WorldWideScience

Sample records for blue mountain region oregon

  1. Lodgepole pine in the Blue Mountains of northeastern Oregon.

    Science.gov (United States)

    James M. Trappe; Robert W. Harris

    1958-01-01

    Lodgepole pine (Pinus contorta) is a major species in northeastern Oregon. The lodgepole type covers nearly 400,000 acres in the Blue and Wallowa Mountains, and individual trees are scattered over many of the remaining six million forested acres in this area (2). The type blankets large areas in watersheds in a region where spring floods and summer...

  2. Assessing and adapting to climate change in the Blue Mountains, Oregon (USA: Overview, biogeography, and climate

    Directory of Open Access Journals (Sweden)

    Jessica E. Halofsky

    2018-04-01

    Full Text Available The Blue Mountains Adaptation Partnership (BMAP was established to increase climate change awareness, assess vulnerability to climate change, and develop science-based adaptation strategies for national forest lands in the Blue Mountains region of northeast Oregon and southeast Washington (USA. The BMAP process included (1 development of a science-management partnership, (2 a vulnerability assessment of the effects of climate change on natural resources and infrastructure, (3 development of adaptation options that will help reduce negative effects of climate change and assist the transition of biological systems and management to a changing climate, and (4 ongoing dialogue and activities related to climate change in the Blue Mountains region. This special issue of Climate Services describes social context and climate change vulnerability assessments for water use and infrastructure, vegetation, and riparian ecosystems of the Blue Mountains region, as well as adaptation options for natural resource management. This manuscript introduces the special issue, describing the management, biogeographic, and climatic context for the Blue Mountains region; the climate change vulnerability assessment and adaptation process used in BMAP; and the potential applications of the information described in the special issue. Although the institutional focus of information in the special issue is U.S. Forest Service lands (Malheur, Umatilla, and Wallowa-Whitman National Forests, the broader social context and adaptation options should be applicable to other lands throughout this region and the Pacific Northwest. Keywords: Climate change adaptation, Pacific Northwest, Resource management, Vulnerability assessment, Blue Mountains

  3. Mapping genetic variation and seed zones for Bromus carinatus in the Blue Mountains of eastern Oregon, USA

    Science.gov (United States)

    R.C. Johnson; Vicky J. Erickson; Nancy L. Mandel; J. Bradley St. Clair; Kenneth W. Vance-Borland

    2010-01-01

    Seed transfer zones ensure that germplasm selected for restoration is suitable and sustainable in diverse environments. In this study, seed zones were developed for mountain brome (Bromus carinatus Hook. & Arn.) in the Blue Mountains of northeastern Oregon and adjoining Washington. Plants from 148 Blue Mountain seed source locations were...

  4. Changes in forage lichen biomass after insect outbreaks and fuel reduction treatment in the Blue Mountains, Oregon

    Science.gov (United States)

    Bruce McCune; Sarah Jovan; Amanda. Hardman

    2008-01-01

    Forage lichens are pendulous, hairlike species eaten by a wide range of mammals. Our overall goal was to estimate losses of Bryoria, a genus of ecologically important forage species, in forests subjected to disease and fuel reduction treatments at Starkey Experimental Forest in the Blue Mountains of northeastern Oregon. Specific objectives were to...

  5. Pollination ecology and floral function of Brown's peony (Paeonia brownii) in the Blue Mountains of northeastern Oregon

    Science.gov (United States)

    Peter Bernhardt; Retha Meier; Nan. Vance

    2013-01-01

    Brown’s peony, Paeonia brownie (Paeoniaceae), is one of only two peony species native to the Western Hemisphere, yet its pollination ecology and breeding system have never been documented. Using flowering individuals of an endemic colony in the Blue Mountains of Oregon, U.S., we investigated the peony’s pollination system and floral function. We...

  6. Effects of climate change on hydrology and water resources in the Blue Mountains, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Caty F. Clifton

    2018-04-01

    Full Text Available In the semi-arid environment of the Blue Mountains, Oregon (USA, water is a critical resource for both ecosystems and human uses and will be affected by climate change in both the near- and long-term. Warmer temperatures will reduce snowpack and snow-dominated watersheds will transition to mixed rain and snow, while mixed rain and snow dominated watersheds will shift towards rain dominated. This will result in high flows occurring more commonly in late autumn and winter rather than spring, and lower low flows in summer, phenomena that may already be occurring in the Pacific Northwest. Higher peak flows are expected to increase the frequency and magnitude of flooding, which may increase erosion and scouring of the streambed and concurrent risks to roads, culverts, and bridges. Mapping of projected peak flow changes near roads gives an opportunity to mitigate these potential risks. Diminished snowpack and low summer flows are expected to cause a reduction in water supply for aquatic ecosystems, agriculture, municipal consumption, and livestock grazing, although this effect will not be as prominent in areas with substantial amounts of groundwater. Advanced planning could help reduce conflict among water users. Responding pro-actively to climate risks by improving current management practices, like road design and water management as highlighted here, may be among the most efficient and effective methods for adaptation. Keywords: Climate change, Runoff, Snow, Low flows, Peak flows, Forest roads, Water supply

  7. Composite Sunrise Butte pluton: Insights into Jurassic–Cretaceous collisional tectonics and magmatism in the Blue Mountains Province, northeastern Oregon

    Science.gov (United States)

    Johnson, Kenneth H.; Schwartz, J.J.; Žák, Jiří; Verner, Krystof; Barnes, Calvin G.; Walton, Clay; Wooden, Joseph L.; Wright, James E.; Kistler, Ronald W.

    2015-01-01

    The composite Sunrise Butte pluton, in the central part of the Blue Mountains Province, northeastern Oregon, preserves a record of subduction-related magmatism, arc-arc collision, crustal thickening, and deep-crustal anatexis. The earliest phase of the pluton (Desolation Creek unit) was generated in a subduction zone environment, as the oceanic lithosphere between the Wallowa and Olds Ferry island arcs was consumed. Zircons from this unit yielded a 206Pb/238U age of 160.2 ± 2.1 Ma. A magmatic lull ensued during arc-arc collision, after which partial melting at the base of the thickened Wallowa arc crust produced siliceous magma that was emplaced into metasedimentary rocks and serpentinite of the overthrust forearc complex. This magma crystallized to form the bulk of the Sunrise Butte composite pluton (the Sunrise Butte unit; 145.8 ± 2.2 Ma). The heat necessary for crustal anatexis was supplied by coeval mantle-derived magma (the Onion Gulch unit; 147.9 ± 1.8 Ma).The lull in magmatic activity between 160 and 148 Ma encompasses the timing of arc-arc collision (159–154 Ma), and it is similar to those lulls observed in adjacent areas of the Blue Mountains Province related to the same shortening event. Previous researchers have proposed a tectonic link between the Blue Mountains Province and the Klamath Mountains and northern Sierra Nevada Provinces farther to the south; however, timing of Late Jurassic deformation in the Blue Mountains Province predates the timing of the so-called Nevadan orogeny in the Klamath Mountains. In both the Blue Mountains Province and Klamath Mountains, the onset of deep-crustal partial melting initiated at ca. 148 Ma, suggesting a possible geodynamic link. One possibility is that the Late Jurassic shortening event recorded in the Blue Mountains Province may be a northerly extension of the Nevadan orogeny. Differences in the timing of these events in the Blue Mountains Province and the Klamath–Sierra Nevada Provinces suggest that

  8. Regeneration in United States Department of Agriculture Forest Service mixed conifer partial cuttings in the Blue Mountains of Oregon and Washington.

    Science.gov (United States)

    K.W. Seidel; S. Conrade. Head

    1983-01-01

    A survey in the Blue Mountains of north-eastern Oregon and southeastern Washington showed that, on the average, partial cuts in the grand fir/big huckleberry community were well stocked with a mixture of advance, natural post-harvest, and planted reproduction of a number of species. Partial cuts in the mixed conifer/pinegrass community had considerably fewer seedlings...

  9. Pollination ecology and floral function of Brown’s peony (Paeonia brownii in the Blue Mountains of northeastern Oregon

    Directory of Open Access Journals (Sweden)

    Nan Vance

    2013-03-01

    Full Text Available Brown’s peony, Paeonia brownii (Paeoniaceae, is one of only two peony species native to the Western Hemisphere, yet its pollination ecology and breeding system have never been documented. Using flowering individuals of an endemic colony in the Blue Mountains of Oregon, U.S., we investigated the peony’s pollination system and floral function. We also examined pollen/carpel interactions through experimental pollinations aided by fluorescence microscopy. Paeonia brownii appears to be self compatible and mostly protogynous with floral traits of a generalist pollination system. The flowers appear to attract insects by producing abundant floral nectar secreted from lobes of a perigynous disc throughout their 9-15-days of anthesis. The most common pollen vectors were wasp queens (Vespidae, the large flower fly Criorhina caudata (Syrphidae, and females of Lasioglossum spp. (Halictidae, all of which foraged exclusively for nectar. Whether collected from foraging wasps and flies, anthers, or stigmas, about half the pollen grains appeared fertile. The number of ovules per carpel was about 19. Seed set (seeds/ovule of naturally pollinated flowers was about 20% with about 4 viable seeds per follicle. The number of fertile pollen grains transferred to the stigma under natural conditions was highly variable but generally low, which may have contributed in part to the low rate of seed set. This study raises further questions about the role of pollen sterility, floral nectar and vespid wasps in shaping a pollinator system that is unusual in Paeonia.

  10. Aspen biology, community classification, and management in the Blue Mountains

    Science.gov (United States)

    David K. Swanson; Craig L. Schmitt; Diane M. Shirley; Vicky Erickson; Kenneth J. Schuetz; Michael L. Tatum; David C. Powell

    2010-01-01

    Quaking aspen (Populus tremuloides Michx.) is a valuable species that is declining in the Blue Mountains of northeastern Oregon. This publication is a compilation of over 20 years of aspen management experience by USDA Forest Service workers in the Blue Mountains. It includes a summary of aspen biology and occurrence in the Blue Mountains, and a...

  11. The Steens Mountain ( Oregon) geomagnetic polarity transition ( USA). 3. Its regional significance.

    Science.gov (United States)

    Mankinen, E.A.; Larson, E.E.; Gromme, C.S.; Prevot, M.; Coe, R.S.

    1987-01-01

    Study of the variations of direction and intensity of the geomagnetic field as recorded by the Miocene lava flows on Steens Mountain, SE Oregon, has resulted in a detailed description of total field behavior during a reversal in polarity. In addition to information about the polarity reversal itself, the detailed paleomagnetic record includes several thousand years of geomagnetic history preceding and following the polarity transition at 15.5 Ma. To test the feasibility of using this record as a means of correlation in this part of the western US, comparisons are made of reconnaissance and previously published paleomagnetic records obtained from what has been thought to be the Steens Basalt or rocks of equivalent age. Despite the fact that many of these earlier studies were not detailed and were not intended for correlation purposes, convincing similarities among some of the records are evident. The Steens Basalt paleomagnetic record does, indeed, have potential as a correlation tool during this time of widespread basaltic volcanism. Concludes that findings indicate no post-20 Ma differential rotation between S-E Washington and S-central Oregon, in contrast to previous interpretations. -from Authors

  12. Potential effects of climate change on riparian areas, wetlands, and groundwater-dependent ecosystems in the Blue Mountains, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Kathleen A. Dwire

    2018-04-01

    Full Text Available Riparian areas, wetlands, and groundwater-dependent ecosystems, which are found at all elevations throughout the Blue Mountains, comprise a small portion of the landscape but have high conservation value because they provide habitat for diverse flora and fauna. The effects of climate change on these special habitats may be especially profound, due to altered snowpack and hydrologic regimes predicted to occur in the near future. The functionality of many riparian areas is currently compromised by water diversions and livestock grazing, which reduces their resilience to additional stresses that a warmer climate may bring. Areas associated with springs and small streams will probably experience near-term changes, and some riparian areas and wetlands may decrease in size over time. A warmer climate and reduced soil moisture could lead to a transition from riparian hardwood species to more drought tolerant conifers and shrubs. Increased frequency and spatial extent of wildfire spreading from upland forests could also affect riparian species composition. The specific effects of climate change will vary, depending on local hydrology (especially groundwater, topography, streamside microclimates, and current conditions and land use. Keywords: Climate change, Groundwater-dependent ecosystems, Riparian areas, Springs, Wetlands

  13. Effects of long-term use by big game and livestock in the Blue Mountains forest ecosystems.

    Science.gov (United States)

    Larry L. Irwin; John G. Cook; Robert A. Riggs; Jon M. Skovlin

    1994-01-01

    The effects on eastside forest ecosystems from long-term grazing by large mammals are assessed, because long-term herbivory can reduce or increase ecosystem productivity. The assessment emphasizes elk and cattle in the Blue Mountains of northeast Oregon and southeast Washington. Histories of populations of large mammals and their effects in the Blue Mountains are...

  14. Small-scale variations of climate change in mountainous forested terrain - a regional study from H.J. Andrews Long Term Ecological Research site in Oregon, USA

    Science.gov (United States)

    Honzakova, Katerina; Hoffmann, Peter; Jones, Julia; Thomas, Christoph

    2017-04-01

    There has been conflicting evidence as to whether high elevations are experiencing more pronounced climate warming than lower elevations in mountainous regions. In this study we analyze temperature records from H.J. Andrews Long Term Ecological Research, Oregon, USA and several nearby areas, comprising together 28 stations located in Cascade Mountains. The data, starting in 1958, are first checked for quality and homogenized using the Standard Normal Homogeneity Test. As a reference, composite climate time series based on the Global Historic Climate Network is created and together with cross-referencing against station records used to correct breaks and shifts in the data. In the next step, we investigate temperature patterns of the study site from 1958 to 2016 and compare them for valley and hill stations. In particular, we explore seasonality and inter-annual variability of the records and trends of the last day of frost. Additionally, 'cold' sums (positive and negative) are calculated to obtain a link between temperature and ecosystems' responses (such as budbreaks). So far, valley stations seem to be more prone to climate change than ridge or summit stations, contrary to current thinking. Building on previous knowledge, we attempt to provide physical explanations for the temperature records, focusing on wind patterns and associated phenomena such as cold air drainage and pooling. To aid this we analyze wind speed and direction data available for some of the stations since 1996, including seasonality and inter-annual variability of the observed flows.

  15. Habitat-effectiveness index for elk on Blue Mountain Winter Ranges.

    Science.gov (United States)

    Jack Ward Thomas; Donavin A. Leckenby; Mark Henjum; Richard J. Pedersen; Larry D. Bryant

    1988-01-01

    An elk-habitat evaluation procedure for winter ranges in the Blue Mountains of eastern Oregon and Washington is described. The index is based on an interaction of size and spacing of cover and forage areas, roads open to traffic per unit of area, cover quality, and quantity and quality of forage.

  16. The University of Montana's Blue Mountain Observatory

    Science.gov (United States)

    Friend, D. B.

    2004-12-01

    The University of Montana's Department of Physics and Astronomy runs the state of Montana's only professional astronomical observatory. The Observatory, located on nearby Blue Mountain, houses a 16 inch Boller and Chivens Cassegrain reflector (purchased in 1970), in an Ash dome. The Observatory sits just below the summit ridge, at an elevation of approximately 6300 feet. Our instrumentation includes an Op-Tec SSP-5A photoelectric photometer and an SBIG ST-9E CCD camera. We have the only undergraduate astronomy major in the state (technically a physics major with an astronomy option), so our Observatory is an important component of our students' education. Students have recently carried out observing projects on the photometry of variable stars and color photometry of open clusters and OB associations. In my poster I will show some of the data collected by students in their observing projects. The Observatory is also used for public open houses during the summer months, and these have become very popular: at times we have had 300 visitors in a single night.

  17. Interpreting landscape change in high mountains of northeastern Oregon from long-term repeat photography.

    Science.gov (United States)

    Jon M. Skovlin; Gerald S. Strickler; Jesse L. Peterson; Arthur W. Sampson

    2001-01-01

    We compared 45 photographs taken before 1925 to photographs taken as late as 1999 and documented landscape changes above 5,000 feet elevation in the Wallowa, Elkhorn, and Greenhorn Mountains of northeastern Oregon. We noted the following major changes from these comparisons: (1) the expansion of subalpine fir into mountain grasslands, (2) the invasion of moist and wet...

  18. Mountains

    Science.gov (United States)

    Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson

    2006-01-01

    This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.

  19. Mountains, glaciers, and mines—The geological story of the Blue River valley, Colorado, and its surrounding mountains

    Science.gov (United States)

    Kellogg, Karl; Bryant, Bruce; Shroba, Ralph R.

    2016-02-10

    This report describes, in a nontechnical style, the geologic history and mining activity in the Blue River region of Colorado, which includes all of Summit County. The geologic story begins with the formation of ancient basement rocks, as old as about 1700 million years, and continues with the deposition of sedimentary rocks on a vast erosional surface beginning in the Cambrian Period (about 530 million years ago). This deposition was interrupted by uplift of the Ancestral Rocky Mountains during the late Paleozoic Era (about 300 million years ago). The present Rocky Mountains began to rise at the close of the Mesozoic Era (about 65 million years ago). A few tens of millions years ago, rifting began to form the Blue River valley; a major fault along the east side of the Gore Range dropped the east side down, forming the present valley. The valley once was filled by sediments and volcanic rocks that are now largely eroded. During the last few hundred-thousand years, at least two periods of glaciation sculpted the mountains bordering the valley and glaciers extended down the Blue River valley as far south as present Dillon Reservoir. Discovery of deposits of gold, silver, copper, and zinc in the late 1800s, particularly in the Breckenridge region, brought an influx of early settlers. The world-class molybdenum deposit at Climax, mined since the First World War, reopened in 2012 after a period of closure.

  20. Genetic characteristics of red foxes In northeastern Oregon

    Science.gov (United States)

    Gregory A Green; Benjamin N Sacks; Leonard J Erickson; Keith B Aubry

    2017-01-01

    The Rocky Mountain Red Fox (Vulpes vulpes macroura), once common in the Blue Mountains ecoregion of northeastern Oregon, was considered rare in eastern Oregon by the 1930s and thought to be extirpated by the 1960s, when putatively new Red Fox populations began to appear. Although the new foxes were long presumed to be nonnative (originating from...

  1. Hydrologic regimes of forested, mountainous, headwater basins in New Hampshire, North Carolina, Oregon, and Puerto Rico

    Science.gov (United States)

    David A. Post; Julia A. Jones

    2001-01-01

    This study characterized the hydrologic regimes at four forested, mountainous long-term ecological research (LTER) sites: H.J. Andrews (Oregon), Coweeta (North Carolina), Hubbard Brook (New Hampshire), and Luquillo (Puerto Rico). Over 600 basinyears of daily streadow records were examined from 18 basins that have not experienced human disturbances since at least the...

  2. 75 FR 3195 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment...

    Science.gov (United States)

    2010-01-20

    ...; Oregon; Mill Creek; Allotment Management Plans EIS AGENCY: Forest Service, USDA. ACTION: Notice of intent... allotments on the Lookout Mountain Ranger District. These four allotments are: Cox, Craig, Mill Creek, and..., Mill Creek and Old Dry Creek allotments. The responsible official will also decide how to mitigate...

  3. Climate change impacts on maritime mountain snowpack in the Oregon Cascades

    Directory of Open Access Journals (Sweden)

    E. A. Sproles

    2013-07-01

    Full Text Available This study investigates the effect of projected temperature increases on maritime mountain snowpack in the McKenzie River Basin (MRB; 3041 km2 in the Cascades Mountains of Oregon, USA. We simulated the spatial distribution of snow water equivalent (SWE in the MRB for the period of 1989–2009 with SnowModel, a spatially-distributed, process-based model (Liston and Elder, 2006b. Simulations were evaluated using point-based measurements of SWE, precipitation, and temperature that showed Nash-Sutcliffe Efficiency coefficients of 0.83, 0.97, and 0.80, respectively. Spatial accuracy was shown to be 82% using snow cover extent from the Landsat Thematic Mapper. The validated model then evaluated the inter- and intra-year sensitivity of basin wide snowpack to projected temperature increases (2 °C and variability in precipitation (±10%. Results show that a 2 °C increase in temperature would shift the average date of peak snowpack 12 days earlier and decrease basin-wide volumetric snow water storage by 56%. Snowpack between the elevations of 1000 and 2000 m is the most sensitive to increases in temperature. Upper elevations were also affected, but to a lesser degree. Temperature increases are the primary driver of diminished snowpack accumulation, however variability in precipitation produce discernible changes in the timing and volumetric storage of snowpack. The results of this study are regionally relevant as melt water from the MRB's snowpack provides critical water supply for agriculture, ecosystems, and municipalities throughout the region especially in summer when water demand is high. While this research focused on one watershed, it serves as a case study examining the effects of climate change on maritime snow, which comprises 10% of the Earth's seasonal snow cover.

  4. Mineral resources of the Hawk Mountain Wilderness Study Area, Honey County, Oregon

    International Nuclear Information System (INIS)

    Turrin, B.D.; Conrad, J.E.; Plouff, D.; King, H.D.; Swischer, C.C.; Mayerle, R.T.; Rains, R.L.

    1989-01-01

    The Hawk Mountain Wildeness Study Area in south-central Oregon is underlain by Miocene age basalt, welded tuff, and interbedded sedimentary rock. The western part of this study area has a low mineral resource potential for gold. There is a low mineral resource potential for small deposits of uranium in the sedimentary rocks. This entire study area has a low potential for geothermal and oil and gas resources. There are no mineral claims or identified resources in this study area

  5. A tunnel runs through it: an inside view of the Tualatin Mountains, Oregon

    Science.gov (United States)

    Walsh, Ken; Peterson, Gary L.; Beeson, Marvin H.; Wells, Ray E.; Fleck, Robert J.; Evarts, Russell C.; Duvall, Alison; Blakely, Richard J.; Burns, Scott

    2011-01-01

    The Tualatin Mountains form a northwest-striking ridge about 350 m high that separates Portland, Oregon, from the cities of the Tualatin Valley to the west. Known informally as the Portland Hills, the ridge is a late Cenozoic anticline, bounded by reverse faults that dip toward the anticlinal axis. The anticline is a broad, open fold consisting chiefly of Miocene Columbia River Basalt Group, with remnants of Miocene-Pliocene Troutdale Formation and Pleistocene basalt of the Boring Volcanic Field on the flanks of the anticline. Anticlinal structures similar to the Tualatin Mountains are characteristic of the northern Willamette Valley, where the structures accommodate margin-parallel shortening of the Cascadia fore arc. Global Positioning System (GPS) results indicate that the shortening is due to the northward motion of Oregon at several millimeters per year with respect to stable North America. Some of the uplifts may contain active faults, but the structures are poorly exposed and are overlain by thick Pleistocene loess and Missoula flood deposits. Between 1993 and 1998, construction of the 3-mile-long (4500-m-long) TriMet MAX Light Rail tunnel through the Tualatin Mountains provided an unusual opportunity to investigate the geological structure and history of the Tualatin Mountains. This report is a collaborative effort among the tunnel geologists and the U.S. Geological Survey (USGS) to document the geologic story and quantify late Cenozoic and Quaternary deformation rates of the Tualatin Mountains.

  6. Simulating vegetation response to climate change in the Blue Mountains with MC2 dynamic global vegetation model

    Directory of Open Access Journals (Sweden)

    John B. Kim

    2018-04-01

    Full Text Available Warming temperatures are projected to greatly alter many forests in the Pacific Northwest. MC2 is a dynamic global vegetation model, a climate-aware, process-based, and gridded vegetation model. We calibrated and ran MC2 simulations for the Blue Mountains Ecoregion, Oregon, USA, at 30 arc-second spatial resolution. We calibrated MC2 using the best available spatial datasets from land managers. We ran future simulations using climate projections from four global circulation models (GCM under representative concentration pathway 8.5. Under this scenario, forest productivity is projected to increase as the growing season lengthens, and fire occurrence is projected to increase steeply throughout the century, with burned area peaking early- to mid-century. Subalpine forests are projected to disappear, and the coniferous forests to contract by 32.8%. Large portions of the dry and mesic forests are projected to convert to woodlands, unless precipitation were to increase. Low levels of change are projected for the Umatilla National Forest consistently across the four GCM’s. For the Wallowa-Whitman and the Malheur National Forest, forest conversions are projected to vary more across the four GCM-based simulations, reflecting high levels of uncertainty arising from climate. For simulations based on three of the four GCMs, sharply increased fire activity results in decreases in forest carbon stocks by the mid-century, and the fire activity catalyzes widespread biome shift across the study area. We document the full cycle of a structured approach to calibrating and running MC2 for transparency and to serve as a template for applications of MC2. Keywords: Climate change, Regional change, Simulation, Calibration, Forests, Fire, Dynamic global vegetation model

  7. Seismic Characterization of the Blue Mountain Geothermal Site

    Science.gov (United States)

    Templeton, D. C.; Matzel, E.; Cladouhos, T. T.

    2017-12-01

    All fluid injection activities have the potential to induce earthquakes by modifying the state of stress in the subsurface. In geothermal areas, small microearthquakes can be a beneficial outcome of these stress perturbations by providing direct subsurface information that can be used to better understand and manage the underground reservoir. These events can delineate the active portions of the subsurface that have slipped in response to pore fluid pressure changes or temperature changes during and after fluid injection. Here we investigate the seismic activity within the Blue Mountain Geothermal Power Plant located in Humboldt County, Nevada between December 2015 to May 2016. We compare the effectiveness of direct spatial-temporal cross-correlation templates with Matched Field Processing (MFP) derived templates and compare these results with earthquake detection results from a traditional STA/LTA algorithm. Preliminary results show significant clustering of microearthquakes, most probably influenced by plant operations. The significant increase in data availability that advanced earthquake detection methods can provide improves the statistical analyses of induced seismicity sequences, reveal critical information about the ongoing evolution of the subsurface reservoir, and better informs the construction of models for hazard assessments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Effects of projected climate change on vegetation in the Blue Mountains ecoregion, USA

    Directory of Open Access Journals (Sweden)

    Becky K. Kerns

    2018-04-01

    Full Text Available We used autecological, paleoecological, and modeling information to explore the potential effects of climate change on vegetation in the Blue Mountains ecoregion, Oregon (USA. Although uncertainty exists about the exact nature of future vegetation change, we infer that the following are likely to occur by the end of the century: (1 dominance of ponderosa pine and sagebrush will increase in many locations, (2 the forest-steppe ecotone will move upward in latitude and elevation, (3 ponderosa pine will be distributed at higher elevations, (4 subalpine and alpine systems will be replaced by grass species, pine, and Douglas-fir, (5 moist forest types may increase under wetter scenarios, (6 the distribution and abundance of juniper woodlands may decrease if the frequency and extent of wildfire increase, and (7 grasslands and shrublands will increase at lower elevations. Tree growth in energy-limited landscapes (high elevations, north aspects will increase as the climate warms and snowpack decreases, whereas tree growth in water-limited landscapes (low elevations, south aspects will decrease. Ecological disturbances, including wildfire, insect outbreaks, and non-native species, which are expected to increase in a warmer climate, will affect species distribution, tree age, and vegetation structure, facilitating transitions to new combinations of species and vegetation patterns. In dry forests where fire has not occurred for several decades, crown fires may result in high tree mortality, and the interaction of multiple disturbances and stressors will probably exacerbate stress complexes. Increased disturbance will favor species with physiological and phenological traits that allow them to tolerate frequent disturbance. Keywords: Climate change, Disturbance, Vegetation, Wildfire

  9. Integrating Science into Management of Ecosystems in the Greater Blue Mountains

    Science.gov (United States)

    Chapple, Rosalie S.; Ramp, Daniel; Bradstock, Ross A.; Kingsford, Richard T.; Merson, John A.; Auld, Tony D.; Fleming, Peter J. S.; Mulley, Robert C.

    2011-10-01

    Effective management of large protected conservation areas is challenged by political, institutional and environmental complexity and inconsistency. Knowledge generation and its uptake into management are crucial to address these challenges. We reflect on practice at the interface between science and management of the Greater Blue Mountains World Heritage Area (GBMWHA), which covers approximately 1 million hectares west of Sydney, Australia. Multiple government agencies and other stakeholders are involved in its management, and decision-making is confounded by numerous plans of management and competing values and goals, reflecting the different objectives and responsibilities of stakeholders. To highlight the complexities of the decision-making process for this large area, we draw on the outcomes of a recent collaborative research project and focus on fire regimes and wild-dog control as examples of how existing knowledge is integrated into management. The collaborative research project achieved the objectives of collating and synthesizing biological data for the region; however, transfer of the project's outcomes to management has proved problematic. Reasons attributed to this include lack of clearly defined management objectives to guide research directions and uptake, and scientific information not being made more understandable and accessible. A key role of a local bridging organisation (e.g., the Blue Mountains World Heritage Institute) in linking science and management is ensuring that research results with management significance can be effectively transmitted to agencies and that outcomes are explained for nonspecialists as well as more widely distributed. We conclude that improved links between science, policy, and management within an adaptive learning-by-doing framework for the GBMWHA would assist the usefulness and uptake of future research.

  10. 75 FR 17430 - Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern, San Luis Obispo...

    Science.gov (United States)

    2010-04-06

    ...] Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern, San Luis Obispo, Tulare... Wildlife Refuges (NWRs) located in Kern, San Luis Obispo, Tulare, and Ventura counties of California. We... developing a CCP for Hopper Mountain, Bitter Creek, and Blue Ridge NWRs in Kern, San Luis Obispo, Tulare, and...

  11. Multi-millennial record of erosion and fires in the southern Blue Ridge Mountains, USA In: Greenberg, CH and BS Collins (eds.)

    Science.gov (United States)

    David S. Leigh

    2016-01-01

    Bottomland sediments from the southern Blue Ridge Mountains provide a coarse-resolution, multi-millennial stratigraphic record of past regional forest disturbance (soil erosion). This record is represented by 12 separate vertical accretion stratigraphic profi les that have been dated by radiocarbon, luminescence, cesium-137, and correlation methods...

  12. Complex mountain terrain and disturbance history drive variation in forest aboveground live carbon density in the western Oregon Cascades, USA

    Science.gov (United States)

    Zald, Harold S.J.; Spies, Thomas A.; Seidl, Rupert; Pabst, Robert J.; Olsen, Keith A.; Steel, E. Ashley

    2016-01-01

    Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests

  13. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon

    Science.gov (United States)

    Berner, L. T.; Law, B. E.

    2015-11-01

    Severe droughts occurred in the western United States during recent decades, and continued human greenhouse gas emissions are expected to exacerbate warming and drying in this region. We investigated the role of water availability in shaping forest carbon cycling and morphological traits in the eastern Cascade Mountains, Oregon, focusing on the transition from low-elevation, dry western juniper (Juniperus occidentalis) woodlands to higher-elevation, wetter ponderosa pine (Pinus ponderosa) and grand fir (Abies grandis) forests. We examined 12 sites in mature forests that spanned a 1300 mm yr-1 gradient in mean growing-year climate moisture index (CMIgy ), computed annually (1964 to 2013) as monthly precipitation minus reference evapotranspiration and summed October to September. Maximum leaf area, annual aboveground productivity, and aboveground live tree biomass increased with CMIgy (r2 = 0.67-0.88, P gy (r2 = 0.53, P gy and extensive insect outbreak. Traits of stress-tolerant juniper included short stature, high wood density for cavitation resistance, and high investment in water transport relative to leaf area. Species occupying wetter areas invested more resources in height growth in response to competition for light relative to investment in hydraulic architecture. Consequently, maximum tree height, leaf area : sapwood area ratio, and stem wood density were all correlated with CMIgy . The tight coupling of forest carbon cycling and species traits with water availability suggests that warmer and drier conditions projected for the 21st century could have significant biogeochemical, ecological, and social consequences in the Pacific Northwest.

  14. Population demography of an endangered lizard, the Blue Mountains Water Skink

    OpenAIRE

    Dubey, Sylvain; Sinsch, Ulrich; Dehling, Maximilian J; Chevalley, Maya; Shine, Richard

    2013-01-01

    BACKGROUND: Information on the age structure within populations of an endangered species can facilitate effective management. The Blue Mountains Water Skink (Eulamprus leuraensis) is a viviparous scincid lizard that is restricted to < 40 isolated montane swamps in south-eastern Australia. We used skeletochronology of phalanges (corroborated by mark-recapture data) to estimate ages of 222 individuals from 13 populations. RESULTS: These lizards grow rapidly, from neonatal size (30 mm snou...

  15. Unintended de-marketing manages visitor demand in Greater Blue Mountains World Heritage Area

    OpenAIRE

    Burgin, Shelley; Hardiman, Nigel

    2014-01-01

    Kotler and Levy (1971, p.76) introduced the term ‘de-marketing’, defined as ‘that aspect of marketing that deals with discouraging customers in general or a certain class of customers in particular on either a temporary or permanent basis’. Subsequently, Groff (1998) interpreted the concept in the context of parks and recreation administration. Recently, Armstrong and Kern (2011) used the concept to underpin their investigation of visitor demand management within the Greater Blue Mountains Wo...

  16. 77 FR 21797 - Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Ventura, Kern, San Luis...

    Science.gov (United States)

    2012-04-11

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R8-R-2011-N253: FXRS12650800000S3-112-FF08R00000] Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Ventura, Kern, San Luis... acres, primarily in Kern County and extending into San Luis Obispo and Ventura Counties. Blue Ridge NWR...

  17. THE MOUNTAIN REGIONS IN CONTEXT OF STRATEGY 2020

    Directory of Open Access Journals (Sweden)

    ANTONESCU Daniela

    2014-07-01

    Full Text Available The mountain regions in Romania and European Union represent a special territory of interest, with a huge economic, social, environmental and cultural potential. More, mountain area is considerate a natural-economic region and constitutes an important objective for regional development policy. The main sectors of mountain area are presented in agriculture and tourism fields that lead the key role in safeguarding the sensitive eco-system and thereby maintaining the general living and working space.Mountain areas should have a specific policy defined by the sustainable development principle, which meets the needs of the present without compromising the opportunities of future generations. The specific mountain policy aims to reduce the imbalance between favored and disadvantaged mountain regions, permanently marked by natural, economic, social, cultural and environmental constraints. In previous programming period, mountain regions among have profited from the intensive regional support, in specially, for constructing of and connecting them to fresh water and waste water networks, in particular for increasing of life quality. In context of 2020 Strategy, the Member States will concentrate investments on a small number of thematic objectives. In advanced regions, 60 % of funds will used for only two of these objectives (competitiveness of SME and research/innovation. The all less developed regions will received about 50% of Structural Funds In Romania, mountain representing 29.93% out of the total national surface and 20.14% from UAA (Utilised Agricultural Area of total national. The mountain territory has around 20% of the national population and is overlapping almost 100% with the Carpathian Mountains. Due to these conditions, Romania's regional development policy must take into account the specificities of mountain area, the problems they faced, and the requirements of 2020 Strategy.This paper presents the main aspects to be taken into account

  18. Genetic diversity of Haemonchus contortus isolated from sympatric wild blue sheep (Pseudois nayaur) and sheep in Helan Mountains, China.

    Science.gov (United States)

    Shen, Dong-Dong; Wang, Ji-Fei; Zhang, Dan-Yu; Peng, Zhi-Wei; Yang, Tian-Yun; Wang, Zhao-Ding; Bowman, Dwight D; Hou, Zhi-Jun; Liu, Zhen-Sheng

    2017-09-19

    Haemonchus contortus is known among parasitic nematodes as one of the major veterinary pathogens of small ruminants and results in great economic losses worldwide. Human activities, such as the sympatric grazing of wild with domestic animals, may place susceptible wildlife hosts at risk of increased prevalence and infection intensity with this common small ruminant parasite. Studies on phylogenetic factors of H. contortus should assist in defining the amount of the impact of anthropogenic factors on the extent of sharing of agents such as this nematode between domestic animals and wildlife. H. contortus specimens (n = 57) were isolated from wild blue sheep (Pseudois nayaur) inhabiting Helan Mountains (HM), China and additional H. contortus specimens (n = 20) were isolated from domestic sheep that were grazed near the natural habitat of the blue sheep. Complete ITS2 (second internal transcribed spacer) sequences and partial sequences of the nad4 (nicotinamide dehydrogenase subunit 4 gene) gene were amplified to determine the sequence variations and population genetic diversities between these two populations. Also, 142 nad4 haplotype sequences of H. contortus from seven other geographical regions of China were retrieved from database to further examine the H. contortus population structure. Sequence analysis revealed 10 genotypes (ITS2) and 73 haplotypes (nad4) among the 77 specimens, with nucleotide diversities of 0.007 and 0.021, respectively, similar to previous studies in other countries, such as Pakistan, Malaysia and Yemen. Phylogenetic analyses (BI, MP, NJ) of nad4 sequences showed that there were no noticeable boundaries among H. contortus populations from different geographical origin and population genetic analyses revealed that most of the variation (94.21%) occurred within H. contortus populations. All phylogenetic analyses indicated that there was little genetic differentiation but a high degree of gene flow among the H. contortus populations among

  19. Ecological and economic services provided by birds on Jamaican Blue Mountain coffee farms.

    Science.gov (United States)

    Kellermann, Jherime L; Johnson, Matthew D; Stercho, Amy M; Hackett, Steven C

    2008-10-01

    Coffee farms can support significant biodiversity, yet intensification of farming practices is degrading agricultural habitats and compromising ecosystem services such as biological pest control. The coffee berry borer (Hypothenemus hampei) is the world's primary coffee pest. Researchers have demonstrated that birds reduce insect abundance on coffee farms but have not documented avian control of the berry borer or quantified avian benefits to crop yield or farm income. We conducted a bird-exclosure experiment on coffee farms in the Blue Mountains, Jamaica, to measure avian pest control of berry borers, identify potential predator species, associate predator abundance and borer reductions with vegetation complexity, and quantify resulting increases in coffee yield. Coffee plants excluded from foraging birds had significantly higher borer infestation, more borer broods, and greater berry damage than control plants. We identified 17 potential predator species (73% were wintering Neotropical migrants), and 3 primary species composed 67% of migrant detections. Average relative bird abundance and diversity and relative resident predator abundance increased with greater shade-tree cover. Although migrant predators overall did not respond to vegetation complexity variables, the 3 primary species increased with proximity to noncoffee habitat patches. Lower infestation on control plants was correlated with higher total bird abundance, but not with predator abundance or vegetation complexity. Infestation of fruit was 1-14% lower on control plants, resulting in a greater quantity of saleable fruits that had a market value of US$44-$105/ha in 2005/2006. Landscape heterogeneity in this region may allow mobile predators to provide pest control broadly, despite localized farming intensities. These results provide the first evidence that birds control coffee berry borers and thus increase coffee yield and farm income, a potentially important conservation incentive for producers.

  20. Damage to the forest ecosystem on Blue Mountain from zinc smelting

    Science.gov (United States)

    Beyer, W.N.

    1988-01-01

    Emissions from two zinc smelters in Palmerton, Pennsylvania, have caused widespread destruction of the forest on Blue Mountain. There have been striking changes in the species composition and structure of the community of vascular plants, as well as population reductions of lichens, mosses, arthropods inhabiting the letter, and amphibians. Reductions in the populations of decomposers of organic matter have led to an accumulation of litter on the forest floor. Zinc poisoning was diagnosed in a white-tailed deer, and lead poisoning was diagnosed in a shrew. White-tailed deer also contained high concentrations of cadmium.

  1. The Steens Mountain (Oregon) geomagnetic polarity transition: 1. Directional history, duration of episodes, and rock magnetism

    Science.gov (United States)

    Mankinen, Edward A.; Prevot, M.; Gromme, C. Sherman; Coe, Robert S.

    1985-01-01

    The thick sequence of Miocene lava flows exposed on Steens Mountain in southeastern Oregon is well known for containing a detailed record of a reversed‐to‐normal geomagnetic polarity transition. Paleomagnetic samples were obtained from the sequence for a combined study of the directional and intensity variations recorded; the paleointensity study is reported in a companion paper. This effort has resulted in the first detailed history of total geomagnetic field behavior during a reversal of polarity. A comparison of the directional variation history of the reversed and normal polarity intervals on either side of the transition with the Holocene record has allowed an estimate of the duration of these periods to be made. These time estimates were then used to calculate accumulation rates for the volcanic sequence and thereby provide a means for estimating time periods within the transition itself. The polarity transition was found to consist of two phases, each with quite different characteristics. At the onset of the first phase, a one‐third decrease in magnetic field intensity may have preceded the first intermediate field directions by about 600 years. Changes in field direction were confined near the local north‐south vertical plane when the actual reversal in direction occurred and normal polarity directions may have been attained within 550±150 years. The end of the first phase of the transition was marked by a brief (possibly 100–300 years) period with normal polarity and a pretransitional intensity which suggests a quasi‐normal dipole field structure existed during this interval. The second phase of the transition was characterized by a return to very low field intensities with the changes in direction describing a long counterclockwise loop in contrast to the earlier narrowly constrained changes. This second phase lasted 2900±300 years, and both normal directions and intensities were recovered at the same time. Both directional and intensity

  2. Environmental contaminants in great blue herons (Ardea herodias) from the lower Columbia and Willamette Rivers, Oregon and Washington, USA

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.M.; Anthony, R.G.

    1999-12-01

    Great blue heron (Ardea herodias) eggs and prey items were collected from six colonies in Oregon and Washington, USA, during 1994 to 1995. Contaminant concentrations, reproductive success, and biomagnification factors were determined and effects of residue levels were measured by H4IIE rat hepatoma bioassays. Mean residue concentrations in heron eggs and prey items were generally low. However, elevated concentrations of polychlorinated biphenyls (PCBs) were detected in eggs and prey from Ross Island on the Willamette River. Biomagnification factors varied among sites. Sites were not significantly different in H4IIE tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs), although the TCDD-EQ for Karlson Island was 9 to 20 times greater than that of any other site. Large differences existed between toxic equivalents calculated from egg residue concentrations and TCDD-EQs, which indicated nonadditive interactions among the compounds. Tetrachlorodibenzo-p-dioxin equivalents and nest failure were positively correlated with TCDD concentration. Fledging and reproductive rates were similar to those determined for healthy heron populations, however, indicating that any adverse effects were occurring at the individual level and not at the colony level. Their results support the use of great blue herons as a biomonitor for contamination in aquatic ecosystems. Their relatively low sensitivity to organochlorine contaminants and high trophic position allows contaminant accumulation and biomagnification without immediate adverse effects that are often seen in other, more sensitive species.

  3. Landscape patterns of phenotypic variation and population structuring in a selfing grass, Elymus glaucus (blue wildrye).

    Science.gov (United States)

    Vicky J. Erickson; Nancy L. Mandel; Frank C. Sorensen

    2004-01-01

    Source-related phenotypic variance was investigated in a common garden study of populations of Elymus glaucus Buckley (blue wildrye) from the Blue Mountain Ecological Province of northeastern Oregon and adjoining Washington. The primary objective of this study was to assess geographic patterns of potentially adaptive differentiation in this self-...

  4. Climate Change Adaptation in the Carpathian Mountain Region

    NARCIS (Netherlands)

    Werners, Saskia Elisabeth; Szalai, Sándor; Zingstra, Henk; Kőpataki, Éva; Beckmann, Andreas; Bos, Ernst; Civic, Kristijan; Hlásny, Tomas; Hulea, Orieta; Jurek, Matthias; Koch, Hagen; Kondor, Attila Csaba; Kovbasko, Aleksandra; Lakatos, M.; Lambert, Stijn; Peters, Richard; Trombik, Jiří; De Velde, Van Ilse; Zsuffa, István

    2016-01-01

    The Carpathian mountain region is one of the most significant natural refuges on the European continent. It is home to Europe’s most extensive tracts of montane forest, the largest remaining virgin forest and natural mountain beech-fir forest ecosystems. Adding to the biodiversity are semi-natural

  5. Effects of Watershed Land Use and Geomorphology on Stream Baseflows in the Southern Blue Ridge Mountains

    Science.gov (United States)

    The current understanding of watershed hydrology does not provide insight into prediction of low-flow response to land-use change in developing regions like the Blue Ridge of north Georgia and western North Carolina. To address this problem, three separate but complementary stud...

  6. Wildlife Habitats in Managed Forests the Blue Mountains of Oregon and Washington

    Science.gov (United States)

    Jack Ward [Technical Editor] Thomas

    1979-01-01

    The Nation's forests are one of the last remaining natural habitats forterrestrial wildlife. Much of this vast forest resource has changed dramatically in the last 200 years and can no longer be considered wild. It is now managed for multiple use benefits, including timber production. Timber harvesting and roadbuilding now alter wildlife habitat more than any...

  7. Waste management outlook for mountain regions: Sources and solutions.

    Science.gov (United States)

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  8. 77 FR 36433 - Proposed Establishment of the Elkton Oregon Viticultural Area

    Science.gov (United States)

    2012-06-19

    ... enters from the south, through a gap in the mountain range near the town of Kellogg, and exits through a... are titled: (1) Kellogg Quadrangle, Oregon-Douglas Co., Provisional Edition 1990; (2) Old Blue... described below: (1) The beginning point is on the Kellogg map at the intersection of the T23S/T24S and R7W...

  9. Season of prescribed burn in ponderosa pine forests in eastern Oregon: impact on pine mortality.

    Science.gov (United States)

    Walter G. Thies; Douglas J. Westlind; Mark. Loewen

    2005-01-01

    A study of the effects of season of prescribed burn on tree mortality was established in mixed-age ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at the south end of the Blue Mountains near Burns, Oregon. Each of six previously thinned stands was subdivided into three experimental units and one of three treatments was randomly assigned to each:...

  10. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1990-01-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  11. Geodesy and contemporary strain in the Yucca Mountain region, Nevada

    International Nuclear Information System (INIS)

    Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.; Hunter, W.C.

    1997-01-01

    Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small uplifts also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data

  12. Modeling Urban Spatial Growth in Mountainous Regions of Western China

    Directory of Open Access Journals (Sweden)

    Guoping Huang

    2017-08-01

    Full Text Available The scale and speed of urbanization in the mountainous regions of western China have received little attention from researchers. These cities are facing rapid population growth and severe environmental degradation. This study analyzed historical urban growth trends in this mountainous region to better understand the interaction between the spatial growth pattern and the mountainous topography. Three major factors—slope, accessibility, and land use type—were studied in light of their relationships with urban spatial growth. With the analysis of historical data as the basis, a conceptual urban spatial growth model was devised. In this model, slope, accessibility, and land use type together create resistance to urban growth, while accessibility controls the sequence of urban development. The model was tested and evaluated using historical data. It serves as a potential tool for planners to envision and assess future urban growth scenarios and their potential environmental impacts to make informed decisions.

  13. Two new species of Eimeria (Apicomplexa: Eimeriidae) from the mountain beaver, Aplodontia rufa (Rodentia: Aplodontiidae), from Oregon.

    Science.gov (United States)

    McAllister, Chris T; Duszynski, Donald W; McKown, Richard D

    2013-06-01

    Two mountain beavers, Aplodontia rufa , were collected in Lincoln County, Oregon, and examined for coccidia. Both were infected with 2 new species of Eimeria. Oocysts of Eimeria chitkoae n. sp. were ellipsoidal with a bilayered wall and measured (L × W) 24.5 × 20.2 μm, with a shape index (SI) of 1.2. Both micropyle and oocyst residuum were absent, but a polar granule of several fragments was present. Sporocysts were ovoidal, 12.5 × 7.9 μm, SI was 1.6. Stieda and substieda bodies were present, but a parastieda body was absent; a sporocyst residuum was present, composed of a cluster of moderately coarse granules with many scattered fine granules. Stout sporozoites were 14.7 × 2.9 μm in situ, with spheroidal anterior and posterior refractile bodies. Oocysts of Eimeria lewisi n. sp. were ovoidal, with a smooth single-layered wall, and measured 13.7 × 7.8 μm, SI was 1.7. A micropyle and oocyst residuum were absent, but 1-2 polar granule(s) were present. Sporocysts were 6.6 × 4.2 μm, with SI of 1.6. A Stieda body was present, but substieda and parastieda bodies were absent; a sporocyst residuum was present, composed of a small cluster of several granules. Sporozoites were granular, 8.2 × 1.8 μm in situ, with a posterior refractile body. These are the first coccidians reported from the mountain beaver.

  14. Retinal vessel caliber and myopic retinopathy: the blue mountains eye study.

    Science.gov (United States)

    Li, Haitao; Mitchell, Paul; Rochtchina, Elena; Burlutsky, George; Wong, Tien Y; Wang, Jie Jin

    2011-12-01

    To evaluate changes in the retinal vasculature in eyes with myopic retinopathy. Population-based, cross-sectional study. Emmetropic and myopic participants from the Blue Mountains Eye Study baseline survey were included in this study. Myopia was defined as a refractive error of less than -1.00 diopter. Myopic retinopathy was defined if either staphyloma, lacquer crack, Fuchs' spot or chorioretinal atrophy were present in myopic eyes. Retinal vascular caliber was measured from fundus photographs using standardized methods. The association of retinal vascular caliber with myopic retinopathy was assessed using generalized estimating equation models. A total of 2598 eyes of 1409 subjects were selected from 3654 baseline participants, with 2076 emmetropic eyes (normal controls), 486 myopic eyes without myopic retinopathy (myopic controls) and 36 myopic eyes with myopic retinopathy (cases). After adjusting for age, gender, height, body mass index and blood pressure, eyes with myopic retinopathy had significantly narrower mean arteriolar (166.6μm) and venular caliber (213.3μm), compared to normal (188.1μm and 226.9μm, respectively) or myopic control eyes (190.4μm and 227.0μm, respectively) (all P retinopathy and the two control groups remained significant after additional adjustment for refraction (all P retinopathy is associated with attenuation of retinal vessels.

  15. Regional climate change: Precipitation variability in mountainous part of Bulgaria

    Directory of Open Access Journals (Sweden)

    Nikolova Nina

    2007-01-01

    Full Text Available The aim of paper is to analyze temporal and spatial changes in monthly precipitation as well as extremely dry and wet months in mountainous part of Bulgaria. Study precipitation variability in mountainous part is very important because this part is the region where the rivers take its source from. Extreme values of monthly precipitation are important information for better understanding of the whole variability and trends in precipitation time series. The mean investigated period is 1951-2005 and the reference period is so called temporary climate - 1961- 1990. Extreme dry precipitation months are defined as a month whose monthly precipitation is lower than 10% of gamma distribution in the reference period 1961-1990. Extreme wet months are determined with respect to 90% percentiles of gamma distribution (monthly precipitation is higher than 90%. The result of the research show that in mountainous part of Bulgaria during 1950s and 1960s number of extremely wet months is higher than number of dry months. Decreasing of monthly precipitation is a feature for 1980s. This dry period continues till 2004. The years 2000 makes impression as driest year in high mountains with about 7 extremely dry months. The second dry year is 1993. The negative precipitation anomaly is most clearly determined during last decade at study area. The present research points out that fluctuation of precipitation in mountainous part of Bulgaria are coinciding with regional and global climate trends.

  16. Forested communities of the pine mountain region, Georgia, USA

    Science.gov (United States)

    Robert Floyd; Robert Carter

    2013-01-01

    Seven landscape scale communities were identified in the Pine Mountain region having a mixture of Appalachian, Piedmont, and Coastal Plain species. The diagnostic environmental variables included elevation, B-horizon depth, A-horizon silt, topographic relative moisture index, and A-horizon potassium (K).

  17. Field guide to diseases & insects of the Rocky Mountain Region

    Science.gov (United States)

    Forest Health Protection. Rocky Mountain Region

    2010-01-01

    This field guide is a forest management tool for field identification of biotic and abiotic agents that damage native trees in Colorado, Kansas, Nebraska, South Dakota, and Wyoming, which constitute the USDA Forest Service's Rocky Mountain Region. The guide focuses only on tree diseases and forest insects that have significant economic, ecological, and/ or...

  18. Abundance, distribution and conservation status of Siberian ibex, Marco Polo and Blue sheep in Karakoram-Pamir mountain area

    Directory of Open Access Journals (Sweden)

    Babar Khan

    2016-07-01

    Full Text Available This study was carried out to investigate abundance, distribution, structure and conservation status of three major ungulate species viz., Capra sibirica, Pseudois nayaur and Ovis ammon polii, in the Karakoram-Pamir mountain area between China and Pakistan. Results showed that the entire study area had a scattered but worthwhile population of Siberian ibex, Blue sheep and Marco Polo sheep, except Khunjerab Pass, Koksil-Pateshek and Barkhun areas of Khunjerab National Park (KNP. Large groups of Blue sheep were sighted in Shimshal and Barkhun valleys (KNP but it did not show up in the Muztagh part of Taxkorgan Nature Reserve (TNR in China. Despite scarcity of natural vegetation and extreme climate, estimated abundance of ibex and Marco Polo sheep was not different from that in Protected Areas of Nepal, China, and India, except for Blue sheep. Marco Polo sheep, Blue sheep and Snow leopard roam across international borders among China, Pakistan and other adjacent countries. Illegal hunting and poaching, removal of natural vegetation for fodder and firewood, and over grazing of pastures by livestock were main habitat issues whereas, border fencing for security reasons, has been a major impediment restricting free movement of the wildlife across international borders. A science based conservation and development strategy is proposed to restore viable wildlife populations and maintain ecological flows of Karakoram Pamir Mountains to benefit both the wild species and the local human communities.

  19. Winter climate variability and classification in the Bulgarian Mountainous Regions

    International Nuclear Information System (INIS)

    Petkova, Nadezhda; Koleva, Ekaterina

    2004-01-01

    The problems of snowiness and thermal conditions of winters are of high interest of investigations because of the more frequent droughts, occurred in the region. In the present study an attempt to reveal tendencies existing during the last 70 years of 20 th century in the course winter precipitation and,temperature as well as in some of the snow cover parameters. On the base of mean winter air temperature winters in the Bulgarian mountains were analyzed and classified. The main results of the study show that winter precipitation has decrease tendencies more significant in the highest parts of the mountains. On the other hand winter air temperature increases. It shows a relatively well-established maximum at the end of the studied period. In the Bulgarian mountains normal winters are about 35-40% of all winters. (Author)

  20. Estimating evapotranspiration in the central mountain region of Veracruz, Mexico

    OpenAIRE

    Ballinas, Mónica; Esperón-Rodríguez, Manuel; Barradas, Víctor L

    2015-01-01

    The global, regional and local hydrological cycle is strongly linked to vegetation distribution. The hydrological cycle is composed by precipitation, infiltration, runoff, transpiration and evaporation. Evaporation is influenced by high temperatures, high winds and low relative humidity. This work is focused on the study of evapotranspiration (ET) as the main variable of water loss in the water balance in the central mountain region of Veracruz, Mexico. ET was estimated using the Penman-Monte...

  1. Blue Box Plus Quinte regional recycling demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The Blue Box Plus recycling program was established in September 1990 in the Quinte region of Ontario. The program was intended to develop the necessary operational information so that the existing program could expand to include mixed plastics, corrugated cardboard, and boxboard. Over 33,000 recycling boxes were distributed over an area covering 15 municipalities with a population base of 95,000. The program showed the willingness of the public to participate in recycling, but advertising and promotion of the program were critical for success. Separation of the recycled materials on the collection trucks was found to be a viable approach and more efficient than sorting at the recycling plant. Adding new materials to be recycled could be done efficiently, and operating costs were in line with those for other programs collecting fewer materials. A cooperative market development with industrial players opened up a new and expanding market for boxboard. 6 figs., 9 tabs.

  2. Plutons and accretionary episodes of the Klamath Mountains, California and Oregon

    Science.gov (United States)

    Irwin, William P.; Wooden, Joseph L.

    1999-01-01

    The Klamath Mountains consist of various accreted terranes and include many plutons that range in composition from gabbro to granodiorite. Some of the plutons (preaccretionary plutons) were parts of terranes before the terranes accreted; others (accretionary plutons) intruded during or after the accretion of their host terrane(s). This report attempts to (1) graphically illustrate how the Klamath Mountains grew by the accretion of allochthonous oceanic terranes during early Paleozoic to Cretaceous times, (2) identify the plutons as either preaccretionary or accretionary, and (3) genetically relate the plutonic intrusions to specific accretionary episodes. The eight accretionary episodes portrayed in this report are similar to those shown by Irwin and Mankinen (1998) who briefly described the basis for the timing of the episodes and who illustrated the ~110 degrees of clockwise rotation of the Klamath Mountains since Early Devonian time. Each episode is named for the accreting terrane. In all episodes (Figs. 1-8), the heavy black line represents a fault that separates the accreting oceanic rocks on the left from earlier accreted terranes on the right. The preaccretionary plutons are shown within the accreting oceanic crustal rocks to the left of the heavy black line, and the accretionary plutons in most instances are shown intruding previously accreted terranes to the right. Episodes earlier than the Central Metamorphic episode (Fig. 1), and that may have been important in the formation of the early Paleozoic nucleous of the province (the Eastern Klamath terrane), are not known. The 'Present Time' distribution of the accreted terranes and plutons is shown at a large scale in Figure 9. The schematic vertical section (Fig. 10) depicts the terranes as a stack of horizontal slabs that include or are intruded by vertical plutons. Note that at their base the ~170 Ma preaccretionary plutons of the Western Hayfork subterrane are truncated by the ~164 Ma Salt Creek

  3. Snow hydrology in Mediterranean mountain regions: A review

    Science.gov (United States)

    Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; López-Moreno, Juan Ignacio; Drapeau, Laurent; Page, Michel Le; Escadafal, Richard

    2017-08-01

    Water resources in Mediterranean regions are under increasing pressure due to climate change, economic development, and population growth. Many Mediterranean rivers have their headwaters in mountainous regions where hydrological processes are driven by snowpack dynamics and the specific variability of the Mediterranean climate. A good knowledge of the snow processes in the Mediterranean mountains is therefore a key element of water management strategies in such regions. The objective of this paper is to review the literature on snow hydrology in Mediterranean mountains to identify the existing knowledge, key research questions, and promising technologies. We collected 620 peer-reviewed papers, published between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western United States, the central Chilean Andes, and the Mediterranean basin. A large amount of studies in the western United States form a strong scientific basis for other Mediterranean mountain regions. We found that: (1) the persistence of snow cover is highly variable in space and time but mainly controlled by elevation and precipitation; (2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end of the snow season and during heat waves and rain-on-snow events; (3) the snow densification rates are higher in these regions when compared to other climate regions; and (4) the snow sublimation is an important component of snow ablation, especially in high-elevation regions. Among the pressing issues is the lack of continuous ground observation in high-elevation regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic information on snowpack variability. A better spatial characterization of snow cover can be achieved by combining ground observations with remotely sensed snow data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable information that

  4. Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States

    Science.gov (United States)

    Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.

    2002-11-01

    The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.

  5. Cultural ecosystem services of mountain regions: Modelling the aesthetic value

    OpenAIRE

    Schirpke, Uta; Timmermann, Florian; Tappeiner, Ulrike; Tasser, Erich

    2016-01-01

    Mountain regions meet an increasing demand for pleasant landscapes, offering many cultural ecosystem services to both their residents and tourists. As a result of global change, land managers and policy makers are faced with changes to this landscape and need efficient evaluation techniques to assess cultural ecosystem services. This study provides a spatially explicit modelling approach to estimating aesthetic landscape values by relating spatial landscape patterns to human perceptions via a...

  6. Middle to Late Jurassic Tectonic Evolution of the Klamath Mountains, California-Oregon

    Science.gov (United States)

    Harper, Gregory D.; Wright, James E.

    1984-12-01

    The geochronology, stratigraphy, and spatial relationships of Middle and Late Jurassic terranes of the Klamath Mountains strongly suggest that they were formed in a single west-facing magmatic arc built upon older accreted terranes. A Middle Jurassic arc complex is represented by the volcanic rocks of the western Hayfork terrane and consanguineous dioritic to peridotitic plutons. New U/Pb zircon dates indicate that the Middle Jurassic plutonic belt was active from 159 to 174 Ma and is much more extensive than previously thought. This plutonic belt became inactive just as the 157 Ma Josephine ophiolite, which lies west and structurally below the Middle Jurassic arc, was generated. Late Jurassic volcanic and plutonic arc rocks (Rogue Formation and Chetco intrusive complex) lie outboard and structurally beneath the Josephine ophiolite; U/Pb and K/Ar age data indicate that this arc complex is coeval with the Josephine ophiolite. Both the Late Jurassic arc complex and the Josephine ophiolite are overlain by the "Galice Formation," a Late Jurassic flysch sequence, and are intruded by 150 Ma dikes and sills. The following tectonic model is presented that accounts for the age and distribution of these terranes: a Middle Jurassic arc built on older accreted terranes undergoes rifting at 160 Ma, resulting in formation of a remnant arc/back-arc basin/island arc triad. This system collapsed during the Late Jurassic Nevadan Orogeny (150 Ma) and was strongly deformed and stacked into a series of east-dipping thrust sheets. Arc magmatism was active both before and after the Nevadan Orogeny, but virtually ceased at 140 Ma.

  7. Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington

    Science.gov (United States)

    Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.

    2014-01-01

    A three-dimensional numerical model of groundwater flow was constructed for the Columbia Plateau Regional Aquifer System (CPRAS), Idaho, Oregon, and Washington, to evaluate and test the conceptual model of the system and to evaluate groundwater availability. The model described in this report can be used as a tool by water-resource managers and other stakeholders to quantitatively evaluate proposed alternative management strategies and assess the long‑term availability of groundwater. The numerical simulation of groundwater flow in the CPRAS was completed with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater.

  8. A simple method to predict regional fish abundance: an example in the McKenzie River Basin, Oregon

    Science.gov (United States)

    D.J. McGarvey; J.M. Johnston

    2011-01-01

    Regional assessments of fisheries resources are increasingly called for, but tools with which to perform them are limited. We present a simple method that can be used to estimate regional carrying capacity and apply it to the McKenzie River Basin, Oregon. First, we use a macroecological model to predict trout densities within small, medium, and large streams in the...

  9. Water beetles in mountainous regions in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    MO. Segura

    Full Text Available Inventories provide information on the state of biodiversity at a site or for a geographic region. Species inventories are the basis for systematic study and critical to ecology, biogeography and identification of biological indicators and key species. They also provide key information for assessments of environmental change, for natural resource conservation or recovery of degraded ecosystems. Thus, inventories play a key role in planning strategies for conservation and sustainable use. This study aimed to inventory the fauna of water beetles, larvae and adults, in two mountainous regions in the state of São Paulo, in Serra da Mantiqueira (Parque Estadual de Campos do Jordão and Pindamonhangaba region and in Serra do Mar (Santa Virgínia and Picinguaba Divisions as well as to generate information about the habitats used by the different genera recorded. Specimens were collected in lotic and lentic systems, between the years 2005 to 2010. In total 14,492 specimens were collected and 16 families and 50 genera of Coleoptera were identified. This study in mountainous regions showed a significant portion of the faunal composition of South America and the state of São Paulo. The composition of the fauna, in terms of richness and abundance by family, indicated the predominance of Elmidae, followed by Hydrophilidae and Dytiscidae. Despite the diversity found, the results of estimated richness indicated the need for additional sampling effort for both regions, since the curves of estimated richness did not reach an asymptote, suggesting that new species can be found in future surveys.

  10. A pilot application of regional scale risk assessment to the forestry management of the upper Grand Ronde watershed, Oregon

    Science.gov (United States)

    Suzanne M. Anderson; Wayne G. Landis

    2012-01-01

    An issue in forestry management has been the integration of a variety of different information into a threat analysis or risk assessment. In this instance, regional scale risk assessment was applied to the Upper Grande Ronde watershed in eastern Oregon to examine the potential of risk assessment for use in the management of broad landscapes. The site was a focus of...

  11. Research on Structure Innovation of Agricultural Organization in China's Southwestern Mountainous Regions

    OpenAIRE

    Du, Qiang; Luo, Min; Wang, Ping

    2012-01-01

    Taking agricultural organization in China's southwestern mountainous regions as research object, on the basis of analysis of the status quo of agricultural organization development in China's southwestern mountainous regions, we use related theoretical knowledge on economics and organization science, we probe into the process of innovation and mechanism of action concerning the structure of agricultural organization in China's southwestern mountainous regions over the past 30 years. Finally w...

  12. Improving Land Surface Temperature Retrievals over Mountainous Regions

    Directory of Open Access Journals (Sweden)

    Virgílio A. Bento

    2017-01-01

    Full Text Available Algorithms for Land Surface Temperature (LST retrieval from infrared measurements are usually sensitive to the amount of water vapor present in the atmosphere. The Satellite Application Facilities on Climate Monitoring and Land Surface Analysis (CM SAF and LSA SAF are currently compiling a 25 year LST Climate data record (CDR, which uses water vapor information from ERA-Int reanalysis. However, its relatively coarse spatial resolution may lead to systematic errors in the humidity profiles with implications in LST, particularly over mountainous areas. The present study compares LST estimated with three different retrieval algorithms: a radiative transfer-based physical mono-window (PMW, a statistical mono-window (SMW, and a generalized split-windows (GSW. The algorithms were tested over the Alpine region using ERA-Int reanalysis data and relied on the finer spatial scale Consortium for Small-Scale Modelling (COSMO model data as a reference. Two methods were developed to correct ERA-Int water vapor misestimation: (1 an exponential parametrization of total precipitable water (TPW appropriate for SMW/GSW; and (2 a level reduction method to be used in PMW. When ERA-Int TPW was used, the algorithm missed the right TPW class in 87% of the cases. When the exponential parametrization was used, the missing class rate decreased to 9%, and when the level reduction method was applied, the LST corrections went up to 1.7 K over the study region. Overall, the correction for pixel orography in TPW leads to corrections in LST estimations, which are relevant to ensure that long-term LST records meet climate requirements, particularly over mountainous regions.

  13. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    Science.gov (United States)

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  14. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States

    Science.gov (United States)

    Katie Price; C. Jackson; Albert Parker; Trond Reitan; John Dowd; Mike Cyterski

    2011-01-01

    Land use and physiographic variability influence stream low flows, yet their interactions and relative influence remain unresolved. Our objective was to assess the influence of land use and watershed geomorphic characteristics on low-flow variability in the southern Blue Ridge Mountains of North Carolina and Georgia. Ten minute interval discharge data for 35 streams (...

  15. A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations

    Science.gov (United States)

    Wrzesien, Melissa L.; Durand, Michael T.; Pavelsky, Tamlin M.; Kapnick, Sarah B.; Zhang, Yu; Guo, Junyi; Shum, C. K.

    2018-02-01

    Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain 60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.

  16. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Directory of Open Access Journals (Sweden)

    Michelle C Agne

    Full Text Available Lodgepole pine (Pinus contorta forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its

  17. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Science.gov (United States)

    Agne, Michelle C; Shaw, David C; Woolley, Travis J; Queijeiro-Bolaños, Mónica E

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to

  18. Manganese Deposits in the Artillery Mountains Region, Mohave County, Arizona

    Science.gov (United States)

    Lasky, S.G.; Webber, B.N.

    1944-01-01

    The manganese deposits of the Artillery Mountains region lie within an area of about 25 square miles between the Artillery and Rawhide Mountains, on the west side of the Bill Williams River in west-central Arizona. The richest croppings are on the northeast side of this area, among the foothills of the Artillery Mountains. They are 6 to 10 miles from Alamo. The nearest shipping points are Congress, about 50 miles to the east, and Aguila, about 50 miles to the southeast. The principal manganese deposits are part of a sequence of alluvial fan and playa material, probably of early Pliocene age, which were laid down in a fault basin. They are overlain by later Pliocene (?) basalt flows and sediments and by Quaternary basalt and alluvium. The Pliocene (?) rocks are folded into a shallow composite S1ncline ttat occupies the valley between the Artillery and Rawhide Mountains, and the folded rocks along either side of the valley, together with the overlying Quaternary basalt, are broken by faults that have produced a group of horsts, grabens, and step-fault blocks. The manganiferous beds, lie at two zones, 750 to 1,000 feet apart stratigraphically, each of which is locally as much as 300 to 400 feet thick. The main, or upper, zone contains three kinds of ore - sandstone ore, clay ore, and 'hard' ore. The sandstone and clay ores differ from the associated barren sandstone and clay, with which they are interlayered and into which they grade, primarily in containing a variable proportion of amorphous manganese oxides, besides iron oxides and clayey material such as are present in the barren beds. The 'hard' ore is sandstone that has been impregnated with opal and calcite and in which the original amorphous manganese oxides have been largely converted to psilomelane and manganite. The average manganese content of the sandstone and clay ores is between 3 and 4 percent and that of the 'hard' ore is between 6 and 7 percent. The ore contains an average of 3 percent of iron, 0

  19. Regional economic impact assessment: Evaluating remedial alternatives for the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    Harrison, David; Coughlin, Conor; Hogan, Dylan; Edwards, Deborah A; Smith, Benjamin C

    2018-01-01

    The present paper describes a methodology for evaluating impacts of Superfund remedial alternatives on the regional economy in the context of a broader sustainability evaluation. Although economic impact methodology is well established, some applications to Superfund remedial evaluation have created confusion because of seemingly contradictory results. This confusion arises from failure to be explicit about 2 opposing impacts of remediation expenditures: 1) positive regional impacts of spending additional money in the region and 2) negative regional impacts of the need to pay for the expenditures (and thus forgo other expenditures in the region). The present paper provides a template for economic impact assessment that takes both positive and negative impacts into account, thus providing comprehensive estimates of net impacts. The paper also provides a strategy for identifying and estimating major uncertainties in the net impacts. The recommended methodology was applied at the Portland Harbor Superfund Site, located along the Lower Willamette River in Portland, Oregon, USA. The US Environmental Protection Agency (USEPA) developed remedial alternatives that it estimated would cost up to several billion dollars, with construction durations possibly lasting decades. The economic study estimated regional economic impacts-measured in terms of gross regional product (GRP), personal income, population, and employment-for 5 of the USEPA alternatives relative to the "no further action" alternative. Integr Environ Assess Manag 2018;14:32-42. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  20. Uncertainty of future projections of species distributions in mountainous regions.

    Directory of Open Access Journals (Sweden)

    Ying Tang

    Full Text Available Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline

  1. Abiotic and Biotic Soil Characteristics in Old Growth Forests and Thinned or Unthinned Mature Stands in Three Regions of Oregon

    Directory of Open Access Journals (Sweden)

    David A. Perry

    2012-09-01

    Full Text Available We compared forest floor depth, soil organic matter, soil moisture, anaerobic mineralizable nitrogen (a measure of microbial biomass, denitrification potential, and soil/litter arthropod communities among old growth, unthinned mature stands, and thinned mature stands at nine sites (each with all three stand types distributed among three regions of Oregon. Mineral soil measurements were restricted to the top 10 cm. Data were analyzed with both multivariate and univariate analyses of variance. Multivariate analyses were conducted with and without soil mesofauna or forest floor mesofauna, as data for those taxa were not collected on some sites. In multivariate analysis with soil mesofauna, the model giving the strongest separation among stand types (P = 0.019 included abundance and richness of soil mesofauna and anaerobic mineralizable nitrogen. The best model with forest floor mesofauna (P = 0.010 included anaerobic mineralizable nitrogen, soil moisture content, and richness of forest floor mesofauna. Old growth had the highest mean values for all variables, and in both models differed significantly from mature stands, while the latter did not differ. Old growth also averaged higher percent soil organic matter, and analysis including that variable was significant but not as strong as without it. Results of the multivariate analyses were mostly supported by univariate analyses, but there were some differences. In univariate analysis, the difference in percent soil organic matter between old growth and thinned mature was due to a single site in which the old growth had exceptionally high soil organic matter; without that site, percent soil organic matter did not differ between old growth and thinned mature, and a multivariate model containing soil organic matter was not statistically significant. In univariate analyses soil mesofauna had to be compared nonparametrically (because of heavy left-tails and differed only in the Siskiyou Mountains, where

  2. Spatial variability of the response to climate change in regional groundwater systems -- examples from simulations in the Deschutes Basin, Oregon

    Science.gov (United States)

    Waibel, Michael S.; Gannett, Marshall W.; Chang, Heejun; Hulbe, Christina L.

    2013-01-01

    We examine the spatial variability of the response of aquifer systems to climate change in and adjacent to the Cascade Range volcanic arc in the Deschutes Basin, Oregon using downscaled global climate model projections to drive surface hydrologic process and groundwater flow models. Projected warming over the 21st century is anticipated to shift the phase of precipitation toward more rain and less snow in mountainous areas in the Pacific Northwest, resulting in smaller winter snowpack and in a shift in the timing of runoff to earlier in the year. This will be accompanied by spatially variable changes in the timing of groundwater recharge. Analysis of historic climate and hydrologic data and modeling studies show that groundwater plays a key role in determining the response of stream systems to climate change. The spatial variability in the response of groundwater systems to climate change, particularly with regard to flow-system scale, however, has generally not been addressed in the literature. Here we simulate the hydrologic response to projected future climate to show that the response of groundwater systems can vary depending on the location and spatial scale of the flow systems and their aquifer characteristics. Mean annual recharge averaged over the basin does not change significantly between the 1980s and 2080s climate periods given the ensemble of global climate models and emission scenarios evaluated. There are, however, changes in the seasonality of groundwater recharge within the basin. Simulation results show that short-flow-path groundwater systems, such as those providing baseflow to many headwater streams, will likely have substantial changes in the timing of discharge in response changes in seasonality of recharge. Regional-scale aquifer systems with flow paths on the order of many tens of kilometers, in contrast, are much less affected by changes in seasonality of recharge. Flow systems at all spatial scales, however, are likely to reflect

  3. Neotectonic inversion of the Hindu Kush-Pamir mountain region

    Science.gov (United States)

    Ruleman, C.A.

    2011-01-01

    The Hindu Kush-Pamir region of southern Asia is one of Earth's most rapidly deforming regions and it is poorly understood. This study develops a kinematic model based on active faulting in this part of the Trans-Himalayan orogenic belt. Previous studies have described north-verging thrust faults and some strike-slip faults, reflected in the northward-convex geomorphologic and structural grain of the Pamir Mountains. However, this structural analysis suggests that contemporary tectonics are changing the style of deformation from north-verging thrusts formed during the initial contraction of the Himalayan orogeny to south-verging thrusts and a series of northwest-trending, dextral strike-slip faults in the modern transpressional regime. These northwest-trending fault zones are linked to the major right-lateral Karakoram fault, located to the east, as synthetic, conjugate shears that form a right-stepping en echelon pattern. Northwest-trending lineaments with dextral displacements extend continuously westward across the Hindu Kush-Pamir region indicating a pattern of systematic shearing of multiple blocks to the northwest as the deformation effects from Indian plate collision expands to the north-northwest. Locally, east-northeast- and northwest-trending faults display sinistral and dextral displacement, respectively, yielding conjugate shear pairs developed in a northwest-southeast compressional stress field. Geodetic measurements and focal mechanisms from historical seismicity support these surficial, tectono-morphic observations. The conjugate shear pairs may be structurally linked subsidiary faults and co-seismically slip during single large magnitude (> M7) earthquakes that occur on major south-verging thrust faults. This kinematic model provides a potential context for prehistoric, historic, and future patterns of faulting and earthquakes.

  4. Timber resource statistics for Oregon.

    Science.gov (United States)

    Sally Campbell; Paul Dunham; David. Azuma

    2004-01-01

    This report is a summary of timber resource statistics for all ownerships in Oregon. Data were collected as part of several statewide multiresource inventories, including those conducted by the Pacific Northwest Region (Region 6) on National Forest System lands in Oregon, by the Bureau of Land Management (BLM) on BLM lands in western Oregon, and by the Pacific...

  5. [Gerontology in rural and mountains regions aged people in the country and in mountain regions (author's transl)].

    Science.gov (United States)

    Gsell, O

    1977-04-01

    The gerontologic problems of people living in the country and in mountain regions always were neglected in comparison to those of townsmen. In the last decade an important structural change has happened, caused on the one side by the fact that more and more people leave the country for the towns, and by the problem of overaged persons in the country; on the other side this change is a consequence of improvement by modern technical acquisitions (more agricultural machines, silos), living hygiene and the tourism. The living conditions in the past and today in Switzerland are shown, referring to various publications. The ecological change also hits the aged people, financially by revenues, completion of private help organizations, rebuilding of homes for the aged persons in every village and regional nursing home, as well as household helps for those elderly people who still live in the country in their own houses. The qualitative differences between living conditions in the country and in town will in the near future be equalized--which is especially mentionned.

  6. Characterization of Groundwater Quality Based on Regional Geologic Setting in the Piedmont and Blue Ridge Physiographic Provinces, North Carolina

    Science.gov (United States)

    Harden, Stephen L.; Chapman, Melinda J.; Harned, Douglas A.

    2009-01-01

    A compilation of groundwater-quality data collected as part of two U.S. Geological Survey studies provides a basis for understanding the ambient geochemistry related to geologic setting in the Piedmont and Blue Ridge Physiographic Provinces (hereafter referred to as Piedmont and Mountains Provinces) of North Carolina. Although the geology is complex, a grouping of the sampled wells into assemblages of geologic units described as 'geozones' provides a basis for comparison across the region. Analyses of these two data sets provide a description of water-quality conditions in bedrock aquifers of the Piedmont and Mountains Provinces of North Carolina. Analyzed data were collected between 1997 and 2008 from a network of 79 wells representing 8 regional geozones distributed throughout the Piedmont and Mountains Provinces. This area has experienced high rates of population growth and an increased demand for water resources. Groundwater was used by about 34 percent of the population in the 65 counties of this region in 2005. An improved understanding of the quality and quantity of available groundwater resources is needed to plan effectively for future growth and development. The use of regional geologic setting to characterize groundwater-quality conditions in the Piedmont and Mountains Provinces is the focus of this investigation. Data evaluation included an examination of selected properties and the ionic composition of groundwater in the geozones. No major differences in overall ionic chemistry of groundwater among the geozones were evident with the data examined. Variability in the cationic and anionic composition of groundwater within a particular geozone appeared to reflect local differences in lithologic setting, hydrologic and geochemical conditions, and(or) land-use effects. The most common exceedances of the drinking-water criteria (in accordance with Federal and State water-quality standards) occurred for radon, pH, manganese, iron, and zinc. Radon had the most

  7. Ground-water pumpage in the Willamette lowland regional aquifer system, Oregon and Washington, 1990

    Science.gov (United States)

    Collins, Charles A.; Broad, Tyson M.

    1996-01-01

    Ground-water pumpage for 1990 was estimated for an area of about 5,700 square miles in northwestern Oregon and southwestern Washington as part of the Puget-Willamette Lowland Regional Aquifer System Analysis study. The estimated total ground-water pumpage in 1990 was about 340,000 acre-feet. Ground water in the study area is pumped mainly from Quaternary sediment; lesser amounts are withdrawn from Tertiary volcanic materials. Large parts of the area are used for agriculture, and about two and one-half times as much ground water was pumped for irrigation as for either public- supply or industrial needs. Estimates of ground- water pumpage for irrigation in the central part of the Willamette Valley were generated by using image-processing techniques and Landsat Thematic Mapper data. Field data and published reports were used to estimate pumpage for irrigation in other parts of the study area. Information on public- supply and industrial pumpage was collected from Federal, State, and private organizations and individuals.

  8. Groundwater availability of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    Science.gov (United States)

    Vaccaro, J.J.; Kahle, S.C.; Ely, D.M.; Burns, E.R.; Snyder, D.T.; Haynes, J.V.; Olsen, T.D.; Welch, W.B.; Morgan, D.S.

    2015-09-22

    The Columbia Plateau Regional Aquifer System (CPRAS) covers about 44,000 square miles of southeastern Washington, northeastern Oregon, and western Idaho. The area supports a $6-billion per year agricultural industry, leading the Nation in production of apples, hops, and eight other commodities. Groundwater pumpage and surface-water diversions supply water to croplands that account for about 5 percent of the Nation’s irrigated lands. Groundwater also is the primary source of drinking water for the more than 1.3 million people in the study area. Increasing competitive demands for water for municipal, fisheries/ecosystems, agricultural, domestic, hydropower, and recreational uses must be met by additional groundwater withdrawals and (or) by changes in the way water resources are allocated and used throughout the hydrologic system. As of 2014, most surface-water resources in the study area were either over allocated or fully appropriated, especially during the dry summer season. In response to continued competition for water, numerous water-management activities and concerns have gained prominence: water conservation, conjunctive use, artificial recharge, hydrologic implications of land-use change, pumpage effects on streamflow, and effects of climate variability and change. An integrated understanding of the hydrologic system is important in order to implement effective water-resource management strategies that address these concerns.

  9. The Impact Snow Albedo Feedback over Mountain Regions as Examined through High-Resolution Regional Climate Change Experiments over the Rocky Mountains

    Science.gov (United States)

    Letcher, Theodore

    As the climate warms, the snow albedo feedback (SAF) will play a substantial role in shaping the climate response of mid-latitude mountain regions with transient snow cover. One such region is the Rocky Mountains of the western United States where large snow packs accumulate during the winter and persist throughout the spring. In this dissertation, the Weather Research and Forecast model (WRF) configured as a regional climate model is used to investigate the role of the SAF in determining the regional climate response to forced anthropogenic climate change. The regional effects of climate change are investigated by using the pseudo global warming (PGW) framework, which is an experimental configuration in a which a mean climate perturbation is added to the boundary forcing of a regional model, thus preserving the large-scale circulation entering the region through the model boundaries and isolating the mesoscale climate response. Using this framework, the impact of the SAF on the regional energetics and atmospheric dynamics is examined and quantified. Linear feedback analysis is used to quantify the strength of the SAF over the Headwaters region of the Colorado Rockies for a series of high-resolution PGW experiments. This technique is used to test sensitivity of the feedback strength to model resolution and land surface model. Over the Colorado Rockies, and integrated over the entire spring season, the SAF strength is largely insensitive to model resolution, however there are more substantial differences on the sub-seasonal (monthly) timescale. In contrast, the SAF strength over this region is very sensitive to choice of land surface model. These simulations are also used to investigate how spatial and diurnal variability in warming caused by the SAF influences the dynamics of thermally driven mountain-breeze circulations. It is shown that, the SAF causes stronger daytime mountain-breeze circulations by increasing the warming on the mountains slopes thus enhancing

  10. Neogene fallout tuffs from the Yellowstone hotspot in the Columbia Plateau region, Oregon, Washington and Idaho, USA.

    Directory of Open Access Journals (Sweden)

    Barbara P Nash

    Full Text Available Sedimentary sequences in the Columbia Plateau region of the Pacific Northwest ranging in age from 16-4 Ma contain fallout tuffs whose origins lie in volcanic centers of the Yellowstone hotspot in northwestern Nevada, eastern Oregon and the Snake River Plain in Idaho. Silicic volcanism began in the region contemporaneously with early eruptions of the Columbia River Basalt Group (CRBG, and the abundance of widespread fallout tuffs provides the opportunity to establish a tephrostratigrahic framework for the region. Sedimentary basins with volcaniclastic deposits also contain diverse assemblages of fauna and flora that were preserved during the Mid-Miocene Climatic Optimum, including Sucker Creek, Mascall, Latah, Virgin Valley and Trout Creek. Correlation of ashfall units establish that the lower Bully Creek Formation in eastern Oregon is contemporaneous with the Virgin Valley Formation, the Sucker Creek Formation, Oregon and Idaho, Trout Creek Formation, Oregon, and the Latah Formation in the Clearwater Embayment in Washington and Idaho. In addition, it can be established that the Trout Creek flora are younger than the Mascall and Latah flora. A tentative correlation of a fallout tuff from the Clarkia fossil beds, Idaho, with a pumice bed in the Bully Creek Formation places the remarkably well preserved Clarkia flora assemblage between the Mascall and Trout Creek flora. Large-volume supereruptions that originated between 11.8 and 10.1 Ma from the Bruneau-Jarbidge and Twin Falls volcanic centers of the Yellowstone hotspot in the central Snake River Plain deposited voluminous fallout tuffs in the Ellensberg Formation which forms sedimentary interbeds in the CRBG. These occurrences extend the known distribution of these fallout tuffs 500 km to the northwest of their source in the Snake River Plain. Heretofore, the distal products of these large eruptions had only been recognized to the east of their sources in the High Plains of Nebraska and Kansas.

  11. Mountains Under Pressure: Evaluating Ecosystem Services and Livelihoods in the Upper Himalayan Region of Nepal

    NARCIS (Netherlands)

    Bhusal, Jagat K.; Chapagain, Prem Sagar; Regmi, Santosh; Gurung, Praju; Zulkafli, Zed; Karpouzoglou, T.D.; Pandeya, Bhopal; Buytaert, Wouter; Clark, Julian

    2016-01-01

    Natural resource-based livelihoods in mountainous regions are subject to new types of development as well as climate related pressures and vulnerabilities. On one hand, the integrity of the mountainous landscape is under pressure from the melting of glaciers, changes in water availability, rainfall

  12. Surface strain rate colour map of the Tatra Mountains region (Slovakia based on GNSS data

    Directory of Open Access Journals (Sweden)

    Bednárik Martin

    2016-12-01

    Full Text Available The surface deformation of the Tatra Mountains region in Western Carpathians can nowadays be studied directly thanks to precise geodetic measurements using the GNSS. The strain or stress tensor field is, however, a rather complex “data structure” difficult to present legibly and with sufficient resolution in the form of a classical map. A novel and promising approach to the solution of this problem is coding the three principal strain or stress values into the three colour channels (red, green, blue of an RGB colour. In our previous study, the colour depended on the stress tensor shape descriptors. In the current study, the adapted colouring scheme uses a subset of shape descriptors common to stress and strain, which differ only in the scaling factor. In this manner, we generate the colour map of the surface strain rate field, where the colour of each grid point carries the information about the shape of the strain rate tensor at that point. The resulting strain rate colour map can be displayed simultaneously with the map of the faults or elevations and be easily checked for the data or interpolation method errors and incompatibility with the geophysical and geological expectations.

  13. Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon

    Science.gov (United States)

    Haiganoush K. Preisler; Jeffrey A. Hicke; Alan A. Ager; Jane L. Hayes

    2012-01-01

    Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process...

  14. Assessing the hydrologic response to wildfires in mountainous regions

    Science.gov (United States)

    Havel, Aaron; Tasdighi, Ali; Arabi, Mazdak

    2018-04-01

    This study aims to understand the hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate the hydrologic responses of the upper Cache la Poudre Watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. A procedure involving land use and curve number updating was implemented to assess the effects of wildfires. Application of the proposed procedure provides the ability to simulate the hydrologic response to wildfires seamlessly through mimicking the dynamic of the changes due to wildfires. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre- and post-wildfire conditions. Daily calibration and testing of the model produced very good results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 % was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow duration curves developed for burned sub-watersheds using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A linear regression model was developed to assess the relationship between percent burned area and runoff increase in Cache la Poudre Watershed. A strong (R2 > 0.8) and significant (p statistics through application of flow duration curves revealed that the wildfires had a higher effect on peak flows, which may increase the risk of flash floods in post

  15. Geologic Setting and Hydrogeologic Units of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    Science.gov (United States)

    Kahle, Sue C.; Olsen, Theresa D.; Morgan, David S.

    2009-01-01

    The Columbia Plateau Regional Aquifer System (CPRAS) covers approximately 44,000 square miles of northeastern Oregon, southeastern Washington, and western Idaho. The area supports a $6 billion per year agricultural industry, leading the Nation in production of apples and nine other commodities (State of Washington Office of Financial Management, 2007; U.S. Department of Agriculture, 2007). Groundwater availability in the aquifers of the area is a critical water-resource management issue because the water demand for agriculture, economic development, and ecological needs is high. The primary aquifers of the CPRAS are basalts of the Columbia River Basalt Group (CRBG) and overlying basin-fill sediments. Water-resources issues that have implications for future groundwater availability in the region include (1) widespread water-level declines associated with development of groundwater resources for irrigation and other uses, (2) reduction in base flow to rivers and associated effects on temperature and water quality, and (3) current and anticipated effects of global climate change on recharge, base flow, and ultimately, groundwater availability. As part of a National Groundwater Resources Program, the U.S. Geological Survey began a study of the CPRAS in 2007 with the broad goals of (1) characterizing the hydrologic status of the system, (2) identifying trends in groundwater storage and use, and (3) quantifying groundwater availability. The study approach includes documenting changes in the status of the system, quantifying the hydrologic budget for the system, updating the regional hydrogeologic framework, and developing a groundwater-flow simulation model for the system. The simulation model will be used to evaluate and test the conceptual model of the system and later to evaluate groundwater availability under alternative development and climate scenarios. The objectives of this study were to update the hydrogeologic framework for the CPRAS using the available

  16. Microcomputer software for calculating an elk habitat effectiveness index on Blue Mountain winter ranges.

    Science.gov (United States)

    Mark Hitchcock; Alan. Ager

    1992-01-01

    National Forests in the Pacific Northwest Region have incorporated elk habitat standards into Forest plans to ensure that elk habitat objectives are met on multiple use land allocations. Many Forests have employed versions of the habitat effectiveness index (HEI) as a standard method to evaluate habitat. Field application of the HEI model unfortunately is a formidable...

  17. The history of development of balneology in Mountain-Badakhshan autonomous region

    International Nuclear Information System (INIS)

    Bobokhodjaev, I.Ya.; Davlatmamadov, Sh.M.

    1994-01-01

    This chapter of book is about the history of development of balneology in Mountain-Badakhshan autonomous region, about useful application of mineral sources on human organism not only for sick people, but on healthy people too

  18. Specialty Crop Profile: Blueberries for the Upper Piedmont and Mountain Regions

    OpenAIRE

    Bratsch, Tony

    2009-01-01

    Discusses blueberries as a small fruit crop for the upper Piedmont and mountain regions of Virginia. Provides information about best ways to plant the blueberries, mulching, irrigation, fertilization, pruning, harvesting and handling, marketing and more.

  19. Vertical accretion sand proxies of gaged floods along the upper Little Tennessee River, Blue Ridge Mountains, USA

    Science.gov (United States)

    Leigh, David S.

    2018-02-01

    Understanding environmental hazards presented by river flooding has been enhanced by paleoflood analysis, which uses sedimentary records to document floods beyond historical records. Bottomland overbank deposits (e.g., natural levees, floodbasins, meander scars, low terraces) have the potential as continuous paleoflood archives of flood frequency and magnitude, but they have been under-utilized because of uncertainty about their ability to derive flood magnitude estimates. The purpose of this paper is to provide a case study that illuminates tremendous potential of bottomland overbank sediments as reliable proxies of both flood frequency and magnitude. Methods involve correlation of particle-size measurements of the coarse tail of overbank deposits (> 0.25 mm sand) from three separate sites with historical flood discharge records for the upper Little Tennessee River in the Blue Ridge Mountains of the southeastern United States. Results show that essentially all floods larger than a 20% probability event can be detected by the coarse tail of particle-size distributions, especially if the temporal resolution of sampling is annual or sub-annual. Coarser temporal resolution (1.0 to 2.5 year sample intervals) provides an adequate record of large floods, but is unable to discriminate individual floods separated by only one to three years. Measurements of > 0.25 mm sand that are normalized against a smoothed trend line through the down-column data produce highly significant correlations (R2 values of 0.50 to 0.60 with p-values of 0.004 to Time-series data of particle-size should be detrended to minimize variation from dynamic aspects of fluvial sedimentation that are not related to flood magnitude; and 5) Multiple sites should be chosen to allow for replication of findings.

  20. Urban and community forests of the Pacific region: California, Oregon, Washington

    Science.gov (United States)

    David J. Nowak; Eric J. Greenfield

    2010-01-01

    This report details how land cover and urbanization vary within the states of California, Oregon, and Washington by community (incorporated and census designated places), county subdivision, and county. Specifically this report provides critical urban and community forestry information for each state including human population characteristics and trends, changes in...

  1. DeepBlue epigenomic data server: programmatic data retrieval and analysis of epigenome region sets.

    Science.gov (United States)

    Albrecht, Felipe; List, Markus; Bock, Christoph; Lengauer, Thomas

    2016-07-08

    Large amounts of epigenomic data are generated under the umbrella of the International Human Epigenome Consortium, which aims to establish 1000 reference epigenomes within the next few years. These data have the potential to unravel the complexity of epigenomic regulation. However, their effective use is hindered by the lack of flexible and easy-to-use methods for data retrieval. Extracting region sets of interest is a cumbersome task that involves several manual steps: identifying the relevant experiments, downloading the corresponding data files and filtering the region sets of interest. Here we present the DeepBlue Epigenomic Data Server, which streamlines epigenomic data analysis as well as software development. DeepBlue provides a comprehensive programmatic interface for finding, selecting, filtering, summarizing and downloading region sets. It contains data from four major epigenome projects, namely ENCODE, ROADMAP, BLUEPRINT and DEEP. DeepBlue comes with a user manual, examples and a well-documented application programming interface (API). The latter is accessed via the XML-RPC protocol supported by many programming languages. To demonstrate usage of the API and to enable convenient data retrieval for non-programmers, we offer an optional web interface. DeepBlue can be openly accessed at http://deepblue.mpi-inf.mpg.de. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Adaptation to Climate Change in Panchase Mountain Ecological Regions of Nepal

    OpenAIRE

    Shankar Adhikari; Himlal Baral; Craig Nitschke

    2018-01-01

    Rural mountain communities in developing countries are considered particularly vulnerable to environmental change, including climate change. Forests and agriculture provide numerous ecosystem goods and services (EGS) to local communities and can help people adapt to the impacts of climate change. There is however poor documentation on the role of EGS in people’s livelihood and adaptation practices. This study in the rural Panchase Mountain Ecological Region of Nepal identifies practices being...

  3. Vegetation recovery after fire in the Klamath-Siskiyou region, southern Oregon

    Science.gov (United States)

    Hibbs, David; Jacobs, Ruth

    2011-01-01

    In July 2002, lightning strikes started five forest fires that merged into one massive wildfire in the Klamath-Siskiyou Ecoregion of southern Oregon. Aided by drought, severe weather conditions, dry fuels, and steep topography, the fire grew to more than 200,000 hectares of mostly public forest land. Known as the Biscuit Fire, it was Oregon's largest forest fire in more than 130 years and one of the largest wildfires on record in the United States. Discussions centered around why such a massive fire was happening, how large would it become, who was keeping communities and homes safe, and what would be the final economic and ecological outcome. Weeks later when the fire was out, conversations turned to other questions, including what, if anything, should happen for forest recovery.

  4. A computer simulation model to compute the radiation transfer of mountainous regions

    Science.gov (United States)

    Li, Yuguang; Zhao, Feng; Song, Rui

    2011-11-01

    In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.

  5. Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: A multi-tracer approach

    Science.gov (United States)

    Plummer, Niel; Busenberg, E.; Böhlke, J.K.; Nelms, D.L.; Michel, R.L.; Schlosser, P.

    2001-01-01

    Chemical and isotopic properties of water discharging from springs and wells in Shenandoah National Park (SNP), near the crest of the Blue Ridge Mountains, VA, USA were monitored to obtain information on groundwater residence times. Investigated time scales included seasonal (wet season, April, 1996; dry season, August–September, 1997), monthly (March through September, 1999) and hourly (30-min interval recording of specific conductance and temperature, March, 1999 through February, 2000). Multiple environmental tracers, including tritium/helium-3 (3H/3He), chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), sulfur-35 (35S), and stable isotopes (δ18O and δ2H) of water, were used to estimate the residence times of shallow groundwater discharging from 34 springs and 15 wells. The most reliable ages of water from springs appear to be based on SF6 and 3H/3He, with most ages in the range of 0–3 years. This range is consistent with apparent ages estimated from concentrations of CFCs; however, CFC-based ages have large uncertainties owing to the post-1995 leveling-off of the CFC atmospheric growth curves. Somewhat higher apparent ages are indicated by 35S (>1.5 years) and seasonal variation of δ18O (mean residence time of 5 years) for spring discharge. The higher ages indicated by the 35S and δ18O data reflect travel times through the unsaturated zone and, in the case of 35S, possible sorption and exchange of S with soils or biomass. In springs sampled in April, 1996, apparent ages derived from the 3H/3He data (median age of 0.2 years) are lower than those obtained from SF6 (median age of 4.3 years), and in contrast to median ages from 3H/3He (0.3 years) and SF6 (0.7 years) obtained during the late summer dry season of 1997. Monthly samples from 1999 at four springs in SNP had SF6apparent ages of only 1.2 to 2.5±0.8 years, and were consistent with the 1997 SF6 data. Water from springs has low excess air (0–1 cm3 kg−1) and N2–Ar temperatures that vary

  6. Mountain biking injuries requiring trauma center admission: a 10-year regional trauma system experience.

    Science.gov (United States)

    Kim, Peter T W; Jangra, Dalbhir; Ritchie, Alec H; Lower, Mary Ellen; Kasic, Sharon; Brown, D Ross; Baldwin, Greg A; Simons, Richard K

    2006-02-01

    Mountain biking has become an increasingly popular recreational and competitive sport with increasingly recognized risks. The purpose of this study was to review a population based approach to serious injuries requiring trauma center admission related to mountain biking, identify trends and develop directions for related injury prevention programs. Three trauma centers in the Greater Vancouver area exclusively serve a major mountain bike park and the North Shore Mountains biking trails. The Trauma Registries and the patient charts were reviewed for mountain bike injuries from 1992 to 2002. The data were analyzed according to demographics, distribution, and severity of injuries, and need for operative intervention. Findings were reviewed with injury prevention experts and regional and national mountain-biking stakeholders to provide direction to injury prevention programs. A total of 1,037 patients were identified as having bicycling-related injuries. Of these, 399 patients sustained 1,092 injuries while mountain biking. There was a threefold increase in the incidence of mountain biking injuries over a 10-year period. Young males were most commonly affected. Orthopedic injuries were most common (46.5%) followed by head (12.2%), spine (12%), chest (10.3%), facial (10.2%), abdominal (5.4%), genitourinary (2.2%), and neck injuries (1%). High operative rate was observed: 38% of injuries and 66% of patients required surgery. One patient died from his injuries. Injury prevention programs were developed and successfully engaged the target population. Mountain biking is a growing cause of serious injuries. Young males are principally at risk and serious injuries result from intended activity and despite protective equipment. Injury prevention programs were developed to address these concerns.

  7. CanWEA regional issues and wind energy project siting : mountainous areas

    Energy Technology Data Exchange (ETDEWEB)

    D' Entremont, M. [Jacques Whitford Ltd., Vancouver, BC (Canada)]|[Axys Environmental Consulting Ltd., Vancouver, BC (Canada)

    2008-07-01

    Planning and permitting considerations for wind energy project siting in mountainous areas were discussed. Mountainous regions have a specific set of environmental and socio-economic concerns. Potential disruptions to wildlife, noise, and visual impacts are a primary concern in the assessment of potential wind farm projects. Alpine habitats are unique and often contain fragile and endangered species. Reclamation techniques for mountainous habitats have not been extensively tested, and the sites are not as resilient as sites located in other ecosystems. In addition, alpine habitats are often migratory corridors and breeding grounds for threatened or endangered birds. In the winter months, alpine habitats are used by caribou, grizzly bears, and wolverine dens. Bats are also present at high elevations. It is often difficult to conduct baseline and monitoring studies in mountainous areas since alpine habitat is subject to rapid weather changes, and has a very short construction period. tabs., figs.

  8. Assessing climate change impacts on water resources in remote mountain regions

    Science.gov (United States)

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  9. Low-level radioactive waste facility siting in the Rocky Mountain compact region

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    The puprose of the Rocky Mountain Low-Level Radioactive Waste Compact is to develop a regional management system for low-level waste (LLW) generated in the six states eligible for membership: Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. Under the terms of the compact, any party state generating at least 20% of the region's waste becomes responsible for hosting a regional LLW management facility. However, the compact prescribes no system which the host state must follow to develop a facility, but rather calls on the state to fulfill its responsibility through reliance on its own laws and regulations. Few of the Rocky Mountain compact states have legislation dealing specifically with LLW facility siting. Authority for LLW facility siting is usually obtained from radiation control statutes and solid or hazardous waste statutes. A state-by-state analysis of the siting authorities of each of the Rock Mountain compact states as they pertain to LLW disposal facility siting is presented. Siting authority for LLW disposal facilities in the Rocky Mountain compact region runs from no authority, as in Wyoming, to general statutory authority for which regulations would have to be promulgated, as in Arizona and Nevada, to more detailed siting laws, as in Colorado and New Mexico. Barring an amendment to, or different interpretation of, the Utah Hazardous Waste Facility Siting Act, none of the Rocky Mountain States' LLW facility siting authorities preempt local veto authorities

  10. Digital Data for Volcano Hazards in the Mount Jefferson Region, Oregon

    Science.gov (United States)

    Schilling, S.P.; Doelger, S.; Walder, J.S.; Gardner, C.A.; Conrey, R.M.; Fisher, B.J.

    2008-01-01

    Mount Jefferson has erupted repeatedly for hundreds of thousands of years, with its last eruptive episode during the last major glaciation which culminated about 15,000 years ago. Geologic evidence shows that Mount Jefferson is capable of large explosive eruptions. The largest such eruption occurred between 35,000 and 100,000 years ago. If Mount Jefferson erupts again, areas close to the eruptive vent will be severely affected, and even areas tens of kilometers (tens of miles) downstream along river valleys or hundreds of kilometers (hundreds of miles) downwind may be at risk. Numerous small volcanoes occupy the area between Mount Jefferson and Mount Hood to the north, and between Mount Jefferson and the Three Sisters region to the south. These small volcanoes tend not to pose the far-reaching hazards associated with Mount Jefferson, but are nonetheless locally important. A concern at Mount Jefferson, but not at the smaller volcanoes, is the possibility that small-to-moderate sized landslides could occur even during periods of no volcanic activity. Such landslides may transform as they move into lahars (watery flows of rock, mud, and debris) that can inundate areas far downstream. The geographic information system (GIS) volcano hazard data layer used to produce the Mount Jefferson volcano hazard map in USGS Open-File Report 99-24 (Walder and others, 1999) is included in this data set. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain.

  11. A bibliography of Klamath Mountains geology, California and Oregon, listing authors from Aalto to Zucca for the years 1849 to Mid-2003

    Science.gov (United States)

    Irwin, William P.

    2003-01-01

    This bibliography of Klamath Mountains geology was begun, although not in a systematic or comprehensive way, when, in 1953, I was assigned the task of preparing a report on the geology and mineral resources of the drainage basins of the Trinity, Klamath, and Eel Rivers in northwestern California. During the following 40 or more years, I maintained an active interest in the Klamath Mountains region and continued to collect bibliographic references to the various reports and maps of Klamath geology that came to my attention. When I retired in 1989 and became a Geologist Emeritus with the Geological Survey, I had a large amount of bibliographic material in my files. Believing that a comprehensive bibliography of a region is a valuable research tool, I have expended substantial effort to make this bibliography of the Klamath Mountains as complete as is reasonably feasible. My aim was to include all published reports and maps that pertain primarily to the Klamath Mountains, as well as all pertinent doctoral and master's theses. In addition, I included reports in which the Klamath Mountains are of significance but not the primary focus; these latter kinds are mostly reports that correlate the Klamath terranes with those of other provinces, that compare the genesis of Klamath rocks with those elsewhere, or that include the Klamath Mountains in a continental framework. Reports describing the geology of the overlap sequences such as the Great Valley sequence, Hornbrook Formation, and Tertiary sediments and volcanics are included where those rocks lie within the limits of the Klamath Mountains province, but are only selectively included where the overlap sequences are mainly peripheral to the province. The alphabetical part of the bibliography consists of approximately 1700 entries. The list of primary references probably is virtually complete through 1994 and includes some 1995 references. The earliest reference is to James Dwight Dana in 1849. In order to restrict the size

  12. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  13. Regional groundwater modeling of the saturated zone in the vicinity of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ahola, M.; Sagar, B.

    1992-10-01

    Results of groundwater modeling of the saturated zone in the vicinity of Yucca Mountain are presented. Both a regional (200 x 200 km) and subregional (50 x 50 km) model were used in the analyses. Simulations were conducted to determine the impact of various disruptive that might take place over the life span of a proposed Yucca Mountain geologic conditions repository on the groundwater flow field, as well as changes in the water-table elevations. These conditions included increases in precipitation and groundwater recharge within the regional model, changes in permeability of existing hydrogeologic barriers, a:nd the vertical intrusion of volcanic dikes at various orientations through the saturated zone. Based on the regional analysis, the rise in the water-table under Yucca Mountain due to various postulated conditions ranged from only a few meters to 275 meters. Results of the subregional model analysis, which was used to simulate intrusive dikes approximately 4 kilometers in length in the vicinity of Yucca Mountain, showed water-table rises ranging from a few meters to as much as 103 meters. Dikes oriented approximately north-south beneath Yucca Mountain produced the highest water-table rises. The conclusions drawn from this analysis are likely to change as more site-specific data become available and as the assumptions in the model are improved

  14. Sustainable Land Use in Mountain Regions Under Global Change: Synthesis Across Scales and Disciplines

    Directory of Open Access Journals (Sweden)

    Robert Huber

    2013-09-01

    Full Text Available Mountain regions provide essential ecosystem goods and services (EGS for both mountain dwellers and people living outside these areas. Global change endangers the capacity of mountain ecosystems to provide key services. The Mountland project focused on three case study regions in the Swiss Alps and aimed to propose land-use practices and alternative policy solutions to ensure the provision of key EGS under climate and land-use changes. We summarized and synthesized the results of the project and provide insights into the ecological, socioeconomic, and political processes relevant for analyzing global change impacts on a European mountain region. In Mountland, an integrative approach was applied, combining methods from economics and the political and natural sciences to analyze ecosystem functioning from a holistic human-environment system perspective. In general, surveys, experiments, and model results revealed that climate and socioeconomic changes are likely to increase the vulnerability of the EGS analyzed. We regard the following key characteristics of coupled human-environment systems as central to our case study areas in mountain regions: thresholds, heterogeneity, trade-offs, and feedback. Our results suggest that the institutional framework should be strengthened in a way that better addresses these characteristics, allowing for (1 more integrative approaches, (2 a more network-oriented management and steering of political processes that integrate local stakeholders, and (3 enhanced capacity building to decrease the identified vulnerability as central elements in the policy process. Further, to maintain and support the future provision of EGS in mountain regions, policy making should also focus on project-oriented, cross-sectoral policies and spatial planning as a coordination instrument for land use in general.

  15. The development of blue ice moraines from englacial debris bands as detected by GPR, Mt Achernar, central Transantarctic Mountains, Antarctica

    Science.gov (United States)

    Kassab, C.; Lindback, K.; Pettersson, R.; Licht, K.; Graly, J. A.; Kaplan, M. R.

    2016-12-01

    Blue ice moraines cover a small percentage of Antarctica, but can contain a significant record of ice sheet dynamics and climate over multiple glacial cycles. Previous work has focused on the temporal and provenance record contained within these moraines and less on mechanisms by which such deposits form and their temporal evolution. In order to create a conceptual model of their formation, >25 km of ground penetrating radar transects at 25 and 100 MHz frequencies were collected at the Mt Achernar moraine adjacent to Law Glacier. Here, ice ablation causes debris bands to emerge and deliver sediment to the surface. Most transects were collected perpendicular to the ice-moraine margin, and extend from the actively flowing Law Glacier ice to a distance of 2 km into the moraine. The 25 and 100 MHz transects penetrate to a depth of 200 m and 60 m respectively and reveal a relatively complex internal stratigraphy. Closest to the ice-moraine margin, stratigraphy is not well resolved due to a high amount of clutter. Steeply dipping parallel reflections first emerge 400m away from the ice margin and dip toward Law Glacier. These reflections continue inwards to 1450m, where the reflections become more closely spaced. Hummocky topography and parallel ridge/trough topography dominate the geomorphic expression. The hummocky topography corresponds to the region where reflections are not well resolved. The ridges are interpreted to be debris bands that are emerging at the surface, similar to those along the margin of the Law Glacier where debris is newly emerging. The reflections in the GPR transects indicate that debris is transported from depth to the surface of the ice where it accumulates forming the Mt Achernar moraine. It appears that the various reflection patterns correspond to unique surface geomorphic expressions. The reflections also indicate that at least the first 2 km of debris rich buried ice in the moraine can be linked to the actively flowing Law Glacier

  16. Constructing Consistent Multiscale Scenarios by Transdisciplinary Processes: the Case of Mountain Regions Facing Global Change

    OpenAIRE

    Fridolin Simon. Brand; Roman Seidl; Quang Bao. Le; Julia Maria. Brändle; Roland Werner. Scholz

    2013-01-01

    Alpine regions in Europe, in particular, face demanding local challenges, e.g., the decline in the agriculture and timber industries, and are also prone to global changes, such as in climate, with potentially severe impacts on tourism. We focus on the Visp region in the Upper Valais, Switzerland, and ask how the process of stakeholder involvement in research practice can contribute to a better understanding of the specific challenges and future development of mountainous regions under global ...

  17. Approach to identification and development of mountain tourism regions and destinations in Serbia with special reference to the Stara Planina mountain

    Directory of Open Access Journals (Sweden)

    Milijić Saša

    2010-01-01

    Full Text Available This paper deals with theoretical-methodological issues of tourism offer planning and regulation of settlements in mountain destinations. The basic determinants of the development of mountain tourist regions destinations in EU countries, in which respectable development results have been achieved, first of all in terms of income, together with appropriately adjusted development and environmental management system, have been emphasized. The ongoing transition and structural processes in Serbia will have an impact on application of these experiences. At the same time, a basis for competitiveness of mountain regions will not be determined only by spatial capacity and geological location, but also by creative-innovative developing environment. Taking into account the spatial-functional criteria and criteria for the development and protection, the possible spatial definition of mountain tourist regions/destinations in Serbia are presented. The justifiability and positioning of tourism development projects are analyzed aiming at uniform regional development, where two segments of demand are of particularly importance, i.e. demand for mountain tourism services and for real estates in mountain centers. Furthermore, holders of tourism offer will be analyzed through a contemporary approach which may be defined as the development and noncommercial and market and commercial one. International criteria which are evaluated while selecting city/mountain destination for Winter Olympic Games are particularly analyzed. Considering experience of countries with higher level of development of mountain regions, the main starting point for positioning projects for sustainable development of tourist destinations are defined by specifying them according to specific local and regional conditions. A rational model for spatial organization of tourism offer is shown on the example of the Stara Planina tourist region.

  18. Association analysis of PRNP gene region with chronic wasting disease in Rocky Mountain elk

    Directory of Open Access Journals (Sweden)

    Spraker Terry R

    2010-11-01

    Full Text Available Abstract Background Chronic wasting disease (CWD is a transmissible spongiform encephalopathy (TSE of cervids including white-tailed (Odocoileus virginianus and mule deer (Odocoileus hemionus, Rocky Mountain elk (Cervus elaphus nelsoni, and moose (Alces alces. A leucine variant at position 132 (132L in prion protein of Rocky Mountain elk confers a long incubation time with CWD, but not complete resistance. However, variants in regulatory regions outside the open reading frame of PRNP have been associated with varying degrees of susceptibility to prion disease in other species, and some variants have been observed in similar regions of Rocky Mountain elk PRNP. Thus, additional genetic variants might provide increased protection, either alone or in combination with 132L. Findings This study provided genomic sequence of all exons for PRNP of Rocky Mountain elk. Many functional sites in and around the PRNP gene region were sequenced, and this report approximately doubled (to 75 the number of known variants in this region. A haplotype-tagging approach was used to reduce the number of genetic variants required to survey this variation in the PRNP gene region of 559 Rocky Mountain elk. Eight haplotypes were observed with frequencies over 1.0%, and one haplotype was present at 71.2% frequency, reflecting limited genetic diversity in the PRNP gene region. Conclusions The presence of 132L cut odds of CWD by more than half (Odds Ratio = 0.43; P = 0.0031, which was similar to a previous report. However after accounting for 132L, no association with CWD was found for any additional variants in the PRNP region (P > 0.05.

  19. Ground magnetic studies along a regional seismic-reflection profile across Bare Mountain, Crater Flat and Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Langenheim, V.E.; Ponce, D.A.

    1995-01-01

    Ground magnetic data were collected along a 26-km-long regional seismic-reflection profile in southwest Nevada that starts in the Amargosa Desert, crosses Bare Mountain, Crater Flat and Yucca Mountain, and ends in Midway Valley. Parallel ground magnetic profiles were also collected about 100 m to either side of the western half of the seismic-reflection line. The magnetic data indicate that the eastern half of Crater Flat is characterized by closely-spaced faulting (1--2 km) in contrast to the western half of Crater Flat. Modeling of the data indicates that the Topopah Spring Tuff is offset about 250 m on the Solitario Canyon fault and about 50 m on the Ghost Dance fault. These estimates of fault offset are consistent with seismic-reflection data and geologic mapping. A broad magnetic high of about 500--600 nT is centered over Crater Flat. Modeling of the magnetic data indicates that the source of this high is not thickening and doming of the Bullfrog Tuff, but more likely lies below the Bullfrog Tuff. Possible source lithologies for this magnetic high include altered argillite of the Eleana Formation, Cretaceous or Tertiary intrusions, and mafic sills

  20. Past and future changes in frost day indices on Catskill Mountain Region of New York

    Science.gov (United States)

    Changes in frost indices in the New York’s Catskill Mountains region, the location of water supply reservoirs for New York City, have potentially important implications. Frost day is defined as a day with Tmin < 0ºC. The objective of this study was to investigate past and predicted changes in minimu...

  1. Research on Structure Innovation of Agricultural Organization in China’s Southwestern Mountainous Regions

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Taking agricultural organization in China’s southwestern mountainous regions as research object,on the basis of analysis of the status quo of agricultural organization development in China’s southwestern mountainous regions,we use related theoretical knowledge on economics and organization science,we probe into the process of innovation and mechanism of action concerning the structure of agricultural organization in China’s southwestern mountainous regions over the past 30 years.Finally we draw several general conclusions regarding structure innovation of agricultural organization in China’s southwestern mountainous regions as follows:first,the structure innovation of agricultural organization,a gradual process,proceeds ceaselessly along with ongoing progress and development of agriculture,and in this process,farmers always play a fundamental role;second,the structure innovation of agricultural organization is affected by many factors,and government institutional arrangement and change in market conditions is undoubtedly the most critical factor;third,the probable evolving direction of structure innovation of agricultural organization includes internal differentiation of the same form of agricultural organization,association of different forms of agricultural organization,and emergence of other forms of agricultural organization.

  2. [Rocky Mountain regional low-level waste compact development and establishment of disposals

    International Nuclear Information System (INIS)

    1986-01-01

    This Compact Issue Study was intended to determine if state institutions in the Rocky Mountain region could reduce low-level radioactive waste shipping and disposal costs through jointly shipping their low-level radioactive wastes. Public institutions in the state of Colorado were used as a test case for this study

  3. Development of Education Programs in Mountainous Regions to Enhance the Culture and Knowledge of Minority Nationalities.

    Science.gov (United States)

    Wei, Shiyuan; Zhou, Guangda

    1989-01-01

    Describes the historical development of educational programs which could enhance the culture and knowledge of minorities in the mountainous regions of China. Identifies current major problems in minority education and lists statistical information for the school population. Provides guidelines for developing a minority education program. (KO)

  4. Geologic framework of the regional ground-water flow system in the Upper Deschutes Basin, Oregon

    Science.gov (United States)

    Lite, Kenneth E.; Gannett, Marshall W.

    2002-12-10

    Ground water is increasingly relied upon to satisfy the needs of a growing population in the upper Deschutes Basin, Oregon. Hydrogeologic studies are being undertaken to aid in management of the ground-water resource. An understanding of the geologic factors influencing ground-water flow is basic to those investigations. The geology of the area has a direct effect on the occurrence and movement of ground water. The permeability and storage properties of rock material are influenced by the proportion, size, and degree of interconnection of open spaces the rocks contain. These properties are the result of primary geologic processes such as volcanism and sedimentation, as well as subsequent processes such as faulting, weathering, or hydrothermal alteration. The geologic landscape in the study area evolved during about 30 million years of volcanic activity related to a north-south trending volcanic arc, the current manifestation of which are today’s Cascade Range volcanoes.

  5. Minapolitan region development analysis at Penajam Paser Utara using blue economy concept

    Science.gov (United States)

    Mawarsari, P. M.; Dewanti, A. N.; Nurrahman, F.

    2017-06-01

    Penajam Paser Utara (PPU) Region in East Kalimantan was assigned as one of Minapolitan area in Indonesia focusing on aquaculture based on Indonesia Ministry of Maritime Affairs and Fisheries Decision Number 35 in 2013. Unfortunately, it is shown from PPU region statistics data that decreasing fisheries production in PPU region was occur especially for land fisheries from 2013 until 2015. The aim of this study is to formulate development strategies of Minapolitan in PPU Region by the Blue Economy concept. Several variables such as fisheries and aquaculture aspects, processing and marketing, incomes and workers, also sustainability and economic paradigm is evaluated in this study. Firstly it needs to identify the potential of character and problem by reviewing Minapolitan area in PPU Region with descriptive comparative analysis. Secondly, the fruitfulness of Minapolitan activity in PPU Region impact factors was identified by using internal and external factor (IFAS and EFAS) analysis. Then some of strategic considerations was formulated by using the successful development indicator in Minapolitan area that associate to the Blue Economy concept with SWOT analysis. The result of IFAS analysis show the highest score of strength that is production and commodity productivity. Contrarily, the income level factor is become the highest score at weakness. Then, the EFAS analysis declare that marketing system is the highest factor in opportunity. The position of SWOT quadrant indicate that the Minapolitan area of PPU region is in quadrant I /or first quadrant which means progressive. Therefore, the Minapolitan in PPU have a great chance to increase the cultivation optimally. The results of SWOT matrix is to increase its product and productivity by upgrading the quality and quantity production facilities, raising the control of production activites and also increasing the supervision of processing business with sustainable management business principle.

  6. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    Science.gov (United States)

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  7. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia

    International Nuclear Information System (INIS)

    Kebede, Seifu; Travi, Yves; Alemayehu, Tamiru; Ayenew, Tenalem

    2005-01-01

    Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO 2 influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na-HCO 3 type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca-Mg-HCO 3 type waters. Despite the high altitude (mean altitude ∼2500 masl) and the relatively low mean annual air temperature (18 deg. C) of the region compared to Sahelian Africa, there is no commensurate depletion in δ 18 O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted δ 18 O groundwaters. Altitudinal depletion of δ 18 O is 0.1%o/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude

  8. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Seifu [Laboratory of Hydrogeology, University of Avignon, 33 Rue Louis Pasteur, 84000 Avignon (France) and Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)]. E-mail: seifu.kebede@univ-avignon.fr; Travi, Yves [Laboratory of Hydrogeology, University of Avignon, 33 Rue Louis Pasteur, 84000 Avignon (France); Alemayehu, Tamiru [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Ayenew, Tenalem [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2005-09-15

    Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO{sub 2} influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na-HCO {sub 3} type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca-Mg-HCO {sub 3} type waters. Despite the high altitude (mean altitude {approx}2500 masl) and the relatively low mean annual air temperature (18 deg. C) of the region compared to Sahelian Africa, there is no commensurate depletion in {delta} {sup 18}O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted {delta} {sup 18}O groundwaters. Altitudinal depletion of {delta} {sup 18}O is 0.1%o/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude.

  9. Regional Comparative Unit Cost Studies for Maintenance and Operation of Physical Plants in Universities and Colleges in Central States Region and Rocky Mountain Region.

    Science.gov (United States)

    Association of Physical Plant Administrators, Corvallis, OR.

    Presented in this document are data pertaining to maintenance and operations costs at colleges and universities in the central states region and the Rocky Mountain region. The major accounts included in the cost analysis are: (1) physical plant administration, (2) building maintenance, (3) custodial services, (4) utilities, (5) landscape and…

  10. Realisation of a joint consumer engagement strategy in the Nepean Blue Mountains region.

    Science.gov (United States)

    Blignault, Ilse; Aspinall, Diana; Reay, Lizz; Hyman, Kay

    2017-02-15

    Ensuring consumer engagement at different levels of the health system - direct care, organisational design and governance and policy - has become a strategic priority. This case study explored, through interviews with six purposively selected 'insiders' and document review, how one Medicare Local (now a Primary Health Network, PHN) and Local Health District worked together with consumers, to establish a common consumer engagement structure and mechanisms to support locally responsive, integrated and consumer-centred services. The two healthcare organisations worked as partners across the health system, sharing ownership and responsibility. Critical success factors included a consumer champion working with other highly motivated consumers concerned with improving the health system, a budget, and ongoing commitment from the Medicare Local or PHN and the Local Health District at executive and board level. Shared boundaries were an enormous advantage. Activities were jointly planned and executed, with consumer participation paramount. Training and mentoring enhanced consumer capacity and confidence. Bringing everyone on board and building on existing structures required time, effort and resources. The initiative produced immediate and lasting benefits, with consumer engagement now embedded in organisational governance and practice.

  11. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  12. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  13. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  14. Between a Rock and a Blue Chair: David Hockney’s Rocky Mountains and Tired Indians (1965

    Directory of Open Access Journals (Sweden)

    Martin Hammer

    2017-04-01

    Full Text Available Travel and cultural exchange between the United Kingdom and the United States of America became a key feature of the 1960s, shaping the world view of many a British artist, curator, architect, writer, film-maker, and academic. Against that wider backdrop, I offer here a focused reading of David Hockney’s 1965 painting, Rocky Mountains and Tired Indians. With its faux-naive idiom and overt but quirkily un-modern American theme, the work conveys the artist’s singular take on what it felt like to be a Brit at large in the US, an environment at once wondrously exotic and at times strikingly banal. Close analysis discloses Hockney’s rich repertoire of artistic and literary allusions in Rocky Mountains, and the meanings and associations these may have encapsulated.

  15. A comparative review of multi-risk modelling methodologies for climate change adaptation in mountain regions

    Science.gov (United States)

    Terzi, Stefano; Torresan, Silvia; Schneiderbauer, Stefan

    2017-04-01

    Keywords: Climate change, mountain regions, multi-risk assessment, climate change adaptation. Climate change has already led to a wide range of impacts on the environment, the economy and society. Adaptation actions are needed to cope with the impacts that have already occurred (e.g. storms, glaciers melting, floods, droughts) and to prepare for future scenarios of climate change. Mountain environment is particularly vulnerable to the climate changes due to its exposure to recent climate warming (e.g. water regime changes, thawing of permafrost) and due to the high degree of specialization of both natural and human systems (e.g. alpine species, valley population density, tourism-based economy). As a consequence, the mountain local governments are encouraged to undertake territorial governance policies to climate change, considering multi-risks and opportunities for the mountain economy and identifying the best portfolio of adaptation strategies. This study aims to provide a literature review of available qualitative and quantitative tools, methodological guidelines and best practices to conduct multi-risk assessments in the mountain environment within the context of climate change. We analyzed multi-risk modelling and assessment methods applied in alpine regions (e.g. event trees, Bayesian Networks, Agent Based Models) in order to identify key concepts (exposure, resilience, vulnerability, risk, adaptive capacity), climatic drivers, cause-effect relationships and socio-ecological systems to be integrated in a comprehensive framework. The main outcomes of the review, including a comparison of existing techniques based on different criteria (e.g. scale of analysis, targeted questions, level of complexity) and a snapshot of the developed multi-risk framework for climate change adaptation will be here presented and discussed.

  16. Soils of Mountainous Forests and Their Transformation under the Impact of Fires in Baikal Region

    Science.gov (United States)

    Krasnoshchekov, Yu. N.

    2018-04-01

    Data on postpyrogenic dynamics of soils under mountainous taiga cedar ( Pinus sibirica) and pine ( Pinus sylvestris) forests and subtaiga-forest-steppe pine ( Pinus sylvestris) forests in the Baikal region are analyzed. Ground litter-humus fires predominating in this region transform the upper diagnostic organic soil horizons and lead to the formation of new pyrogenic organic horizons (Opir). Adverse effects of ground fires on the stock, fractional composition, and water-physical properties of forest litters are shown. Some quantitative parameters of the liquid and solid surface runoff in burnt areas related to the slope gradient, fire intensity, and the time passed after the fire are presented. Pyrogenic destruction of forest ecosystems inevitably induces the degradation of mountainous soils, whose restoration after fires takes tens of years. The products of soil erosion from the burnt out areas complicate the current situation with the pollution of coastal waters of Lake Baikal.

  17. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan

    Science.gov (United States)

    Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz

    2018-02-01

    The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.

  18. Development of State Interindustry Models for Rocky Mountain Region and California

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant A.; Kunin, Leonard

    1976-02-01

    Interindustry tables have been developed for the eight Rocky Mountain States and California. These tables are based on the 367-order 1967 national interindustry table. The national matrix was expanded to 404 sectors by disaggregating the seven minerals industries to 44 industries. The state tables can be used for energy and other resource analysis. Regional impacts of alternate development strategies can be evaluated with their use. A general computer program has been developed to facilitate construction of state interindustry tables.

  19. Chemical and morphological comparison of erionite from Oregon, North Dakota, and Turkey

    Science.gov (United States)

    Lowers, Heather; Adams, David T.; Meeker, Gregory P.; Nutt, Constance J.

    2010-01-01

    Erionite, a fibrous zeolite, occurs in pediment gravel deposits near Killdeer Mountain, North Dakota. Material from these pediment deposits has been excavated for use as roadbed throughout Dunn County, North Dakota. Erionite also occurs in the Cappadocian region of Turkey, where a link between malignant mesothelioma and inhalation of this mineral has been established. The U.S. Environmental Protection Agency (EPA), Region 8, requested that the U.S. Geological Survey (USGS) compare the chemistry and morphology of erionite collected from the Killdeer Mountains to those collected from villages in Turkey and from Rome, Oregon, which has also been linked to disease in animal studies.

  20. Paleozoic and mesozoic GIS data from the Geologic Atlas of the Rocky Mountain Region: Volume 1

    Science.gov (United States)

    Graeber, Aimee; Gunther, Gregory

    2017-01-01

    The Rocky Mountain Association of Geologists (RMAG) is, once again, publishing portions of the 1972 Geologic Atlas of the Rocky Mountain Region (Mallory, ed., 1972) as a geospatial map and data package. Georeferenced tiff (Geo TIFF) images of map figures from this atlas has served as the basis for these data products. Shapefiles and file geodatabase features have been generated and cartographically represented for select pages from the following chapters:• Phanerozoic Rocks (page 56)• Cambrian System (page 63)• Ordovician System (pages 78 and 79)• Silurian System (pages 87 - 89)• Devonian System (pages 93, 94, and 96 - 98)• Mississippian System (pages 102 and 103)• Pennsylvanian System (pages 114 and 115)• Permian System (pages 146 and 149 - 154)• Triassic System (pages 168 and 169)• Jurassic System (pages 179 and 180)• Cretaceous System (pages 197 - 201, 207 - 210, 215, - 218, 221, 222, 224, 225, and 227).The primary purpose of this publication is to provide regional-scale, as well as local-scale, geospatial data of the Rocky Mountain Region for use in geoscience studies. An important aspect of this interactive map product is that it does not require extensive GIS experience or highly specialized software.

  1. Changes in the Mountain Cryosphere and Potential Risks to Downstream Communities: Insights from the Indian Himalayan Region

    Science.gov (United States)

    Allen, Simon; Ballesteros, Juan Antonio; Huggel, Christian; Linsbauer, Andreas; Mal, Suraj; Singh Rana, Ranbir; Singh Randhawa, Surjeet; Ruiz-Villanueva, Virginia; Salzmann, Nadine; Singh Samant, Sher; Stoffel, Markus

    2017-04-01

    Mountain environments around the world are often considered to be amongst the most sensitive to the impacts of climate change. For people living in mountain communities, there are clear challenges to be faced as their livelihoods and subsistence are directly dependent on their surrounding natural environment. But what of the wider implications for societies and large urban settlements living downstream - why should they care about the climate-driven changes occurring potentially hundreds of kilometers away in the snow and ice capped mountains? In this contribution we address this question, drawing on studies and experiences gained within joint Indo-Swiss research collaborations focused on the Indian Himalayan states of Himachal Pradesh and Uttarakhand. With the Intergovernmental Panel on Climate Change currently embarking on the scoping of their 6th Assessment Cycle, which includes a planned Special Report on Oceans and the Cryosphere, this contribution provides a timely reminder of the importance of mountain regions, and potential far-reaching consequences of changes in the mountain cryosphere. Our studies highlight several key themes which link the mountain environment to the lowland populated areas, including the role of the mountain cryosphere as a water source, far-reaching hazards and disasters that can originate from mountain regions, the role of mountains in providing essential ecosystem services, the economic importance of tourism in mountain regions, and the importance of transportation routes which pass through mountain environments. These themes are intricately linked, as for example demonstrated during the 2013 Uttarakhand flood disaster where many of the approximately 6000 fatalities were tourists visiting high mountain pilgrimage sites. As a consequence of the disaster, tourists stayed away during subsequent seasons with significant economic impacts felt across the State. In Himachal Pradesh, a key national transportation corridor is the Rohtang pass

  2. The Rocky Mountain Epidemic of Bark Beetles and Blue Stain Fungi Cause Cascading Effects on Coupled Water, C and N cycles

    Science.gov (United States)

    Ewers, B. E.; Pendall, E.; Norton, U.; Reed, D.; Franks, J.; Aston, T.; Whitehouse, F.; Barnard, H. R.; Brooks, P. D.; Angstmann, J.; Massman, W. J.; Williams, D. G.; Harpold, A. A.; Biederman, J.; Edburg, S. L.; Meddens, A. J.; Gochis, D. J.; Hicke, J. A.

    2010-12-01

    The ongoing epidemic of bark beetles and their associated xylem blocking blue-stain fungi is unprecedented in Rocky Mountain subalpine forests. As this epidemic continues, we seek to improve our predictive understanding of coupled water, C and N cycles by quantifying how these cycles may become uncoupled in response to the outbreak. Our specific questions are 1) how does the rapid drop in individual tree transpiration impact the temporal and spatial extent of evapotranspiration and 2) how does the subsequent increase in soil moisture and lower C inputs and N uptake impact soil C and N fluxes? We address these questions in two forest ecosystems using eddy covariance, sap flux, leaf gas exchange, plant hydraulic conductance, vegetation characteristics and soil trace gas measurements. We applied two sampling designs 1) subdivide the lodgepole pine forest spatially into varying degrees of bark beetle and blue stain infection and 2) follow the fluxes as the outbreak continues at a point in space encompassing the range of spatial variability in mortality. The first order impact of the bark beetle and blue stain fungi is dramatic in all tree species with a greater than 50% reduction in transpiration per tree within a month of infection. This change occurs even before the characteristic red tinge occurs in the needles or before the sapwood is stained blue. Leaf stomatal conductance declines more than either the biochemical or light harvesting components of photosynthesis immediately after infestation. The annual C sink at the spruce/fir forest has declined from -2.88 to -0.57 Mg C ha-1 yr-1 from 2006 to 2009. Annual evapotranspiration (ET) over the last five years at the spruce/fir forest now has an inverse relationship with precipitation because the last two years have seen a dramatic decrease (from 73 to 59 cm/year) in ET while precipitation has increased (from ~100 to 140 cm/year). Soil moisture in both forests has increased up to 100% within one growing season in

  3. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon

    Science.gov (United States)

    Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....

  4. Piecewise Delamination Drives Uplift in the Atlas Mountains Region of Morocco

    Science.gov (United States)

    Bezada, M. J.; Humphreys, E.; Martin Davila, J.; mimoun, H.; Josep, G.; Palomeras, I.

    2013-12-01

    The elevation of the intra-continental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco by inverting teleseimic p-wave delay times, complemented with local delays, recorded on a dense array of stations in the Iberian peninsula and Morocco. A surface wave model provides constraint on the shallower layers. We determine the geometry of lithospheric cavities and mantle upwelling beneath the Middle Atlas and central High Atlas, and image delaminated lithosphere at ~400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle, sourced from regional upwellings in northern Africa or the Canary Islands, enabled the mobilization of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, where we image the most recent delamination. The Atlas Mountains of Morocco stand as an example of mantle-generated uplift and large-scale lithospheric loss in a mildly contractional orogen.

  5. Tourist phenomenon in Geoagiu Spa region within the Central Metaliferi Mountains

    Directory of Open Access Journals (Sweden)

    Dombay Ştefan

    2010-01-01

    Full Text Available The Central Metaliferi Mountains, situated in south-central side of the Apuseni Mountains, have a variety of natural and anthropic touristic potential, but, unfortunately, less known and not enough exploited. After conducting a survey in Geoagiu Spa we specifically recommend the following: increased number of one day tours, which are the main tourist destination in the region, many tours for visiting the major centers of cultural - historical monuments related to our past history, granting economic incentives for organizer of youth groups to attract the youth, diversification of tourist routes with thematic actions: curiosities of nature, environment, organizing sports events with different timetable covering all seasons and all series, attracting local and foreign investors by providing tax incentives and financial programs introducing touristic resort in the international circuit. .

  6. Groundwater Recharge and Flow Processes in Taihang Mountains, a Semi-humid Region, North China

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2015-04-01

    Groundwater flow/recharge variations in time and space are crucial for effective water management especially in semi-arid and semi-humid regions. In order to reveal comprehensive groundwater flow/recharge processes in a catchment with a large topographical relief and seasonal hydrological variations, intensive field surveys were undertaken at 4 times in different seasons (June 2011, August 2012, November 2012, February 2014) in the Wangkuai watershed, Taihang mountains, which is a main groundwater recharge area of the North China Plain. The groundwater, spring, stream water and reservoir water were taken, and inorganic solute constituents and stable isotopes of oxygen-18 and deuterium were determined on all water samples. Also, the stream flow rate and the depth of groundwater table were observed. The stable isotopic compositions and inorganic solute constituents in the groundwater are depleted and shown similar values as those of the surface water at the mountain-plain transitional area. Additionally, the groundwater in the vicinity of the Wangkuai Reservoir presents clearly higher stable isotopic compositions and lower d-excess than those of the stream water, indicating the groundwater around the reservoir is affected by evaporation same as the Wangkuai Reservoir itself. Hence, the surface water in the mountain-plain transitional area and Wangkuai Reservoir are principal groundwater recharge sources. An inversion analysis and simple mixing model were applied in the Wangkuai watershed using stable isotopes of oxygen-18 and deuterium to construct a groundwater flow model. The model shows that multi-originated groundwater flows from upstream to downstream along topography with certain mixing. In addition, the groundwater recharge occurs dominantly at the altitude from 421 m to 953 m, and the groundwater recharge rate by the Wangkuai Reservoir is estimated to be 2.4 % of the total groundwater recharge in the Wangkuai watershed. Therefore, the stream water and

  7. MARKETIZATION OF GREEN FOOD RESOURCES IN FOREST REGION OF THE CHANGBAI MOUNTAINS

    Institute of Scientific and Technical Information of China (English)

    XIAO Yan

    2004-01-01

    The Changbai Mountains is rich in the resources of green food. At present, the low marketization of green food resources in the forest region of the Changbai Mountains becomes the bottleneck to restrict the benign development of its green food industry. With huge market demands at home and abroad, it is the urgent problem how to improve marketization process of green food resources and transfer the resources superiority into the market superiority in the region. According to the investigation, this paper analyzed the status quo and the cause of formation of low-marketization with the method of combining comparative research and practice research. It pointed out that necessary condition of marketization of green food resources in the forest region, such as strategy, economic environment, marketization allocation of sci-tech resources, etc. should be established. Furthermore, the concrete strategies of marketization of green food resources in the region such as market location, strategies of objective markets, combined strategy of marketing, etc. were advanced.

  8. Development of a regional LiDAR field plot strategy for Oregon and Washington

    Science.gov (United States)

    Arvind Bhuta; Leah Rathbun

    2015-01-01

    The National Forest System (NFS) Pacific Northwest Region (R6) has been flying LiDAR on a per project basis. Additional field data was also collected in situ to many of these LiDAR projects to aid in the development of predictive models and estimate values which are unattainable through LiDAR data alone (e.g. species composition, tree volume, and downed woody material...

  9. Solute geochemistry of the Snake River Plain regional aquifer system, Idaho and eastern Oregon

    International Nuclear Information System (INIS)

    Wood, W.W.; Low, W.H.

    1987-01-01

    Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Reactions controlling solutes in the western Snake river basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake river Plain contains total dissolved solids similar to those in the overlying Snake River Plain aquifer system but contains higher concentrations of sodium, bicarbonate, silica, fluoride, sulfate, chloride, arsenic, boron, and lithium, and lower concentrations of calcium, magnesium, and hydrogen. 132 refs., 30 figs., 27 tabs

  10. Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249

    International Nuclear Information System (INIS)

    Devgun, Jas S.

    2013-01-01

    Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

  11. Natural radionuclides in rocks and soils of the high-mountain regions of the Great Caucasus

    Science.gov (United States)

    Asvarova, T. A.; Abdulaeva, A. S.; Magomedov, M. A.

    2012-06-01

    The results of the radioecological survey in the high-mountain regions of the Great Caucasus at the heights from 2200 to 3800 m a.s.l. are considered. This survey encompassed the territories of Dagestan, Azerbaijan, Georgia, Chechnya, Northern Ossetia-Alania, Kabardino-Balkaria, Karachay-Cherkessia, and the Stavropol and Krasnodar regions. The natural γ background radiation in the studied regions is subjected to considerable fluctuations and varies from 6 to 40 μR/h. The major regularities of the migration of natural radionuclides 238U, 232Th, 226Ra, and 40K in soils in dependence on the particular environmental conditions (the initial concentration of the radionuclides in the parent material; the intensity of pedogenesis; the intensity of the vertical and horizontal migration; and the geographic, climatic, and landscape-geochemical factors) are discussed.

  12. Application of a complex assessment of landslide hazards in mountain regions

    Directory of Open Access Journals (Sweden)

    Kateryna E. Boyko

    2017-09-01

    Full Text Available The main regional factors of occurrence and activation of landslides within the mountain region were examined. As a result of study of recommendations made by experts, geologists, and gap analysis of existing methods of forecasting the landslide process, an algorithm of comprehensive assessment of landslide hazard areas based on the construction of models in a GIS environment was proposed. These models describe the spatial patterns of landslides. All factors determining the tendency of the studies area to the landslide process development were divided into actual factors, reflecting the regional peculiarities of the territory and forming the landslide-prone slopes (static model, as well as triggering factors, initiating the landslide process and determining its activity (dynamic model. The first cartographic model was built, showing the distribution of the deterministic indirect indicator of landslide hazard, i.e. stability index.

  13. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    Science.gov (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    calc-alkaline lava flows overlying the CRBG across the northern and central parts of the LOEA. The Day 2 field route migrates to southern parts of the LOEA, where rocks of the CRBG are associated in space and time with lesser known and more complex silicic volcanic stratigraphy associated with middle Miocene, large-volume, bimodal basalt-rhyolite vent complexes. Key stops will provide a broad overview of the structure and stratigraphy of the middle Miocene Mahogany Mountain caldera and middle to late Miocene calc-alkaline lavas of the Owyhee basalt. Stops on Day 3 will progress westward from the eastern margin of the LOEA, examining a transition linking the Columbia River Basalt-Yellowstone province with a northwestward-younging magmatic trend of silicic volcanism that underlies the High Lava Plains of eastern Oregon. Initial field stops on Day 3 will examine key outcrops demonstrating the intercalated nature of middle Miocene tholeiitic CRBG flood basalts, prominent ash-flow tuffs, and “Snake River-type” large-volume rhyolite lava flows exposed along the Malheur River. Subsequent stops on Day 3 will focus upon the volcanic stratigraphy northeast of the town of Burns, which includes regional middle to late Miocene ash-flow tuffs, and lava flows assigned to the Strawberry Volcanics. The return route to Portland on Day 4 traverses across the western axis of the Blue Mountains, highlighting exposures of the widespread, middle Miocene Dinner Creek Tuff and aspects of Picture Gorge Basalt flows and northwest-trending feeder dikes situated in the central part of the CRBG province.

  14. Physical processes and effects of magmatism in the Yucca Mountain region

    International Nuclear Information System (INIS)

    Valentine, G.A.; Crowe, B.M.; Perry, F.V.

    1991-01-01

    This paper describes initial studies related to the effects of volcanism on performance of the proposed Yucca Mountain radioactive waste repository, and to the general processes of magmatism in the Yucca Mountain region. Volcanism or igneous activity can affect the repository performance by ejection of waste onto the earth's surface (eruptive effects), or by subsurface effects of hydrothermal processes and altered hydrology if an intrusion occurs within the repository block. Initial, conservative calculations of the volume of waste that might be erupted during a small-volume basaltic eruption (such as those which occurred in the Yucca Mountain region) indicate that regulatory limits might be exceeded. Current efforts to refine these calculations, based upon field studies at analog sites, are described. Studies of subsurface effects are just beginning, and are currently focused on field studies of intrusion properties and contact metamorphism at deeply eroded analog sites. General processes of magmatism are important for providing a physical basis for predictions of future volcanic activity. Initial studies have focused on modeling basaltic magma chambers in conjunction with petrographic and geochemical studies. An example of the thermal-fluid dynamic evolution of a small basaltic sill is described, based on numerical simulation. Quantification of eruption conditions can provide valuable information on the overall magmatic system. We are developing quantitative methods for mapping pyroclastic facies of small basaltic centers and, in combination with two-phase hydrodynamic simulation, using this information to estimate eruption conditions. Examples of such hydrodynamic simulations are presented, along with comparison to an historical eruption in Hawaii

  15. Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon

    Science.gov (United States)

    Bacon, Charles R.; Lanphere, Marvin A.

    2006-01-01

    Geologic mapping, K-Ar, and 40Ar/39Ar age determinations, supplemented by paleomagnetic measurements and geochemical data, are used to quantify the Quaternary volcanic history of the Crater Lake region in order to define processes and conditions that led to voluminous explosive eruptions. The Cascade arc volcano known as Mount Mazama collapsed during its climactic eruption of ∼50 km3 of mainly rhyodacitic magma ∼7700 yr ago to form Crater Lake caldera. The Mazama edifice was constructed on a Pleistocene silicic lava field, amidst monogenetic and shield volcanoes ranging from basalt to andesite similar to parental magmas for Mount Mazama. Between 420 ka and 35 ka, Mazama produced medium-K andesite and dacite in 2:1 proportion. The edifice was built in many episodes; some of the more voluminous occurred approximately coeval with volcanic pulses in the surrounding region, and some were possibly related to deglaciation following marine oxygen isotope stages (MIS) 12, 10, 8, 6, 5.2, and 2. Magmas as evolved as dacite erupted many times, commonly associated with or following voluminous andesite effusion. Establishment of the climactic magma chamber was under way when the first preclimactic rhyodacites vented ca. 27 ka. The silicic melt volume then grew incrementally at an average rate of 2.5 km3 k.y.−1 for nearly 20 k.y. The climactic eruption exhausted the rhyodacitic magma and brought up crystal-rich andesitic magma, mafic cumulate mush, and wall-rock granodiorite. Postcaldera volcanism produced 4 km3 of andesite during the first 200–500 yr after collapse, followed at ca. 4800 yr B.P. by 0.07 km3 of rhyodacite. The average eruption rate for all Mazama products was ∼0.4 km3 k.y.−1, but major edifice construction episodes had rates of ∼0.8 km3 k.y.−1. The long-term eruption rate for regional monogenetic and shield volcanoes was d∼0.07 km3 k.y.−1, but only ∼0.02 km3 k.y.−1 when the two major shields are excluded. Plutonic xenoliths and evidence for

  16. Diseases and parasites in wolves of the Riding Mountain National Park region, Manitoba, Canada.

    Science.gov (United States)

    Stronen, Astrid V; Sallows, Tim; Forbes, Graham J; Wagner, Brent; Paquet, Paul C

    2011-01-01

    We examined wolf (Canis lupus) blood and fecal samples from the Riding Mountain National Park (RMNP) region of Manitoba, Canada. In 601 fecal samples collected during two study periods in RMNP and the Duck Mountain Provincial Park and Forest (DMPPF) we found gastrointestinal helminth eggs from Alaria sp. (15.5%), Capillaria sp. (1.0%), taeniid tapeworms (30.8%), Toxascaris sp. (1.7%), Toxocara sp. (0.2%), Trichuris sp. (2.2%), and Moniezia sp. (0.5%). In addition, we found Demodex sp. (0.2%) and the protozoal cysts/oocysts of Sarcocystis sp. (37.3%), Cryptosporidium sp. (1.2%), coccidia (Isospora sp. or Eimeria sp.) (1.7%), and Giardia sp. (29.5%). No fecal shedding of canine parvovirus (CPV, n=387) was detected. All 18 blood samples collected in RMNP showed CPV exposure and eight of 18 blood samples indicated canine distemper virus (CDV) exposure. One wolf died from CDV. Our results are consistent with previous findings on pathogens affecting wolves and with high Giardia sp. prevalence in wolves inhabiting agricultural regions.

  17. Adaptation to Climate Change in Panchase Mountain Ecological Regions of Nepal

    Directory of Open Access Journals (Sweden)

    Shankar Adhikari

    2018-03-01

    Full Text Available Rural mountain communities in developing countries are considered particularly vulnerable to environmental change, including climate change. Forests and agriculture provide numerous ecosystem goods and services (EGS to local communities and can help people adapt to the impacts of climate change. There is however poor documentation on the role of EGS in people’s livelihood and adaptation practices. This study in the rural Panchase Mountain Ecological Region of Nepal identifies practices being used to adapt to a changing environment through key informant interviews and focus group discussions. At the household level, livelihood diversification, changes in cropping patterns and farming practices, use of multipurpose plant species and income-generation activities were identified as adaptation strategies. Among major strategies at the community level were community forestry-based climate adaptation plans of action for forest and water resource management. Landscape-level adaptation strategies were large-scale collaborative projects and programs, such as Ecosystem-based Adaptation and Chitwan Annapurna Landscape conservation; which had implications at both the local and landscape-level. A proper blending and integration of adaptation strategies from individual households through to the community and to the landscape level is needed for implementing effective adaptation in the region.

  18. Characteristics of soil seed bank in plantation forest in the rocky mountain region of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    HU Zeng-hui; YANG Yang; LENG Ping-sheng; DOU De-quan; ZHANG Bo; HOU Bing-fei

    2013-01-01

    We investigated characteristics (scales and composition) of soil seed banks at eight study sites in the rocky mountain region of Beijing by seed identification and germination monitoring.We also surveyed the vegetation communities at the eight study sites to explore the role of soil seed banks in vegetation restoration.The storage capacity of soil seed banks at the eight sites ranked from 766.26 to 2461.92 seedsm-2.A total of 23 plant species were found in soil seed banks,of which 63-80%of seeds were herbs in various soil layers and 60% of seeds were located in the soil layer at 0-5 cm depth.Biodiversity indices indicated clear differences in species diversity of soil seed banks among different plant communities.The species composition of aboveground vegetation showed low similarity with that based on soil seed banks.In the aboveground plant community,the afforestation tree species showed high importance values.The plant species originating from soil seed banks represented natural regeneration,which also showed relatively high importance values.This study suggests that in the rocky mountain region of Beijing the soil seed banks played a key role in the transformation from pure plantation forest to near-natural forest,promoting natural ecological processes,and the role of the seed banks in vegetation restoration was important to the improvement of ecological restoration methods.

  19. Spatial Dynamics of the Blue Crab Spawning Stock in the Gulf of Mexico: Local Processes Driving Regional Patterns.

    Science.gov (United States)

    Darnell, M. Z.

    2016-02-01

    Female blue crabs undertake a critical spawning migration seaward, migrating from low-salinity mating habitat to high-salinity waters of the lower estuaries and coastal ocean, where larval survival is highest. This migration occurs primarily through ebb tide transport, driven by an endogenous circatidal rhythm in vertical swimming that is modulated by behavioral responses to environmental cues. Blue crabs are typically considered an estuarine species and fisheries are managed on a state-by-state basis. Yet recent evidence from state and regional fishery independent survey programs suggests that the spawning migration can take females substantial distances offshore (>150 km), and that offshore waters are important spawning grounds for female blue crabs in the Gulf of Mexico. This is especially true in areas where freshwater inflow is high, resulting in low estuarine and coastal salinities. In low-salinity, high-inflow areas (e.g., Louisiana), spawning occurs further offshore while in high-salinity, low-inflow areas (e.g., South Texas), spawning takes place primarily within the estuary. Regional patterns in spawning locations both inshore and offshore are driven by interactions between behavioral mechanisms and local oceanographic conditions during the spawning migration. These environmentally driven differences in spawning locations have implications for larval survival and population connectivity, and emphasize the need for interjurisdictional assessment and management of the blue crab spawning stock.

  20. Apatite fission track dating and thermal history of Qing-He region in Altay Mountains

    International Nuclear Information System (INIS)

    Bao Zengkuan; Chinese Academy of Sciences, Beijing; Yuan Wanming; Dong Jinquan; Gao Shaokai

    2005-01-01

    Fission track ages (FTA) and track lengths of apatite from Qing-He diorite intrusion in Altay Mountains are measured. Apatite fission track ages of three diorite samples is range from (78±5) Ma to (95 ± 5) Ma, and the lengths of horizontal confined spontaneous fission tracks are (13.2 ± 1.2)-(13.5 ±1.3) μm. The distribution of the track length is narrow and symmetrical with a mean length of approximately 13.3 μm and a standard deviation of around 0.1 μm. The inverse modeling results show that thermal history of this region has four stages, two rapid uplift of this region still existed magmatic intrusion and tectonic movements in Yanshanian. (authors)

  1. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  2. Analysis and Comparison on the Flood Simulation in Typical Hilly & Semi-mountainous Region

    Science.gov (United States)

    Luan, Qinghua; Wang, Dong; Zhang, Xiang; Liu, Jiahong; Fu, Xiaoran; Zhang, Kun; Ma, Jun

    2017-12-01

    Water-logging and flood are both serious in hilly and semi-mountainous cities of China, but the related research is rare. Lincheng Economic Development Zone (EDZ) in Hebei Province as the typical city was selected and storm water management model (SWMM) was applied for flood simulation in this study. The regional model was constructed through calibrating and verifying the runoff coefficient of different flood processes. Different designed runoff processes in five-year, ten-year and twenty-year return periods in basic scenario and in the low impact development (LID) scenario, respectively, were simulated and compared. The result shows that: LID measures have effect on peak reduction in the study area, but the effectiveness is not significant; the effectiveness of lagging peak time is poor. These simulation results provide decision support for the rational construction of LID in the study area, and provide the references for regional rain flood management.

  3. Residential and service-population exposure to multiple natural hazards in the Mount Hood region of Clackamas County, Oregon

    Science.gov (United States)

    Mathie, Amy M.; Wood, Nathan

    2013-01-01

    The objective of this research is to document residential and service-population exposure to natural hazards in the rural communities of Clackamas County, Oregon, near Mount Hood. The Mount Hood region of Clackamas County has a long history of natural events that have impacted its small, tourism-based communities. To support preparedness and emergency-management planning in the region, a geospatial analysis of population exposure was used to determine the number and type of residents and service populations in flood-, wildfire-, and volcano-related hazard zones. Service populations are a mix of residents and tourists temporarily benefitting from local services, such as retail, education, or recreation. In this study, service population includes day-use visitors at recreational sites, overnight visitors at hotels and resorts, children at schools, and community-center visitors. Although the heavily-forested, rural landscape suggests few people are in the area, there are seasonal peaks of thousands of visitors to the region. “Intelligent” dasymetric mapping efforts using 30-meter resolution land-cover imagery and U.S. Census Bureau data proved ineffective at adequately capturing either the spatial distribution or magnitude of population at risk. Consequently, an address-point-based hybrid dasymetric methodology of assigning population to the physical location of buildings mapped with a global positioning system was employed. The resulting maps of the population (1) provide more precise spatial distributions for hazard-vulnerability assessments, (2) depict appropriate clustering due to higher density structures, such as apartment complexes and multi-unit commercial buildings, and (3) provide new information on the spatial distribution and temporal variation of people utilizing services within the study area. Estimates of population exposure to flooding, wildfire, and volcanic hazards were determined by using overlay analysis in a geographic information system

  4. Study on Regional Geology and Uranium Mineralization of Schwaner Mountains West and Central Kalimantan

    International Nuclear Information System (INIS)

    Soepradto-Tjokrokardono; Djoko-Soetarno; MS; Liliek-Subiantoro; Retno-Witjahyati

    2004-01-01

    Uranium occurrences indication in Kalimantan has been discovered at metamorphic and granites rocks of Schwaner Mountains as the radioactivity and geochemical anomalies. A regional geology of Schwaner Mountains show a watershed of West and East Kalimantan consist of Pinoh metamorphic rocks that was intruded by tonalitic and granitic batholite. The goal of this study is to observe the mechanism of the Uranium occurrences related to the regional tectonic, metamorphic rocks, tonalite and granitic batholite. Permokarbonaferrous metamorphic rocks as the big masses of roof pendant within tonalite mass. The metamorphic rocks originally as the big masses of roof pendant within tonalite mass. The metamorphic rocks originally derived from sedimentary process that produce a high content of uranium as well as a fine grained volcanic material. This uranium is deposited within neritic facies. Those sediments have been metamorphosed by low grade Abukuma regional metamorphism at the condition about 540 o C and 2000 bar. In early Cretaceous Tonalite of Sep auk intruded the rock and both metamorphics and tonalites. Those rocks were intruded by Late Cretaceous alkalin granite of Sukadana. Those crystalline rocks overlaid by an unconformity-related Kampari and Tebidah Formations that including within Melawi Group of Tertiary age. Uranium mineralization as the centimetric-metric veins related to tectonic N 100 o -110 o E and N 50 o E lineaments. Uranium was interpreted as a volcanic sedimentary origin, than it re mobilized by low grade regional metamorphism process. This enuchment process was carried out by fluor, boron and other metalliferous mineral within hydrothermal solutions of Sukadana granite. (author)

  5. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Science.gov (United States)

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  6. Distribution of uranium 226Ra, 210Pb and 210Po in the ecological cycle in mountain regions of Central Yugoslavia

    International Nuclear Information System (INIS)

    Milosevic, Z.; Horsic, E.; Kljajic, R.; Bauman, A.

    1980-01-01

    The distribution of uranium, 226 Ra, 210 Pb and 210 Po in the uncultivated mountain regions of Central Yugoslavia was investigated. Samples of beef (meat and bones), milk, cheese, grass and podsolic soil were analyzed. The results showed that the distribution of these radionuclides in this ecologically unpolluted environment was no different from cultivated regions in other parts of the world. (UK)

  7. Scaling-up watershed discharge and sediment concentrations to regional scale: The Blue Nile Basin

    Science.gov (United States)

    Steenhuis, T. S.; Tilahun, S. A.; MacAlister, C.; Ayana, E. K.; Tebebu, T. Y.; Bayabil, H. K.; Zegeye, A. D.; Worqlul, A. W.

    2012-12-01

    Since Hewlet and Hibbert's publication there is recognition that saturated excess overland land flow is one of the main runoff mechanisms in vegetated watersheds. Predicting discharge in these watersheds can be accomplished by use of simplified models where the landscape features are grouped in potentially runoff contributing zones and permeable hillsides where the water infiltrates (and become the source of interflow and base flow). In this way each watershed can be described with nine parameters: fractional area and available water content for each of the three zones and three parameters describing subsurface flow. The information parameter values can be derived directly from the outflow hydrograph. We show that this model performs well for discharge and sediment concentration (with three additional parameters) on a 1 to 10 day time scale in the Blue Nile Basin for watersheds ranging in in size from 100 ha to 170,000 km2. Thus scaling up from watershed to regional scale can be accomplished with nine parameters for the hydrology and three additional parameters for sediment concentrations. Our hypothesis, that the model works so well, is that after the watershed wets up it drains to a characteristic moisture content distribution that is invariant in time. Wetting up is similar each time and is as a function of effective rainfall. This gives rise to a unique relationship between total storm runoff and total precipitation and surprisingly can be described by a modified form of the well-known SCS runoff equation. This approach has a direct parallel with Darcy's law in that although the average flow over several pores is described well, flow in individual pores cannot predicted. In our case the discharge can be simulated by averaging over the different runoff source area and permeable hillside in the watersheds, but processes within the zones cannot be described. This is not to say that information within the various zones cannot be simulated, but will require detailed

  8. Role of land use change in landslide-related sediment fluxes in tropical mountain regions

    Science.gov (United States)

    Guns, M.; Vanacker, V.; Demoulin, A.

    2012-04-01

    Tropical mountain regions are characterised by high denudation rates. Landslides are known to be recurrent phenomena in active mountain belts, but their contribution to the overall sedimentary fluxes is not yet well known. Previous studies on sedimentary cascades have mostly focused on natural environments, without considering the impact of human and/or anthropogenic disturbances on sedimentary budgets. In our work, we hypothesise that human-induced land use change might alter the sediment cascade through shifts in the landslide magnitude-frequency relationship. We have tested this assumption in the Virgen Yacu catchment (approximately 11km2), in the Ecuadorian Cordillera Occidental. Landslide inventories and land use maps were established based on a series of sequential aerial photos (1963, 1977, 1984 and 1989), a HR Landsat image (2001) and a VHR WorldView2 image (2010). Aerial photographs were ortho-rectified, and coregistred with the WorldView2 satellite image. Field campaigns were realised in 2010 and 2011 to collect field-based data on landslide type and geometry (depth, width and length). This allowed us to establish an empirical relationship between landslide area and volume, which was then applied to the landslide inventories to estimate landslide-related sediment production rates for various time periods. The contribution of landslides to the overall sediment flux of the catchment was estimated by comparing the landslide-related sediment production to the total sediment yield. The empirical landslide area-volume relationship established here for the Ecuadorian Andes is similar to that derived for the Himalayas. It suggests that landslides are the main source of sediment in this mountainous catchment. First calculations indicate that human-induced land use change alters the magnitude-frequency relationship through strong increase of small landslides.

  9. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed

    Science.gov (United States)

    Fazeli Farsani, Iman; Farzaneh, M. R.; Besalatpour, A. A.; Salehi, M. H.; Faramarzi, M.

    2018-04-01

    The variability and uncertainty of water resources associated with climate change are critical issues in arid and semi-arid regions. In this study, we used the soil and water assessment tool (SWAT) to evaluate the impact of climate change on the spatial and temporal variability of water resources in the Bazoft watershed, Iran. The analysis was based on changes of blue water flow, green water flow, and green water storage for a future period (2010-2099) compared to a historical period (1992-2008). The r-factor, p-factor, R 2, and Nash-Sutcliff coefficients for discharge were 1.02, 0.89, 0.80, and 0.80 for the calibration period and 1.03, 0.76, 0.57, and 0.59 for the validation period, respectively. General circulation models (GCMs) under 18 emission scenarios from the IPCC's Fourth (AR4) and Fifth (AR5) Assessment Reports were fed into the SWAT model. At the sub-basin level, blue water tended to decrease, while green water flow tended to increase in the future scenario, and green water storage was predicted to continue its historical trend into the future. At the monthly time scale, the 95% prediction uncertainty bands (95PPUs) of blue and green water flows varied widely in the watershed. A large number (18) of climate change scenarios fell within the estimated uncertainty band of the historical period. The large differences among scenarios indicated high levels of uncertainty in the watershed. Our results reveal that the spatial patterns of water resource components and their uncertainties in the context of climate change are notably different between IPCC AR4 and AR5 in the Bazoft watershed. This study provides a strong basis for water supply-demand analyses, and the general analytical framework can be applied to other study areas with similar challenges.

  10. Women as Drivers for a Sustainable and Social Inclusive Development in Mountain Regions – The Case of the Austrian Alps

    Directory of Open Access Journals (Sweden)

    Oedl-Wieser Theresia

    2017-12-01

    Full Text Available Women in mountain regions play an important role regarding the agricultural production and ensuring sustainable livelihoods. Furthermore, they are active in climate change adaption and preservation of biodiversity. Despite these important activities and performances the vital role of women for a sustainable and social inclusive development in mountain regions is often invisible and not appreciated enough in society. There still exists structural discrimination of women which is caused by patriarchal societies, social and cultural norms as well as difficult economic situations. Considering the need to foster the dynamic and sustainable development of mountain regions all over the world, it is of paramount importance to reflect and integrate women’s issues, problems and needs to a larger extent in research, public policy and in worldwide decision-making agendas.

  11. Developing scenarios to assess future landslide risks: a model-based approach applied to mountainous regions

    Science.gov (United States)

    Vacquie, Laure; Houet, Thomas

    2016-04-01

    In the last century, European mountain landscapes have experienced significant transformations. Natural and anthropogenic changes, climate changes, touristic and industrial development, socio-economic interactions, and their implications in terms of LUCC (land use and land cover changes) have directly influenced the spatial organization and vulnerability of mountain landscapes. This study is conducted as part of the SAMCO project founded by the French National Science Agency (ANR). It aims at developing a methodological approach, combining various tools, modelling platforms and methods, to identify vulnerable regions to landslide hazards accounting for futures LUCC. It presents an integrated approach combining participative scenarios and a LULC changes simulation models to assess the combined effects of LUCC and climate change on landslide risks in the Cauterets valley (French Pyrenees Mountains) up to 2100. Through vulnerability and risk mapping, the objective is to gather information to support landscape planning and implement land use strategies with local stakeholders for risk management. Four contrasting scenarios are developed and exhibit contrasting trajectories of socio-economic development. Prospective scenarios are based on national and international socio-economic contexts relying on existing assessment reports. The methodological approach integrates knowledge from local stakeholders to refine each scenario during their construction and to reinforce their plausibility and relevance by accounting for local specificities, e.g. logging and pastoral activities, touristic development, urban planning, etc. A process-based model, the Forecasting Scenarios for Mountains (ForeSceM) model, developed on the Dinamica Ego modelling platform is used to spatially allocate futures LUCC for each prospective scenario. Concurrently, a spatial decision support tool, i.e. the SYLVACCESS model, is used to identify accessible areas for forestry in scenario projecting logging

  12. Regression-Correlation of Petrophysical Inter-Parameter of Igneous Rocks and Limestone from Kulonprogo Mountain Region, Yogyakarta Special Region

    Directory of Open Access Journals (Sweden)

    Sigit Maryanto

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.127Laboratory test of complete petrophysic parameters encompasing water absorption, compressive strength, Los Angeles abrasive strength, Rudellof abrasive strength, and wear resistance with Na2SO4 has been carried out for igneous and carbonate rocks taken from Kulonprogo Mountains region. Statistical verification of the data exhibits variation of correlation coefficients among parameters ranging from medium to very high value. The values of petrophysic test results are determined by the rock types. The result of this study is useful to estimate the accuracy of values of each parameter test result in Geological Survey Institute Laboratory using regression formula representing each relationship.

  13. MAPPING ECOSYSTEM SERVICES SUPPLY IN MOUNTAIN REGIONS: A CASE STUDY FROM SOUTH TYROL (ITALY

    Directory of Open Access Journals (Sweden)

    U. Schirpke

    2014-04-01

    Full Text Available Mountain regions provide many ecosystem services and spatially explicit assessments have to account for their specific topographic and climatic conditions. Moreover, it is fundamental to understand synergies and trade-offs of multiple ecosystem services. In this study, ecosystem services supply, including forage production, timber production, water supply, carbon sequestration, soil stability, soil quality, and the aesthetic value, was quantified in bio-physical terms on the landscape scale for South Tyrol. Mean ecosystem services values of the 116 municipalities were grouped in 5 clusters. The results indicate that carbon stock is the prevailing ecosystem service of valley municipalities. On contrast, they suffer from water deficit and depend on water supply from high mountain municipalities. Trade-offs can be also found between the aesthetic value on one hand and timber production, carbon sequestration and soil stability on the other hand. The latter are characteristic for municipalities dominated by forest. The resulting maps can support landscape planning, ecosystem management and conservation of biodiversity.

  14. Stream flow regime of springs in the Mantiqueira Mountain Range region, Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Alisson Souza de Oliveira

    2014-09-01

    Full Text Available The stream flow regime of four springs located in the Mantiqueira Mountain Range region (MG was evaluated and correlated to the respective recharge area, relief characteristics, land cover and physical and hydrologic soil characteristics. The streamflow regime was characterized by monitoring of discharges, calculating the surface runoff and specific discharge and by modeling the discharge over the recession period using the Maillet method. As all recharge areas have similar relief the effect of it on the streamflow was not possible to identify. Analysis included determining the effect of drainage area size, soil characteristics and land cover on the indicators of the streamflow regime. Size of the recharge area had a positive influence on the indicators mean discharge and surface runoff volume and on the regulation of the streamflow regime (springs L4 and L1. The spring under the smallest area of influence provided the worst results for the above mentioned indicators (spring L3. The effect of forest cover (natural and planted, associated with soil characteristics, was evidenced by the indicators surface runoff (in depth and specific yield, both independent of the recharge area size (springs L4 and L2. The interaction of area size, soil characteristics and forest cover (natural and planted provided the best results for all indicators of streamflow regime in the springs studied in the Mantiqueira Mountain Range (spring L4.

  15. Production of high-resolution digital terrain models in mountain regions to support risk assessment

    Directory of Open Access Journals (Sweden)

    Gianfranco Forlani

    2015-07-01

    Full Text Available Demand for high-accuracy digital terrain models (DTMs in the Alpine region has been steadily increasing in recent years in valleys as well as high mountains. In the former, the determination of the geo-mechanical parameters of rock masses is the main objective; global warming, which causes the retreat of glaciers and the reduction of permafrost, is the main drive of the latter. The consequence is the instability of rock masses in high mountains: new cost-effective monitoring techniques are required to deal with the peculiar characteristics of such environment, delivering results at short notice. After discussing the design and execution of photogrammetric surveys in such areas, with particular reference to block orientation and block control, the paper describes the production of DTMs of rock faces and glacier fronts with light instrumentation and data acquisition techniques, allowing highly automated data processing. To this aim, the PhotoGPS technique and structure from motion algorithms are used to speed up the orientation process, while dense matching area-based correlation techniques are used to generate the DTMs.

  16. Habitat assessment for giant pandas in the Qinling Mountain region of China

    Science.gov (United States)

    Feng, Tian-Tian; Van Manen, Frank T.; Zhao, Na-Xun; Li, Ming; Wei, Fu-Wen

    2009-01-01

    Because habitat loss and fragmentation threaten giant pandas (Ailuropoda melanoleuca), habitat protection and restoration are important conservation measures for this endangered species. However, distribution and value of potential habitat to giant pandas on a regional scale are not fully known. Therefore, we identified and ranked giant panda habitat in Foping Nature Reserve, Guanyinshan Nature Reserve, and adjacent areas in the Qinling Mountains of China. We used Mahalanobis distance and 11 digital habitat layers to develop a multivariate habitat signature associated with 247 surveyed giant panda locations, which we then applied to the study region. We identified approximately 128 km2 of giant panda habitat in Foping Nature Reserve (43.6% of the reserve) and 49 km2 in Guanyinshan Nature Reserve (33.6% of the reserve). We defined core habitat areas by incorporating a minimum patch-size criterion (5.5 km2) based on home-range size. Percentage of core habitat area was higher in Foping Nature Reserve (41.8% of the reserve) than Guanyinshan Nature Reserve (26.3% of the reserve). Within the larger analysis region, Foping Nature Reserve contained 32.7% of all core habitat areas we identified, indicating regional importance of the reserve. We observed a negative relationship between distribution of core areas and presence of roads and small villages. Protection of giant panda habitat at lower elevations and improvement of habitat linkages among core habitat areas are important in a regional approach to giant panda conservation.

  17. Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico.

    Science.gov (United States)

    Esperón-Rodríguez, Manuel; Bonifacio-Bautista, Martín; Barradas, Víctor L

    2016-03-01

    Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922-2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.

  18. Risk and size estimation of debris flow caused by storm rainfall in mountain regions

    Institute of Scientific and Technical Information of China (English)

    CHENG; Genwei

    2003-01-01

    Debris flow is a common disaster in mountain regions. The valley slope, storm rainfall and amassed sand-rock materials in a watershed may influence the types of debris flow. The bursting of debris flow is not a pure random event. Field investigations show the periodicity of its burst, but no directive evidence has been found yet. A risk definition of debris flow is proposed here based upon the accumulation and the starting conditions of loose material in channel. According to this definition, the risk of debris flow is of quasi-periodicity. A formula of risk estimation is derived. Analysis of relative factors reveals the relationship between frequency and size of debris flow. For a debris flow creek, the longer the time interval between two occurrences of debris flows is, the bigger the bursting event will be.

  19. Abbreviated bibliography on energy development—A focus on the Rocky Mountain Region

    Science.gov (United States)

    Montag, Jessica M.; Willis, Carolyn J.; Glavin, Levi W.

    2011-01-01

    Energy development of all types continues to grow in the Rocky Mountain Region of the western United States. Federal resource managers increasingly need to balance energy demands, effects on the natural landscape and public perceptions towards these issues. To assist in efficient access to valuable information, this abbreviated bibliography provides citations to relevant information for myriad of issues for which resource managers must contend. The bibliography is organized by seven large topics with various sup-topics: broad energy topics (energy crisis, conservation, supply and demand, etc.); energy sources (fossil fuel, nuclear, renewable, etc.); natural landscape effects (climate change, ecosystem, mitigation, restoration, and reclamation, wildlife, water, etc.); human landscape effects (attitudes and perceptions, economics, community effects, health, Native Americans, etc.); research and technology; international research; and, methods and modeling. A large emphasis is placed on the natural and human landscape effects.

  20. Fog water collection and reforestation at mountain locations in a western Mediterranean basin region

    Science.gov (United States)

    Valiente, Ja; Estrela, Mj; Corell, D.; Fuentes, D.; Valdecantos, A.

    2010-07-01

    Previous studies carried out by the authors have shown the potential of fog water collection at several mountain locations in the Valencia region (western Mediterranean basin). This coastal region features typical conditions for a dry Mediterranean climate characterized by a pluviometric regime ranging from 400 to 600 mm with a strong annual dependence. Dry conditions together with land degradation that frequently results after recurrent fires occurred in the past make a difficult self-recovery for native forest vegetation so that some kind of human intervention is always recommended. In plots reforested with Mediterranean woody species, periods of more than 120 days without significant precipitation (>5 mm) result in mortality rates above 80% during the first summer in the field. The good potential of fog-water collection at certain mountain locations is considered in this study as an easily available water resource for the reforestation of remote areas where native vegetation cannot be reestablished by itself. A large flat panel made of UV-resistant HD-polyethylene monofilament mesh was deployed at a mountain location for bulk fog water harvesting. Water was stored in high-capacity tanks for the whole length of the experimental campaign and small timely water pulses localized deep in the planting holes were conducted during the summer dry periods. Survival rates and seedling performance of two forest tree species, Pinus pinaster and Quercus ilex, were quantified and correlated to irrigation pulses in a reforestation plot that took an area of about 2500 m2 and contained 620 1-year-old plants. Before and concurrently to the flat panel deployment, a passive omnidirectional fog-water collector of cylindrical shape was set in the area in combination to other environmental instruments such as a rain gauge, a wind direction and velocity sensor and a temperature and humidity probe. Proper orientation of the large flat panel was possible once the direction of local winds

  1. Community-based Monitoring of Water Resources in Remote Mountain Regions

    Science.gov (United States)

    Buytaert, W.; Hannah, D. M.; Dewulf, A.; Clark, J.; Zulkafli, Z. D.; Karpouzoglou, T.; Mao, F.; Ochoa-Tocachi, B. F.

    2016-12-01

    Remote mountain regions are often represented by pockets of poverty combined with accelerated environmental change. The combination of harsh climatic and topographical conditions with limited infrastructure puts severe pressures on local livelihoods, many of which rely strongly on local ecosystem services (ESS) such as agricultural production and water supply. It is therefore paramount to optimise the management of ESS for the benefit of local people. This is hindered by a scarcity of quantitative data about physical processes such as precipitation and river flow as well as qualitative data concerning the management of water and land. National and conventional scientific monitoring networks tend to be insufficient to cover adequately the spatial and temporal gradients. Additionally, the data that are being collected often fail to be converted into locally relevant and actionable knowledge for ESS management. In such conditions, community-based monitoring of natural resources may be an effective way to reduce this knowledge gap. The participatory nature of such monitoring also enhances knowledge co-production and integration in locally-based decision-making processes. Here, we present the results of a 4-year consortium project on the use of citizen science technologies for ecosystem services management (Mountain-EVO). The project analyzed ecosystem service dynamics and decision-making processes and implemented a comparative analysis of experiments with community-based monitoring of water resources in 4 remote mountain regions, i.e. Peru, Nepal, Kyrgyzstan, and Ethiopia. We find that community-based monitoring can have a transformative impact on local ESS management, because of its potential to be more inclusive, polycentric, and context-driven as compared to conventional monitoring. However, the results and effectiveness of community-based approaches depend strongly on the natural and socio-economic boundary conditions. As such, this requires a tailored and bottom

  2. Soils Developed on Geomorphic Surfaces in the Mountain Region of the State of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Ademir Fontana

    2018-01-01

    Full Text Available ABSTRACT: The evaluation of soils in representative landscapes constitutes an opportunity to evaluate spatial distribution, discuss formation processes, and apply this knowledge to land use and management. In this sense, from the perspective of an environmentally diversified region, the aim of the present study is to evaluate the occurrence and understand the formation of soils in different geomorphic surfaces of a landscape from a mountain region in the state of Rio de Janeiro. The study was developed in the Pito Aceso microbasin in the municipality of Bom Jardim, composed of narrow valleys and a rugged mountain domain, with elevation between 640 and 1,270 m. In a representative landscape, the geomorphic surfaces were obtained from the slope segments and flow lines. On the geomorphic surfaces, soil profiles were described by their morphological properties, collected, and analyzed to describe the chemical and physical properties of each horizon. Geomorphological aspects and possible variations of the parent material directly affected pedogenesis and led to distinct soil classes in the landscape. Variation in the geomorphic surfaces directs the processes for soil formation under current conditions, as well as the preservation of polygenetic soils. Soils of lower development and with greater participation of the exchangeable cations were identified at the summit (talus deposit (Neossolo Litólico and Cambissolo Húmico and toeslope (colluvial-alluvial (Neossolo Flúvico, whereas more developed soils with lower nutrient content occur in the concave (Argissolos Vermelho and Amarelo and convex (Latossolo Amarelo backslope, except for the Argissolo Vermelho-Amarelo in the shoulder, which had high exchangeable cations contents.

  3. Constructing Consistent Multiscale Scenarios by Transdisciplinary Processes: the Case of Mountain Regions Facing Global Change

    Directory of Open Access Journals (Sweden)

    Fridolin Simon. Brand

    2013-06-01

    Full Text Available Alpine regions in Europe, in particular, face demanding local challenges, e.g., the decline in the agriculture and timber industries, and are also prone to global changes, such as in climate, with potentially severe impacts on tourism. We focus on the Visp region in the Upper Valais, Switzerland, and ask how the process of stakeholder involvement in research practice can contribute to a better understanding of the specific challenges and future development of mountainous regions under global change. Based on a coupled human-environment system (HES perspective, we carried out a formative scenario analysis to develop a set of scenarios for the future directions of the Visp region. In addition, we linked these regional scenarios to context scenarios developed at the global and Swiss levels via an external consistency analysis. This method allows the coupling of both the scenario building process and the scenarios as such. We used a functional-dynamic approach to theory-practice cooperation, i.e., the involvement of key stakeholders from, for example, tourism, forestry, and administration, differed in type and intensity during the steps of the research process. In our study, we experienced strong problem awareness among the stakeholders concerning the impacts of global change and local challenges. The guiding research question was commonly defined and problem ownership was more or less balanced. We arrived at six multiscale scenarios that open up future trajectories for the Visp region, and present generic strategies to cope with global and local challenges. The results show that local identity, spatial planning, community budget, and demographic development are important steering elements in the region's future development. We suggest that method-guided transdisciplinary processes result in a richer picture and a more systemic understanding, which enable a discussion of critical and surprising issues.

  4. Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots

    Science.gov (United States)

    Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan

    2016-01-01

    Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources. PMID:27265198

  5. Application of statistical and dynamics models for snow avalanche hazard assessment in mountain regions of Russia

    Science.gov (United States)

    Turchaninova, A.

    2012-04-01

    The estimation of extreme avalanche runout distances, flow velocities, impact pressures and volumes is an essential part of snow engineering in mountain regions of Russia. It implies the avalanche hazard assessment and mapping. Russian guidelines accept the application of different avalanche models as well as approaches for the estimation of model input parameters. Consequently different teams of engineers in Russia apply various dynamics and statistical models for engineering practice. However it gives more freedom to avalanche practitioners and experts but causes lots of uncertainties in case of serious limitations of avalanche models. We discuss these problems by presenting the application results of different well known and widely used statistical (developed in Russia) and avalanche dynamics models for several avalanche test sites in the Khibini Mountains (The Kola Peninsula) and the Caucasus. The most accurate and well-documented data from different powder and wet, big rare and small frequent snow avalanche events is collected from 1960th till today in the Khibini Mountains by the Avalanche Safety Center of "Apatit". This data was digitized and is available for use and analysis. Then the detailed digital avalanche database (GIS) was created for the first time. It contains contours of observed avalanches (ESRI shapes, more than 50 years of observations), DEMs, remote sensing data, description of snow pits, photos etc. Thus, the Russian avalanche data is a unique source of information for understanding of an avalanche flow rheology and the future development and calibration of the avalanche dynamics models. GIS database was used to analyze model input parameters and to calibrate and verify avalanche models. Regarding extreme dynamic parameters the outputs using different models can differ significantly. This is unacceptable for the engineering purposes in case of the absence of the well-defined guidelines in Russia. The frequency curves for the runout distance

  6. The effect of agricultural policy reforms on income inequality in Swiss agriculture - An analysis for valley, hill and mountain regions

    NARCIS (Netherlands)

    Benni, El N.; Finger, R.

    2013-01-01

    Using FADN data, we analyse the development of income inequality in Swiss agriculture for the valley, hill and mountain regions over the period 1990–2009. While household income inequality remained stable, farm income inequality increased during this period. Estimated Gini elasticities show that

  7. The 2014 assessment of stream quality in the Piedmont and southern Appalachian Mountain region of southeastern United States

    Science.gov (United States)

    Celeste Journey; Paul M. Bradley; Peter Van Metre

    2016-01-01

    During the spring and summer of 2014, the U.S. Geological Survey (USGS) National Water- Quality Assessment Program (NAWQA) assessed stream quality across the Piedmont and southern Appalachian Mountain region in the southeastern United States.

  8. Massive post-fire flowering events in a tropical mountain region of Brazil: high episodic supply of floral resources

    Directory of Open Access Journals (Sweden)

    Abel Augusto Conceição

    2013-12-01

    Full Text Available The species Vellozia sincorana L.B.Sm. & Ayensu is key to biodiversity conservation in the tropical mountain region of Brazil. The massive post-fire flowering of this endemic species provides a large, episodic supply of floral resources, mostly nectar, to animals.

  9. Contrasting neogene denudation histories of different structural regions in the transantarctic mountains rift flank constrained by cosmogenic isotope measurements

    NARCIS (Netherlands)

    Wateren, F.M. van der; Dunai, T.J.; Balen, R.T. van; Klas, W.; Verbers, A.L.L.M.; Passchier, S.; Herpers, U.

    1999-01-01

    Separate regions within the Transantarctic Mountains, the uplifted flank of the West Antarctic rift system, appear to have distinct Neogene histories of glaciation and valley downcutting. Incision of deep glacial outlet valleys occurred at different times throughout central and northern Victoria

  10. A Regional View of the Margin: Salmonid Abundance and Distribution in the Southern Appalachian Mountains of North Carolina and Virginia

    Science.gov (United States)

    Patricia A. Flebbe

    1994-01-01

    In the southern Appalachian Mountains, native brook trout Salvelinus fontinalis and introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are at the southern extremes of their distributions, an often overlooked kind of marginal habitat. At a regional scale composed of the states of Virginia...

  11. Equilibrium of vegetation and climate at the European rear edge. A reference for climate change planning in mountainous Mediterranean regions.

    Science.gov (United States)

    Ruiz-Labourdette, Diego; Martínez, Felipe; Martín-López, Berta; Montes, Carlos; Pineda, Francisco D

    2011-05-01

    Mediterranean mountains harbour some of Europe's highest floristic richness. This is accounted for largely by the mesoclimatic variety in these areas, along with the co-occurrence of a small area of Eurosiberian, Boreal and Mediterranean species, and those of Tertiary Subtropical origin. Throughout the twenty-first century, we are likely to witness a climate change-related modification of the biogeographic scenario in these mountains, and there is therefore a need for accurate climate regionalisations to serve as a reference of the abundance and distribution of species and communities, particularly those of a relictic nature. This paper presents an objective mapping method focussing on climate regions in a mountain range. The procedure was tested in the Cordillera Central Mountains of the Iberian Peninsula, in the western Mediterranean, one of the ranges occupying the largest area of the Mediterranean Basin. This regionalisation is based upon multivariate analyses and upon detailed cartography employing 27 climatic variables. We used spatial interpolation of data based on geographic information. We detected high climatic diversity in the mountain range studied. We identified 13 climatic regions, all of which form a varying mosaic throughout the annual temperature and rainfall cycle. This heterogeneity results from two geographically opposed gradients. The first one is the Mediterranean-Euro-Siberian variation of the mountain range. The second gradient involves the degree of oceanicity, which is negatively related to distance from the Atlantic Ocean. The existing correlation between the climatic regions detected and the flora existing therein enables the results to be situated within the projected trends of global warming, and their biogeographic and ecological consequences to be analysed.

  12. Potentials for development of spa tourism in region of Cer Mountain: Western Serbia

    Directory of Open Access Journals (Sweden)

    Grčić Mirko

    2006-01-01

    Full Text Available Because of their particularities, thermal and mineral springs at the foothill of Cer Mountain deserve special analysis. This is the reason we wrote this article, aiming to take reader's attention to the touristic potentials of the spa zone of Cer Mountain and possibilities for its perspective development. From the medical and excursion-recreational tourism point of view, there is a possibility for combining the spa tourism with the complementary values of Cer Mountain.

  13. Determination of the Anthropogenic Carbon Signal to the Total Change in Dissolved Carbon in the Coastal Upwelling Region Along the Washington-Oregon-California Continental Margin

    Science.gov (United States)

    Feely, R. A.

    2016-02-01

    The continental shelf region off the Washington-Oregon-California coast is seasonally exposed to water with a low aragonite saturation state by coastal upwelling of CO2-rich waters. To date, the spatial and temporal distribution of anthropogenic CO2 (Canthro) contribution to the CO2-rich waters is largely unknown. Here we use an adaptation of the linear regression approach described in Feely et al (2008) along with the GO-SHIP Repeat Hydrography data sets from the northeast Pacific to establish an annually updated relationship between Canthro and potential density. This relationship was then used with the NOAA Ocean Acidification Program west coast cruise data sets from 2007, 2011, 2012 and 2013 to determine the spatial variations of Canthro in the upwelled water. Our results show large spatial differences in Canthro in surface waters along the coast with the lowest surface values (40-45 µmol kg-1) in strong upwelling regions of off northern California and southern Oregon and higher values (50-70 µmol kg-1) to the north and south. Canthro contributes an average of about 70% of the increased amount of dissolved inorganic carbon in the upwelled waters at the surface. In contrast, at 50 m the Canthro contribution is approximately 31% and at 100 m it averages about 16%. The remaining contributions are primarily due to respiration processes in the water that was upwelled and transported to coastal regions or underwent respiration processes that occurred locally during the course of the upwelling season. The uptake of Canthro has caused the aragonite saturation horizon to shoal by approximately 30-50 m since preindustrial period so that the undersaturated waters are well within the regions that affect the biological communities on the continental shelf.

  14. Rapid exhumation of Cretaceous arc-rocks along the Blue Mountains restraining bend of the Enriquillo-Plantain Garden fault, Jamaica, using thermochronometry from multiple closure systems

    Science.gov (United States)

    Cochran, William J.; Spotila, James A.; Prince, Philip S.; McAleer, Ryan J.

    2017-01-01

    The effect of rapid erosion on kinematic partitioning along transpressional plate margins is not well understood, particularly in highly erosive climates. The Blue Mountains restraining bend (BMRB) of eastern Jamaica, bound to the south by the left-lateral Enriquillo-Plantain Garden fault (EPGF), offers an opportunity to test the effects of highly erosive climatic conditions on a 30-km-wide restraining bend system. No previous thermochronometric data exists in Jamaica to describe the spatial or temporal pattern of rock uplift and how oblique (> 20°) plate motion is partitioned into vertical strain. To define the exhumation history, we measured apatite (n = 10) and zircon (n = 6) (U-Th)/He ages, 40Ar/39Ar (n = 2; amphibole and K-spar) ages, and U/Pb zircon (n = 2) crystallization ages. Late Cretaceous U/Pb and 40Ar/39Ar ages (74–68 Ma) indicate rapid cooling following shallow emplacement of plutons during north-south subduction along the Great Caribbean Arc. Early to middle Miocene zircon helium ages (19–14 Ma) along a vertical transect suggest exhumation and island emergence at ~ 0.2 mm/yr. Older zircon ages 10–15 km to the north (44–35 Ma) imply less rock uplift. Apatite helium ages are young (6–1 Ma) across the entire orogen, suggesting rapid exhumation of the BMRB since the late Miocene. These constraints are consistent with previous reports of restraining bend formation and early emergence of eastern Jamaica. An age-elevation relationship from a vertical transect implies an exhumation rate of 0.8 mm/yr, while calculated closure depths and thermal modeling suggests exhumation as rapid as 2 mm/yr. The rapid rock uplift rates in Jamaica are comparable to the most intense transpressive zones worldwide, despite the relatively slow (5–7 mm/yr) strike-slip rate. We hypothesize highly erosive conditions in Jamaica enable a higher fraction of plate motion to be accommodated by vertical deformation. Thus, strike-slip restraining bends may evolve differently

  15. Assessing Past Fracture Connectivity in Geothermal Reservoirs Using Clumped Isotopes: Proof of Concept in the Blue Mountain Geothermal Field, Nevada USA

    Science.gov (United States)

    Huntington, K. W.; Sumner, K. K.; Camp, E. R.; Cladouhos, T. T.; Uddenberg, M.; Swyer, M.; Garrison, G. H.

    2015-12-01

    Subsurface fluid flow is strongly influenced by faults and fractures, yet the transmissivity of faults and fractures changes through time due to deformation and cement precipitation, making flow paths difficult to predict. Here we assess past fracture connectivity in an active hydrothermal system in the Basin and Range, Nevada, USA, using clumped isotope geochemistry and cold cathodoluminescence (CL) analysis of fracture filling cements from the Blue Mountain geothermal field. Calcite cements were sampled from drill cuttings and two cores at varying distances from faults. CL microscopy of some of the cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements record variations in the composition and source of fluids that moved through the fractures as they opened episodically. CL microscopy, δ13C and δ18O values were used to screen homogeneous samples for clumped isotope analysis. Clumped isotope thermometry of most samples indicates paleofluid temperatures of around 150°C, with several wells peaking at above 200°C. We suggest that the consistency of these temperatures is related to upwelling of fluids in the convective hydrothermal system, and interpret the similarity of the clumped isotope temperatures to modern geothermal fluid temperatures of ~160-180°C as evidence that average reservoir temperatures have changed little since precipitation of the calcite cements. In contrast, two samples, one of which was associated with fault gauge observed in drill logs, record significantly cooler temperatures of 19 and 73°C and anomalous δ13C and δ18Owater values, which point to fault-controlled pathways for downwelling meteoric fluid. Finally, we interpret correspondence of paleofluid temperatures and δ18Owater values constrained by clumped isotope thermometry of calcite from different wells to suggest past connectivity of fractures among wells within the geothermal field. Results show the ability of clumped isotope

  16. DISCOVERY OF A POSSIBLY SINGLE BLUE SUPERGIANT STAR IN THE INTRA-CLUSTER REGION OF VIRGO CLUSTER OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ohyama, Youichi; Hota, Ananda [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2013-04-20

    IC 3418 is a dwarf irregular galaxy falling into the Virgo cluster, and a 17 kpc long trail is seen behind the galaxy, which is considered to have formed due to ram pressure stripping. The trail contains compact knots and diffuse blobs of ultraviolet and blue optical emission and, thus, it is a clear site of recent star formation but in an unusual environment, surrounded by a million degree intra-cluster medium. We report on our optical spectroscopy of a compact source in the trail, SDSS J122952.66+112227.8, and show that the optical spectrum is dominated by emission from a massive blue supergiant star. If confirmed, our report would mark the farthest star with spectroscopic observation. We interpret that a massive O-type star formed in situ in the trail has evolved recently out of the main sequence into this blue supergiant phase, and now lacks any detectable spectral sign of its associated H II region. We argue that turbulence within the ram pressure striped gaseous trail may play a dominant role for the star formation within such trails.

  17. DISCOVERY OF A POSSIBLY SINGLE BLUE SUPERGIANT STAR IN THE INTRA-CLUSTER REGION OF VIRGO CLUSTER OF GALAXIES

    International Nuclear Information System (INIS)

    Ohyama, Youichi; Hota, Ananda

    2013-01-01

    IC 3418 is a dwarf irregular galaxy falling into the Virgo cluster, and a 17 kpc long trail is seen behind the galaxy, which is considered to have formed due to ram pressure stripping. The trail contains compact knots and diffuse blobs of ultraviolet and blue optical emission and, thus, it is a clear site of recent star formation but in an unusual environment, surrounded by a million degree intra-cluster medium. We report on our optical spectroscopy of a compact source in the trail, SDSS J122952.66+112227.8, and show that the optical spectrum is dominated by emission from a massive blue supergiant star. If confirmed, our report would mark the farthest star with spectroscopic observation. We interpret that a massive O-type star formed in situ in the trail has evolved recently out of the main sequence into this blue supergiant phase, and now lacks any detectable spectral sign of its associated H II region. We argue that turbulence within the ram pressure striped gaseous trail may play a dominant role for the star formation within such trails.

  18. [Vulnerability of eco-economy in northern slope region of Tianshan Mountains].

    Science.gov (United States)

    Wu, Jian-zhai; Li, Bo; Zhang, Xin-shi; Zhao, Wen-wu; Jiang, Guang-hui

    2008-04-01

    Based on the theoretical meaning of vulnerability, a vulnerability assessment of eco-econom in fifteen counties in the northern slope region of Tianshan Mountains was conducted. The ecosystem services change to land use was regarded as the impact, and based on the fourteen indices from resource holding, society development, and economy development statistic data, the adaptive ability was evaluated by using the methods of analytic hierarchy process (AHP) and fuzzy synthetic evaluation. On the basis of assessment results of impact and adaptive capacity, the fifteen counties were divided into five classes under the assessment principles, and the district with higher-class number was of more vulnerability. The first class included Usu City and Changji City, the second class included Hutubi County, Miquan County, Fukang City, Jimsar County, Qitai County and Mori Kazak Autonomous County, the third class included Karamay City and Urumqi City, the fourth class included Kuitun City and Shawan County, and the fifth class included Jinghe County, Shihezi City and Manas County. The vulnerability reflected the level of eco-environment change and socioeconomic development, and the vulnerability assessment could be a good way to ensure the sustainable development. Aiming to decrease the vulnerability, various districts belonging to different class of vulnerability should establish relevant tactics according to the vulnerability factors to accelerate the region's sustainable development.

  19. Psychopathology of Aboriginal and Non-Aboriginal Adolescents Living in the Mountainous Region of Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Yen

    2006-11-01

    Full Text Available The aim of this study was to examine the hypothesis that Taiwanese aboriginal adolescents feature more severe psychopathology than non-aboriginal adolescents who live in the same mountainous region of southern Taiwan, and to test the hypothesis by controlling other individual and environmental factors. In this study, a total of 251 aboriginal and 79 non-aboriginal Taiwanese adolescents were enrolled. Their psychopathology was measured by the Symptom Checklist-90-Revised Scale; demographic and family characteristics, and their affinity with their peer group and with their school were also assessed. The results of the multiple regression analysis revealed that aboriginal adolescents feature more severe psychopathology than non-aboriginal adolescents, and indicated that females and adolescents perceiving higher levels of family conflict and lower family support were more likely to experience more severe psychopathology than those perceiving the contrary. Those who devise strategies to improve the mental health of adolescents living in impoverished regions must take into consideration their ethnicity, gender, and family context when devising such treatment strategies.

  20. Decentralized electrification by small-scale hydraulic stations : a viable solution in mountainous regions

    International Nuclear Information System (INIS)

    Dahman Saidi, A.

    1998-01-01

    The installation of a small-scale hydroelectric generating station to supply electricity to the small community of Takordmi in Morocco was described. The community of Takordmi consists of 32 households located in the remote mountainous region of Morocco. Takordmi was without electrical power until 1992 when a small 15 kW Pelton turbine was installed to supply electricity to the residents. Water to power the turbine generator was supplied by a small stream with an output of 4 to 8 liters per second and a head of 535 meters. Since the unit was installed, the mean monthly consumption of the community has been only 115 kWh, which averages to 4 kWh per household. The success of the Takordmi project has prompted the electrification of several other small communities in the remote regions of Morocco either by similar micro-hydroelectric stations or by photovoltaic cells. This project, funded by the Republic of Austria, demonstrates that it is feasible to provide electricity to remote rural communities by using local sources of power. 3 figs

  1. Selected ground-water data for Yucca Mountain Region, southern Nevada and eastern California, through December 22

    International Nuclear Information System (INIS)

    La Camera, R.J.; Westenburg, C.L.

    1994-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site-Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies (or as part of other programs) are included to further indicate variations through time at selected monitoring locations. Data are included in this report from 1910 through 1992

  2. Influence of the orographic roughness of glacier valleys across the Transantarctic Mountains in an atmospheric regional model

    Energy Technology Data Exchange (ETDEWEB)

    Jourdain, Nicolas C.; Gallee, Hubert [Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres (France)

    2011-03-15

    Glacier valleys across the Transantarctic Mountains are not properly taken into account in climate models, because of their coarse resolution. Nonetheless, glacier valleys control katabatic winds in this region, and the latter are thought to affect the climate of the Ross Sea sector, frsater formation to snow mass balance. The purpose of this paper is to investigate the role of the production of turbulent kinetic energy by the subgrid-scale orography in the Transantarctic Mountains using a 20-km atmospheric regional model. A classical orographic roughness length parametrization is modified to produce either smooth or rough valleys. A one-year simulation shows that katabatic winds in the Transantarctic Mountains are strongly improved using smooth valleys rather than rough valleys. Pressure and temperature fields are affected by the representation of the orographic roughness, specifically in the Transantarctic Mountains and over the Ross Ice Shelf. A smooth representation of escarpment regions shows better agreement with automatic weather station observations than a rough representation. This work stresses the need to improve the representation of subgrid-scale orography to simulate realistic katabatic flows. This paper also provides a way of improving surface winds in an atmospheric model without increasing its resolution. (orig.)

  3. Spatiotemporal analysis of the effect of climate change on vegetation health in the Drakensberg Mountain Region of South Africa.

    Science.gov (United States)

    Mukwada, Geoffrey; Manatsa, Desmond

    2018-05-24

    The impact of climate change on mountain ecosystems has been in the spotlight for the past three decades. Climate change is generally considered to be a threat to ecosystem health in mountain regions. Vegetation indices can be used to detect shifts in ecosystem phenology and climate change in mountain regions while satellite imagery can play an important role in this process. However, what has remained problematic is determining the extent to which ecosystem phenology is affected by climate change under increasingly warming conditions. In this paper, we use climate and vegetation indices that were derived from satellite data to investigate the link between ecosystem phenology and climate change in the Namahadi Catchment Area of the Drakensberg Mountain Region of South Africa. The time series for climate indices as well as those for gridded precipitation and temperature data were analyzed in order to determine climate shifts, and concomitant changes in vegetation health were assessed in the resultant epochs using vegetation indices. The results indicate that vegetation indices should only be used to assess trends in climate change under relatively pristine conditions, where human influence is limited. This knowledge is important for designing climate change monitoring strategies that are based on ecosystem phenology and vegetation health.

  4. Quantifying the National Significance of Local Areas for Regional Conservation Planning: North Carolina’s Mountain Treasures

    Directory of Open Access Journals (Sweden)

    R. Travis Belote

    2017-05-01

    Full Text Available Conservation scientists recognize that additional protected areas are needed to maintain biological diversity and ecological processes. As regional conservation planners embark on recommending additional areas for protection in formal ecological reserves, it is important to evaluate candidate lands for their role in building a resilient protected areas system of the future. Here, we evaluate North Carolina’s Mountain Treasures with respect to their (1 ecological integrity, (2 role in connecting existing core protected areas, (3 potential to diversify the ecosystem representation of reserves, and (4 role in maintaining hotspots of biologically-rich areas that are not well protected. Mountain Treasures represent a citizen inventory of roadless areas and serve as candidates for elevated levels of conservation protection on U.S. federal lands. We compared Mountain Treasures to other candidate lands throughout the country to evaluate their potential national significance. While the Mountain Treasures tended to be more impacted by human modifications than other roadless areas, they are as important as other roadless areas with respect to their role in connecting existing protected areas and diversifying representation of ecosystems in conservation reserves. However, Mountain Treasures tended to have a much higher biodiversity priority index than other roadless areas leading to an overall higher composite score compared to other roadless areas. Our analysis serves as an example of how using broad-scale datasets can help conservation planners assess the national significance of local areas.

  5. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    International Nuclear Information System (INIS)

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H.; Wernicke, B.P.

    1996-03-01

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses' ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain

  6. Ground-based measurements of the vertical E-field in mountainous regions and the "Austausch" effect

    Science.gov (United States)

    Yaniv, Roy; Yair, Yoav; Price, Colin; Mkrtchyan, Hripsime; Lynn, Barry; Reymers, Artur

    2017-06-01

    Past measurements of the atmospheric vertical electric field (Ez or potential gradient) at numerous land stations showed a strong response of the daily electric field to a morning local effect known as ;Austausch; - the transport of electrical charges due to increased turbulence. In mountainous regions, nocturnal charge accumulation, followed by an attachment process to aerosols near the surface in valleys, known as the electrode effect, is lifted as a charged aerosol layer by anabatic (upslope) winds during the morning hours due to solar heating. Ground-based measurements during fair weather days were conducted at three mountain stations in Israel and Armenia. We present results of the mean diurnal variation of Ez and make comparisons with the well-known Carnegie curve and with past measurements of Ez on mountains. We report a good agreement between the mean diurnal curves of Ez at various mountain stations and the time of local sunrise when the Ez is found to increase. We attribute this morning maximum to the Austausch (or exchange) layer effect. We support our findings with conduction and turbulent current measurements showing high values of ions and charged aerosols being transported by winds from morning to noon local time, and by model simulations showing the convergence of winds in the early morning hours toward the mountain peak.

  7. Patrilineal background of the She minority population from Chaoshan Fenghuang Mountain, an isolated mountain region, in China.

    Science.gov (United States)

    Liu, Shuhui; Chen, Guangcan; Huang, Haihua; Lin, Wenting; Guo, Dan; Zhao, Shukun; Tian, Dongping; Su, Min

    2017-07-01

    The She ethnic minority population is distributed in southern China. The origin of the She population has been controversial. The purpose of this work was to investigate the genomic diversity of She. The Chaoshan She population living in the Chaoshan Fenghuang mountain is a relatively isolated population. We detected 14 Y chromosome biallelic markers (Y-SNPs) and 6 Y chromosome short tandem repeat (Y-STR) loci in Chaoshan She people. Y-SNP analysis showed the Chaoshan She was closely related to the Chaoshan Hakka, Chaoshanese, Tujia and Gaoshan national minority. Compared with the Fujian She, the Chaoshan She maintained a more southern native genetic structure. Y-STR analysis revealed the Chaoshan She population was more closely related to the Hakka population than the other Hans. We concluded the Chaoshan She population had a closer genetic relationship with the southern national minority and Hakka Han and it may be representative of She ancestors' patrilineal genetic structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Multidimensional poverty and catastrophic health spending in the mountainous regions of Myanmar, Nepal and India.

    Science.gov (United States)

    Mohanty, Sanjay K; Agrawal, Nand Kishor; Mahapatra, Bidhubhusan; Choudhury, Dhrupad; Tuladhar, Sabarnee; Holmgren, E Valdemar

    2017-01-18

    Economic burden to households due to out-of-pocket expenditure (OOPE) is large in many Asian countries. Though studies suggest increasing household poverty due to high OOPE in developing countries, studies on association of multidimensional poverty and household health spending is limited. This paper tests the hypothesis that the multidimensionally poor are more likely to incur catastrophic health spending cutting across countries. Data from the Poverty and Vulnerability Assessment (PVA) Survey carried out by the International Center for Integrated Mountain Development (ICIMOD) has been used in the analyses. The PVA survey was a comprehensive household survey that covered the mountainous regions of India, Nepal and Myanmar. A total of 2647 households from India, 2310 households in Nepal and 4290 households in Myanmar covered under the PVA survey. Poverty is measured in a multidimensional framework by including the dimensions of education, income and energy, water and sanitation using the Alkire and Foster method. Health shock is measured using the frequency of illness, family sickness and death of any family member in a reference period of one year. Catastrophic health expenditure is defined as 40% above the household's capacity to pay. Results suggest that about three-fifths of the population in Myanmar, two-fifths of the population in Nepal and one-third of the population in India are multidimensionally poor. About 47% of the multidimensionally poor in India had incurred catastrophic health spending compared to 35% of the multidimensionally non-poor and the pattern was similar in both Nepal and Myanmar. The odds of incurring catastrophic health spending was 56% more among the multidimensionally poor than among the multidimensionally non-poor [95% CI: 1.35-1.76]. While health shocks to households are consistently significant predictors of catastrophic health spending cutting across country of residence, the educational attainment of the head of the household is

  9. Russian aeromagnetic surveys of the Prince Charles Mountains and adjacent regions into the 21st century

    Science.gov (United States)

    Golynsky, Alexander; Golynsky, Dmitry; Kiselev, Alexander; Masolov, Valery

    2014-05-01

    Russian aeromagnetic investigations in the Prince Charles Mountains (PCM) and surrounding areas, seek to contribute data on the tectonics of Precambrian igneous belts and cratonic fragments, the crustal structure of the Lambert Rift system and other major aspects of Antarctic geology, critical to understanding continental growth processes (Golynsky et al., 2006). Over the past decade, the Polar Marine Geoscience Expedition projects acquired approximately 77,400 line-km of aeromagnetic data over the largely ice-covered regions of MacRobertson Land and Princess Elizabeth Land. The airborne surveys were performed with a standard profile spacing of 5 km and tie-line interval of 15-25 km. The total amount of the Russian aeromagnetic data collected in this region exceeded more than 165,000 line-km. Together with the PCMEGA and AGAP surveys (Damaske and McLean, 2005; Ferraccioli et al., 2011) the PMGE dataset forms the longest transect ever mapped in East Antarctica exceeding 1950 km in length. Several distinct crustal subdivisions are clearly differentiated in the magnetic data. The high-amplitude positive anomalies that extend around the Vestfold Hills and Rauer Islands are likely be attributed to the southern boundary of high-grade metamorphic Late Archean craton. The northern PCM that are composed by ~1 Ga orthogneiss and charnockite display a predominantly northeasterly trending magnetic fabric that continues to the eastern shoulder of the Lambert Rift. The aeromagnetic data from the Southern PCM reveal the spatial boundary of the Archaean Ruker Terrane that is characterized by a short-wavelength anomalies and the prominent Ruker Anomaly that is associated with a banded iron formation. The prominent alternating system of linear NE-SW positive and negative anomalies over the eastern shoulder of the Lambert Rift may reflect the western boundary of the Princess Elizabeth Land cratonic(?) block, although its relationships and tectonic origin remained largely ambiguous

  10. Green Tourism in Mountain Regions - Reducing Vulnerability and Promoting People and Place Centric Development in the Himalayas

    Institute of Scientific and Technical Information of China (English)

    R. B. Singh; D. K. Mishra

    2004-01-01

    In recent years, mountain regions are attracting great attention to Indian tourists in general and foreign tourists in particular. The potential mountain resources for promoting green tourism are enormous in the form of natural and cultural heritage such as biosphere reserves, flora and fauna, lakes and rivers and traditional rural resources. In order to utilise tourism industry market, uncontrolled numbers of tourists and related haphazard infrastructural facilities in the vulnerable mountain regions pose serious environmental implications. The ecological pressures are threatening land, water and wild life resources through direct and indirect environmental impacts together with generation of solid and liquid wastes, so green tourism is emerging as an important task in order to develop new relationship between communities, government agencies and private sectors. The strategy focuses on ecological understanding, environmental protection and ecodevelopment. The major attributes of the green tourism include environmental conservation and education and distribution of income to local people based on strong partnership. Various knowledge systems go a long way for achieving the goals of the green tourism, which creates awareness about the value of environmental resources.Mountains have ecological, recreational, educational and scientific values, which need to be utilised in sustainable way. Various tourist activities and facilities need to be diversified in order to achieve multiple benefits including scientific field excursion,recreation in natural and cultural areas, community festivals and sport tourisms. Green tourism considers tourism development as an integral part of a national and regional development. The paper discusses the social, economic and environmental dimensions of the green tourism with particular reference to village tourism development programme taking empirical evidences from the Himalaya. Such programme also minimises biophysical and human

  11. Molecular evidence for the subspecific differentiation of blue sheep (Pseudois nayaur) and polyphyletic origin of dwarf blue sheep (Pseudois schaeferi).

    Science.gov (United States)

    Tan, Shuai; Zou, Dandan; Tang, Lei; Wang, Gaochao; Peng, Quekun; Zeng, Bo; Zhang, Chen; Zou, Fangdong

    2012-06-01

    Blue sheep (Pseudois nayaur), a Central Asian ungulate with restricted geographic distribution, exhibits unclear variation in morphology and phylogeographic structure. The composition of species and subspecies in the genus Pseudois is controversial, particularly with respect to the taxonomic designation of geographically restricted populations. Here, 26 specimens including 5 dwarf blue sheep (Pseudois schaeferi), which were collected from a broad geographic region in China, were analyzed for 2 mitochondrial DNA fragments (cytochrome b and control region sequences). In a pattern consistent with geographically defined subspecies, we found three deeply divergent mitochondrial lineages restricted to different geographic regions. The currently designated two subspecies of blue sheep, Pseudois nayaur nayaur and Pseudois nayaur szechuanensis, were recognized in the phylogenetic trees. In addition, the Helan Mountain population showed distinct genetic characteristics from other geographic populations, and thus should be classified as a new subspecies. In contrast, dwarf blue sheep clustered closely with some blue sheep from Sichuan Province in the phylogenetic trees. Therefore, dwarf blue sheep appear to be a subset of Pseudois nayaur szechuanensis. After considering both population genetic information and molecular clock analysis, we obtained some relevant molecular phylogeographic information concerning the historical biogeography of blue sheep. These results also indicate that western Sichuan was a potential refugium for blue sheep during the Quaternary period.

  12. False alarms and mine seismicity: An example from the Gentry Mountain mining region, Utah. Los Alamos Source Region Project

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.R.

    1992-09-23

    Mining regions are a cause of concern for monitoring of nuclear test ban treaties because they present the opportunity for clandestine nuclear tests (i.e. decoupled explosions). Mining operations are often characterized by high seismicity rates and can provide the cover for excavating voids for decoupling. Chemical explosions (seemingly as part of normal mining activities) can be used to complicate the signals from a simultaneous decoupled nuclear explosion. Thus, most concern about mines has dealt with the issue of missed violations to a test ban treaty. In this study, we raise the diplomatic concern of false alarms associated with mining activities. Numerous reports and papers have been published about anomalous seismicity associated with mining activities. As part of a large discrimination study in the western US (Taylor et al., 1989), we had one earthquake that was consistently classified as an explosion. The magnitude 3.5 disturbance occurred on May 14, 1981 and was conspicuous in its lack of Love waves, relative lack of high- frequency energy, low Lg/Pg ratio, and high m{sub b} {minus} M{sub s}. A moment-tensor solution by Patton and Zandt (1991) indicated the event had a large implosional component. The event occurred in the Gentry Mountain coal mining region in the eastern Wasatch Plateau, Utah. Using a simple source representation, we modeled the event as a tabular excavation collapse that occurred as a result of normal mining activities. This study raises the importance of having a good catalogue of seismic data and information about mining activities from potential proliferant nations.

  13. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  14. MEAT PERFORMANCE OF THE CZECH SPOTTED CATTLE BULLS BRED IN MOUNTAIN REGION

    Directory of Open Access Journals (Sweden)

    J. VOŘÍŠKOVÁ

    2008-10-01

    Full Text Available Chosen indicators of meat performance of 98 bulls of Czech Spotted cattle bred in elevation above 720 m above sea-level in the mountain region of Šumava are presented in the article. The fattening was realized in a barn with a deep litter. The feed ration consisted of haylage throughout the year. The bulls were divided into three groups according to their genotype - C100, C75-85R (CxR and C75-85A (CxA. The highest live weight at slaughter was achieved in the group C100 with 650 kg with the average age of 726 days and the weight of the carcasses of 363.8 kg. On the other hand, the worst results were achieved in the group CxA. For comparison a group of 14 bulls of the Holstein breed was created (H100, which was fattened in the same conditions. The bulls achieved their highest live weight before slaughter (664.6 kg, but at the highest age (743 days. Statistically significant differences were proven in the meat performance after individual fathers – the best results were documented with the offspring of the bull BO-837. After the separation of the set of bulls according to live weight at the end of fattening, the highest results were achieved by the group above 700 kg. The best class using the SEUROP method was achieved by the group with slaughtering live weight between 650 kg and 700 kg.

  15. Environmental impact assessment of mountain tourism in developing regions: A study in Ladakh, Indian Himalaya

    International Nuclear Information System (INIS)

    Geneletti, Davide; Dawa, Dorje

    2009-01-01

    Mountain tourism in developing countries is becoming a growing environmental concern due to extreme seasonality, lack of suitable infrastructures and planning, and interference with fragile ecosystems and protected areas. This paper presents a study devoted to assess the adverse environmental impacts of tourism, and in particular of trekking-related activities, in Ladakh, Indian Himalaya. The proposed approach is based on the use of Geographical Information System (GIS) modeling and remote sensing imageries to cope with the lack of data that affect the region. First, stressors associated with trekking, and environmental receptors potentially affected were identified. Subsequently, a baseline study on stressors (trail use, waste dumping, camping, pack animal grazing and off-road driving) and receptors (soil, water, wildlife, vegetation) was conducted through field work, data collection, and data processing supported by GIS. Finally, impacts were modeled by considering the intensity of the stressors, and the vulnerability and the value of the receptors. The results were spatially aggregated into watershed units, and combined to generate composite impact maps. The study concluded that the most affected watersheds are located in the central and southeastern part of Ladakh, along some of the most visited trails and within the Hemis and the Tsokar Tsomoriri National parks. The main objective of the study was to understand patterns of tourism-induced environmental degradation, so as to support mitigation interventions, as well as the development of suitable tourism policies.

  16. [Natural regeneration of young Excentrodendron hsienmu in karst mountainous region in Southwest Guangxi, China].

    Science.gov (United States)

    Ou, Zhi-Yang; Su, Zhi-Yao; Peng, Yu-Hua; Hu, Qin-Fei; Huang, Xiao-Rong

    2013-09-01

    A field survey was conducted in the karst mountainous region in Pingguo County of Southwest Guangxi, China to explore the structural characteristics, spatial distribution pattern, and growth dynamics of young Excentrodendron hsienmu as well as the main environmental factors affecting the natural regeneration of the E. hsienmu population. In the study area, the population structure of the young E. hsienmu was stable, and exhibited a clumped spatial pattern for the seedlings and seedling sprouts. The ground diameter growth and height growth of the young E. hsienmu presented the same variation trend, i. e., the ground diameter increased with increasing height. The ground diameter growth and height growth of the E. hsienmu seedlings were limited by population density, i. e., decreased with increasing population density. The correlation analysis showed that the trees more than 2.5 m in height and the shrubs were the major stand factors affecting the natural regeneration of young E. hsienmu, while the herbs had no significant correlation with the regeneration. The percentage of covered rock also had no significant effects on the regeneration. Kruskal-Wallis ANOVA showed that there existed significant differences in the height and ground diameter of young E. hsienmu at different slope degrees and slope positions. The population density, height, and ground diameter had significant differences across slope aspects. The natural regeneration of young E. hsienmu was comprehensively affected by the species biological characteristics, intraspecific competition, interspecific competition, heterogeneous habitat, and anthropogenic disturbances.

  17. Evaluating Satellite Products for Precipitation Estimation in Mountain Regions: A Case Study for Nepal

    Directory of Open Access Journals (Sweden)

    Tarendra Lakhankar

    2013-08-01

    Full Text Available Precipitation in mountain regions is often highly variable and poorly observed, limiting abilities to manage water resource challenges. Here, we evaluate remote sensing and ground station-based gridded precipitation products over Nepal against weather station precipitation observations on a monthly timescale. We find that the Tropical Rainfall Measuring Mission (TRMM 3B-43 precipitation product exhibits little mean bias and reasonable skill in giving precipitation over Nepal. Compared to station observations, the TRMM precipitation product showed an overall Nash-Sutcliffe efficiency of 0.49, which is similar to the skill of the gridded station-based product Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE. The other satellite precipitation products considered (Global Satellite Mapping of Precipitation (GSMaP, the Climate Prediction Center Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS were less skillful, as judged by Nash-Sutcliffe efficiency, and, on average, substantially underestimated precipitation compared to station observations, despite their, in some cases, higher nominal spatial resolution compared to TRMM. None of the products fully captured the dependence of mean precipitation on elevation seen in the station observations. Overall, the TRMM product is promising for use in water resources applications.

  18. Natural radioactivity survey in Al-Jabal Al-Gharbi Mountain Region Libya

    International Nuclear Information System (INIS)

    Askouri, N.A.; Hussain, M.O.; Al-Ojaily, A.S.

    2011-01-01

    The measurement of natural radioactivity in a given region or country is essential to provide a reference base-line map to follow up a possible variation in future. In order to perform such measurement, the natural radioactivity was measured in different locations. The locations (50 sites) were distributed over Al-Jabal Al-Gharbi Mountain, starting from the city Al-Azeeziah in the eastern part to Wazen on the Tunisian border in the west. The measurements showed obvious variation from one site to another. The levels were fluctuating from (12.8 counts/minute) in Bir-Ayad to (45.7 counts/minute) in Gherian. In order to investigate the cause for such variation, samples were collected from (27) sites for detailed study. The levels of natural radioactivity were determined in the laboratory, and were ranging from (58.7 Bq/kg) in Bir-Ayad to (102.1 Bq/kg) in Gherian. The variation in measured radioactivity was related to the geological structures taken in six perpendicular sections, namely, Gharian, Yevren, Zintan, Nalut, Wazen and Al-Azeeziah taking the naturally occurred radioisotopes concentration of 4 0K, 232 Th and 238 U present in consideration.

  19. Studies on the evaluation of thermal belts and radiation fog over mountainous regions by LANDSAT data

    International Nuclear Information System (INIS)

    Kurose, Y.; Hayashi, Y.; Horiguchi, I.; Fukaishi, K.; Kanechika, O.; Ishida, H.; Sakurai, Y.; Sakai, T.; Yamauchi, Y.; Kohno, Y.

    1996-01-01

    Local meteorological phenomena and characteristics under conditions of nocturnal radiative cooling in winter were investigated using Landsat data and physiographic parameters over the hilly and mountainous regions of the western part of shikoku. (1) Relative elevation between thermal belts and underlying ground such as bottom of basin or valley was 400m on an average. (2) Thermal belts appeared in the zone between 400m and 1000m above the sea level in the western part of Shikoku. (3) Temperature of the thermal belts varied with the elevation in a ratio of about 1 degrees C/100m. This observation indicated that the thermal belt temperature was closely related to the altitude of the zone where the thermal belts originated. (4) Radiation fog was frequently recorded over some part along the Hiji river and over the area along Ootoyo to Motoyama; fog was present even at 10 a.m. (3 hours after sunrise). (5) Upper surface of the fog layer was located at 200m and 600m above the sea level in the Oozu basin and in the area along Ootoyo to Motoyama respectively. (6) In the Oozu basin, the distribution of hamlets on the mountainside was often recognized in the localities within the upper limit of foggy areas

  20. [Molluscicidal effect of film on ditches in mountainous schistosomiasis endemic regions].

    Science.gov (United States)

    Zhu, Hong-Qing; Zhong, Bo; Zhang, Gui-Rong; Tang, Shu-Gui; Cao, Chun-Li; Zhang, Xu-Dong; Jia, Bin; Zhang, Yi; Li, Jian-Guo; Fu, Tao; Chen, Lin; Lu, Ding; Bao, Zi-Ping

    2011-04-01

    To evaluate the molluscicidal effect of film on ditches in mountainous schistosomiasis endemic regions. A ditch with Oncomelania hupensis snails was selected as experimental field. The ditch was divided into 3 parts (groups): a niclosamide plus film covering group (film covering after spraying by wettable powder of 50% niclosamide ethanolamine salt upon 2 g/m2), a film covering group (film covering directly without niclosamide spraying), and a control group (no molluscicidal measures). The snail investigation was performed 7, 10, 40, 60 d and 90 d after film covering. The temperatures outside and inside film were determined twice a day during the experiment. The temperature inside the film was significantly higher than that outside the film (t = 4.12, P film in the niclosamide plus film covering group and film covering group respectively; 96.58% and 93.06% ten days post-film respectively; both 100% forty days post-film. The multi-factor regression model indicated that covering film with niclosamide applying, extending film covering time, and increasing cumulate temperature inside film could enhance the molluscicidal effect. The film covering has well molluscicidal effect. The molluscicidal effect of covering film with niclosamide is better than that of covering film alone in short time. However, the covering film alone also has good molluscicidal effect when increasing covering time.

  1. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liang [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yin, Yan, E-mail: yinyan@nuist.edu.cn [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Xiao, Hui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yu, Xingna [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Hao, Jian; Chen, Kui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); and others

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol–radiation and aerosol–cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core–shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ± 6% and ± 14% for external mixture and ± 9% and ± 31% for core–shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. - Highlights: • A spherical Mie

  2. Better utilization of ground water in the Piedmont and mountain region of the southeast

    Science.gov (United States)

    Heath, Ralph C.

    1979-01-01

    The development of water supplies for domestic consumption, and for those commercial and industrial uses requiring relatively pure water, has followed a pattern in the Piedmont and mountain areas of the southeast similar to that in most other humid areas. The first settlers utilized seepage springs on hillsides. Such springs occur along steep slopes where the water table intersects the land surface. As the population of the region grew, it became increasingly necessary to resort to shallow dug wells for domestic water supplies. Such wells also served as sources of water for the villages that developed, in time, around crossroad taverns. Seepage springs and dug wells are a satisfactory source of water in a virgin environment but are quickly polluted by careless waste-disposal practices. Thus disposal of domestic wastes in shallow pits resulted in epidemics of water-borne diseases as the villages grew into towns. This resulted in the third phase of water-supply development, which consisted of installing water lines and supplying water to homes from town-owned wells. In time, some of these wells became polluted and others failed to supply adequate water for the increasing needs of the larger urban areas. In the fourth phase these areas met their needs by drawing water from nearby streams. By the early years of this century it was possible to make this water palatable and relatively safe as a result of improvement in filtration methods. Streams, of course, have highly variable rates of flow and, as towns grew into small cities, the minimum flow of many streams was not adequate to meet the water-supply needs. This problem was solved in the fifth phase by building dams on the streams. We are still in this phase as we build larger and larger reservoirs to meet our growing water needs. Thus, through five phases of growth in the Piedmont and mountains we have advanced from the point where ground water was the sole source of supply to the point where it is the forgotten

  3. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China

    International Nuclear Information System (INIS)

    Yuan, Liang; Yin, Yan; Xiao, Hui; Yu, Xingna; Hao, Jian; Chen, Kui

    2016-01-01

    There is a large uncertainty in evaluating the radiative forcing from aerosol–radiation and aerosol–cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core–shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ± 6% and ± 14% for external mixture and ± 9% and ± 31% for core–shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. - Highlights: • A spherical Mie

  4. Elemental identification of blue paintings traces present in historic cemeteries in the São Martinho region, southern Brazil

    Science.gov (United States)

    Costa, Thiago G.; Richter, Fábio Andreas; Castro, Elisiana Trilha; Gonçalves, Samantha; Spudeit, Daniel A.; Micke, Gustavo A.

    2018-03-01

    Cemeteries are of great significance in many communities, often being considered of invaluable historical, artistic, architectural and cultural significance and thus they need to be preserved. In this regard, understanding the historical aspects and the construction techniques used is essential for their protection. The purpose of this paper is to describe historical aspects of the funerary heritage present in the region of São Martinho in southern Brazil, along with an analysis of the blue paint found in cemeteries of German colonies in the region studied. FTIR analysis suggests that the binder is composed mostly of a protein resin and a small amount of lipid. The morphology of the pigment was investigated by SEM and EDS and the spectra revealed that the major elements present in the blue pigment are Na, Al, Si and S, with an overlap in the elemental mapping, indicative of ultramarine pigments. The GC-MS results are consistent with the type of binder identified by FTIR and indicate a mixture of oils, probably from vegetal sources, and proteins.

  5. False alarms and mine seismicity: An example from the Gentry Mountain mining region, Utah

    International Nuclear Information System (INIS)

    Taylor, S.R.

    1992-01-01

    Mining regions are a cause of concern for monitoring of nuclear test ban treaties because they present the opportunity for clandestine nuclear tests (i.e. decoupled explosions). Mining operations are often characterized by high seismicity rates and can provide the cover for excavating voids for decoupling. Chemical explosions (seemingly as part of normal mining activities) can be used to complicate the signals from a simultaneous decoupled nuclear explosion. Thus, most concern about mines has dealt with the issue of missed violations to a test ban treaty. In this study, we raise the diplomatic concern of false alarms associated with mining activities. Numerous reports and papers have been published about anomalous seismicity associated with mining activities. As part of a large discrimination study in the western US (Taylor et al., 1989), we had one earthquake that was consistently classified as an explosion. The magnitude 3.5 disturbance occurred on May 14, 1981 and was conspicuous in its lack of Love waves, relative lack of high- frequency energy, low Lg/Pg ratio, and high m b - M s . A moment-tensor solution by Patton and Zandt (1991) indicated the event had a large implosional component. The event occurred in the Gentry Mountain coal mining region in the eastern Wasatch Plateau, Utah. Using a simple source representation, we modeled the event as a tabular excavation collapse that occurred as a result of normal mining activities. This study raises the importance of having a good catalogue of seismic data and information about mining activities from potential proliferant nations

  6. Possible evidence for contemporary doming of the Adirondack Mountains, New York, and suggested implications for regional tectonics and seismicity

    Science.gov (United States)

    Isachsen, Y.W.

    1975-01-01

    at a rate far in excess of denudation. This inference leads to a consideration of other tectonic features which may be related in both the short and long term to such a postulated doming. One is the periodic occurrence of anomalous earthquake swarms located very near the geometric center of the Adirondack dome at Blue Mountain Lake, although horizontal rather than vertical compressive stresses have been shown to be dominant by Sbar and Sykes in 1973. Another, is the predominance of faults and topographic lineaments in the Adirondacks which parallel the long axis of the dome and are so remarkably well displayed in the infrared bands of ERTS-1 imagery. ?? 1975.

  7. Influence of elevation and forest type on community assemblage and species distribution of shrews in the central and southern Appalachian mountains

    Science.gov (United States)

    W. Mark Ford; Timothy S. McCay; Michael A. Menzel; W. David Webster; Cathryn H. Greenberg; John F. Pagels; Joseph F. Merritt; Joseph F. Merritt

    2005-01-01

    We analyzed shrew community data from 398,832 pitfall trapnights at 303 sites across the upper Piedmont, Blue Ridge, northern Ridge and Valley, southern Ridge and Valley, Cumberland Plateau and Allegheny Mountains and Plateau sections of the central and southern Appalachian Mountains from Alabama to Pennsylvania. The objectives of our research were to describe regional...

  8. The stoneflies (Insecta, Plecoptera) of the Talladega Mountain region, Alabama, USA: distribution, elevation, endemism, and rarity patterns.

    Science.gov (United States)

    Grubbs, Scott A; Sheldon, Andrew L

    2018-01-01

    Background The Talladega Mountain region of eastern Alabama is the southernmost outlier of the ancient Appalachian Mountains, including the highest peaks and ranges in the state. Collections of stoneflies (Plecoptera) previously here have been sporadic yet has led to several new species descriptions in modern times (James 1974, James 1976, Stark and Szczytko 1976, Kondratieff and Kirchner 1996, Szczytko and Kondratieff 2015) and expanded our understanding of southeastern US stoneflies. During the period 2003-2012 we conducted an intensive inventory of the stonefly fauna of the Talladega Mountain region. We collected across all months from 192 unique localities, covering a broad range of stream sizes and elevation gradients present in the region. New information A total of 57 confirmed species across eight of the nine Nearctic families were collected as adults (Table 4), including four species described as new during the study period (Table 2). Leuctra crossi James, 1974 was easily the most common species collected. Median elevations per species ranged from 174 m ( Clioperla clio (Newman, 1839)) to 410 m ( Leuctra triloba Claassen, 1923 (Fig. 3). Dot distribution maps were included for all 57 species plus one for undetermined nymphs of Pteronarcys Newman, 1838 (Figs. 4-19). As many as seven species may be endemic to the region but sampling efforts northeastward into Georgia, plus additional focused sampling in Alabama and a comprehensive examination of all available material held in museums and personal collections, are needed for confirmation.

  9. Gastric cancer incidence and mortality is associated with altitude in the mountainous regions of Pacific Latin America.

    Science.gov (United States)

    Torres, Javier; Correa, Pelayo; Ferreccio, Catterina; Hernandez-Suarez, Gustavo; Herrero, Rolando; Cavazza-Porro, Maria; Dominguez, Ricardo; Morgan, Douglas

    2013-02-01

    In Latin America, gastric cancer is a leading cancer, and countries in the region have some of the highest mortality rates worldwide, including Chile, Costa Rica, and Colombia. Geographic variation in mortality rates is observed both between neighboring countries and within nations. We discuss epidemiological observations suggesting an association between altitude and gastric cancer risk in Latin America. In the Americas, the burden of gastric cancer mortality is concentrated in the mountainous areas along the Pacific rim, following the geography of the Andes sierra, from Venezuela to Chile, and the Sierra Madre and Cordillera de Centroamérica, from southern Mexico to Costa Rica. Altitude is probably a surrogate for host genetic, bacterial, dietary, and environmental factors that may cluster in the mountainous regions. For example, H. pylori strains from patients of the Andean Nariño region of Colombia display European ancestral haplotypes, whereas strains from the Pacific coast are predominantly of African origin. The observation of higher gastric cancer rates in the mountainous areas is not universal: the association is absent in Chile, where risk is more strongly associated with the age of H. pylori acquisition and socio-economic determinants. The dramatic global and regional variations in gastric cancer incidence and mortality rates offer the opportunity for scientific discovery and focused prevention programs.

  10. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    Science.gov (United States)

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.

  11. MACROZOOBENTHOS OF MOUNTAIN RIVERS OF THE TRANSCARPATHIAN REGION AS A FORAGE BASE OF BENTHOPHAGOUS FISHES AND SAPROBITY INDICATOR

    Directory of Open Access Journals (Sweden)

    S. Kruzhylina

    2014-12-01

    Full Text Available Purpose. To study qualitative and qualitative indices of macrozoobenthos as one of main components of the forage base of benthophagous fishes in mountain river reaches of the Transcarpathian region and determination of their saprobity level. Methodology. Thhj,9.e study was carried out in summer period of 2009 in mountain river reaches of the Tisa river catchment. Zoobenthos samples were collected by a Surber sampler (25 × 25 cm on the bottoms of different fractions with different water flow rate (riffle, run, pool. Collection, processing and interpretation of the obtained data was carried out according to generally accepted hydrobiological methods developed for mountain river studies. Saprobity was of the studied rivers was calculated by Pantle-Buck formula. The Zelinka-Marvan saprobity index was used for calculations. Findings. Qualitative and quantitative macrozoobenthos indices have been studied. The number of zoobenthos on the investigated river sections ranged from 416 to 7712 ind./m2 with biomasses from 2.96 to 83.84 g/m2. The major portion of the zoobenthic biomass in the majority of rivers was due to caddis fly larvae composing up to 93% of the total biomass. An important role in the total biomass of the zoobenthos also belonged to mayfly (up to 53% and stonefly (up to 55% larvae and in lower degree amphipods (up to 39%, chironomid larvae (up to 14% and aquatic coleopterans (up to 5%. According to the calculated potential fish productivity, the mountain rivers can be apparently separated into three groups: little productive (4.2–12.7 kg/ha, medium productive (13.2–21.6 kg/ha and high productive (25.3–85.3 kg/ha. Mountain river reaches of the Transcarpathian region were found to belong to pure χ-saprobic, and о- і β-mesosaprobic zones, the saprobity index in which ranged from 0.35 (Rika river to 1.7 (Shipot river. Originality. For further calculation and assessment of brown trout (Salmo trutta and European grayling (Thymallus

  12. Assessing the Economic Situation of Small-Scale Farm Forestry in Mountain Regions: A Case Study in Austria

    Directory of Open Access Journals (Sweden)

    Philipp Toscani

    2017-08-01

    Full Text Available Austria is one of the few countries with a long tradition of monitoring the economic performance of forest holdings. The national Farm Accountancy Data Network also addresses some forestry-specific issues, given the high significance of farm forestry in this country. However, it is not possible to assess the profitability of small-scale farm forestry in mountainous regions based on a representative sample. In this paper, we demonstrate how information gaps can be overcome by means of economic modeling and present results of this approach for mountain forestry for the first time. In spite of the unfavorable conditions of an alpine setting, forestry tends to be of special significance for the viability and resilience of family farms in these regions. Sustainable forest management that safeguards the ecosystem services provided by forests relies mostly on the profitability of timber production. Thus, the economic development of farm forestry is a key factor in achieving targets 15.1 and 15.4 of the United Nations Sustainable Development Goals in mountain regions.

  13. Heavy metals content in degraded agricultural soils of a mountain region related to soil properties

    Science.gov (United States)

    Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume; Zorpas, Antonis

    2017-04-01

    Agriculture has been practiced for long time in Mediterranean regions. Intensive agriculture and irrigation have developed mainly in the valleys and coastal areas. In the mountainous areas, dry farming has been practiced for centuries. Soils have been fertilized using mainly organic amendments. Plants extracted nutrients and other elements like heavy metals presented in soils and agricultural practices modified soil properties that could favor the presence of heavy metals. In this work, it has been checked the content of heavy metals in 100 agricultural soils samples of the NorthWest area of the province of Alicante (Spain) which has been long cultivated with cereals and olive trees, and now soils are abandoned and degraded because of the low agricultural yields. European policy has the aim to improve the sustainable agriculture and recover landscapes of mountain regions. So that, it is important to check the state of the soils (Marques et al. 2007). Soils samples (arable layer) were analyzed determining: pH (1:5, w/v, water extract), equivalent calcium carbonate content, organic matter by Walkley-Black method (Nelson and Sommers 1996), micronutrients (Cu, Fe, Mn, Zn) extracted with DTPA (Lindsay and Norvell, 1978) and measured by atomic absorption spectrometry, and total content of metals (Cd, Cr, Ni, Pb) measured in soil samples after microwave acid digestion (Moral et al. 1996), quantifying the content of metals by ICP analysis. The correlation between soil properties and metals. The results indicated that pH and carbonates are the most important properties of these soils correlated with the metals (both micronutrients and heavy metals). The available micronutrients (all of them) are close correlated with the pH and carbonates in soils. Moreover, heavy metals like Pb and Ni are related to available Mn and Zn. Keywords: pH, carbonates, heavy metals, abandoned soils. References: Lindsay,W.L., andW.A. Norvell. 1978. "Development of a DTPA Soil Test for Zinc, Iron

  14. Digital modelling of landscape and soil in a mountainous region: A neuro-fuzzy approach

    Science.gov (United States)

    Viloria, Jesús A.; Viloria-Botello, Alvaro; Pineda, María Corina; Valera, Angel

    2016-01-01

    Research on genetic relationships between soil and landforms has largely improved soil mapping. Recent technological advances have created innovative methods for modelling the spatial soil variation from digital elevation models (DEMs) and remote sensors. This generates new opportunities for the application of geomorphology to soil mapping. This study applied a method based on artificial neural networks and fuzzy clustering to recognize digital classes of land surfaces in a mountainous area in north-central Venezuela. The spatial variation of the fuzzy memberships exposed the areas where each class predominates, while the class centres helped to recognize the topographic attributes and vegetation cover of each class. The obtained classes of terrain revealed the structure of the land surface, which showed regional differences in climate, vegetation, and topography and landscape stability. The land-surface classes were subdivided on the basis of the geological substratum to produce landscape classes that additionally considered the influence of soil parent material. These classes were used as a framework for soil sampling. A redundancy analysis confirmed that changes of landscape classes explained the variation in soil properties (p = 0.01), and a Kruskal-Wallis test showed significant differences (p = 0.01) in clay, hydraulic conductivity, soil organic carbon, base saturation, and exchangeable Ca and Mg between classes. Thus, the produced landscape classes correspond to three-dimensional bodies that differ in soil conditions. Some changes of land-surface classes coincide with abrupt boundaries in the landscape, such as ridges and thalwegs. However, as the model is continuous, it disclosed the remaining variation between those boundaries.

  15. Sphingomonas qilianensis sp. nov., Isolated from Surface Soil in the Permafrost Region of Qilian Mountains, China.

    Science.gov (United States)

    Piao, Ai-Lian; Feng, Xiao-Min; Nogi, Yuichi; Han, Lu; Li, Yonghong; Lv, Jie

    2016-04-01

    A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strain, designated X1(T), was isolated from the permafrost region of Qilian Mountains in northwest of China. Phylogenetic analyses of 16S rRNA gene sequence revealed that strain X1(T) was a member of the genus Sphingomonas and shared the highest 16S rRNA gene sequence similarity with Sphingomonas oligophenolica JCM 12082(T) (96.9%), followed by Sphingomonas glacialis CGMCC 1.8957(T) (96.7%) and Sphingomonas alpina DSM 22537(T) (96.4%). Strain X1(T) was able to grow at 15-30 °C, pH 6.0-10.0 and with 0-0.3% NaCl (w/v). The DNA G+C content of the isolate was 64.8 mol%. Strain X1(T)-contained Q-10 as the dominant ubiquinone and C(18:1)ω7c, C(16:1)ω7c, C(16:0) and C(14:0) 2-OH as the dominant fatty acids. The polar lipid profile of strain XI(T)-contained sphingoglycolipid, phosphatidylglycerol, phosphatidylethanolamine, one unidentified glycolipid and two unidentified phospholipid. Due to the phenotypic and genetic distinctiveness and other characteristic studied in this article, we consider X1(T) as a novel species of the genus Sphingomonas and propose to name it Sphingomonas qilianensis sp. nov. The type strain is X1(T) (=CGMCC 1.15349(T) = KCTC 42862(T)).

  16. Evaluation and improvement of the Community Land Model (CLM4 in Oregon forests

    Directory of Open Access Journals (Sweden)

    T. W. Hudiburg

    2013-01-01

    Full Text Available Ecosystem process models are important tools for determining the interactive effects of global change and disturbance on forest carbon dynamics. Here we evaluated and improved terrestrial carbon cycling simulated by the Community Land Model (CLM4, the land model portion of the Community Earth System Model (CESM1.0.4. Our analysis was conducted primarily in Oregon forests using FLUXNET and forest inventory data for the period 2001–2006. We go beyond prior modeling studies in the region by incorporating regional variation in physiological parameters from >100 independent field sites in the region. We also compare spatial patterns of simulated forest carbon stocks and net primary production (NPP at 15 km resolution using data collected from federal forest inventory plots (FIA from >3000 plots in the study region. Finally, we evaluate simulated gross primary production (GPP with FLUXNET eddy covariance tower data at wet and dry sites in the region. We improved model estimates by making modifications to CLM4 to allow physiological parameters (e.g., foliage carbon to nitrogen ratios and specific leaf area, mortality rate, biological nitrogen fixation, and wood allocation to vary spatially by plant functional type (PFT within an ecoregion based on field plot data in the region. Prior to modifications, default parameters resulted in underestimation of stem biomass in all forested ecoregions except the Blue Mountains and annual NPP was both over- and underestimated. After modifications, model estimates of mean NPP fell within the observed range of uncertainty in all ecoregions (two-sided P value = 0.8, and the underestimation of stem biomass was reduced. This was an improvement from the default configuration by 50% for stem biomass and 30% for NPP. At the tower sites, modeled monthly GPP fell within the observed range of uncertainty at both sites for the majority of the year, however summer GPP was underestimated at the Metolius semi

  17. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Murphy, Sheila F.

    2014-05-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, -0.73 ‰ to tropical storm rain with values as low as -127 ‰, -16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply

  18. Segmented seismicity of the Mw 6.2 Baladeh earthquake sequence (Alborz mountains, Iran) revealed from regional moment tensors

    DEFF Research Database (Denmark)

    Donner, Stefanie; Rössler, Dirk; Krüger, Frank

    2013-01-01

    The M w 6.2 Baladeh earthquake occurred on 28 May 2004 in the Alborz Mountains, northern Iran. This earthquake was the first strong shock in this intracontinental orogen for which digital regional broadband data are available. The Baladeh event provides a rare opportunity to study fault geometry...... model, regional waveform data of the mainshock and larger aftershocks (M w  ≥3.3) were inverted for moment tensors. For the Baladeh mainshock, this included inversion for kinematic parameters. All analysed earthquakes show dominant thrust mechanisms at depths between 14 and 26 km, with NW–SE striking...

  19. Analysis of datum-instability effect on calculated results of data from Longmen Mountain regional gravity network

    Directory of Open Access Journals (Sweden)

    Sun Shaoan

    2011-11-01

    Full Text Available A statistical correlation method is used to study the effect of instability of the calculation datum (used in traditional method of indirect adjustment on calculated gravity results, using data recorded by Long-men Mountain regional gravity network during 1996 – 2007. The result shows that when this effect is corrected, anomalous gravity changes before the 2008 Wenchuan Ms8.0 earthquake become obvious and characteristically distinctive. Thus the datum-stability problem must be considered when processing and analyzing data recorded by a regional gravity network.

  20. A changing world: Using nuclear techniques to investigate the impact of climate change on polar and mountainous regions

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2015-01-01

    Nuclear techniques are being used in polar and mountainous regions to study climate change and its impact on the quality of land, water and ecosystems in order to better conserve and manage these resources. Researchers from around the world will be using data from 13 benchmark sites to draw conclusions about the effects of the rapidly changing climate on the Arctic, mountains and the western part of Antarctica, which have alarmed communities, environmentalists, scientists and policy makers. Between July 2015 and July 2016 they will be using isotopic and nuclear techniques, as well as geochemical and biological analytical methods from other scientific disciplines. This will enable them to track soil and water, to monitor the movement of soil and sediment and to assess the effects of melting permafrost on the atmosphere, as well as on the land, water and fragile ecosystems of mountainous and polar regions. The measurements follow numerous on-site tests carried out since November 2014 to perfect the sampling technique.

  1. Blue-green ZnSe lasers with a new type of active region

    International Nuclear Information System (INIS)

    Ivanov, S.V.; Toropov, A.A.; Sorokin, S.V.; Shubina, T.V.; Sedova, I.V.; Kop'ev, P.S.; Alferov, Zh.I.; Waag, A.; Lugauer, H.J.; Reuscher, G.; Keim, M.; Fischer, F.F.; Landwehr, G.

    1999-01-01

    We report the results of an experimental study of molecular-beam epitaxy of ZnSe-based laser heterostructures with a new structure of the active region, which contains a fractional-monolayer CdSe recombination region in an expanded ZnSe quantum well and a waveguide based on a variably-strained, short-period superlattice are reported. Growth of a fractional-monolayer CdSe region with a nominal thickness of 2-3 ML, i.e., less than the critical thickness, on a ZnSe surface (Δa/a∼7%) leads to the formation of self-organized, pseudomorphic, CdSe-enriched islands with lateral dimensions ∼10-30 nm and density ∼2x10 10 cm -2 , which serve as efficient centers of carrier localization, giving rise to effective spatial separation of defective regions and regions of radiative recombination and, as a result, a higher quantum efficiency. Laser structures for optical pumping in the (Zn, Mg) (S, Se) system with a record-low threshold power density (less than 4 kW/cm 2 at 300 K) and continuous-wave laser diodes in the system (Be, Mg, Zn) Se with a 2.5 to 2.8-ML-thick, fractional-monolayer CdSe active region have been obtained. The laser structures and diodes have an improved degradation resistance

  2. Dynamics of forest populations in the mountain resort region of the North Caucasus

    Science.gov (United States)

    Chalaya, Elena; Efimenko, Natalia; Slepykh, Olga; Slepykh, Viktor; Povolotskaya, Nina

    2017-04-01

    field maple. Succession of the oak replacement in natural stand of the vegetative origin can be explained with the soil fatigue under the oak forest inhibiting its own regrowth [2]. However, you can observe the same succession of the oak replacement by other native species in the artificial planting of the oak on the virgin meadow lands. Therefore, the exogenous factors proceeding against the background of global warming during the number of decades are the reason of the succession. The nature of this process demands further studying. References 1.Kazankin A.P. Ecological role of the mountain woods of the Caucasus. Novosibirsk: Siberian Branch of the Russian Academy of Science publishing house, 2013. - 366 p. 2. Slepykh, V.V. Successions and bioclimate of oak groves in the resort region Caucasian MineralnyeVody / V.V.Slepykh, N.P.Povolotskaya// Resort medicine, № 3, 2015. - P. 18-27.

  3. An overview of the Yucca Mountain Global/Regional Climate Modeling Program

    International Nuclear Information System (INIS)

    Sandoval, R.P.; Behl, Y.K.; Thompson, S.L.

    1992-01-01

    The US Department of Energy (DOE) has developed a site characterization plan (SCP) to collect detailed information on geology, geohydrology, geochemistry, geoengineering, hydrology, climate, and meteorology (collectively referred to as ''geologic information'') of the Yucca Mountain site. This information will be used to determine if a mined geologic disposal system (MGDS) capable of isolating high-level radioactive waste without adverse effects to public health and safety over 10,000 years, as required by regulations 40 CFR Part 191 and 10 CFR Part 60, could be constructed at the Yucca Mountain site. Forecasts of future climates conditions for the Yucca Mountain area will be based on both empirical and numerical techniques. The empirical modeling is based on the assumption that future climate change will follow past patterns. In this approach, paleclimate records will be analyzed to estimate the nature, timing, and probability of occurrence of certain climate states such as glacials and interglacials over the next 10,000 years. For a given state, key climate parameters such as precipitation and temperature will be assumed to be the same as determined from the paleoclimate data. The numerical approach, which is the primary focus of this paper, involves the numerical solution of basic equations associated with atmospheric motions. This paper describes these equations and the strategy for solving them to predict future climate conditions around Yucca Mountain

  4. Characteristics of extreme precipitation in the Vosges Mountains region (north-eastern France)

    Czech Academy of Sciences Publication Activity Database

    Minářová, Jana; Müller, Miloslav; Clappier, A.; Kašpar, Marek

    2017-01-01

    Roč. 37, č. 13 (2017), s. 4529-4542 ISSN 0899-8418 Institutional support: RVO:68378289 Keywords : Vosges Mountains * extreme precipitation * heavy rainfall * WEI * synoptic conditions * precipitation * Grosswetterlagen * trend analysis Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.5102/abstract

  5. Literature review and ethnohistory of Native American occupancy and use of the Yucca Mountain Region

    International Nuclear Information System (INIS)

    Stoffle, R.W.; Olmsted, J.E.; Evans, M.J.

    1990-01-01

    This report presents a review of the literature concerning Native American occupancy and use of the Yucca Mountain area and vicinity. It draws on a wide range of material, including early traveler reports, government documents, ethnographic and historical works, and local newspapers. The report complements two other concurrent studies, one focused on the cultural resources of Native American people in the study area and the other an ethnobotanical study of plant resources used by Native American people in the study area. The literature review has had two principal purposes: to determine the completeness of the Yucca Mountain Native American study design and to contribute to the understanding of the presence of Native American people in the Yucca Mountain area. A review of the existing literature about the Yucca Mountain area and southern Nye County, supplemented by the broader literature about the Great Basin, has verified three aspects of the study design. First, the review has aided in assessing the completeness of the list of Native American ethnic groups that have traditional or historical ties to the site. Second, it has aided in the production of a chronology of Native American activities that occurred on or near the site during the late nineteenth and early twentieth centuries. Third, it has helped to identify the location of cultural resources, including burials and other archaeological sites, in the study area and vicinity. 200 refs., 16 figs., 6 tabs

  6. The ophiolitic North Fork terrane in the Salmon River region, central Klamath Mountains, California

    Science.gov (United States)

    Ando, C.J.; Irwin, W.P.; Jones, D.L.; Saleeby, J.B.

    1983-01-01

    The North Fork terrane is an assemblage of ophiolitic and other oceanic volcanic and sedimentary rocks that has been internally imbricated and folded. The ophiolitic rocks form a north-trending belt through the central part of the region and consist of a disrupted sequence of homogeneous gabbro, diabase, massive to pillowed basalt, and interleaved tectonitic harzburgite. U-Pb zircon age data on a plagiogranite pod from the gabbroic unit indicate that at least this part of the igneous sequence is late Paleozoic in age.The ophiolitic belt is flanked on either side by mafic volcanic and volcaniclastic rocks, limestone, bedded chert, and argillite. Most of the chert is Triassic, including much of Late Triassic age, but chert with uncertain stratigraphic relations at one locality is Permian. The strata flanking the east side of the ophiolitic belt face eastward, and depositional contacts between units are for the most part preserved. The strata on the west side of the ophiolitic belt are more highly disrupted than those on the east side, contain chert-argillite melange, and have unproven stratigraphic relation to either the ophiolitic rocks or the eastern strata.Rocks of the North Fork terrane do not show widespread evidence of penetrative deformation at elevated temperatures, except an early tectonitic fabric in the harzburgite. Slip-fiber foliation in serpentinite, phacoidal foliation in chert and mafic rocks, scaly foliation in argillite, and mesoscopic folds in bedded chert are consistent with an interpretation of large-scale anti-formal folding of the terrane about a north-south hinge found along the ophiolitic belt, but other structural interpretations are tenable. The age of folding of North Fork rocks is constrained by the involvement of Triassic and younger cherts and crosscutting Late Jurassic plutons. Deformation in the North Fork terrane must have spanned a short period of time because the terrane is bounded structurally above and below by Middle or Late

  7. Effects of Watershed Land Use and Geomorphology on Stream Low Flows During Severe Drought Conditions in the Southern Blue Ridge Mountains, Georgia and North Carolina, United States

    Science.gov (United States)

    Land use and physiographic variability influence stream low flows, yet their interactions and relative influence remain unresolved. Our objective was to assess the influence of land use and watershed geomorphic characteristics on low-flow variability in the southern Blue Ridge Mo...

  8. Blue and red thermoluminescence of natural quartz in the temperature region from -196 to 400deg. C

    International Nuclear Information System (INIS)

    Hashimoto, Tetsuo; Yanagawa, Yuji; Yawata, Takashi

    2007-01-01

    Quartz samples of three different origins were γ-irradiated with 20kGy at room temperature or at the temperature of liquid nitrogen (-196 deg. C), and analyzed by on-line TL-emission spectrometry over two temperature ranges: above 200deg. C (high-temperature region) and -196 to 200deg. C (low-temperature region). The emission spectra in the high-temperature region could be separated into intense blue TL (BTL) or red TL (RTL) properties. All quartz samples displayed more or less both properties of BTL and RTL in the low temperature region, shifting the BTL-emission spectra towards violet. Particularly, volcanically originated quartz (RTL, Medeshima) showed highly complex BTL and RTL peaks in the low-temperature region, and a stronger simple RTL peak in the high temperature. These complex glow-curve peaks are considered to reflect the presence of many crystal defects and much content of impurities in the volcanically formed quartz. In the glow-curve measurements, Brazilian quartz (quartz-vein origin) gave weak RTL and intense BTL in the low-temperature range, followed by faint emission of BTL in the high-temperature side. On the other hand, the radiation-induced colored (CC) part of a Madagascan crystal rock slice (hydrothermal origin) showed intense BTL together with slight RTL in the low temperatures, followed by strong BTL and appreciable strength of RTL in the high temperatures. The BTL-emission pattern (TL-color image) of a Madagascan slice showed a complementary relationship between irradiations at liquid-nitrogen temperature and at room temperature. To explain these radiation-induced phenomena from quartz, hydrogen radicals and Li + ions, derived from radiolysis products of OH-related impurities, could operate to eliminate the BTL centers by recombination below the room temperature

  9. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.

    Science.gov (United States)

    Pederson, Gregory T.; Betancourt, Julio L.; McCabe, Gregory J.

    2013-01-01

    We used a first-order, monthly snow model and observations to disentangle seasonal influences on 20th century,regional snowpack anomalies in the Rocky Mountains of western North America, where interannual variations in cool-season (November–March) temperatures are broadly synchronous, but precipitation is typically antiphased north to south and uncorrelated with temperature. Over the previous eight centuries, regional snowpack variability exhibits strong, decadally persistent north-south (N-S) antiphasing of snowpack anomalies. Contrary to the normal regional antiphasing, two intervals of spatially synchronized snow deficits were identified. Snow deficits shown during the 1930s were synchronized north-south by low cool-season precipitation, with spring warming (February–March) since the 1980s driving the majority of the recent synchronous snow declines, especially across the low to middle elevations. Spring warming strongly influenced low snowpacks in the north after 1958, but not in the south until after 1980. The post-1980, synchronous snow decline reduced snow cover at low to middle elevations by ~20% and partly explains earlier and reduced streamflow and both longer and more active fire seasons. Climatologies of Rocky Mountain snowpack are shown to be seasonally and regionally complex, with Pacific decadal variability positively reinforcing the anthropogenic warming trend.

  10. Household Perceptions about the Impacts of Climate Change on Food Security in the Mountainous Region of Nepal

    Directory of Open Access Journals (Sweden)

    Shobha Poudel

    2017-04-01

    Full Text Available This study tried to understand the mountainous households’ perception of climate change and its impacts on food security in the Lamjung district of Nepal. The study attempted to find out changes in households food security and daily activities in the face of climate change for the last twenty years. The study started with the 150 household surveys along with participatory rural appraisal to understand the climate change perception of local people and its impact on dimensions of food security. Households expressed different levels of perception in terms of climate change on food security. The result shows that most of the mountainous households experienced increased temperature, less rainfall in winter, an increasing number of natural disasters and the emergence of insects for the last twenty years. They perceived the role of climate change in decreased crop production, decreased dairy products and increased household work. The situation of food security is likely to be more vulnerable to climate change in the future. It was also observed that households have been using different autonomous adaptation measures, such as high yielding crop varieties, enhanced irrigation systems and fertilizers, to cope with the changing climate. Finally, the study recommended policy instruments to enhance food security in the mountainous region amidst changing climate.

  11. THE DRAINAGE EFFICIENCY INDEX (DEI) AS AN MORPHOLOGIAL INDICATOR OF LANDSLIDE SPATIAL OCCURRENCE IN MOUNTAINOUS CATCHMENTS. A case of study applied in the mountainous region of Brazilian Southeastern.

    Science.gov (United States)

    Henrique Muniz Lima, Pedro; Luiza Coelho Netto, Ana; do Couto Fernandes, Manoel

    2016-04-01

    Morphometric parameters, acquired notoriety mainly after the Drainage Density proposition (Horton 1932, 1945) and after they were applied by geomorphologists on the perspective to understand landscape functionalities, quantifying their characteristics through parameters and indexes. After the drainage density, many other parameters which describe the basin characteristics, behavior and dynamics have been proposed. Among them, for example, the DEI was proposed by Coelho Netto and contributors during the 80's, while they were seek to understand the hydrological and erosive dynamics on Bananal river basin (Brazilian Southeastern). Through this investigations the DEI was created, revealing the importance of parameters as hollow and drainage density, conjugated to the topographic gradient (Meis et al. 1982) who prosecute controls on the water flow efficiency along the hollows in order to activate the regressive erosion of the main channel. Later on this index was applied on the basin scale in several works developed in mountainous regions, showing a remarkable correlation with the occurrence of landslides such as showed by Coelho Netto et al. (2007); that posteriorly use this index as one of the components of the landslide susceptibility map for the Tijuca Massif, located in Rio de Janeiro Municipality. This work aims to establish patterns of the DEI index values (applied to mountainous low order basins) and the relationship on the occurrence of Debriflows or shallow translational slides. For this, the DEI index was applied on 4 different study areas located on the Southeastern mountainous region of Brazil to address deeply the connection between the index and the occurrence of landslides of different types applied for first and second order basins. The major study area is the Córrego Dantas Basin, situated in Nova Friburgo municipality (RJ), which is a 53 km² basin was affected by 327 landslides caused by a heavy rainfall on January 2011; Coelho Netto et al. (in

  12. An Analysis of Rural Household Livelihood Change and the Regional Effect in a Western Impoverished Mountainous Area of China

    Directory of Open Access Journals (Sweden)

    Chuansheng Wang

    2018-05-01

    Full Text Available Taking Longnan, in the western Qinling Mountains region of Gansu province, China, as our study area, and using the Sixth National Population Census alongside household survey data, we analyze changes in household livelihoods, and consequent regional effects, following the instigation of the “Grain for Green” program in 1999. Our results show rural livelihood changes with respect to natural assets (e.g., reduction of arable land, planting structure changes, human assets (e.g., labor quality improvement, fluidity of population, financial assets (e.g., income channels widening, income increasing, physical assets (e.g., optimized production tools, and social assets (e.g., information network development, increased outreach opportunities. We suggest that increased household livelihoods play an important role in improving land space utilization efficiency, resource conservation and use, and the ecological environment. However, owing to the natural environment, there are also some problems, such as “hollows” in rural production and living spaces, as well as local environmental degradation. To address these issues, regions such as the western, mountainous, impoverished area of our study should establish a policy of using ecosystems, as well as agriculture, for development in order to improve household livelihoods, build an efficient spatial structure, and providing support for the creation of a resource-saving societal system.

  13. Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea

    Directory of Open Access Journals (Sweden)

    Jong Pil Kim

    2016-07-01

    Full Text Available Satellite-derived precipitation can be a potential source of forcing data for assessing water availability and managing water supply in mountainous regions of East Asia. This study investigates the hydrological utility of satellite-derived precipitation and uncertainties attributed to error propagation of satellite products in hydrological modeling. To this end, four satellite precipitation products (tropical rainfall measuring mission (TRMM multi-satellite precipitation analysis (TMPA version 6 (TMPAv6 and version 7 (TMPAv7, the global satellite mapping of precipitation (GSMaP, and the climate prediction center (CPC morphing technique (CMORPH were integrated into a physically-based hydrologic model for the mountainous region of South Korea. The satellite precipitation products displayed different levels of accuracy when compared to the intra- and inter-annual variations of ground-gauged precipitation. As compared to the GSMaP and CMORPH products, superior performances were seen when the TMPA products were used within streamflow simulations. Significant dry (negative biases in the GSMaP and CMORPH products led to large underestimates of streamflow during wet-summer seasons. Although the TMPA products displayed a good level of performance for hydrologic modeling, there were some over/underestimates of precipitation by satellites during the winter season that were induced by snow accumulation and snowmelt processes. These differences resulted in streamflow simulation uncertainties during the winter and spring seasons. This study highlights the crucial need to understand hydrological uncertainties from satellite-derived precipitation for improved water resource management and planning in mountainous basins. Furthermore, it is suggested that a reliable snowfall detection algorithm is necessary for the new global precipitation measurement (GPM mission.

  14. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges.

    Directory of Open Access Journals (Sweden)

    Jonathan Lenoir

    Full Text Available BACKGROUND: The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? METHODOLOGY/PRINCIPAL FINDINGS: We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region to quantify four diversity components: (i total number of species occurring in a region (total γ-diversity, (ii number of species that could occur in a target plot after environmental filtering (habitat-specific γ-diversity, (iii pair-wise species compositional turnover between plots (plot-to-plot β-diversity and (iv number of species present per plot (plot α-diversity. We found strong region effects on total γ-diversity, habitat-specific γ-diversity and plot-to-plot β-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot α-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. CONCLUSIONS/SIGNIFICANCE: We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale diversity components of the flora in the Alps and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot α-diversity, and may also affect the larger-scale diversity

  15. The relationship of the Yucca Mountain repository block to the regional ground-water system: A geochemical model

    International Nuclear Information System (INIS)

    Matuska, N.A.; Hess, J.W.

    1989-08-01

    Yucca Mountain, in southern Nevada, is being studied by the Department of Energy and the State of Nevada as the site of a high-level nuclear waste repository. Geochemical and isotopic modeling were used in this study to define the relationship of the volcanic tuff aquifers and aquitards to the underlying regional carbonate ground-water system. The chemical evolution of a ground water as it passes through a hypothetical tuffaceous aquifer was developed using computer models PHREEQE, WATEQDR and BALANCE. The tuffaceous system was divided into five parts, with specific mineralogies, reaction steps and temperatures. The initial solution was an analysis of a soil water from Rainier Mesa. The ending solution in each part became the initial solution in the next part. Minerals consisted of zeolites, smectites, authigenic feldspars and quartz polymorphs from described diagentic mineral zones. Reaction steps were ion exchange with zeolites. The solution from the final zone, Part V, was chosen as most representative, in terms of pH, element molalities and mineral solubilities, of tuffaceous water. This hypothetical volcanic water from Part V was mixed with water from the regional carbonate aquifer, and the results compared to analyses of Yucca Mountain wells. Mixing and modeling attempts were conducted on wells in which studies indicated upward flow

  16. Big mountains but small barriers: population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China.

    Science.gov (United States)

    Zhan, Aibin; Li, Cheng; Fu, Jinzhong

    2009-04-09

    Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis) to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high elevations, which may significantly contribute to the

  17. Big mountains but small barriers: Population genetic structure of the Chinese wood frog (Rana chensinensis in the Tsinling and Daba Mountain region of northern China

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2009-04-01

    Full Text Available Abstract Background Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Results Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. Conclusion The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high

  18. A hybrid regional approach to model discharge at multiple sub-basins within the Calapooia Watershed, Oregon, USA

    Science.gov (United States)

    Modeling is a useful tool for quantifying ecosystem services and understanding their temporal dynamics. Here we describe a hybrid regional modeling approach for sub-basins of the Calapooia watershed that incorporates both a precipitation-runoff model and an indexed regression mo...

  19. Regional effects of Swiss needle cast disease and climate on growth of Douglas-fir in western Oregon

    Science.gov (United States)

    The fungal pathogen, Phaeocryptopus gaeumannii, occurs wherever Douglas-fir is found but disease damage is believed to be limited to the Coast Range and is of no concern outside this region (Shaw et al., 2011). However, knowledge remains limited on the spatial distribution of Sw...

  20. Preliminary evaluation of techniques for transforming regional climate model output to the potential repository site in support of Yucca Mountain future climate synthesis

    International Nuclear Information System (INIS)

    Church, H.W.; Zak, B.D.; Behl, Y.K.

    1995-06-01

    The report describes a preliminary evaluation of models for transforming regional climate model output from a regional to a local scale for the Yucca Mountain area. Evaluation and analysis of both empirical and numerical modeling are discussed which is aimed at providing site-specific, climate-based information for use by interfacing activities. Two semiempirical approaches are recommended for further analysis

  1. Riverine CO2 supersaturation and outgassing in a subtropical monsoonal mountainous area (Three Gorges Reservoir Region) of China

    Science.gov (United States)

    Li, Siyue; Ni, Maofei; Mao, Rong; Bush, Richard T.

    2018-03-01

    Rivers are an important source of CO2 to the atmosphere, however, mountainous rivers and streams with high emission rates are not well studied particularly in China. We report the first detailed investigation on monsoonal mountainous rivers in the Three Gorges Reservoir (TGR) region, with a focus on the riverine CO2 partial pressure (pCO2), CO2 degassing and their potential controls. The pCO2 levels ranged from 50 to 6019 μatm with averages of 1573 (SD. ±1060) in dry Autumn and 1276 (SD. ±1166) μatm in wet Summer seasons. 94% of samples were supersaturated with CO2 with respect to the atmospheric equilibrium (410 μatm). Monsoonal precipitation controlled pCO2 seasonality, with both the maximal and minimal levels occurring in the wet season, and showing the overall effects of dilution. Riverine pCO2 could be predicted better in the dry season using pH, DO% and DTP, whereas pH and DOC were better predictors in the wet season. We conclude that in-situ respiration of allochthonous organic carbon, rather than photosynthesis, resulted in negative relationships between pCO2 and DO and pH, and thus CO2 supersaturation. Photosynthetic primary production was effectively limited by rapid flow velocity and short residence time. The estimated water-to-air CO2 emission rate in the TGR rivers was 350 ± 319 in the Autumn and lower, yet more variable at 326 ± 439 mmol/m2/d in Summer. Our calculated CO2 areal fluxes were in the upper-level magnitude of published data, demonstrating the importance of mountainous rivers and streams as a global greenhouse gas source, and urgency for more detailed studies on CO2 degassing, to address a global data gap for these environments.

  2. Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions.

    Science.gov (United States)

    Falandysz, J; Kunito, T; Kubota, R; Bielawski, L; Frankowska, A; Falandysz, Justyna J; Tanabe, S

    2008-12-01

    Based on ICP-MS, ICP-OES, HG-AAS, CV-AAS and elementary instrumental analysis of King Bolete collected from four sites of different soil bedrock geochemistry considered could be as mushroom abundant in certain elements. King's Bolete fruiting bodies are very rich in K (> 20 mg/g dry weight), rich in Ca, Mg, Na, Rb and Zn (> 100 microg/g dw), and relatively also rich in Ag, Cd, Cs, Cu, Fe, Mn and Se (> 10 microg/g dw). The caps of King Bolete when compared to stipes around two-to three-fold more abundant are in Ag, Cd, Cs, Cu, Hg, K, Mg, Mo, N, Rb, Se and Zn. King Bolete collected at the lowland and mountain sites showed Ag, Ba, Co, Cr, Hg, K, Mg, Mn, Mo and Na in caps in comparable concentrations, and specimens from the mountain areas accumulated more Cd and Sb. Elements such as Al, Pb and Rb occurred at relatively elevated concentration in King Bolete picked up at the metal ores-rich region of the Sudety Mountains. Because of high bioconcentration potential King Bolete at the background sites accumulate in fruiting bodies great concentrations of problematic elements such as Cd, Pb and Hg, i.e. up to nearly 20, 3 and 5 microg/g dw, on the average, respectively. The interdependence among determined mineral elements examined were using the principal components analysis (PCA) method. The PCA explained 56% of the total variance. The metals tend to cluster together (Ba, Cd, Cs, Cr, Ga, Rb, Se, Sr and V; K and Mg; Cu and Mo). The results provided useful environmental and nutritional background level information on 26 minerals as the composition of King Bolete from the sites of different bedrock soil geochemistry.

  3. On the Relationship between Holocene Geomorphic Evolution of Rivers and Prehistoric Settlements Distribution in the Songshan Mountain Region of China

    Directory of Open Access Journals (Sweden)

    Peng Lu

    2017-01-01

    Full Text Available This paper deals with the study of Holocene geomorphic evolution of rivers around Songshan Mountain in relation to human frequentation in Prehistoric periods. The investigations were performed by means of an integration of GIS data processing; field surveys and particle size analysis. In 8000–3000 aBP; in the Songshan Mountain Region, large-scale river sedimentation occurred. This increased the elevation of river beds that were higher than today. After 3000 aBP; the upper reaches of the rivers experienced a down cut; while the lower reaches experienced continuing sedimentation. The data on the elevation of prehistoric settlements above the river levels were obtained from Digital Elevation Models (DEMs. These data were corrected according to the evolutionary features of fluvial landforms in order to obtain synchronous elevations above river levels of prehistoric settlements. The relationship between sediment distribution and the Holocene geomorphic evolution was investigated through the statistical analysis of the elevation above the river levels. Outputs from our analyses enabled us to differentiate three evolutionary stages. During the first one, related to Peiligang culture (9000–7500 aBP, populations mainly settled on both hilly relief and high plateaus depending on their agriculture production modes. During the second stage, from Yangshao (7500–5000 aBP to the Longshan period (5000–4000 aBP, settlements were mainly distributed on mountainous areas and hilly lands to avoid flooding and to develop agriculture. Finally, during the Xiashang culture (4000–3000 aBP, a large number of settlements migrated to the plain area to facilitate trade of goods and cultural exchanges.

  4. Slope Stability Analysis of Mountainous/Hilly regions of Nepal: A case study of Bhotekoshi Hydropower site

    Science.gov (United States)

    Acharya, A.; Gautam, S.; Kafle, K. R.

    2017-12-01

    Nepal is a mountainous, developing country that straddles the boundary between the Indian and Himalayan tectonic plates. In Nepal, landslides represent a major constraint on development, causing high levels of economic loss and substantial number of fatalities each year. There is a general consensus that the impacts of landslides in mountainous countries such as Nepal are increasing with time due to unstable slopes. The present study deals with the field investigation of slope stability in mountainous/hilly region of Nepal. Among the natural hazards that occur in regularly in Nepal, flood and landslides due to unstable slopes are by far the serious ones. They claim many human lives every year and cause other damages such as destruction and blockage of highway, destruction of hydropower, losses of livestock, crops and agricultural land. Slope Mass Rating system and stereographic projection has been carried out for analysis of slope stability using standard formats and parameters. It has been found that there are few major discontinuities that play the role for the rock/soil slides around the area. The major discontinuities are 235°/67°. These joint sets play the main role to the plane as well as wedge failures around the area. The rock mass rating of the slope has been found to be 27 and the slope mass rating has been found to be 37.8. The obtained slope mass rating value lies on IV class (Bad) that represents unstable slope having planner or big wedge failure and needs to be corrective measures in the slope. From stereographic projection, wedge failure of the slope has been seen according to the conditions of slope failure.

  5. Effects of herbivore species richness on the niche dynamics of blue sheep Pseudois nayaur in the Indian Trans-Himalaya

    NARCIS (Netherlands)

    Namgail, T.; Mishra, C.; Jong, de C.B.; Wieren, van S.E.; Prins, H.H.T.

    2009-01-01

    Aim To understand the community structure of mountain ungulates by exploring their niche dynamics in response to sympatric species richness. Location Ladakh and Spiti Regions of the Western Indian Trans-Himalaya. Methods We used the blue sheep Pseudois nayaur, a relatively widely distributed

  6. A statistical adjustment approach for climate projections of snow conditions in mountain regions using energy balance land surface models

    Science.gov (United States)

    Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Lafaysse, Matthieu

    2017-04-01

    Projections of future climate change have been increasingly called for lately, as the reality of climate change has been gradually accepted and societies and governments have started to plan upcoming mitigation and adaptation policies. In mountain regions such as the Alps or the Pyrenees, where winter tourism and hydropower production are large contributors to the regional revenue, particular attention is brought to current and future snow availability. The question of the vulnerability of mountain ecosystems as well as the occurrence of climate-related hazards such as avalanches and debris-flows is also under consideration. In order to generate projections of snow conditions, however, downscaling global climate models (GCMs) by using regional climate models (RCMs) is not sufficient to capture the fine-scale processes and thresholds at play. In particular, the altitudinal resolution matters, since the phase of precipitation is mainly controlled by the temperature which is altitude-dependent. Simulations from GCMs and RCMs moreover suffer from biases compared to local observations, due to their rather coarse spatial and altitudinal resolution, and often provide outputs at too coarse time resolution to drive impact models. RCM simulations must therefore be adjusted using empirical-statistical downscaling and error correction methods, before they can be used to drive specific models such as energy balance land surface models. In this study, time series of hourly temperature, precipitation, wind speed, humidity, and short- and longwave radiation were generated over the Pyrenees and the French Alps for the period 1950-2100, by using a new approach (named ADAMONT for ADjustment of RCM outputs to MOuNTain regions) based on quantile mapping applied to daily data, followed by time disaggregation accounting for weather patterns selection. We first introduce a thorough evaluation of the method using using model runs from the ALADIN RCM driven by a global reanalysis over the

  7. Late cenozoic evolution of Fortymile Wash: Major change in drainage pattern in the Yucca Mountain, Nevada region during late miocene volcanism

    International Nuclear Information System (INIS)

    Lundstrom, S.C.; Warren, R.G.

    1994-01-01

    The site characterization of Yucca Mountain, NV as a potential high level nuclear waste repository includes study of the surficial deposits as a record of the paleoenvironmental history of the Yucca Mountain region. An important aspect of this history is an understanding of the evolution of paleogeography leading to establishment of the present drainage pattern. Establishment of drainage basin evolution is needed before geomorphic response to paleoclimate and tectonics can be assessed, because a major change in drainage basin geometry can predominantly affect the sedimentary record. Because alluvial aquifers are significant to regional hydrology, a major change in surface drainage resulting in buried alluvium could have hydrogeologic significance. In this paper, we report on geologic evidence for a major modification in surface drainage pattern in the Yucca Mountain region, resulting in the probable establishment of the Fortymile Wash drainage basin by latest Miocene time

  8. Comparison of Observed Temperature and Wind in Mountainous and Coastal Regions in Korea

    Science.gov (United States)

    Park, Y. S.

    2015-12-01

    For more than one year, temperature and wind are observed at several levels in three different environments in Korea. First site is located in a ski jump stadium in a mountain area and observations are performed at 5 heights. Second site is located in an agricultural land 1.4km inland from the seaside and the observing tower is 300m tall. Third site is located in the middle of sea 30km away from the seaside and the tower is 100m tall. The vertical gradients of air temperature are compared on the daily and seasonal bases. Not only the strengths of atmospheric stability are analyzed but also the times when the turnover of the signs of vertical gradients of temperature are occurred. The comparison is also applied to vertical gradients of wind speed and turning of wind direction due to surface slope and sea/land breeze. This study may suggest characteristics of local climate over different environments quantitatively.

  9. Exploring Conservation Options in the Broad-Leaved Korean Pine Mixed Forest of the Changbai Mountain Region

    Directory of Open Access Journals (Sweden)

    Lin Ma

    2015-05-01

    Full Text Available The broad-leaved Korean pine (Pinus koraiensis mixed forest (BKPF is one of the most biodiverse zonal communities in the northern temperate zone. Changbai Mountain in northeastern China contains one of the largest BKPFs in the region. The government of China has established a network of 23 nature reserves to protect the BKPF and the species that depend on it for habitat, including the endangered Siberian tiger (Panthera tigris altaica. This study used the conservation planning software C-Plan to calculate the irreplaceability value of each unit to assess how efficiently and comprehensively the existing conservation network supports biodiversity and to identify gap areas that, if integrated into the network, would expand its protection capability. Results show a number of high-conservation-value planning units concentrated along certain ridges. The existing conservation network is structured such that the habitats of only 24 species (out of a total of 75 achieve established conservation targets. Of the other 51 species, 20 achieve less than 50% of their conservation targets. However, expanding the network to include high-conservation-value gap areas could achieve conservation targets for 64 species and could provide different degrees of protection to the other 11 species. Using C-Plan software can guide decision-making to expand the conservation network in this most precious of mountainous ecological zones.

  10. Natural foci of Borrelia lusitaniae in a mountain region of Central Europe.

    Science.gov (United States)

    Tarageľová, Veronika Rusňáková; Mahríková, Lenka; Selyemová, Diana; Václav, Radovan; Derdáková, Markéta

    2016-03-01

    Lyme borreliosis is the most prevalent tick-borne disease in Europe. It is caused by spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex and transmitted to humans by ticks of the genus Ixodes. Borrelia afzelii, Borrelia garinii, and Borrelia valaisiana are the most common genospecies in Central Europe. In contrast, Borrelia lusitaniae predominates in Mediterranean countries such as Portugal, Morocco, and Tunisia. In Slovakia, its prevalence is low and restricted to only a few sites. The aim of our research was to study the expansion of ticks into higher altitudes in the ecosystem of the Malá Fatra mountains (north Slovakia) and their infection with B. burgdorferi s.l. pathogens. Questing ticks were collected by flagging in seven years (2004, 2006-2011) at three different altitudes: low (630-660 m above sea level (ASL)), intermediate (720-750 m ASL), and high (1040-1070 m ASL). Tick abundance was highest at the lowest altitude and lowest at the highest altitude. The average infection prevalence of B. burgdorferi s.l. in nymphs and adults was 16.8% and 36.2%, respectively. The number of infected ticks decreased from 38.5% at the lowest altitude to 4.4% at the highest altitude. B. lusitaniae was the most frequently found genospecies (>60% of the ticks found positive for B. burgdorferi s.l.) in all sites in all the studied years with the exception of 2008 when B. afzelii predominated (62%). Our study confirms the spread of Ixodes ricinus ticks to higher altitudes in Slovakia. The discovery that our mountain study sites were a natural foci of B. lusitaniae was unexpected because this genospecies is usually associated with lizards and xerothermic habitats. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Runoff and soil erosion of field plots in a subtropical mountainous region of China

    Science.gov (United States)

    Fang, N. F.; Wang, L.; Shi, Z. H.

    2017-09-01

    Anthropogenic pressure coupled with strong precipitation events and a mountainous landscape have led to serious soil erosion and associated problems in the subtropical climate zone of China. This study analyzes 1576 rainfall-runoff-soil loss events at 36 experimental plots (a total of 148 plot-years of data) under a wide range of conditions in subtropical mountainous areas of China where slope farming is commonly practiced. The plots, which have standardized dimensions, represent five common types of land use and have four different slopes. Event-based analyses show that almost half of the total rainfall caused soil erosion in the study area. The dominant factor controlling the runoff coefficient is the slope gradient rather than the land use type. The maximum soil lossfor crop plots under steep tillage (35°) is 5004 t km-2 for a single event. Among the common local crops, the average soil loss values increase in the following order: buckwheat soil loss increase in the following order: red clover soil loss is caused by a small number of extreme events. The annual average soil loss of the 44 plots ranges from 19 to 4090 t km-2 year-1. The annual soil loss of plots of different land use types decrease in the following order: bare land (1533 t km-2 year-1) > cropland (1179 t km-2 year-1) > terraced cropland (1083 t km-2 year-1) > orchard land (1020 t km-2 year-1) > grassland (762 t km-2 year-1) > terraced orchard land (297 t km-2 year-1) > forest and grassland (281 t km-2 year-1).

  12. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  13. StaMPS Improvement for Deformation Analysis in Mountainous Regions: Implications for the Damavand Volcano and Mosha Fault in Alborz

    Directory of Open Access Journals (Sweden)

    Sanaz Vajedian

    2015-06-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR capability to detect slow deformation over terrain areas is limited by temporal decorrelation, geometric decorrelation and atmospheric artefacts. Multitemporal InSAR methods such as Persistent Scatterer (PS-InSAR and Small Baseline Subset (SBAS have been developed to deal with various aspects of decorrelation and atmospheric problems affecting InSAR observations. Nevertheless, the applicability of both PS-InSAR and SBAS in mountainous regions is still challenging. Correct phase unwrapping in both methods is hampered due to geometric decorrelation in particular when using C-band SAR data for deformation analysis. In this paper, we build upon the SBAS method implemented in StaMPS software and improved the technique, here called ISBAS, to assess tectonic and volcanic deformation in the center of the Alborz Mountains in Iran using both Envisat and ALOS SAR data. We modify several aspects within the chain of the processing including: filtering prior to phase unwrapping, topographic correction within three-dimensional phase unwrapping, reducing the atmospheric noise with the help of additional GPS data, and removing the ramp caused by ionosphere turbulence and/or orbit errors to better estimate crustal deformation in this tectonically active region. Topographic correction is done within the three-dimensional unwrapping in order to improve the phase unwrapping process, which is in contrast to previous methods in which DEM error is estimated before/after phase unwrapping. Our experiments show that our improved SBAS approach is able to better characterize the tectonic and volcanic deformation in the center of the Alborz region than the classical SBAS. In particular, Damavand volcano shows an average uplift rate of about 3 mm/year in the year 2003–2010. The Mosha fault illustrates left-lateral motion that could be explained with a fault that is locked up to 17–18 km depths and slips with 2–4 mm

  14. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... waste landfills by approved states. On June 14, 2012, Oregon submitted an application to EPA Region 10...

  15. 78 FR 8016 - Establishment of the Elkton Oregon Viticultural Area

    Science.gov (United States)

    2013-02-05

    ... are titled: (1) Kellogg Quadrangle, Oregon-Douglas Co., Provisional Edition 1990; (2) Old Blue... described as follows: (1) The beginning point is on the Kellogg map at the intersection of the T23S/T24S and..., and then north along the meandering 1,000-foot elevation line, crossing first onto the Kellogg map...

  16. Low-level gamma spectrometry of forest and moor soils from exposed mountain regions in Saxony (Erzgebirge)

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, N [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Preusse, W [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Degering, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Unterricker, S [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics

    1997-03-01

    In soils with distinct organic and mineral horizons, radionuclides (RN) can be used to understand geochemical migration processes. In the study presented here high sensitivity HPGe-detectors with active and passive shielding were employed to determine the low activity levels of various natural, cosmogenic and artificial RN. Soils of a spruce forest and a moor from exposed mountain regions in Saxony (Erzgebirge) were investigated as they provide a good example of layered soil systems with vertical transfer of chemical elements. Different soil horizons were sub-sampled as thin slices and analysed to examine the migration processes at sub-horizon level. The depth distributions of chemically different RN were studied considering the geochemical and pedological soil characteristics of the profiles. (orig.)

  17. Changing regional emissions of airborne pollutants reflected in the chemistry of snowpacks and wetfall in the Rocky Mountain region, USA, 1993–2012

    Science.gov (United States)

    Ingersoll, George P.; Miller, Debra C.; Morris, Kristi H.; McMurray, Jill A.; Port, Garrett M.; Caruso, Brian

    2016-01-01

    Wintertime precipitation sample data from 55 Snowpack sites and 17 National Atmospheric Deposition Program (NADP)/National Trends Network Wetfall sites in the Rocky Mountain region were examined to identify long-term trends in chemical concentration, deposition, and precipitation using Regional and Seasonal Kendall tests. The Natural Resources Conservation Service snow-telemetry (SNOTEL) network provided snow-water-equivalent data from 33 sites located near Snowpack- and NADP Wetfall-sampling sites for further comparisons. Concentration and deposition of ammonium, calcium, nitrate, and sulfate were tested for trends for the period 1993–2012. Precipitation trends were compared between the three monitoring networks for the winter seasons and downward trends were observed for both Snowpack and SNOTEL networks, but not for the NADP Wetfall network. The dry-deposition fraction of total atmospheric deposition, relative to wet deposition, was shown to be considerable in the region. Potential sources of regional airborne pollutant emissions were identified from the U.S. Environmental Protection Agency 2011 National Emissions Inventory, and from long-term emissions data for the period 1996–2013. Changes in the emissions of ammonia, nitrogen oxides, and sulfur dioxide were reflected in significant trends in snowpack and wetfall chemistry. In general, ammonia emissions in the western USA showed a gradual increase over the past decade, while ammonium concentrations and deposition in snowpacks and wetfall showed upward trends. Emissions of nitrogen oxides and sulfur dioxide declined while regional trends in snowpack and wetfall concentrations and deposition of nitrate and sulfate were downward.

  18. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions.

    Science.gov (United States)

    Briner, Simon; Elkin, Ché; Huber, Robert

    2013-11-15

    Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. 1970 Oregon timber harvest.

    Science.gov (United States)

    Brian R. Wall

    1971-01-01

    The 1970 Oregon timber harvest of 7.98 billion board feet was the lowest recorded since the recession year of 1961 when 7.41 billion board feet of timber was produced. The 1970 log production figure was 12.8 percent below the 1969 harvest, the second consecutive year of declining production in Oregon.

  20. Advances in global mountain geomorphology

    Science.gov (United States)

    Slaymaker, Olav; Embleton-Hamann, Christine

    2018-05-01

    Three themes in global mountain geomorphology have been defined and reinforced over the past decade: (a) new ways of measuring, sensing, and analyzing mountain morphology; (b) a new emphasis on disconnectivity in mountain geomorphology; and (c) the emergence of concerns about the increasing influence of anthropogenic disturbance of the mountain geomorphic environment, especially in intertropical mountains where population densities are higher than in any other mountain region. Anthropogenically induced hydroclimate change increases geomorphic hazards and risks but also provides new opportunities for mountain landscape enhancement. Each theme is considered with respect to the distinctiveness of mountain geomorphology and in relation to important advances in research over the past decade. The traditional reliance on the high energy condition to define mountain geomorphology seems less important than the presence of unique mountain landforms and landscapes and the distinctive ways in which human activity and anthropogenically induced hydroclimate change are transforming mountain landscapes.

  1. Probable Maximum Precipitation (PMP) over mountainous region of Cameron Highlands- Batang Padang Catchment of Malaysia

    Science.gov (United States)

    Sidek, L. M.; Mohd Nor, M. D.; Rakhecha, P. R.; Basri, H.; Jayothisa, W.; Muda, R. S.; Ahmad, M. N.; Razad, A. Z. Abdul

    2013-06-01

    The Cameron Highland Batang Padang (CHBP) catchment situated on the main mountain range of Peninsular Malaysia is of large economical importance where currently a series of three dams (Sultan Abu Bakar, Jor and Mahang) exist in the development of water resources and hydropower. The prediction of the design storm rainfall values for different return periods including PMP values can be useful to review the adequacy of the current spillway capacities of these dams. In this paper estimates of the design storm rainfalls for various return periods and also the PMP values for rainfall stations in the CHBP catchment have been computed for the three different durations of 1, 3 & 5 days. The maximum values for 1 day, 3 days and 5 days PMP values are found to be 730.08mm, 966.17mm and 969.0mm respectively at Station number 4513033 Gunung Brinchang. The PMP values obtained were compared with previous study results undertaken by NAHRIM. However, the highest ratio of 1 day, 3 day and 5 day PMP to highest observed rainfall are found to be 2.30, 1.94 and 1.82 respectively. This shows that the ratio tend to decrease as the duration increase. Finally, the temporal pattern for 1 day, 3day and 5 days have been developed based on observed extreme rainfall at station 4513033 Gunung Brinchang for the generation of Probable Maximum Flood (PMF) in dam break analysis.

  2. Probable Maximum Precipitation (PMP) over mountainous region of Cameron Highlands- Batang Padang Catchment of Malaysia

    International Nuclear Information System (INIS)

    Sidek, L M; Basri, H; Jayothisa, W; Nor, M D Mohd; Rakhecha, P R; Muda, R S; Ahmad, M N; Razad, A Z Abdul

    2013-01-01

    The Cameron Highland Batang Padang (CHBP) catchment situated on the main mountain range of Peninsular Malaysia is of large economical importance where currently a series of three dams (Sultan Abu Bakar, Jor and Mahang) exist in the development of water resources and hydropower. The prediction of the design storm rainfall values for different return periods including PMP values can be useful to review the adequacy of the current spillway capacities of these dams. In this paper estimates of the design storm rainfalls for various return periods and also the PMP values for rainfall stations in the CHBP catchment have been computed for the three different durations of 1, 3 and 5 days. The maximum values for 1 day, 3 days and 5 days PMP values are found to be 730.08mm, 966.17mm and 969.0mm respectively at Station number 4513033 Gunung Brinchang. The PMP values obtained were compared with previous study results undertaken by NAHRIM. However, the highest ratio of 1 day, 3 day and 5 day PMP to highest observed rainfall are found to be 2.30, 1.94 and 1.82 respectively. This shows that the ratio tend to decrease as the duration increase. Finally, the temporal pattern for 1 day, 3day and 5 days have been developed based on observed extreme rainfall at station 4513033 Gunung Brinchang for the generation of Probable Maximum Flood (PMF) in dam break analysis.

  3. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    Energy Technology Data Exchange (ETDEWEB)

    Dercon, Gerd [Soil and Water Management and Crop Nutrition Subprogramme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Seibersdorf (Austria); Gerardo-Abaya, Jane [Division for Asia and the Pacific Section 2, Department of Technical Cooperation, IAEA, Vienna (Austria); Mavlyudov, Bulat [Institute of Geography, Russian Academy of Sciences, Moscow (Russian Federation); others, and

    2014-07-15

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas.

  4. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    International Nuclear Information System (INIS)

    Dercon, Gerd; Gerardo-Abaya, Jane; Mavlyudov, Bulat

    2014-01-01

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas

  5. Regionalization of soil base cation weathering for evaluating stream water acidification in the Appalachian Mountains, USA

    International Nuclear Information System (INIS)

    McDonnell, T.C.; Cosby, B.J.; Sullivan, T.J.

    2012-01-01

    Estimation of base cation supply from mineral weathering (BC w ) is useful for watershed research and management. Existing regional approaches for estimating BC w require generalized assumptions and availability of stream chemistry data. We developed an approach for estimating BC w using regionally specific empirical relationships. The dynamic model MAGIC was used to calibrate BC w in 92 watersheds distributed across three ecoregions. Empirical relationships between MAGIC-simulated BC w and watershed characteristics were developed to provide the basis for regionalization of BC w throughout the entire study region. BC w estimates extracted from MAGIC calibrations compared reasonably well with BC w estimated by regression based on landscape characteristics. Approximately one-third of the study region was predicted to exhibit BC w rates less than 100 meq/m 2 /yr. Estimates were especially low for some locations within national park and wilderness areas. The regional BC w results are discussed in the context of critical loads (CLs) of acidic deposition for aquatic ecosystem protection. - Highlights: ► Base cation weathering (BC w ) estimates are needed to model critical load of acidity. ► Estimating BC w formerly required generalized assumptions and stream chemistry data. ► We describe a high-resolution approach for estimating BC w for regional application. - A new approach is described for deriving regional estimates of effective base cation weathering using empirical relationships with landscape characteristics.

  6. Analyzing Multidecadal Trends in Cloudiness Over the Subtropical Andes Mountains of South America Using a Regional Climate Model.

    Science.gov (United States)

    Zaitchik, B. F.; Russell, A.; Gnanadesikan, A.

    2016-12-01

    Satellite-based products indicate that many parts of South America have been experiencing increases in outgoing longwave radiation (OLR) and corresponding decreases in cloudiness over the last few decades, with the strongest trends occurring in the subtropical Andes Mountains - an area that is highly vulnerable to climate change due to its reliance on glacial melt for dry-season runoff. Changes in cloudiness may be contributing to increases in atmospheric temperature, thereby raising the freezing level height (FLH) - a critical geophysical parameter. Yet these trends are only partially captured in reanalysis products, while AMIP climate models generally show no significant trend in OLR over this timeframe, making it difficult to determine the underlying drivers. Therefore, controlled numerical experiments with a regional climate model are performed in order to investigate drivers of the observed OLR and cloudiness trends. The Weather Research and Forecasting model (WRF) is used here because it offers several advantages over global models, including higher resolution - a critical asset in areas of complex topography - as well as flexible physics, parameterization, and data assimilation capabilities. It is likely that changes in the mean states and meridional gradients of SSTs in the Pacific and Atlantic oceans are driving regional trends in clouds. A series of lower boundary manipulations are performed with WRF to determine to what extent changes in SSTs influence regional OLR.

  7. Mapping Asbestos-Cement Roofing with Hyperspectral Remote Sensing over a Large Mountain Region of the Italian Western Alps

    Directory of Open Access Journals (Sweden)

    Federico Frassy

    2014-08-01

    Full Text Available The World Health Organization estimates that 100 thousand people in the world die every year from asbestos-related cancers and more than 300 thousand European citizens are expected to die from asbestos-related mesothelioma by 2030. Both the European and the Italian legislations have banned the manufacture, importation, processing and distribution in commerce of asbestos-containing products and have recommended action plans for the safe removal of asbestos from public and private buildings. This paper describes the quantitative mapping of asbestos-cement covers over a large mountainous region of Italian Western Alps using the Multispectral Infrared and Visible Imaging Spectrometer sensor. A very large data set made up of 61 airborne transect strips covering 3263 km2 were processed to support the identification of buildings with asbestos-cement roofing, promoted by the Valle d’Aosta Autonomous Region with the support of the Regional Environmental Protection Agency. Results showed an overall mapping accuracy of 80%, in terms of asbestos-cement surface detected. The influence of topography on the classification’s accuracy suggested that even in high relief landscapes, the spatial resolution of data is the major source of errors and the smaller asbestos-cement covers were not detected or misclassified.

  8. Electrical Conductive Mechanism of Gas Hydrate-Bearing Reservoirs in the Permafrost Region of Qilian Mountain

    Science.gov (United States)

    Peng, C.; Zou, C.; Tang, Y.; Liu, A.; Hu, X.

    2017-12-01

    In the Qilian Mountain, gas hydrates not only occur in pore spaces of sandstones, but also fill in fractures of mudstones. This leads to the difficulty in identification and evaluation of gas hydrate reservoir from resistivity and velocity logs. Understanding electrical conductive mechanism is the basis for log interpretation. However, the research is insufficient in this area. We have collected well logs from 30 wells in this area. Well logs and rock samples from DK-9, DK-11 and DK-12 wells were used in this study. The experiments including SEM, thin section, NMR, XRD, synthesis of gas hydrate in consolidated rock cores under low temperature and measurement of their resistivity and others were performed for understanding the effects of pore structure, rock composition, temperature and gas hydrate on conductivity. The results show that the porosity of reservoir of pore filling type is less than 10% and its clay mineral content is high. As good conductive passages, fractures can reduce resistivity of water-saturated rock. If fractures in the mudstone are filled by calcite, resistivity increases significantly. The resistivity of water-saturated rock at 2°C is twice of that at 18°C. The gas hydrate formation process in the sandstone was studied by resistivity recorded in real time. In the early stage of gas hydrate formation, the increase of residual water salinity may lead to the decrease of resistivity. In the late stage of gas hydrate formation, the continuity decrease of water leads to continuity increase of resistivity. In summary, fractures, rock composition, temperature and gas hydrate are important factors influencing resistivity of formation. This study is helpful for more accurate evaluation of gas hydrate from resistivity log. Acknowledgment: We acknowledge the financial support of the National Special Program for Gas Hydrate Exploration and Test-production (GZH201400302).

  9. Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field

    International Nuclear Information System (INIS)

    Stock, J.M.; Healy, J.H.; Hickman, S.H.; Zoback, M.D.

    1985-01-01

    Hydraulic fracturing stress measurements and acoustic borehole televiewer logs were run in holes USW G-1 and USW G-2 at Yucca Mountain as part of the Nevada Nuclear Waste Storage Investigations for the U. S. Department of Energy. Eight tests in the saturated zone, at depths from 646 to 1288 m, yielded values of the least horizontal stress S/sub h/ that are considerably lower than the vertical principal stress S/sub v/. In tests for which the greatest horizontal principal stress S/sub H/ could be determined, it was found to be less than S/sub v/, indicating a normal faulting stress regime. The borehole televiewer logs showed the presence of long (in excess of 10 m), vertical, drilling-induced fractures in the first 300 m below the water table. These are believed to form by the propagation of small preexisting cracks under the excess downhole fluid pressures (up to 5.2 MPa) applied during drilling. The presence of these drilling-induced hydrofractures provides further confirmation of the low value of the least horizontal stresses. A least horizontal principal stress direction of N60 0 W--N65 0 W is indicated by the orientation of the drilling-induced hydrofractures (N25 0 E--N30 0 E), and the orientation of stress-induced well bore breakouts in the lower part of USW G-2 (N65 0 W). This direction is in good agreement with indicators of stress direction from elsewhere at the Nevada Test Site. The observed stress magnitudes and directions were examined for the possibility of slip on preexisting faults. Using these data, the Coulomb criterion for frictional sliding suggests that for coefficients of friction close to 0.6, movement on favorably oriented faults could be expected

  10. Cultural perspectives concerning adolescent use of tobacco and alcohol in the Appalachian mountain region.

    Science.gov (United States)

    Meyer, Michael G; Toborg, Mary A; Denham, Sharon A; Mande, Mary J

    2008-01-01

    Appalachia has high rates of tobacco use and related health problems, and despite significant impediments to alcohol use, alcohol abuse is common. Adolescents are exposed to sophisticated tobacco and alcohol advertising. Prevention messages, therefore, should reflect research concerning culturally influenced attitudes toward tobacco and alcohol use. With 4 grants from the National Institutes of Health, 34 focus groups occurred between 1999 and 2003 in 17 rural Appalachian jurisdictions in 7 states. These jurisdictions ranged between 4 and 8 on the Rural-Urban Continuum Codes of the Economic Research Service of the US Department of Agriculture. Of the focus groups, 25 sought the perspectives of women in Appalachia, and 9, opinions of adolescents. The family represented the key context where residents of Appalachia learn about tobacco and alcohol use. Experimentation with tobacco and alcohol frequently commenced by early adolescence and initially occurred in the context of the family home. Reasons to abstain from tobacco and alcohol included a variety of reasons related to family circumstances. Adults generally displayed a greater degree of tolerance for adolescent alcohol use than tobacco use. Tobacco growing represents an economic mainstay in many communities, a fact that contributes to the acceptance of its use, and many coal miners use smokeless tobacco since they cannot light up in the mines. The production and distribution of homemade alcohol was not a significant issue in alcohol use in the mountains even though it appeared not to have entirely disappeared. Though cultural factors support tobacco and alcohol use in Appalachia, risk awareness is common. Messages tailored to cultural themes may decrease prevalence.

  11. Relations between nature-based solutions of green-blue area accessibility and socio-economic-ethnic patterns in the urban Stockholm region

    Science.gov (United States)

    Goldenberg, Romain; Kalantari, Zahra; Destouni, Georgia

    2017-04-01

    More than half of the world's population lives in cities, a proportion expected to increase to two thirds by 2050 (United Nations (UN), 2015). In this study, we investigate the spatial relationships that may exist between income and/or nationality homogeneity/heterogeneity levels of urban populations and their accessibility to local green-blue areas as possible nature-based solutions for sustainable urban design. For this investigation, we consider as a concrete case study the urban region of Stockholm, Sweden, for which we compile and use available land-cover and vegetation density data (the latter in terms of Normalised Difference Vegetation Index, NDVI) in order to identify and assess the spatial distributions of various green-blue area types and aspects. We further combine this data with spatial distribution data for population density, income and nationality, as well as with road-network data for assessing population travel times to nearby green-blue areas within the region. The present study results converge with those of other recent studies in showing large socio-economic-ethnic segregation in the Stockholm region. Moreover, the present data combination and analysis also show large spatial differences in and important socio-economic-ethnic correlations with accessibility to local green areas and nearby water bodies. Specifically, population income and share of Swedish nationals are well correlated in this region, with increases in both of these variables implying greater possibility to choose where to live within the region. The living choices of richer and more homogeneous (primarily Swedish) population parts are then found to be areas with greater local vegetation density (local green areas as identified by high-resolution NDVI data) and greater area extent of nearby water bodies (blue areas). For comparison, no such correlation is found between increased income or Swedish nationality homogeneity and accessibility to nearby forest areas (overall green

  12. Upstream factors affecting Tualatin River algae—Tracking the 2008 Anabaena algae bloom to Wapato Lake, Oregon

    Science.gov (United States)

    Rounds, Stewart A.; Carpenter, Kurt D.; Fesler, Kristel J.; Dorsey, Jessica L.

    2015-12-17

    Significant Findings A large bloom that included floating mats of the blue-green algae Anabaena flos-aquae occurred in the lower 20 miles of the Tualatin River in northwestern Oregon between July 7 and July 17, 2008.

  13. A low-altitude mountain range as an important refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot

    NARCIS (Netherlands)

    Keppel, Gunnar; Robinson, Todd P.; Wardell-Johnson, Grant W.; Yates, Colin J.; Niel, Van Kimberly P.; Byrne, Margaret; Schut, Tom

    2016-01-01

    Background and Aims Low-altitude mountains constitute important centres of diversity in landscapes with little topographic variation, such as the Southwest Australian Floristic Region (SWAFR). They also provide unique climatic and edaphic conditions that may allow them to function as refugia. We

  14. Predicting the Spatial Distribution of Wolf (Canis lupus Breeding Areas in a Mountainous Region of Central Italy.

    Directory of Open Access Journals (Sweden)

    Elena Bassi

    Full Text Available Wolves (Canis lupus in Italy represent a relict west European population. They are classified as vulnerable by IUCN, though have increased in number and expanded their range in recent decades. Here we use 17 years of monitoring data (from 1993 to 2010 collected in a mountainous region of central Italy (Arezzo, Tuscany in an ecological niche-based model (MaxEnt to characterize breeding sites (i.e. the areas where pups were raised within home ranges, as detected from play-back responses. From a suite of variables related to topography, habitat and human disturbance we found that elevation and distance to protected areas were most important in explaining the locality of wolf responses. Rendezvous sites (family play-back response sites typically occurred between 800 and 1200 m a.s.l., inside protected areas, and were usually located along mountain chains distant from human settlements and roads. In these areas human disturbance is low and the densities of ungulates are typically high. Over recent years, rendezvous sites have occurred closer to urban areas as the wolf population has continued to expand, despite the consequent human disturbance. This suggests that undisturbed landscapes may be reaching their carrying capacity for wolves. This, in turn, may lead to the potential for increased human-wolf interactions in future. Applying our model, both within and beyond the species' current range, we identify sites both within the current range and also further afield, that the species could occupy in future. Our work underlines the importance of the present protected areas network in facilitating the recolonisation by wolves. Our projections of suitability of sites for future establishment as the population continues to expand could inform planning to minimize future wolf-human conflicts.

  15. Incentives for Collaborative Governance: Top-Down and Bottom-Up Initiatives in the Swedish Mountain Region

    Directory of Open Access Journals (Sweden)

    Katarina Eckerberg

    2015-08-01

    Full Text Available Governance collaborations between public and private partners are increasingly used to promote sustainable mountain development, yet information is limited on their nature and precise extent. This article analyzes collaboration on environment and natural resource management in Swedish mountain communities to critically assess the kinds of issues these efforts address, how they evolve, who leads them, and what functional patterns they exhibit based on Margerum's (2008 typology of action, organizational, and policy collaboration. Based on official documents, interviews, and the records of 245 collaborative projects, we explore the role of the state, how perceptions of policy failure may inspire collaboration, and the opportunities that European Union funds have created. Bottom-up collaborations, most of which are relatively recent, usually have an action and sometimes an organizational function. Top-down collaborations, however, are usually organizational or policy oriented. Our findings suggest that top-down and bottom-up collaborations are complementary in situations with considerable conflict over time and where public policies have partly failed, such as for nature protection and reindeer grazing. In less contested areas, such as rural development, improving tracks and access, recreation, and fishing, there is more bottom-up, action-oriented collaboration. State support, especially in the form of funding, is central to explaining the emergence of bottom-up action collaboration. Our findings show that the state both initiates and coordinates policy networks and retains a great deal of power over the nature and functioning of collaborative governance. A practical consequence is that there is great overlap—aggravated by sectorized approaches—that creates a heavy workload for some regional partners.

  16. Does Geology Matter? Post-Hurricane Maria Landslide Distribution Across the Mountainous Regions of Puerto Rico, USA

    Science.gov (United States)

    Cerovski-Darriau, C.; Bessette-Kirton, E.; Schulz, W. H.; Kean, J. W.; Godt, J.; Coe, J. A.

    2017-12-01

    Heavy rainfall from Hurricane Maria—category 4 hurricane that made landfall Sept 20, 2017 on Puerto Rico and produced >500 mm of rain—caused widespread landsliding in mountainous regions throughout the territory. Landslides impacted roads, bridges, and reservoirs—cutting off communities, hindering recovery efforts, and affecting water quality and storage capacity. FEMA tasked the USGS with determining the level of imminent threat posed by landslides to life and property, and helping inform recovery efforts. The USGS landslide response team remotely quantified the spatial density of landslides, then deployed to Puerto Rico to assess damage in the field. These are our initial findings from work currently underway. We used post-hurricane satellite (WorldView 0.5 m resolution) and aerial (Sanborn and QuantumSpatial at 0.15 m resolution) imagery collected Sept 26-Oct 8, 2017 to visually estimate landslide concentration and determine the heaviest hit regions. We divided the territory into 2 x 2 km grids and classified each cell as no visible landslides, 25 LS/km2. Hurricane-induced defoliation made landslides readily visible in the imagery as areas of exposed soil or rock with morphology typical of landslides. This method proved to be a rapid way to visualize the spatial distribution of landslides to direct our field efforts. In the field, we found it was a conservative estimate. Landslides occurred in steep areas along the storm track, but high-density pockets occurred in the municipalities of Barranquitos, Jayuya, Lares, Naranjito, Utuado. Assuming Maria produced sufficient rainfall to trigger landslides in all mountainous regions, what controls the density and failure style? We found the highest slide densities disproportionately occurred in the Utuado granodiorite (60% of the unit was >25 LS/km2). Most of the landslides failed as shallow, translational slides. Bedrock slope failures were scarce. Some geologic units, with sufficient topographic relief, generated

  17. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    Energy Technology Data Exchange (ETDEWEB)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  18. DEM-based delineation for improving geostatistical interpolation of rainfall in mountainous region of Central Himalayas, India

    Science.gov (United States)

    Kumari, Madhuri; Singh, Chander Kumar; Bakimchandra, Oinam; Basistha, Ashoke

    2017-10-01

    In mountainous region with heterogeneous topography, the geostatistical modeling of the rainfall using global data set may not confirm to the intrinsic hypothesis of stationarity. This study was focused on improving the precision of the interpolated rainfall maps by spatial stratification in complex terrain. Predictions of the normal annual rainfall data were carried out by ordinary kriging, universal kriging, and co-kriging, using 80-point observations in the Indian Himalayas extending over an area of 53,484 km2. A two-step spatial clustering approach is proposed. In the first step, the study area was delineated into two regions namely lowland and upland based on the elevation derived from the digital elevation model. The delineation was based on the natural break classification method. In the next step, the rainfall data was clustered into two groups based on its spatial location in lowland or upland. The terrain ruggedness index (TRI) was incorporated as a co-variable in co-kriging interpolation algorithm. The precision of the kriged and co-kriged maps was assessed by two accuracy measures, root mean square error and Chatfield's percent better. It was observed that the stratification of rainfall data resulted in 5-20 % of increase in the performance efficiency of interpolation methods. Co-kriging outperformed the kriging models at annual and seasonal scale. The result illustrates that the stratification of the study area improves the stationarity characteristic of the point data, thus enhancing the precision of the interpolated rainfall maps derived using geostatistical methods.

  19. Soil movements and surface erosion rates on rocky slopes in the mountain areas of the karst region of Southwest China

    Science.gov (United States)

    Zhang, X. B.; Bai, X. Y.; Long, Y.

    2012-04-01

    The karst region of Southwest China with an area of 54 × 104 km2 is one of the largest karst areas in the world and experiences subtropical climate. Hill-depressions are common landforms in the mountain areas of this region. Downslope soil movement on the ground by surface water erosion and soil sinking into underground holes by creeping or pipe erosion are mayor types of soil movements on rocky carbonate slopes. The 137Cs technique was used to date the sediment deposits in six karst depressions, to estimate average surface erosion rates on slopes from their catchments. The estimates of soil loss rates obtained from this study evidenced considerable variability. A value of 1.0 t km-2 year-1 was obtained for a catchment under original dense karst forest, but the erosion rates ranged between 19.3 t km-2 year-1 and 48.7 t km-2 year-1 in four catchments under secondary forest or grasses, where the original forest cover had been removed in the Ming and Qing dynasties, several hundred years ago. The highest rate of 1643 t km-2 year-1 was obtained for a catchment underlain by clayey carbonate rocks, where the soil cover was thicker and more extensive than in the other catchments and extensive land reclamation for cultivation had occurred during the period 1979-1981, immediately after the Cultural Revolution.

  20. The Role of Regional Factors in Structuring Ouachita Mountain Stream Assemblages

    Science.gov (United States)

    Lance R. Williams; Christopher M. Taylor; Melvin L. Warren; J. Alan Clingenpeel

    2004-01-01

    Abstract - We used Basin Area Stream Survey data from the USDA Forest Service, Ouachita National Forest to evaluate the relationship between regional fish and macroinvertebrate assemblages and environmental variability (both natural and anthropogenic). Data were collected for three years (1990-1992) from six hydrologically variable stream systems in...

  1. Ozone air pollution in the Ukrainian Carpathian Mountains and Kiev region

    Science.gov (United States)

    Oleg Blum; Andrzej Bytnerowicz; William Manning; Ludmila Popovicheva

    1998-01-01

    Ambient concentrations of ozone (O3) were measured at five highland forest locations in the Ukrainian Carpathians and in two lowland locations in the Kiev region during August to September 1995 by using O3 passive samplers. The ozone passive samplers were calibrated against a Thermo Environmental Model 49 ozone monitor...

  2. A synthesis of the Jurassic system in the southern Rocky Mountain region

    International Nuclear Information System (INIS)

    Peterson, F.

    1988-01-01

    This chapter includes important stratigraphic revisions and nomenclatural changes made especially in the Colorado Plateau region in recent years. For the purpose of the discussion, these rocks are divided into six divisions. The stratigraphy and depositional environments of the rocks are discussed, along with the economic resources of these rocks which include uranium and hydrocarbons

  3. How a geomorphosite inventory can contribute to regional sustainable development? The case of the Simen Mountains National Park, Ethiopia

    Science.gov (United States)

    Mauerhofer, Lukas; Reynard, Emmanuel; Asrat, Asfawossen; Hurni, Hans; Wildlife Conservation Authority, Ethiopian

    2016-04-01

    This research aimed at investigating how an inventory of geomorphosites can foster or improve the knowledge and management of geomorphological heritages in the context of developing countries. Accordingly, a geomorphosite inventory in the Simen Mountains National Park (SMNP), Ethiopia was conducted following the method of Reynard et al. (2015). The national context of geoheritage and geoconservation in Ethiopia was appraised and a road map for the management of the inventoried sites in the SMNP was elaborated. Ethiopia hosts numerous geoheritage sites, some of which of highest international significance. Therefore, geotourism has recently been promoted throughout the country (Asrat et al., 2008). Despite numerous trials of the scientific community, there is not yet a national policy for geoconservation in the country. Many parts of Ethiopia are underdeveloped in terms of economic subsistence and infrastructure, making these immediate priorities over conservation efforts. Nevertheless, this study showed that the Simen Mountains have the potential to become a UNESCO Global Geopark and that geosites could be used to develop geotourism within SMNP, and that development and conservation are not contradictory. Twenty-one geomorphosites were identified and assessed. Diverse geomorphological contexts including fluvial, structural, glacial, periglacial, anthropic and organic characterize the SMNP. The temporal stages, which allow the reconstitution of the morphogenesis of the Simen Mountains, are the Cenozoic volcanism, Last Glacial Maximum, Holocene as well as historic/modern landscape modification. Four synthesis maps were elaborated to present the results of the assessment. The average scientific value of the inventoried geomorphosites is very high compared to other inventories realized using the same method. This is particularly due to the extremely high integrity of the sites. Almost all geomorphosites are in a good state of conservation and only few sites are

  4. Moisture source in the Hyblean Mountains region (south-eastern Sicily, Italy): Evidence from stable isotopes signature

    Energy Technology Data Exchange (ETDEWEB)

    Grassa, Fausto [Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo La Malfa, 153, 90146 Palermo (Italy)]. E-mail: f.grassa@pa.ingv.it; Favara, Rocco [Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo La Malfa, 153, 90146 Palermo (Italy); Valenza, Mariano [Dipartimento CFTA, Universita di Palermo, Palermo, Via Archirafi, 36, 90123, Palermo (Italy)

    2006-12-15

    Here the authors present results of an isotope study on precipitation collected during a 2-a period from a rain-gauge network consisting of 6 stations located at different elevations in the Hyblean Mountains (HM) region, in south-eastern Sicily. The slope of the local meteoric water line ({delta}D = 6.50 {delta} {sup 18}O + 9.87) obtained for the region suggests that precipitation is affected by evaporation during rainfall events. The main variations in rainwater isotope composition are due to seasonal effects and elevation. An average {sup 2}H excess value of +21.2 per mille was found for precipitation events less affected by evaporation (i.e. when the rainfall was >65 mm/month). The spatial distribution of O isotope composition of precipitation shows a negative gradient from east and south to the inner areas. The depositional rate of Cl, used as a tracer of the origin of air masses, is highest at the coastal rain-gauges (SR and MRG stations) and lowest on the northern flank of the HM region (SC station). Based on these findings, a model is proposed for the origin of precipitation in the HM region, which assumes that a Mediterranean-derived component is the main source of moisture in the studied area. D/H and {sup 18}O/{sup 16}O ratios of inferred meteoric recharge waters were also compared with the isotope composition of waters collected from the main local springs and wells. The best linear fit of the {delta} {sup 18}O vs {delta}D relationship for Hyblean groundwater is {delta}D = 4.85 {delta} {sup 18}O-2.01. The enrichment of heavy isotopes in Hyblean groundwater is probably due to evaporation occurring after precipitation events or to a recharging contribution from surface waters (lakes or rivers) enriched in heavy isotopes.

  5. Moisture source in the Hyblean Mountains region (south-eastern Sicily, Italy): Evidence from stable isotopes signature

    International Nuclear Information System (INIS)

    Grassa, Fausto; Favara, Rocco; Valenza, Mariano

    2006-01-01

    Here the authors present results of an isotope study on precipitation collected during a 2-a period from a rain-gauge network consisting of 6 stations located at different elevations in the Hyblean Mountains (HM) region, in south-eastern Sicily. The slope of the local meteoric water line (δD = 6.50 δ 18 O + 9.87) obtained for the region suggests that precipitation is affected by evaporation during rainfall events. The main variations in rainwater isotope composition are due to seasonal effects and elevation. An average 2 H excess value of +21.2 per mille was found for precipitation events less affected by evaporation (i.e. when the rainfall was >65 mm/month). The spatial distribution of O isotope composition of precipitation shows a negative gradient from east and south to the inner areas. The depositional rate of Cl, used as a tracer of the origin of air masses, is highest at the coastal rain-gauges (SR and MRG stations) and lowest on the northern flank of the HM region (SC station). Based on these findings, a model is proposed for the origin of precipitation in the HM region, which assumes that a Mediterranean-derived component is the main source of moisture in the studied area. D/H and 18 O/ 16 O ratios of inferred meteoric recharge waters were also compared with the isotope composition of waters collected from the main local springs and wells. The best linear fit of the δ 18 O vs δD relationship for Hyblean groundwater is δD = 4.85 δ 18 O-2.01. The enrichment of heavy isotopes in Hyblean groundwater is probably due to evaporation occurring after precipitation events or to a recharging contribution from surface waters (lakes or rivers) enriched in heavy isotopes

  6. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States

    Directory of Open Access Journals (Sweden)

    Jessica R. Haas

    2013-07-01

    Full Text Available Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to identify and prioritize at-risk watersheds for risk mitigation treatments, in both pre-fire and post-fire planning contexts. Risk assessment results can be particularly useful for prioritizing management of hazardous fuels to lessen the severity and likely impacts of future wildfires, where budgetary and other constraints limit the amount of area that can be treated. Specifically we generate spatially resolved estimates of wildfire likelihood and intensity, and couple that information with spatial data on watershed location and watershed erosion potential to quantify watershed exposure and risk. For a case study location we focus on National Forest System lands in the Rocky Mountain Region of the United States. The Region houses numerous watersheds that are critically important to drinking water supplies and that have been impacted or threatened by large wildfires in recent years. Assessment results are the culmination of a broader multi-year science-management partnership intended to have direct bearing on wildfire management decision processes in the Region. Our results suggest substantial variation in the exposure of and likely effects to highly valued watersheds throughout the Region, which carry significant implications for prioritization. In particular we identified the San Juan National Forest as having the highest concentration of at-risk highly valued watersheds, as well as the greatest amount of risk that can be mitigated via hazardous fuel reduction treatments. To conclude we describe future opportunities and challenges for management of wildfire-watershed interactions.

  7. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    Science.gov (United States)

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.; Guo, L.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. One of the main challenges of setting up such a system is finding appropriate model parameter values for ungauged catchments. Previous studies have shown that the transfer of parameter sets from hydrologically similar gauged catchments is one of the best performing regionalization methods. However, a remaining key issue is the identification of suitable descriptors of similarity. In this study, we use decision tree learning to explore parameter set transferability in the full space of catchment descriptors. For this purpose, a semi-distributed rainfall-runoff model is set up for 35 catchments in ten Chinese provinces. Hourly runoff data from in total 858 storm events are used to calibrate the model and to evaluate the performance of parameter set transfers between catchments. We then present a novel technique that uses the splitting rules of classification and regression trees (CART) for finding suitable donor catchments for ungauged target catchments. The ability of the model to detect flood events in assumed ungauged catchments is evaluated in series of leave-one-out tests. We show that CART analysis increases the probability of detection of 10-year flood events in comparison to a conventional measure of physiographic-climatic similarity by up to 20%. Decision tree learning can outperform other regionalization approaches because it generates rules that optimally consider spatial proximity and physical similarity. Spatial proximity can be used as a selection criteria but is skipped in the case where no similar gauged catchments are in the vicinity. We conclude that the CART regionalization concept is particularly suitable for implementation in sparsely gauged and topographically complex environments where a proximity

  8. The Holy Dose: Spiritual adventures with Southern Oregon's psychedelic crusaders

    OpenAIRE

    Weber, Alex L

    2011-01-01

    Ashland, Oregon is a smart little community nestled in the foothills of the Siskiyou Mountains about 20 minutes north of the California border. Home to Southern Oregon University and host to the yearly Shakespeare Festival, Ashland is one of those places both progressive and picturesque that often occupies a top spot on waiting-room magazines' “Best Small Towns” or “Best Places to Retire” lists. It's got a walkable business district with cozy fine-dining bistros, new-age book shops and old-sc...

  9. NASA's High Mountain Asia Team (HiMAT): collaborative research to study changes of the High Asia region

    Science.gov (United States)

    Arendt, A. A.; Houser, P.; Kapnick, S. B.; Kargel, J. S.; Kirschbaum, D.; Kumar, S.; Margulis, S. A.; McDonald, K. C.; Osmanoglu, B.; Painter, T. H.; Raup, B. H.; Rupper, S.; Tsay, S. C.; Velicogna, I.

    2017-12-01

    The High Mountain Asia Team (HiMAT) is an assembly of 13 research groups funded by NASA to improve understanding of cryospheric and hydrological changes in High Mountain Asia (HMA). Our project goals are to quantify historical and future variability in weather and climate over the HMA, partition the components of the water budget across HMA watersheds, explore physical processes driving changes, and predict couplings and feedbacks between physical and human systems through assessment of hazards and downstream impacts. These objectives are being addressed through analysis of remote sensing datasets combined with modeling and assimilation methods to enable data integration across multiple spatial and temporal scales. Our work to date has focused on developing improved high resolution precipitation, snow cover and snow water equivalence products through a variety of statistical uncertainty analysis, dynamical downscaling and assimilation techniques. These and other high resolution climate products are being used as input and validation for an assembly of land surface and General Circulation Models. To quantify glacier change in the region we have calculated multidecadal mass balances of a subset of HMA glaciers by comparing commercial satellite imagery with earlier elevation datasets. HiMAT is using these tools and datasets to explore the impact of atmospheric aerosols and surface impurities on surface energy exchanges, to determine drivers of glacier and snowpack melt rates, and to improve our capacity to predict future hydrological variability. Outputs from the climate and land surface assessments are being combined with landslide and glacier lake inventories to refine our ability to predict hazards in the region. Economic valuation models are also being used to assess impacts on water resources and hydropower. Field data of atmospheric aerosol, radiative flux and glacier lake conditions are being collected to provide ground validation for models and remote sensing

  10. South Oregon Coast Reinforcement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  11. Accelerated construction of a regional DNA-barcode reference library: Caddisflies (Trichoptera) in the Great Smoky Mountains National Park

    Science.gov (United States)

    Zhou, X.; Robinson, J.L.; Geraci, C.J.; Parker, C.R.; Flint, O.S.; Etnier, D.A.; Ruiter, D.; DeWalt, R.E.; Jacobus, L.M.; Hebert, P.D.N.

    2011-01-01

    Deoxyribonucleic acid (DNA) barcoding is an effective tool for species identification and lifestage association in a wide range of animal taxa. We developed a strategy for rapid construction of a regional DNA-barcode reference library and used the caddisflies (Trichoptera) of the Great Smoky Mountains National Park (GSMNP) as a model. Nearly 1000 cytochrome c oxidase subunit I (COI) sequences, representing 209 caddisfly species previously recorded from GSMNP, were obtained from the global Trichoptera Barcode of Life campaign. Most of these sequences were collected from outside the GSMNP area. Another 645 COI sequences, representing 80 species, were obtained from specimens collected in a 3-d bioblitz (short-term, intense sampling program) in GSMNP. The joint collections provided barcode coverage for 212 species, 91% of the GSMNP fauna. Inclusion of samples from other localities greatly expedited construction of the regional DNA-barcode reference library. This strategy increased intraspecific divergence and decreased average distances to nearest neighboring species, but the DNA-barcode library was able to differentiate 93% of the GSMNP Trichoptera species examined. Global barcoding projects will aid construction of regional DNA-barcode libraries, but local surveys make crucial contributions to progress by contributing rare or endemic species and full-length barcodes generated from high-quality DNA. DNA taxonomy is not a goal of our present work, but the investigation of COI divergence patterns in caddisflies is providing new insights into broader biodiversity patterns in this group and has directed attention to various issues, ranging from the need to re-evaluate species taxonomy with integrated morphological and molecular evidence to the necessity of an appropriate interpretation of barcode analyses and its implications in understanding species diversity (in contrast to a simple claim for barcoding failure).

  12. Chernobyl fallout radionuclides in soil, plant and honey of a mountain region

    International Nuclear Information System (INIS)

    Djuric, G.; Todorovic, D.; Popovic, D.

    1997-01-01

    Honey bee and the products (honey, pollen, wax, propolis) are generally considered as efficient bioindicators of the environmental pollution. Honey bee activity upon a territory is well defined both in space and time and honey bee itself is easier to control than other animal bioindicators (birds, fish, wild animals). Networks of bee hives near nuclear and industrial installations are therefore often used for, environment pollution research and control. The investigations started in 1983/84. Gamma exposure and Cs-137 activity measurements provided information on ''zero status'' of the radioecological situation in the region. During the nuclear plant accident at Chernobyl in April 1986 and afterworks through the year, over two hundred samples of honey, grass and meadow flora have been examined. Investigations of the radioactivity in soils, meadow flora and honey in the region continued up to 1991 and afterwards. The vertical distribution of Cs-134 and Cs-137 in different soils provided data on the migration rate through soil and on concentration factors for different phases of the ''soil-plant-honey'' ecosystem

  13. The Participatory Construction of Agro-Ecological Knowledge As A Soil Conservation Strategy In The Mountain Region of Rio de Janeiro State (Brazil

    Directory of Open Access Journals (Sweden)

    de Assis Renato Linhares

    2018-02-01

    Full Text Available Agriculture in the mountain region of Rio de Janeiro State is characterized by intensive soil use and input. Such mountainous environments are vulnerable to climate events; thus, the current article presents a report on methods applied to exchange academic and traditional knowledge. The aim is to expand farmers’ perception about the need of implementing agro-ecological practices, mainly soil management practices, which are important for agricultural sustainability in mountainous environments. The study was conducted in a Nova Friburgo family production unit, in the mountain region of Rio de Janeiro State (Brazil. It consisted of implementing three observation and soil organic-matter management units. The idea was to reduce the incidence of clubroot of crucifers disease caused by Plasmidiophora brassicae. The soil fauna was discussed with local farmers, with emphasis on the association between ecological processes and soil management. The present study improved the discussion with farmers and the need of introducing other innovative conservation practices such as no-tillage system and participatory research based on agro-ecological propositions.

  14. Land-use effect on hydropedology in a mountainous region of Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Leandro Campos Pinto

    Full Text Available ABSTRACT In Brazil, the Mantiqueira Range, southeastern region, shelters the last remnants of the ecologically important Upper Montane Tropical Forest. since extensive exploration that has been taking place in this biome for decades, the influence of land-use changes on hydropedology in these areas must be investigated once major land-use changes have been observed. This study aims to evaluate the land-use influence on soil drainable porosity (SDP in a headwater watershed located in the Mantiqueira Range region, and to validate the proposed methods based on micromorphological and hydrological indicators. The native vegetation of the study area is Atlantic forest that occupies 62% of the area, and the remaining 38% has been used for pasture. Thirty nine combinations of environmental variables were tested, each one generating a map for predicting SDP. The performance of the spatial prediction of SDP was assessed using 20% of the data from the total number of samples collected throughout the watershed. The least values of SDP are due to the process of removal of native forest and replacement by pasture. Areas with high to moderate SDP are associated with native forest fragments demonstrating the effects of the Atlantic Forest on the water infiltration and groundwater recharge processes, given by the greater contribution of baseflow in a forested catchment located within the studied watershed. The analysis of soil micromorphological images provided useful supporting information on the soil porosity system and along with hydrological properties of the watershed helped understand the SDP behavior on subsurface and groundwater storage capacity.

  15. Hydrochemical and environmental isotope analysis of groundwater and surface water in a dry mountain region in Northern Chile.

    Science.gov (United States)

    Zang, Carina; Dame, Juliane; Nüsser, Marcus

    2018-05-08

    This case study examines the geological imprint and land use practices on water quality in the arid Huasco Valley against the backdrop of ongoing water conflicts surrounding competing demands for agriculture and mining. The study is based on a detailed analysis of spatial and temporal variations of monthly surface and bi-monthly groundwater quality samples measured during the Chilean summer of 2015/16. Additional information on source regions and river-groundwater interactions were collected using stable water isotopes. Regarding the geological impact on water quality, high concentrations of Ca 2+ , SO 4 2- and HCO 3 - indicate a strong influence of magmatic rocks, which constitute this high mountain basin, on the hydrochemistry. Piper and Gibbs-diagrams revealed that all samples show a homogenous distribution dominated by rock-water interactions. Measured NO 3 - concentrations in surface water are generally low. However, groundwater aquifers exhibit higher concentrations. Mn is the only heavy metal with elevated concentrations in surface water, which are possibly related to mining activities. The results illustrate that both surface and groundwater can be classified as suitable for irrigation. In addition, groundwater has been found to be suitable as drinking water. High similarities in isotopic signatures indicate a strong connection between surface and groundwater. Isotopic analyses suggest a strong influence of evaporation. This combined approach of hydrogeochemical and isotopic analysis proved to be a helpful tool in characterizing the catchment and can serve as a basis for future sustainable water management.

  16. Genetic structure and evolutionary history of three alpine sclerophyllous oaks in East Himalaya-Hengduan Mountains and adjacent regions

    Directory of Open Access Journals (Sweden)

    Li Feng

    2016-11-01

    Full Text Available The East Himalaya-Hengduan Mountains (EH-HM region has a high biodiversity and harbours numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Q. spinosa, Q. aquifolioides and Q. rehderiana using both cytoplasmic-nuclear markers and ecological niche models (ENMs, and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG to the last glacial maximum (LGM, which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.

  17. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions.

    Science.gov (United States)

    Feng, Li; Zheng, Qi-Jian; Qian, Zeng-Qiang; Yang, Jia; Zhang, Yan-Ping; Li, Zhong-Hu; Zhao, Gui-Fang

    2016-01-01

    The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides , and Quercus rehderiana ) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.

  18. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region.

    Science.gov (United States)

    Greenwood, Sarah; Chen, Jan-Chang; Chen, Chaur-Tzuhn; Jump, Alistair S

    2014-12-01

    Altitudinal treelines are typically temperature limited such that increasing temperatures linked to global climate change are causing upslope shifts of treelines worldwide. While such elevational increases are readily predicted based on shifting isotherms, at the regional level the realized response is often much more complex, with topography and local environmental conditions playing an important modifying role. Here, we used repeated aerial photographs in combination with forest inventory data to investigate changes in treeline position in the Central Mountain Range of Taiwan over the last 60 years. A highly spatially variable upslope advance of treeline was identified in which topography is a major driver of both treeline form and advance. The changes in treeline position that we observed occurred alongside substantial increases in forest density, and lead to a large increase in overall forest area. These changes will have a significant impact on carbon stocking in the high altitude zone, while the concomitant decrease in alpine grassland area is likely to have negative implications for alpine species. The complex and spatially variable changes that we report highlight the necessity for considering local factors such as topography when attempting to predict species distributional responses to warming climate. © 2014 John Wiley & Sons Ltd.

  19. Poverty targeting and income impact of subsidised credit on accessed households in the Northern Mountainous Region of Vietnam

    Directory of Open Access Journals (Sweden)

    Do Xuan Luan

    2015-10-01

    Full Text Available This paper uses the data of 1338 rural households in the Northern Mountainous Region of Vietnam to examine the extent to which subsidised credit targets the poor and its impacts. Principal Component Analysis and Propensity Score Matching were used to evaluate the depth of outreach and the income impact of credit. To address the problem of model uncertainty, the approach of Bayesian Model Average applied to the probit model was used. Results showed that subsidised credit successfully targeted the poor households with 24.10% and 69.20% of clients falling into the poorest group and the three bottom groups respectively. Moreover, those who received subsidised credit make up 83% of ethnic minority households. These results indicate that governmental subsidies are necessary to reach the poor and low income households, who need capital but are normally bypassed by commercial banks. Analyses also showed that ethnicity and age of household heads, number of helpers, savings, as well as how affected households are by shocks were all factors that further explained the probability at which subsidised credit has been assessed. Furthermore, recipients obtained a 2.61% higher total income and a 5.93% higher farm income compared to non-recipients. However, these small magnitudes of effects are statistically insignificant at a 5% level. Although the subsidised credit is insufficient to significantly improve the income of the poor households, it possibly prevents these households of becoming even poorer.

  20. Mapping Plant Functional Types over Broad Mountainous Regions: A Hierarchical Soft Time-Space Classification Applied to the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Danlu Cai

    2014-04-01

    Full Text Available Research on global climate change requires plant functional type (PFT products. Although several PFT mapping procedures for remote sensing imagery are being used, none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly relevant regions to identify and analyze the response of natural ecosystems. We present a methodology for generating soft classifications of PFTs from remotely sensed time series that are based on a hierarchical strategy by integrating time varying integrated NDVI and phenological information with topography: (i Temporal variability: a Fourier transform of a vegetation index (MODIS NDVI, 2006 to 2010. (ii Spatial partitioning: a primary image segmentation based on a small number of thresholds applied to the Fourier amplitude. (iii Classification by a supervised soft classification step is based on a normalized distance metric constructed from a subset of Fourier coefficients and complimentary altitude data from a digital elevation model. Applicability and effectiveness is tested for the eastern Tibetan Plateau. A classification nomenclature is determined from temporally stable pixels in the MCD12Q1 time series. Overall accuracy statistics of the resulting classification reveal a gain of about 7% from 64.4% compared to 57.7% by the MODIS PFT products.

  1. Landslide hazard assessment along a mountain highway in the Indian Himalayan Region (IHR) using remote sensing and computational models

    Science.gov (United States)

    Krishna, Akhouri P.; Kumar, Santosh

    2013-10-01

    Landslide hazard assessments using computational models, such as artificial neural network (ANN) and frequency ratio (FR), were carried out covering one of the important mountain highways in the Central Himalaya of Indian Himalayan Region (IHR). Landslide influencing factors were either calculated or extracted from spatial databases including recent remote sensing data of LANDSAT TM, CARTOSAT digital elevation model (DEM) and Tropical Rainfall Measuring Mission (TRMM) satellite for rainfall data. ANN was implemented using the multi-layered feed forward architecture with different input, output and hidden layers. This model based on back propagation algorithm derived weights for all possible parameters of landslides and causative factors considered. The training sites for landslide prone and non-prone areas were identified and verified through details gathered from remote sensing and other sources. Frequency Ratio (FR) models are based on observed relationships between the distribution of landslides and each landslide related factor. FR model implementation proved useful for assessing the spatial relationships between landslide locations and factors contributing to its occurrence. Above computational models generated respective susceptibility maps of landslide hazard for the study area. This further allowed the simulation of landslide hazard maps on a medium scale using GIS platform and remote sensing data. Upon validation and accuracy checks, it was observed that both models produced good results with FR having some edge over ANN based mapping. Such statistical and functional models led to better understanding of relationships between the landslides and preparatory factors as well as ensuring lesser levels of subjectivity compared to qualitative approaches.

  2. Composition of Solid Waste in Al Jabal Al Akhdar, a Mountain Region Undergoing Rapid Urbanization in Northern Oman

    Directory of Open Access Journals (Sweden)

    Abdullah I. Al-Mahrouqi

    2017-01-01

    Full Text Available There is a lack of data on the generation and composition of waste in rural areas worldwide. The present study analyzed the composition of solid waste in Al Jabal Al Akhdar, a rural mountain region in the Sultanate of Oman, which is presently experiencing a rapid rate of urbanization due to tourism development. The solid wastes here are generated by the municipality collecting waste from residential, commercial, institutional and recreational areas, the military from a training camp and a few non-governmental private companies from their camps and hotels. The whole load from each of the three sources was manually segregated each month from June 2013 – May 2014. The results indicated that plastic is the dominant category in the wastes collected by the municipality and accounts for 26.7%, followed by paper (17.9% and then food (14.4%. Food is the dominant category in the wastes collected by the military and private companies and accounts for 36.5% and 45.5% respectively. Management issues associated with solid waste are briefly considered. The study concluded that the municipality should implement an improved system for the collection of plastic waste and initiate a system for recycling it; the military and private companies should reduce the quantities of food waste by improved planning and management of the catering services.

  3. Ethnoveterinary treatments by dromedary camel herders in the Suleiman Mountainous Region in Pakistan: an observation and questionnaire study.

    Science.gov (United States)

    Raziq, Abdul; de Verdier, Kerstin; Younas, Muhammad

    2010-06-21

    The Suleiman mountainous region is an important cradle of animal domestication and the habitat of many indigenous livestock breeds. The dromedary camel is a highly appreciated and valued animal and represents an important genetic resource. Camel herders, living in remote areas, have developed their own ways to treat diseases in camels, based on a long time of experience. Information about the diseases and the ethnoveterinary practices performed was collected from a total of 90 herders and healers by interviews and participant observations. The respondents classified the diseased in major and minor fractions. Clinical signs were given in detail. Mange followed by trypanosomosis and orf were considered the most prevalent diseases, and also caused the greatest economic losses. Orf was regarded the most complex disease. The season was considered to have great influence on the occurrence of the diseases. A variety of different treatments were described, such as medicinal plants, cauterization, odorant/fly repellents, pesticides, larvicides, cold drink, yogurt and supportive therapy (hot food, hot drink). There is paramount need to document and validate the indigenous knowledge about animal agriculture in general and ethnoveterinary practices in particular. This knowledge is rapidly disappearing and represents a cultural heritage as well as a valuable resource for attaining food security and sovereignty.

  4. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    Directory of Open Access Journals (Sweden)

    Yuxin Zhang

    Full Text Available The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr., planted larch (Larix principis-rupprechtii Mayr., and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer, while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  5. Limits and possibilities for building “territories of development” in the Rio de Janeiro mountain region

    Directory of Open Access Journals (Sweden)

    Maria José Carneiro

    2009-10-01

    Full Text Available This article proposes to evaluate two inter-municipal projects involving family farmers in the social construction of territories of development. Our starting point is the hypothesis that the building of this territoriality is mediated by a political culture that imposes limits and conditions territorial dynamics. The municipality of Nova Friburgo has been taken as a point of reference for the mapping of projects and/or actions that mobilize multi-functional farmers located in other municipalities of the mountainous region of the state of Rio de Janeiro. Based on a rapid characterization of the development trajectory of the chosen universe and on the problematization of the category of territory, we seek to elucidate the way in which a constitutive trait of Brazilian society – patronage and clientelism – operates within the context of family farmers’ quest for territorial construction, as social actors and as the primary beneficiaries of the public policies that have been implemented in recent times Keywords: Sustainable territorial development, public policies, family farming, clientelism.

  6. Composition of the root mycorrhizal community associated with Coffea arabica in Fifa Mountains (Jazan region, Saudi Arabia).

    Science.gov (United States)

    Mahdhi, Mosbah; Tounekti, Taieb; Al-Turki, Turki Ali; Khemira, Habib

    2017-08-01

    Arbuscular mycorrhizal fungi (AMF) constitute a key functional group of soil biota that can greatly contribute to crop productivity and ecosystem sustainability. They improve nutrient uptake and enhance the ability of plants to cope with abiotic stresses. The presence of AMF in coffee (Coffea arabica L.) plant roots have been reported in several locations but not in Saudi Arabia despite the fact that coffee has been in cultivation here since ancient times. The objective of the present study was to investigate the diversity of AMF communities colonizing the roots of coffee trees growing in two sites of Fifa Mountains (south-west Saudi Arabia): site 1 at 700 m altitude and site 2 at 1400 m. The AMF large subunit rDNA regions (LSU) were subjected to nested PCR, cloning, sequencing, and phylogenetic analysis. Microscopic observations indicated higher mycorrhizal intensity (24.3%) and spore density (256 spores/100 g of soil) in site 2 (higher altitude). Phylogenetic analysis revealed 10 phylotypes, six belonging to the family Glomeraceae, two to Claroideoglomercea, one to Acaulosporaceae and one to Gigasporaceae family. Glomus was the dominant genus at both sites and the genus Gigaspora was detected only at site 2. This is the first study reporting the presence of AMF in coffee roots and the composition of this particular mycorrhizal community in Saudi Arabia. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. MOUNT HOOD WILDERNESS AND ADJACENT AREAS, OREGON.

    Science.gov (United States)

    Keith, T.E.C.; Causey, J.D.

    1984-01-01

    A mineral survey of the Mount Hood Wilderness, Oregon, was conducted. Geochemical data indicate two areas of substantiated mineral-resource potential containing weak epithermal mineralization: an area of the north side of Zigzag Mountain where vein-type lead-zinc-silver deposits occur and an area of the south side of Zigzag Mountain, where the upper part of a quartz diorite pluton has propylitic alteration associated with mineralization of copper, gold, silver, lead, and zinc in discontinuous veins. Geothermal-resource potential for low- to intermediate-temperature (less than 248 degree F) hot-water systems in the wilderness is probable in these areas. Part of the wilderness is classified as a Known Geothermal Resource Area (KGRA), which is considered to have probable geothermal-resource potential, and two parts of the wilderness have been included in geothermal lease areas.

  8. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    Science.gov (United States)

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  9. Indirect quantification of fine root production in a near tropical wet mountainous region

    Science.gov (United States)

    Lu, X.; Zhang, J.; Huang, C.

    2016-12-01

    The main functions of fine root (defined as diameter floristic) and external (environmental) factors into account, including litter production, canopy density (leaf area index), leaf nutrients (N, K, Ca, Mg, P), weather and/or soil physical conditions (air temperature, humidity, precipitation, solar radiation and soil moisture). The study was conducted in near tropical broadleaf (700 m asl) and conifer (1700 m asl) forests in northeastern Taiwan, generally receiving more than 4000 mm of precipitation per year. For each site, 16 50-cm long minirhizotron tubes were installed. Fine root images were acquired every three weeks. Growth and decline, newly presence and absence of fine roots were delineated by image processing algorithms to derive fine-root productivity through time. Aforementioned internal and external attributes were simultaneously collected as well. Some of these variables were highly correlated and were detrended using principal component analysis. We found that these transformed variables (mainly associated with litter production, precipitation and solar radiation) can delineate the spatiotemporal dynamics of root production well (r2 = 0.87, p = 0.443). In conclusion, this study demonstrated the feasibility of utilized aboveground variables to indirectly assess fine root growth, which could be further developed for the regional scale mapping with aid of remote sensing.

  10. Origin and Distribution of PAHs in Ambient Particulate Samples at High Mountain Region in Southern China

    Directory of Open Access Journals (Sweden)

    Peng-hui Li

    2015-01-01

    Full Text Available To understand the deposition and transport of PAHs in southern China, a measurement campaign was conducted at a high-elevation site (the summit of Mount Heng, 1269 m A.S.L. from April 4 to May 31, 2009, and a total of 39 total suspended particulate samples were collected for measurement of PAH concentrations. The observed particulate-bound PAHs concentrations ranged from 1.63 to 29.83 ng/m3, with a mean concentration of 6.03 ng/m3. BbF, FLA, and PYR were the predominant compounds. Good correlations were found between individual PAHs and meteorological parameters such as atmospheric pressure, relative humidity, and ambient temperature. The backward trajectory analysis suggested that particulate samples measured at the Mount Heng region were predominantly associated with the air masses from southern China, while the air masses transported over northern and northwestern China had relative higher PAHs concentrations. Based on the diagnostic ratios and factor analysis, vehicular emission, coal combustion, industry emission, and unburned fossil fuels were suggested to be the PAHs sources at Mount Heng site. However, the reactivity and degradation of individual PAHs could influence the results of PAH source profiles, which deserves further investigations in the future.

  11. The influence of regional urbanization and abnormal weather conditions on the processes of human climatic adaptation on mountain resorts

    Science.gov (United States)

    Artamonova, M.; Golitsyn, G.; Senik, I.; Safronov, A.; Babyakin, A.; Efimenko, N.; Povolotskaya, N.; Topuriya, D.; Chalaya, E.

    2012-04-01

    in patients with coronary heart disease, hypertension stage I-II syndrome disadaptative using the transcranial mezo diencephalic modulation / L.I.Zherlitsina, N.V. Efimenko, N.P. Povolotskaya, I.I. Velikanov. the Patent for the invention No.2422128, RU (11) 2 422 128 (13) C1 from 6/27/2011; Bull.13). We have observed that such anthropogenic characteristics as accumulation of aerosol with the size of particles 500-5000 nanometers in the lower atmosphere in the quantity more than 60 particles/sm3 (getting to alveoli); decrease in quantity of negative ions (N-) lower than 200 ions/sm3, high coefficient of ions unipolarity (N+/N-) - more than 4-6; mass concentration of aerosol more than 150 mkg/m3 and other modules of the environment can act as limited markers for the forecast of dangerous NAR, SAD and taking of urgent radical preventive measures. These techniques of medical weather forecast and meteo prevention can be used in other mountain regions of the world. The studies were performed by support of the Program "Basic Sciences for Medicine" and RFBR project No.10-05-01014_a.

  12. Remotely Sensed Estimation of Net Primary Productivity (NPP and Its Spatial and Temporal Variations in the Greater Khingan Mountain Region, China

    Directory of Open Access Journals (Sweden)

    Qiang Zhu

    2017-07-01

    Full Text Available We improved the CASA model based on differences in the types of land use, the values of the maximum light use efficiency, and the calculation methods of solar radiation. Then, the parameters of the model were examined and recombined into 16 cases. We estimated the net primary productivity (NPP using the NDVI3g dataset, meteorological data, and vegetation classification data from the Greater Khingan Mountain region, China. We assessed the accuracy and temporal-spatial distribution characteristics of NPP in the Greater Khingan Mountain region from 1982 to 2013. Based on a comparison of the results of the 16 cases, we found that different values of maximum light use efficiency affect the estimation more than differences in the fraction of photosynthetically active radiation (FPAR. However, the FPARmax and the constant Tε2 values did not show marked effects. Different schemes were used to assess different model combinations. Models using a combination of parameters established by scholars from China and the United States produced different results and had large errors. These ideas are meaningful references for the estimation of NPP in other regions. The results reveal that the annual average NPP in the Greater Khingan Mountain region was 760 g C/m2·a in 1982–2013 and that the inter-annual fluctuations were not dramatic. The NPP estimation results of the 16 cases exhibit an increasing trend. In terms of the spatial distribution of the changes, the model indicated that the values in 75% of this area seldom or never increased. Prominent growth occurred in the areas of Taipingling, Genhe, and the Oroqen Autonomous Banner. Notably, NPP decreased in the southeastern region of the Greater Khingan Mountains, the Hulunbuir Pasture Land, and Holingol.

  13. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China

    Science.gov (United States)

    Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Yumin; Deng, J.

    2002-01-01

    The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events

  14. Baseflow characterization of the inter-mountainous regions of northern Idaho and eastern Washington, USA

    Science.gov (United States)

    Sanchez-Murillo, R.; Brooks, E. S.; Boll, J.; Elliot, W.

    2012-12-01

    Baseflow is one of the most important components of the streamflow regime of any river or creek since it provides continuous habitat to aquatic biota; regulates water temperature and dissolved oxygen during summer; and functions as an essential supply for drinking water and irrigation in most temperate regions. Understanding which factors control how water is released to streams during baseflow periods has become critical for watershed management worldwide, especially, in arid and semiarid areas. This study analyzed storage-discharge relationships of 26 watersheds of northern Idaho and eastern Washington using Brutsaert and Nieber (1977) baseflow recession analysis. Daily streamflow and precipitation records ranged from 7 to 70 years. Mean annual precipitation fluctuated from 536 to 1,312 mm. Drainage basin areas varied from 6.35 to 12,357 km2, with streamgage elevation ranging from 536 to 2,172 m. Mean watershed slope varied from 9.24 to 46.53%. Because of the non-uniqueness watershed shapes, illustrated by the natural spectrum of data points, organic correlation analysis was used to determine the recession coefficients (kb). Numerous climatic attributes and geomorphology characteristics were evaluated as potential predictors of kb rates using a Pearson's correlation matrix. Baseflow coefficients ranged from 0.015 to 0.08 day-1. The mean characteristic timescale for baseflow drainage was found to be 33±15 days with extremes of 12.5 and 66.7 days. Watersheds dominated by basalt features showed the lowest drainage times (12.5-20.0 days). The drainage time increased as the metamorphic and sedimentary rock composition increased (33.3-66.7 days). Watersheds mainly composed by granitic features ranged from 29.1 to 50.0 days. The ratio of mean annual precipitation (MAP) to annual potential evapotranspiration (PET), also known as Aridity Index (AI), was found to explain 67% of kb variability. Mean watershed slope exhibited a moderate negative correlation of -0.57. Other

  15. Potential environmental drivers of a regional blue mussel mass mortality event (winter of 2014, Breton Sound, France)

    Science.gov (United States)

    Polsenaere, Pierre; Soletchnik, Patrick; Le Moine, Olivier; Gohin, Francis; Robert, Stéphane; Pépin, Jean-François; Stanisière, Jean-Yves; Dumas, Franck; Béchemin, Christian; Goulletquer, Philippe

    2017-05-01

    In the context of global change, increasing mariculture production has raised particular concerns regarding its environmental impact and sustainability. Molluscs and particularly blue mussel account for a significant part of this total production. Although blue mussels are considered to be pretty resilient to environmental disturbances, we report in this study an unprecedented mussel mortality event that occurred during the winter of 2014 in the Breton Sound. 9000 metric tonnes of mussels were lost and mortality rates up to 100% were recorded at some farming areas. Through a coupling approach, the present work aims to better understand the potential environmental drivers associated with those mortalities. Firstly, we analysed long-term in situ and satellite data from environmental monitoring networks (available since 1998) to characterize the variability of seawater masses of the sound during the winter of 2014. Secondly, we used modelling simulations to study the possible relationship between seawater hydrodynamics and observed spatio-temporal patterns of mussel mortalities. From January to April 2014 at the long-line culture site where mortalities started, seawater temperatures ranged from 8.3 to 13.3 °C (10.2 ± 0.8 °C). Salinity and turbidity values showed successive and short drops (below 16; 29.3 ± 2.3) and numerous peaks (above 70 NTU; 17.4 ± 13.4 NTU) respectively. Winter conditions of 2014 were encountered along the entire French Atlantic coastline and linked to the sixth highest positive North Atlantic Oscillation (NAO +) index recorded since 1865. These particular environmental variations characterized the winter of 2014 but also others whereas no comparable mussel mortality rates were reported. Exact causes of the 2014 mortality event are still unknown but we showed these environmental variations could not alone be responsible. These have likely affected the sensitivity of the blue mussel populations that were already weakened by early spawning

  16. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  17. Relationship between landslide processes and land use-land cover changes in mountain regions: footprint identification approach.

    Science.gov (United States)

    Petitta, Marcello; Pregnolato, Marco; Pedoth, Lydia; Schneiderbauer, Stefan

    2015-04-01

    The present investigation aims to better understand the relationship between landslide events and land use-land cover (LULC) changes. Starting from the approach presented last year at national level ("In search of a footprint: an investigation about the potentiality of large datasets and territorial analysis in disaster and resilience research", Geophysical Research Abstracts Vol. 16, EGU2014-11253, 2014) we focused our study at regional scale considering South Tyrol, a mountain region in Italy near the Austrian border. Based on the concept exploited in the previous work, in which a disaster footprint was shown using land features and changes maps, in this study we start from the hypothesis that LULC can have a role in activation of landslides events. In this study, we used LULC data from CORINE and from a regional map called REAKART and we used the Italian national database IFFI (Inventario Fenomeni Franosi in Italia, Italian inventory of landslides) from which it is possible to select the landslides present in the national inventory together with other vector layers (the urban areas - Corine Land Cover 2000, the roads and railways, the administrative boundaries, the drainage system) and raster layers (the digital terrain model, digital orthophoto TerraItaly it2000, Landsat satellite images and IGM topographic map). Moreover it's possible to obtain information on the most important parameters of landslides, view documents, photos and videos. For South Tyrol, the IFFI database is updated in real time. In our investigation we analyzed: 1) LULC from CORINE and from REAKART, 2) landslides occurred nearby a border of two different LULC classes, 3) landslides occurred in a location in which a change in LULC classification in observed in time, 4) landslides occurred nearby road and railroad. Using classification methods and statistical approaches we investigated relationship between the LULC and the landslides events. The results confirm that specific LULC classes are

  18. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    Science.gov (United States)

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. Since sub-daily streamflow information is unavailable for most small basins in China, one of the main challenges is finding appropriate parameter values for simulating flash floods in ungauged catchments. In this study, we use decision tree learning to explore parameter set transferability between different catchments. For this purpose, the physically-based, semi-distributed rainfall-runoff model PRMS-OMS is set up for 35 catchments in ten Chinese provinces. Hourly data from more than 800 storm runoff events are used to calibrate the model and evaluate the performance of parameter set transfers between catchments. For each catchment, 58 catchment attributes are extracted from several data sets available for whole China. We then use a data mining technique (decision tree learning) to identify catchment similarities that can be related to good transfer performance. Finally, we use the splitting rules of decision trees for finding suitable donor catchments for ungauged target catchments. We show that decision tree learning allows to optimally utilize the information content of available catchment descriptors and outperforms regionalization based on a conventional measure of physiographic-climatic similarity by 15%-20%. Similar performance can be achieved with a regionalization method based on spatial proximity, but decision trees offer flexible rules for selecting suitable donor catchments, not relying on the vicinity of gauged catchments. This flexibility makes the method particularly suitable for implementation in sparsely gauged environments. We evaluate the probability to detect flood events exceeding a given return period, considering measured discharge and PRMS-OMS simulated flows with regionalized parameters

  19. Mountainous Region Wind Power Project Features and Turbine Hoisting Technology%山区风电工程特点与风机吊装技术

    Institute of Scientific and Technical Information of China (English)

    张栋

    2014-01-01

    In recent years,domestic mountainous region wind power location is allocated in higher and higher altitude, thereby leading to more and more difficult turbine installation.How to safely and efficiently complete turbine installation is an important issue faced by all wind power construction enterprises.Hebei Bashang Luotuogou Stage II wind power field is adopted as an example in the paper.Mountainous region wind power project features and turbine hoisting technologies are summarized and analyzed,thereby providing some guidance experience for installing more mountainous region turbines.%近年来国内山区风电场所处海拔越来越高,风机安装难度越来越大,如何保证在紧张的工期内安全高效地完成风机安装,是每个风电施工企业面临的重要课题。本文以河北坝上骆驼沟二期风电场为例,对山区风电工程特点和风机吊装技术进行总结分析,以期对更多山区风机安装作一些指导。

  20. Impact of cattle grazing on soil and vegetation - a case study in a mountainous region of Austria

    Science.gov (United States)

    Bohner, Andreas; Foldal, Cecilie; Jandl, Robert

    2015-04-01

    In mountainous regions of Austria and of many other European countries, climate change may cause a further intensification of grassland management. Therefore, the effects of intensive cattle grazing on selected soil chemical and physical properties, above- and below-ground phytomass, forage quality, plant species composition and plant species richness at the scale of a representative paddock in a mountainous region of Austria were investigated. At the study site (Styrian Enns valley; 675 m a.s.l.), climate is relatively cool and humid, with a mean annual air temperature of 6.7°C and a mean annual precipitation of 970 mm, of which 66% falls during the vegetation period (April-October). The soil is a deep, base-rich Cambisol with a loamy sand texture. The paddock investigated has a total area of about 2 ha and had been grazed by dairy cows (Brown Swiss) five times per grazing season. The stocking density was 4 cows ha-1 during 180 days from early May to the end of October with a grazing time of about 8 hours per day. The strip grazed permanent pasture was manured annually for a long time, mostly with cattle slurry. Vegetation surveys were carried out using the method of Braun-Blanquet. Above- and below-ground phytomass, forage quality and mineral element concentration in the harvestable above-ground plant biomass were determined by using standard methods. During the grazing season surface soil samples (0-10 cm depth) for chemical analyses were collected before each grazing period (5 analyses of composite samples per site). At the beginning and the end of the grazing season also soil samples for physical analyses were taken from the topsoil (0-15 cm depth). Heavy cattle treading led to a substantial soil compaction especially in the 5-10 cm layer and to a deterioration of topsoil structure. The porous crumb structure was replaced by a compact platy structure. The topsoil was enriched with nutrients (mainly nitrogen, potassium, phosphorus and boron). The degree of

  1. Regional characteristics of land use in northeast and southern Blue Ridge province: Associations with acid-rain effects on surface-water chemistry

    International Nuclear Information System (INIS)

    Liegel, L.; Cassell, D.; Stevens, D.; Shaffer, P.; Church, R.

    1991-01-01

    The Direct/Delayed Response Project (DDRP) is one of several being conducted by the United States Environmental Protection Agency to assess risk to surface waters from acidic deposition in the eastern United States. In one phase of DDRP, land use, wetland, and forest cover data were collected for statistical samples of 145 northeast lakes and 35 southern Blue Ridge Province stream watersheds. Land use and other data were then extrapolated from individual to target watershed populations in both study regions. Project statistical design allows summarization of results for various subsets of the target population. The article discusses results and implications of the land-use and land-cover characterization for both regions

  2. Assessment of radargrammetric DSMs from TerraSAR-X Stripmap images in a mountainous relief area of the Amazon region

    Science.gov (United States)

    de Oliveira, Cleber Gonzales; Paradella, Waldir Renato; da Silva, Arnaldo de Queiroz

    The Brazilian Amazon is a vast territory with an enormous need for mapping and monitoring of renewable and non-renewable resources. Due to the adverse environmental condition (rain, cloud, dense vegetation) and difficult access, topographic information is still poor, and when available needs to be updated or re-mapped. In this paper, the feasibility of using Digital Surface Models (DSMs) extracted from TerraSAR-X Stripmap stereo-pair images for detailed topographic mapping was investigated for a mountainous area in the Carajás Mineral Province, located on the easternmost border of the Brazilian Amazon. The quality of the radargrammetric DSMs was evaluated regarding field altimetric measurements. Precise topographic field information acquired from a Global Positioning System (GPS) was used as Ground Control Points (GCPs) for the modeling of the stereoscopic DSMs and as Independent Check Points (ICPs) for the calculation of elevation accuracies. The analysis was performed following two ways: (1) the use of Root Mean Square Error (RMSE) and (2) calculations of systematic error (bias) and precision. The test for significant systematic error was based on the Student's-t distribution and the test of precision was based on the Chi-squared distribution. The investigation has shown that the accuracy of the TerraSAR-X Stripmap DSMs met the requirements for 1:50,000 map (Class A) as requested by the Brazilian Standard for Cartographic Accuracy. Thus, the use of TerraSAR-X Stripmap images can be considered a promising alternative for detailed topographic mapping in similar environments of the Amazon region, where available topographic information is rare or presents low quality.

  3. Increased vulnerability to wildfires and post fire hydro-geomorphic processes in Portuguese mountain regions: what has changed?

    Directory of Open Access Journals (Sweden)

    Nunes A. N.

    2017-02-01

    Full Text Available The main objectives of this study were to understand the frequency of forest fires, post-fire off-site hydrological response and erosional processes from a social and ecological perspective in two basins located in the central cordillera, Portugal. It also discusses the driving forces that contribute towards increasing the social-ecological vulnerability of systems in the face of hazards and emphasizes the importance of learning from disasters. Based on the historical incidence of wildfires, it is possible to identify several areas affected by two, three or four fires, since 1975. Following the two major fires, in 1987 and 2005, flash floods, intense soil erosion and sedimentation processes were generated, causing severe damage. Significant socioeconomic, political and ecological changes have been affecting mountain regions in the last decades. Approximately 80% of the population and more than 90% of the livestock have disappeared, common lands have been afforested with Pinus pinaster, and several agricultural plots have been abandoned. These factors have all contributed towards creating non- or submanaged landscapes that have led to a dramatic increase in the magnitude and frequency of wildfires and to post-fire hydrological and erosional processes when heavy rainfall occurs. Moreover, the low population density, high level of population ageing and very fire-prone vegetation that now covers large areas of both basins, contribute to a situation of extreme socio-ecological vulnerability, meaning that disasters will continue to occur unless resilience can be restored to improve the capacity to cope with this high susceptibility to hazards.

  4. Prevalence and characteristics of fetal alcohol syndrome and partial fetal alcohol syndrome in a Rocky Mountain Region City.

    Science.gov (United States)

    May, Philip A; Keaster, Carol; Bozeman, Rosemary; Goodover, Joelene; Blankenship, Jason; Kalberg, Wendy O; Buckley, David; Brooks, Marita; Hasken, Julie; Gossage, J Phillip; Robinson, Luther K; Manning, Melanie; Hoyme, H Eugene

    2015-10-01

    The prevalence and characteristics of fetal alcohol syndrome (FAS) and partial FAS (PFAS) in the United States (US) are not well known. This active case ascertainment study in a Rocky Mountain Region City assessed the prevalence and traits of children with FAS and PFAS and linked them to maternal risk factors. Diagnoses made by expert clinical dysmorphologists in multidisciplinary case conferences utilized all components of the study: dysmorphology and physical growth, neurobehavior, and maternal risk interviews. Direct parental (active) consent was obtained for 1278 children. Averages for key physical diagnostic traits and several other minor anomalies were significantly different among FAS, PFAS, and randomly-selected, normal controls. Cognitive tests and behavioral checklists discriminated the diagnostic groups from controls on 12 of 14 instruments. Mothers of children with FAS and PFAS were significantly lower in educational attainment, shorter, later in pregnancy recognition, and suffered more depression, and used marijuana and methamphetamine during their pregnancy. Most pre-pregnancy and pregnancy drinking measures were worse for mothers of FAS and PFAS. Excluding a significant difference in simply admitting drinking during the index pregnancy (FAS and PFAS=75% vs. 39.4% for controls), most quantitative intergroup differences merely approached significance. This community's prevalence of FAS is 2.9-7.5 per 1000, PFAS is 7.9-17.7 per 1000, and combined prevalence is 10.9-25.2 per 1000 or 1.1-2.5%. Comprehensive, active case ascertainment methods produced rates of FAS and PFAS higher than predicted by long-standing, popular estimates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    Science.gov (United States)

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  6. Distinguishing the roles of meteorology, emission control measures, regional transport, and co-benefits of reduced aerosol feedbacks in ;APEC Blue;

    Science.gov (United States)

    Gao, Meng; Liu, Zirui; Wang, Yuesi; Lu, Xiao; Ji, Dongsheng; Wang, Lili; Li, Meng; Wang, Zifa; Zhang, Qiang; Carmichael, Gregory R.

    2017-10-01

    Air quality are strongly influenced by both emissions and meteorological conditions. During the Asia Pacific Economic Cooperation (APEC) week (November 5-11, 2014), the Chinese government implemented unprecedented strict emission control measures in Beijing and surrounding provinces, and then a phenomenon referred to as ;APEC Blue; (rare blue sky) occurred. It is challenging to quantify the effectiveness of the implemented strict control measures solely based on observations. In this study, we use the WRF-Chem model to distinguish the roles of meteorology, emission control measures, regional transport, and co-benefits of reduced aerosol feedbacks during APEC week. In general, meteorological variables, PM2.5 concentrations and PM2.5 chemical compositions are well reproduced in Beijing. Positive weather conditions (lower temperature, lower relative humidity, higher wind speeds and enhanced boundary layer heights) play important roles in ;APEC Blue;. Applying strict emission control measures in Beijing and five surrounding provinces can only explain an average decrease of 17.7 μg/m3 (-21.8%) decreases in PM2.5 concentrations, roughly more than half of which is caused by emission controls that implemented in the five surrounding provinces (12.5 μg/m3). During the APEC week, non-local emissions contributed to 41.3% to PM2.5 concentrations in Beijing, and the effectiveness of implementing emission control measures hinges on dominant pathways and transport speeds. Besides, we also quantified the contribution of reduced aerosol feedbacks due to strict emission control measures in this study. During daytime, co-benefits of reduced aerosol feedbacks account for about 10.9% of the total decreases in PM2.5 concentrations in urban Beijing. The separation of contributions from aerosol absorption and scattering restates the importance of controlling BC to accelerate the effectiveness of aerosol pollution control.

  7. Trophic flexibility of the Atlantic blue crab Callinectes sapidus in invaded coastal systems of the Apulia region (SE Italy): A stable isotope analysis

    Science.gov (United States)

    Mancinelli, Giorgio; Teresa Guerra, Maria; Alujević, Karla; Raho, Davide; Zotti, Maurizio; Vizzini, Salvatrice

    2017-11-01

    The Atlantic blue crab Callinectes sapidus is recognized as an Invasive Alien Species in the Mediterranean Sea. However, its trophic role and feeding flexibility in invaded benthic food webs have been addressed only recently. Here, field samplings were conducted in winter and summer in five coastal systems of the Apulia region (SE Italy), three located on the Ionian Sea (Mar Piccolo, Torre Colimena, and Spunderati) and two on the Adriatic Sea (Acquatina and Alimini Grande). Captured blue crabs were weighed and had their δ13C and δ15N isotopic signatures measured; their trophic level (TL) was estimated using the mussel Mytilus galloprovincialis as isotopic baseline. C. sapidus abundances varied greatly across systems and seasons, and in Adriatic systems the species was not collected in winter. Trophic levels showed significant spatial and temporal variations, although with no general pattern. In winter, the Mar Piccolo population showed the highest TL values; the lowest estimates were in Torre Colimena and Spunderati, where crabs showed δ13C signatures significantly higher than mussels, suggesting the contribution of 13C-enriched plant material in the diet. In summer, with the exception of the Mar Piccolo, Ionian populations increased their trophic level; both Adriatic populations were characterized by the lowest TL estimates. The analysis performed at the individual scale further indicated body weight-related changes in trophic level. For the Torre Colimena population, in particular, a hump-shaped pattern was observed in both seasons. The present study highlighted a considerable spatial and temporal trophic flexibility of C. sapidus at the population scale, while at the individual scale size-related shifts in trophic level were observed. The ability of the blue crab to vary its energy sources in relation with season, local environmental conditions, and ontogenetic stage is emphasized, suggesting that it may represent a key determinant of its invasion success.

  8. Risk-based consequences of extreme natural hazard processes in mountain regions - Multi-hazard analysis in Tyrol (Austria)

    Science.gov (United States)

    Huttenlau, Matthias; Stötter, Johann

    2010-05-01

    Reinsurance companies are stating a high increase in natural hazard related losses, both insured and economic losses, within the last decades on a global scale. This ongoing trend can be described as a product of the dynamic in the natural and in the anthroposphere. To analyze the potential impact of natural hazard process to a certain insurance portfolio or to the society in general, reinsurance companies or risk management consultants have developed loss models. However, those models are generally not fitting the scale dependent demand on regional scales like it is appropriate (i) for analyses on the scale of a specific province or (ii) for portfolio analyses of regional insurance companies. Moreover, the scientific basis of most of the models is not transparent documented and therefore scientific evaluations concerning the methodology concepts are not possible (black box). This is contrary to the scientific principles of transparency and traceability. Especially in mountain regions like the European Alps with their inherent (i) specific characteristic on small scales, (ii) the relative high process dynamics in general, (iii) the occurrence of gravitative mass movements which are related to high relief energy and thus only exists in mountain regions, (iv) the small proportion of the area of permanent settlement on the overall area, (v) the high value concentration in the valley floors, (vi) the exposition of important infrastructures and lifelines, and others, analyses must consider these circumstances adequately. Therefore, risk-based analyses are methodically estimating the potential consequences of hazard process on the built environment standardized with the risk components (i) hazard, (ii) elements at risk, and (iii) vulnerability. However, most research and progress have been made in the field of hazard analyses, whereas the other both components are not developed accordingly. Since these three general components are influencing factors without any

  9. On a possibility to use the remote sensing techniques for glaciological analysis in mountain regions of Uzbekistan

    Directory of Open Access Journals (Sweden)

    E. R. Semakova

    2017-01-01

    Full Text Available The ALOS/AVNIR-2 satellite data (2007–2010 allowed estimating areas of glaciers, change in the areas for 50 years, and the number and areas of new naturally-dammed lakes in the mountain regions of Uzbekistan. Boundaries of these gla‑ ciers together with the ALOS/PALSAR data (2010 were used as the basis to determine position of the firn line. It was revealed that since 1980s elevation range of the line gradually decreased. The relationship between average elevation of the firn line and the upper limit of the juniper tree occurrence as well as changing of this relation since 1980s are consid‑ ered. The revealed lakes served as the basis for verification of probabilistic model of the moraine-dammed lake forma‑ tions due to the glacier recessions in the basins under consideration. It was shown that the GIS-techniques based on the use of this model together with data on glaciation and the relief digital model may significantly simplify searching of new lakes. Application of a system of the mudflow movement modeling makes possible to estimate a risk level in a case of a lake bursting. Current information about changing elevations of the glacier surfaces was obtained duet to the radar inter‑ ferometry and the altimeter data. The digital model of the river Pskem upper course (the DEM had been built using the satellite TerraSAR‑X/TanDEM‑X data (2011–2012. All datasets of the elevations were checked for horizontal shifts of the relief digital models relative to the ICESat profiles (2003–2008. Evaluation of accuracy and morphological analysis of all the relief models for the investigated region were also made. DEMs differencing, the difference between ICESat measure‑ ments and DEM, nearby ICESat footprints within one track and between the tracks were carried out to assess the change in elevations of the glacier surfaces. Average rate of the surface lowering of an individual glacier with the maximal number of footprints (7 in the track

  10. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    Science.gov (United States)

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production

  11. Heavy metals in precipitation waters under conditions of varied anthropopressure in typical of European low mountain regions

    Directory of Open Access Journals (Sweden)

    Rabajczyk A.

    2013-04-01

    Full Text Available The environment is a dynamic system, subject to change resulting from a variety of physicochemical factors, such as temperature, pressure, pH, redox potential and human activity. The quantity and variety of these determinants cause the inflow of substances into individual environmental elements to vary in both time and space, as well as in terms of substance types and quantities. The energy and matter flow in the environment determines its integrity, which means that the processes occurring in one element of the environment affect the others. A certain measure of the energy and matter flow is the migration of chemical substances in various forms from one place to another. In a particular geographical space, under natural conditions, a specific level of balance between individual processes appears; in areas subject to anthropopressure, the correlations are different. In small areas, varying deposition volumes and chemism of precipitation waters which reach the substratum directly can both be observed. The study area is similar in terms of geological origins as well as morphological, structural and physico-chemical properties, and is typical of European low mountain regions. A qualitative and quantitative study of wet atmospheric precipitation was conducted between February 2009 and May 2011 in the Bobrza river catchment in the Holy Cross (Świętokrzyskie Mountains (Poland, at three sampling sites of varying land development and distance from sources of various acidic-alkaline emissions. Field and laboratory work was conducted over 29 months, from February 2009 to May 2011. Atmospheric precipitation measurements were carried out in a continuous manner by means of a Hellman rain gauge (200cm2. The collecting surface was placed at ground level (0m AGL. The application of a collecting funnel and an adequately prepared polyethylene collecting can in the rain gauge enabled the measurement of precipitation volume and water sampling for chemical

  12. Prioritising watersheds on the basis of regional flood susceptibility and vulnerability in mountainous areas through the use of indicators

    Science.gov (United States)

    Rogelis, Carolina; Werner, Micha

    2013-04-01

    Settlements in peri-urban areas of many cities in mountainous areas such as in the Andes are susceptible to hazards such as flash floods and debris flows. Additionally these settlements are in many cases informal and thus vulnerable to such hazards, resulting in significant risk. Such watersheds are often quiet small, and generally there is little or no information from gauges to help characterise risk. To help identify watersheds in which flood management measures are to be targeted, a rapid assessment of risk is required. In this paper a novel approach is presented where indicators of susceptibility and vulnerability to flash floods were used to prioritize 106 mountain watersheds in Bogotá (Colombia). Variables recognized in literature to determine the dominant processes both in susceptibility and vulnerability to flash floods were used to construct the indicators. Susceptibility was considered to increase with flashiness and the possibility of debris flow events occurring. This was assessed through the use of an indicator composed of a morphometric indicator and a land use indicator. The former was constructed using morphological variables recognized in literature to significantly influence flashiness and occurrence of debris flows; the latter was constructed in terms of percentage of vegetation cover, urban area and bare soil. The morphometric indicator was compared with the results of a debris flow propagation algorithm to assess its capacity in indentifying the morphological conditions of a watershed that make it able to transport debris flows. Propagation was carried out through the use of the Modified Single Flow Direction algorithm, following previous identification of source areas by applying thresholds identified in the area-slope curve of the watersheds and empirical thresholds. Results show that the morphometric variables can be grouped in four categories: size, shape, hypsometry and energy, with the energy the component found to best explain the

  13. Klamath Mountains Ecoregion: Chapter 13 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Sleeter, Benjamin M.; Calzia, James P.

    2012-01-01

    The Klamath Mountains Ecoregion covers approximately 47,791 km2 (18,452 mi2) of the Klamath and Siskiyou Mountains of northern California and southern Oregon (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion is flanked by the Coast Range Ecoregion to the west, the Southern and Central California Chaparral and Oak Woodlands Ecoregion to the south, the Cascades and the Eastern Cascades Slopes and Foothills Ecoregions to the east, and the Willamette Valley Ecoregion to the north. The mild Mediterranean climate of the ecoregion is characterized by hot, dry summers and wet winters; the amount of winter moisture varies within the ecoregion, decreasing from west to east. The Klamath–Siskiyou Mountains region is widely recognized as an important biodiversity hotspot (Whittaker, 1960; Kruckeberg, 1984; Wagner, 1997; DellaSala and others, 1999), containing more than 3,500 plant species, more than 200 of which are endemic (Sawyer, 2007). A biological assessment by DellaSala and others (1999) ranked the Klamath–Siskiyou Mountains region as the fifth richest coniferous forest in terms of species diversity. In addition, the International Union for the Conservation of Nature considers the region an area of notable botanical importance (Wagner, 1997). Twenty-nine different species of conifers can be found in the Klamath Mountains Ecoregion (Sawyer, 1996).

  14. Preliminary hydrogeologic assessment and study plan for a regional ground-water resource investigation of the Blue Ridge and Piedmont provinces of North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Dahlen, Paul R.

    2002-01-01

    Prolonged drought, allocation of surface-water flow, and increased demands on ground-water supplies resulting from population growth are focuses for the need to evaluate ground-water resources in the Blue Ridge and Piedmont Provinces of North Carolina. Urbanization and certain aspects of agricultural production also have caused increased concerns about protecting the quality of ground water in this region.More than 75 percent of the State's population resides in the Blue Ridge and Piedmont Provinces in an area that covers 30,544 square miles and 65 counties. Between 1940 and 2000, the population in the Piedmont and Blue Ridge Provinces increased from 2.66 to 6.11 million; most of this increase occurred in the Piedmont. Of the total population, an estimated 1.97 million people, or 32.3 percent (based on the 1990 census), relied on ground water for a variety of uses, including commercial, industrial, and most importantly, potable supplies.Ground water in the Blue Ridge and Piedmont traditionally has not been considered as a source for large supplies, primarily because of readily available and seemingly limitless surface-water supplies, and the perception that ground water in the Blue Ridge and Piedmont Provinces occurs in a complex, generally heterogeneous geologic environment. Some reluctance to use ground water for large supplies derives from the reputation of aquifers in these provinces for producing low yields to wells, and the few high-yield wells that are drilled seem to be scattered in areas distant from where they are needed. Because the aquifers in these provinces are shallow, they also are susceptible to contamination by activities on the land surface.In response to these issues, the North Carolina Legislature supported the creation of a Resource Evaluation Program to ensure the long-term availability, sustainability, and quality of ground water in the State. As part of the Resource Evaluation Program, the North Carolina Division of Water Quality

  15. Experimental Evaluation of Performance of Constant Power Prime-Mover Driven Isolated 3-φ SEIG for Pico-Hydro Power Generation System in Remote Mountainous Region of Himalayas

    Directory of Open Access Journals (Sweden)

    Rathore Umesh C.

    2016-01-01

    Full Text Available This paper presents the experimental evaluation of the performance of 3-φ self-excited induction generator (SEIG suitable for pico-hydro power generation system feeding domestic load in remote mountainous region. The use of induction generators is most suitable for renewable energy conversion systems due to their enormous advantages over conventional synchronous generators. Important features of induction generators include the simplicity in construction, ruggedness, simplified control, ease in maintenance and small size per generated kW. The performance characteristics of 3-φ SEIG feeding isolated load are evaluated using MATLAB-Simulink model based on the prevalent renewable energy sources inputs and loading conditions in mountainous terrain of Himalayas. The results are validated using an experimental set-up comprising of 3-φ, 3 HP induction motor run as 3- φ induction generator driven by 5HP, 4-pole DC shunt motor acting as prime-mover.

  16. Blue gods, blue oil, and blue people.

    Science.gov (United States)

    Fairbanks, V F

    1994-09-01

    Studies of the composition of coal tar, which began in Prussia in 1834, profoundly affected the economies of Germany, Great Britain, India, and the rest of the world, as well as medicine and surgery. Such effects include the collapse of the profits of the British indigo monopoly, the growth in economic power of Germany based on coal tar chemistry, and an economic crisis in India that led to more humane tax laws and, ultimately, the independence of India and the end of the British Empire. Additional consequences were the development of antiseptic surgery and the synthesis of a wide variety of useful drugs that have eradicated infections and alleviated pain. Many of these drugs, particularly the commonly used analgesics, sulfonamides, sulfones, and local anesthetics, are derivatives of aniline, originally called "blue oil" or "kyanol." Some of these aniline derivatives, however, have also caused aplastic anemia, agranulocytosis, and methemoglobinemia (that is, "blue people"). Exposure to aniline drugs, particularly when two or three aniline drugs are taken concurrently, seems to be the commonest cause of methemoglobinemia today.

  17. Pezizalean mycorrhizas and sporocarps in ponderosa pine (Pinus ponderosa) after prescribed fires in eastern Oregon, USA.

    Science.gov (United States)

    Fujimura, K E; Smith, J E; Horton, T R; Weber, N S; Spatafora, J W

    2005-03-01

    Post-fire Pezizales fruit commonly in many forest types after fire. The objectives of this study were to determine which Pezizales appeared as sporocarps after a prescribed fire in the Blue Mountains of eastern Oregon, and whether species of Pezizales formed mycorrhizas on ponderosa pine, whether or not they were detected from sporocarps. Forty-two sporocarp collections in five genera (Anthracobia, Morchella, Peziza, Scutellinia, Tricharina) of post-fire Pezizales produced ten restriction fragment length polymorphism (RFLP) types. We found no root tips colonized by species of post-fire Pezizales fruiting at our site. However, 15% (6/39) of the RFLP types obtained from mycorrhizal roots within 32 soil cores were ascomycetes. Phylogenetic analyses of the 18S nuclear ribosomal DNA gene indicated that four of the six RFLP types clustered with two genera of the Pezizales, Wilcoxina and Geopora. Subsequent analyses indicated that two of these mycobionts were probably Wilcoxina rehmii, one Geopora cooperi, and one Geopora sp. The identities of two types were not successfully determined with PCR-based methods. Results contribute knowledge about the above- and below-ground ascomycete community in a ponderosa pine forest after a low intensity fire.

  18. Floating Offshore Wind in Oregon: Potential for Jobs and Economic Impacts in Oregon Coastal Counties from Two Future Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Tony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    This analysis examines the employment and potential economic impacts of large-scale deployment of offshore wind technology off the coast of Oregon. This analysis examines impacts within the seven Oregon coastal counties: Clatsop, Tillamook, Lincoln, Lane, Douglas, Coos, and Curry. The impacts highlighted here can be used in county, state, and regional planning discussions and can be scaled to get a general sense of the economic development opportunities associated with other deployment scenarios.

  19. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    Science.gov (United States)

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  20. A GMOS-N IFU study of the central H II region in the blue compact dwarf galaxy NGC 4449: kinematics, nebular metallicity and star formation

    Science.gov (United States)

    Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.

    2017-10-01

    We use integral field spectroscopic (IFS) observations from the Gemini Multi-Object Spectrograph North (GMOS-N) to study the central H II region in a nearby blue compact dwarf (BCD) galaxy NGC 4449. The IFS data enable us to explore the variation of physical and chemical conditions of the star-forming region and the surrounding gas on spatial scales as small as 5.5 pc. Our kinematical analysis shows possible signatures of shock ionization and shell structures in the surroundings of the star-forming region. The metallicity maps of the region, created using direct Te and indirect strong line methods (R23, O3N2 and N2), do not show any chemical variation. From the integrated spectrum of the central H II region, we find a metallicity of 12 + log(O/H) = 7.88 ± 0.14 ({˜ }0.15^{+0.06}_{-0.04} Z⊙) using the direct method. Comparing the central H II region metallicity derived here with those of H II regions throughout this galaxy from previous studies, we find evidence of increasing metallicity with distance from the central nucleus. Such chemical inhomogeneities can be due to several mechanisms, including gas loss via supernova blowout, galactic winds or metal-poor gas accretion. However, we find that the localized area of decreased metallicity aligns spatially with the peak of star-forming activity in the galaxy, suggesting that gas accretion may be at play here. Spatially resolved IFS data for the entire galaxy are required to confirm the metallicity inhomogeneity found in this study and determine its possible cause.

  1. Impacts of conflict on land use and land cover in the Imatong Mountain region of South Sudan and northern Uganda

    Science.gov (United States)

    Gorsevski, Virginia B.

    The Imatong Mountain region of South Sudan makes up the northern most part of the Afromontane conservation 'biodiversity hotspot' due to the numerous species of plants and animals found here, some of which are endemic. At the same time, this area (including the nearby Dongotana Hills and the Agoro-Agu region of northern Uganda) has witnessed decades of armed conflict resulting from the Sudan Civil War and the presence of the Ugandan Lord's Resistance Army (LRA). The objective of my research was to investigate the impact of war on land use and land cover using a combination of satellite remote sensing data and semi-structured interviews with local informants. Specifically, I sought to (1) assess and compare changes in forest cover and location during both war and peace; (2) compare trends in fire activity with human population patterns; and (3) investigate the underlying causes influencing land use patterns related to war. I did this by using a Disturbance Index (DI), which isolates un-vegetated spectral signatures associated with deforestation, on Landsat TM and ETM+ data in order to compare changes in forest cover during conflict and post-conflict years, mapping the location and frequency of fires in subsets of the greater study area using MODIS active fire data, and by analyzing and summarizing information derived from interviews with key informants. I found that the rate of forest recovery was significantly higher than the rate of disturbance both during and after wartime in and around the Imatong Central Forest Reserve (ICFR) and that change in net forest cover remained largely unchanged for the two time periods. In contrast, the nearby Dongotana Hills experienced relatively high rates of disturbance during both periods; however, post war period losses were largely offset by gains in forest cover, potentially indicating opposing patterns in human population movements and land use activities within these two areas. For the Agoro-Agu Forest Reserve (AFR) region

  2. Seismic investigations of the Earth's lithosphere and asthenosphere in two unique convergent margin settings: The Carpathians, Romania, and U.S. Cordillera, Idaho-Oregon

    Science.gov (United States)

    Stanciu, Adrian Christian

    Proposed mechanisms for the unusual seismicity ~100 km southeast of the contact between the Transylvanian Basin and the Eastern Carpathians in Romania have included tearing and rollback of a subducted slab of oceanic lithosphere and gravitational instability and delamination of continental lithosphere. We examined the upper mantle fabrics using shear wave splitting of SK(K)S phases recorded at four broadband seismic stations in the Transylvanian Basin. Our results indicate a regional NW-SE splitting trend, with measurements that reflect an abrupt change from this regional flow field in the vicinity of the Vrancea body to a NE-SW trend that is consistent with redirection of mantle flow. Crustal thickness measurements show 28-30 km in the western part of the Transylvanian Basin, 34-39 km at the contact with the Eastern Carpathians, and 40-45 km further east. These results, along with previous estimates, constrain the locus of the inferred Miocene suture between the southeastern-most portion of the Tisza-Dacia terrane and the East European Platform. The second convergent margin system represented here is in the North American Cordillera in Idaho and Oregon, where subduction and accretion of exotic terranes have modified the western margin of North America. We used teleseismic receiver functions from 85 broadband stations to analyze the geometry of the Salmon River suture zone, the western Idaho shear zone, and the Grouse Creek-Farmington zone boundary. Results show a clear break in crustal thickness from ~28 km beneath the accreted terranes to 36 km east of the surface expression of the WISZ. A strong mid-crustal converter at ~20 km depth is consistent with tectonic wedging during accretion of the Blue Mountains terranes. An eastern Moho offset of ~6 km is consistent with the Archean Grouse Creek-Farmington zone boundary. We used deep converted phases generated beneath the study area to image the mantle transition zone. We observe a continuous high amplitude P410s

  3. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­ specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­scale analyses is to provide a basis for regional-­scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­ resolution characterization of a state-­sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­scale geology. For the RMCCS project, the outcomes of these local-­scale studies provide a starting point for future local-­scale site characterization efforts in the Rocky Mountain region.

  4. Multiscale Spatio-Temporal Dynamics of Economic Development in an Interprovincial Boundary Region: Junction Area of Tibetan Plateau, Hengduan Mountain, Yungui Plateau and Sichuan Basin, Southwestern China Case

    Directory of Open Access Journals (Sweden)

    Jifei Zhang

    2016-02-01

    Full Text Available An interprovincial boundary region is a new subject of economic disparity study in China. This study explored the multi-scale spatio-temporal dynamics of economic development from 1995 to 2010 in the interprovincial boundary region of Sichuan-Yunnan-Guizhou, a mountain area and also the junction area of Tibetan Plateau, Hengduan Mountain, Yungui Plateau and Sichuan Basin in southwestern China. A quantitative study on county GDP per capita for different scales of administrative regions was conducted using the Theil index, Markov chains, a geographic information system and exploratory spatial data analysis. Results indicated that the economic disparity was closely related with geographical unit scale in the study area: the smaller the unit, the bigger the disparity, and the regional inequality gradually weakened over time. Moreover, significant positive spatial autocorrelation and clustering of economic development were also found. The spatial pattern of economic development presented approximate circle structure with two cores in the southwest and northeast. The Panxi region in the southwest core and a part of Hilly Sichuan Basin in the northeast core were considered to be hot spots of economic development. Most areas in the east and central region were persistently trapped in the low level of a balanced development state, with a poverty trap being formed in the central and south part. Geographical conditions and location, administrative barriers and the lack of effective growth poles may be the main reasons for the entire low level of balanced development. Our findings suggest that in order to achieve a high level of balanced development, attention should be paid beyond developing transportation and other infrastructure. Breaking down the rigid shackles of administrative districts that hinder trans-provincial cooperation and promoting new regional poles in the Yunnan-Guizhou region may have great significance for the study area.

  5. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    Science.gov (United States)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  6. Conflict or synergy? Understanding interaction between municipalities and village commons (regole in polycentric governance of mountain areas in the Veneto Region, Italy

    Directory of Open Access Journals (Sweden)

    Matteo Favero

    2016-08-01

    Full Text Available A particular challenge for mountainous areas in Italy is the definition of suitable governance models for local resources. Several solutions have been proposed over time, resulting in the co-existence of a number of decision-making centers. A crucial role is played by municipalities, but, in recent years, village commons – regola (singular / regole (plural in the local language – have been re-constituted as institutions with local power. In this dynamic context, little is known on how municipalities and regole interact. This paper aims at improving the understanding of local governance of mountain areas in the Veneto Region, from the viewpoint of municipalities, which represent the political, legal and administrative authority. The analysis is grounded in the polycentric governance literature, especially crucial in drawing attention to level and extent of cooperation, trustworthiness, mutual learning and effort for adaptation. Tensions, conflicts and conflict-resolution mechanisms were also assessed. We carried out a survey of 14 municipalities containing regole within their administrative jurisdictions. The results of our work provide evidence that this relationship is mostly a synergistic one. Municipalities showed adaptive capacity in mirroring values and views of the regole and proved willing to share responsibilities. Their decisions were formulated whilst taking into account the need for creating the appropriate linkages with local communities. Where conflicts or discontent have emerged, they have been mostly resolved, or considered as reflecting a need for greater coordination. This outcome can be looked upon as a local polycentric governance innovation that so far has only partially received policy support at the regional level. We conclude that municipalities will continue to play a central role in regulation of local-level socio-economic dynamics, remaining the institutional reference point for mountainous areas in the Veneto

  7. High-resolution DEMs for High-mountain Asia: A systematic, region-wide assessment of geodetic glacier mass balance and dynamics

    Science.gov (United States)

    Shean, D. E.; Arendt, A. A.; Osmanoglu, B.; Montesano, P.

    2017-12-01

    High Mountain Asia (HMA) constitutes the largest glacierized region outside of the Earth's polar regions. Although available observations are limited, long-term records indicate sustained regional glacier mass loss since 1850, with increased loss in recent decades. Recent satellite data (e.g., GRACE, ICESat-1) show spatially variable glacier mass balance, with significant mass loss in the Himalaya and Hindu Kush and slight mass gain in the Karakoram. We generated 4000 high-resolution digital elevation models (DEMs) from sub-meter commercial stereo imagery (DigitalGlobe WorldView/GeoEye) acquired over glaciers in High-mountain Asia from 2002-present (mostly 2013-present). We produced a regional 8-m DEM mosaic for 2015 and estimated 15-year geodetic mass balance for 40000 glaciers larger than 0.1 km2. We are combining with other regional DEM sources to systematically document the spatiotemporal evolution of glacier mass balance for the entire HMA region. We also generated monthly to interannual DEM and velocity time series for high-priority sites distributed across the region, with >15-20 DEMs available for some locations from 2010-present. These records document glacier dynamics, seasonal snow accumulation/redistribution, and processes that affect glacier mass balance (e.g., ice-cliff retreat, debris cover evolution). These efforts will provide basin-scale assessments of snow/ice melt runoff contributions for model cal/val and downstream water resources applications. We will continue processing all archived and newly available commercial stereo imagery for HMA, and will release all DEMs through the HiMAT DAAC.

  8. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    Energy Technology Data Exchange (ETDEWEB)

    Wong, I.G.; Green, R.K.; Sun, J.I. [Woodward-Clyde Federal Services, Oakland, CA (United States); Pezzopane, S.K. [Geological Survey, Denver, CO (United States); Abrahamson, N.A. [Abrahamson (Norm A.), Piedmont, CA (United States); Quittmeyer, R.C. [Woodward-Clyde Federal Services, Las Vegas, NV (United States)

    1996-12-31

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M{sub w}) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M{sub w} 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M{sub w} 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper.

  9. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    International Nuclear Information System (INIS)

    Wong, I.G.; Green, R.K.; Sun, J.I.; Pezzopane, S.K.; Abrahamson, N.A.; Quittmeyer, R.C.

    1996-01-01

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M w ) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M w 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M w 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper

  10. Dose assessment from exposure to radon, thoron and their progeny concentrations in the dwellings of sub-mountainous region of Jammu and Kashmir, India

    International Nuclear Information System (INIS)

    Kaur, M.; Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab; Kumar, A.; Mehra, R.; Mishra, R.

    2018-01-01

    The present work deals with the assessment of annual inhalation dose due to exposure of indoor radon, thoron and their progeny concentrations in the villages situated in sub-mountainous region of Jammu and Kashmir, India. The distribution of the data and the homogeneity of medians among different seasons and dwellings were assessed with the Shapiro-Wilk test and the Mann-Whitney test. The estimated total annual inhalation dose in these villages varied from 0.5 to 1.9 mSv year -1 which is less than the prescribed limit by ICRP (2008). Thus, the investigated area is safe from irradiation of radon, thoron and their progeny. (author)

  11. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  12. Molecular phylogenetic analysis of Chinese indigenous blue-shelled chickens inferred from whole genomic region of the SLCO1B3 gene.

    Science.gov (United States)

    Dalirsefat, Seyed Benyamin; Dong, Xianggui; Deng, Xuemei

    2015-08-01

    In total, 246 individuals from 8 Chinese indigenous blue- and brown-shelled chicken populations (Yimeng Blue, Wulong Blue, Lindian Blue, Dongxiang Blue, Lushi Blue, Jingmen Blue, Dongxiang Brown, and Lushi Brown) were genotyped for 21 SNP markers from the SLCO1B3 gene to evaluate phylogenetic relationships. As a representative of nonblue-shelled breeds, White Leghorn was included in the study for reference. A high proportion of SNP polymorphism was observed in Chinese chicken populations, ranging from 89% in Jingmen Blue to 100% in most populations, with a mean of 95% across all populations. The White Leghorn breed showed the lowest polymorphism, accounting for 43% of total SNPs. The mean expected heterozygosity varied from 0.11 in Dongxiang Blue to 0.46 in Yimeng Blue. Analysis of molecular variation (AMOVA) for 2 groups of Chinese chickens based on eggshell color type revealed 52% within-group and 43% between-group variations of the total genetic variation. As expected, FST and Reynolds' genetic distance were greatest between White Leghorn and Chinese chicken populations, with average values of 0.40 and 0.55, respectively. The first and second principal coordinates explained approximately 92% of the total variation and supported the clustering of the populations according to their eggshell color type and historical origins. STRUCTURE analysis showed a considerable source of variation among populations for the clustering into blue-shelled and nonblue-shelled chicken populations. The low estimation of genetic differentiation (FST) between Chinese chicken populations is possibly due to a common historical origin and high gene flow. Remarkably similar population classifications were obtained with all methods used in the study. Aligning endogenous avian retroviral (EAV)-HP insertion sequences showed no difference among the blue-shelled chickens. © 2015 Poultry Science Association Inc.

  13. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wolfsberg, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  14. Management and climate change in coastal Oregon forests: The Panther Creek Watershed as a case study

    Science.gov (United States)

    The highly productive forests of the Oregon Coast Range Mountains have been intensively harvested for many decades, and recent interest has emerged in the potential for removing harvest residue as a source of renewable woody biomass energy. However, the long-term consequences of ...

  15. Regional difference of the start time of the recent warming in Eastern China: prompted by a 165-year temperature record deduced from tree rings in the Dabie Mountains

    Science.gov (United States)

    Cai, Qiufang; Liu, Yu; Duan, Bingchuang; Sun, Changfeng

    2018-03-01

    Tree-ring studies from tropical to subtropical regions are rarer than that from extratropical regions, which greatly limit our understanding of some critical climate change issues. Based on the tree-ring-width chronology of samples collected from the Dabie Mountains, we reconstructed the April-June mean temperature for this region with an explained variance of 46.8%. Five cold (1861-1869, 1889-1899, 1913-1920, 1936-1942 and 1952-1990) and three warm (1870-1888, 1922-1934 and 2000-2005) periods were identified in the reconstruction. The reconstruction not only agreed well with the instrumental records in and around the study area, but also showed good resemblance to previous temperature reconstructions from nearby regions, indicating its spatial and temporal representativeness of the temperature variation in the central part of eastern China. Although no secular warming trend was found, the warming trend since 1970 was unambiguous in the Dabie Mountains (0.064 °C/year). Further temperature comparison indicated that the start time of the recent warming in eastern China was regional different. It delayed gradually from north to south, starting at least around 1940 AD in the north part, around 1970 AD in the central part and around 1980s in the south part. This work enriches the high-resolution temperature reconstructions in eastern China. We expect that climate warming in the future would promote the radial growth of alpine Pinus taiwanensis in the subtropical areas of China, therefore promote the carbon capture and carbon storage in the Pinus taiwanensis forest. It also helps to clarify the regional characteristic of recent warming in eastern China.

  16. Evaluating a Local Ensemble Transform Kalman Filter snow cover data assimilation method to estimate SWE within a high-resolution hydrologic modeling framework across Western US mountainous regions

    Science.gov (United States)

    Oaida, C. M.; Andreadis, K.; Reager, J. T., II; Famiglietti, J. S.; Levoe, S.

    2017-12-01

    Accurately estimating how much snow water equivalent (SWE) is stored in mountainous regions characterized by complex terrain and snowmelt-driven hydrologic cycles is not only greatly desirable, but also a big challenge. Mountain snowpack exhibits high spatial variability across a broad range of spatial and temporal scales due to a multitude of physical and climatic factors, making it difficult to observe or estimate in its entirety. Combing remotely sensed data and high resolution hydrologic modeling through data assimilation (DA) has the potential to provide a spatially and temporally continuous SWE dataset at horizontal scales that capture sub-grid snow spatial variability and are also relevant to stakeholders such as water resource managers. Here, we present the evaluation of a new snow DA approach that uses a Local Ensemble Transform Kalman Filter (LETKF) in tandem with the Variable Infiltration Capacity macro-scale hydrologic model across the Western United States, at a daily temporal resolution, and a horizontal resolution of 1.75 km x 1.75 km. The LETKF is chosen for its relative simplicity, ease of implementation, and computational efficiency and scalability. The modeling/DA system assimilates daily MODIS Snow Covered Area and Grain Size (MODSCAG) fractional snow cover over, and has been developed to efficiently calculate SWE estimates over extended periods of time and covering large regional-scale areas at relatively high spatial resolution, ultimately producing a snow reanalysis-type dataset. Here we focus on the assessment of SWE produced by the DA scheme over several basins in California's Sierra Nevada Mountain range where Airborne Snow Observatory data is available, during the last five water years (2013-2017), which include both one of the driest and one of the wettest years. Comparison against such a spatially distributed SWE observational product provides a greater understanding of the model's ability to estimate SWE and SWE spatial variability

  17. Assurance of risk assessment and protection distant transportation and fall out of pollutants under large anthropogenic on nuclear power stations due to mountainous regional peculiarities

    International Nuclear Information System (INIS)

    Tsitskishvili, M.; Tsitskishvili, N.; Kordzakhia, G.; Valiaev, A.; Kazakov, S.; Aitmatov, I.; Petrov, V.

    2005-01-01

    Full text: All types of industrial activities require the norms of protection, assessment of corresponding risks to preserve the pollution and degradation of corresponding areas. To make available the sustainable development of the country the risk assessment of possible accidents on the big enterprises is foreseen that provides preparedness of the country and possibility of the prevention measures and mitigation of the accidents. While big anthropogenic accidents in mountainous countries - the main paths for transportation of the pollution are the rivers and sea basins. Due to overpopulation of these areas assessment of the pollution risks are very important. Problem of forecast and distant atmospheric transportation of the toxic products and corresponding risk assessment under anthropogenic damages is multi-component and depends on meteorological conditions and frontier layer of atmosphere. Generally, for real relief and basic fields the problem is not solved yet especially taking into consideration the big level and shortest time of the process being of the natural anthropogenic accidents in mountainous regions. Usually, geostropic drawing for determined relief is used. Integral differential equations taking into consideration a physical- chemical characteristic of the pollutants, their transformations, fall out, coagulations, washing out and self rectification in general cannot be solved. In last time essential success in formalization of above-mentioned equations i.e. carrying out some simplifications give possibility to establish necessary modeling on the basis of numerical calculations. In the most general case forecasting model is essentially limited because of bulky size of accounting schemes and necessity of powerful and high-speed computers. Main ways of achievement of further success is connected with so called 'seasonal typification' with applied a priory calculation of probabilistic picture of the pollutants concentration fields, as well as

  18. Posthuman blues

    CERN Document Server

    Tonnies, Mac

    2013-01-01

    Posthuman Blues, Vol. I is first volume of the edited version of the popular weblog maintained by author Mac Tonnies from 2003 until his tragic death in 2009. Tonnies' blog was a pastiche of his original fiction, reflections on his day-to-day life, trenchant observations of current events, and thoughts on an eclectic range of material he culled from the Internet. What resulted was a remarkably broad portrait of a thoughtful man and the complex times in which he lived, rendered with intellige...

  19. Can small island mountains provide relief from the Subtropical Precipitation Decline? Simulating future precipitation regimes for small island nations using high resolution Regional Climate Models.

    Science.gov (United States)

    Bowden, J.; Terando, A. J.; Misra, V.; Wootten, A.

    2017-12-01

    Small island nations are vulnerable to changes in the hydrologic cycle because of their limited water resources. This risk to water security is likely even higher in sub-tropical regions where anthropogenic forcing of the climate system is expected to lead to a drier future (the so-called `dry-get-drier' pattern). However, high-resolution numerical modeling experiments have also shown an enhancement of existing orographically-influenced precipitation patterns on islands with steep topography, potentially mitigating subtropical drying on windward mountain sides. Here we explore the robustness of the near-term (25-45 years) subtropical precipitation decline (SPD) across two island groupings in the Caribbean, Puerto Rico and the U.S. Virgin Islands. These islands, forming the boundary between the Greater and Lesser Antilles, significantly differ in size, topographic relief, and orientation to prevailing winds. Two 2-km horizontal resolution regional climate model simulations are used to downscale a total of three different GCMs under the RCP8.5 emissions scenario. Results indicate some possibility for modest increases in precipitation at the leading edge of the Luquillo Mountains in Puerto Rico, but consistent declines elsewhere. We conclude with a discussion of potential explanations for these patterns and the attendant risks to water security that subtropical small island nations could face as the climate warms.

  20. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  1. Seaside, Oregon, Tsunami Vulnerability Assessment Pilot Study

    Science.gov (United States)

    Dunbar, P. K.; Dominey-Howes, D.; Varner, J.

    2006-12-01

    The results of a pilot study to assess the risk from tsunamis for the Seaside-Gearhart, Oregon region will be presented. To determine the risk from tsunamis, it is first necessary to establish the hazard or probability that a tsunami of a particular magnitude will occur within a certain period of time. Tsunami inundation maps that provide 100-year and 500-year probabilistic tsunami wave height contours for the Seaside-Gearhart, Oregon, region were developed as part of an interagency Tsunami Pilot Study(1). These maps provided the probability of the tsunami hazard. The next step in determining risk is to determine the vulnerability or degree of loss resulting from the occurrence of tsunamis due to exposure and fragility. The tsunami vulnerability assessment methodology used in this study was developed by M. Papathoma and others(2). This model incorporates multiple factors (e.g. parameters related to the natural and built environments and socio-demographics) that contribute to tsunami vulnerability. Data provided with FEMA's HAZUS loss estimation software and Clatsop County, Oregon, tax assessment data were used as input to the model. The results, presented within a geographic information system, reveal the percentage of buildings in need of reinforcement and the population density in different inundation depth zones. These results can be used for tsunami mitigation, local planning, and for determining post-tsunami disaster response by emergency services. (1)Tsunami Pilot Study Working Group, Seaside, Oregon Tsunami Pilot Study--Modernization of FEMA Flood Hazard Maps, Joint NOAA/USGS/FEMA Special Report, U.S. National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Federal Emergency Management Agency, 2006, Final Draft. (2)Papathoma, M., D. Dominey-Howes, D.,Y. Zong, D. Smith, Assessing Tsunami Vulnerability, an example from Herakleio, Crete, Natural Hazards and Earth System Sciences, Vol. 3, 2003, p. 377-389.

  2. Tritium dating of underground water from the Jian River valley and Houjialiang loess platform in the basin side-band of the East-Mountain Region of Taiyuan

    International Nuclear Information System (INIS)

    Yu Songsheng; Wu Qinghua

    1991-01-01

    The tritium content is measured in underground water from the basin side-band of the East-Mountain Region of Taiyuan, Shanxi Province, and hence the age, i.e. resident time, of underground water is estimated. The region belongs to deep water-poor zone in a long loess ridge situated in a loess hill plateau. The level of underground water is 40-80 m deep hidden. In the runway and the scouring channel the aqueous bed is of river pebble and cobble, with a level of 2-10 m in depth. The age of underground water from different wells were determined to be 23a, 14a, 25a, 41a and 53a respectively

  3. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    Science.gov (United States)

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  4. Variability of morphological needle traits of Scots pine (Pinus sylvestris L. among populations from mountain and lowland regions of Poland

    Directory of Open Access Journals (Sweden)

    Łabiszak Bartosz

    2017-06-01

    Full Text Available The main goal of this work was to examine interpopulational needle traits variability of Scots pine (Pinus sylvestris L. from four mountain, one foothill and three lowland, natural populations located in Poland. This choice of locations was motivated by the presumed different origins of mountainous populations and the necessity to demonstrate how closely they are related to lowland populations. Variation in the studied populations was determined using seven morphological traits of needles: 1 - needle length, 2 - number of stomatal rows on the flat side of a needle, 3 - number of stomata per 2 mm of needle length on the flat side, 4 - number of stomatal rows on the convex side of a needle, 5 - number of stomata per 2 mm of needle length on the convex side, 6 - number of serrations per 2 mm of the needle length on the left side and 7 - number of serrations per 2 mm of the needle length on the right side. Biometric data were analysed statistically, and it was found that (i needle traits differentiate studied populations; (ii the postulated division of the population into two groups is reflected in the obtained results; and (iii a particularly strong relationship was found between two relict pine populations from the Pieniny (Sokolica, Kazalnica, Czertezik and Tatra Mts. (Wielke Koryciska, which may be the result of the common origins and history of these two populations

  5. Water towers of the Great Basin: climatic and hydrologic change at watershed scales in a mountainous arid region

    Science.gov (United States)

    Weiss, S. B.

    2017-12-01

    Impacts of climate change in the Great Basin will manifest through changes in the hydrologic cycle. Downscaled climate data and projections run through the Basin Characterization Model (BCM) produce time series of hydrologic response - recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) - that directly affect water resources and vegetation. More than 50 climate projections from CMIP5 were screened using a cluster analysis of end-century (2077-2099) seasonal precipitation and annual temperature to produce a reduced subset of 12 climate futures that cover a wide range of macroclimate response. Importantly, variations among GCMs in summer precipitation produced by the SW monsoon are captured. Data were averaged within 84 HUC8 watersheds with widley varying climate, topography, and geology. Resultant time series allow for multivariate analysis of hydrologic response, especially partitioning between snowpack, recharge, runoff, and actual evapotranspiration. Because the bulk of snowpack accumulation is restricted to small areas of isolated mountain ranges, losses of snowpack can be extreme as snowline moves up the mountains with warming. Loss of snowpack also affects recharge and runoff rates, and importantly, the recharge/runoff ratio - as snowpacks fade, recharge tends to increase relative to runoff. Thresholds for regime shifts can be identified, but the unique topography and geology of each basin must be considered in assessing hydrologic response.

  6. PREREQUISITES FOR CALENDAR RITUALISM INTEGRATION TO THE PROCESS OF SPIRITUAL DEVELOPMENT OF STUDENTS OF MODERN SCHOOL OF MOUNTAIN REGIONS

    Directory of Open Access Journals (Sweden)

    Violetta Lappo

    2015-04-01

    Full Text Available The profit of involving calendar holidays in the process of school children bringing up is proved in the article. The author confirms that there are many good customs and rituals with deep bringing up content. Ethnic Hutsul traditions had symbolic meaning and contributed their moral bringing up. The number of examples about children's upbringing in Hutsul families is given here, which helps in training them to religious and secular traditions. It is also said about holiday rituals, where small Hutsul children were involved. A lot of Hutsul customs and rituals have already been forgotten. But the author appeals to their renascence. The author is sure of it because customs and rituals form upbringing tradition, which proved its effectiveness during many centuries. Partly, it is important to meet children to new traditions of modern mountain schools of Hutsulshchyna (Hutsulland to form true valuable orientation. Only this is the basis of the personality spiritual world. The author proposes to reveal the celebrations of ancient traditions such holidays as: Christmas, Easter, Trinity. During these holidays Hutsul people tried to do a lot of charity things, helping sick people, visiting ill, and making mention of the departed. That's why it is important that the modern pupils of mountain schools not only new, but followed public calendar traditions. It has to be not only following certain ritual actions, but it has to be the ability to the spiritual perception of Hutsul cultural heritage.

  7. YUCCA MOUNTAIN SITE DESCRIPTION

    International Nuclear Information System (INIS)

    Simmons, A.M.

    2004-01-01

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel

  8. YUCCA MOUNTAIN SITE DESCRIPTION

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  9. The effects of oil and dispersant on the blue mussel (Mytilus edulis L.) of the Quark region in the Gulf on Bothnia

    International Nuclear Information System (INIS)

    Lehtonen, K.

    1989-01-01

    The ecute toxic effects of heavy fuel oil (POR 180) and a dispersant (FinaSol OSR-5) were studied by static aquarium esposures, using the blue mussel (Mytilus edulis L.) as a test animal. The work was partially associated with the studies of the impact of the M/S Eira oil spill(1984) on the ecosystem of the Quark region in the Gulf of Bothnia. Test animals were collected from an area where the hydrologic condtions are very similar to those at the oil spill area. Different concentrations of oil and dispersant alone and their mixtures were used in the tests. Exposure time was 24 h, after which the animals were removed into clean water for a few weeks. Mortality and reduced byssal attachment ability were recorded as toxic effects. Surviving individuals were prepared for histological examination. POR 180's solubility into brackish water was poor. Test concentrations were not lethal to mussels, but the ability to attach was reduced in the highest concentrations. The 24 h LC 5 0-value for FinaSol OSR-5 was high (app. 2200 mg/l). The toxicity of oil/dispersant mixtures was high in the lower test concentrations. Histological examination revealed significant acute inflammatory reactions in the gastrointestinal track in some test groups

  10. The economic viability of value-based food chain for dairy farms in mountain regions: an econometric analysis approach

    Directory of Open Access Journals (Sweden)

    Jernej Prišenk

    2016-07-01

    Full Text Available The attention of this paper is drawn to analyze the economic potential of involvement of farmers into the small-medium sized value-based food chain (VBFC. The survey represents a solid dana basis from which econometric modelling approach was further developed. Empirical results reveal the positive economic viability on a general level; this means more stable purchase price of raw milk for dairy farms, which are the part of value-based food chain. Results point at inelastic demand for milk and milk related products. Furthermore, there are some accompanying and underlying indirect social benefits, such as production of high-quality food products, more stable and constant demand for raw milk, steady payments and better social situation. The last one is especially important for the farms operating in less-favored mountain areas where the survey was actually conducted.

  11. [Effect of artificial mountain climate on the functional state of higher regions of the central nervous system in man].

    Science.gov (United States)

    Berezovskiĭ, V A; Levashov, M I

    2009-01-01

    The study included 97 patients with vegetative vascular dystonia and chronic non-specific pulmonary diseases exposed to artificial high-altitude climate in an Orotron climatic chamber during 2 weeks. Atmospheric conditions maintained in the chamber had the following parameters: partial pressure of oxygen--147-160 gPa, relative humidity--60-70%, air temperature--16-18 degrees C, light aeroion content--up to 6000 cub.cm. It was shown that the exposure to artificial mountain climatic conditions enhanced functional mobility of nervous processes and decreased the length of the sensorimotor reactions of the patients. Individual differences in the change of parameters being measured depended on the degree of initial functional flexibility of nervous processes.

  12. Dynamics of forest ecosystems regenerated on burned and harvested areas in mountain regions of Siberia: characteristics of biological diversity, structure and productivity

    Directory of Open Access Journals (Sweden)

    I. M. Danilin

    2016-12-01

    Full Text Available Complex estimation of forest ecosystems dynamics based on detailing characteristics of structure, growth and productivity of the stands and describing general geographical and biological management options for preserving their biodiversity and sustaining stability are discussed in the paper by describing examples of tree stands restored on burned and logged areas in mountain regions of Siberia. On vast areas in Siberia, characterized as sub-boreal, subarid and with a strongly continental climate, forests grow on seasonally frozen soils and in many cases are surrounded by vast steppe and forest-steppe areas and uplands. Developing criteria for sustainability of mountain forest ecosystems is necessary for forest resource management and conservation. It is therefore important to obtain complex biometric characteristics on forest stands and landscapes and to thoroughly study their structure, biological diversity and productivity. Morphometric methods, Weibull simulation and allometric equations were used to determine the dimensional hierarchies of coenopopulation individuals. Structure and productivity of the aboveground stand components were also studied.

  13. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions.

    Science.gov (United States)

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity.

  14. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2016-01-01

    Full Text Available Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF. SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity.

  15. Interactions between mafic eruptions and glacial ice or snow: implications of the 2010 Eyjafjallajökull, Iceland, eruption for hazard assessments in the central Oregon Cascades

    Science.gov (United States)

    McKay, D.; Cashman, K. V.

    2010-12-01

    The 2010 eruption of Eyjafjallajökull, Iceland, demonstrated the importance of addressing hazards specific to mafic eruptions in regions where interactions with glacial ice or snow are likely. One such region is the central Oregon Cascades, where there are hundreds of mafic vents, many of which are Holocene in age. Here we present field observations and quantitative analyses of tephra deposits from recent eruptions at Sand Mountain, Yapoah Cone, and Collier Cone (all advance, which lasted from ~2 to 8 ka in the central Oregon Cascades (Marcott et al., 2009). During the Neoglacial, winter snowfall was likely ~23% greater and summer temperatures ~1.4°C cooler than present (Marcott, 2009). Although ice did not advance to the elevation of the Sand Mountain vents during this time, the eruption could have occurred through several meters of snow. We have also seen very fine-grained tephra at Yapoah Cone, which is located at a higher elevation and may have interacted with glacial ice. In addition to being characterized by unusually fine grainsize, the Yapoah tephra blanket is deposited directly on top of hyaloclastite in several locations. Tephra from Collier Cone is not characterized by unusually fine grainsize, but several sections of the deposit exhibit features that suggest deposition on top of, or interbedding with, snow that later melted away. Identification of features in mafic tephra that suggest interactions with glacial ice or snow has significant implications for regional volcanic hazard assessments. Specifically, the unique hazards posed by Eyjafjallajökull, especially hazards to air travel caused by unusually fine-grained tephra, could be repeated in the Cascades. Although glacial ice is presently limited to elevations above ~2300 m in the central Oregon Cascades, winter snowpack can exceed 5 m at elevations of ~1800 m and above. If a cinder cone eruption were to occur during winter months, interaction with snow could generate phreatomagmatic activity and

  16. Extracting Features of Acacia Plantation and Natural Forest in the Mountainous Region of Sarawak, Malaysia by ALOS/AVNIR2 Image

    Science.gov (United States)

    Fadaei, H.; Ishii, R.; Suzuki, R.; Kendawang, J.

    2013-12-01

    The remote sensing technique has provided useful information to detect spatio-temporal changes in the land cover of tropical forests. Land cover characteristics derived from satellite image can be applied to the estimation of ecosystem services and biodiversity over an extensive area, and such land cover information would provide valuable information to global and local people to understand the significance of the tropical ecosystem. This study was conducted in the Acacia plantations and natural forest situated in the mountainous region which has different ecological characteristic from that in flat and low land area in Sarawak, Malaysia. The main objective of this study is to compare extract the characteristic of them by analyzing the ALOS/AVNIR2 images and ground truthing obtained by the forest survey. We implemented a ground-based forest survey at Aacia plantations and natural forest in the mountainous region in Sarawak, Malaysia in June, 2013 and acquired the forest structure data (tree height, diameter at breast height (DBH), crown diameter, tree spacing) and spectral reflectance data at the three sample plots of Acacia plantation that has 10 x 10m area. As for the spectral reflectance data, we measured the spectral reflectance of the end members of forest such as leaves, stems, road surface, and forest floor by the spectro-radiometer. Such forest structure and spectral data were incorporated into the image analysis by support vector machine (SVM) and object-base/texture analysis. Consequently, land covers on the AVNIR2 image were classified into three forest types (natural forest, oil palm plantation and acacia mangium plantation), then the characteristic of each category was examined. We additionally used the tree age data of acacia plantation for the classification. A unique feature was found in vegetation spectral reflectance of Acacia plantations. The curve of the spectral reflectance shows two peaks around 0.3μm and 0.6 - 0.8μm that can be assumed to

  17. Using multi-year reanalysis-derived recharge rates to drive a groundwater model for the Lake Tana region of Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Dokou, Z.; Kheirabadi, M.; Nikolopoulos, E. I.; Moges, S. A.; Bagtzoglou, A. C.; Anagnostou, E. N.

    2017-12-01

    Ethiopia's high inter-annual variability in local precipitation has resulted in droughts and floods that stress local communities and lead to economic and food insecurity. Better predictions of water availability can supply farmers and water management authorities with critical guidance, enabling informed water resource allocation and management decisions that will in turn ensure food and water security in the region. The work presented here focuses on the development and calibration of a groundwater model of the Lake Tana region, one of the most important sub-basins of the Blue Nile River Basin. Groundwater recharge, which is the major groundwater source in the area, depends mainly on the seasonality of precipitation and the spatial variation in geology. Given that land based precipitation data are sparse in the region, two approaches for estimating groundwater recharge were used and compared that both utilize global atmospheric reanalysis driven by remote sensing datasets. In the first approach, the reanalysis precipitation dataset (ECMWF reanalysis adjusted based on GPCC) together with evapotranspiration and surface run-off estimates are used to calculate the groundwater recharge component using water budget equations. In the second approach, groundwater recharge estimates (subsurface runoff) are taken directly from a Land Surface model (FLDAS Noah), provided at a monthly time scale and 0.1˚ x 0.1˚ spatial resolution. The reanalysis derived recharge rates in both cases are incorporated into the groundwater model MODFLOW, which in combination with a Lake module that simulates the Lake water budget, offers a unique capability of improving the predictability of groundwater and lake levels in the Lake Tana basin. Model simulations using the two approaches are compared against in-situ observations of groundwater and lake levels. This modeling effort can be further used to explore climate variability effects on groundwater and lake levels and provide guidance to

  18. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    Science.gov (United States)

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  19. Valorisation of vernacular farm buildings for the sustainable development of rural tourism in mountain areas of the Adriatic-Ionian macro-region

    Directory of Open Access Journals (Sweden)

    Dina Statuto

    2017-08-01

    Full Text Available Rural buildings play a central role on the environmental characteristics of the extra-urban land. They accompanied in the centuries the development of agricultural activities by humans, who was so able to breed cattle, to grow and yield crops, and to store, transform and process agricultural products in a functional and efficient way, working into intensive conditions, so being unaffected by the external climate. On the other hand, constructions built by the farmer-man marked the territory, influencing and steering the spontaneous development of nature, while leading to production that enabled humanity to get food. Vernacular farm buildings, often used as seasonal settlements, are in some cases organised in areas of mountain pasture for summer cattle grazing. Even if in most case they were abandoned during recent years - since people living there moved to more comfortable residences within urban settlements - their contemporary potential for preserving traditional cattle-raising procedures and dairy products, rich cultural-historical heritage and perspectives of organised tourism activities, appears a very intriguing task to be approached. Rural tourism - including agro-, eco- and cultural tourism - offers indeed new opportunities for enjoying the extra-urban land in close contact with naturally untouched landscapes. It enables to appreciate some traditional aspects that the new industrialised modern society may have forgotten. The opportunities offered by rural tourism could help in the development of environmentally friendly tourism, which is growing three times faster than those choosing mainstream trips. With the aim to valorise the vernacular rural buildings in some mountain areas of the Adriatic-Ionian macro-region, in the present paper a first approach was proposed, through the implementation of a geographical information system aimed to survey the current situation into two different mountain areas within this macro-region, located in

  20. New lakes in de-glaciating high-mountain regions - a challenge for integrative research about hazard protection and sustainable use

    Science.gov (United States)

    Haeberli, W.

    2012-12-01

    As a consequence of rapid glacier vanishing, an increasing number of smaller and larger lakes are forming in high-mountain regions worldwide. Such new lakes can be touristic landscape attractions and may also represent interesting potentials for hydropower production. However, they more and more often come into existence at the foot of very large and steep icy mountain walls, which are progressively destabilizing due to changing surface and subsurface ice conditions. The probability of far-reaching flood and debris flow catastrophes caused by impact waves from large rock/ice avalanches into lakes may still appear to be small now but steadily increases for long time periods to come. Corresponding projects related to hazard protection and sustainable use should be combined in an integrative and participatory planning process. This planning process must start soon, because the development in nature is fast and most likely accelerating. Technical tools for creating the necessary scientific knowledge basis at local to regional scales exist and can be used. The location of future new lakes in topographic bed depressions of now still glacier-covered areas can be quite safely assessed on the basis of morphological criteria or by applying ice thickness estimates using digital terrain information. Models for ice-thickness estimates couple the depth to bedrock via the basal shear stress with the surface slope and provide a (relative) bed topography which is much more robust than the (absolute) value of the calculated ice thickness. Numerical models at various levels of sophistication can be used to simulate possible future glacier changes in order to establish the probable time of lake formation and the effects of glacier shrinking on runoff seasonality and water supply. The largest uncertainties thereby relate to the large uncertainties of (absolute) ice thickness and mass/energy fluxes at the surface (climate scenarios, precipitation and albedo changes, etc.). Combined

  1. Morphometric analysis of landslide in the Mountain Region of the State of Rio de Janeiro in Brazi: the case study of D'anta's watershed

    Science.gov (United States)

    Carvalho Araújo, João Paulo; da Silva, Lúcia Maria; Avear, Marcello; Dourado, Francisco; Ferreira Fernandes, Nelson

    2013-04-01

    Mass movements are recurrent phenomena in the whole Mountain Region of the State of Rio de Janeiro in Brazil. These events actively participate in the relief evolution and are also responsible for many damages and loss of human lives. The triggering of these events depends on the natural environment and the preparatory and immediate action of the physical, biotic and human agents responsible for these processes. This work is based on the hypothesis in which the topographical conditions have a major effect on the spatial distribution of translational landslides caused by decreased of the internal resistance of the material mobilized. Therefore, the purpose of this study is to identify the topographical conditions favorable to landslide triggering based on morphometric analysis in a pilot watershed - D'antás watershed - located in the mountainous region of the State of Rio de Janeiro. The indices include the topographic wetness index (TWI), contributing area, slope angle and elevation and were derived from 5-m grid digital terrain model, computed on a Geographic Information System (GIS). The maps produced allowed the analysis of topographic influence on the landslides distribution from the indices of frequency classes (F), concentration of scars (CC) and potential of landslide (PL). The landscape sectors that are more likely to be affected by landslides were the ones where the elevation ranges from 1070m - 1187m, slope angle between 40.95° and 47.77°, contributing area between (log10) 1.32 m² - 1.95 m² and topographic wetness index between 7.11 to 9.59. This work provides important information which may help in the decision-making process, using fewer data and indices of easy application. Finally, the results obtained will subsidize of a landslide susceptibility map through the implementation of the conditional probability method aimed at predicting and mitigating of the damage caused by landslides.

  2. Assessment of the Potential to Reduce Emissions from Road Transportation, Notably NOx, Through the Use of Alternative Vehicles and Fuels in the Great Smoky Mountains Region; TOPICAL

    International Nuclear Information System (INIS)

    Sheffield, J.

    2001-01-01

    Air pollution is a serious problem in the region of the Great Smoky Mountains. The U.S. Environmental Protection Agency (EPA) may designate non-attainment areas by 2003 for ozone. Pollutants include nitrogen oxides (NOx), sulfur dioxide (SO(sub 2)), carbon monoxide (CO), volatile organic compounds (VOCs), lead, and particulate matter (PM), which are health hazards, damage the environment, and limit visibility. The main contributors to this pollution are industry, transportation, and utilities. Reductions from all contributors are needed to correct this problem. While improvements are projected in each sector over the next decades, the May 2000 Interim Report issued by the Southern Appalachian Mountains Initiative (SAMI) suggests that the percentage of NOx emissions from transportation may increase. The conclusions are: (1) It is essential to consider the entire fuel cycle in assessing the benefits, or disadvantages, of an alternative fuel option, i.e., feedstock and fuel production, in addition to vehicle operation; (2) Many improvements to the energy efficiency of a particular vehicle and engine combination will also reduce emissions by reducing fuel use, e.g., engine efficiency, reduced weight, drag and tire friction, and regenerative braking; (3) In reducing emissions it will be important to install the infrastructure to provide the improved fuels, support the maintenance of advanced vehicles, and provide emissions testing of both local vehicles and those from out of state; (4) Public transit systems using lower emission vehicles can play an important role in reducing emissions per passenger mile by carrying passengers more efficiently, particularly in congested areas. However, analysis is required for each situation; (5) Any reduction in emissions will be welcome, but the problems of air pollution in our region will not be solved by a few modest improvements. Substantial reductions in emissions of key pollutants are required both in East Tennessee and in

  3. Taiga blues

    International Nuclear Information System (INIS)

    Chartrand, L.

    1998-01-01

    Tourist attractions along the 700 km-long Trans Taiga highway in northern Quebec are described. The highway, officially highway 666, heads north from Matagami towards Radisson in the James Bay region and then east towards Caniapiscau. The road crosses a vast region of boreal forest and near-tundra that is very sparsely populated. The road was constructed during the development of the James Bay hydroelectric project. Today, its existence allows tourists to access one of North America's most remote regions. Several anecdotes regarding travel in this wilderness region are told, along with a description of the people populating the area and local development. Hydro-Quebec facilities in the region are also reviewed. 9 figs

  4. Small mammals of the Mongolian mountain steppe region near Erdensant: insights from live-trapping and bird pellet remains.

    Directory of Open Access Journals (Sweden)

    Joanne L. Isaac

    2005-12-01

    Full Text Available Relatively little is known of the distribution, abundance and ecology of small mammals in Mongolia and as a result there is scant knowledge of the effects of environmental and anthropogenic factors on small mammal populations. The aim of this study was to assess the occurrence of small mammals in mountain steppe habitat from live-trapping and analysis of mammal remains from raptor pellets and below nests. During live-trapping, root voles ( Microtus oeconemus were the most commonly caught species accounting for 47.5 % of captures, striped hamsters ( Cricetulus barabensis and pika ( Ochotona hyperborea accounted for 30 % and 22.5 % of captures respectively. Temperature influenced trapping success, with small mammals appearing to avoid being active at temperatures over 20 ̊C. The three species caught on the trapping grid appeared to avoid competition for resources through both temporal and spatial differences in the use of available habitat. Mammals identified from raptor pellets and other remains included the grey hamster ( Cricatulus migratorius , Siberian marmot ( Marmota sibirica , red fox ( Vulpes vulpes , long-tailed souslik ( Citellus undulatus and the Daurian mole ( Myospalax aspalax. Results are discussed in terms of their relevance to the conservation of mammals in Mongolia and their co-existence with livestock and humans.

  5. Mountaineering Tourism

    Directory of Open Access Journals (Sweden)

    Patrick Maher

    2016-08-01

    Full Text Available Reviewed: Mountaineering Tourism Edited by Ghazali Musa, James Higham, and Anna Thompson-Carr. Abingdon, United Kingdom: Routledge, 2015. xxvi + 358 pp. Hardcover. US$ 145.00. ISBN 978-1-138-78237-2.

  6. Oregon Low-Temperature-Resource Assessment Program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.; Black, G.L.; Woller, N.M.

    1981-01-01

    Numerous low-temperature hydrothermal systems are available for exploitation throughout the Cascades and eastern Oregon. All of these areas have heat flow significantly higher than crustal averages and many thermal aquifers. In northeastern Oregon, low temperature geothermal resources are controlled by regional stratigraphic aquifers of the Columbia River Basalt Group at shallow depths and possibly by faults at greater depths. In southeastern Oregon most hydrothermal systems are of higher temperature than those of northeastern Oregon and are controlled by high-angle fault zones and layered volcanic aquifers. The Cascades have very high heat flow but few large population centers. Direct use potential in the Cascades is therefore limited, except possibly in the cities of Oakridge and Ashland, where load may be great enough to stimulate development. Absence of large population centers also inhibits initial low temperature geothermal development in eastern Oregon. It may be that uses for the abundant low temperature geothermal resources of the state will have to be found which do not require large nearby population centers. One promising use is generation of electricity from freon-based biphase electrical generators. These generators will be installed on wells at Vale and Lakeview in the summer of 1982 to evaluate their potential use on geothermal waters with temperatures as low as 80/sup 0/C (176/sup 0/F).

  7. Assessing the effect of soil use changes on soil moisture regimes in mountain regions. (Catalan Pre-Pyrenees NE Spain)

    International Nuclear Information System (INIS)

    Loaiza Usuga, Juan Carlos; Jarauta Bragulat, Eusebio; Porta Casanellas, Jaume; Poch Claret, Rosa Maria

    2010-01-01

    Soil moisture regimes under different land uses were observed and modeled in a representative forest basin in the Catalonian Pre-Pyrenees, more specifically in the Ribera Salada catchment (222.5 km2). The vegetation cover in the catchment consists of pasture, tillage and forest. A number of representative plots for each of these land cover types were intensely monitored during the study period. The annual precipitation fluctuates between 516 and 753 mm, while the soil moisture content oscillates between 14 and 26% in the middle and low lying areas of the basin, and between 21 and 48% in shady zones near the river bed, and in the higher parts of the basin. Soil moisture and rainfall are controlled firstly by altitude, with the existence of two climatic types in the basin (sub-Mediterranean and sub-alpine), and further, by land use. Two models were applied to the estimated water moisture regimes: the Jarauta Simulation Newhall model (JSM) and the Newhall simulation model (NSM) were found to be able to predict the soil moisture regimes in the basin in the different combinations of local abiotic and biotic factors. The JSM results are more precise than the results obtained using another frequently used method, more specifically the Newhall Simulation Model (NSM), which has been developed to simulate soil moisture regimes. NSM was found to overestimate wet soil moisture regimes. The results show the importance of the moisture control section size and Available Water Capacity (AWC) of the profile, in the moisture section control state and variability. The mountain soils are dominated by rustic and occasionally xeric regimes. Land use changes leading to an increase in forest areas would imply drier soil conditions and therefore drier soil water regimes. These effects are most evident in degraded shallow and stony soils with low AWC.

  8. Periodic Burning In Table Mountain-Pitch Pine Stands

    Science.gov (United States)

    Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon

    2002-01-01

    Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...

  9. Timing of last deglaciation in the Cantabrian Mountains (Iberian Peninsula; North Atlantic Region) based on in situ-produced 10Be exposure dating

    Science.gov (United States)

    Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; Domínguez-Cuesta, María José; Rinterknecht, Vincent; Pallàs, Raimon; Aumaître, Georges; Bourlès, Didier L.; Keddadouche, Karim; Aster Team

    2017-09-01

    The Last Glacial Termination led to major changes in ice sheet coverage that disrupted global patterns of atmosphere and ocean circulation. Paleoclimate records from Iberia suggest that westerly episodes played a key role in driving heterogeneous climate in the North Atlantic Region. We used 10Be Cosmic Ray Exposure (CRE) dating to explore the glacier response of small mountain glaciers (ca. 5 km2) that developed on the northern slope of the Cantabrian Mountains (Iberian Peninsula), an area directly under the influence of the Atlantic westerly winds. We analyzed twenty boulders from three moraines and one rock glacier arranged as a recessional sequence preserved between 1150 and 1540 m above sea level (a.s.l.) in the Monasterio valley (Redes Natural Park). Results complement previous chronologic data based on radiocarbon and optically stimulated luminescence from the Monasterio valley, which suggest a local Glacial Maximum (local GM) prior to 33 ka BP and a long-standing glacier advance at 24 ka coeval to the global Last Glacial Maximum (LGM). Resultant 10Be CRE ages suggest a progressive retreat and thinning of the Monasterio glacier over the time interval 18.1-16.7 ka. This response is coeval with the Heinrich Stadial 1, an extremely cold and dry climate episode initiated by a weakening of the Atlantic Meridional Overturning Circulation (AMOC). Glacier recession continued through the Bølling/Allerød period as indicate the minimum exposure ages obtained from a cirque moraine and a rock glacier nested within this moraine, which yielded ages of 14.0 and 13.0 ka, respectively. Together, they suggest that the Monasterio glacier experienced a gradual transition from glacier to rock glacier activity as the AMOC started to strengthen again. Glacial evidence ascribable to the Younger Dryas cooling was not dated in the Monasterio valley, but might have occurred at higher elevations than evidence dated in this work. The evolution of former glaciers documented in the

  10. Sensitivity Analysis of a Land-Use Change Model with and without Agents to Assess Land Abandonment and Long-Term Re-Forestation in a Swiss Mountain Region

    NARCIS (Netherlands)

    Brandle, M.; Langendijk, G.; Peter, S.; Brunner, S.H.

    2015-01-01

    Land abandonment and the subsequent re-forestation are important drivers behind the loss of ecosystem services in mountain regions. Agent-based models can help to identify global change impacts on farmland abandonment and can test policy and management options to counteract this development.

  11. Drivers Motivating Community Health Improvement Plan Completion by Local Public Health Agencies and Community Partners in the Rocky Mountain Region and Western Plains.

    Science.gov (United States)

    Hill, Anne; Wolf, Holly J; Scallan, Elaine; Case, Jenny; Kellar-Guenther, Yvonne

    There are numerous drivers that motivate completion of community health improvement plans (CHIPs). Some are more obvious and include voluntary public health accreditation, state requirements, federal and state funding, and nonprofit hospital requirements through IRS regulations. Less is known about other drivers, including involvement of diverse partners and belief in best practices, that may motivate CHIP completion. This research investigated the drivers that motivated CHIP completion based on experiences of 51 local public health agencies (LPHAs). An explanatory mixed-methods design, including closed- and open-ended survey questions and key informant interviews, was used to understand the drivers that motivated CHIP completion. Analysis of survey data involved descriptive statistics. Classical content analysis was used for qualitative data to clarify survey findings. The surveys and key informant interviews were conducted in the Rocky Mountain Region and Western Plains among 51 medium and large LPHAs in Colorado, Kansas, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming. More than 50% of respondents were public health directors; the balance of the respondents were division/program directors, accreditation coordinators, and public health planners. CHIP completion. Most LPHAs in the Rocky Mountains and Western Plains have embraced developing and publishing a CHIP, with 80% having completed their plan and another 13% working on it. CHIP completion is motivated by a belief in best practices, with LPHAs and partners seeing the benefit of quality improvement activities linked to the CHIP and the investment of nonprofit hospitals in the process. Completing a CHIP is strengthened through engagement of diverse partners and a well-functioning partnership. The future of CHIP creation depends on LPHAs and partners investing in the CHIP as a best practice, dedicating personnel to CHIP activities, and enhancing leadership skills to contribute to a synergistic

  12. Spatial Analysis of the Distribution of Small Businesses in the Eastern Villages of Gilan Province with Emphasis on the Tourism Sector in Mountainous Regions

    Directory of Open Access Journals (Sweden)

    Mehdi Hajilo

    2017-12-01

    Full Text Available The development of small businesses in rural areas as a key strategy for sustaining the population and improving the quality of life of villagers has always been a concern for many developed and developing countries. Some rural areas provide their villagers with favorable conditions for the development of businesses in order to enjoy the potential in the field of tourism. Sustainable development in these areas can be achieved with systematic attention and planning. In the present work, the spatial analysis of the distribution of small businesses in the eastern parts of Gilan Province was studied with an emphasis on tourism in mountainous regions. The study population consisted of all villages in the east part of Gilan Province, and the sample included all businesses officially supported by the Omid Entrepreneurship Fund. The research method was a descriptive analytic in which GIS software and the G statistic were used for the analysis of spatial correlation, clustering, hot and cold spots analysis and buffer zones. Finally, the results of the study showed that the spatial distribution of businesses in different economic sectors (agriculture, industry, services and tourism were different between 2011 and 2016 in the way the cluster pattern was formed in agricultural and service activities. A cluster pattern cannot be considered in the tourism and industrial activities, but there is a random (point pattern; in this regard, the results indicate the importance of the factor of distance between the village and the city center in the distribution of tourism businesses. In addition, the highest levels of support for businesses were in the agricultural and services sectors, while the lowest support was in industry and tourism. Finally, the results showed that the distribution of businesses in all activities was much higher in the plains and valleys as compared to the mountainous and hill areas.

  13. Impacts of Spatial Climatic Representation on Hydrological Model Calibration and Prediction Uncertainty: A Mountainous Catchment of Three Gorges Reservoir Region, China

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-02-01

    Full Text Available Sparse climatic observations represent a major challenge for hydrological modeling of mountain catchments with implications for decision-making in water resources management. Employing elevation bands in the Soil and Water Assessment Tool-Sequential Uncertainty Fitting (SWAT2012-SUFI2 model enabled representation of precipitation and temperature variation with altitude in the Daning river catchment (Three Gorges Reservoir Region, China where meteorological inputs are limited in spatial extent and are derived from observations from relatively low lying locations. Inclusion of elevation bands produced better model performance for 1987–1993 with the Nash–Sutcliffe efficiency (NSE increasing by at least 0.11 prior to calibration. During calibration prediction uncertainty was greatly reduced. With similar R-factors from the earlier calibration iterations, a further 11% of observations were included within the 95% prediction uncertainty (95PPU compared to the model without elevation bands. For behavioral simulations defined in SWAT calibration using a NSE threshold of 0.3, an additional 3.9% of observations were within the 95PPU while the uncertainty reduced by 7.6% in the model with elevation bands. The calibrated model with elevation bands reproduced observed river discharges with the performance in the calibration period changing to “very good” from “poor” without elevation bands. The output uncertainty of calibrated model with elevation bands was satisfactory, having 85% of flow observations included within the 95PPU. These results clearly demonstrate the requirement to account for orographic effects on precipitation and temperature in hydrological models of mountainous catchments.

  14. New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir

    Science.gov (United States)

    Wells, Ray E.; Haugerud, Ralph A.; Niem, Alan; Niem, Wendy; Ma, Lina; Madin, Ian; Evarts, Russell C.

    2018-04-10

    A geologic map of the greater Portland, Oregon, metropolitan area is planned that will document the region’s complex geology (currently in review: “Geologic map of the greater Portland metropolitan area and surrounding region, Oregon and Washington,” by Wells, R.E., Haugerud, R.A., Niem, A., Niem, W., Ma, L., Evarts, R., Madin, I., and others). The map, which is planned to be published as a U.S. Geological Survey Scientific Investigations Map, will consist of 51 7.5′ quadrangles covering more than 2,500 square miles, and it will represent more than 100 person-years of geologic mapping and studies. The region was mapped at the relatively detailed scale of 1:24,000 to improve understanding of its geology and its earthquake hazards. More than 100 geologic map units will record the 50-million-year history of volcanism, sedimentation, folding, and faulting above the Cascadia Subduction Zone. The geology contributes to the varied terroir of four American Viticultural Areas (AVAs) in the northwestern Willamette Valley: the Yamhill-Carlton, Dundee Hills, Chehalem Mountains, and Ribbon Ridge AVAs. Terroir is defined as the environmental conditions, especially climate and soils, that influence the quality and character of a region’s crops—in this case, grapes for wine.On this new poster (“New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir”), we present the geologic map at a reduced scale (about 1:175,000) to show the general distribution of geologic map units, and we highlight, discuss, and illustrate six major geologic events that helped shape the region and form its terrior. We also discuss the geologic elements that contribute to the character of each of the four AVAs in the northwestern Willamette Valley.

  15. Geodiversity and geohazards of the Susa Valley (W-Alps, Italy): combining scientific research and new technologies for enhanced knowledge and proactive management of geoheritage in mountain regions

    Science.gov (United States)

    Giardino, Marco; Bacenetti, Marco; Perotti, Luigi; Giordano, Enrico; Ghiraldi, Luca; Palomba, Mauro

    2013-04-01

    Mountain regions have a range of geological and geomorphological features that make them very attractive for tourism activities. As a consequence, increased human "pressure" causes impacts on geoheritage sites and higher geomorphological risks. These effects are magnified by active geomorphic processes characterizing mountains areas, highly sensitive to climate change. In term of "human sensitivity", several sociological surveys have shown that "perceived risk", not "real risk", influences people's behavior towards natural hazards. The same approach can be applied to geodiversity and geoheritage. Based on these assumptions, we considered the possible strategic roles played by diffusion of scientific research and application of new technologies: 1) to enhance awareness, either of geodiversity or environmental dynamics and 2) to improve knowledge, both on geoheritage management and natural risk reduction. Within the activities of the "ProGEO-Piemonte Project" (Progetti d'Ateneo 2011, cofunded by Universita? degli Studi di Torino and Compagnia di San Paolo Bank Foundation), we performed a systematic review of geodiversity and natural hazards information in the Piemonte Region (NW-Italy). Then we focused our attention on the Susa Valley, an area of the Western Alps where the geoheritage is affected by very active morphodynamics, as well as by a growing tourism, after the 2006 winter Olympics. The Susa Valley became one of the 9 strategic geothematic areas have been selected to represent the geodiversity of the Piemonte region, each characterized by high potential for enhancement of public understanding of science, and recreation activities supported by local communities. Then we contributed to the awareness-raising communication strategy of the "RiskNat project" (Interreg Alcotra 2007-2013, Action A.4.3) by synthesizing geoscience knowledge on the Susa Valley and information on slope instabilities and models/prevention measures/warning systems. Visual representations

  16. Use of reservoir deposits to reconstruct the recent changes in sediment yields from a small granite catchment in the Yimeng Mountain region, China

    Science.gov (United States)

    Zhang, Yunqi; Long, Yi; Li, Bao; Xu, Shujian; Wang, Xiaoli; Liao, Jia

    2017-09-01

    Information on recent changes in sediment yields from small catchments provides a better understanding of temporal trends in soil loss from certain physical and human-influenced landscapes that have been subjected to recent environmental changes, and will help bridge the current knowledge gap that exists between hillslope erosion and sediment transport in rivers. The Yimeng Mountain region, characterized by alternating granite and limestone, is one of the most susceptible regions to soil erosion in northern China, and has been subjected to intensive anthropogenic activity in recent years. Soil loss from areas underlain by granite is particularly obvious, and is the main sediment source for the Yihe River. In this study, we used reservoir deposits to estimate the changes in sediment yields over the past 50 years from a small catchment underlain by granite, namely the Jiangzhuang catchment in the Yimeng Mountain region. Three cores were collected from the Jiangzhuang Reservoir in the catchment. The activities of 137Cs and 210Pbex at different depths, clay (grain size reference to human activity and environmental change in the catchment. The chronologies of the cores were established by 137Cs and 210Pbex dating. The area-specific sediment yield (SSY) for different time periods since dam construction was estimated from each core by referring to the original capacity curve of the reservoir. The results indicate that the depth profiles of 137Cs, 210Pbex, clay, and SOC contents in cores from the Jiangzhuang Reservoir reflect the general history of human disturbances on the catchment over the past 50 years. The estimated SSY value from each core for each period ranged from 7.2 ± 2.7 to 23.7 ± 8.3 t ha- 1 y- 1, with a mean of 12.5 ± 4.6 t ha- 1 y- 1. SSY decreased during 1954-1972, and then showed a general tendency to increase. The temporal pattern of the sediment yield largely reflects the history of environmental change influenced by human activity in the catchment.

  17. Patterns of LGM precipitation in the U.S. Rocky Mountains: results from regional application of a glacier mass/energy balance and flow model

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J.; Refsnider, K. A.; Plummer, M. A.; Jacobsen, R. E.; Wollenberg, J. A.

    2010-12-01

    Global climate model (GCM) simulations of the last glacial maximum (LGM) in the western United States predict changes in atmospheric circulation and storm tracks that would have resulted in significantly less-than-modern precipitation in the Northwest and northern Rockies, and significantly more-than-modern precipitation in the Southwest and southern Rockies. Model simulations also suggest that late Pleistocene pluvial lakes in the intermontane West may have modified local moisture regimes in areas immediately downwind. In this study, we present results of the application of a coupled energy/mass balance and glacier-flow model (Plummer and Phillips, 2003) to reconstructed paleoglaciers in Rocky Mountains of Utah, New Mexico, Colorado, and Wyoming to assess the changes from modern climate that would have been necessary to sustain each glacier in mass-balance equilibrium at its LGM extent. Results demonstrate that strong west-to-east and north-to-south gradients in LGM precipitation, relative to present, would be required if a uniform LGM temperature depression with respect to modern is assumed across the region. At an assumed 7oC temperature depression, approximately modern precipitation would have been necessary to support LGM glaciation in the Colorado Front Range, significantly less than modern precipitation to support glaciation in the Teton Range, and almost twice modern precipitation to sustain glaciers in the Wasatch and Uinta ranges of Utah and the New Mexico Sangre de Cristo Range. The observed west-to-east (Utah-to-Colorado) LGM moisture gradient is consistent with precipitation enhancement from pluvial Lake Bonneville, decreasing with distance downwind from the lake. The north-to-south (Wyoming-to-New Mexico) LGM moisture gradient is consistent with a southward LGM displacement of the mean winter storm track associated with the winter position of the Pacific Jet Stream across the western U.S. Our analysis of paleoglacier extents in the Rocky Mountain

  18. Geology along the Blue Ridge Parkway in Virginia

    Science.gov (United States)

    Carter, Mark W.; Southworth, C. Scott; Tollo, Richard P.; Merschat, Arthur J.; Wagner, Sara; Lazor, Ava; Aleinikoff, John N.

    2017-01-01

    Back Formations. These rocks are bound by numerous faults, including the Rock Castle Creek fault that separates Ashe Formation rocks from Alligator Back Formation rocks in the core of the Ararat River synclinorium. The lack of unequivocal paleontologic or geochronologic ages for any of these rock sequences, combined with fundamental and conflicting differences in tectonogenetic models, compound the problem of regional correlation with Blue Ridge cover rocks to the north.The geologic transition from the central to southern Appalachians is also marked by a profound change in landscape and surficial deposits. In central Virginia, the Blue Ridge consists of narrow ridges that are held up by resistant but contrasting basement and cover lithologies. These ridges have shed eroded material from their crests to the base of the mountain fronts in the form of talus slopes, debris flows, and alluvial-colluvial fans for perhaps 10 m.y. South of Roanoke, however, ridges transition into a broad hilly plateau, flanked on the east by the Blue Ridge escarpment and the eastern Continental Divide. Here, deposits of rounded pebbles, cobbles, and boulders preserve remnants of ancestral west-flowing drainage systems.Both bedrock and surficial geologic processes provide an array of economic deposits along the length of the Blue Ridge Parkway corridor in Virginia, including base and precious metals and industrial minerals. However, common stone was the most important commodity for creating the Blue Ridge Parkway, which yielded building stone for overlooks and tunnels, or crushed stone for road base and pavement.

  19. Metabolic cold adaptation and aerobic performance of blue mussels (Mytilus edulis) along a temperature gradient into the High Arctic region

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Rysgaard, Søren; Blicher, Martin

    2015-01-01

    and plasticity of blue mussels across latitudes spanning from 56 to 77ºN. This indicates that low ocean temperature per se does not constrain metabolic activity of Mytilus in the Arctic; rather, we speculate that maturation of reproductive tissues, larval supply and annual energy budgets are the most relevant...

  20. Drainage isolation and climate change-driven population expansion shape the genetic structures of Tuber indicum complex in the Hengduan Mountains region.

    Science.gov (United States)

    Feng, Bang; Zhao, Qi; Xu, Jianping; Qin, Jiao; Yang, Zhu L

    2016-02-24

    The orogenesis of the Qinghai-Tibetan Plateau and the Quaternary climate changes have played key roles in driving the evolution of flora and fauna in Southwest China, but their effects on higher fungi are poorly addressed. In this study, we investigated the phylogeographic pattern of the Tuber indicum species complex, an economically important fungal group distributed in the Hengduan Mountains region. Our data confirmed the existence of two distinct lineages, T. indicum and T. himalayense, within this species complex. Three geographic groups (Groups W, N and C) were revealed within T. indicum, with Group W found in the paleo-Lancang River region, while Groups N and C corresponded to the two banks along the contemporary Jinsha River, suggesting that rivers have acted as barriers for gene flow among populations from different drainages. Historical range expansion resulted from climate changes was inferred in Group C, contributing to the observed gene flow among geographic populations within this group. Although no significant geographic structure was identified in T. himalayense, evidence of drainage isolation for this species was also detected. Our findings demonstrate that both topographic changes and Quaternary climate oscillations have played important roles in driving the genetic structures of the T. indicum species complex.

  1. Hydrogeological approach to the regional analysis of low flow in medium and small streams of the hilly and mountainous areas of Serbia

    Directory of Open Access Journals (Sweden)

    Nikić Zoran

    2006-01-01

    Full Text Available During the long rainless spells of the dry season, flows in medium and small streams get reduced to what is generally known as "low flow". For ungauged streams, the controlling "low flows" are determined using the regional analysis method. In the presently described exploration, the method applied was based on the assumption that dry weather discharges in medium and small rivers depended on the hydrogeological conditions. The controlling effect of hydrogeology on the natural low flow in medium and small streams of the hilly and mountainous part of Serbia was analyzed applying the theory of multiple linear regression. The thirty-day minimum mean 80 and 95 per cent exceedance flows were taken for dependent variables, and quantified hydrogeological elements as independent variables. The analysis covered streams that had small or medium size catchment areas. The treated example encompassed sixty-one gauged catchments. The resulting regional relations for the thirty day minimum mean 80 and 95 per cent exceedance flows are presented in this paper. The quality of the established relation was controlled by relevant statistic tests.

  2. The study of preference of flower-visiting bumblebees in Changbai Mountain Region%长白山地区熊蜂的访花偏爱性研究

    Institute of Scientific and Technical Information of China (English)

    任炳忠; 尚利娜; 陈新; 韩叶; 徐燕

    2012-01-01

    对长白山地区7种熊蜂访问的主要蜜源植物的花形、花色、花味及花粉的形态结构进行了研究,总结出了熊蜂偏爱访问的蜜源植物的花部特征.结果表明:熊蜂偏爱访问具有圆锥花序、总状花序和聚伞花序的花,对于单生花,通常花形较大;访问的花冠类型以辐射对称和两侧对称为主;花多具有蜜腺,分泌花蜜;色泽艳丽,常为黄色或蓝紫色;花粉粒较大,形状多为长球形,具三孔沟,表面具网状纹饰;花的气味成分主要为酸类和酯类化合物,其中含有较高浓度的羟基丙酮、乙酸、甲酸、苯酚和9,12-十八碳二烯酸乙酯.%This paper studied the flower shape,color,scent and pollen morphology of main nectar plants visited by seven bumblebees in Changbai Mountain Region, and drew the conclusion of the floral characteristics preferred by bumblebees. Bumblebees preference for a visit of flowers with panicles, raceme and cyme,and for a single flower,usually with a larger flower-shaped;corolla types are mainly radial symmetry and bilateral symmetry; mostly with nectary to secret nectar; colorful, and often yellow or blue purple; pollen large, mostly prolate shape, with three colporates, reticulate surface; flower scent was mainly acids and esters, which contained a higher concentration of l-hydroxy-2-propanone,acetic acid, formic acid, phenol and 9 ,12-octadecadienoic acid, ethyl ester. This study will provide the basic material for bumblebee pollination and the application of new agents to lure pollinating insects.

  3. Merelaniite, Mo4Pb4VSbS15, a New Molybdenum-Essential Member of the Cylindrite Group, from the Merelani Tanzanite Deposit, Lelatema Mountains, Manyara Region, Tanzania

    Directory of Open Access Journals (Sweden)

    John A. Jaszczak

    2016-10-01

    Full Text Available Merelaniite is a new mineral from the tanzanite gem mines near Merelani, Lelatema Mountains, Simanjiro District, Manyara Region, Tanzania. It occurs sporadically as metallic dark gray cylindrical whiskers that are typically tens of micrometers in diameter and up to a millimeter long, although a few whiskers up to 12 mm long have been observed. The most commonly associated minerals include zoisite (variety tanzanite, prehnite, stilbite, chabazite, tremolite, diopside, quartz, calcite, graphite, alabandite, and wurtzite. In reflected polarized light, polished sections of merelaniite are gray to white in color, show strong bireflectance and strong anisotropism with pale blue and orange-brown rotation tints. Electron microprobe analysis (n = 13, based on 15 anions per formula unit, gives the formula Mo4.33Pb4.00As0.10V0.86Sb0.43Bi0.33Mn0.05 W0.05Cu0.03(S14.70Se0.30Σ15, ideally Mo4Pb4VSbS15. An arsenic-rich variety has also been documented. X-ray diffraction, electron diffraction, and high-resolution transmission electron microscopy show that merelaniite is a member of the cylindrite group, with alternating centered pseudo-tetragonal (Q and pseudo-hexagonal (H layers with respective PbS and MoS2 structure types. The Q and H layers are both triclinic with space group C1 or C 1 ¯ . The unit cell parameters for the Q layer are: a = 5.929(8 Å; b = 5.961(5 Å; c = 12.03(1 Å; α = 91.33(9; β = 90.88(5; γ = 91.79(4; V = 425(2 Å3; and Z = 4. For the H layer, a = 5.547(9 Å; b = 3.156(4 Å; c = 11.91(1 Å; α = 89.52(9; β = 92.13(5; γ = 90.18(4; V = 208(2 Å3; and Z = 2. Among naturally occurring minerals of the cylindrite homologous series, merelaniite represents the first Mo-essential member and the first case of triangular-prismatic coordination in the H layers. The strongest X-ray powder diffraction lines [d in Å (I/I0] are 6.14 (30; 5.94 (60; 2.968 (25; 2.965 (100; 2.272 (40; 1.829 (30. The new mineral has been approved by the IMA CNMNC (2016

  4. Groundwater acidification in the Senne region, Teutoburger Wald mountains -will the specification of limiting values protect drinking water?

    International Nuclear Information System (INIS)

    Luekewille, A.; Heuwinkel, B.

    1990-01-01

    The Senne region is a pleistocene glacial outwash landscape in northern Germany. It is particularly sensitive to entries of airborne pollution with acids and acidifying agents. The shallow groundwater is already acidified down to a depth of about 10 meters. This is proved by the low pH values ( [de

  5. 2012 OLC Lidar: West Metro, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI has collected Light Detection and Ranging (LiDAR) data of the Oregon West Metro Study Area for the Oregon Department of Geology and Mineral Industries (DOGAMI)....

  6. 2012 OLC Lidar DEM: West Metro, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI has collected Light Detection and Ranging (LiDAR) data of the Oregon West Metro Study Area for the Oregon Department of Geology and Mineral Industries (DOGAMI)....

  7. Invertebrates of The H.J. Andrews Experimental Forest, Western Cascades, Oregon: III. The Orthoptera (Grasshoppers and Crickets).

    Science.gov (United States)

    David C. Lightfoot

    1986-01-01

    An inventory of Orthoptera (grasshoppers and crickets) at the H.J. Andrews Experimental Forest, near Blue River, Oregon, was conducted to determine the species present and ecological relationships. A key for identification and an annotated list are presented. From qualitative assessments of successional habitat relationships, generalized species associations of forest...

  8. Invertebrates of the H.J. Andrews Experimental Forest, western Cascades, Oregon II. an annotated checklist of caddisflies (Trichoptera)

    Science.gov (United States)

    N.H. Anderson; G.M. Cooper; D.G Denning

    1982-01-01

    At least 99 species, representing 14 families of Trichoptera, are recorded from the H.J. Andrews Experimental Forest, near Blue River, Oregon. The collecting sites include a wide diversity of environmental conditions in a 6000-hectare watershed of the western Cascade Range (from 400 to 1 630 meters in altitude and from 1st- to 7th-order streams).

  9. Bioclimatic changes and landslide recurrence in the mountainous region of Rio de Janeiro: are we ready to face the next landslide disaster?

    Science.gov (United States)

    Luiza Coelho Netto, Ana; Facadio, Ana Carolina; Pereira, Roberta; Lima, Pedro Henrique

    2017-04-01

    Paleo-environmental studies point out an alternation of wet and dry periods during the Holocene in southeastern Brazil, marked by the expansion and retraction of the humid tropical rainforest in alternation with the campos de altitude vegetation ('high altitude grassland'); successive episodes of natural fire were recorded from 10,000 to 4,000 years BP in the mountainous region of SE-Brazil, reflecting warm-dry conditions. Present seasonal climatic variability is indicated by an increasing dry spell frequency throughout the XX and early XXI centuries together with an increasing rainfall concentration in the summer when extreme daily totals (above 100 mm) become progressively more frequent. Historical land use changes, at both regional and local scales, are mostly related to this climatic variability. Therefore extreme rainfall induced landslides have been responsible for severe disasters as recorded along the Atlantic slopes of Serra do Mar. The extreme one occurred in January 2011, affecting the municipalities of Nova Friburgo, Teresópolis and Petrópolis. Studies in Nova Friburgo shown the occurrence of 3.622 landslides scars within an area of 421 km2; this rainfall event reached the expected average monthly rainfall (300 mm) in less than 10 hours. The D'Antas creek basin (53 km2) was the most affected area by landslides; 86% of 326 scars where associated with shallow translational mechanisms among which 67% occurred within shallow concave up topographic hollows of 32° slope angle in average. Most of these landslide scars occurred in granite rocks and degraded vegetation due to historical land use changes (last 200 years) including secondary forest (64%) and grasslands (25%). The present-day association between extreme rainfall induced landslides and human induced vegetation changes seem to reflect similar geomorphic responses to natural Holocene bioclimatic changes; a common phenomenon between the two periods is fire (natural fire in the past time and man

  10. Controls on the deposition and preservation of the Cretaceous Mowry Shale and Frontier Formation and equivalents, Rocky Mountain region, Colorado, Utah, and Wyoming

    Science.gov (United States)

    Kirschbaum, Mark A.; Mercier, Tracey J.

    2013-01-01

    Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present. This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography. The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin. In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones

  11. Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China.

    Science.gov (United States)

    Schönbrodt-Stitt, Sarah; Bosch, Anna; Behrens, Thorsten; Hartmann, Heike; Shi, Xuezheng; Scholten, Thomas

    2013-10-01

    In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of

  12. Teenage Suicide in Oregon 1983-1985.

    Science.gov (United States)

    Oregon State Dept. of Human Resources, Portland.

    During the 3-year period from 1983 through 1985, 80 Oregon teenagers intentionally took their own lives, making suicide second only to accidents as the leading cause of death among Oregon teenagers. Data on suicides committed by individuals between the ages of 10 and 19 were retrieved from death certificates on file with the Oregon Health Division…

  13. Erosion taken place in mountainous regions by effect of the forest fires; Erosion producida en las regiones montanosas por efecto de los incendios forestales

    Energy Technology Data Exchange (ETDEWEB)

    Carignano, Claudio A; Cioccale, Marcela A

    1992-07-01

    This paper presents the first part of an investigation about the effect of the fire in the forest in a basin, which is a hydric reserve and supplies with potable water to a big region of Sierras Chicas, in the province of Cordoba, Argentina. The combination of the unprotected soil, by the lack of vegetation due to the fire, the climate conditions, the gradient and the lithology produce an increase over the processes of erosion. Different thematic maps were necessary join all the information, to determine the relation between the fires affected areas and the erosion processes, besides the regional climate conditions were considered as a fundamental factor.

  14. Preliminary study of the uranium favorability of Malheur County, Oregon

    International Nuclear Information System (INIS)

    Erikson, E.H.

    1977-11-01

    A reconnaissance study of middle and upper Tertiary volcaniclastic sedimentary and silicic volcanic rocks in Malheur County, Oregon, indicates that, based upon the data available: (1) it is unlikely that sandstone-type uranium deposits exist in sedimentary rocks of north-central Malheur County; and (2) favorable uranium environments are more likely to exist in and adjacent to uraniferous silicic eruptive centers and plugs. Some rhyolites in the northern part of the county contain marginally anomalous uranium abundances (6 to 8 +- 2 ppM U 3 O 8 ), compared with similar rocks in southeastern Oregon. Available uranium from these rocks, as determined by nitric-acid leaching, approaches 50 to 75 percent of the total chemical U 3 O 8 present. One Pliocene rhyolite vitrophyre sample from Duck Butte in western Malheur County contains 9 +- 2 ppM U 3 O 8 . The uranium contents of these rhyolites approach those found in silicic plugs spatially related to uranium deposits in the Lakeview district, Oregon (Erikson and Curry, 1977). It is possible that undiscovered epithermal and (or) supergene uranium deposits may exist in favorable wall rocks subjacent to uraniferous silicic eruptive centers (Duck Butte), calderas (McDermitt caldera to the south and others identified in western Owyhee County, Idaho), and silicic plugs (as in the Lakeview district). With the exception of one small uranium anomaly found in unconsolidated sands in the Grassy Mountain Formation, the sedimentary rocks observed in the study area did not possess abnormal radioactivity or exhibit evidence of uranium mobility and enrichment. Carbonaceous trash is uncommon in these rocks. Gently dipping sandstone members of the Deer Butte Formation (upper Miocene) and local channel sands in the Grassy Mountain Formation (Pliocene) may have once been the most permeable rocks in the Tertiary section; but, there is no evidence to suggest that they were conduits for uranium-bearing solutions

  15. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain--Crater Flat region, Nevada

    International Nuclear Information System (INIS)

    Brocher, T.M.; Langenheim, V.E.; Hunter, W.C.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate-to-high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64 degree ± 5 degree. Along the profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging

  16. Mountains: top down.

    Science.gov (United States)

    Woodwell, George M

    2004-11-01

    Mountainous regions offer not only essential habitat and resources, including water, to the earth's more than 6 billion inhabitants, but also insights into how the global human habitat works, how it is being changed at the moment as global climates are disrupted, and how the disruption may lead to global biotic and economic impoverishment. At least 600 million of the earth's more than 6 billion humans dwell in mountainous regions. Such regions feed water into all the major rivers of the world whose valleys support most of the rest of us. At least half of the valley dwellers receive part or all of their water from montane sources, many from the melt water of glaciers, others from the annual snow melt. Glaciers are retreating globally as the earth warms as a result of human-caused changes in the composition of the atmosphere. Many are disappearing, a change that threatens municipal water supplies virtually globally. The warming is greatest in the higher latitudes where the largest glaciers such as those of Greenland and the Antarctic Continent have become vulnerable. The melting of ice in the northern hemisphere raises serious concerns about the continued flow of the Gulf Stream and the possibility of massive climatic changes in Scandinavia and northern Europe. Mountains are also biotic islands in the sea life, rich in endemism at the ecotype level. The systematic warming of the earth changes the environment out from under these genetically specialized strains (ecotypes) which are then maladapted and vulnerable to diseases of all types. The process is systematic impoverishment in the pattern conspicuous on mountain slopes with increasing exposure to climatic extremes. It is seen now in the increased mortality and morbidity of plants as climatic changes accumulate. The seriousness of the global climatic disruption is especially clear in any consideration of mountains. It can and must be addressed constructively despite the adamancy of the current US administration.

  17. Isotope techniques to identify recharge areas of springs for rainwater harvesting in the mountainous region of Gaucher area, Chamoli district, Uttarakhand

    International Nuclear Information System (INIS)

    Shivanna, K.; Tirumalesh, K.; Noble, J.; Joseph, T.B.; Singh, Gursharan; Joshi, A.P.; Khati, V.S.

    2008-01-01

    Environmental isotope techniques have been employed to identify the recharge areas of springs in India, in order to construct artificial recharge structures for rainwater harvesting and groundwater augmentation for their rejuvenation. A model project was taken up in the mountainous region of Gaucher area, Chamoli District, Uttarakhand for this purpose. The springs in this regions are seasonal and are derived from seepage waters flowing through the shallow weathered and fractured zone. The chemistry of high-altitude springs is similar to that of precipitation, whereas water-rock interactions contributes to increased mineralization in low-altitude springs. The stable isotopic variation in precipitation suggests that the altitude effect for Gaucher area is -0.55% for δ 18 O and -3.8% for δ 2 H per 100 m rise in altitude. Based on local geology, geomorphology, hydrochemistry and isotope information, the possible recharge areas inferred for valleys 1, 2 and 3 are located at altitudes of 1250, 1330 and 1020 m amsl respectively. Water conservation and recharge structures such as subsurface dykes, check bunds and contour trenches were constructed at the identified recharge areas in the respective valleys for controlling the subsurface flow, rainwater harvesting and groundwater augmentation respectively. As a result, during and after the following monsoon, the discharge rates of the springs not only increased significantly, but also did not dry up even during the dry period. The study shows that the isotope techniques can be effectively used in identifying recharge areas of springs in the Himalayan region. It also demonstrates the advantage of isotope techniques over conventional methods. (author)

  18. Evaluation of Climate Change in northeastern China by means of d13C in tree-rings in the Great Xiang'An mountains region

    Science.gov (United States)

    Zhang, Qiqin; Lopez Caceres, Maximo Larry; Sugimoto, Atsuko; Wang, Xiaochun; Liu, Binhui

    2017-04-01

    The northeastern forest region of China represents one of the southern boundary of the Asian boreal forest and also represents the boundary between humid- semi humid area and arid- semi arid area of China. These forests are mainly dominated by larch (Larix gmelinii) stands with small areas covered by birch and pine forests. Increases in air temperature and precipitation caused by climate change are expected to have a great effect on forest ecosystems boundaries. Accordingly, from 1963-2006, air temperature has increased 1.5℃ in this region. Tree-ring chronologies are commonly used as indicator of climate changes and in recent decades the combination with carbon stable isotopes has shown a higher resolution in the results. Since this combine technique has not been used in northeastern China, we applied this combined technique to reconstruct the climate in the Great Xing'an mountains of northeastern China. Preliminary results showed that tree growth has increased in the middle and southernmost site in the last century while in the northernmost site it decreased for the same period which is in agreement with the mean air temperature increase from south to north in this region under negligible changes in precipitation regime. In contrast, tree-ring δ13C shows a gradual but steady increase along the three sites selected for our study, however the highest being observed in the middle site which experience the largest increased in air temperature in the last decade. This appears to indicate that increases in air temperature produced a stress in the stomatal conductance that so far has translated into tree ring growth decline.

  19. Effects of climate and geochemistry on soil organic matter stabilization and greenhouse gas emissions along altitudinal transects in different mountain regions

    Science.gov (United States)

    Griepentrog, Marco; Bodé, Samuel; Boudin, Mathieu; Dercon, Gerd; Doetterl, Sebastian; Matulanya, Machibya; Msigwa, Anna; Vermeir, Pieter; Boeckx, Pascal

    2017-04-01

    Terrestrial ecosystems are strongly influenced by climate change and soils are key compartments of the global carbon (C) cycle in terms of their potential to store or release significant amounts of C. This study is part of the interregional IAEA Technical Cooperation Project ``Assessing the Impact of Climate Change and its Effects on Soil and Water Resources in Polar and Mountainous Regions (INT5153)'' aiming to improve the understanding of climate change impacts on soil organic carbon (SOC) in fragile polar and high mountainous ecosystems at local and global scale for their better management and conservation. The project includes 13 benchmark sites situated around the world. Here we present novel data from altitudinal transects of three different mountain regions (Mount Kilimanjaro, Tanzania; Mount Gongga, China; Cordillera Blanca, Peru). All altitudinal transects cover a wide range of natural ecosystems under different climates and soil geochemistry. Bulk soil samples (four field replicates per ecosystem) were subjected to a combination of aggregate and particle-size fractionation followed by organic C, total nitrogen, stable isotope (13C, 15N) and radiocarbon (14C) analyses of all fractions. Bulk soils were further characterized for their geochemistry (Na, K, Ca, Mg, Al, Fe, Mn, Si, P) and incubated for 63 days to assess greenhouse gas emissions (CO2, CH4, NO, N2O). Further, stable C isotopic signature of CO2 was measured to determine the isotopic signature of soil respiration (using Keeling plots) and to estimate potential respiration sources. The following four ecosystems were sampled at an altitudinal transect on the (wet) southern slopes of Mount Kilimanjaro: savannah (920m), lower montane rain forests with angiosperm trees (2020m), upper montane cloud forest with gymnosperm trees (2680m), subalpine heathlands (3660m). Both forests showed highest C contents followed by subalpine and savannah. The largest part of SOC was found in particulate organic matter

  20. Spatial variability of sediment erosion processes using GIS analysis within watersheds in a historically mined region, Patagonia Mountains, Arizona

    Science.gov (United States)

    Brady, Laura M.; Gray, Floyd; Wissler, Craig A.; Guertin, D. Phillip

    2001-01-01

    In this study, a geographic information system (GIS) is used to integrate and accurately map field studies, information from remotely sensed data, watershed models, and the dispersion of potentially toxic mine waste and tailings. The purpose of this study is to identify erosion rates and net sediment delivery of soil and mine waste/tailings to the drainage channel within several watershed regions to determine source areas of sediment delivery as a method of quantifying geo-environmental analysis of transport mechanisms in abandoned mine lands in arid climate conditions. Users of this study are the researchers interested in exploration of approaches to depicting historical activity in an area which has no baseline data records for environmental analysis of heavily mined terrain.

  1. Predatory Ground Beetles (Insecta: Coleoptera: Carabidae) of the Gaoligong Mountain Region of Western Yunnan Province, China: the Tribe Cyclosomini

    Science.gov (United States)

    Cueva-Dabkoski, M.; Kavanaugh, D.

    2013-12-01

    Between 1998 and 2007, the California Academy of Sciences (CAS) was the lead institution in a multi-national, multi-disciplinary biodiversity inventory project in the Gaoligong Shan region (GLGS) in the Yunnan province of China. The project surveyed the species diversity of both higher plants and bryophytes, fishes, amphibians, reptiles, birds, mammals and selected groups of arachnids and insects. The GLGS of China is one of the most biodiverse areas in all of Asia, yet it is also very poorly sampled and in great threat from increasing human activities in the region. CAS's biodiversity inventory project there has increased the number of carabid species known from just 50 to more than 550 species, an eleven-fold increase. The task that remains is to identify all of those 500 additional species and describe any that are new to science. This project is part of that larger biodiversity survey. Our objective was to identify and/or describe carabid beetles of the tribe Cyclosomini represented by nearly a hundred specimens collected in the GLSG. Among those specimens, six morphospecies were identified - one belonging to the genus Cyclosomus Latreille 1829, and the other five belonging to the genus Tetragonoderus Dejean 1829. Following this initial identification process, a list of known distributions of taxa in both genera was assembled to determine which described species to consider for comparative work. Original descriptions were then located for candidate species with known distributions in or near the GLGS; and these are being used now in morphological comparison of specimens. Type specimens for each of the candidate species have been requested from various academic institutions, and morphological comparisons with these types are underway. Morphological characteristics being examined include body proportions and overall shape, color of appendages, color and shape of pronotum, elytral color patterns, and shape and internal structure of male genitalia.

  2. Analysis of meteorology and emission in haze episode prevalence over mountain-bounded region for early warning.

    Science.gov (United States)

    Kim Oanh, Nguyen Thi; Leelasakultum, Ketsiri

    2011-05-01

    This study investigated the main causes of haze episodes in the northwestern Thailand to provide early warning and prediction. In an absence of emission input data required for chemical transport modeling to predict the haze, the climatological approach in combination with statistical analysis was used. An automatic meteorological classification scheme was developed using regional meteorological station data of 8years (2001-2008) which classified the prevailing synoptic patterns over Northern Thailand into 4 patterns. Pattern 2, occurring with high frequency in March, was found to associate with the highest levels of 24h PM(10) in Chiangmai, the largest city in Northern Thailand. Typical features of this pattern were the dominance of thermal lows over India, Western China and Northern Thailand with hot, dry and stagnant air in Northern Thailand. March 2007, the month with the most severe haze episode in Chiangmai, was found to have a high frequency of occurrence of pattern 2 coupled with the highest emission intensities from biomass open burning. Backward trajectories showed that, on haze episode days, air masses passed over the region of dense biomass fire hotspots before arriving at Chiangmai. A stepwise regression model was developed to predict 24h PM(10) for days of meteorology pattern 2 using February-April data of 2007-2009 and tested with 2004-2010 data. The model performed satisfactorily for the model development dataset (R(2)=87%) and test dataset (R(2)=81%), which appeared to be superior over a simple persistence regression of 24h PM(10) (R(2)=76%). Our developed model had an accuracy over 90% for the categorical forecast of PM(10)>120μg/m(3). The episode warning procedure would identify synoptic pattern 2 and predict 24h PM(10) in Chiangmai 24h in advance. This approach would be applicable for air pollution episode management in other areas with complex terrain where similar conditions exist. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. [Dynamics and modeling of water content of ten shrub species in their growth period in Maoershan Mountain region of Northeast China].

    Science.gov (United States)

    Jin, Sen; Yan, Xue-Jiao

    2012-12-01

    Based on the two successive years observation of the water content of ten representative shrub species in Maoershan Mountain region of Northeast China, this paper studied the dynamics of the water content of these shrub species during their growth period and related affecting factors, with the prediction models of the shrub water content established. For the ten shrub species, their minimal water content during growth period was higher than 100% , and most of the species had a water content higher than 200% within the period from the late phase of leaf-unfolding to early phase of leaf-falling. Euonymus verrucosus, Sorbaria sorbifolia, and Sambucus williamsii were incombustible in their whole growth period due to the extremely high water content, while Syringa reticulate, Philadelphus schrenkii, Euonymus verrucosus, Spiraea chamaedryfolia, Lonicera maackii, Lonicera ruprechtiana, and Rhamnus parvifolia were combustible only in the phases of budding and leaf-falling. Soil moisture content and daily maximum temperature had effects on the water content of most (7) of the ten shrubs, and canopy drought severity index affected the water content of 5 of the ten shrubs. The established 9 prediction models could explain more than 35% of the water content variance of the shrub species, with a mean MRE of 35.9% and a mean MRE of 13.4%.

  4. Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: Increasing number of population at risk of mosquito-borne disease and future climate conditions.

    Science.gov (United States)

    Equihua, Miguel; Ibáñez-Bernal, Sergio; Benítez, Griselda; Estrada-Contreras, Israel; Sandoval-Ruiz, César A; Mendoza-Palmero, Fredy S

    2017-02-01

    The study was conducted in the central region of Veracruz Mexico, in the metropolitan area of Xalapa. It is a mountainous area where Aedes aegypti (L.) is not currently endemic. An entomological survey was done along an elevation gradient using the Ae. aegypti occurrences at different life cycle stages. Seven sites were sampled and a total of 24 mosquito species were recorded: 9 species were found in urban areas, 18 in non-urban areas with remnant vegetation, and 3 occurred in both environments. Ae. aegypti was found only in the urban areas, usually below 1200m a.s.l., but in this study was recorded for the first time at 1420m a.s.l. These occurrences, together with additional distribution data in the state of Veracruz were used to developed species distribution models using Maxlike software in R to identify the current projected suitable areas for the establishment of this vector and the human populations that might be affected by dengue transmission at higher elevations. Its emergence in previously unsuitable places appears to be driven by both habitat destruction and biodiversity loss associated with biotic homogenization. A border study using data from the edges of the vector's distribution might allow sensitive monitoring to detect any changes in this mosquito's distribution pattern, and any changes in the anthropic drivers or climate that could increase transmission risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Serologic evidence for exposure to Rickettsia rickettsii in eastern Arizona and recent emergence of Rocky Mountain spotted fever in this region.

    Science.gov (United States)

    Demma, Linda J; Traeger, Marc; Blau, Dianna; Gordon, Rondeen; Johnson, Brian; Dickson, Jeff; Ethelbah, Rudy; Piontkowski, Stephen; Levy, Craig; Nicholson, William L; Duncan, Christopher; Heath, Karen; Cheek, James; Swerdlow, David L; McQuiston, Jennifer H

    2006-01-01

    During 2002 through 2004, 15 patients with Rocky Mountain spotted fever (RMSF) were identified in a rural community in Arizona where the disease had not been previously reported. The outbreak was associated with Rickettsia rickettsii in an unexpected tick vector, the brown dog tick (Rhipicephalus sanguineus), which had not been previously associated with RMSF transmission in the United States. We investigated the extent of exposure to R. rickettsii in the local area through serologic evaluations of children and dogs in 2003-2004, and in canine sera from 1996. Antibodies to R. rickettsii at titers > or = 32 were detected in 10% of children and 70% of dogs in the outbreak community and 16% of children and 57% of dogs in a neighboring community. In comparison, only 5% of canine samples from 1996 had anti-R. rickettsii antibodies at titers > or = 32. These results suggest that exposures to RMSF have increased over the past 9 years, and that RMSF may now be endemic in this region.

  6. [Influence of fire disturbance on aboveground deadwood debris carbon storage in Huzhong forest region of Great Xing'an Mountains, Northeast China].

    Science.gov (United States)

    Yang, Da; He, Hong-shi; Wu, Zhi-wei; Liang, Yu; Huang, Chao; Luo, Xu; Xiao, Jiang-tao; Zhang, Qing-long

    2015-02-01

    Based on the field inventory data, the aboveground deadwood debris carbon storage under different fire severities was analyzed in Huzhong forest region of Great Xing' an Mountains. The results showed that the fire severity had a significant effect on aboveground deadwood debris carbon storage. The deadwood debris carbon storage was in the order of high-severity > low-severity > unburned in Larix gmelinii stands, and mixed conifer-broadleaf stands ( L. gmelinii and Betula platyphylla), and in the order of high severity > unburned > low-severity in B. platyphylla stands. Fire disturbance significantly changed the component percentage of the deadwood debris carbon storage. The component percentage of snags increased and litter decreased with the increasing fire severity. Logs and stumps did not change significantly with the increasing fire severity. The spatial variation of deadwood debris carbon storage in forests burned with low-severity fire was higher than that in unburned forests. The spatial variation of deadwood debris carbon storage with high-severity fires was lowest. This spatial variation needed to be accounted when calculating forest deadwood debris carbon storage.

  7. The Oregon Geothermal Planning Conference

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development

  8. The earliest low and high δ18O caldera-forming eruptions of the Yellowstone plume: Implications for the 30–40 Ma Oregon calderas and speculations on plume-triggered delaminations

    Directory of Open Access Journals (Sweden)

    Angela Nicole Seligman

    2014-11-01

    Full Text Available We present new isotopic and trace element data for four eruptive centers in Oregon: Wildcat Mountain (40 Ma, Crooked River (32–28 Ma, Tower Mountain (32 Ma, and Mohawk River (32 Ma. The first three calderas are located too far east to be sourced through renewed subduction of the Farallon slab following accretion of the Yellowstone-produced Siletzia terrane at ~50 Ma. Basalts of the three eastern eruptive centers yield high Nb/Yb and Th/Yb ratios, indicating an enriched sublithospheric mantle source, while Mohawk River yields trace element and isotopic (δ18O and εHf values that correlate with its location above a subduction zone. The voluminous rhyolitic tuffs and lavas of Crooked River (41 x 27 km have δ18Ozircon values that include seven low δ18Ozircon units (1.8–4.5 ‰, one high δ18Ozircon unit (7.4–8.8 ‰, and two units with heterogeneous zircons (2.0–9.0 ‰, similar to younger Yellowstone-Snake River Plain rhyolites. In order to produce these low δ18O values, a large heat source, widespread hydrothermal circulation, and repeated remelting are all required. In contrast, Wildcat Mountain and Tower Mountain rocks yield high δ18Ozircon values (6.4–7.9 ‰ and normal to low εHfi values (5.2–12.6, indicating crustal melting of high-δ18O supracrustal rocks. We propose that these calderas were produced by the first appearance of the Yellowstone plume east of the Cascadia subduction zone, which is supported by plate reconstructions that put the Yellowstone plume under Crooked River at 32–28 Ma. Given the eastern location of these calderas along the suture of the accreted Siletzia terrane and North America, we suggest that the Yellowstone hotspot is directly responsible for magmatism at Crooked River, and for plume-assisted delamination of portions of the edge of the Blue Mountains that produced the Tower Mountain magmas, while the older Wildcat Mountain magmas are related to suture zone instabilities that were created

  9. Explaining the mechanisms through which regional atmospheric circulation variability drives summer temperatures and glacial melt in western High Mountain Asia (HMA)

    Science.gov (United States)

    Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David

    2017-04-01

    Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of

  10. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).

    Science.gov (United States)

    Zhuo, La; Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-05-01

    Previous studies into the relation between human consumption and indirect water resources use have unveiled the remote connections in virtual water (VW) trade networks, which show how communities externalize their water footprint (WF) to places far beyond their own region, but little has been done to understand variability in time. This study quantifies the effect of inter-annual variability of consumption, production, trade and climate on WF and VW trade, using China over the period 1978-2008 as a case study. Evapotranspiration, crop yields and green and blue WFs of crops are estimated at a 5 × 5 arc-minute resolution for 22 crops, for each year in the study period, thus accounting for climate variability. The results show that crop yield improvements during the study period helped to reduce the national average WF of crop consumption per capita by 23%, with a decreasing contribution to the total from cereals and increasing contribution from oil crops. The total consumptive WFs of national crop consumption and crop production, however, grew by 6% and 7%, respectively. By 2008, 28% of total water consumption in crop fields in China served the production of crops for export to other regions and, on average, 35% of the crop-related WF of a Chinese consumer was outside its own province. Historically, the net VW within China was from the water-rich South to the water-scarce North, but intensifying North-to-South crop trade reversed the net VW flow since 2000, which amounted 6% of North's WF of crop production in 2008. South China thus gradually became dependent on food supply from the water-scarce North. Besides, during the whole study period, China's domestic inter-regional VW flows went dominantly from areas with a relatively large to areas with a relatively small blue WF per unit of crop, which in 2008 resulted in a trade-related blue water loss of 7% of the national total blue WF of crop production. The case of China shows that domestic trade, as governed by

  11. Blue-Green Algae

    Science.gov (United States)

    ... that taking a specific blue-green algae product (Super Blue-Green Algae, Cell Tech, Klamath Falls, OR) ... system. Premenstrual syndrome (PMS). Depression. Digestion. Heart disease. Memory. Wound healing. Other conditions. More evidence is needed ...

  12. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province

    Science.gov (United States)

    Steiner, A. R.; Streck, M. J.

    2013-12-01

    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  13. Extinction of Harrington's mountain goat

    International Nuclear Information System (INIS)

    Mead, J.I.; Martin, P.S.; Euler, R.C.; Long, A.; Jull, A.J.T.; Toolin, L.J.; Donahue, D.J.; Linick, T.W.

    1986-01-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters

  14. Biomonitoring air pollution in Chelyabinsk region (Ural mountains, Russia) through trace-elements and radionuclides: Temporal and spatial trends

    International Nuclear Information System (INIS)

    Cherchintsev, V.D.; Frontasyeva, M.V.; Lyapunov, S.M.; Smirnov, L.I.

    1999-01-01

    This report contains the first results on the analysis of the moss species Hylocomium splendens and Pleurozium schreberi which were used to study heavy metal atmospheric deposition in the vicinity of Magnitogorsk, the center of the iron steel industry of Russia. Moss samples were collected along Bannoe Lake, located 30 km north-west of Magnitogorsk, and were analyzed by instrumental neutron activation analysis using epithernal neutrons (ENAA) at the IBR-2 pulsed fast reactor in Dubna, and by atomic absorption spectroscopy (AAS) at the Geological Institute of RAS, Moscow. Results for a total of 38 elements were obtained, including Pb, Cd, and Cu determined by AAS. The element concentrations in moss samples from this area were compared with those available for the so-called 'Black Triangle' (the territory bordering Poland, Czechia and Slovakia), obtained by the same moss biomonitoring technique. The level of the concentrations of Fe, Cr, and V in the vicinity of Magnitogorsk was found to be 2-2.5 times higher than that of the mean values determined for the 'Black Triangle'; the level of Ni and Cd is of the same order as in the most polluted area of Europe. The concentrations of Zn and Cu tend to be higher in the 'Black Triangle'. The level of As is about 3 times higher in the Urals, whereas concentration of Pb is higher in Europe by a factor of 5. It appeared that concentration of Sb in the examined area has the highest ever published for levels in mosses from atmospheric deposition. The scanning electron microscope adjacent to the XRF analyzer (SEM-XRF) was used to examine the surface of the moss samples. Photographs of identified iron spherulas along with other aerosol particles were made at magnification of 3,500 to 5,000 times. Information on fieldwork in the northern part of the Chelyabinsk region in July, 1998 is reported. (author)

  15. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    Science.gov (United States)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  16. Airflow and air quality simulations over the western mountainous region with a four-dimensional data assimilation technique

    Science.gov (United States)

    Yamada, Tetsuji; Kao, Chih-Yue; Bunker, Susan

    We apply a three-dimensional meteorological model with a four-dimensional data assimilation (4-DDA) technique to simulate diurnal variations of wind, temperature, water vapor, and turbulence in a region extending from the west coast to east of the Rockies and from northern Mexico to Wyoming. The wind data taken during the 1985 SCENES ( Subregional Cooperative Electric Utility, Dept. of Defense, National Park Service, and Environmental Protection Agency Study on Visibility) field experiments are successfully assimilated into the model through the 4-DDA technique by 'nudging' the modeled winds toward the observed winds. The modeled winds and turbulence fields are then used in a Lagrangian random-particle statistical model to investigate how pollutants from potential sources are transported and diffused. Finally, we calculate the ground concentrations through a kernel density estimator. Two scenarios in different weather patterns are investigated with simulation periods up to 6 days. One is associated with the evolution of a surface cold front and the other under a high-pressure stagnant condition. In the frontal case, the impact of air-mass movement on the ground concentrations of pollutants released from the Los Angeles area is well depicted by the model. Also, the pollutants produced from Los Angeles can be transported to the Grand Canyon area within 24 h. However, if we use only the data that were obtained from the regular NWS rawinsonde network, whose temporal and spatial resolutions are coarser than those of the special network, the plume goes north-northeast and never reaches the Grand Canyon area. In the stagnant case, the pollutants meander around the source area and can have significant impact on local air quality.

  17. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    Science.gov (United States)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  18. Plugs or flood-makers? the unstable landslide dams of eastern Oregon

    Science.gov (United States)

    Safran, Elizabeth B.; O'Connor, Jim E.; Ely, Lisa L.; House, P. Kyle; Grant, Gordon E.; Harrity, Kelsey; Croall, Kelsey; Jones, Emily

    2015-01-01

    Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects of landslide dams and might be expected to vary among geologic settings. Here, we investigate the morphometry, stability, and effects on adjacent channel profiles of 17 former and current landslide dams in eastern Oregon. Data on landslide dam dimensions, former impoundment size, and longitudinal profile form were obtained from digital elevation data constrained by field observations and aerial imagery; while evidence for catastrophic dam breaching was assessed in the field. The dry, primarily extensional terrain of low-gradient volcanic tablelands and basins contrasts with the tectonically active, mountainous landscapes more commonly associated with large landslides. All but one of the eastern Oregon landslide dams are ancient (likely of order 103 to 104 years old), and all but one has been breached. The portions of the Oregon landslide dams blocking channels are small relative to the area of their source landslide complexes (0.4–33.6 km2). The multipronged landslides in eastern Oregon produce marginally smaller volume dams but affect much larger channels and impound more water than do landslide dams in mountainous settings. As a result, at least 14 of the 17 (82%) large landslide dams in our study area appear to have failed cataclysmically, producing large downstream floods now marked by boulder outwash, compared to a 40–70% failure rate for landslide dams in steep mountain environments. Morphometric indices of landslide dam stability calibrated in other environments were applied to the Oregon dams. Threshold values of the Blockage and Dimensionless Blockage Indices calibrated to worldwide

  19. Oregon's forest products industry: 1994.

    Science.gov (United States)

    Franklin R. Ward

    1997-01-01

    This report presents the findings of a survey of primary forest products industries in Oregon for 1994. The survey included the following sectors: lumber; veneer; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of logs consumed,...

  20. Residential Energy Efficiency Potential: Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oregon single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Timber resources of southwest Oregon.

    Science.gov (United States)

    Patricia M. Bassett

    1979-01-01

    This report presents statistics from a 1973 inventory of timber resources of Douglas County and from a 1974 inventory of timber resources of Coos, Curry, Jackson, and Josephine Counties, Oregon. Tables presented are of forest area and of timber volume, growth, and mortality.

  2. The contribute of DInSAR techniques to landslide hazard evaluation in mountain and hilly regions: a case study from Agno Valley (North-Eastern Italian Alps)

    Science.gov (United States)

    De Agostini, A.; Floris, M.; Pasquali, P.; Barbieri, M.; Cantone, A.; Riccardi, P.; Stevan, G.; Genevois, R.

    2012-04-01

    In the last twenty years, Differential Synthetic Aperture Radar Interferometry (DInSAR) techniques have been widely used to investigate geological processes, such as subsidence, earthquakes and landslides, through the evaluation of earth surface displacements caused by these processes. In the study of mass movements, contribution of interferometry can be limited due to the acquisition geometry of RADAR images and the rough morphology of mountain and hilly regions which represent typical landslide-prone areas. In this study, the advanced DInSAR techniques (i.e. Small Baseline Subset and Persistent Scatterers techniques), available in SARscape software, are used. These methods involve the use of multiple acquisitions stacks (large SAR temporal series) allowing improvements and refinements in landslide identification, characterization and hazard evaluation at the basin scale. Potential and limits of above mentioned techniques are outlined and discussed. The study area is the Agno Valley, located in the North-Eastern sector of Italian Alps and included in the Vicenza Province (Veneto Region, Italy). This area and the entire Vicenza Province were hit by an exceptional rainfall event on November 2010 that triggered more than 500 slope instabilities. The main aim of the work is to verify if spatial information available before the rainfall event, including ERS and ENVISAT RADAR data from 1992 to 2010, were able to predict the landslides occurred in the study area, in order to implement an effectiveness forecasting model. In the fi