli and purified. Plate-like crystals were obtained by crystallisation in 1.15 M trisodium citrate and 7.67 mM sodium borate buffer pH 8.5. The crystals belong to the orthorhombic space group P212121...... with cell dimensions a = 67.85 Å, b = 45.81 Å and c = 63.41 Å. The structure of the oxidised protein was solved to a resolution of 1.6 Å using plastocyanin from Phormidium laminosum as search model. Two molecules were found in the asymmetric unit. The electrostatic surface of the basic protein showed...

  1. Research of biological isotope effect of deuterium in Anabaena azollae

    International Nuclear Information System (INIS)

    Zhang Yongbo; Wang Wenqing; Shi Dingji; Luo Shanggeng

    1996-01-01

    Anabaena azollae is cultured in BG-11 medium whose mass fraction of heavy water is 0%, 10%, 30%, 60% and 90%, respectively. During different time, activities of photosynthesis, respiration and nitrogenase are measured. In addition, growth-curve, absorption spectrum and low temperature fluorescence spectrum are given. The change of cellular morphology is observed with scanning electron microscope. The results show that the addition of heavy water causes lagging of the exponential period of growth, and inhibits the activities of photosynthesis respiration and nitrogenase markedly. Absorption spectrum shows that the ratio of phycobilins to carotenoid decreases with increasing percentage of heavy water. Low temperature fluorescence spectrum indicates that the ratio of F 733 /F 695 decreases and photo-energy distributed to system II is more than to system I. According to the maximum of net photosynthesis, the isotope effect is also discussed

  2. Photosynthetic electron transport in thylakoid preparations from two marine red algae (Rhodophyta).

    Science.gov (United States)

    Stewart, A C; Larkum, A W

    1983-01-01

    Thylakoid membrane preparations active in photosynthetic electron transport have been obtained from two marine red algae, Griffithsia monilis and Anotrichium tenue. High concentrations (0.5-1.0 M) of salts such as phosphate, citrate, succinate and tartrate stabilized functional binding of phycobilisomes to the membrane and also stabilized Photosystem II-catalysed electron-transport activity. High concentrations (1.0 M) of chloride and nitrate, or 30 mM-Tricine/NaOH buffer (pH 7.2) in the absence of salts, detached phycobilisomes and inhibited electron transport through Photosystem II. The O2-evolving system was identified as the electron-transport chain component that was inhibited under these conditions. Washing membranes with buffers containing 1.0-1.5 M-sorbitol and 5-50 mM concentrations of various salts removed the outer part of the phycobilisome but retained 30-70% of the allophycocyanin 'core' of the phycobilisome. These preparations were 30-70% active in O2 evolution compared with unwashed membranes. In the sensitivity of their O2-evolving apparatus to the composition of the medium in vitro, the red algae resembled blue-green algae and differed from other eukaryotic algae and higher plants. It is suggested that an environment of structured water may be essential for the functional integrity of Photosystem II in biliprotein-containing algae. PMID:6860312

  3. BEBERAPA MARGA ALGA BENANG DAN HUBUNGANNYA DENGAN KEBERADAAN VEKTOR MALARIA DI BALI UTARA

    Directory of Open Access Journals (Sweden)

    I. G. Seregeg

    2012-09-01

    Full Text Available A study of filamentous algae and its relation to malaria vector control was conducted during the dry season in several lagoons at the north coast of Bali. Floating masses of these algae under the sunshine barricated the spread of solar-triton larvicide, reducing tremendously the effectiveness of the larvicide. Identification of the genera of these algae under the subphyllum of CYANOPHYTA (Blue Algae in the family of Cyanophyceae were Oscillatoria, Spirulina, Phormidium, Rivularia, Nostoc, and Anabaena; under the subphyllum of CHLOROPHYTA (Green Algae in the family of Chlorophyceae were Enteromorpha, Spirogyra, Mougeotia, Zygnema, and Oedogonium. The surface of water in between the floating masses of algae were an exellent breeding place of mosquitoes mainly Anopheles sundaicus. The density of Enteromorpha, the main attractant of An sundaicus compared to other filamantous algae, has no direct relation on the density of An. sundaicus larva. Hence Enteromorpha could only be considered as the indicator of the presence of larvae and not as the indicator of population densities of larvae Lagoons surrounded with mangrove plantations did not harbour filamentous algae and larvae of An. sundaicus were not found.

  4. Quantification of Concentration of Microalgae Anabaena Cylindrica, Coal-bed Methane Water Isolates Nannochloropsis Gaditana and PW-95 in Aquatic Solutions through Hyperspectral Reflectance Measurement and Analytical Model Establishment

    Science.gov (United States)

    Zhou, Z.; Zhou, X.; Apple, M. E.; Spangler, L.

    2017-12-01

    Three species of microalgae, Anabaena cylindrica (UTEX # 1611), coal-bed methane water isolates Nannochloropsis gaditana and PW-95 were cultured for the measurements of their hyperspectral profiles in different concentrations. The hyperspectral data were measured by an Analytical Spectral Devices (ASD) spectroradiomter with the spectral resolution of 1 nanometer over the wavelength ranges from 350nm to 1050 nm for samples of microalgae of different concentration. Concentration of microalgae was measured using a Hemocytometer under microscope. The objective of this study is to establish the relation between spectral reflectance and micro-algal concentration so that microalgae concentration can be measured remotely by space- or airborne hyperspectral or multispectral sensors. Two types of analytical models, linear reflectance-concentration model and Lamber-Beer reflectance-concentration model, were established for each species. For linear modeling, the wavelength with the maximum correlation coefficient between the reflectance and concentrations of algae was located and then selected for each species of algae. The results of the linear models for each species are shown in Fig.1(a), in which Refl_1, Refl_2, and Refl_3 represent the reflectance of Anabaena, N. Gaditana, and PW-95 respectively. C1, C2, and C3 represent the Concentrations of Anabaena, N. Gaditana, and PW-95 respectively. The Lamber-Beer models were based on the Lambert-Beer Law, which states that the intensity of light propagating in a substance dissolved in a fully transmitting solvent is directly proportional to the concentration of the substance and the path length of the light through the solution. Thus, for the Lamber-Beer modeling, a wavelength with large absorption in red band was selected for each species. The results of Lambert-Beer models for each species are shown in Fig.1(b). Based on the Lamber-Beer models, the absorption coefficient for the three different species will be quantified.

  5. Bioremediation of acid mine drainage using algae strains: A review

    Directory of Open Access Journals (Sweden)

    J.K. Bwapwa

    2017-12-01

    Full Text Available Acid mine drainage (AMD causes massive environmental concerns worldwide. It is highly acidic and contains high levels of heavy metals causing environmental damage. Conventional treatment methods may not be effective for AMD. The need for environmental remediation requires cost effective technologies for efficient removal of heavy metals. In this study, algae based systems were reviewed and analyzed to point out the potentials and gaps for future studies. Algae strains such as Spirulina sp., Chlorella, Scenedesmus, Cladophora, Oscillatoria, Anabaena, Phaeodactylum tricornutum have showed the capacity to remove a considerable volume of heavy metals from AMD. They act as “hyper-accumulators” and “hyper-adsorbents” with a high selectivity for different elements. In addition, they generate high alkalinity which is essential for precipitation of heavy metals during treatment. However, algae based methods of abating AMD are not the ultimate solution to the problem and there is room for more studies. : The bioremediation of acid mine drainage is achievable with the use of microalgae. Keywords: Acid mine drainage, Algae strains, Contamination, Heavy metals, Bioremediation

  6. Polyphasic characterization of eight planktonic Anabaena strains (Cyanobacteria) with reference to the variability of 61 Anabaena populations observed in the field.

    Czech Academy of Sciences Publication Activity Database

    Zapomělová, E.; Řeháková, Klára; Jezberová, J.; Komárková, Jaroslava

    2010-01-01

    Roč. 639, č. 1 (2010), s. 99-113 ISSN 0018-8158 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : Anabaena * taxonomy * morphology Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 1.964, year: 2010

  7. Photoreactions and Structural Changes of Anabaena Sensory Rhodopsin

    Directory of Open Access Journals (Sweden)

    Akira Kawanabe

    2009-12-01

    Full Text Available Anabaena sensory rhodopsin (ASR is an archaeal-type rhodopsin found in eubacteria. The gene encoding ASR forms a single operon with ASRT (ASR transducer which is a 14 kDa soluble protein, suggesting that ASR functions as a photochromic sensor by activating the soluble transducer. This article reviews the detailed photoreaction processes of ASR, which were studied by low-temperature Fourier-transform infrared (FTIR and UV-visible spectroscopy. The former research reveals that the retinal isomerization is similar to bacteriorhodopsin (BR, but the hydrogen-bonding network around the Schiff base and cytoplasmic region is different. The latter study shows the stable photoproduct of the all-trans form is 100% 13-cis, and that of the 13-cis form is 100% all-trans. These results suggest that the structural changes of ASR in the cytoplasmic domain play important roles in the activation of the transducer protein, and photochromic reaction is optimized for its sensor function.

  8. Antimicrobial-resistant faecal organisms in algae products marketed as health supplements

    LENUS (Irish Health Repository)

    2017-09-01

    Dietary supplements are increasingly popular in Irish society. One of these is blue-green algae which is used with a variety health benefits in mind. A batch of Chlorella powder was found to be contaminated with Salmonella species in Ireland in 2015. This prompted additional testing of a total of 8 samples of three different products (Chlorella, Spirulina and Super Greens), for other faecal flora and antimicrobial resistance in any bacteria isolated. All 8 samples cultured enteric flora such as Enterococci, Enterobacteriaceae and Clostridium species. Antimicrobial susceptibility testing revealed one isolate with extended-spectrum β-lactamase (ESBL) activity and one with carbapenemase activity. Clinicians caring for vulnerable patients should be aware of the potential risk of exposure to antimicrobial resistant bacteria associated with these products

  9. Antimicrobial-resistant Faecal Organisms in Algae Products Marketed as Health Supplements.

    Science.gov (United States)

    Ryan, L; Molloy, M; Evans, L; Quinn, A; Burke, E; McGrath, E; Cormican, M

    2017-08-12

    Dietary supplements are increasingly popular in Irish society. One of these is blue-green algae which is used with a variety health benefits in mind. A batch of Chlorella powder was found to be contaminated with Salmonella species in Ireland in 2015. This prompted additional testing of a total of 8 samples of three different products (Chlorella, Spirulina and Super Greens), for other faecal flora and antimicrobial resistance in any bacteria isolated. All 8 samples cultured enteric flora such as Enterococci, Enterobacteriaceae and Clostridium species. Antimicrobial susceptibility testing revealed one isolate with extended-spectrum ?-lactamase (ESBL) activity and one with carbapenemase activity. Clinicians caring for vulnerable patients should be aware of the potential risk of exposure to antimicrobial resistant bacteria associated with these products.

  10. Inhibitory effects and mechanisms of Hydrilla verticillata (Linn.f.) Royle extracts on freshwater algae.

    Science.gov (United States)

    Zhang, T-T; He, M; Wu, A-P; Nie, L-W

    2012-03-01

    To pursue an effective way to control freshwater algae, four extracts from a submerged macrophyte Hydrilla verticillata (Linn.f.) Royle were tested to study its inhibitory effects on Anabaena flos-aquae FACHB-245 and Chlorella pyrenoidosa Chick FACHB-9. Extract with the highest inhibiting ability was further studied in order to reveal the inhibitory mechanism. The results demonstrated that H. verticillata extracts inhibited the growth of A. flos-aquae and C. pyrenoidosa, and methanol extract had the highest inhibiting ability. The mechanism underlying the algal growth inhibition involves the superoxide anion radical generation that induces the damage of cell wall and release of intracellular components.

  11. Magnetic separation of algae

    Science.gov (United States)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  12. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta).

    Science.gov (United States)

    Wu, Huanyang

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation.

  13. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Huanyang Wu

    2016-01-01

    Full Text Available Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation.

  14. A novel tunable blue-green-emitting CaGdGaAl2O7:Ce(3+),Tb(3+) phosphor via energy transfer for UV-excited white LEDs.

    Science.gov (United States)

    Liang, Chao; You, Hongpeng; Fu, Yibing; Teng, Xiaoming; Liu, Kai; He, Jinhua

    2015-05-07

    CaGdGaAl2O7 and CaGdGaAl2O7:Ce(3+),Tb(3+) have been synthesized by a traditional solid state reaction for the first time. The Rietveld refinement confirmed that CaGdGaAl2O7 has a tetragonal crystal system with the space group P4[combining macron]21m. The photoluminescence properties show that the obtained phosphors can be efficiently excited in the range from 330 to 400 nm, which matches perfectly with commercial UV LED chips. A tunable blue-green emitting CaGdGaAl2O7:Ce(3+),Tb(3+) phosphor has been obtained, by codoping Ce(3+) and Tb(3+) ions into the host and varying their relative ratios, and may be a good candidate for blue-green components in UV white LEDs. The luminescence properties and lifetimes reveal an efficient energy transfer from the Ce(3+) to Tb(3+) ions. The energy transfer is demonstrated to be a dipole-quadrupole mechanism, and the critical distance for Ce(3+) to Tb(3+) calculated by the concentration quenching is 12.25 Å.

  15. In silico characterization and transcriptomic analysis of nif family genes from Anabaena sp. PCC7120.

    Science.gov (United States)

    Singh, Shilpi; Shrivastava, Alok Kumar

    2017-10-01

    In silico approaches in conjunction with morphology, nitrogenase activity, and qRT-PCR explore the impact of selected abiotic stressor such as arsenic, salt, cadmium, copper, and butachlor on nitrogen fixing (nif family) genes of diazotrophic cyanobacterium Anabaena sp. PCC7120. A total of 19 nif genes are present within the Anabaena genome that is involved in the process of nitrogen fixation. Docking studies revealed the interaction between these nif gene-encoded proteins and the selected abiotic stressors which were further validated through decreased heterocyst frequency, fragmentation of filaments, and downregulation of nitrogenase activity under these stresses indicating towards their toxic impact on nitrogen fixation potential of filamentous cyanobacterium Anabaena sp. PCC7120. Another appealing finding of this study is even though having similar binding energy and similar interacting residues between arsenic/salt and copper/cadmium to nif-encoded proteins, arsenic and cadmium are more toxic than salt and copper for nitrogenase activity of Anabaena which is crucial for growth and yield of rice paddy and soil reclamation.

  16. Iron starvation-induced proteomic changes in Anabaena (Nostoc) sp. PCC 7120: exploring survival strategy.

    Science.gov (United States)

    Narayan, Om Prakash; Kumari, Nidhi; Rai, Lal Chand

    2011-02-01

    This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the 7th day, and a decline in expression from the 15th day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the N2-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.

  17. Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum – 1. part: coiled types

    Czech Academy of Sciences Publication Activity Database

    Komárek, Jiří; Zapomělová, Eliška

    2007-01-01

    Roč. 7, č. 1 (2007), s. 1-31 ISSN 1802-5439 R&D Projects: GA AV ČR IAA600050704 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z60170517 Keywords : cyanobacteria * planktic Anabaena * taxonomic review Subject RIV: EF - Botanics

  18. Polyphasic characterization of three strains of .i.Anabaena reniformis./i. and .i.Aphanizomenon aphanizomenoides./i. (cyanobacteria) and their re-classification to .i.Sphaerospermum./i. gen. nov. (incl. .i.Anabaena kisseleviana./i.)

    Czech Academy of Sciences Publication Activity Database

    Zapomělová, Eliška; Jezberová, Jitka; Hrouzek, Pavel; Hisem, D.; Řeháková, Klára; Komárková, Jaroslava

    2009-01-01

    Roč. 45, č. 6 (2009), s. 1363-1373 ISSN 0022-3646 R&D Projects: GA AV ČR(CZ) KJB600960703; GA AV ČR(CZ) IAA600050704; GA ČR(CZ) GA206/06/0462 Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z50200510 Keywords : Anabaena reniformis * Aphanizomenon aphanizomenoides * taxonomy * Sphaerospermum * Anabaena kisseleviana Subject RIV: EE - Microbiology, Virology Impact factor: 2.270, year: 2009

  19. Endolithic algae of semi-desert sandstones: systematic, biogeographic and ecophysiologic investigations

    International Nuclear Information System (INIS)

    Bell, R.A.

    1986-01-01

    Investigations were conducted into the ecology of an unusual algal community in northern Arizona. These microorganisms are called endolithic algae because they occur beneath the surface of rocks. Eighteen taxa, including representatives of both eukaryotic and prokaryotic genera, were isolated from below the surface of eight sandstones in four semi-desert and cold temperate biomes of the Colorado Plateau. As the macroclimate of the area changes from cold temperature desert scrub to cold temperate forest the taxonomic composition of the endolithic algal communities shifts from domination by coccoid blue-green algae to domination by coccoid and sarcinoid green algae. The algal communities varied in generic composition, chlorophyll a content, and in their location within the different sandstones. Investigations into the microclimate of the endolithic algal zone in two adjacent but differently-colored sections (white and brown) of Coconino sandstone have demonstrated differences between the environment above the rock surface and that just beneath the surface. In seasonal samples of the Coconino sandstone, chlorophyll a content ranged from 50 to 100 mg x m -2 in the white rock and 8 to 45 mg x m -2 in the brown rock. Primary production (as measured by 14 CO 2 incorporation) displayed marked seasonal patterns that appear to be correlated to the environmental conditions within the rocks as opposed to those outside the rocks. The widespread distribution of certain algae in the endolithic habitats of the Colorado Plateau and their presence in rocks at quite distant locations suggests that the endolithic habitat may be utilized by algae whenever it provides more favorable conditions than the surrounding surfaces

  20. Mass Spectral Investigation on Toxins. I. Isolation, Purification, and Characterization of Hepatotoxins from Freshwater Blue-Green Algae (Cyanobacteria) by High-Performance Liquid Chromatography and Fast Atom Bombardment Mass Spectrometric Techniques.

    Science.gov (United States)

    1986-09-01

    analysis ’" methods in environmental samples. The hepatotoxins from laboratory cultures of M. aeruginosa Strain 7820,15 Anabena flos- aguae (A. 4flos...flos- aguae S-23-g-1l (8 lug) F1 The results from the amino acid analysis using the Llqui-Mat Analyzer are listed in Table 2. The elution times of the...Runnegar, M.T.C., and Huynh, V.L. Effec- tiveness of Activated Carbon in the Removal of Algal Toxin from Potable Water Supplies: A Pilot Plant

  1. Plasmodesmata of brown algae

    OpenAIRE

    Terauchi, Makoto; Nagasato, Chikako; Motomura, Taizo

    2014-01-01

    Plasmodesmata (PD) are intercellular connections in plants which play roles in various developmental processes. They are also found in brown algae, a group of eukaryotes possessing complex multicellularity, as well as green plants. Recently, we conducted an ultrastructural study of PD in several species of brown algae. PD in brown algae are commonly straight plasma membrane-lined channels with a diameter of 10?20?nm and they lack desmotubule in contrast to green plants. Moreover, branched PD ...

  2. Tunable blue-green-emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ phosphor with energy transfer for near-UV white LEDs.

    Science.gov (United States)

    Jiao, Mengmeng; Guo, Ning; Lü, Wei; Jia, Yongchao; Lv, Wenzhen; Zhao, Qi; Shao, Baiqi; You, Hongpeng

    2013-09-16

    A series of Eu(2+) and Eu(2+)/Tb(3+) activated novel Ba3LaNa(PO4)3F phosphors have been synthesized by traditional solid state reaction. Rietveld structure refinement of the obtained phosphor indicates that the Ba3LaNa(PO4)3F host contains three kinds of Ba sites. The photoluminescence properties exhibit that the obtained phosphors can be efficiently excited in the range from 320 to 430 nm, which matches perfectly with the commercial n-UV LED chips. The critical distance of the Eu(2+) ions in Ba3LaNa(PO4)3F:Eu(2+) is calculated and the energy quenching mechanism is proven to be dipole-dipole interaction. Tunable blue-green emitting Ba3LaNa(PO4)3F:Eu(2+),Tb(3+) phosphor has been obtained by co-doping Eu(2+) and Tb(3+) ions into the host and varying their relative ratios. Compared with the Tb(3+) singly doped phosphor, the codoped phosphors have more intense absorption in the n-UV range and stronger emission of the Tb(3+) ions, which are attributed to the effective energy transfer from the Eu(2+) to Tb(3+) ions. The energy transfer from the Eu(2+) to Tb(3+) ions is demonstrated to be a dipole-quadrupole mechanism by the Inokuti-Hirayama (I-H) model. The Eu(2+) and Tb(3+) activated phosphor may be good candidates for blue-green components in n-UV white LEDs.

  3. Polyphasic characterization of eight planktonic .i.Anabaena./i. strains (Cyanobacteria) with reference to the variability of 61 .i.Anabaena./i. populations observed in the field

    Czech Academy of Sciences Publication Activity Database

    Zapomělová, Eliška; Řeháková, Klára; Jezberová, Jitka; Komárková, Jaroslava

    2010-01-01

    Roč. 639, č. 1 (2010), s. 99-113 ISSN 0018-8158. [IAP /15./. Golan Heights, 23.11. 2008 -30.11. 2008 ] R&D Projects: GA AV ČR(CZ) KJB600960703; GA ČR(CZ) GA206/06/0462; GA AV ČR(CZ) IAA600050704 Institutional research plan: CEZ:AV0Z60170517 Keywords : Anabaena * taxonomy * morphology * classification * light * nitrogen * phosphorus Subject RIV: EE - Microbiology, Virology Impact factor: 1.964, year: 2010

  4. [Harmful algae and health].

    Science.gov (United States)

    Kankaanpää, Harri T

    2011-01-01

    Harmful algae are a worldwide problem. Phycotoxins is a general term for toxic compounds produced by harmful species of the phytoplankton. This review deals with the occurrence of harmful algae and phycotoxins in the Baltic Sea and other domestic waters, the ways of getting exposed to them, and their effects. Advice on how to avoid the exposure is provided.

  5. Improved Eco-Friendly Recombinant Anabaena sp. Strain PCC7120 with Enhanced Nitrogen Biofertilizer Potential▿

    Science.gov (United States)

    Chaurasia, Akhilesh Kumar; Apte, Shree Kumar

    2011-01-01

    Photosynthetic, nitrogen-fixing Anabaena strains are native to tropical paddy fields and contribute to the carbon and nitrogen economy of such soils. Genetic engineering was employed to improve the nitrogen biofertilizer potential of Anabaena sp. strain PCC7120. Constitutive enhanced expression of an additional integrated copy of the hetR gene from a light-inducible promoter elevated HetR protein expression and enhanced functional heterocyst frequency in the recombinant strain. The recombinant strain displayed consistently higher nitrogenase activity than the wild-type strain and appeared to be in homeostasis with compatible modulation of photosynthesis and respiration. The enhanced combined nitrogen availability from the recombinant strain positively catered to the nitrogen demand of rice seedlings in short-term hydroponic experiments and supported better growth. The engineered strain is stable, eco-friendly, and useful for environmental application as nitrogen biofertilizer in paddy fields. PMID:21057013

  6. Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential.

    Science.gov (United States)

    Chaurasia, Akhilesh Kumar; Apte, Shree Kumar

    2011-01-01

    Photosynthetic, nitrogen-fixing Anabaena strains are native to tropical paddy fields and contribute to the carbon and nitrogen economy of such soils. Genetic engineering was employed to improve the nitrogen biofertilizer potential of Anabaena sp. strain PCC7120. Constitutive enhanced expression of an additional integrated copy of the hetR gene from a light-inducible promoter elevated HetR protein expression and enhanced functional heterocyst frequency in the recombinant strain. The recombinant strain displayed consistently higher nitrogenase activity than the wild-type strain and appeared to be in homeostasis with compatible modulation of photosynthesis and respiration. The enhanced combined nitrogen availability from the recombinant strain positively catered to the nitrogen demand of rice seedlings in short-term hydroponic experiments and supported better growth. The engineered strain is stable, eco-friendly, and useful for environmental application as nitrogen biofertilizer in paddy fields.

  7. Evaluation of antibacterial activity of zinc oxide nanoparticles synthesized using phycobilins of Anabaena variabilis NTSS17

    Directory of Open Access Journals (Sweden)

    Thangaraj Ramasamy

    2015-12-01

    Full Text Available Objective: To evaluate the antibacterial activity of zinc oxide nanoparticles synthesized using phycobilins of Anabaena variabilis NTSS17. Methods: The cyanobacterial isolate was collected from paddy field and morphologically identified as Anabaena variabilis NTSS17, that produces a pigment i.e. phycobiliproteins. The biosynthesized zinc nanoparticles were characterized by different spectroscopic and analytical techniques such as UV-visible spectrophotometer, Fourier transform infrared spectroscopy and X-ray diffraction which confirmed the formation of zinc nanoparticles. Results: Antibacterial activity of zinc oxide nanoparticles was examined against Escherichia coli, Rhodococcus rhodochrous and Pseudomonas aeruginosa. The maximum zone of inhibition occurred at 5 mg/1000 mL concentration of zinc oxide nanoparticles. Conclusions: Due to potent antimicrobial and intrinsic properties of zinc oxide, it can be actively used for biomedical applications.

  8. Uptake and utilization of sulfonic acids in the cyanobacterial strains Anabaena variabilis and Plectonema 73110

    International Nuclear Information System (INIS)

    Biedlingmaier, S.; Schmidt, A.

    1987-01-01

    Growth of several cyanobacteria was examined on ethane sulfonate and taurine as only sulfur source. Comparing two strains with differential utilization of sulfonic acids (Anabaena variabilis and Synechococcus 6301) demonstrated that actual growth was coupled to the presence of an active sulfonate transport system due to species specific properties and nutritional conditions. Sulfonate uptake in Anabaena variabilis was characterized by a pH optimum of 6.5, a structural specificity for sulfonates, missing Na + dependence, and phosphate stimulation. Radiolabeled ethane sulfonate and taurine was metabolized to products of normal sulfur metabolism. Also considerable amounts of 35 S-labeled volatiles (mercaptanes and sulfide) could be detected, suggesting a degradation mechanism via reduction to mercaptanes and cleavage of the C-S bond. (orig.)

  9. Algae Derived Biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Kauser [Rowan Univ., Glassboro, NJ (United States)

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  10. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    Science.gov (United States)

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  11. Chemoheterotrophic growth of the Cyanobacterium Anabaena sp. strain PCC 7120 dependent on a functional cytochrome c oxidase.

    Science.gov (United States)

    Stebegg, Ronald; Wurzinger, Bernhard; Mikulic, Markus; Schmetterer, Georg

    2012-09-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth.

  12. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  13. Cianobactérias e algas reduzem os sintomas causados por Tobacco vosaic virus (tmv em plantas de fumo

    Directory of Open Access Journals (Sweden)

    André B. Beltrame

    2011-06-01

    Full Text Available As algas e as cianobactérias produzem uma grande diversidade de compostos com atividade biológica direta sobre microrganismos ou agem como ativadores de mecanismos de resistência em plantas. Em vista disso, foi investigada a manifestação dos sintomas causados pelo Tobacco mosaic virus (TMV em plantas de fumo previamente tratadas com cianobactérias ou algas. Quando as folhas plantas de fumo foram tratadas dois dias antes da inoculação, foi verificado que suspensões de células dos isolados de cianobactérias 004/02, 008/02, Anabaena sp. e Nostoc sp. 61; e do isolado de alga 061/02, bem como as preparações do conteúdo intracelular do isolado 004/02 (4 C e do filtrado do meio de cultivo do isolado 061/02 (61 M apresentaram efeito na redução do número de lesões locais provocadas por TMV em folhas de plantas fumo, cultivar TNN. Além disso, foi observado que os isolados Anabaena sp., Nostoc sp. 21 (cianobactéria, Nostoc sp. 61 e 090/02 (alga mostraram efeito direto sobre o vírus semi-purificado. Em vista disso, pode-se sugerir que os isolados estudados sintetizam compostos que agem diretamente sobre o TMV e/ou ativam o mecanismo de defesa de plantas contra fitopatógenos.

  14. Analysis of proteins involved in the production of MAA׳s in two Cyanobacteria Synechocystis PCC 6803 and Anabaena cylindrica.

    Science.gov (United States)

    Rahman, Md Akhlaqur; Sinha, Sukrat; Sachan, Shephali; Kumar, Gaurav; Singh, Shailendra Kumar; Sundaram, Shanthy

    2014-01-01

    Mycosporine- like amino acids (MAAs) are small (MAAs is presumed to occur via the first part of shikimate pathway. In the present work two cyanobacteria Synechocystis PCC 6803 and Anabaena cylindrica were tested for their ability to synthesize MAAs and protein involved in the production of MAAs. It was found that protein sequence 3-phosphoshikimate 1-carboxyvinyltransferase is involved in producing mycosporine glycine in Synechocystis PCC 6803 and 3-dehydroquinate synthase is involved for producing shinorine in Anabaena cylindrica. Phylogenetic and bioinformatic analysis of Mycosporine like amino acid producing protein sequence of both cyanobacterial species Synechocystis PCC 6803 and Anabaena cylindrica provide a useful framework to understand the relationship of the different forms and how they have evolved from a common ancestor. These products seem to be conserved but the residues are prone to variation which might be due the fact that different cyanobacteria show different physiological process in response of Ultraviolet stress.

  15. Selection and characterization of Euglena anabaena var. minor as a new candidate Euglena species for industrial application.

    Science.gov (United States)

    Suzuki, Kengo; Mitra, Sharbanee; Iwata, Osamu; Ishikawa, Takahiro; Kato, Sueo; Yamada, Koji

    2015-01-01

    Euglena gracilis is a microalgae used as a model organism. Recently, mass cultivation of this species has been achieved for industrial applications. The genus Euglena includes more than 200 species that share common useful features, but the potential industrial applications of other Euglena species have not been evaluated. Thus, we conducted a pilot screening study to identify other species that proliferate at a sufficiently rapid rate to be used for mass cultivation; we found that Euglena anabaena var. minor had a rapid growth rate. In addition, its cells accumulated more than 40% weight of carbohydrate, most of which is considered to be a euglenoid specific type of beta-1-3-glucan, paramylon. Carbohydrate is stored in E. anabaena var. minor cells during normal culture, whereas E. gracilis requires nitrogen limitation to facilitate paramylon accumulation. These results suggest the potential industrial application of E. anabaena var. minor.

  16. Effects of low concentrations of bisulfite-sulfite and nitrite on microorganisms.

    Science.gov (United States)

    Wodzinski, R S; Labeda, D P; Alexander, M

    1978-01-01

    A wide range of microorganisms was tested to determine their sensitivity to low concentrations of bisulfite-sulfite and nitrite, solubility products of SO2 and NO2, respectively. Photosynthesis by blue-green algae (cyanobacteria) was more strongly inhibited by 0.1 mM bisulfite-sulfite and 1 mM nitrite at pH 6.0 than photosynthesis by eucaryotic algae and respiration of bacteria, fungi, and protozoa. At pH 7.7, blue-green algae were still more sensitive to bisulfite-sulfite and nitrite than eucaryotic algae, but the toxicity of bisulfite-sulfite and nitrite decreased as the pH increased. Photosynthesis by Anabaena flos-aquae at pH 6.0 was inhibited 25% by a bisulfite-sulfite concentration of 10 micrometer and 15% by a nitrite concentration of 50 micrometer. Photosynthesis by the blue-green alga, Lyngbya sp., was not exceptionally sensitive to chlorate and thiosulfate. Acetylene-reducing activity of Beijerinckia indica was completely inhibited by 0.1 mM bisulfite-sulfite at pH 4.0, the suppression being decreased with increasing pH. PMID:646357

  17. Approach to improve the productivity of bioactive compounds of the cyanobacterium Anabaena oryzae using factorial design

    Directory of Open Access Journals (Sweden)

    Ragaa A. Hamouda

    2017-09-01

    Full Text Available Cyanobacteria are one of the richest sources of biomedical relevant compounds with extensive therapeutic pharmaceutical applications and are also known as producer of intracellular and extracellular metabolites with diverse biological activities. The genus Anabaena sp. is known to produce antimicrobial compounds, like phycocyanin and others. The goal of this study was to optimize the production of these bioactive compounds. The Plackett–Burman experimental design was used to screen and evaluate the important medium components that influence the production of bioactive compounds. In this present study, eight independent factors including NaNO3, K2HPO4, MgSO4·7H2O, CaCl2, citric acid, ammonium ferric citrate, ethylene diamine tetraacetic acid disodium magnesium salt (EDTA-Na2Mg and Na2CO3 were surveyed and the effective variables for algal components production of Anabaena oryzae were determined using two-levels Plackett–Burman design. Results analysis showed that the best medium components were NaNO3 (2.25 g l−1; K2HPO4 (0.02 g l−1; MgSO4 (0.0375 g l−1; CaCl2 (0.018 g l−1; citric acid (0.009 g l−1; ammonium ferric citrate (0.009 g l−1 and EDTA-Na2 (0.0015 g l−1 respectively. The total chlorophyll-a, carotenoids, phenol, tannic acid and flavonoid contents in crude extract of Anabaena oryzae were determined. They were 47.7, 4.11, 0.256, 1.046 and 1.83 μg/ml, respectively. The antioxidant capacity was 62.81%.

  18. ATP-binding cassette transporters of the multicellular cyanobacterium Anabaena sp. PCC 7120: a wide variety for a complex lifestyle.

    Science.gov (United States)

    Shvarev, Dmitry; Maldener, Iris

    2018-02-01

    Two hundred genes or 3% of the known or putative protein-coding genes of the filamentous freshwater cyanobacterium Anabaena sp. PCC 7120 encode domains of ATP-binding cassette (ABC) transporters. Detailed characterization of some of these transporters (14-15 importers and 5 exporters) has revealed their crucial roles in the complex lifestyle of this multicellular photoautotroph, which is able to differentiate specialized cells for nitrogen fixation. This review summarizes the characteristics of the ABC transporters of Anabaena sp. PCC 7120 known to date. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. INFLUENCE OF HIGH LIGHT INTENSITY ON THE CELLS OF CYANOBACTERIA ANABAENA VARIABILIS SP. ATCC 29413

    Directory of Open Access Journals (Sweden)

    OPRIŞ SANDA

    2012-12-01

    Full Text Available In this article is presented the result of research regardind the effect of high light intensity on the cells of Anabaena variabilis sp. ATCC 29413, the main objective is to study the adaptation of photosynthetic apparatus to light stress. Samples were analyzed in the present of herbicide diuron (DCMU which blocks electron flow from photosystem II and without diuron. During treatment maximum fluorescence and photosystems efficiency are significantly reduced, reaching very low values compared with the blank, as a result of photoinhibition installation. Also by this treatment is shown the importance of the mechanisms by which cells detect the presence of light stress and react accordingly.

  20. Anticoagulant effect of marine algae.

    Science.gov (United States)

    Kim, Se-Kwon; Wijesekara, Isuru

    2011-01-01

    Recently, a great deal of interest has been developed in the nutraceutical and pharmaceutical industries to isolate natural anticoagulant compounds from marine resources. Among marine resources, marine algae are valuable sources of novel bioactive compounds with anticoagulant effect. Phlorotannins and sulfated polysaccharides such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae have been recognized as potential anticoagulant agents. Therefore, marine algae-derived phlorotannins and SPs have great potential for developing as anticoagulant drugs in nutraceutical and pharmaceutical areas. This chapter focuses on the potential anticoagulant agents in marine algae and presents an overview of their anticoagulant effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Plasmodesmata of brown algae.

    Science.gov (United States)

    Terauchi, Makoto; Nagasato, Chikako; Motomura, Taizo

    2015-01-01

    Plasmodesmata (PD) are intercellular connections in plants which play roles in various developmental processes. They are also found in brown algae, a group of eukaryotes possessing complex multicellularity, as well as green plants. Recently, we conducted an ultrastructural study of PD in several species of brown algae. PD in brown algae are commonly straight plasma membrane-lined channels with a diameter of 10-20 nm and they lack desmotubule in contrast to green plants. Moreover, branched PD could not be observed in brown algae. In the brown alga, Dictyota dichotoma, PD are produced during cytokinesis through the formation of their precursor structures (pre-plasmodesmata, PPD). Clustering of PD in a structure termed "pit field" was recognized in several species having a complex multicellular thallus structure but not in those having uniseriate filamentous or multiseriate one. The pit fields might control cell-to-cell communication and contribute to the establishment of the complex multicellular thallus. In this review, we discuss fundamental morphological aspects of brown algal PD and present questions that remain open.

  2. The Anabaena sp. PCC 7120 Exoproteome: Taking a Peek outside the Box

    Science.gov (United States)

    Oliveira, Paulo; Martins, Nuno M.; Santos, Marina; Couto, Narciso A. S.; Wright, Phillip C.; Tamagnini, Paula

    2015-01-01

    The interest in examining the subset of proteins present in the extracellular milieu, the exoproteome, has been growing due to novel insights highlighting their role on extracellular matrix organization and biofilm formation, but also on homeostasis and development. The cyanobacterial exoproteome is poorly studied, and the role of cyanobacterial exoproteins on cell wall biogenesis, morphology and even physiology is largely unknown. Here, we present a comprehensive examination of the Anabaena sp. PCC 7120 exoproteome under various growth conditions. Altogether, 139 proteins belonging to 16 different functional categories have been identified. A large fraction (48%) of the identified proteins is classified as “hypothetical”, falls into the “other categories” set or presents no similarity to other proteins. The evidence presented here shows that Anabaena sp. PCC 7120 is capable of outer membrane vesicle formation and that these vesicles are likely to contribute to the exoproteome profile. Furthermore, the activity of selected exoproteins associated with oxidative stress has been assessed, suggesting their involvement in redox homeostasis mechanisms in the extracellular space. Finally, we discuss our results in light of other cyanobacterial exoproteome studies and focus on the potential of exploring cyanobacteria as cell factories to produce and secrete selected proteins. PMID:25782455

  3. The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains

    Directory of Open Access Journals (Sweden)

    De Souza Robson F

    2009-08-01

    Full Text Available Abstract The Anabaena sensory rhodopsin transducer (ASRT is a small protein that has been claimed to function as a signaling molecule downstream of the cyanobacterial sensory rhodopsin. However, orthologs of ASRT have been detected in several bacteria that lack rhodopsin, raising questions about the generality of this function. Using sequence profile searches we show that ASRT defines a novel superfamily of β-sandwich fold domains. Through contextual inference based on domain architectures and predicted operons and structural analysis we present strong evidence that these domains bind small molecules, most probably sugars. We propose that the intracellular versions like ASRT probably participate as sensors that regulate a diverse range of sugar metabolism operons or even the light sensory behavior in Anabaena by binding sugars or related metabolites. We also show that one of the extracellular versions define a predicted sugar-binding structure in a novel cell-surface lipoprotein found across actinobacteria, including several pathogens such as Tropheryma, Actinomyces and Thermobifida. The analysis of this superfamily also provides new data to investigate the evolution of carbohydrate binding modes in β-sandwich domains with very different topologies. Reviewers: This article was reviewed by M. Madan Babu and Mark A. Ragan.

  4. Chronic Toxicity Of High Molecular Weight Polynuclear Aromatic Hydrocarbon- Pyrene On Freshwater Cyanobacterium Anabaena Fertlissima Rao

    Directory of Open Access Journals (Sweden)

    Jignasha G Patel

    2013-12-01

    Full Text Available The aim of this work was to determine the consequences of Polynuclear aromatic hydrocarbon – Pyrene in response to growth, pigments and metabolic study on Anabaena fertilissima Rao. Test organisms were treated at different doses and encountered LC50 (Lethal concentration at which 50% growth reduction occur concentration separately at 1.5 mg/l, 3.0 mg/l and 6.0 mg/l respectively for Anabaena fertilissima Rao. The influence of Pyrene on growth, pigments, release of metabolites such as carbohydrates, protein, amino acid, phenols was carried out. The test doses caused a concentration dependent decrease in pigments like carotenoids and phycobilliproteins and showed more sensitivity to pyrene. Depletion of carbohydrate by 13% to 81% and proteins by 47% to 93% was encountered with rise in pyrene concentrations after 16th day of exposure. However, phenols were found to rise by 27% to 50% with increased pyrene concentrations on the contrary, amino acids were reported to decline by 79% to 92%. This study therefore suggests high molecular weight pyrene that decreases in metabolite content and enzyme activity can be used as a signal of PAHs toxicity in cyanobacteria. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 175-183 DOI: http://dx.doi.org/10.3126/ije.v2i1.9220

  5. The Anabaena sp. PCC 7120 Exoproteome: Taking a Peek outside the Box

    Directory of Open Access Journals (Sweden)

    Paulo Oliveira

    2015-01-01

    Full Text Available The interest in examining the subset of proteins present in the extracellular milieu, the exoproteome, has been growing due to novel insights highlighting their role on extracellular matrix organization and biofilm formation, but also on homeostasis and development. The cyanobacterial exoproteome is poorly studied, and the role of cyanobacterial exoproteins on cell wall biogenesis, morphology and even physiology is largely unknown. Here, we present a comprehensive examination of the Anabaena sp. PCC 7120 exoproteome under various growth conditions. Altogether, 139 proteins belonging to 16 different functional categories have been identified. A large fraction (48% of the identified proteins is classified as “hypothetical”, falls into the “other categories” set or presents no similarity to other proteins. The evidence presented here shows that Anabaena sp. PCC 7120 is capable of outer membrane vesicle formation and that these vesicles are likely to contribute to the exoproteome profile. Furthermore, the activity of selected exoproteins associated with oxidative stress has been assessed, suggesting their involvement in redox homeostasis mechanisms in the extracellular space. Finally, we discuss our results in light of other cyanobacterial exoproteome studies and focus on the potential of exploring cyanobacteria as cell factories to produce and secrete selected proteins.

  6. Crystallization and preliminary X-ray crystallographic studies of O-methyltransferase from Anabaena PCC 7120

    International Nuclear Information System (INIS)

    Li, Guoming; Tang, Zhenting; Meng, Geng; Dai, Kesheng; Zhao, Jindong; Zheng, Xiaofeng

    2009-01-01

    The O-methyltransferase (OMT) from the Anabaena PCC 7120 has been overexpressed in a soluble form in E. coli, purified and crystallized. The crystals belonged to space group C222 1 and diffracted to 2.4 Å resolution. O-Methyltransferase (OMT) is a ubiquitous enzyme that exists in bacteria, plants and humans and catalyzes a methyl-transfer reaction using S-adenosyl-l-methionine as a methyl donor and a wide range of phenolics as acceptors. To investigate the structure and function of OMTs, omt from Anabaena PCC 7120 was cloned into expression vector pET21a and expressed in a soluble form in Escherichia coli strain BL21 (DE3). The recombinant OMT protein was purified to homogeneity using a two-step strategy. Crystals of OMT that diffracted to a resolution of 2.4 Å were obtained using the hanging-drop vapour-diffusion method. The crystals belonged to space group C222 1 , with unit-cell parameters a = 131.620, b = 227.994, c = 150.777 Å, α = β = γ = 90°. There are eight molecules per asymmetric unit

  7. Fatty acid profiles and their chemotaxonomy in planktonic species of Anabaena (Cyanobacteria) with straight trichomes.

    Science.gov (United States)

    Li, R; Watanabe, M M

    2001-07-01

    Twenty-four axenic strains of planktonic Anabaena with straight trichomes, assigned to 7 species, were investigated by analyzing the pattern and content of their fatty acid composition and comparing their fatty acid composition with their morphological properties. In general, the fatty acids in planktonic Anabaena contained 14:0, 16:0, 16:1(cis-), 18:0, 18:1, 18:2, and 18:3(alpha) as their major components, and were classified as Type 2 according to the Kenyon-Murata system. These strains were further divided into 2 subtypes: 18 strains belonging to Type 2A, which contains 16:2 and 16:3, and 6 strains to Type 2B, which lacks 16:2 and 16:3. Fatty acid compositions of strains of A. solitaria, A. smithii, and A. kisseleviana closely corresponded to morphological properties; however, 10 strains of A. planctonica were divided into 4 clusters, and 3 strains of A. affinis into 2 clusters. These clusters should be taxonomically evaluated based on other aspects such as genetic characteristics.

  8. Use of Spring-Coiled Shaped Green Algae for Determination of 137Cs and Potassium Bioaccumulation

    International Nuclear Information System (INIS)

    Gonen, R.; Katorza, E.; German, U.; Pelled, O.; Dody, A.; Marco, R.; Cohen, E.; Alfassi, Z.B.

    2006-01-01

    One of the useful technologies for removing pollutants from the environment is phyto remediation. By this method, living or dead plants (including various algae and cyanobacteria) are used to concentrate pollutants from soil or from water sources by biologically active or by passive processes. We isolated from one of the water pools in the Negev green filamentous algae. They exhibited a regular spring-coiled shape typical to Spirulina filaments, but lacked the beaded filaments seen in Anabaena which belongs also to the cyanobacteria. The easily growing algae at the high temperatures of the Negev summers (35-45 degrees C) and under extremely alkaline conditions (pH=9-11), were used to test their potential to accumulate radio-isotopes. We performed our investigations by using 137 Cs, which is a fission product and is regarded as an environmental contaminant. Cesium, Rubidium, Lithium and Sodium follow the uptake route of the macro nutrient potassium and appear to share the K + transport carrier, therefore they are easily transported into plant cells. Potassium is generally considered as an effective inhibitor for radio-cesium uptake by plant roots. It was also shown that C.a. and Mag depressed the Cs uptake). Bioaccumulation factors were used to predict radionuclide concentrations in whole organisms or their tissues

  9. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  10. First report of an Anabaena Bory strain containing microcystin-LR in a freshwater body in Africa

    CSIR Research Space (South Africa)

    Oberholster, Paul J

    2015-03-11

    Full Text Available In South Africa, little is known about the production of microcystin by the genus Anabaena Bory. In April 2012, during a cyanobacterial bloom event in Theewaterskloof Dam, Western Cape province, the plankton was sampled on 10 occasions. The dominant...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Keywords. Nitrogen fixation; sustainable agriculture; soil fertility ; blue-green algae. Author Affiliations. Upasana Mishra1 Sunil Pabbi1. Centre for Conservation and Utilisation of Blue-Green Algae Indian Agricultural Research Institute New Delhi 110 012, India.

  12. Luminescence studies on the blue-green emitting Sr{sub 4}Al{sub 14}O{sub 25}:Ce{sup 3+} phosphor synthesized through solution combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suchinder K. [Luminescence Laboratory, Department of Physics, Maulana Azad National Institute of Technology (MANIT), Bhopal 462051 (India)], E-mail: suchindersharma@yahoo.co.in; Pitale, Shreyas S.; Manzar Malik, M.; Dubey, R.N.; Qureshi, M.S. [Luminescence Laboratory, Department of Physics, Maulana Azad National Institute of Technology (MANIT), Bhopal 462051 (India)

    2009-02-15

    New blue-green emitting Sr{sub 4}Al{sub 14}O{sub 25}:Ce{sup 3+} phosphor is reported in this paper. The polycrystalline samples of phosphor were prepared by the conventional solution combustion method and checked for crystallization and phase by X-ray diffraction. Photoluminescence studies reveal the emission at 472 and 511 nm that correspond to the transition between lowest T{sub 2g} level of the 5d state to the {sup 2}F{sub 5/2} and {sup 2}F{sub 7/2} ground state levels of the Ce{sup 3+}. The excitation at 275 nm corresponds to O{sup 2-}{yields}Ce{sup 4+} charge transfer processes to lowest 5d state of Ce ion (T{sub 2g}). Phosphorescence decay procedures reveal the existence of slow, medium, and fast component involved in the process. Varying the {gamma}-dose (1-6 Gy), thermoluminescence (TL) measurements were made and glow curve maximum is obtained at 383 K. The phosphor seems to follow a first-order kinetics due to non-shifting T{sub m} property. The T{sub m}-T{sub stop} method followed by the repeated initial rise method is applied to determine the distribution of activation energies and corresponding maximum positions. Chi-square minimization procedures provide the appropriate peak positions and other trapping parameters. From deconvolution results, the activation energies are found to be 0.84 and 1.06 eV, while the frequency factor is of the order of 10{sup 10} and 10{sup 11} s{sup -1}, respectively.

  13. Bioagents and Commercial Algae Products as Integrated Biocide Treatments for Controlling Root Rot Diseases of Some Vegetables under Protected Cultivation System

    Directory of Open Access Journals (Sweden)

    Mokhtar M. Abdel-Kader

    2013-01-01

    Full Text Available Integrated commercial blue-green algae extracts and bioagents treatments against vegetables root rot incidence when used as soil drench under greenhouse and plastic house conditions were evaluated. All applied treatments reduced significantly root rot incidence at both pre- and postemergence growth stages of cucumber, cantaloupe, tomato, and pepper plants compared with untreated check control. In pot experiment, the obtained results showed that treatments of Trichoderma harzianum or Bacillus subtilis either alone or combined with commercial algae extracts were significantly superior for reducing root rot disease for two tested vegetable plants compared with the other tested treatments as well as control. It is also observed that rising concentrations of either algae products, Oligo-X or Weed-Max, were reflected in more disease reduction. Promising treatments for controlling root rot disease incidence were applied under plastic houses conditions. As for field trails carried out under plastic houses conditions at different locations, the obtained results revealed that the applied combined treatments significantly reduced root rot incidence compared with fungicide and check control treatments. At all locations it was observed that Weed-Max (2 g/L + Bacillus subtilis significantly reduced disease incidence of grown vegetables compared with Oligo-X (2 mL/L + Trichoderma harzianum treatments. An obvious yield increase in all treatments was significantly higher than in the control. Also, the harvested yield in applied combined treatments at all locations was significantly higher than that in the fungicide and control treatments.

  14. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  15. Transcriptomics in brown algae

    OpenAIRE

    Heinrich, Sandra

    2015-01-01

    Brown algae are distributed worldwide on rocky shores. They are importenet components of ecosystems, they provide habitat, shelter and serve as nurseries for various marine organisms. The geographic as well as depth distribution of macroalgae is constrained by abiotic factors, especially light and temperature. It is therefore likely that due to the global change, distribution patterns of these organisms will change. In this work the molecular acclimation of two prominent brown macroalgae, Sac...

  16. Effects of atmospheric SO[sub 2] on Azolla and Anabaena symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Hur, J.-S.; Wellburn, A.R. (Division of Biological Sciences, Institute of Environmental and Biological Sciences, Lancaster Univ., Lancaster (United Kingdom))

    1993-01-01

    The water fern Azolla pinnata R. Br. was fumigated for 1 week with either 25, 50 or 100 nl l[sup -1] SO[sub 2]. The symbiosis of Azolla with Anabaena azollae (spp.) was severely damaged by atmospheric SO[sub 2] even at the lowest concentration studied showing significant reductions in growth, reduction of C[sub 2]H[sub 2], NH[sub 3] assimilation, protein synthesis, and heterocyst development. These disturbances appear to be mainly responsible for the extreme sensitivity of this fern to atmospheric SO[sub 2]. Changes in violaxanthin/antheraxanthin and epoxylutein/lutein ratios also indicate that free radical products are induced by atmospheric SO[sub 2]. These results suggest that the Azolla-Anabeana symbiotic system is a very responsive and reliable lower plant model to study the detailed effects of total sulfur deposition upon the balances between various important plant metabolic processes.

  17. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species.

    Science.gov (United States)

    Li, Xiaochuang; Dreher, Theo W; Li, Renhui

    2016-04-01

    The new genus name Dolichospermum, for most of the planktonic former members of the genus Anabaena, is one of the most ubiquitous bloom-forming cyanobacterial genera. Its dominance and persistence have increased in recent years, due to eutrophication from anthropogenic activities and global climate change. Blooms of Dolichospermum species, with their production of secondary metabolites that commonly include toxins, present a worldwide threat to environmental and public health. In this review, recent advances of the genus Dolichospermum are summarized, including taxonomy, genetics, bloom occurrence, and production of toxin and taste-and-odor compounds. The recent and continuing acquisition of genome sequences is ushering in new methods for monitoring and understanding the factors regulating bloom dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Molecular cloning of a recA-like gene from the cyanobacterium Anabaena variabilis

    International Nuclear Information System (INIS)

    Owttrim, G.W.; Coleman, J.R.

    1987-01-01

    A recA-like gene isolated from the cyanobacterium Anabaena variabilis was cloned and partially characterized. When introduced into Escherichia coli recA mutants, the 7.5-kilobase-pair plasmid-borne DNA insert restored resistance to methyl methanesulfonate and UV irradiation, as well as recombination proficiency when measured by Hfr-mediated conjugation. The cyanobacterial recA gene restored spontaneous but not mitomycin C-induced prophage production. Restriction analysis and subcloning yielded a 1.5-kilobase-pair Sau3A fragment which also restored methylmethane sulfonate resistance and coded for a 38- to 40-kilodalton polypeptide when expressed in an in vitro transcription-translation system

  19. Genetic Basis for Geosmin Production by the Water Bloom-Forming Cyanobacterium, Anabaena ucrainica

    Directory of Open Access Journals (Sweden)

    Zhongjie Wang

    2014-12-01

    Full Text Available Geosmin is a common, musty-smelling sesquiterpene, principally produced by cyanobacteria. Anabaena ucrainica (Schhorb. Watanabe, a water bloom-forming cyanobacterium, is the geosmin producer responsible for odor problems in Dianchi and Erhai lakes in China. In this study, the geosmin synthase gene (geo of A. ucrainica and its flanking regions were identified and cloned by polymerase chain reaction (PCR and genome walking. The geo gene was found to be located in a transcription unit with two cyclic nucleotide-binding protein genes (cnb. The two cnb genes were highly similar and were predicted members of the cyclic adenosine monophosphate (cAMP receptor protein/fumarate nitrate reductase regulator (Crp–Fnr family. Phylogenetic and evolutionary analyses implied that the evolution of the geosmin genes involved a horizontal gene transfer process in cyanobacteria. These genes showed a close relationship to 2-methylisoborneol genes in origin and evolution.

  20. DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F

    International Nuclear Information System (INIS)

    Chen, C.H.; Van Baalen, C.; Tabita, F.R.

    1987-01-01

    An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-[ 14 C]glutamate from 2-keto-[1- 14 C]glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with [ 14 C]bicarbonate and L-[1- 14 C]ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution

  1. Influence of selected abiotic factors on the decomposition of chlorophylls

    Directory of Open Access Journals (Sweden)

    Gra¿yna Kowalewska

    2001-09-01

    Full Text Available The paper presents the results of experiments to determine the influence of selected physico-chemical factors - oxygen, visible light and temperature - on the decomposition of (1 chlorophylls a, b and c, chlorophyll a derivatives and beta-carotene in acetone solution, and (2 chlorophyll a and beta-carotene in axenic cultures of the blue-green algae Anabaena variabilis. The results indicate that both in acetone extracts and in blue-green algae cultures these pigments were most sensitive to light and oxygen; temperatures of up to 25oC had no marked influence on these compounds. Under anoxia in acetone solution, the stability towards light decreased in the order chlorophyll a, chlorophyll b, chlorophylls c. Chlorophyll a, moreover, was less stable than its derivatives - phaeophorbides, phaeophytins, pyrophaeophytins and steryl chlorins - but more stable than beta-carotene, in the last case also in the blue-green algae cultures. Decomposition of all the pigments proceeded mainly via the breakdown of the porphyrin macrocycle, since the decomposition products were not detected in the VIS range. On the basis of these experiments one can state that while light and oxygen may have a decisive direct influence on the distribution of chlorophylls and beta-carotene in sediments, in the natural environment, temperatures of up to 25oC may have very little immediate effect.

  2. Water quality and algal conditions in the North Umpqua River, Oregon, 1995-2007, and their response to Diamond Lake restoration

    Science.gov (United States)

    Carpenter, Kurt D.; Anderson, Chauncey W.; Jones, Mikeal E.

    2014-01-01

    The Wild and Scenic North Umpqua River is one of the highest-quality waters in the State of Oregon, supporting runs of wild salmon, steelhead, and trout. For many years, blooms of potentially toxic blue-green algae in Diamond and Lemolo Lakes have threatened water quality, fisheries, and public health. The blooms consist primarily of Anabaena, a nitrogen (N)-fixing planktonic alga that appears to have contributed to N enrichment, which could account for changes in communities and biomass of periphyton, or attached benthic algae, in the river. Periphyton can become a nuisance in summer by affecting riffle habitat and causing high pH that fails to meet State of Oregon water-quality standards. These symptoms of nutrient enrichment in the North Umpqua River were first documented in 1995, and the symptoms have continued since then. Restoring natural ecosystem processes that store nutrients rather than fueling algae might help improve pH and water-clarity conditions.

  3. Backbone dynamics of reduced plastocyanin from the cyanobacterium Anabaena variabilis: Regions involved in electron transfer have enhanced mobility

    DEFF Research Database (Denmark)

    Ma, L.X.; Hass, M.A.S.; Vierick, N.

    2003-01-01

    The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the N-15 and C-13(alpha) R-1 and R-2) relaxation rates and steady-state [H-1]-N-15 and [H-1]-C-13 nuclear Overhauser effects (NOEs) using the model-free appr......The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the N-15 and C-13(alpha) R-1 and R-2) relaxation rates and steady-state [H-1]-N-15 and [H-1]-C-13 nuclear Overhauser effects (NOEs) using the model...... are the "northern" hydrophobic site close to the metal site, the metal site itself, and the "eastern" face of the molecule. In particular, the mobility of the latter region is interesting in light of recent findings indicating that residues also on the eastern face of plastocyanins from prokaryotes are important...

  4. NADPH-thioredoxin reductase C mediates the response to oxidative stress and thermotolerance in the cyanobacterium Anabaena sp. PCC7120.

    Directory of Open Access Journals (Sweden)

    ANA MARÍA SÁNCHEZ-RIEGO

    2016-08-01

    Full Text Available NTRC (NADPH-thioredoxin reductase C is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of the 2-Cys peroxiredoxin (2-Cys Prx as well as through other functions related to redox enzyme regulation. In cyanobacteria, the Anabaena NTRC has been characterized in vitro, however nothing was known about its in vivo function. In order to study that, we have generated the first knockout mutant strain (∆ntrC, apart from the previously described in Arabidopsis. Detailed characterization of this strain reveals a differential sensitivity to oxidative stress treatments with respect to the wild-type Anabaena strain, including a higher level of ROS (reactive oxygen species in normal growth conditions. In the mutant strain, different oxidative stress treatments such as hydrogen peroxide, methyl-viologen or high light irradiance provoke an increase in the expression of genes related to ROS detoxification, including AnNTRC and peroxiredoxin genes, with a concomitant increase in the amount of AnNTRC and 2-Cys Prx. Moreover, the role of AnNTRC in the antioxidant response is confirmed by the observation of a pronounced overoxidation of the 2-Cys Prx and a time-delay recovery of the reduced form of this protein upon oxidative stress treatments. Our results suggest the participation of this enzyme in the peroxide detoxification in Anabaena. In addition, we describe the role of Anabaena NTRC in thermotolerance, by the appearance of high molecular mass AnNTRC complexes, showing that the mutant strain is more sensitive to high temperature treatments.

  5. Morphological diversity of coiled planktonic types of the genus .i.Anabaena./i. (cyanobacteria) in natural populations – taxonomic consequences

    Czech Academy of Sciences Publication Activity Database

    Zapomělová, Eliška; Řeháková, Klára; Znachor, Petr; Komárková, Jaroslava

    2007-01-01

    Roč. 28, č. 4 (2007), s. 353-371 ISSN 0181-1568 R&D Projects: GA ČR(CZ) GA206/06/0462; GA AV ČR(CZ) KJB600960703 Institutional research plan: CEZ:AV0Z60170517 Keywords : Anabaena * cyanobacteria * morphological diversity * natural populations * species identification * taxonomy Subject RIV: EE - Microbiology, Virology Impact factor: 0.483, year: 2007

  6. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta).

    Science.gov (United States)

    Korbee, Nathalie; Figueroa, Félix L; Aguilera, José

    2005-08-01

    The effect of different light qualities (white, blue, green, yellow and red light) on photosynthesis, measured as chlorophyll fluorescence, and the accumulation of photosynthetic pigments, proteins and the UV-absorbing mycosporine-like amino acids (MAAs) was studied in the red alga Porphyra leucosticta. Blue light promoted the highest accumulation of nitrogen metabolism derived compounds i.e., MAAs, phycoerythrin and proteins in previously N-starved algae after seven days culture in ammonium enriched medium. Similar results were observed in the culture under white light. In contrast, the lowest photosynthetic capacity i.e., lowest electron transport rate and lowest photosynthetic efficiency as well as the growth rate were found under blue light, while higher values were found in red and white lights. Blue light favored the accumulation of the MAAs porphyra-334, palythine and asterina-330 in P. leucosticta. However, white, green, yellow and red lights favored the accumulation of shinorine. The increase of porphyra-334, palythine and asterina-330 occurred in blue light simultaneous to a decrease in shinorine. The accumulation of MAAs and other nitrogenous compounds in P. leucosticta under blue light could not be attributed to photosynthesis and the action of a non-photosynthetic blue light photoreceptor is suggested. A non-photosynthetic photoreceptor could be also involved in the MAAs interconversion pathways in P. leucosticta.

  7. Accelerating of Pink Pigment Excretion from Cyanobacterium Oscillatoria by Co-Cultivation with Anabaena

    Directory of Open Access Journals (Sweden)

    DWI SUSILANINGSIH

    2007-03-01

    Full Text Available The freshwater cyanobacterium Oscillatoria BTCC/A 0004 excretes pink pigment containing lipoproteins with molecular weights of about 10 kDa. This pigment has surfactant properties with strong emulsification activity toward several hydrocarbons. This extracellular metabolite was suspected as toxin or allelochemical in their habitat. In this study, I investigated the effect of co-cultivation of Oscillatoria with Anabaena variabilis on the pigment excretion to explore the physiological roles of this pigment in its natural environment. The dead or viable cells and medium of A. variabilis were added into Oscillatoria cultures. Results showed that co-cultivation of free viable cells of A. variabilis enhanced the excretion of pigment without effect on the cell growth. Co-cultivation with viable cells in separated method and dead cells did not influenced the pigment production. The addition of A. variabilis medium was slightly increased the excretion of the pigment. Those results indicated that direct contact with A. variabilis caused Oscillatoria released a certain signaling compound.

  8. Aluminum effects on uptake and metabolism of phosphorus by the Cyanobacterium Anabaena cylindrica

    International Nuclear Information System (INIS)

    Pettersson, A.; Haellbom, L.; Bergman, B.

    1988-01-01

    Aluminum severely affects the growth of the cyanobacterium Anabaena cylindrica and induces symptoms indicating phosphorus starvation. Pre- or post-treating the cells with high (90 micromolar) phosphorus reduces the toxicity of aluminum compared to cells receiving a lower orthophosphate concentration. In this study aluminum (ranging from 9 to 36 micromolar) and phosphorus concentrations were chosen so that the precipitation of insoluble AlPO 4 never exceeded 10% of the total phosphate concentration. The uptake of 32 P-phosphorus is not disturbed by aluminium either at high (100 micromolar) or low (10 micromolar) concentrations of phosphate. Also, the rapid accumulation of polyphosphate granules in cells exposed to aluminum indicates that the incorporation of phosphate is not disturbed. However, a significant decrease in the mobilization of the polyphosphates is observed, as is a lowered activity of the enzyme acid phosphatase, in aluminum treated cells. We conclude that aluminum acts on the intracellular metabolism of phosphate, which eventually leads to phosphorus starvation rather than on its uptake in the cyanobacterium A. cylindrica

  9. Interaction between carbon and nitrogen metabolism during akinete development in the cyanobacterium Anabaena torulosa.

    Science.gov (United States)

    Ahuja, Gurpreet; Khattar, Jasvirinder Singh; Sarma, Tangirala Anjaneya

    2008-04-01

    Nutrient enrichment with a nitrogen (as nitrate) or carbon (as fructose) source to unaerated diazo and photoautorophic cultures of the cyanobacterium Anabaena torulosa induced early development of akinetes with high frequency. When cultures under any mode of nutrition were aerated, akinetes were not differentiated. Unaerated cultures with nitrate nitrogen or fructose exhibited higher respiratory rates and nitrogen assimilation compared to aerated cultures. This was evidenced by increased respiratory O2 uptake and high activities of pyruvate kinase, malate dehydrogenase (NAD+), nitrogenase and nitrate reductase signifying that akinete forming unaerated cultures exhibited high carbon dissimilation and nitrogen assimilation resulting in high nitrogenous build up in the cells. Aerated, non-akinete cultures, on the other hand, were associated with low respiratory O2 uptake, low pyruvate kinase and malate dehydrogenase (NAD+) activities, suggesting that carbon dissimilation was not favoured either in presence of nitrate or fructose. Moreover, higher activity of NADP+ linked malate dehydrogenase and lower nitrate reductase activity in aerated cultures led to a high carbon and low nitrogen content of the cells resulting in high cellular C:N ratio. The results suggest that interaction between carbon and nitrogen metabolism regulates akinete development in A. torulosa.

  10. Dynamic, mechanistic, molecular-level modelling of cyanobacteria: Anabaena and nitrogen interaction.

    Science.gov (United States)

    Hellweger, Ferdi L; Fredrick, Neil D; McCarthy, Mark J; Gardner, Wayne S; Wilhelm, Steven W; Paerl, Hans W

    2016-09-01

    Phytoplankton (eutrophication, biogeochemical) models are important tools for ecosystem research and management, but they generally have not been updated to include modern biology. Here, we present a dynamic, mechanistic, molecular-level (i.e. gene, transcript, protein, metabolite) model of Anabaena - nitrogen interaction. The model was developed using the pattern-oriented approach to model definition and parameterization of complex agent-based models. It simulates individual filaments, each with individual cells, each with genes that are expressed to yield transcripts and proteins. Cells metabolize various forms of N, grow and divide, and differentiate heterocysts when fixed N is depleted. The model is informed by observations from 269 laboratory experiments from 55 papers published from 1942 to 2014. Within this database, we identified 331 emerging patterns, and, excluding inconsistencies in observations, the model reproduces 94% of them. To explore a practical application, we used the model to simulate nutrient reduction scenarios for a hypothetical lake. For a 50% N only loading reduction, the model predicts that N fixation increases, but this fixed N does not compensate for the loading reduction, and the chlorophyll a concentration decreases substantially (by 33%). When N is reduced along with P, the model predicts an additional 8% reduction (compared to P only). © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization.

    Science.gov (United States)

    Cherchi, Carla; Chernenko, Tatyana; Diem, Max; Gu, April Z

    2011-04-01

    The present study investigated the impact of nano titanium dioxide (nTiO(2) ) exposure on the cellular structures of the nitrogen-fixing cyanobacteria Anabaena variabilis. Results of the present study showed that nTiO(2) exposure led to observable alteration in various intracellular structures and induced a series of recognized stress responses, including production of reactive oxygen species (ROS), appearance and increase in the abundance of membrane crystalline inclusions, membrane mucilage layer formation, opening of intrathylakoidal spaces, and internal plasma membrane disruption. The production of total ROS in A. variabilis cells increased with increasing nTiO(2) doses and exposure time, and the intracellular ROS contributed to only a small fraction (structure and increase in the cellular turgor pressure likely resulted from the structural membrane damage mediated by the ROS production. Transmission electron microscopy (TEM) analysis of nTiO(2) aggregates size distribution seems to suggest possible disaggregation of nTiO(2) aggregates when in close contact with microbial cells, potentially as a result of biomolecules such as DNA excreted by organisms that may serve as a biodispersant. The present study also showed, for the first time, with both TEM and Raman imaging that internalization of nTiO(2) particles through multilayered membranes in algal cells is possible. Environ. Toxicol. Chem. 2011; 30:861-869. © 2010 SETAC. Copyright © 2011 SETAC.

  12. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  13. Shewanella algae in acute gastroenteritis

    Directory of Open Access Journals (Sweden)

    S Dey

    2015-01-01

    Full Text Available Shewanella algae is an emerging bacteria rarely implicated as a human pathogen. Previously reported cases of S. algae have mainly been associated with direct contact with seawater. Here we report the isolation of S. algae as the sole etiological agent from a patient suffering from acute gastroenteritis with bloody diarrhoea. The bacterium was identified by automated identification system and 16S rRNA gene sequence analysis. Our report highlights the importance of looking for the relatively rare aetiological agents in clinical samples that does not yield common pathogens. It also underscores the usefulness of automated systems in identification of rare pathogens.

  14. Transgenic algae engineered for higher performance

    Science.gov (United States)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  15. THE FLUORESCENCE SPECTRA OF RED ALGAE AND THE TRANSFER OF ENERGY FROM PHYCOERYTHRIN TO PHYCOCYANIN AND CHLOROPHYLL

    Science.gov (United States)

    French, C. S.; Young, Violet K.

    1952-01-01

    1. The fluorescence spectra of the alga Porphyridium have been recorded as energy distribution curves for eleven different incident wave lengths of monochromatic incident light between wave lengths 405 and 546 mµ. 2. In these spectra chlorophyll fluorescence predominates when the incident light is in the blue part of the spectrum which is strongly absorbed by chlorophyll. 3. For blue-green and green light the spectrum excited in Porphyridium contains in addition to chlorophyll fluorescence, the fluorescence bands characteristic of phycoerythrin and of phycocyanin. 4. From these spectra the approximate curves for the fluorescence of the individual pigments phycoerythrin, phycocyanin, and chlorophyll in the living material have been derived and the relative intensity of each of them has been obtained for each of the eleven incident wave lengths. 5. The effectiveness spectrum for the excitation of the fluorescence of these three pigments in vivo has been plotted. 6. From comparisons of the effectiveness spectrum for the excitation of each of these pigments it appears that both phycocyanin and chlorophyll receive energy from light which is absorbed by phycoerythrin. 7. It is suggested that phycocyanin may be an intermediate in the resonance transfer of energy from phycoerythrin to chlorophyll. 8. Since phycoerythrin and phycocyanin transfer energy to chlorophyll, it appears probable that chlorophyll plays a specific chemical role in photosynthesis in addition to acting as a light absorber. PMID:14938526

  16. Monitoring Growth and Lipid Production of Some Egyptian Microalgae

    International Nuclear Information System (INIS)

    El-Baghdady, K.Z.; Zakaria, A.E.; Mousa, L.A.; Sadek, H.N.; Abd El Fatah, H.M.

    2016-01-01

    Microalgae bio diesel is a green and renewable energy resource. This study aims to examine growth and lipid production by various isolates of icroalgae using different growth media and lipid extraction techniques. Ten microalgae isolates were isolated from different samples collected from Egypt. The purified isolates were identified microscopically as: Lyngbya confervoides, Phormidium bohneri, Oscillatoria pseudogeminata, Amorphonostoc sp., Nostoc paludosum, Anabaena sphaerica related to cyanobacteria (blue green algae) and Chlorella vulgaris, Chlorella ellipsoidea, Scened esmusacutus acutus, Chlamydomonas globose related to green algae. These organisms were cultivated on two media: Bold's Basal Medium(BBM medium) and Blue Green Medium (BG-11 medium) to examine the favorite medium which supports the growth of each isolate In order to examine lipid production potentials by cyanobacterial isolates and green microalgae, two solvent systems were applied for lipid extraction, the first was (Chloroform - methanol 1:1 ) and the second was (Hexane-ethanol 1:1). Chlorella vulgaris and Anabaena sphaerica were selected as models of green microalgae and cyanobacteria espectively. Hexane-ethanol solvent system revealed higher lipid extraction capacity as compared to Chloroform- methanol system. A comparison between ten organisms for lipid production was carried out by the selected solvent mixture. The percentages of lipid to dry weight produced by Oscillatoria pseudogeminata and Chlamydomonas globose were 19.8% and14 .6% respectively recording the highest lipid to dry weight percentage. They can be considered as a promising lipid producing microalgae

  17. Algae biotechnology: products and processes

    National Research Council Canada - National Science Library

    Bux, F; Chisti, Yusuf

    2016-01-01

    This book examines the utilization of algae for the development of useful products and processes with the emphasis towards green technologies and processes, and the requirements to make these viable...

  18. Algae: America's Pathway to Independence

    National Research Council Canada - National Science Library

    Custer, James

    2007-01-01

    .... Oil dependency is an unacceptable risk to U.S. national strategy. This paper advocates independence from foreign oil by converting the national transportation fleet to biodiesel derived from algae...

  19. Physical data and biological data for algae, aquatic invertebrates, and fish from selected reaches on the Carson and Truckee rivers, Nevada and California, 1993-97

    Science.gov (United States)

    Lawrence, S.J.; Seiler, R.L.

    2002-01-01

    This report, a product of the National Water- Quality Assessment Program, is a compilation of physical data and biological data for algae, aquatic invertebrates, and fish collected in the Carson and Truckee River Basins, Nevada and California. Most of the data were collected between 1993 and 1996 at selected reaches on the Carson and Truckee Rivers. Algae and aquatic invertebrate samples were collected from cobble riffles, submerged woody-snag habitats, and from depositional areas such as pools. Between 1993 and 1996, fish and crayfish were collected from all wadeable habitats at each of seven basic-fixed sites using either electroshocking methods or seining. Additional fish and crayfish were collected at one site on the Truckee River in 1997. Fish were identified to species, measured for total and standard length, checked for anomalies, and weighed at the collection site. Fish were returned to the stream after measurements were taken. Measurements of water depth, stream velocity, determinations of substrate type and substrate embeddedness were made at each sampling site. Algae and aquatic invertebrate samples were sent to the U.S. Geological Survey National Water-Quality Laboratory for identification and enumeration. A total of 103 semi-quantitative and 55 qualitative algae samples were collected at 20 river reaches on the Carson and Truckee Rivers between 1993 and 1996. These samples represent algae in cobble riffles, on submerged woody snags, and on sediment surfaces in depositional areas. In those 158 samples, 514 algal species, varieties, or forms were identified. Of the 8 algal phyla represented, the diatoms (Phylum Bacillariophyta) were the most abundant with 351 species, varieties, or forms. The green algae (Phylum Chlorophyta) were next in abundance with 108 species, varieties, or forms followed by the blue-green algae (Phylum Cyanophyta) with 41 species, varieties, or forms. A total of 49 semi-quantitative aquatic invertebrate samples were collected at 27

  20. Down-Regulation of the Alternative Sigma Factor SigJ Confers a Photoprotective Phenotype to Anabaena PCC 7120.

    Science.gov (United States)

    Srivastava, Amit; Brilisauer, Klaus; Rai, Ashutosh K; Ballal, Anand; Forchhammer, Karl; Tripathi, Anil K

    2017-02-01

    Alternative sigma factors belonging to Group 3 are thought to play an important role in the adaptation of cyanobacteria to environmental challenges by altering expression of genes needed for coping with such stresses. In this study, the role of an alternative sigma factor, SigJ, was analyzed in the filamentous nitrogen-fixing cyanobacterium, Anabaena sp. PCC 7120 by knocking down the expression of the sigJ gene (alr0277) employing an antisense RNA-mediated approach. In the absence of any stress, the knock-down (KD0277) or the wild-type strain both grew similarly. Upon exposure to high-intensity light, KD0277 showed substantially reduced bleaching of its pigments, higher photosynthetic activity and consequently better survival than the wild type. KD0277 also showed an enhanced accumulation of two carotenoids, which were identified as myxoxanthophyll and keto-myxoxanthophyll. Further, KD0277 was more tolerant to ammonium-triggered photodamage than the wild type. Moreover, PSII was better protected against photodamage in KD0277 than in the wild type. Down-regulation of sigJ in Anabaena PCC 7120, however, reduced its ability to cope with desiccation. This study demonstrates that down-regulation of the sigJ gene in Anabaena PCC 7120 differentially affects its ability to tolerate two environmentally relevant stresses, i.e. high-intensity light and desiccation. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Isolation and sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase from the cyanobacterium Anabaena 7120

    OpenAIRE

    Curtis, Stephanie E.; Haselkorn, Robert

    1983-01-01

    Cloned DNA probes containing genes coding for the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcA) of corn and of Chlamydomonas were used to identify, by heterologous hybridization, DNA fragments from Anabaena 7120 carrying the corresponding gene sequence. The same probes were used to isolate, from a recombinant λ library, a 17-kilobase-pair EcoRI Anabaena DNA fragment containing the coding sequence for the rbcA gene. The entire coding sequence, as well as 210 base pairs of 5′ fl...

  2. Characterization of three putative xylulose 5-phosphate/fructose 6-phosphate phosphoketolases in the cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Moriyama, Takashi; Tajima, Naoyuki; Sekine, Kohsuke; Sato, Naoki

    2015-01-01

    Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) is a key enzyme in the central carbohydrate metabolism in heterofermentative bacteria, in which enzymatic property of Xfps is well characterized. This is not the case in other microbes. The cyanobacterium Anabaena sp. PCC 7120 possesses three putative genes encoding Xfp, all1483, all2567, and alr1850. We purified three putative Xfps as recombinant proteins. The results of gel filtration indicated that these proteins form homomultimer complex. All1483 and All2567 showed phosphoketolase activity, whereas Alr1850 did not show the activity. Kinetic analyses demonstrated that substrates, fructose 6-phosphate and inorganic phosphate, are cooperatively bound to enzymes positively and negatively, respectively.

  3. Effect of point mutations on the ultrafast photo-isomerization of Anabaena sensory rhodopsin.

    Science.gov (United States)

    Agathangelou, D; Orozco-Gonzalez, Y; Del Carmen Marín, M; Roy, P P; Brazard, J; Kandori, H; Jung, K-H; Léonard, J; Buckup, T; Ferré, N; Olivucci, M; Haacke, S

    2018-02-01

    Anabaena sensory rhodopsin (ASR) is a particular microbial retinal protein for which light-adaptation leads to the ability to bind both the all-trans, 15-anti (AT) and the 13-cis, 15-syn (13C) isomers of the protonated Schiff base of retinal (PSBR). In the context of obtaining insight into the mechanisms by which retinal proteins catalyse the PSBR photo-isomerization reaction, ASR is a model system allowing to study, within the same protein, the protein-PSBR interactions for two different PSBR conformers at the same time. A detailed analysis of the vibrational spectra of AT and 13C, and their photo-products in wild-type ASR obtained through femtosecond (pump-) four-wave-mixing is reported for the first time, and compared to bacterio- and channelrhodopsin. As part of an extensive study of ASR mutants with blue-shifted absorption spectra, we present here a detailed computational analysis of the origin of the mutation-induced blue-shift of the absorption spectra, and identify electrostatic interactions as dominating steric effects that would entail a red-shift. The excited state lifetimes and isomerization reaction times (IRT) for the three mutants V112N, W76F, and L83Q are studied experimentally by femtosecond broadband transient absorption spectroscopy. Interestingly, in all three mutants, isomerization is accelerated for AT with respect to wild-type ASR, and this the more, the shorter the wavelength of maximum absorption. On the contrary, the 13C photo-reaction is slightly slowed down, leading to an inversion of the ESLs of AT and 13C, with respect to wt-ASR, in the blue-most absorbing mutant L83Q. Possible mechanisms for these mutation effects, and their steric and electrostatic origins are discussed.

  4. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    Directory of Open Access Journals (Sweden)

    Teresa Thiel

    2014-12-01

    Full Text Available The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters.

  5. Whole Cell Biosensor Using Anabaena torulosa with Optical Transduction for Environmental Toxicity Evaluation

    Directory of Open Access Journals (Sweden)

    Ling Shing Wong

    2013-01-01

    Full Text Available A whole cell-based biosensor using Anabaena torulosa for the detection of heavy metals (Cu, Pb, and Cd, 2,4-dichlorophenoxyacetate (2,4-D, and chlorpyrifos was constructed. The cyanobacteria were entrapped on a cellulose membrane through filtration. Then, the membrane was dried and fixed into a cylindrical well, which was designed to be attached to an optical probe. The probe was connected to fluorescence spectrometer with optical fibre. The presence of the toxicants was indicated by the change of fluorescence emission, before and after the exposure. The linear detection ranges for Cu, Pb, and Cd were 2.5–10.0 µg/L, 0.5–5.0 µg/L, and 0.5–10.0 µg/L, respectively, while 2,4-D and chlorpyrifos shared similar linear ranges of 0.05–0.75 µg/L. The biosensor showed good sensitivity with the lowest limits of detection (LLD for Cu, Pb, Cd, 2,4-D and chlorpyrifos determined at 1.195 µg/L, 0.100 µg/L, 0.027 µg/L, 0.025 µg/L, and 0.025 µg/L, respectively. The overall reproducibility of the biosensor (n=3 was <±6.35%. The biosensor had been tested with different combinations of toxicants, with the results showing predominantly antagonistic responses. The results confirmed that the biosensor constructed in this report is suitable to be used in quantitative and qualitative detections of heavy metals and pesticides.

  6. Algae-Based Carbon Sequestration

    Science.gov (United States)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  7. PHOTOSYNTHETIC, BIOCHEMICAL AND ENZYMATIC INVESTIGATION OF Anabaena fertilissima IN RESPONSE TO AN INSECTICIDE-HEXACHLORO-HEXAHYDRO-METHANOBENZODIOXATHIEPINE- OXIDE

    Directory of Open Access Journals (Sweden)

    Kumar, Nirmal J.I

    2009-09-01

    Full Text Available A study on the heterocystous, nitrogen fixing cyanobacterium, Anabaena fertilissima was carried out to investigate the effect of an organochlorine insecticide (hexachloro-hexahydro-methano-benzodioxathiepineoxide, called as endosulfan at different concentrations of 3, 6 and 12 μgml-1 on the photosynthetic pigments-Chl-a, Carotenoids and Phycobiliproteins-phycocyanin, allophycocyanin and phycoerythrin, stress metabolites such as carbohydrates, proteins, amino acids, phenols and enzyme activities-nitrate reductase and glutamine synthetase. The insecticide- Endosulfan showed to be deleteriously affecting the activities in the cyanobacterium. As early as the 4th day, chl-a and carotenoids reduced by 38% and 20% respectively. The phycobiliproteins declined by 60%, 64% and 28% with respect to Phycocyanin, Allophycocyanin and Phycoerythrin. Moreover, Endosulfan adversely depleted the cellular activities, leading to a marked decrease in the carbohydrates, proteins, phenols and amino acids and enzymes-nitrate reductase and glutamine synthetase. Despite of deleterious effects of Endosulfan on the cyanobacterium Anabaena fertilissima, a unique regenerating ability in presence of the insecticide was observed by the end of 12 days in the lower doses of insecticide.

  8. Isolation and sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase from the cyanobacterium Anabaena 7120.

    Science.gov (United States)

    Curtis, S E; Haselkorn, R

    1983-04-01

    Cloned DNA probes containing genes coding for the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcA) of corn and of Chlamydomonas were used to identify, by heterologous hybridization, DNA fragments from Anabaena 7120 carrying the corresponding gene sequence. The same probes were used to isolate, from a recombinant lambda library, a 17-kilobase-pair EcoRI Anabaena DNA fragment containing the coding sequence for the rbcA gene. The entire coding sequence, as well as 210 base pairs of 5' flanking region and 210 base pairs of 3' flanking region, was determined. Comparison of the nucleotide and amino acid sequences with those of corn, spinach, Chlamydomonas, and Synechococcus rbcA genes revealed homology of 71-77% at the nucleotide level and 80-85% at the amino acid level. Conservation of sequence is lost immediately outside the coding region on either side. Codon usage in the Anabaena rbcA gene is not significantly different from that in the Anabaena genes for nitrogenase reductase and nitrogenase beta subunit.

  9. Expression of Anabaena PCC 7937 plastocyanin in Synechococcus PCC 7942 enhances photosynthetic electron transfer and alters the electron distribution between photosystem I and cytochrome-c oxidase

    NARCIS (Netherlands)

    Geerts, D.; Schubert, H.; de Vrieze, G.; Borrias, M.; Matthijs, H. C.; Weisbeek, P. J.

    1994-01-01

    The petE gene encoding plastocyanin precursor protein from the cyanobacterium Anabaena PCC 7937 was introduced in the cyanobacterial host strain Synechococcus PCC 7942. The host normally only uses cytochrome c553 as Photosystem I (PS I) donor. The heterologous gene was efficiently expressed using

  10. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  11. Microscopic Gardens: A Close Look at Algae.

    Science.gov (United States)

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  12. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation

    Directory of Open Access Journals (Sweden)

    Head Steven R

    2011-06-01

    Full Text Available Abstract Background Cyanobacteria are potential sources of renewable chemicals and biofuels and serve as model organisms for bacterial photosynthesis, nitrogen fixation, and responses to environmental changes. Anabaena (Nostoc sp. strain PCC 7120 (hereafter Anabaena is a multicellular filamentous cyanobacterium that can "fix" atmospheric nitrogen into ammonia when grown in the absence of a source of combined nitrogen. Because the nitrogenase enzyme is oxygen sensitive, Anabaena forms specialized cells called heterocysts that create a microoxic environment for nitrogen fixation. We have employed directional RNA-seq to map the Anabaena transcriptome during vegetative cell growth and in response to combined-nitrogen deprivation, which induces filaments to undergo heterocyst development. Our data provide an unprecedented view of transcriptional changes in Anabaena filaments during the induction of heterocyst development and transition to diazotrophic growth. Results Using the Illumina short read platform and a directional RNA-seq protocol, we obtained deep sequencing data for RNA extracted from filaments at 0, 6, 12, and 21 hours after the removal of combined nitrogen. The RNA-seq data provided information on transcript abundance and boundaries for the entire transcriptome. From these data, we detected novel antisense transcripts within the UTRs (untranslated regions and coding regions of key genes involved in heterocyst development, suggesting that antisense RNAs may be important regulators of the nitrogen response. In addition, many 5' UTRs were longer than anticipated, sometimes extending into upstream open reading frames (ORFs, and operons often showed complex structure and regulation. Finally, many genes that had not been previously identified as being involved in heterocyst development showed regulation, providing new candidates for future studies in this model organism. Conclusions Directional RNA-seq data were obtained that provide

  13. Formation of algae growth constitutive relations for improved algae modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  14. 21 CFR 184.1120 - Brown algae.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  15. 21 CFR 184.1121 - Red algae.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  16. Scenario studies for algae production

    NARCIS (Netherlands)

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass

  17. Algae. LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  18. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  19. Backbone dynamics of reduced plastocyanin from the cyanobacterium Anabaena variabilis: Regions involved in electron transfer have enhanced mobility

    DEFF Research Database (Denmark)

    Ma, L.X.; Hass, M.A.S.; Vierick, N.

    2003-01-01

    The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the N-15 and C-13(alpha) R-1 and R-2) relaxation rates and steady-state [H-1]-N-15 and [H-1]-C-13 nuclear Overhauser effects (NOEs) using the model......-free approach. The C-13 relaxation studies were performed using C-13 in natural abundance. Overall, it is found that the protein backbone is rigid. However, the regions that are important for the function of the protein show moderate mobility primarily on the microsecond to millisecond time scale. These regions...... are the "northern" hydrophobic site close to the metal site, the metal site itself, and the "eastern" face of the molecule. In particular, the mobility of the latter region is interesting in light of recent findings indicating that residues also on the eastern face of plastocyanins from prokaryotes are important...

  20. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5

    Directory of Open Access Journals (Sweden)

    Neilan Brett A

    2009-03-01

    Full Text Available Abstract Background Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. Results We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. Conclusion The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved

  1. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120

    Directory of Open Access Journals (Sweden)

    Jan Bornikoel

    2017-09-01

    Full Text Available Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N2-fixing heterocysts and CO2-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N-acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell–cell communication in Nostoc punctiforme. This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2, were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme, because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell–cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD.

  2. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5.

    Science.gov (United States)

    Mihali, Troco K; Kellmann, Ralf; Neilan, Brett A

    2009-03-30

    Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs) are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved in the biosynthesis, may also afford the identification of

  3. Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254.

    Directory of Open Access Journals (Sweden)

    Hangjun Zhang

    Full Text Available The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS. These proteins were involved in (i PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase; (ii transport processes [e.g., ATP-binding cassette (ABC transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase; (iv electron transport (cytochrome b6f complex Fe-S protein; (v general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable; (vi carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta; and (vii nitrogen reductase (nitrous oxide reductase. The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the

  4. Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2012-11-01

    Full Text Available Abstract Background Cyanobacteria can form massive toxic blooms in fresh and brackish bodies of water and are frequently responsible for the poisoning of animals and pose a health risk for humans. Anabaena is a genus of filamentous diazotrophic cyanobacteria commonly implicated as a toxin producer in blooms in aquatic ecosystems throughout the world. The biology of bloom-forming cyanobacteria is poorly understood at the genome level. Results Here, we report the complete sequence and comprehensive annotation of the bloom-forming Anabaena sp. strain 90 genome. It comprises two circular chromosomes and three plasmids with a total size of 5.3 Mb, encoding a total of 4,738 genes. The genome is replete with mobile genetic elements. Detailed manual annotation demonstrated that almost 5% of the gene repertoire consists of pseudogenes. A further 5% of the genome is dedicated to the synthesis of small peptides that are the products of both ribosomal and nonribosomal biosynthetic pathways. Inactivation of the hassallidin (an antifungal cyclic peptide biosynthetic gene cluster through a deletion event and a natural mutation of the buoyancy-permitting gvpG gas vesicle gene were documented. The genome contains a large number of genes encoding restriction-modification systems. Two novel excision elements were found in the nifH gene that is required for nitrogen fixation. Conclusions Genome analysis demonstrated that this strain invests heavily in the production of bioactive compounds and restriction-modification systems. This well-annotated genome provides a platform for future studies on the ecology and biology of these important bloom-forming cyanobacteria.

  5. Bioselective synthesis of gold nanoparticles from diluted mixed Au, Ir, and Rh ion solution by Anabaena cylindrica

    Science.gov (United States)

    Rochert, Anna S.; Rösken, Liz M.; Fischer, Christian B.; Schönleber, Andreas; Ecker, Dennis; van Smaalen, Sander; Geimer, Stefan; Wehner, Stefan

    2017-11-01

    Over the last years, an environmentally friendly and economically efficient way of nanoparticle production has been found in the biosynthesis of metal nanoparticles by bacteria and cyanobacteria. In this study, Anabaena cylindrica, a non-toxic cyanobacterium, is deployed in a diluted ionic aqueous mixture of equal concentrations of gold, iridium, and rhodium, of 0.1 mM each, for the selective biosynthesis of metal nanoparticles (NPs). To analyze the cyanobacterial metal uptake, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometry (ICP-MS) were applied. Only gold can be found in crystalline and nanoparticle form inside the cells of A. cylindrica, and it is the only metal for which ICP-MS analyses show a rapid decrease of the concentration in the culture medium. A slight decrease of rhodium and none of iridium was observed in the evaluated timeline of 51 h. The average diameter size of the emerging gold nanoparticles increased over the first few days, but is found to be below 10 nm even after more than 2 days. A new evaluation method was used to determine the spatially resolved distribution of the nanoparticles inside the cyanobacterial cells. This new method was also used to analyze TEM images from earlier studies of A. cylindrica and Anabaena sp., both incubated with an overall concentration of 0.8 mM Au3+ to compare the metal uptake. A. cylindrica was found to be highly selective towards the formation of gold nanoparticles in the presence of rhodium and iridium.

  6. Synthetic polyester from algae oil.

    Science.gov (United States)

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Growing swimming algae for bioenergy

    Science.gov (United States)

    Croze, Ottavio

    Biofuel production from photosynthetic microalgae is not commercially viable due to high processing costs. New engineering and biological solutions are being sought to reduce these costs by increasing processing efficiency (productivity per energy input). Important physics, however, is ignored. For example, the fluid dynamics of algal suspensions in photobioreactors (ponds or tube arrays) is non-trivial, particularly if the algae swim. Cell reorientation by passive viscous and gravitational torques (gyrotaxis) or active reorientation by light (phototaxis) cause swimming algae in suspension to structure in flows, even turbulent ones. This impacts the distribution and dispersion of swimmers, with significant consequences for photobioreactor operation and design. In this talk, I will describe a theory that predicts swimmer dispersion in laminar pipe flows. I will then then present experimental tests of the theory, as well as new results on the circadian suspension dynamics of the algaChlamydomonas reinhardtii in lab-scale photobioreactors. Finally, I will briefly consider the implications of our work, and related active matter research, for improving algal bioprocessing efficiency. Winton Programme for the Physics of Sustainability.

  8. Parasites in algae mass culture

    Directory of Open Access Journals (Sweden)

    Todd William Lane

    2014-06-01

    Full Text Available Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry.

  9. Bioethanol Production from Indigenous Algae

    Directory of Open Access Journals (Sweden)

    Madhuka Roy

    2015-02-01

    Full Text Available Enhanced rate of fossil fuel extraction is likely to deplete limited natural resources over short period of time. So search for alternative fuel is only the way to overcome this problem of upcoming energy crisis. In this aspect biofuel is a sustainable option. Agricultural lands cannot be compromised for biofuel production due to the requirement of food for the increasing population. Certain species of algae can produce ethanol during anaerobic fermentation and thus serve as a direct source for bioethanol production. The high content of complex carbohydrates entrapped in the cell wall of the microalgae makes it essential to incorporate a pre-treatment stage to release and convert these complex carbohydrates into simple sugars prior to the fermentation process. There have been researches on production of bioethanol from a particular species of algae, but this work was an attempt to produce bioethanol from easily available indigenous algae. Acid hydrolysis was carried out as pre-treatment. Gas Chromatographic analysis showed that 5 days’ fermentation by baker’s yeast had yielded 93% pure bioethanol. The fuel characterization of the bioethanol with respect to gasoline showed comparable and quite satisfactory results for its use as an alternative fuel.DOI: http://dx.doi.org/10.3126/ije.v4i1.12182International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, page: 112-120  

  10. Bacterial Enhancement of Vinyl Fouling by Algae

    OpenAIRE

    Holmes, Paul E.

    1986-01-01

    The role of bacteria in the development of algae on low-density vinyl was investigated. Unidentified bacterial contaminants in unialgal stock cultures of Phormidium faveolarum and Pleurochloris pyrenoidosa enhanced, by 1 to 2 orders of magnitude, colonization of vinyl by these algae, as determined by epifluorescence microscopy counts and chlorophyll a in extracts of colonized vinyl. Colonization by bacteria always preceded that by algae. Scanning electron microscopy of the colonized Phormidiu...

  11. Antioxidant Activity of Hawaiian Marine Algae

    OpenAIRE

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that cou...

  12. Determination of carbon-to-nitrogen ratio in the filamentous and heterocystous cyanobacterium Anabaena sp. PCC 7120 with single-cell soft X-ray imaging

    Science.gov (United States)

    Teramoto, T.; Yoshimura, M.; Azai, C.; Terauchi, K.; Ohta, T.

    2017-06-01

    Vegetative cells and heterocysts in the filamentous cyanobacterium Anabaena sp. PCC 7120 were observed by soft X-ray microscopy. Carbon-to-nitrogen (C/N) ratio of each cell was estimated by the difference of the absorbance of the images below and above the nitrogen K-edge absorption. It was revealed that the C/N ratios in vegetative cells and heterocysts are 4.54 and 2.46, respectively.

  13. Detection of Anatoxin-a and Three Analogs in Anabaena spp. Cultures: New Fluorescence Polarization Assay and Toxin Profile by LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Jon A. Sanchez

    2014-01-01

    Full Text Available Anatoxin-a (ATX is a potent neurotoxin produced by several species of Anabaena spp. Cyanobacteria blooms around the world have been increasing in recent years; therefore, it is urgent to develop sensitive techniques that unequivocally confirm the presence of these toxins in fresh water and cyanobacterial samples. In addition, the identification of different ATX analogues is essential to later determine its toxicity. In this paper we designed a fluorescent polarization (FP method to detect ATXs in water samples. A nicotinic acetylcholine receptor (nAChR labeled with a fluorescein derivative was used to develop this assay. Data showed a direct relationship between the amount of toxin in a sample and the changes in the polarization degree of the emitted light by the labeled nAChR, indicating an interaction between the two molecules. This method was used to measure the amount of ATX in three Anabaena spp. cultures. Results indicate that it is a good method to show ATXs presence in algal samples. In order to check the toxin profile of Anabaena cultures a LC-MS/MS method was also developed. Within this new method, ATX-a, retention time (RT 5 min, and three other molecules with a mass m/z 180.1 eluting at 4.14 min, 5.90 min and 7.14 min with MS/MS spectra characteristic of ATX toxin group not previously identified were detected in the Anabaena spp. cultures. These ATX analogues may have an important role in the toxicity of the sample.

  14. Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp. strain PCC 7120

    OpenAIRE

    Corrales-Guerrero, Laura; Mariscal, Vicente; Nürnberg, Dennis J.; Elhai, Jeff; Mullineaux, Conrad W.; Flores, Enrique; Herrero, Antonia

    2014-01-01

    In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, heterocysts are formed in the absence of combined nitrogen, following a specific distribution pattern along the filament. The PatS and HetN factors contribute to the heterocyst pattern by inhibiting the formation of consecutive heterocysts. Thus, inactivation of any of these factors produces the multiple contiguous heterocyst (Mch) phenotype. Upon N stepdown, a HetN protein with its C terminus fused to a superfolder version of gr...

  15. Algae personification toxicity by GC–MASS and treatment by using material potassium permanganate in exposed basin

    Directory of Open Access Journals (Sweden)

    Ahmed Aidan Al-Hussieny

    2017-09-01

    Full Text Available This study was conducted to address algal toxins using potassium permanganate through the control of biomass growth of algae under following conditions value 25 ± 1 °C illumination intensity value 245 microeinstein/m2/s, using the culture media Chu-10 Modified for the purpose of development algae. We treated algal toxins belonging to groups of Neurotoxins, Hepatotoxins, Pyriproxyfen, Emodin, Brevetoxins-10 (A and Cytotoxins using concentrations of potassium permanganate represented by 2, 4, 8 and 16 mg/l with alum concentration for each concentration of 30 mg/l, as the removal rate reached to 100% of the toxin blooms in concentrations of 8 and 16 mg/l respectively, through the examination of algal toxins mediated by GC–MASS compared to the standard, which diagnosed a range of algal toxins with C2H3C12NO formulas of synthetic C9H13NO2, C18H27NO3, C11H12N2O6, C11H17N3O, C10H17N3O, C9H15Br2NO, CH4N2O2, C11H17NO2, C13H9BrN2O3, C3H7NO4S, C20H29NO3, C15H10O5, C4H8O2 and C2H2Cl3NO the concentrations 2 and 4 mg/l turned toxic compounds into non-toxic compounds represented by C7H6O2, C5H6N2O, C12H11ClO4, C6H6O2, C12H10O4, C10H17N, C4H6O2 and C5H6N2O. The results showed reduced primary productivity of algae chlorophyll a result of substance to stop chloroplast for vital activity through the influence of the concentration of potassium permanganate values 0.571, 1.142, 0.583 and 1.713 mg/l respectively, compared to the standard of 114.2 mg/l. As diagnosed types of Algae producing toxins are represented by Microcystis aeruginosa, Microcystis flosaquae, Oscillatoria amoena, Oscillatoria amphibian, Oscillatoria boryana, Oscillatoria limnetica, Oscillatoria perornata, Phormidium ambiguum, Lyngbya digueti, Lyngbya major, Lyngbya nordgaadii, Lyngbya spirulinoides, Nostoc carneum, Nostoc spongiforme, Anabaena augstumalis, Chroococcus indicus and Chroococcus minor, as the dry weight of live Algae producing toxins is 17.342 g/l.

  16. Cultivation of macroscopic marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  17. Modeling and optimization of algae growth

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savceno, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent; Veerman, Frits; Frank, J.; van der Mei, R.; den Boer, A.; Bosman, J.; Bouman, N.; van Dam, S.; Verhoef, C.

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runo water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a

  18. SSMILes: Measuring the Nutrient Tolerance of Algae.

    Science.gov (United States)

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  19. Modeling and optimization of algae growth

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savcenco, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent; Veerman, Frits

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runoff water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a

  20. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  1. Advances in genetic engineering of marine algae.

    Science.gov (United States)

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Cars will be fed on algae

    International Nuclear Information System (INIS)

    Peltier, G.

    2012-01-01

    The development of the first and second generations of bio-fuels has led to a rise in food prices and the carbon balance sheet is less good than expected. Great hopes have been put on unicellular algae for they can synthesize oils, sugar and even hydrogen and the competition with food production is far less harsh than with actual bio-fuels. Moreover, when you grow micro-algae, the loss of water through evaporation is less important than in the case of intensive farm cultures. In 2009 10.000 tonnes of micro-algae were produced worldwide, they were mainly used for the production of fish food and of complements for humane food (fat acids and antioxidants). Different research programs concern unicellular algae: they aim at modifying micro-algae genetically in order to give them a higher productivity or to make them produce an oil more adapted for motor fuel or more easily recoverable. (A.C.)

  3. Potential biomedical applications of marine algae.

    Science.gov (United States)

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Streptophyte algae and the origin of embryophytes.

    Science.gov (United States)

    Becker, Burkhard; Marin, Birger

    2009-05-01

    Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae. Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants. The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater adaptation of streptophyte algae was a major

  5. In silico analysis and experimental validation of lipoprotein and novel Tat signal peptides processing in Anabaena sp. PCC7120.

    Science.gov (United States)

    Kumari, Sonika; Chaurasia, Akhilesh Kumar

    2015-12-01

    Signal peptide (SP) plays a pivotal role in protein translocation. Lipoprotein- and twin arginine translocase (Tat) dependent signal peptides were studied in All3087, a homolog of competence protein of Synechocystis PCC6803 and in two putative alkaline phosphatases (ALPs, Alr2234 and Alr4976), respectively. In silico analysis of All3087 is shown to possess the characteristics feature of competence proteins such as helix-hairpin-helix, N and C-terminal HKD endonuclease domain, calcium binding domain and N-terminal lipoprotein signal peptide. The SP recognition-cleavage site in All3087 was predicted (AIA-AC) using SignalP while further in-depth analysis using Pred-Lipo and WebLogo analysis for consensus sequence showed it as IAA-C. Activities of putative ALPs were confirmed by heterologous overexpression, activity assessment and zymogram analysis. ALP activity in Anabaena remains cell bound in log-phase, but during late log/stationary phase, an enhanced ALP activity was detected in extracellular milieu. The enhancement of ALP activity during stationary phase was not only due to inorganic phosphate limitation but also contributed by the presence of novel bipartite Tat-SP. The Tat signal transported the folded active ALPs to the membrane, followed by anchoring into the membrane and successive cleavage enabling transportation of the ALPs to the extracellular milieu, because of bipartite architecture and processing of transit Tat-SP.

  6. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes.

    Science.gov (United States)

    Ketseoglou, Irene; Bouwer, Gustav

    2012-10-04

    Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus PCC 7120#11 against the important malaria vectors An. gambiae and An. arabiensis was 12.3 × 10⁵ cells/ml and 8.10 × 105 cells/ml, respectively. PCC 7120#11 was not effective against An. funestus, with less than 50% mortality obtained at concentrations as high as 3.20 × 10⁷ cells/ml. PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent's spectrum of activity and potential as a vector control agent.

  7. Responses of a rice-field cyanobacterium Anabaena siamensis TISTR-8012 upon exposure to PAR and UV radiation.

    Science.gov (United States)

    Rastogi, Rajesh P; Incharoensakdi, Aran; Madamwar, Datta

    2014-10-15

    The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: application to Anabaena Sensory Rhodopsin.

    Science.gov (United States)

    Ward, Meaghan E; Brown, Leonid S; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Algae biodiesel - a feasibility report

    Directory of Open Access Journals (Sweden)

    Gao Yihe

    2012-04-01

    Full Text Available Abstract Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model.

  10. Algae biodiesel - a feasibility report

    Science.gov (United States)

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  11. Method and apparatus for processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  12. 21 CFR 73.275 - Dried algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  13. 21 CFR 73.185 - Haematococcus algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  14. Effects of lindane on the photosynthetic apparatus of the cyanobacterium Anabaena: fluorescence induction studies and immunolocalization of ferredoxin-NADP+ reductase.

    Science.gov (United States)

    Bueno, Marta; Fillat, Maria F; Strasser, Reto J; Maldonado-Rodriguez, Ronald; Marina, Nerea; Smienk, Henry; Gómez-Moreno, Carlos; Barja, Francisco

    2004-01-01

    Cyanobacteria have the natural ability to degrade moderate amounts of organic pollutants. However, when pollutant concentration exceeds the level of tolerance, bleaching of the cells and death occur within 24 hours. Under stress conditions, cyanobacterial response includes the short-term adaptation of the photosynthetic apparatus to light quality, named state transitions. Moreover, prolonged stresses produce changes in the functional organization of phycobilisomes and in the core-complexes of both photosystems, which can result in large changes in the PS II fluorescence yield. The localization of ferredoxin-NADP+ reductase (FNR) at the ends of some peripheral rods of the cyanobacterial phycobilisomes, makes this protein a useful marker to check phycobilisome integrity. The goal of this work is to improve the knowledge of the mechanism of action of a very potent pesticide, lindane (gamma-hexaclorociclohexane), in the cyanobacterium Anabaena sp., which can be considered a potential candidate for bioremediation of pesticides. We have studied the effect of lindane on the photosynthetic apparatus of Anabaena using fluorescence induction studies. As ferredoxin-NADP+ reductase plays a key role in the response to oxidative stress in several systems, changes in synthesis, degradation and activity of FNR were analyzed. Immunolocalization of this enzyme was used as a marker of phycobilisome integrity. The knowledge of the changes caused by lindane in the photosynthetic apparatus is essential for rational further design of genetically-modified cyanobacteria with improved biorremediation abilities. Polyphasic chlorophyll a fluorescence rise measurements (OJIP) have been used to evaluate the vitality and stress adaptation of the nitrogen-fixing cyanobacterium Anabaena PCC 7119 in the presence of increasing concentrations of lindane. Effects of the pesticide on the ultrastructure have been investigated by electron microscopy, and FNR has been used as a marker of phycobilisome

  15. Algae: putting carbon dioxide in a bind

    Energy Technology Data Exchange (ETDEWEB)

    Ewers, J.; Wiechers, G. [RWE Power (Germany)

    2009-03-15

    German utility RWE Power has initiated a cutting edge project that is investigating the use of marine microalgae to capture carbon dioxide produced during lignite combustion. At its Niederaussem power plant, a pilot plant has been erected for the production of microalgae. Flue gas is withdrawn from the lignite-based power plant and transported through polyethylene pipes to the microalgae production plant. The CO{sub 2} in the flue gas is dissolved in the algae suspension and adsorbed by the algae for growth in photobioreactors, developed by Noragreen Projektmanagement GmbH. The photobioreactors which consist of clear plastic hoses, fixed in V shape to supports. The study is aiming to optimise the entire algae production process and subsequent conversion and use of the algae biomass produced. Uses being investigated include hydrothermal carbonization to obtain hydrocarbon products. 1 figs., 1 photo.

  16. Collection, Isolation and Culture of Marine Algae.

    Science.gov (United States)

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  17. 2011 Biomass Program Platform Peer Review: Algae

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joyce [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  18. Dipeptides from the red alga Acanthopora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S; De; Kamat, S

    An investigation of red alga Acanthophora spicifera afforded the known peptide, aurantiamide acetate and a new diastereoisomer of this dipeptide (dia-aurantiamide acetate). This is a first report of aurantiamide acetate from a marine source...

  19. High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities.

    Science.gov (United States)

    Singh, Harinder; Anurag, Kirti; Apte, Shree Kumar

    2013-10-12

    The filamentous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120 was found to tolerate very high doses of 60 Co-gamma radiation or prolonged desiccation. Post-stress, cells remained intact and revived all the vital functions. A remarkable capacity to repair highly disintegrated genome and recycle the damaged proteome appeared to underlie such high radioresistance and desiccation tolerance. The close similarity observed between the cellular response to irradiation or desiccation stress lends strong support to the notion that tolerance to these stresses may involve similar mechanisms.

  20. Stochastic Forecasting of Algae Blooms in Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  1. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    Directory of Open Access Journals (Sweden)

    Kabir Hassan Biswas

    2015-04-01

    Full Text Available GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain. In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.

  2. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes

    Directory of Open Access Journals (Sweden)

    Ketseoglou Irene

    2012-10-01

    Full Text Available Abstract Background Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. Findings There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus An. arabiensis An. gambiae An. quadriannulatus, where 50. The LC50 of PCC 7120#11 against the important malaria vectors An. gambiae and An. arabiensis was 12.3 × 105 cells/ml and 8.10 × 105 cells/ml, respectively. PCC 7120#11 was not effective against An. funestus, with less than 50% mortality obtained at concentrations as high as 3.20 × 107 cells/ml. Conclusions PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent’s spectrum of activity and potential as a vector control agent.

  3. Biogas production experimental research using algae.

    Science.gov (United States)

    Baltrėnas, Pranas; Misevičius, Antonas

    2015-01-01

    The current study is on the the use of macro-algae as feedstock for biogas production. Three types of macro-algae, Cladophora glomerata (CG), Chara fragilis (CF), and Spirogyra neglecta (SN), were chosen for this research. The experimental studies on biogas production were carried out with these algae in a batch bioreactor. In the bioreactor was maintained 35 ± 1°C temperature. The results showed that the most appropriate macro-algae for biogas production are Spirogyra neglecta (SN) and Cladophora glomerata (CG). The average amount of biogas obtained from the processing of SN - 0.23 m(3)/m(3)d, CG - 0.20 m(3)/m(3)d, and CF - 0.12 m(3)/m(3)d. Considering the concentration of methane obtained during the processing of SN and CG, which after eight days and until the end of the experiment exceeded 60%, it can be claimed that biogas produced using these algae is valuable. When processing CF, the concentration of methane reached the level of 50% only by the final day of the experiment, which indicates that this alga is less suitable for biogas production.

  4. Antioxidant Activity of Hawaiian Marine Algae

    Directory of Open Access Journals (Sweden)

    Anthony D. Wright

    2012-02-01

    Full Text Available Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  5. Antioxidant activity of Hawaiian marine algae.

    Science.gov (United States)

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J; Tabandera, Nicole K; Wright, Patrick R; Wright, Anthony D

    2012-02-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  6. Fluorescence Properties of Chlorella sp. Algae

    Directory of Open Access Journals (Sweden)

    Tibor Teplicky

    2017-01-01

    Full Text Available Water quality and its fast and reliable monitoring is the challenge of the future. Design of appropriate biosensors that would be capable of non-invasive identification of water pollution is an important prerequisite for such challenge. Chlorophylls are pigments, naturally presented in all plants that absorb light. The main forms of chlorophyll in algae are chlorophyll a and chlorophyll b, other pigments include xantophylls and beta-carotenes. Our aim was to characterize endogenous fluorescence of the Chlorella sp. algae, present naturally in drinking water. We recorded spatial, spectral and lifetime fluorescence distribution in the native algae. We noted that the fluorescence was evenly distributed in the algae cytosol, but lacked in the nucleus and reached maximum at 680-690 nm. Fluorescence decay of chlorella sp. was double-exponential, and clearly shorter than that of its isolated pigments. For the first time, fluorescence lifetime image of the algae is presented. Study of the fluorescence properties of algae is aimed at the improvement of water supply contamination detection and cleaning.

  7. Effect of algal biofertilizer on yield and protein content of rice

    Energy Technology Data Exchange (ETDEWEB)

    Antarikanonda, P.; Amarit, P.; Chetsumon; Tancharoenrat, P.

    Four strains of nitrogen fixing blue-green algae, namely Anabaena siamensis, Anabaena lutea, Nostoc sp. 46 and Nostoc sp. 79. Mixed cultures were applied as biofertilizers to four paddy soil samples, taken from Rangsit, Khok Sumrong, Sakhon Nakorn and Surin areas. Pots which were arranged in completely randomized design consisted of 3 replications and 2 treatment in each replication. These treatments comprise an unbiofertilizer and a biofertilizer which biofertilizer rate was applied equally at 4 grams of blue green algae per 10 kilograms of soil sample. The results showed that algal biofertilizer enhanced the growth and yield of the rice significantly, which was noticeable in the dry weight of the straw and grain of rice, for all sources of soil. Grain yield of rice in these soils increased form the check of 32.07, 34.87, 8.86 and 21.49 to 53.14, 49.53, 20.02, and 49.60 grams per pot, respectively. The responsiveness of rice which received algal biofertilizer was different. The percentage increase in yield ranged from 42% in Khok Sumrong soil and 66% in Rangsit soil, to 126 and 131% in Sakhon Nakorn and Surin soil, respectively. Significant increase in protein content of rice with the application of algal biofertilizer was from the check of 5.03, 5.14, 6.75 and 5.25 to 6.45, 6.53, 7.80 and 7.11 percent respectively. The difference in plant N-uptake level, after the application algal biofertilizer gave 383.50, 310.00, 222.20 and 480.70 milligrams per pot, respectively.

  8. Eco-Labeled Seafood: Determinants for (Blue Green Consumption

    Directory of Open Access Journals (Sweden)

    Malin Jonell

    2016-09-01

    Full Text Available Eco-certification has become an increasingly popular market-based tool in the endeavor to reduce negative environmental impacts from fisheries and aquaculture. In this study, we aimed at investigating which psychological consumer characteristics influence demand for eco-labeled seafood by correlating consumers’ stated purchasing of eco-labeled seafood to nine variables: environmental knowledge regarding seafood production, familiarity with eco-labels, subjective knowledge, pro-environmental self-identification, sense of personal responsibility, concern for negative environmental impacts from seafood production, perceived consumer effectiveness, gender and education. Questionnaires were distributed to consumers in Stockholm, Sweden, and the data were tested with multiple regression analysis using linear modeling and model averaging (n = 371. Two variables were the best predictors of stated purchasing of eco-labeled seafood: (i recognition and understanding of eco-labels for seafood (Marine Stewardship Council, Fish for Life, Aquaculture Stewardship Council and KRAV; and (ii concern for negative environmental impacts associated with seafood production. Meanwhile, consumer environmental knowledge was a weaker predictor. Results from this study suggest that strengthening the emotional component of consumer decision-making and improving the level of consumer familiarity with seafood eco-labels could stimulate more pro-environmental seafood consumption.

  9. Blue-green phosphor for fluorescent lighting applications

    Science.gov (United States)

    Srivastava, Alok; Comanzo, Holly; Manivannan, Venkatesan; Setlur, Anant Achyut

    2005-03-15

    A fluorescent lamp including a phosphor layer including Sr.sub.4 Al.sub.14 O.sub.25 :Eu.sup.2+ (SAE) and at least one of each of a red, green and blue emitting phosphor. The phosphor layer can optionally include an additional, deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of SAE in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over, the course of the lamp life.

  10. Power-Scalable Blue-Green Bessel Beams

    Science.gov (United States)

    2016-02-23

    building system to achieve emission at the desired blue colours , was, however, abandoned due to lack of funds relative to the original anticipated award...Chen, P. Steinvurzel, K. Rottwitt, S. Ramachandran, “High-energy Fiber Lasers at Non-traditional Colours , via Intermodal Nonlinearities,” CTu3M.6

  11. Active substance from some blue green algal species used as ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-10

    May 10, 2010 ... The concept of biological control for health maintenance has received widespread attention during the last few years. Therefore, the main objective of this work was to look for active substances that could be used as antimicrobial agents in an efficient and safe manner. To achieve this target, five different.

  12. Active substance from some blue green algal species used as ...

    African Journals Online (AJOL)

    The concept of biological control for health maintenance has received widespread attention during the last few years. Therefore, the main objective of this work was to look for active substances that could be used as antimicrobial agents in an efficient and safe manner. To achieve this target, five different extracts (ethyl ...

  13. Littoral Combat Ship: Is it a Blue-Green Asset?

    Science.gov (United States)

    2010-04-02

    4.5) CODAG: 2 gas turbines, 2 diesels; 4 steerable waterjets ; 1 steerable thruster 45 4,300 at 18 kt Raytheon RAM ·· e 5immti:0Mk2•220...the ship in dry-dock for extended periods of time, cutting holes in the side of the ship, or running lengths of cables and piping throughout the ship

  14. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    Science.gov (United States)

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  15. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    Science.gov (United States)

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Radiation sterilization of harmful algae in water

    International Nuclear Information System (INIS)

    Byung Chull An; Jae-Sung Kim; Seung Sik Lee; Shyamkumar Barampuram; Eun Mi Lee; Byung Yeoup Chung

    2007-01-01

    Complete text of publication follows. Objective: Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of harmful micro-organisms. The human and animal harmful algae is a waterborne risk to public health and economy because the algae are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Gamma and electron beam radiation technology is of growing in the water industry since it was demonstrated that gamma and electron beam radiation is very effective against harmful algae. Materials and Methods: Harmful algae (Scenedesmus quadricauda(Turpin) Brebisson 1835 (AG10003), Chlorella vulgaris Beijerinck 1896 (AG30007) and Chlamydomonas sp. (AG10061)) were distributed from Korean collection for type cultures (KCTC). Strains were cultured aerobically in Allen's medium at 25□ and 300 umol/m2s for 1 week using bioreactor. We investigated the disinfection efficiency of harmful algae irradiated with gamma (0.05 to 10 kGy for 30 min) and electron beam (1 to 19 kGy for 5 sec) rays. Results and Conclusion: We investigated the disinfection efficiency of harmful algae irradiated with gamma and electron beam rays of 50 to 19000 Gy. We established the optimum sterilization condition which use the gamma and electron beam radiation. Gamma ray disinfected harmful algae at 400 Gy for 30 min. Also, electron beam disinfected at 1000 Gy for 5 sec. This alternative disinfection practice had powerful disinfection efficiency. Hence, the multi-barrier approach for drinking water treatment in which a combination of various disinfectants and filtration technologies are applied for removal and inactivation of different microbial pathogens will guarantee a lower risk of microbial contamination.

  17. Algae Biofuel in the Nigerian Energy Context

    Directory of Open Access Journals (Sweden)

    Elegbede Isa

    2016-05-01

    Full Text Available The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author’s deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  18. A Comprehensively Curated Genome-Scale Two-Cell Model for the Heterocystous Cyanobacterium Anabaena sp. PCC 71201[CC-BY

    Science.gov (United States)

    Steuer, Ralf

    2017-01-01

    Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocysts, is postulated to depend on metabolic exchange of electrons, carbon, and fixed nitrogen. In this study, we compile and evaluate a comprehensive curated stoichiometric model of this two-cell system, with the objective function based on the growth of the filament under diazotrophic conditions. The predicted growth rate under nitrogen-replete and -deplete conditions, as well as the effect of external carbon and nitrogen sources, was thereafter verified. Furthermore, the model was utilized to comprehensively evaluate the optimality of putative metabolic exchange reactions between heterocysts and vegetative cells. The model suggested that optimal growth requires at least four exchange metabolites. Several combinations of exchange metabolites resulted in predicted growth rates that are higher than growth rates achieved by only considering exchange of metabolites previously suggested in the literature. The curated model of the metabolic network of Anabaena sp. PCC 7120 enhances our ability to understand the metabolic organization of multicellular cyanobacteria and provides a platform for further study and engineering of their metabolism. PMID:27899536

  19. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  20. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Phospholipids of New Zealand Edible Brown Algae.

    Science.gov (United States)

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of 31 P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  2. Effect of ferrate on green algae removal.

    Science.gov (United States)

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  3. Radiation effects on algae and its application

    International Nuclear Information System (INIS)

    Dwivedi, Rakesh Kumar

    2013-01-01

    The effects of radiation on algae have been summarized in this article. Today, algae are being considered to have the great potential to fulfill the demand of food, fodder, fuel and various pharmaceutical products. Red algae are particularly rich in the content of polysaccharides present in their cell wall. For isolation of these polysaccharides, separation of cells cemented together by middle lamella is essential. The gamma rays are known to bring about biochemical changes in the cell wall and cause the breakdown of the middle lamella. These rays ate also known to speed up the starch sugar inter-conversion in the cells which is very useful for the tapping the potential of algae to be used as biofuel as well as in pharmaceutical industries. Cyanobacteria, among algae and other plants are more resistant to the radiation. In some cyanobacteria the radiation treatment is known to enhance the resistance against the antibiotics. Radiation treatment is also known to enhance the diameter of cell and size of the nitrogen fixing heterocyst. (author)

  4. Controlled regular locomotion of algae cell microrobots.

    Science.gov (United States)

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.

  5. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  6. Freshwater algae of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs.

  7. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Van Baelen, J.; Hurtger, C.; Cogneau, M.; Van der Ben, D.; Verthe, C.; Bouquegneau, J.M.

    1985-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95m-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography

  8. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Baelen, J. van; Hurtgen, C.; Cogneau, M.; Ben, D. van der; Verthe, C.; Bouquegneau, J.M.

    1986-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography. (author)

  9. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    International Nuclear Information System (INIS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-01-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation

  10. Modeling and optimization of algae growth

    OpenAIRE

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savceno, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runo water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a variety of applications including production of bio-diesel, animal feed, products for pharmaceutical and cosmetic purposes, or it can even be used as a source of heating or electricity. The aim of t...

  11. Modeling and optimization of algae growth

    OpenAIRE

    Thornton, A; Weinhart, T; Bokhove, O; Zhang, B; Sar, van der, DM; Kumar, K Kundan; Pisarenco, M Maxim; Rudnaya, M Maria; Savcenco, V Valeriu; Rademacher, JDM; Zijlstra, J; Szabelska, A; Zyprych, J; Schans, van der, M Martin; Timperio, V

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runoff water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a variety of applications including production of bio-diesel, animal feed, products for pharmaceutical and cosmetic purposes, or it can even be used as a source of heating or electricity . The aim o...

  12. Serpins in plants and green algae

    DEFF Research Database (Denmark)

    Roberts, Thomas Hugh; Hejgaard, Jørn

    2008-01-01

    . Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors...... of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting...

  13. [Comparative chemical composition of the Barents Sea brown algae].

    Science.gov (United States)

    Obluchinskaia, E D

    2008-01-01

    Comparative study of phytochemical compositions of the most widespread brown algae species (one laminarian and four fucoid algae) from Barents Sea has been performed. A modified technique for mannitol determination in brown algae is proposed. It was revealed that fucus algae (fam. Fucaceae) contain 3% (of total dry weight) less mannitol than laminaria (Laminaria saccharina). The contents of alginic acid and laminaran in the Barents Sea fucoids are more than 10% less compared to laminaria. The alga L. saccharina contains almost two times more iodine than the species of fam. Fucaceae. The amounts of fucoidan and sum lipids in the Barents Sea fucoid algae is higher than in Laminaria saccharina (4-7% and 1-3%, respectively). In terms of contents of main biologically active compounds, fucus and laminarian algae from Barents Sea are inferior to none of the Far-Eastern species. The Barents Sea algae may become an important source of biologically active compounds.

  14. Use of Brown Algae to Demonstrate Natural Products Techniques.

    Science.gov (United States)

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  15. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    Science.gov (United States)

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  16. Association of thraustochytrids and fungi with living marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Nagarkar, S.; Raghukumar, S.

    only in C. clavulatum, Sargassum cinereum and Padina tetrastromatica whilst mycelial fungi occurred in all. Growth experiments in the laboratory indicated that the growth of thraustochytrids was inhibited on live algae, whereas killed algae supported...

  17. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  18. Environmental conditions and plankton of the Omu Creek, Lagos ...

    African Journals Online (AJOL)

    The phytoplankton diversity consisted of diatoms and blue-green algae. A total of 8 species from 5 genera were observed. Diatoms were more diverse with 7 species from 4 genera. The blue-green algae recorded one species. Diatoms accounted for 98% (centric – 86.7% and pennate diatoms –13.3%) of the total ...

  19. Studies on the influence of Microcystis aeruginosa on the ecology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... In many fish ponds, blue-green algae (Cyanobacteria) constitute the greater part of the phytoplankton. Of the blue-green algae common in fish ponds, Microcystis aeruginosa is said to be a noxious species. It sometimes forms spectacular water blooms, often with harmful consequences such as depletion of.

  20. Iron Limitation and the Role of Siderophores in Marine Synechococcus

    Science.gov (United States)

    2009-06-01

    centric diatom bloom. Science 300: 958-961. Van Baalen, C. (1962) Studies on marine blue-green algae. Botanica Marina 4: 129-139. Vraspir, J.M., and...environment. Proc Natl Acad Sci U S A 103: 13555-13559. Van Baalen, C. (1962) Studies on marine blue-green algae. Botanica Marina 4: 129-139. Vraspir

  1. Studies on the influence of Microcystis aeruginosa on the ecology ...

    African Journals Online (AJOL)

    In many fish ponds, blue-green algae (Cyanobacteria) constitute the greater part of the phytoplankton. Of the blue-green algae common in fish ponds, Microcystis aeruginosa is said to be a noxious species. It sometimes forms spectacular water blooms, often with harmful consequences such as depletion of oxygen, poor ...

  2. Harmful impact of filamentous algae (Spirogyra sp.) on juvenile crayfish

    OpenAIRE

    Ulikowski Dariusz; Chybowski Łucjan; Traczuk Piotr

    2015-01-01

    The aim of this study was to determine the impact of filamentous algae on the growth and survival of juvenile narrow-clawed crayfish, Astacus leptodactylus (Esch.), in rearing basins. Three stocking variants were used: A - basins with a layer of filamentous algae without imitation mineral substrate; B - basins with a layer of filamentous algae with imitation mineral substrate; C - basins without filamentous algae but with mineral substrate. The crayfish were reared from June 12 to October 10 ...

  3. Utilization of Anabaena sp. in CO{sub 2} removal processes. Modelling of biomass, exopolysaccharides productivities and CO{sub 2} fixation rate

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Fernandez, J.F.; Gonzalez-Lopez, C.V.; Acien Fernandez, F.G.; Fernandez Sevilla, J.M.; Molina Grima, E. [Almeria Univ. (Spain). Dept. of Chemical Engineering

    2012-05-15

    This paper focuses on modelling the growth rate and exopolysaccharides production of Anabaena sp. ATCC 33047, to be used in carbon dioxide removal and biofuels production. For this, the influence of dilution rate, irradiance and aeration rate on the biomass and exopolysaccharides productivity, as well as on the CO{sub 2} fixation rate, have been studied. The productivity of the cultures was maximum at the highest irradiance and dilution rate assayed, resulting to 0.5 g{sub bio} l{sup -1} day{sup -1} and 0.2 g{sub eps} l{sup -1} day{sup -1}, and the CO{sub 2} fixation rate measured was 1.0 gCO{sub 2} l{sup -1} day{sup -1}. The results showed that although Anabaena sp. was partially photo-inhibited at irradiances higher than 1,300 {mu}E m-2 s{sup -1}, its growth rate increases hyperbolically with the average irradiance inside the culture, and so does the specific exopolysaccharides production rate. The latter, on the other hand, decreases under high external irradiances, indicating that the exopolysaccharides metabolism hindered by photo-damage. Mathematical models that consider these phenomena have been proposed. Regarding aeration, the yield of the cultures decreased at rates over 0.5 v/v/min or when shear rates were higher than 60 s{sup -1}, demonstrating the existence of thus existence of stress damage by aeration. The behaviour of the cultures has been verified outdoors in a pilot-scale airlift tubular photobioreactor. From this study it is concluded that Anabaena sp. is highly recommended to transform CO{sub 2} into valuable products as has been proved capable of metabolizing carbon dioxide at rates of 1.2 gCO{sub 2} l{sup -1} day{sup -1} outdoors. The adequacy of the proposed equations is demonstrated, resulting to a useful tool in the design and operation of photobioreactors using this strain. (orig.)

  4. KAROTENOID PADA ALGAE: KAJIAN TENTANG BIOSINTESIS, DISTRIBUSI SERTA FUNGSI KAROTENOID

    OpenAIRE

    Merdekawati, Windu; Karwur, Ferry F.; Susanto, A. B.

    2017-01-01

    ABSTRAK   Karotenoid terdistribusi pada archaea, bakteri, jamur, tumbuhan, hewan serta algae. Karotenoid dihasilkan dari komponen isopentenyl pyrophosphate (IPP) yang mengalami proses secara bertahap untuk membentuk beragam jenis karotenoid. Terdapat dua kelompok karotenoid yaitu karoten dan xantofil dengan berbagai jenis turunannya. Struktur kimia pada karotenoid algae yaitu allene, acetylene serta acetylated carotenoids. Algae mempunyai karotenoid spesifik yang menarik untuk dipe...

  5. Relationships between algae taxa and physico-chemical ...

    African Journals Online (AJOL)

    A study of algae flora was performed on 16 samples collected in different aquatic environments in Bamenda (Cameroon) in order to evidence the relationships between algae assemblages and physico-chemical parameters of the milieu. A total of 22 algae species were identified, the most represented class being ...

  6. Can the primary algae production be measured precisely?

    International Nuclear Information System (INIS)

    Olesen, M.; Lundsgaard, C.

    1996-01-01

    Algae production in seawater is extremely important as a basic link in marine food chains. Evaluation of the algae quantity is based on 14CO 2 tracer techniques while natural circulation and light absorption in seawater is taken insufficiently into account. Algae production can vary by 500% in similar nourishment conditions, but varying water mixing conditions. (EG)

  7. Inventory of North-West European algae initiatives

    NARCIS (Netherlands)

    Spruijt, J.

    2015-01-01

    In 2012 an inventory of North-West European (NWE) algae initiatives was carried out to get an impression of the market and research activities on algae production and refinery, especially for bioenergy purposes. A questionnaire was developed that would provide the EnAlgae project with information on

  8. How to Identify and Control Water Weeds and Algae.

    Science.gov (United States)

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  9. New methodologies for integrating algae with CO2 capture

    NARCIS (Netherlands)

    Hernandez Mireles, I.; Stel, R.W. van der; Goetheer, E.L.V.

    2014-01-01

    It is generally recognized, that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient

  10. Agricultural importance of algae | Abdel-Raouf | African Journal of ...

    African Journals Online (AJOL)

    Algae are a large and diverse group of microorganisms that can carry out photosynthesis since they capture energy from sunlight. Algae play an important role in agriculture where they are used as biofertilizer and soil stabilizers. Algae, particularly the seaweeds, are used as fertilizers, resulting in less nitrogen and ...

  11. The algae of Gaborone wastewater stabilization ponds: Implications ...

    African Journals Online (AJOL)

    The types of algae found in the wastewater stabilization ponds in Gaborone were studied. Being the base of the food chain in any aquatic habitat, algae contribute significantly to the functioning and value of the ponds. The (liversit)' and abundance of the algae in the two pond systems at Broadhurst and Phakalane were ...

  12. Research and development for algae-based technologies in Korea: a review of algae biofuel production.

    Science.gov (United States)

    Hong, Ji Won; Jo, Seung-Woo; Yoon, Ho-Sung

    2015-03-01

    This review covers recent research and development (R&D) activities in the field of algae-based biofuels in Korea. As South Korea's energy policy paradigm has focused on the development of green energies, the government has funded several algae biofuel R&D consortia and pilot projects. Three major programs have been launched since 2009, and significant efforts are now being made to ensure a sustainable supply of algae-based biofuels. If these R&D projects are executed as planned for the next 10 years, they will enable us to overcome many technical barriers in algae biofuel technologies and help Korea to become one of the leading countries in green energy by 2020.

  13. Photoprotection strategies of the alga Nannochloropsis gaditana

    NARCIS (Netherlands)

    Chukhutsina, Volha U.; Fristedt, Rikard; Morosinotto, Tomas; Croce, Roberta

    2017-01-01

    Nannochloropsis spp. are algae with high potential for biotechnological applications due to their capacity to accumulate lipids. However, little is known about their photosynthetic apparatus and acclimation/photoprotective strategies. In this work, we studied the mechanisms of non-photochemical

  14. Selenium accumulation and metabolism in algae.

    Science.gov (United States)

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Isolation of glycoproteins from brown algae.

    OpenAIRE

    Surendraraj, Alagarsamy; Farvin Koduvayur Habeebullah , Sabeena; Jacobsen, Charlotte

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme and Termamyl and the glycoproteins were isolated from these enzyme extracts.

  16. Fucoidans — sulfated polysaccharides of brown algae

    Science.gov (United States)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  17. The ice nucleation activity of extremophilic algae

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana; Hájek, J.; Worland, M. R.

    2013-01-01

    Roč. 34, č. 2 (2013), s. 137-148 ISSN 0143-2044 R&D Projects: GA AV ČR KJB601630808; GA AV ČR KJB600050708 Institutional support: RVO:67985939 Keywords : Ice nucleation * snow algae * lichen photobionts Subject RIV: EF - Botanics Impact factor: 0.640, year: 2013

  18. Washington State University Algae Biofuels Research

    Energy Technology Data Exchange (ETDEWEB)

    chen, Shulin [Washington State Univ., Pullman, WA (United States). Dept. of Biological Systems Engineering; McCormick, Margaret [Targeted Growth, Inc., Seattle, WA (United States); Sutterlin, Rusty [Inventure Renewables, Inc., Gig Harbor, WA (United States)

    2012-12-29

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states of the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.

  19. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  20. Bromophenols in Marine Algae and Their Bioactivities

    DEFF Research Database (Denmark)

    Ming, Liu; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect...

  1. Taxonomic Challenges and Distribution of Gracilarioid Algae ...

    African Journals Online (AJOL)

    This paper reviews the taxonomical literature of the gracilarioid algae from Tanzania, and provides information about their ecology and distribution based on an intensive regime of local collection. Its aim was to provide names, even if on a preliminary basis, for local gracilarioid taxa. Our revision shows that species ...

  2. Research for Developing Renewable Biofuels from Algae

    Energy Technology Data Exchange (ETDEWEB)

    Black, Paul N. [Univ. of Nebraska, Lincoln, NE (United States)

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  3. Usos industriales de las algas diatomeas.

    OpenAIRE

    Illana Esteban, Carlos

    2007-01-01

    Las diatomeas son algas microscópicas que habitan tanto en aguas dulces como marinas. Aparte de su destacado papel en la cadena trófica de los ecosistemas acuáticos, con el tiempo forman depósitos a los que el hombre ha encontrado abundantes aplicaciones prácticas.

  4. Sterol chemotaxonomy of marine pelagophyte algae.

    Science.gov (United States)

    Giner, José-Luis; Zhao, Hui; Boyer, Gregory L; Satchwell, Michael F; Andersen, Robert A

    2009-07-01

    Several marine algae of the class Pelagophyceae produce the unusual marine sterol 24-propylidenecholesterol, mainly as the (24E)-isomer. The (24Z)-isomer had previously been considered as a specific biomarker for Aureococcus anophagefferens, the 'brown tide' alga of the Northeast coast of the USA. To test this hypothesis and to generate chemotaxonomic information, the sterol compositions of 42 strains of pelagophyte algae including 17 strains of Aureococcus anophagefferens were determined by GC analysis. A more comprehensive sterol analysis by HPLC and (1)H-NMR was obtained for 17 selected pelagophyte strains. All strains analyzed contained 24-propylidenecholesterol. In all strains belonging to the order Sarcinochrysidales, this sterol was found only as the (E)-isomer, while all strains in the order Pelagomonadales contained the (Z)-isomer, either alone or together with the (E)-isomer. The occurrence of Delta(22) and 24alpha-sterols was limited to the Sarcinochrysidales. The first occurrence of Delta(22)-24-propylcholesterol in an alga, CCMP 1410, was reported. Traces of the rare sterol 26,26-dimethyl-24-methylenecholesterol were detected in Aureococcus anophagefferens, and the (25R)-configuration was proposed, based on biosynthetic considerations. Traces of a novel sterol, 24-propylidenecholesta-5,25-dien-3beta-ol, were detected in several species.

  5. Role of Nitrogenase and Ferredoxin in the Mechanism of Bioelectrocatalytic Nitrogen Fixation by the Cyanobacteria Anabaena variabilis SA-1 Mutant Immobilized on Indium Tin Oxide (ITO) Electrodes

    International Nuclear Information System (INIS)

    Knoche, Krysti L.; Aoyama, Erika; Hasan, Kamrul; Minteer, Shelley D.

    2017-01-01

    Current ammonia production methods are costly and environmentally detrimental. Biological nitrogen fixation has implications for low cost, environmentally friendly ammonia production. It has been shown that electrochemical stimulation increases the ammonia output of the cyanobacteria SA-1 mutant of Anabaena variabilis, but the mechanism of bioelectrocatalysis has been unknown. Here, the mechanism of electrostimulated biological ammonia production is investigated by immobilization of the cyanobacteria with polyvinylamine on indium tin oxide (ITO) coated polyethylene. Cyclic voltammetry is performed in the absence and presence of various substrates and with nitrogenase repressed and nitrogenase derepressed cells to study mechanism, and cyclic voltammetry and UV–vis spectroscopy are used to identify redox moieties in the spent electrolyte. A bioelectrocatalytic signal is observed for nitrogenase derepressed A. variabilis SA-1 in the presence of N 2 and light. Results indicate that the redox protein ferredoxin mediates electron transfer between nitrogenase and the electrode to stimulate ammonia production.

  6. Sulfated polysaccharides as bioactive agents from marine algae.

    Science.gov (United States)

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Biofuels from algae for sustainable development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih

    2011-01-01

    Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and useful chemicals. Two algae samples (Cladophora fracta and Chlorella protothecoid) were studied for biofuel production. Microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Microalgae can be converted to biodiesel, bioethanol, bio-oil, biohydrogen and biomethane via thermochemical and biochemical methods. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 liters per acre, per year; this is 7-31 times greater than the next best crop, palm oil. Algal oil can be used to make biodiesel for cars, trucks, and airplanes. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. The effect of temperature on the yield of hydrogen from two algae (C. fracta and C. protothecoid) by pyrolysis and steam gasification were investigated in this study. In each run, the main components of the gas phase were CO 2 , CO, H 2 , and CH 4 .The yields of hydrogen by pyrolysis and steam gasification processes of the samples increased with temperature. The yields of gaseous products from the samples of C. fracta and C. protothecoides increased from 8.2% to 39.2% and 9.5% to 40.6% by volume, respectively, while the final pyrolysis temperature was increased from 575 to 925 K. The percent of hydrogen in gaseous products from the samples of C. fracta and C. protothecoides increased from 25.8% to 44.4% and 27.6% to 48.7% by volume

  8. Bioconcentration of tetrachlorobenzene in marine algae

    Science.gov (United States)

    Wang, Xiu-Lin; Ma, Yan-Jun; Cheng, Gang; Yu, Wei-Jun; Zhang, Li-Jun

    1997-09-01

    Bioconcentration of tetrachlorobenzene (TeCB) in Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis, and Phaeodactylum tricornutum; and toxicity of TeCB to the marine algae were tested. Values of bioconcentration potential parameters, including uptake rate constant k 1, elimination rate constant k 2 and bioconcentration factor BCF, were obtained not only from the time course of TeCB uptake by the marine algae by using a bioconcentration model, but also from the acute toxicity test data for percent inhibition PI(%)˜exposure concentration of TeCB-time by using a combined bioconcentration and probability model. The results showed good relationship between k 1(TOXIC) and k 1(UPTAKE) and k 2(TOXIC), k 2(UPTAKE), and BCF D(IOXIC) and BCF D(UPTAKE). Especially, the values of BCF D(TOXIC) were well consistent with those of BCF D(UPTAKE).

  9. [Chemical constituents from red alga Corallina pilulifera].

    Science.gov (United States)

    Yuan, Zhao-Hui; Han, Li-Jun; Fan, Xiao; Li, Shuai; Shi, Da-Yong; Sun, Jie; Ma, Ming; Yang, Yong-Chun; Shi, Jian-Gong

    2006-11-01

    To investigate the chemical constituents of red alga Corallina pilulifera. Compounds were isolated by normal phase silica gel and Sephadex LH - 20 gel column chromatography, reverse phase HPLC and recrystallization. Their structures were elucidated by spectroscopic methods including MS, 1H-NMR, 13C-NMR, HSQC, HMBC. Cytotoxicity of the compounds was screened by using standard MTT method. Seven compounds were isolated from red alga C. pilulifera, their structures were identified as (E) -phytol epoxide (1), phytenal (2), phytol (3), dehydrovomifoliol (4), loliolide (5), 3beta-hydroxy-5alpha, 6alpha-epoxy-7-megastigmene-9-one (6), 4-hydroxybenzaldehyde (7). All of the compounds were obtained from this species for the first time. These compounds were inactive (IC50 > 10 microg x mL(-1)) in the MTT assay.

  10. Radiokinetic study in betony marine algae

    International Nuclear Information System (INIS)

    Azevedo Gouvea, V. de.

    1981-01-01

    The influx and outflux kinetics of some radionuclides in algae of the Rio de Janeiro coastline, were studied in order to select bioindicators for radioactive contamination in aquatic media, due to the presence of Nuclear Power Stations. Bioassays of the concentration and loss of radionuclides such as 137 Cs, 51 Cr, 60 Co and 131 I were performed in 1000cm 3 aquarium under controlled laboratory conditions, using a single channel gamma counting system, to study the species of algae most frequently found in the region. The concentration and loss parameters for all the species and radionuclides studied were obtained from the normalized results. The loss parameters were computerwise adjusted using Powell's multiparametric method. (author)

  11. Hyperaccumulation of radioactive isotopes by marine algae

    International Nuclear Information System (INIS)

    Ishii, Toshiaki; Hirano, Shigeki; Watabe, Teruhisa

    2003-01-01

    Hyperaccumlators are effective indicator organisms for monitoring marine pollution by heavy metals and artificial radionuclides. We found a green algae, Bryopsis maxima that hyperaccumulate a stable and radioactive isotopes such as Sr-90, Tc-99, Ba-138, Re-187, and Ra-226. B. maxima showed high concentration factors for heavy alkali earth metals like Ba and Ra, compared with other marine algae in Japan. Furthermore, this species had the highest concentrations for Tc-99 and Re-187. The accumulation and excretion patterns of Sr-85 and Tc-95m were examined by tracer experiments. The chemical states of Sr and Re in living B. maxima were analyzed by HPLC-ICP/MS, LC/MS, and X-ray absorption fine structure analysis using synchrotron radiation. (author)

  12. Multiplicity of viral infection in brown algae

    OpenAIRE

    Stevens, Kim

    2014-01-01

    Brown algae are important primary producers and habitat formers in coastal environments and are believed to have evolved multicellularity independently of the other eukaryotes. The phaeoviruses that infect them form a stable lysogenic relationship with their host via genome integration, but have only been extensively studied in two genera: Ectocarpus and Feldmannia. In this study I aim to improve our understanding of the genetic diversity, host range and distribution of phaeoviruses. Seq...

  13. Algae-Derived Dietary Ingredients Nourish Animals

    Science.gov (United States)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  14. Electro-coagulation-flotation process for algae removal

    International Nuclear Information System (INIS)

    Gao Shanshan; Yang Jixian; Tian Jiayu; Ma Fang; Tu Gang; Du Maoan

    2010-01-01

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density = 1 mA/cm 2 , pH = 4-7, water temperature = 18-36 deg. C, algae density = 0.55 x 10 9 -1.55 x 10 9 cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m 3 . The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  15. Regulating cellular trace metal economy in algae.

    Science.gov (United States)

    Blaby-Haas, Crysten E; Merchant, Sabeeha S

    2017-10-01

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. Starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. In this review, we focus on recent progress made toward understanding the pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. New experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. New records of marine algae in Vietnam

    Science.gov (United States)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  17. Functional properties of carotenoids originating from algae.

    Science.gov (United States)

    Christaki, Efterpi; Bonos, Eleftherios; Giannenas, Ilias; Florou-Paneri, Panagiota

    2013-01-15

    Carotenoids are isoprenoid molecules which are synthesised de novo by photosynthetic plants, fungi and algae and are responsible for the orange, yellow and some red colours of various fruits and vegetables. Carotenoids are lipophilic compounds, some of which act as provitamins A. These compounds can be divided into xanthophylls and carotenes. Many macroalgae and microalgae are rich in carotenoids, where these compounds aid in the absorption of sunlight. Industrially, these carotenoids are used as food pigments (in dairy products, beverages, etc.), as feed additives, in cosmetics and in pharmaceuticals, especially nowadays when there is an increasing demand by consumers for natural products. Production of carotenoids from algae has many advantages compared to other sources; for example, their production is cheap, easy and environmentally friendly; their extraction is easier, with higher yields, and there is no lack of raw materials or limited seasonal variation. Recently, there has been considerable interest in dietary carotenoids with respect to their antioxidant properties and their ability to reduce the incidence of some chronic diseases where free radicals are involved. Possibly, carotenoids protect cells from oxidative stress by quenching singlet oxygen damage with various mechanisms. Therefore, carotenoids derived from algae could be a leading natural resource in the research for potential functional ingredients. Copyright © 2012 Society of Chemical Industry.

  18. Determinación del aporte de oxígeno disuelto en ambientes acuíferos por la relación simbiótica de Azolla sp. y Anabaena sp. Cayambe/2010

    OpenAIRE

    Vinueza Albán, Jaime Marcelo

    2012-01-01

    Is an aquatic fern Azolla, Anabaena symbiont to make a plant, perfect in the nitrogen supply in rice cultivation where this fern is one of the great benefactors for the production of this grass organically. In this research seeing the benefits of Azolla as green manure, feed supplement for small animals and wastewater treatment, welcomed the idea of whether Azolla can capture and provide oxygen to the water where it is growing. Given that there are some species described Azo...

  19. Interspecific variation in total phenolic content in temperate brown algae

    Directory of Open Access Journals (Sweden)

    Anna Maria Mannino

    2017-09-01

    Full Text Available Marine algae synthesize secondary metabolites such as polyphenols that function as defense and protection mechanisms. Among brown algae, Fucales and Dictyotales (Phaeophyceae contain the highest levels of phenolic compounds, mainly phlorotannins, that play multiple roles. Four temperate brown algae (Cystoseira amentacea, Cystoseira compressa, Dictyopteris polypodioides and Padina pavonica were studied for total phenolic contents. Total phenolic content was determined colorimetrically with the Folin-Ciocalteu reagent. Significant differences in total phenolic content were observed between leathery and sheetlike algae and also within each morphological group. Among the four species, the sheet-like alga D. polypodioides, living in the upper infralittoral zone, showed the highest concentration of phenolic compounds. These results are in agreement with the hypothesis that total phenolic content in temperate brown algae is influenced by a combination of several factors, such as growth form, depth, and exposition to solar radiation.

  20. Algae to Economically Viable Low-Carbon-Footprint Oil.

    Science.gov (United States)

    Bhujade, Ramesh; Chidambaram, Mandan; Kumar, Avnish; Sapre, Ajit

    2017-06-07

    Algal oil as an alternative to fossil fuel has attracted attention since the 1940s, when it was discovered that many microalgae species can produce large amounts of lipids. Economics and energy security were the motivational factors for a spurt in algae research during the 1970s, 1990s, and early 2000s. Whenever crude prices declined, research on algae stopped. The scenario today is different. Even given low and volatile crude prices ($30-$50/barrel), interest in algae continues all over the world. Algae, with their cure-all characteristics, have the potential to provide sustainable solutions to problems in the energy-food-climate nexus. However, after years of effort, there are no signs of algae-to-biofuel technology being commercialized. This article critically reviews past work; summarizes the current status of the technology; and based on the lessons learned, provides a balanced perspective on a potential path toward commercialization of algae-to-oil technology.

  1. Phytoplankton Assemblages in Selected Freshwaters of New Jersey

    Science.gov (United States)

    Caraballo, Y. A.; Wu, M. S.

    2017-12-01

    Characterizing phytoplankton assemblages in freshwaters is crucial for future management and monitoring of drinking and recreational freshwaters of New Jersey. New Jersey freshwater phytoplankton assemblages are poorly known and there is no list of freshwater phytoplankton taxa in New Jersey. This study seeks to describe phytoplankton assemblages of freshwaters in New Jersey. Results will help address public health, economic and environmental threats related to harmful algal blooms in New Jersey. A total of 49 freshwater sites, including ponds, rivers and reservoirs, were used for this study. Overall results showed 66 taxa of freshwater phytoplankton in 6 major groups and 29 different orders. Green algae had the highest number of taxa, followed by diatoms and blue-greens (cyanobacteria). The most common freshwater taxa in NJ are Synedra spp., Fragilaria spp., Selenastrum capricornutum, Scenedesmus spp., and Anabaena spp. Cyanobacteria species are present in more than half of the sites examined in this study. All ten cyanobacteria taxa present in New Jersey freshwaters are capable of producing the endotoxin lipopolysaccharides (LPS), eight can produce the hepatotoxins and six can produce neutoroxins. In addition, some taxa such as Anabaena spp. are capable of simultaneously producing endotoxins, hepatotoxins, neurotoxins and taste and odor compounds. The presence of taxa capable of producing multiple toxins infers the difficulty of management and treatment as well as increased public health effects.

  2. Production and characterization of algae extract from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Weston Kightlinger

    2014-01-01

    Conclusions: This study showed that algae extract derived from C. reinhardtii is similar, if not superior, to commercially available yeast extract in nutrient content and effects on the growth and metabolism of E. coli and S. cerevisiae. Bacto™ yeast extract is valued at USD $0.15–0.35 per gram, if algae extract was sold at similar prices, it would serve as a high-value co-product in algae-based fuel processes.

  3. Antimicrobial Activity of Extracts from Six Green Algae from Tanzania

    OpenAIRE

    Mtolera, M.S.P.; Semesi, A.

    1996-01-01

    Many algae species have been shown to have bactericidal or bacteriostatic substances (Glombitza, I979;Michaneck, 1979; Caccamese et al., 1980; Fenical & Paul, 1984; Niang& Hung, 1984). The antibacterialagents found in the algae include amino acids, terpenoids, phlorotannins, acrylic acid, phenoliccompounds, steroids, halogenated ketones and alkanes, cyclic polysulphides and fatty acids. In a large numberof marine algae antimicrobial activities are attributed to the presence of acrylic acid.

  4. Method and apparatus for iterative lysis and extraction of algae

    Science.gov (United States)

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  5. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  6. Accumulation of 210Po by benthic marine algae

    International Nuclear Information System (INIS)

    Gouvea, R.C.; Branco, M.E.C.; Santos, P.L.

    1988-01-01

    The accumulation of polonium 210 Po by various species of benthic marine seaweeds collected from 4 different points on the coast of Rio de Janeiro, showed variations by species and algal groups. The highest value found was in red alga, Plocamium brasiliensis followed by other organisms of the same group. In the group of the brown alga, the specie Sargassum stenophylum was outstanding. The Chlorophyta presented the lowest content of 210 Po. The algae collected in open sea, revealed greater concentration factors of 210 Po than the same species living in bays. The siliceous residue remaining after mineralization of the algae did not interfere with the detection of polonium. (author)

  7. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    Science.gov (United States)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  8. Importance of algae oil as a source of biodiesel

    International Nuclear Information System (INIS)

    Demirbas, Ayhan; Fatih Demirbas, M.

    2011-01-01

    Algae are the fastest-growing plants in the world. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae are very important as a biomass source. Algae will some day be competitive as a source for biofuel. Different species of algae may be better suited for different types of fuel. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Algae can be a replacement for oil based fuels, one that is more effective and has no disadvantages. Algae are among the fastest-growing plants in the world, and about 50% of their weight is oil. This lipid oil can be used to make biodiesel for cars, trucks, and airplanes. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 l per acre, per year; this is 7-31 times greater than the next best crop, palm oil. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. Most current research on oil extraction is focused on microalgae to produce biodiesel from algal oil. Algal-oil processes into biodiesel as easily as oil derived from land-based crops.

  9. Method and apparatus for lysing and processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  10. Chloroplast division checkpoint in eukaryotic algae

    Science.gov (United States)

    Sumiya, Nobuko; Fujiwara, Takayuki; Era, Atsuko; Miyagishima, Shin-ya

    2016-01-01

    Chloroplasts evolved from a cyanobacterial endosymbiont. It is believed that the synchronization of endosymbiotic and host cell division, as is commonly seen in existing algae, was a critical step in establishing the permanent organelle. Algal cells typically contain one or only a small number of chloroplasts that divide once per host cell cycle. This division is based partly on the S-phase–specific expression of nucleus-encoded proteins that constitute the chloroplast-division machinery. In this study, using the red alga Cyanidioschyzon merolae, we show that cell-cycle progression is arrested at the prophase when chloroplast division is blocked before the formation of the chloroplast-division machinery by the overexpression of Filamenting temperature-sensitive (Fts) Z2-1 (Fts72-1), but the cell cycle progresses when chloroplast division is blocked during division-site constriction by the overexpression of either FtsZ2-1 or a dominant-negative form of dynamin-related protein 5B (DRP5B). In the cells arrested in the prophase, the increase in the cyclin B level and the migration of cyclin-dependent kinase B (CDKB) were blocked. These results suggest that chloroplast division restricts host cell-cycle progression so that the cell cycle progresses to the metaphase only when chloroplast division has commenced. Thus, chloroplast division and host cell-cycle progression are synchronized by an interactive restriction that takes place between the nucleus and the chloroplast. In addition, we observed a similar pattern of cell-cycle arrest upon the blockage of chloroplast division in the glaucophyte alga Cyanophora paradoxa, raising the possibility that the chloroplast division checkpoint contributed to the establishment of the permanent organelle. PMID:27837024

  11. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  12. Snow algae and lichen algae differ in their resistance to freezing temperature: An ice nucleation study

    Czech Academy of Sciences Publication Activity Database

    Hajek, J.; Kvíderová, Jana; Worland, R.; Barták, M.; Elster, Josef; Vaczi, P.

    2009-01-01

    Roč. 48, č. 4 (2009), s. 37-38 ISSN 0031-8884. [International Phycological Congress /9./. 02.08.2009-08.08.2009, Tokyo] R&D Projects: GA AV ČR IAA600050702; GA AV ČR KJB601630808 Institutional research plan: CEZ:AV0Z60050516 Keywords : ice nucleation * algae * freezing Subject RIV: EF - Botanics

  13. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    Science.gov (United States)

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  14. Toxicity of chlorinated benzenes to marine algae

    Science.gov (United States)

    Ma, Yan-Jun; Wang, Xiu-Lin; Yu, Wei-Jun; Zhang, Li-Jun; Sun, Han-Zhang

    1997-12-01

    Growth of Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to monochlorobenzene (MCB), 1,2-dichlorobenzene (1,2-DCB), 1, 2, 3, 4-tetrachlorobenzene (1, 2, 3, 4-TeCB) and pentachlorobenzene (PeCB) was tested. Tests of 72 h- EC 50 values showed that the toxicity ranged in the order: MCBNannochloropsis oculata < Chlorella marine < Phaeodactylum tricomutum. Study of the QSAR (Quantitative Structure-Activity Relationship) between K OW and toxicity of CBs to marine algae showed good relationships between -log EC 50 and log K OW.

  15. Diterpenes from the Brown Alga Dictyota crenulata

    Directory of Open Access Journals (Sweden)

    Valéria Laneuville Teixeira

    2008-06-01

    Full Text Available The crude extract of the Brazilian brown alga Dictyota crenulata was analyzed by NMR spectroscopy and HRGC-MS techniques. Seven diterpenes were identified: pachydictyol A, dictyodial, 4β-hydroxydictyodial A, 4β-acetoxydictyodial A, isopachydictyol A, dictyol C and dictyotadiol. Xeniane diterpenes have previously been found in D. crenulata from the Pacific Ocean. The results characterize D. crenulata as a species that provides prenylated guaiane (group I and xeniane diterpenes (group III, thus making it a new source of potential antiviral products.

  16. Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli

    International Nuclear Information System (INIS)

    Chaurasia, Neha; Mishra, Yogesh; Rai, Lal Chand

    2008-01-01

    Phytochelatin synthase (PCS) is involved in the synthesis of phytochelatins (PCs), plays role in heavy metal detoxification. The present study describes for first time the functional expression and characterization of pcs gene of Anabaena sp. PCC 7120 in Escherichia coli in terms of offering protection against heat, salt, carbofuron (pesticide), cadmium, copper, and UV-B stress. The involvement of pcs gene in tolerance to above abiotic stresses was investigated by cloning of pcs gene in expression vector pGEX-5X-2 and its transformation in E. coli BL21 (DE3). The E. coli cells transformed with pGEX-5X-pcs showed better growth than control cells (pGEX-5X-2) under temperature (47 deg. C), NaCl (6% w/v), carbofuron (0.025 mg ml -1 ), CdCl 2 (4 mM), CuCl 2 (1 mM), and UV-B (10 min) exposure. The enhanced expression of pcs gene revealed by RT-PCR analysis under above stresses at different time intervals further advocates its role in tolerance against above abiotic stresses

  17. Preparation of Calibration Standards of N1-H Paralytic Shellfish Toxin Analogues by Large-Scale Culture of Cyanobacterium Anabaena circinalis (TA04

    Directory of Open Access Journals (Sweden)

    Toshiyuki Suzuki

    2011-03-01

    Full Text Available Mouse bioassay is the official testing method to quantify paralytic shellfish toxins (PSTs in bivalves. A number of alternative analytical methods have been reported. Some methods have been evaluated by a single laboratory validation. Among the different types of methods, chemical analyses are capable of identifying and quantifying the toxins, however a shortage of the necessary calibration standards hampers implementation of the chemical analyses in routine monitoring of PSTs in bivalves. In our present study, we studied preparation of major PST analogues as calibrants by large-scale cultivation of toxic freshwater cyanobacteria Anabaena circinalis TA04. The cells were steadily grown in 10 L bottle for 28 days. The primary N1-H toxins, C1/C2, were produced at a concentration of 1.3 ± 0.1 µmol/L. The intracellular and extracellular toxins occupied 80% and 20%, respectively. Over 220 µmol of the toxins was obtained from approximately 200 L of the culture over six months, demonstrating that it is sufficient to prepare saxitoxin analogues. The toxins were chemically converted to six N1-H analogues. Preparation of the analogues was carried out at relatively high yields (50–90%. The results indicate that our preparation method is useful to produce N1-H toxins. In our present study, detailed conditions for preparation of one of the rare N1-H analogues, gonyautoxin-5, were investigated.

  18. Treatment with moderate concentrations of NaHSO{sub 3} enhances photobiological H{sub 2} production in the cyanobacterium Anabaena sp. strain PCC 7120

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lianjun; Chen, Ming; Wei, Lanzhen; Gao, Fudan; Lv, Zhongxian; Wang, Quanxi; Ma, Weimin [College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234 (China)

    2010-12-15

    In cyanobacteria, treatment with low concentrations of NaHSO{sub 3} can enhance photosynthetic efficiency, whereas NaHSO{sub 3} in high amounts often inhibits cell growth and photosynthesis may even cause death. In the present study, our results showed that treatment with moderate concentrations of NaHSO{sub 3} considerably improved the yield of photobiological H{sub 2} production in the filamentous N{sub 2}-fixing cyanobacterium Anabaena sp. strain PCC 7120. Under steady state conditions, the accumulated H{sub 2} levels in cells treated with 1 mM NaHSO{sub 3} were approximately 10 times higher than that in untreated cells. Such improvement occurred in heterocysts and was most likely caused by increases in the expression and activity of nitrogenase. The effects of treatment with low, moderate, and high concentrations of NaHSO{sub 3} in cyanobacteria were proposed on the basis of the results obtained in the present study and from previous knowledge. (author)

  19. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  20. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.

    2009-08-15

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  1. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  2. Monetary value of the impacts of filamentous green algae on ...

    African Journals Online (AJOL)

    This paper presents estimates of the monetary value of the impact of eutrophication (algae) on commercial agriculture in two different catchments in South Africa. A production function approach is applied to estimate the monetary value of the impact of filamentous green algae on commercial agriculture in the Dwars River, ...

  3. Dissolved Air Flotation Process for Algae Removal | Mulaku ...

    African Journals Online (AJOL)

    This study investigated the performance of the Dissolved Air Flotation (DAF) process as an alternative to sedimentation for algae removal in surface water treatment in Kenya. Batch DAF experiments were carried out in the laboratory using algae laden surface water samples collected from the river and laboratory cultured ...

  4. Persistence and proliferation of some unicellular algae in drinking ...

    African Journals Online (AJOL)

    Drinking water systems have a complex structure and are characterised by the absence of light, the presence of disinfectants and by low levels of nutrients. Several kinds of bacteria, protozoa, algae and fungi can be found in tap water. Little is known about the ecology of algae in drinking water systems, although their ...

  5. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  6. Study on the effect of irradiation on algae by proteomics

    International Nuclear Information System (INIS)

    Choi, Jong Il; Yoon, Yo Han; Kim, Jae Hun

    2010-06-01

    Algae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the algae is just beginning and the study on protein expression and growth by the change of condition was not reported. In this study, the effect of radiation on the protein expression was investigated for the protection mechanisms and new genome source and furthermore, isolation of new mutant strains. To monitor the growth of algae, absorbance and FDA staining methods were developed and the content of lipid of algae species were measured. With these methods, the radiation sensitivity of algae species was determined. To investigate the proteome of algae, 2D-electrophoresis methods was applied. From the comparison of proteomes, the radiation specific expressed protein was identified as thioredoxin-h and its nucleotide sequences was defined. The expression of thioredoxin-h was further defined on the mRNA level. Also, the extract of algae species was analyzed for its antioxidant activity and polyphenolic content. The changes in antioxidant activity of extract by radiation was investigated. From the radiation experiments, mutant Spirogyra species having higher resistant against radical stress was obtained. The mutant strain has higher antioxidant activity. This results can provide the proteome date and mutation technology of algae and further contribute in the activation of fishery industry and national health enhancement

  7. EnAlgae Decision Support Toolset: model validation

    NARCIS (Netherlands)

    Kenny, Philip; Visser, de Chris; Skarka, Johannes; Sternberg, Kirstin; Schipperus, Roelof; Silkina, Alla; Ginnever, Naomi

    2015-01-01

    One of the drivers behind the EnAlgae project is recognising and addressing the need for increased availability of information about developments in applications of algae biotechnology for energy, particularly in the NW Europe area, where activity has been less intense than in other areas of the

  8. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions. ... African Journal of Biotechnology ... This study shows the benefit of using activated carbon from marine red algae as a low cost sorbent for the removal of copper from aqueous solution wastewater.

  9. Potential of wastewater grown algae for biodiesel production and CO

    African Journals Online (AJOL)

    Potential of wastewater grown algae for biodiesel production and CO 2 sequestration. ... African Journal of Biotechnology ... Mixed algae sample showed the highest CO2 fixation rate, followed by Chlorella sp., Scenedesmus incrassatulus, Scenedesmus dimorphus and Chroococcus cohaerens (2.807, 1.627, 1.501, 1.270 ...

  10. Rare species of fungi parasiting on algae. III.

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995 parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  11. Rare species of fungi parasiting on algae. III.

    OpenAIRE

    Joanna Z. Kadłubowska

    2014-01-01

    The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995) parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  12. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  13. Investigation about Role of Algae in Kazeroon Sasan Spring Odor

    Directory of Open Access Journals (Sweden)

    A Hamzeian

    2016-05-01

    Full Text Available Introduction: As odor for potable water is unpleasant for costumers, it needs to do researches for finding the reasons of odorous water. Sasan spring that is located in, near kazeroon city, Fars, Iran, is potable water resource for Kazeroon and Booshehr city and many other villages. Water in Sasan spring has the odor problem. With regards to important   role of algae on ado r problems in this study the role of algae on   odor was investigated. Methods: After regular sampling, the TON (threshold odor number was indicated and algae species was distinguished and the number of total algae and any species  of algae was numbers by microscopic direct numbering method .as the algae mass  is related to nitrogen and phosphor concentration, results of concentration Of nitrogen and phosphor in this spring that was examined regularity by water company was investigated and compared to concentration of these component that are need for algae growing.   Results: results shows that TON was in range  of 4.477 to 6.2 that indicated  oderous limit . Regression and diagram between TON and number of total algae showed the linear relationship. The concentration of nitrogen and phosphor, showed adequate condition for algal grow. Result of determination of algae species showed high population of Oscilatoria and Microcystis species, which are known as essential case of mold odor in water resources. Investigation on geological maps in the region around the Sasan spring, show alluvium source and is effected by surface part of it’s around land. Conclusion: because of the algae was determined as the essential cause of odor   in the spring, and algal growth is related to nutrients, and because of the surface pollution can penetrate in the alluvium lands around the spring, and effect the water in spring, so nutrient control and management is the essential way for odor control in the spring.

  14. The food and feeding habit of Oreochromis niloticus L. (Pisces ...

    African Journals Online (AJOL)

    O. niloticus was found to be essentially phytoplanktivores in Lake Chamo, and the composition of the phytoplankton diet varied seasonally. The diet of both adult and juvenile fish consisted of 10 genera of blue greens whereas green algae and diatoms each contributed 8 genera. Blue greens as a group contributed the bulk ...

  15. Oscillatoria simplicissima : an autecological study | Venter | Water SA

    African Journals Online (AJOL)

    Although this blue-green alga is presumably non-toxic, a study over a seven-year period shows that it is one of the most important bloom-forming blue-green algal species in the Vaal River, interfering with recreational activities as well as water purification. During this study, environmental variables influencing the ...

  16. Antileishmanial properties of tropical marine algae extracts.

    Science.gov (United States)

    Freile-Pelegrin, Y; Robledo, D; Chan-Bacab, M J; Ortega-Morales, B O

    2008-07-01

    Aqueous and organic extracts of twenty-seven species of marine algae (14 species of Rhodophyta, 5 species of Phaeophyta and 8 species of Chlorophyta) collected from the Gulf of Mexico and Caribbean coast of the Yucatan Peninsula (Mexico) were evaluated for their antileishmanial in vitro activity against Leishmania mexicana promastigote forms. The cytotoxicity of these extracts was also assessed using brine shrimp. Organic extracts from Laurencia microcladia (Rhodophyta), Dictyota caribaea, Turbinaria turbinata and Lobophora variegata (Phaeophyta) possessed promising in vitro activity against L. mexicana promastigotes (LC(50) values ranging from 10.9 to 49.9 microg/ml). No toxicity of algal extracts against Artemia salina was observed with LC50 ranging from 119 to >or=1000 microg/ml. Further studies on bio-guided fractionation, isolation and characterization of pure compounds from these species as well as in vivo experiments are needed and are already in progress.

  17. An algae-covered alligator rests warily

    Science.gov (United States)

    2000-01-01

    An algae-covered alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  18. Harmful impact of filamentous algae (Spirogyra sp. on juvenile crayfish

    Directory of Open Access Journals (Sweden)

    Ulikowski Dariusz

    2015-12-01

    Full Text Available The aim of this study was to determine the impact of filamentous algae on the growth and survival of juvenile narrow-clawed crayfish, Astacus leptodactylus (Esch., in rearing basins. Three stocking variants were used: A - basins with a layer of filamentous algae without imitation mineral substrate; B - basins with a layer of filamentous algae with imitation mineral substrate; C - basins without filamentous algae but with mineral substrate. The crayfish were reared from June 12 to October 10 under natural thermal conditions and fed a commercial feed. The results indicated that the presence of the filamentous algae did not have a statistically significant impact on the growth of the juvenile crayfish (P > 0.05. The presence of the filamentous algae had a strong negative impact on juvenile crayfish survival and stock biomass (P < 0.05. The layer of gravel and small stones that imitated the mineral substrate of natural aquatic basins somewhat neutralized the disadvantageous impact the filamentous algae had on the crayfish.

  19. A screening method for cardiovascular active compounds in marine algae.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Photophysiology and cellular composition of sea ice algae

    International Nuclear Information System (INIS)

    Lizotte, M.P.

    1989-01-01

    The productivity of sea ice algae depends on their physiological capabilities and the environmental conditions within various microhabitats. Pack ice is the dominant form of sea ice, but the photosynthetic activity of associated algae has rarely been studied. Biomass and photosynthetic rates of ice algae of the Weddell-Scotia Sea were investigated during autumn and winter, the period when ice cover grows from its minimum to maximum. Biomass-specific photosynthetic rates typically ranged from 0.3 to 3.0 μg C · μg chl -1 · h -1 higher than land-fast ice algae but similar to Antarctic phytoplankton. Primary production in the pack ice during winter may be minor compared to annual phytoplankton production, but could represent a vital seasonal contribution to the Antarctic ecosystem. Nutrient supply may limit the productivity of ice algae. In McMurdo Sound, congelation ice algae appeared to be more nutrient deficient than underlying platelet ice algae based on: lower nitrogen:carbon, chlorophyll:carbon, and protein:carbohydrate; and 14 C-photosynthate distribution to proteins and phospholipids was lower, while distribution to polysaccharides and neutral lipids was higher. Depletion of nitrate led to decreased nitrogen:carbon, chlorophyll:carbon, protein:carbohydrate, and 14 C-photosynthate to proteins. Studied were conducted during the spring bloom; therefore, nutrient limitation may only apply to dense ice algal communities. Growth limiting conditions may be alleviated when algae are released into seawater during the seasonal recession of the ice cover. To continue growth, algae must adapt to the variable light field encountered in a mixed water column. Photoadaptation was studied in surface ice communities and in bottom ice communities

  1. Biogeographically interesting planktonic Nostocales (Cyanobacteria) in the Czech Republic and their polyphasic evaluation resulting in taxonomic revisions of Anabaena bergii Ostenfeld 1908 (Chrysosporum gen. nov.) and A. tenericaulis Nygaard 1949 (Dolichospermum tenericaule comb. nova)

    Czech Academy of Sciences Publication Activity Database

    Zapomělová, Eliška; Skácelová, O.; Pumann, P.; Kopp, R.; Janeček, E.

    2012-01-01

    Roč. 698, č. 1 (2012), s. 353-365 ISSN 0018-8158. [Workshop of the International Association of Phytoplankton Taxonomy and Ecology. Trento, 21.08.2011-28.08.2011] R&D Projects: GA ČR(CZ) GAP504/10/1501; GA ČR(CZ) GA206/09/0309 Institutional research plan: CEZ:AV0Z60170517 Keywords : Anabaena * Dolichospermum * Sphaerospermopsis * taxonomy * identification * morphological variability * 16S rRNA gene * biogeography * alien species * cyanobacteria Subject RIV: EE - Microbiology, Virology Impact factor: 1.985, year: 2012

  2. Characterization of nifB, nifS, and nifU genes in the cyanobacterium Anabaena variabilis: NifB is required for the vanadium-dependent nitrogenase.

    OpenAIRE

    Lyons, E M; Thiel, T

    1995-01-01

    Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium containing both a Mo-dependent nitrogenase encoded by the nif genes and V-dependent nitrogenase encoded by the vnf genes. The nifB, nifS, and nifU genes of A. variabilis were cloned, mapped, and partially sequenced. The fdxN gene was between nifB and nifS. Growth and acetylene reduction assays using wild-type and mutant strains indicated that the nifB product (NifB) was required for nitrogen fixation not only by...

  3. Uptake of technetium by marine algae: autoradiographic localization

    Energy Technology Data Exchange (ETDEWEB)

    Bonotto, S.; Nuyts, G.; Robbrecht, V.; Cogneau, M.; Ben, D. van der

    1988-02-01

    The uptake of technetium (sup(95m)Tc) by marine algae was localized by autoradiography. In the brown (Ascophyllum nodosum, Fucus spiralis and F. vesiculosus) as well as in the red (Porphyra umbilicalis) species, the distribution of technetium was heterogeneous, this radioelement being mostly accumulated in the parts of the plant which bear reproductive cells or which contain young tissues. Since brown algae have high concentration factors, they could constitute an important link in the transfer of technetium through the food chain. On the contrary, the edible alga Porphyra umbilicalis shows a very low incorporation of technetium.

  4. Photobiological hydrogen production with switchable photosystem-II designer algae

    Science.gov (United States)

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  5. Detection of green algae (Chlorophyceae) for the diagnosis of drowning.

    Science.gov (United States)

    Yoshimura, S; Yoshida, M; Okii, Y; Tokiyasu, T; Watabiki, T; Akane, A

    1995-01-01

    The plankton test (generally, diatom test) is one of the methods available to diagnose the cause of death of submerged bodies. The solubilization method using tissue solubilizer Soluene-350 was used in this study to detect not only diatoms but also green algae, based on the fact that the solubilizer does not digest the cell walls of green algae which are made from cellulose. Detection of green algae from organs of submerged cadavers is very informative to determine drowning in fresh water, and also in cases where only few diatoms are detected in the organs.

  6. Relationships between the ABC-exporter HetC and peptides that regulate the spatiotemporal pattern of heterocyst distribution in Anabaena.

    Directory of Open Access Journals (Sweden)

    Laura Corrales-Guerrero

    Full Text Available In the model cyanobacterium Anabaena sp. PCC 7120, cells called heterocysts that are specialized in the fixation of atmospheric nitrogen differentiate from vegetative cells of the filament in the absence of combined nitrogen. Heterocysts follow a specific distribution pattern along the filament, and a number of regulators have been identified that influence the heterocyst pattern. PatS and HetN, expressed in the differentiating cells, inhibit the differentiation of neighboring cells. At least PatS appears to be processed and transferred from cell to cell. HetC is similar to ABC exporters and is required for differentiation. We present an epistasis analysis of these regulatory genes and of genes, hetP and asr2819, successively downstream from hetC, and we have studied the localization of HetC and HetP by use of GFP fusions. Inactivation of patS, but not of hetN, allowed differentiation to proceed in a hetC background, whereas inactivation of hetC in patS or patS hetN backgrounds decreased the frequency of contiguous proheterocysts. A HetC-GFP protein is localized to the heterocysts and especially near their cell poles, and a putative HetC peptidase domain was required for heterocyst differentiation but not for HetC-GFP localization. hetP is also required for heterocyst differentiation. A HetP-GFP protein localized mostly near the heterocyst poles. ORF asr2819, which we denote patC, encodes an 84-residue peptide and is induced upon nitrogen step-down. Inactivation of patC led to a late spreading of the heterocyst pattern. Whereas HetC and HetP appear to have linked functions that allow heterocyst differentiation to progress, PatC may have a role in selecting sites of differentiation, suggesting that these closely positioned genes may be functionally related.

  7. DNA barcoding of a new record of epi-endophytic green algae ...

    Indian Academy of Sciences (India)

    Epi-endophytic green algae comprise one of the most diverse and phylogenetically primitive groups of green algae and are considered to be ubiquitous in the world's oceans; however, no reports of these algae exist from India. Here we report the serendipitous discovery of Ulvella growing on intertidal green algae ...

  8. Sterol composition of the Adriatic Sea algae Ulva lactuca, Codium dichotomum, Cystoseira adriatica and Fucus virsoides

    Directory of Open Access Journals (Sweden)

    RADOMIR KAPETANOVIC

    2005-12-01

    Full Text Available The sterol composition of two green algae and two brown algae from the South Adriatic was determined. In the green alga Ulva lactuca, the principal sterols were cholesterol and isofucosterol. In the brown alga Cystoseira adriatica, the main sterols were cholesterol and stigmast-5-en-3ß-ol, while the characteristic sterol of the brown algae, fucosterol, was found only in low concentration. The sterol fractions of the green alga Codium dichotomum and the brown alga Fucus virsoides contained practically only one sterol each, comprising more than 90 % of the total sterols (clerosterol in the former and fucosterol in the latter.

  9. Bicarbonate produced from carbon capture for algae culture.

    Science.gov (United States)

    Chi, Zhanyou; O'Fallon, James V; Chen, Shulin

    2011-11-01

    Using captured CO(2) to grow microalgae is limited by the high cost of CO(2) capture and transportation, as well as significant CO(2) loss during algae culture. Moreover, algae grow poorly at night, but CO(2) cannot be temporarily stored until sunrise. To address these challenges, we discuss a process where CO(2) is captured as bicarbonate and used as feedstock for algae culture, and the carbonate regenerated by the culture process is used as an absorbent to capture more CO(2). This process would significantly reduce carbon capture costs because it does not require additional energy for carbonate regeneration. Furthermore, not only would transport of the aqueous bicarbonate solution cost less than for that of compressed CO(2), but using bicarbonate would also provide a superior alternative for CO(2) delivery to an algae culture system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice

    DEFF Research Database (Denmark)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.

    2018-01-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light......, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties...... for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with approximate to 1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (...

  11. Kalaärimeeste kohus algas venitamisega / Hindrek Riikoja

    Index Scriptorium Estoniae

    Riikoja, Hindrek

    2007-01-01

    Harju maakohtus algas kohtuprotsess veterinaar- ja toiduameti endise asejuhi Vladimir Razumovski väidetava altkäemaksuvõtmise üle, kus on süüdistavaid eraisikuid ja ettevõtjaid. Lisa: Kes on kohtu all?

  12. Ectocarpus: a model organism for the brown algae.

    Science.gov (United States)

    Coelho, Susana M; Scornet, Delphine; Rousvoal, Sylvie; Peters, Nick T; Dartevelle, Laurence; Peters, Akira F; Cock, J Mark

    2012-02-01

    The brown algae are an interesting group of organisms from several points of view. They are the dominant organisms in many coastal ecosystems, where they often form large, underwater forests. They also have an unusual evolutionary history, being members of the stramenopiles, which are very distantly related to well-studied animal and green plant models. As a consequence of this history, brown algae have evolved many novel features, for example in terms of their cell biology and metabolic pathways. They are also one of only a small number of eukaryotic groups to have independently evolved complex multicellularity. Despite these interesting features, the brown algae have remained a relatively poorly studied group. This situation has started to change over the last few years, however, with the emergence of the filamentous brown alga Ectocarpus as a model system that is amenable to the genomic and genetic approaches that have proved to be so powerful in more classical model organisms such as Drosophila and Arabidopsis.

  13. Potential pharmacological applications of polyphenolic derivatives from marine brown algae.

    Science.gov (United States)

    Thomas, Noel Vinay; Kim, Se-Kwon

    2011-11-01

    Recently, the isolation and characterization of the biologically active components from seaweeds have gained much attention from various research groups across the world. The marine algae have been studied for biologically active components and phlorotannins are one among them. Among marine algae, brown algal species such as Ecklonia cava, Eisenia arborea, Ecklonia stolinifera and Eisenia bicyclis have been studied for their potential biological activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their potentiality as antioxidant, anti-inflammatory, antidiabetic, antitumor, antihypertensive, anti-allergic, hyaluronidase enzyme inhibition and in matrix metalloproteinases (MMPs) inhibition activity. In this review, we have made an attempt to discuss the potential biological activities of phlorotannins from marine brown algae and their possible candidature in the pharmaceutical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Exploring the potential of using algae in cosmetics.

    Science.gov (United States)

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Chemical examination of the Red alga Acanthophora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; Kamat, S.Y.

    Analyses of petroleum ether and chloroform extracts of the marine alga Acanthophora spicifera exhibiting antifertility activity led to the isolation of sterols and fatty acids as well as the rare dipeptides aurantiamides. All the compounds were...

  16. Chemical examination of the brown alga Stoechospermum marginatum (C. Agardh)

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    The crude methalonic extract of marine algae Stoechospermum marginatum from west coast of India was found to have spasmolytic activity. Search for the pharmacologically active compounds led to the isolation of steroids, fatty acids and an ester...

  17. The role of algae in agriculture: a mathematical study.

    Science.gov (United States)

    Tiwari, P K; Misra, A K; Venturino, Ezio

    2017-06-01

    Synthetic fertilizers and livestock manure are nowadays widely used in agriculture to improve crop yield but nitrogen and phosphorous runoff resulting from their use compromises water quality and contributes to eutrophication phenomena in waterbeds within the countryside and ultimately in the ocean. Alternatively, algae could play an important role in agriculture where they can be used as biofertilizers and soil stabilizers. To examine the possible reuse of the detritus generated by dead algae as fertilizer for crops, we develop three mathematical models building upon each other. A system is proposed in which algae recover waste nutrients (nitrogen and phosphorus) for reuse in agricultural production. The results of our study show that in so doing, the crop yield may be increased and simultaneously the density of algae in the lake may be reduced. This could be a way to mitigate and possibly solve the environmental and economic issues nowadays facing agriculture.

  18. Modelization of tritium transfer into the organic compartments of algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Arapis, G.; Kirchmann, R.

    1982-01-01

    Uptake of tritium oxide and its conversion into organic tritium was studied in four different types of algae with widely varying size and growth characteristics (Acetabularia acetabulum, Boergesenia forbesii, two strains of Chlamydomonas and Dunaliella bioculata). Water in the cell and the vacuales equilibrates rapidly with external tritium water. Tritium is actively incorporated into organically bound form as the organisms grow. During the stationary phase, incorporation of tritium is slow. There exists a discrimination against the incorporation of tritium into organically bound form. A model has been elaborated taking in account these different factors. It appears that transfer of organic tritium by algae growing near the sites of release would be significant only for actively growing algae. Algae growing slowly may, however, be useful as cumulative indicators of discontinuous tritium release. (author)

  19. Scenario analysis of large scale algae production in tubular photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Beveren, van P.J.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2013-01-01

    Microalgae productivity in tubular photobioreactors depends on algae species, location, tube diameter, biomass concentration, distance between tubes and for vertically stacked systems, the number of horizontal tubes per stack. A simulation model for horizontal and vertically stacked horizontal

  20. Lab on a chip technologies for algae detection: a review.

    Science.gov (United States)

    Schaap, Allison; Rohrlack, Thomas; Bellouard, Yves

    2012-08-01

    Over the last few decades, lab on a chip technologies have emerged as powerful tools for high-accuracy diagnosis with minute quantities of liquid and as tools for exploring cell properties in general. In this paper, we present a review of the current status of this technology in the context of algae detection and monitoring. We start with an overview of the detection methods currently used for algae monitoring, followed by a review of lab on a chip devices for algae detection and classification, and then discuss a case study based on our own research activities. We conclude with a discussion on future challenges and motivations for algae-oriented lab on a chip technologies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Diversity and ecology of filamentous green conjugate algae

    OpenAIRE

    Strouhalová, Pavla

    2016-01-01

    Filamentous conjugating algae have a cosmopolitan distribution. They often inhabit fragile freshwater habitats such as temporary hydrated ditches or puddles of melting snow. Occurrence in this environment entails having to deal with extreme conditions. That helps them to variously adaptation and also the formation of resistant stages. Algae belonging to this group have an important role in nature, because they are often the first species that inhabit newly created habitats and consequently al...

  2. Cytotoxicity of Algae Extracts on Normal and Malignant Cells

    OpenAIRE

    Bechelli, Jeremy; Coppage, Myra; Rosell, Karen; Liesveld, Jane

    2011-01-01

    Algae preparations are commonly used in alternative medicine. We examined the effects of algae extracts on normal hematopoietic cells and leukemia cells. Ethanol extracts were prepared of Dunaliella salina (Dun), Astaxanthin (Ast), Spirulina platensis (Spir), and Aphanizomenon flos-aquae (AFA). Cell viability effects were completed by Annexin staining. Ast and AFA inhibited HL-60 and MV-4-11 whereas Dun and Spir had no effect. Primary AML blasts demonstrated increased apoptosis in AFA. ...

  3. Algae Reefs in Shark Bay, Western Australia, Australia

    Science.gov (United States)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  4. Thermal algae in certain radioactive springs in Japan, (3)

    International Nuclear Information System (INIS)

    Mifune, Masaaki; Hirose, Hiroyuki.

    1982-01-01

    Shikano Hot Springs are located at five km to the south of Hamamura Station on the Sanin Line in Tottori Prefecture. The water temperature and the pH of the springs are 40.2 - 61.2 0 C, and 7.5 - 7.8, respectively. They belong to simple thermals. Hamamura Hot Springs are located in the neighbourhood of Hamamura Station. The highest radon content of the hot springs is 175.1 x 10 -10 Ci/l, and the great part of the springs belong to radioactive ones. From the viewpoint of the major ionic constituents, they are also classified under weak salt springs, sulfated salt springs, and simple thermals. Regarding the habitates of the algal flora, the water temperature and the pH of the springs are 28.0 - 68.0 0 C, and 6.8 - 7.4, respectively. The thermal algae found by Ikoma and Doi at Hamamura Hot Springs were two species of Cyanophyceae. By the authors, nine species and one variety of Cyanophyceae including Ikoma and Doi's two species were newly found at Shikano and Hamamura Hot Springs. Chlorophyceous alga was not found. The dominant thermal algae of these hot springs were Mastigocladus laminosus, and the other algae which mainly consist of Oscillatoriaceous algae. From these points, it seems that the thermal algae of Shikano and Hamamura Hot Springs belong to the normal type of thermal algae, and they are different from the thermal algae of Ikeda Mineral Springs and Masutomi Hot Springs which belong to strongly radioactive springs. (author)

  5. Using the marine unicellular algae in biological monitoring

    OpenAIRE

    Kapkov V. I.; Shoshina E. V.; Belenikina O. A.

    2017-01-01

    The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb) in the form of chloride salts on the growth...

  6. Biodiesel Production From Algae to Overcome the Energy Crisis

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2017-10-01

    Full Text Available The use of energy sources has reached at the level that whole world is relying on it. Being the major source of energy, fuels are considered the most important. The fear of diminishing the available sources thirst towards biofuel production has increased during last decades. Considering the food problems, algae gain the most attention to be used as biofuel producers. The use of crop and food-producing plants will never be a best fit into the priorities for biofuel production as they will disturb the food needs. Different types of algae having the different production abilities. Normally algae have 20%–80% oil contents that could be converted into different types of fuels such as kerosene oil and biodiesel. The diesel production from algae is economical and easy. Different species such as tribonema, ulothrix and euglena have good potential for biodiesel production. Gene technology can be used to enhance the production of oil and biodiesel contents and stability of algae. By increasing the genetic expressions, we can find the ways to achieve the required biofuel amounts easily and continuously to overcome the fuels deficiency. The present review article focusses on the role of algae as a possible substitute for fossil fuel as an ideal biofuel reactant.

  7. Algae as a Biofuel: Renewable Source for Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Vijay Kant Pandey

    2016-09-01

    Full Text Available Biofuels produced by algae may provide a feasible alternative to fossil fuels like petroleum sourced fuels. However, looking to limited fossil fuel associated with problems, intensive efforts have been given to search for alternative biofuels like biodiesel. Algae are ubiquitous on earth, have potential to produce biofuel. However, technology of biofuel from algae facing a number of hurdles before it can compete in the fuel market and be broadly organized. Different challenges include strain identification and improvement of algal biomass, both in terms of biofuel productivity and the production of other products to improve the economics of the entire system. Algal biofuels could be made more cost effective by extracting other valuable products from algae and algal strains. Algal oil can be prepared by culture of algae on municipal and industrial wastewaters. Photobioreactors methods provide a controlled environment that can be tailored to the specific demands of high production of algae to attain a consistently good yield of biofuel. The algal biomass has been reported to yield high oil contents and have good amount of the biodiesel production capacity. In this article, it has been attempted to review to elucidate the approaches for making algal biodiesel economically competitive with respect to petrodiesel. Consequently, R & D work has been carried out for the growth, harvesting, oil extraction and conversion to biodiesel from algal sources.

  8. Radionuclides and trace metals in eastern Mediterranean Sea algae

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M.S. E-mail: msmasri@aec.org.sy; Mamish, S.; Budier, Y

    2003-07-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that {sup 137}Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg{sup -1} dry weight) while the levels of naturally occurring radionuclides, such as {sup 210}Po and {sup 210}Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg{sup -1} dry weight) for {sup 210}Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate {sup 210}Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br.

  9. Development of Green Fuels From Algae - The University of Tulsa

    Energy Technology Data Exchange (ETDEWEB)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  10. Micro-algae: French players discuss the matter

    International Nuclear Information System (INIS)

    Bouveret, T.

    2013-01-01

    About 75000 species of algae have been reported so far, the domains of application are huge and investment are increasing all around the world. One of the difficulties is to find the most appropriate algae to a specific application. Some development programs have failed scientifically or economically for instance the production of protein for animal food from the chlorella algae or the production of bio-fuel from C14-C18 chains, from zeaxanthine and from phycoerytrine. On the other side some research programs have led to promising industrial applications such as the production of food for fish and farm animals. Some research fields are completely innovative such as the use of micro-algae for the construction of bio-walls for buildings. Micro-algae are diverse and fragile. Photo-bioreactors have been designed to breed fragile algae like some types of chlorophycees used in bio-fuel and in cosmetics, a prototype has been tested for 15 months and its production is about 2 kg of dry matter a day. (A.C.)

  11. Biofuels and algae; Biocarburants, la promesse des algues

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-07-15

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  12. Radionuclides and trace metals in eastern Mediterranean Sea algae

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Mamish, S.; Budier, Y.

    2003-01-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that 137 Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg -1 dry weight) while the levels of naturally occurring radionuclides, such as 210 Po and 210 Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg -1 dry weight) for 210 Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate 210 Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br

  13. Photoprotection strategies of the alga Nannochloropsis gaditana.

    Science.gov (United States)

    Chukhutsina, Volha U; Fristedt, Rikard; Morosinotto, Tomas; Croce, Roberta

    2017-07-01

    Nannochloropsis spp. are algae with high potential for biotechnological applications due to their capacity to accumulate lipids. However, little is known about their photosynthetic apparatus and acclimation/photoprotective strategies. In this work, we studied the mechanisms of non-photochemical quenching (NPQ), the fast response to high light stress, in Nannochloropsis gaditana by "locking" the cells in six different states during quenching activation and relaxation. Combining biochemical analysis with time-resolved fluorescence spectroscopy, we correlated each NPQ state with the presence of two well-known NPQ components: de-epoxidized xanthophylls and stress-related antenna proteins (LHCXs). We demonstrated that after exposure to strong light, the rapid quenching that takes place in the antennas of both photosystems was associated with the presence of LHCXs. At later stages, quenching occurs mainly in the antennas of PSII and correlates with the amount of de-epoxidised xanthophylls. We also observed changes in the distribution of excitation energy between photosystems, which suggests redistribution of excitation between photosystems as part of the photo-protective strategy. A multistep model for NPQ induction and relaxation in N. gaditana is discussed. Copyright © 2017. Published by Elsevier B.V.

  14. Coccolithophorid algae culture in closed photobioreactors.

    Science.gov (United States)

    Moheimani, Navid R; Isdepsky, Andreas; Lisec, Jan; Raes, Eric; Borowitzka, Michael A

    2011-09-01

    The feasibility of growth, calcium carbonate and lipid production of the coccolithophorid algae (Prymnesiophyceae), Pleurochrysis carterae, Emiliania huxleyi, and Gephyrocapsa oceanica, was investigated in plate, carboy, airlift, and tubular photobioreactors. The plate photobioreactor was the most promising closed cultivation system. All species could be grown in the carboy photobioreactor. However, P. carterae was the only species which grew in an airlift photobioreactor. Despite several attempts to grow these coccolithophorid species in the tubular photobioreactor (Biocoil), including modification of the airlift and sparger design, no net growth could be achieved. The shear produced by turbulence and bubble effects are the most likely reasons for this failure to grow in the Biocoil. The highest total dry weight, lipid and calcium carbonate productivities achieved by P. carterae in the plate photobioreactors were 0.54, 0.12, and 0.06 g L(-1) day(-1) respectively. Irrespective of the type of photobioreactor, the productivities were P. carterae > E. huxleyi > G. oceanica. Pleurochrysis carterae lipid (20-25% of dry weight) and calcium carbonate (11-12% of dry weight) contents were also the highest of all species tested. Copyright © 2011 Wiley Periodicals, Inc.

  15. Is the Future Really in Algae?

    Science.gov (United States)

    Trent, Jonathan

    2011-01-01

    Having just emerged from the warmest decade on record and watching as the oceans acidify, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we "cultivate" enerm without competing with agriculture for land, freshwater, or fertilizer? Can we develop an "ecology of technology" that optimizes our use of limited resources? Is human activity compatible with improved conditions in the world's oceans? Will our ingenuity prevail in time to make a difference for our children and the children of all species? With support from NASA ARMD and the California Energy Commission, a group of dedicated scientists and engineers are working on a project called OMEGA (Offshore Membrane Enclosures for Growing Algae), to provide practical answers to these critical questions and to leave a legacy of hope for the oceans and for the future.

  16. Detection of Cyanotoxins in Algae Dietary Supplements

    Directory of Open Access Journals (Sweden)

    Audrey Roy-Lachapelle

    2017-02-01

    Full Text Available Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF, anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae. Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD and ultra-high performance liquid chromatography (UHPLC both coupled to high resolution mass spectrometry (HRMS enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer’s awareness on the potential risks associated with the consumption of these supplements.

  17. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers.

    Science.gov (United States)

    Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew

    2016-07-01

    The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. SOIL ALGAE OF BLADE OF COIL IN DONETSK REGION

    Directory of Open Access Journals (Sweden)

    Maltseva I.A.

    2011-12-01

    Full Text Available On territory of Donbass for more than 200 years the underground coal mining has produced, accompanied by the formation of the mine dumps. Finding ways to reduce their negative impact on the environment should be based on their comprehensive study. The soil algae are active participants in the syngenetic processes in industrial dumps of different origin. The purpose of this paper is to identify the species composition and dominant algae groups in dump mine SH/U5 “Western” in the western part of Donetsk.The test blade is covered with vegetation to the middle from all sides, and on the north side of 20-25 m to the top. The vegetation cover of the lower and middle tiers of all the exposures range in 70-80%. Projective vegetation cover of upper tiers of the northern, north-eastern and north-western exposures are in the range of 20-40%, other – 5-10%. We revealed some 38 algae species as a result of our research in southern, northern, western, and eastern slopes of the blade “Western”. The highest species diversity has Chlorophyta - 14 species (36.8% of the total number of species, then Cyanophyta - 9 (23,7%, Bacillariophyta - 7 (18,4%, Xantophyta - 5 (13.2%, and Eustigmatophyta - 3 (7.9%. The dominants are represented by Hantzschia amphyoxys (Ehrenberg Grunow in Cleve et Grunow, Bracteacoccus aerius, Klebsormidium flaccidum (Kützing Silva et al., Phormidium autumnale, Pinnularia borealis Ehrenberg, Planothidium lanceolatum (Brebisson in Kützing Bukhtiyarova, Xanthonema exile (Klebs Silva.It should be noted that the species composition of algae groups in different slopes of the blade was significantly different. Jacquard coefficient was calculated for algae communities varied in the range of 15,4-39,1%. The smallest number of algae species was observed on the southern slope of the blade (14 species, maximum was registered in the areas of north and west slopes. Differences in the species composition of algae were also observed in three

  19. Two-Step Evolution of Endosymbiosis between Hydra and Algae

    KAUST Repository

    Ishikawa, Masakazu

    2016-07-09

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians.

  20. [Toxicity of Coptis chinensis Rhizome Extracts to Green Algae].

    Science.gov (United States)

    Chen, Ya-nan; Yuan, Ling

    2015-05-01

    Coptis chinensis contains antiseptic alkaloids and thus its rhizomes and preparations are widely used for the treatment of.fish diseases. In order to realize the risk of water ecosystems produced by this medical herb and preparations used in aquaculture, the present experiment was carried out to study the toxicity of Coptis chinensis rhizome extract (CRE) to Scenedesmus oblique and Chlorella pyrenoidosa grown in culture solution with 0.00 (CK), 0.088 (Tl), 0.44 (T2) and 1.76 mg · L(-1) (T3) of CRE, respectively. The results show that low concentration of CRE (T1) inhibited the growth rate of the alga and high CRE (T2 and T3) ceased growth and reproductions. CRE also decreased the chlorophyll and proteins in alga cells, indicating the inhibition of photosynthesis and protein biosynthesis, which could be direct reasons for the low growth rate and death of green alga. The efflux of protons and substances from alga cells led to pH reduction and conductivity increment in culture solution with CRE. Furthermore, the activity of superoxide dismutase in alga increased at the beginning of CRE in T1 and T2 treatments but decreased as time prolonged which was in contrast to high CRE treatment. And the long exposure to low CRE treatment behaved otherwise. This suggests that the low concentration of CRE could induce the resistant reactions in alga at initial time but high CRE concentration or long exposure even at low CRE concentration could inhibit the enzyme synthesis. Similarly, malondialdehyde in alga increased as CRE concentrations increased in culture solutions, implying the damage and high permeability of cell membrane. In general, Chlorella pyrenoidosa was more sensitive to CRE. The abuse of rhizomes and preparations in aquaculture and intensive cultivation of Coptis chinensis plants in a large scale might produce ecological risks to primary productivity of water ecosystems.

  1. Two-step evolution of endosymbiosis between hydra and algae.

    Science.gov (United States)

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Presidential Green Chemistry Challenge: 2015 Specific Environmental Benefit: Climate Change Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2015 award winner, Algenol, blue-green algae to produce ethanol and other fuels, uses CO2 from air or industrial emitters, reduces the carbon footprint, costs and water usage, no reliance on food crops

  3. Swarming of pelagic tunicates associated with phytoplankton bloom in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Madhupratap, M.; Devassy, V.P.; Nair, S.R.S.; Rao, T.S.S.

    During the 40th cruise of R V Gaveshani, a large swarm pelagic tunicates associated with a bloom of diatoms and blue green algae was observed off Nagapattinam. The doliolid Dolioletta gegenbauri, Uljanin, the salp Thalia democratica Forskal...

  4. Eutrophication and cyanobacteria in South Africa’s standing water bodies: A view from space

    CSIR Research Space (South Africa)

    Matthews, MW

    2015-05-01

    Full Text Available Satellite remote sensing can make a significant contribution to monitoring water quality in South African standing water bodies. Eutrophication, defined as enrichment by nutrients, and toxin-producing cyanobacteria (blue-green algae) blooms pose a...

  5. 76 FR 46632 - Endangered and Threatened Wildlife and Plants; Removal of Echinacea tennesseensis (Tennessee...

    Science.gov (United States)

    2011-08-03

    ... combined constituted greater than 50 percent cover, were the (1) Nostoc commune (blue-green algae... Botanical Garden (MOBOT), an affiliate institution of the Centers for Plant Conservation (CPC), collected...

  6. 75 FR 48896 - Endangered and Threatened Wildlife and Plants; Removing the Tennessee Purple Coneflower From the...

    Science.gov (United States)

    2010-08-12

    ... combined constituted greater than 50 percent cover, were the (1) Nostoc commune (blue-green algae.... Recovery Action (3): Provide a Seed Source Representative of Each Natural Colony The Missouri Botanical...

  7. Variación estacional del zooplancton del embalse Ignacio Allende, Guanajuato, México y su relación con el fitoplancton y factores ambientales

    Directory of Open Access Journals (Sweden)

    Eugenia López- López

    1999-12-01

    Full Text Available Se estudiaron las comunidades planctónicas y los factores ambientales del embalse Ignacio Allende de julio de 1990 a junio de 1991. Se presentó una proliferación de cianofíceas en el verano coincidente con el mayor nivel de agua, seguido por la dominacia de bacilariofíceas en los meses fríos, en primavera con el incremento en la temperatura las cloroficeas alcanzaron sus mayores densidades. Las dinofíceas y euglenofíceas presentaron la menor riqueza específica. La proliferación de Anabaena variabilis en el verano y la alta frecuencia de Ceratium hirundinella, Aulacosseira granulata y Fragilaria crotonensis se asocian con cuerpos de agua tropicales eutróficos. Se encontraron 39 taxones zooplanctónicos, de los cuales Diaphanosoma birgei, Bosmina longirostris, Daphnia parvula, Diaptomus (Mastigodiaptomus montezumae, Acanthocyclops vernalis, Keratella cochlearis, Polyarthra vulgaris y Asplanchna priodonta, fueron persistentes en todo el ciclo. Un análisis de correspondencias canónicas mostró las relaciones que guardan los cambios en composición del zooplancton con las características físicas y químicas del embalse.The plankton communities and environmental factors of the Ignacio Allende reservoir were surveyed from July 1990 to June 1991. A total of 57 phytoplankton species were identified. There was a blue green algae bloom in the summer, simultaneously with highest water levels, followed by the dominance of diatoms in the coldest months (February and March. Chlorophyceans became dominant in the spring, consonant with highest temperature records. Bacillariophyceans and cyanophyceans had the greater species richness, while dinophyceans and euglenophyceans had the lowest values. The summer bloom of Anabaena variabilis and the abundance of Ceratium hirundinella, Aulacosseira granulata and Fragilaria crotonensis are associated with tropical eutrophic waters. The zooplankton was composed by 39 species, from these, Diaphanosoma birgei

  8. Optimal control of algae growth by controlling CO 2 and nutrition flow using Pontryagin Maximum Principle

    Science.gov (United States)

    Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi

    2017-09-01

    There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.

  9. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  10. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    Science.gov (United States)

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Overcoming Microalgae Harvesting Barrier by Activated Algae Granules.

    Science.gov (United States)

    Tiron, Olga; Bumbac, Costel; Manea, Elena; Stefanescu, Mihai; Nita Lazar, Mihai

    2017-07-05

    The economic factor of the microalgae harvesting step acts as a barrier to scaling up microalgae-based technology designed for wastewater treatment. In view of that, this study presents an alternative microalgae-bacteria system, which is proposed for eliminating the economic obstacle. Instead of the microalgae-bacteria (activated algae) flocs, the study aimed to develop activated algae granules comprising the microalgae Chlorella sp. as a target species. The presence of the filamentous microalgae (Phormidium sp.) was necessary for the occurrence of the granulation processes. A progressive decrease in frequency of the free Chlorella sp. cells was achieved once with the development of the activated algae granules as a result of the target microalgae being captured in the dense and tangled network of filaments. The mature activated algae granules ranged between 600 and 2,000 µm, and were characterized by a compact structure and significant settling ability (21.6 ± 0.9 m/h). In relation to the main aim of this study, a microalgae recovery efficiency of higher than 99% was achieved only by fast sedimentation of the granules; this performance highlighted the viability of the granular activated algae system for sustaining a microalgae harvesting procedure with neither cost nor energy inputs.

  12. Development and characteristics of an adhesion bioassay for ectocarpoid algae.

    Science.gov (United States)

    Evariste, Emmanuelle; Gachon, Claire M M; Callow, Maureen E; Callow, James A

    2012-01-01

    Species of filamentous brown algae in the family Ectocarpaceae are significant members of fouling communities. However, there are few systematic studies on the influence of surface physico-chemical properties on their adhesion. In the present paper the development of a novel, laboratory-based adhesion bioassay for ectocarpoid algae, at an appropriate scale for the screening of sets of experimental samples in well-replicated and controlled experiments is described. The assays are based on the colonization of surfaces from a starting inoculum consisting of multicellular filaments obtained by blending the cultured alga Ectocarpus crouaniorum. The adhesion strength of the biomass after 14 days growth was assessed by applying a hydrodynamic shear stress. Results from adhesion tests on a set of standard surfaces showed that E. crouaniorum adhered more weakly to the amphiphilic Intersleek® 900 than to the more hydrophobic Intersleek® 700 and Silastic® T2 coatings. Adhesion to hydrophilic glass was also weak. Similar results were obtained for other cultivated species of Ectocarpus but differed from those obtained with the related ectocarpoid species Hincksia secunda. The response of the ectocarpoid algae to the surfaces was also compared to that for the green alga, Ulva.

  13. Algae Production from Wastewater Resources: An Engineering and Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan [Longitude 122 West, Inc.; Efroymson, Rebecca Ann [ORNL

    2018-03-01

    Co-locating algae cultivation ponds near municipal wastewater (MWW) facilities provides the opportunity to make use of the nitrogen and phosphorus compounds in the wastewater as nutrient sources for the algae. This use benefits MWW facilities, the algae biomass and biofuel or bioproduct industry, and the users of streams where treated or untreated waste would be discharged. Nutrient compounds can lead to eutrophication, hypoxia, and adverse effects to some organisms if released downstream. This analysis presents an estimate of the cost savings made possible to cultivation facilities by using the nutrients from wastewater for algae growth rather than purchase of the nutrients. The analysis takes into consideration the cost of pipe transport from the wastewater facility to the algae ponds, a cost factor that has not been publicly documented in the past. The results show that the savings in nutrient costs can support a wastewater transport distance up to 10 miles for a 1000-acre-pond facility, with potential adjustments for different operating assumptions.

  14. Anti-phytopathogenic activities of macro-algae extracts.

    Science.gov (United States)

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV) in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens.

  15. Boron uptake, localization, and speciation in marine brown algae.

    Science.gov (United States)

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.

  16. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    Directory of Open Access Journals (Sweden)

    Ingrid Ramírez

    2011-05-01

    Full Text Available Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens.

  17. Evolution of reproductive development in the volvocine algae.

    Science.gov (United States)

    Hallmann, Armin

    2011-06-01

    The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male-female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ-soma division of labor and male-female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed. © The Author(s) 2010. This article is published with open access at Springerlink.com

  18. Radionuclides in macro algae at Monaco following the Chernobyl accident

    International Nuclear Information System (INIS)

    Holm, E.; Ballestra, S.; Lopez, J.J.; Bulos, A.; Whitehead, N.E.; Barci-Funel, G.; Ardisson, G.

    1994-01-01

    Samples of macro algae, Codmium tomentosum (green), Corallina mediterranea (red), Sphaerococcus coronopifolius (red) and Dictyota dichotoma (brown), were collected off Monaco during 1984 and 1988 and analysed for gamma-emitting radionuclides and transuranium elements. Due to the Chernobyl accident, increased radioactivity in the atmosphere at Monaco was recorded on 30 April 1986 with maximal activity concentrations on 2-3 May. The maximal activity concentrations in sea water occurred on 5-6 May and in the algae on 11 May. The decrease of activity concentrations can be described after May 11 as a single exponential relationship, where elimination rates for different radionuclides and different species specific to the environment can be calculated. The elimination rates thus observed correspond to mean residence times between 70 and 370 days corrected for physical decay. The concentration factors were also estimated and the highest values were found for 131 I, 129 Te m , and 110 Ag m and lowest for radiocesium and 140 Ba. The red algae Sphaerococcus coronopifoius showed generally higher concentration factors than green and brown algae. Regarding transuranium elements, a theoretical contribution from the Chernobyl accident can be made but only 242 Cm was detected in the algae above previous levels before the accident, due to the relatively small fallout of transuranics. (author) 23 refs.; 9 figs.; 4 tabs

  19. Acute toxicity and associated mechanisms of four strobilurins in algae.

    Science.gov (United States)

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-04-03

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Sustainability of algae derived biodiesel: a mass balance approach.

    Science.gov (United States)

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Visualization of oxygen distribution patterns caused by coral and algae.

    Science.gov (United States)

    Haas, Andreas F; Gregg, Allison K; Smith, Jennifer E; Abieri, Maria L; Hatay, Mark; Rohwer, Forest

    2013-01-01

    Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia sp.) separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L(- 1)) and daylight (97.9 ± 27.5 µmol O2 L(- 1)) conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones.

  2. Visualization of oxygen distribution patterns caused by coral and algae

    Directory of Open Access Journals (Sweden)

    Andreas F. Haas

    2013-07-01

    Full Text Available Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp. and a hermatypic coral (Favia sp. separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L- 1 and daylight (97.9 ± 27.5 µmol O2 L- 1 conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones.

  3. Environmental Benefits of Restoring Sediment Continuity to the Kansas River

    Science.gov (United States)

    2016-06-01

    sediment continuity from the Kansas River watershed to the Kansas River by passing sediment through, rather than trapping sediment in, large Federal...nutrients with a low nitrogen-to-phosphorous ratio, primarily composed of soluble reactive phosphorus (Shaus et al. 1997), which favors blue-green algae...Figure 5. Phytoplankton samples collected in August 2014 from Milford Lake were primarily composed of blue-green algae while those collected from Tuttle

  4. Algae from the arid southwestern United States: an annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W.H.; Gaines, S.R.

    1983-06-01

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas are attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.

  5. Effects of Harmful Algae on the Physiology of Fishes

    DEFF Research Database (Denmark)

    Svendsen, Morten Bo Søndergaard

    Blooms of harmful planktonic algae causing adverse effects in aquatic environments are a global problem, causing both human morbidity and killing aquatic lifeforms worldwide. Focusing on fish kills, it is largely unknown what mechanisms of the fish’s physiology are affected during exposure......-waters having enough oxygen to sustain life, but not too warm like the surface water layer. The proposed adverse pathway, being gill destruction, for fish exposed to Alexandrium monilatum suggests that co-occurring events of Alexandrium monilatum and oxygen squeeze events will tighten the oxygen limitation...... is largely caused by the fish and to a lesser extent the experimental setup. Before this thesis, systematic studies of fish physiology under the influence of harmful algae consisted of one algae species, Chattonella marina. Now there are a total of 4 species studied. Lastly, during the Ph...

  6. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  7. Sex pheromone of marine algae; Kaiso no sei pheromone

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, T. [Yamaguchi University, Yamaguchi (Japan). Faculty of Agriculture

    1997-10-20

    The marine ecosystem skillfully uses various `odor materials` as chemical signals. In particular, this `odor materials` are indispensable for various organisms with no motor function or poor underdeveloped visual sensation in order to maintain or expand their species. German algae scholars found a male gamete induction active material secreted from a female gamete of primitive brown algae in 1971. Eleven kinds of sex pheromones have been found from brown algae up to the present since 1971. All of these found sex pheromones are hydrophobic `odor materials` composed of hydrocarbons containing 8 or 11 carbon atoms or epoxide (oxirane), and are compounds with singular chemical structures as physiological active material in the hydrosphere. Some sex pheromones govern not only inducement of spermatozoons but also discharge of spermatozoons from an antheridium. The sex pheromone with both functions of discharge and inducement was found from the culture solution of a certain tangle weed. 2 refs., 2 figs.

  8. Characteristics of Red Algae Bioplastics/Latex Blends under Tension

    Directory of Open Access Journals (Sweden)

    M. Nizar Machmud

    2013-10-01

    Full Text Available Cassava, corn, sago and the other food crops have been commonly used as raw materials to produce green plastics. However, plastics produced from such crops cannot be tailored to fit a particular requirement due to their poor water resistance and mechanical properties. Nowadays, researchers are hence looking to get alternative raw materials from the other sustainable resources to produce plastics. Their recent published studies have reported that marine red algae, that has been already widely used as a raw material for producing biofuels, is one of the potential algae crops that can be turned into plastics. In this work, Eucheuma Cottonii, that is one of the red alga crops, was used as raw material to produce plastics by using a filtration technique. Selected latex of Artocarpus altilis and Calostropis gigantea was separately then blended with bioplastics derived from the red algae, to replace use of glycerol as plasticizer. Role of the glycerol and the selected latex on physical and mechanical properties of the red algae bioplastics obtained under a tensile test performed at room temperature are discussed. Tensile strength of some starch-based plastics collected from some recent references is also presented in this paperDoi: 10.12777/ijse.5.2.81-88 [How to cite this article: Machmud, M.N., Fahmi, R.,  Abdullah, R., and Kokarkin, C.  (2013. Characteristics of Red Algae Bioplastics/Latex Blends under Tension. International Journal of Science and Engineering, 5(2,81-88. Doi: 10.12777/ijse.5.2.81-88

  9. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  10. Using the marine unicellular algae in biological monitoring

    Directory of Open Access Journals (Sweden)

    Kapkov V. I.

    2017-06-01

    Full Text Available The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb in the form of chloride salts on the growth of axenic algae culture has been studied in the modelling experiments. The unicellular marine algae have a very short life cycle, therefore it is possible to use them in the experiments of studying the effect of anthropogenic factors at cellular and population levels on the test-object. With biomonitoring pollution of marine environment by heavy metals and others dangerous toxicants, the major indicators of algae community condition are the cellular cycle and the condition of the photosynthetic apparatus of the cell. The subsequent lysis of cells under the influence of heavy metals leads to the excretion of secondary metabolites which can essentially affect the metal toxicity. The established scales of threshold and lethal concentration of heavy metals for algae of different taxon make it possible to use the ratio of sensitive and resistant species to heavy metals as biological markers when forecasting ecological consequences of pollution of the marine environment by heavy metals. Distinctions in the resistance of different taxon to heavy metals can result in implementing the strategy of selection of test-objects depending on the purposes of the research.

  11. Floating Algae Blooms in the East China Sea

    Science.gov (United States)

    Qi, Lin; Hu, Chuanmin; Wang, Mengqiu; Shang, Shaoling; Wilson, Cara

    2017-11-01

    A floating algae bloom in the East China Sea was observed in Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in May 2017. Using satellite imagery from MODIS, Visible Infrared Imaging Radiometer Suite, Geostationary Ocean Color Imager, and Ocean Land Imager, and combined with numerical particle tracing experiments and laboratory experiments, we examined the history of this bloom as well as similar blooms in previous years and attempted to trace the bloom source and identify the algae type. Results suggest that one bloom origin is offshore Zhejiang coast where algae slicks have appeared in satellite imagery almost every February-March since 2012. Following the Kuroshio Current and Taiwan Warm Current, these "initial" algae slicks are first transported to the northeast to reach South Korea (Jeju Island) and Japan coastal waters (up to 135°E) by early April 2017, and then transported to the northwest to enter the Yellow Sea by the end of April. The transport pathway covers an area known to be rich in Sargassum horneri, and spectral analysis suggests that most of the algae slicks may contain large amount of S. horneri. The bloom covers a water area of 160,000 km2 with pure algae coverage of 530 km2, which exceeds the size of most Ulva blooms that occur every May-July in the Yellow Sea. While blooms of smaller size also occurred in previous years and especially in 2015, the 2017 bloom is hypothesized to be a result of record-high water temperature, increased light availability, and continuous expansion of Porphyra aquaculture along the East China Sea coast.

  12. Homogeneity of Danish environmental and clinical isolates of Shewanella algae

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Holt, H.M.; Gerner-Smidt, P.

    2000-01-01

    Danish isolates of Shewanella algae constituted by whole-cell protein profiling a very homogeneous group, and no clear distinction was seen between strains from the marine environment and strains of clinical origin. Although variation between all strains was observed by ribotyping and random...... amplified polymorphic DNA analysis, no clonal relationship between infective strains was found. From several patients, clonally identical strains of S. algae were reisolated up to 8 months after the primary isolation, indicating that the same strain may be able to maintain the infection....

  13. [Effects of aniline and phenol on freshwater algae growth].

    Science.gov (United States)

    Chen, Chuan-ping; Zhang, Ting-ting; He, Mei; Wu, An-ping; Nie, Liu-wang

    2007-01-01

    By the methods of bioassay, this paper studied the effects of aniline or phenol on the growth of Chlorella pyrenoidosa and Scenedesmus obiquus. The results showed that these two compounds had evident effects on the growth of test algae species. For the same species, aniline was more toxic. Under the same concentration of the compounds, S. obiquus was more sensitive than C. pyrenoidosa. These two algae species could degrade or absorb parts of the compounds, and phenol in particular, when their concentrations were lower.

  14. Chemical composition of the green alga Codium Divaricatum Holmes.

    Science.gov (United States)

    He, Zhizhou; Zhang, Anjiang; Ding, Lisheng; Lei, Xinxiang; Sun, Jianzhang; Zhang, Lixue

    2010-12-01

    A new sterol, 24-R-stigmasta-4,25-diene-3β,6β-diol (1), along with three known compounds (2-3), was isolated from the green alga Codium divaricatum Holmes, a traditional Chinese medicine, which is efficacious against cancer. All structures were determined by spectroscopic methods and comparison with related known compounds. Single-crystal X-ray crystallography allowed us to confirm the structure of 1. To our knowledge, the compound 1 is reported as the first from natural source, and compounds 2, 4 have not been isolated from green algae before. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. The attached algae community near Pickering GS: III

    International Nuclear Information System (INIS)

    McKinley, S.R.

    1982-01-01

    The relationship between attached algae and macro-invertebrates in the nearshore zone of Lake Ontario was investigated in the vicinity of the Pickering 'A' NGS. Measures of faunal density, richness, evenness, and biomass were generally higher from areas which supported attached algae. Gammarus fasciatus, Cricotopus bicinctus, Dicrotendipes spp., Orthocladius obumbratus, Cladotanytarsus spp., Orthocladius spp., and Parakiefferiella spp., were significantly correlated with algal standing crop. All of the above dominant invertebrates ingested epiphytes associated with Cladophora glomerata. Attempts to explain the distribution of the zoobenthic assemblages using the physical/biological characteristics of the study area indicated algal cover, substrate size, wind velocity and water temperature were most important

  16. Distribution of algae, seagrasses, and coral communities from Lakshadweep islands, eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.

    Marine algae, seagrasses and coral from the intertidal, lagoon, reef and subtidal regions (up to 22 m depth) at Kavaratti, Agatti, Bangaram and Suheli islands, of Lakshadweep were studied Marine algae and seagrasses were mainly confined...

  17. Value of crops: Quantity, quality and cost price. [algae as a nutritional supplement

    Science.gov (United States)

    Meyer, C.

    1979-01-01

    Possibilities of using algae as a nutritional supplement are examined. The nutritional value and protein content of spirulines of blue algae are discussed. A cost analysis of growing them artificially is presented.

  18. Synthetic algae and cyanobacteria: Great potential but what is the exposure risk?

    Science.gov (United States)

    Green algae and cyanobacteria (hereafter, algae) have the attractive properties of relatively simple genomes, rapid growth rates, and an ability to synthesize useful compounds using solar energy and carbon dioxide. They are attractive targets for applications of synthetic biology...

  19. Beberapa Marga Alga Benang dan Hubungannya dengan Keberadaan Vektor Malaria di Bali Utara

    OpenAIRE

    Seregeg, I. G

    1988-01-01

    A study of filamentous algae and its relation to malaria vector control was conducted during the dry season in several lagoons at the north coast of Bali. Floating masses of these algae under the sunshine barricated the spread of solar-triton larvicide, reducing tremendously the effectiveness of the larvicide. Identification of the genera of these algae under the subphyllum of CYANOPHYTA (Blue Algae) in the family of Cyanophyceae were Oscillatoria, Spirulina, Phormidium, Rivularia, Nostoc, an...

  20. Algae of economic importance that accumulate cadmium and lead: a review

    OpenAIRE

    Souza, Priscila O.; Ferreira, Lizângela R.; Pires, Natanael R. X.; S. Filho, Pedro J.; Duarte, Fabio A.; Pereira, Claudio M. P.; Mesko, Márcia F.

    2012-01-01

    Currently, algae and algae products are extensively applied in the pharmaceutical, cosmetic and food industries. Algae are the main organisms that take up and store heavy metals. Therefore, the use of compounds derived from algae by the pharmaceutical industry should be closely monitored for possible contamination. The pollution generated by heavy metals released by industrial and domestic sources causes serious changes in the aquatic ecosystem, resulting in a loss of biological diversity and...