WorldWideScience

Sample records for blue light emitting

  1. Blue laser diode (LD) and light emitting diode (LED) applications

    Science.gov (United States)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  2. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Duller, G.A.T.; Murray, A.S.;

    1999-01-01

    Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LEDs...... (470 nm) gives order of magnitude greater rate of stimulation in quartz than that from conventional blue-green light filtered from a halogen lamp. A practical blue LED OSL configuration is described. From comparisons of OSL decay curves produced by green and blue light sources, and by examination...

  3. Comparison between blue lasers and light-emitting diodes for future solid-state lighting: Comparison between blue lasers and light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wierer, Jonathan J. [Sandia National Laboratories, Albuquerque NM 87185 USA; Tsao, Jeffrey Y. [Sandia National Laboratories, Albuquerque NM 87185 USA; Sizov, Dmitry S. [Corning Incorporated, One Science Center Dr., Corning NY 14831 USA

    2013-08-01

    Solid-state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light-emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission, can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state-of-the-art input-power-density-dependent power-conversion efficiencies; potential improvements both in their peak power-conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.

  4. Substituent effect to prevent autoxidation and improve spectral stability in blue light-emitting polyfluorenes.

    Science.gov (United States)

    Li, Jiu Yan; Ziegler, Andreas; Wegner, Gerhard

    2005-07-18

    A group of fluorene-based polymers, PF-1SOR and PF-2SOR, were synthesized and characterized as blue light-emitting materials. PF-1SOR and PF-2SOR displayed nematic liquid crystalline mesophase in films cast from solution. Compared with conventional polyfluorene, PF-1SOR and PF-2SOR display blue-shifted UV absorption and structureless blue fluorescence. The photoluminescence spectra of PF-1SOR and PF-2SOR were found insensitive against thermal treatment in air up to 200 degrees C and the blue electroluminescence in their light-emitting devices was independent of the driving voltage. Compared to the conventional polyfluorenes, the improved spectral stability of these polymers is attributed to the anti-oxidization effect of (3,5-di(tert-butyl)phenoxy)sulfonyl side groups attached to the backbone.

  5. Charge transport and recombination in polyspirobifluorene blue light-emitting diodes

    NARCIS (Netherlands)

    Nicolai, H.T.; Hof, A.; Oosthoek, J.L.M.; Blom, P.W.M.

    2011-01-01

    The charge transport in blue light-emitting polyspirobifluorene is investigated by both steady-state current-voltage measurements and transient electroluminescence. Both measurement techniques yield consistent results and show that the hole transport is space-charge limited. The electron current is

  6. Background story of the invention of efficient blue InGaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shuji [University of California, Santa Barbara, CA (United States)

    2015-06-15

    Shuji Nakamura discovered p-type doping in Gallium Nitride (GaN) and developed blue, green, and white InGaN based light emitting diodes (LEDs) and blue laser diodes (LDs). His inventions made possible energy efficient, solid-state lighting systems and enabled the next generation of optical storage. Together with Isamu Akasaki and Hiroshi Amano, he is one of the three recipients of the 2014 Nobel Prize in Physics. In his Nobel lecture, Shuji Nakamura gives an overview of this research and the story of his inventions. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Highly efficient multilayer organic pure-blue-light emitting diodes with substituted carbazoles compounds in the emitting layer

    CERN Document Server

    Fischer, A; Chenais, S; Castex, M C; Siove, A; Ades, D; Geffroy, B; Denis, C; Maisse, P; Fischer, Alexis; Forget, Sebastien; Chenais, Sebastien; Castex, Marie-Claude; Siove, Alain; Ades, Dominique; Geffroy, Bernard; Denis, Christine; Maisse, Pascal

    2006-01-01

    Bright blue organic light-emitting diodes (OLEDs) based on 1,4,5,8,N-pentamethylcarbazole (PMC) and on dimer of N-ethylcarbazole (N,N'-diethyl-3,3'-bicarbazyl) (DEC) as emitting layers or as dopants in a 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi) matrix are described. Pure blue-light with the C.I.E. coordinates x = 0.153 y = 0.100, electroluminescence efficiency \\eta_{EL} of 0.4 cd/A, external quantum efficiency \\eta_{ext.} of 0.6% and luminance L of 236 cd/m2 (at 60 mA/cm2) were obtained with PMC as an emitter and the 2,9-dimethyl-4,7-diphenyl-1,10-phenantroline (BCP) as a hole-blocking material in five-layer emitting devices. The highest efficiencies \\eta_{EL.} of 4.7 cd/A, and \\eta_{ext} = 3.3% were obtained with a four-layer structure and a DPVBi DEC-doped active layer (CIE coordinates x = 0.158, y=0.169, \\lambda_{peak} = 456 nm). The \\eta_{ext.} value is one the highest reported at this wavelength for blue OLEDs and is related to an internal quantum efficiency up to 20%.

  8. Highly efficient multilayer organic pure blue light emitting diodes with substituted carbazoles compounds in the emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A [Laboratoire de Physique des Lasers (LPL, CNRS), Institut Galilee, Universite Paris 13, 93430 Villetaneuse (France); Chenais, S [Laboratoire de Physique des Lasers (LPL, CNRS), Institut Galilee, Universite Paris 13, 93430 Villetaneuse (France); Forget, S [Laboratoire de Physique des Lasers (LPL, CNRS), Institut Galilee, Universite Paris 13, 93430 Villetaneuse (France); Castex, M-C [Laboratoire de Physique des Lasers (LPL, CNRS), Institut Galilee, Universite Paris 13, 93430 Villetaneuse (France); Ades, D [Biomateriaux et Polymeres de Specialite (BPS/B2OA, CNRS), Institut Galilee, Universite Paris 13, Villetaneuse/Faculte de Medecine Lariboisiere-St Louis, Universite Paris 7, 75010 Paris (France); Siove, A [Biomateriaux et Polymeres de Specialite (BPS/B2OA, CNRS), Institut Galilee, Universite Paris 13, Villetaneuse/Faculte de Medecine Lariboisiere-St Louis, Universite Paris 7, 75010 Paris (France); Denis, C [Laboratoire Cellules et Composants, CEA/LITEN/DSEN, CEA Saclay, 91191 Gif-sur-Yvette (France); Maisse, P [Laboratoire Cellules et Composants, CEA/LITEN/DSEN, CEA Saclay, 91191 Gif-sur-Yvette (France); Geffroy, B [Laboratoire Cellules et Composants, CEA/LITEN/DSEN, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2006-03-07

    Bright blue organic light-emitting diodes (OLEDs) based on 1, 4, 5, 8, N-pentamethylcarbazole (PMC) and on dimer of N-ethylcarbazole (N, N'-diethyl-3, 3'-bicarbazyl) (DEC) as emitting layers or as dopants in a 4, 4'-bis(2, 2'-diphenylvinyl)-1, 1'-biphenyl (DPVBi) matrix are described. Pure blue light with the CIE coordinates (x = 0.153, y = 0.100), electroluminescence efficiency {eta}{sub EL} of 0.4 cd A{sup -1}, external quantum efficiency {eta}{sub ext} of 0.6% and luminance L of 236 cd m{sup -2} (at 60 mA cm{sup -2}) were obtained with PMC as an emitter and the 2, 9-dimethyl-4, 7-diphenyl-1, 10-phenantroline (BCP) as a hole-blocking material in five-layer emitting devices. The highest efficiencies {eta}{sub EL} of 4.7 cd A{sup -1} and {eta}{sub ext} = 3.3% were obtained with a four-layer structure and a DPVBi DEC-doped active layer (CIE coordinates x = 0.158, y = 0.169, {lambda}{sub peak} = 456 nm). The {eta}{sub ext} value is one the highest reported at this wavelength for blue OLEDs and is related to an internal quantum efficiency up to 20%.

  9. Highly efficient multilayer organic pure blue light emitting diodes with substituted carbazoles compounds in the emitting layer

    Science.gov (United States)

    Fischer, A.; Chénais, S.; Forget, S.; Castex, M.-C.; Adès, D.; Siove, A.; Denis, C.; Maisse, P.; Geffroy, B.

    2006-03-01

    Bright blue organic light-emitting diodes (OLEDs) based on 1, 4, 5, 8, N-pentamethylcarbazole (PMC) and on dimer of N-ethylcarbazole (N, N'-diethyl-3, 3'-bicarbazyl) (DEC) as emitting layers or as dopants in a 4, 4'-bis(2, 2'-diphenylvinyl)-1, 1'-biphenyl (DPVBi) matrix are described. Pure blue light with the CIE coordinates (x = 0.153, y = 0.100), electroluminescence efficiency ηEL of 0.4 cd A-1, external quantum efficiency ηext of 0.6% and luminance L of 236 cd m-2 (at 60 mA cm-2) were obtained with PMC as an emitter and the 2, 9-dimethyl-4, 7-diphenyl-1, 10-phenantroline (BCP) as a hole-blocking material in five-layer emitting devices. The highest efficiencies ηEL of 4.7 cd A-1 and ηext = 3.3% were obtained with a four-layer structure and a DPVBi DEC-doped active layer (CIE coordinates x = 0.158, y = 0.169, λpeak = 456 nm). The ηext value is one the highest reported at this wavelength for blue OLEDs and is related to an internal quantum efficiency up to 20%.

  10. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue

    Indian Academy of Sciences (India)

    Lílian S Peloi; Rafael R S Soares; Carlos E G Biondo; Vagner R Souza; Noboru Hioka; Elza Kimura

    2008-06-01

    The aim of this study was to propose the use of red light-emitting diode (LED) as an alternative light source for methylene blue (MB) photosensitizing effect in photodynamic therapy (PDT). Its effectiveness was tested against Staphylococcus aureus (ATCC 26923), Escherichia coli (ATCC 26922), Candida albicans (ATCC 90028) and Artemia salina. The maximum absorption of the LED lamps was at a wavelength of 663 nm, at intensities of 2, 4, 6 and 12 J.cm–2 for 10, 20, 30 and 60 min of exposure, respectively. Assays with and without LED exposure were carried out in plates containing MB at concentrations of 7 to 140.8 M for microorganisms and 13.35 to 668.5 M for microorganisms or microcrustaceans. The LED exposure induced more than 93.05%, 93.7% and 93.33% of growth inhibition for concentrations of 42.2 M for S. aureus (D-value=12.05 min) and 35.2 M for E. coli (D-value=11.51 min) and C. albicans (D-value=12.18 min), respectively after 20 min of exposure. LED exposure for 1 h increased the cytotoxic effect of MB against A. salina from 27% to 75%. Red LED is a promising light device for PDT that can effectively inhibit bacteria, yeast and microcrustacean growth.

  11. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Arto V. Nurmikko; Jung Han

    2007-03-31

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  12. An Improved Blue Polymer Light-Emitting Diode by Using Sodium Hydroxide/Ca/Al Cathode

    Institute of Scientific and Technical Information of China (English)

    MA Liang; XIE Zhi-Yuan; LIU Jun; YANG Jun-Wei; CHENG Yan-Xiang; WANG Li-Xiang; WANG Fo-Song

    2005-01-01

    @@ The performance of blue polymer light-emitting diodes (PLEDs) based on poly(9,9-dioctylfluorene) (PFO) is improved by introducing a thin layer of sodium hydroxide (NaOH) between the calcium cathode and the PFO emissive layer. By replacing the commonly used Ca/Al cathode by a NaOH (2.5nm)/Ca (10 nm)/Al cathode,the driving voltage is reduced from 8.3 V to 5.4 V and the light-emitting efficiency is enhanced from 0.46cd/A to 0. 72 cd/A for achieving a luminance of 500 cd/m2, respectively. Moreover, the device with NaOH/Ca/Al cathode shows a pure blue emission of (0.17, 0. 12) at high brightnesses. These improvements are attributed to introduction of a thin layer of NaOH that can lower the interfacial barrier and facilitate electron injection.

  13. Gap state related blue light emitting boron-carbon core shell structures

    Science.gov (United States)

    Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet; Kaur, Gurpreet; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2016-05-01

    Boron- carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.

  14. Efficient charge balance in blue phosphorescent organic light emitting diodes by two types of mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyung Jin; Lee, Ho Won; Lee, Song Eun; Sun, Yong; Hwang, Kyo Min; Yoo, Han Kyu; Lee, Sung Kyu [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan 336-795 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of)

    2015-07-31

    The authors have demonstrated a highly efficient and long-lifetime blue phosphorescent organic light emitting diode (PHOLED) that uses two types of mixed layers. The mixed layers play the role of carrier injection control and exciton generation zone extension. One of the layers is applied for mixing the hole transport layer (HTL) and host material at the HTL side for carrier injection control. The other works as a mixed electron transporting layer (ETL) and host material at the ETL side. The optimized blue PHOLED has been shown to achieve high performance owing to the mixed layer effects. It gave a maximum luminous efficiency of 25.55 cd/A, maximum external quantum efficiency of 13.05%, and lifetime of 7.24 h under 500 cd/m{sup 2}. These results indicate that applying mixed layers is a simple and efficient method that does not require significant structural change. - Highlights: • Highly efficient blue phosphorescent organic light-emitting diode (PHOLEDs) • Hole transporting layer consists with mixed layer for delayed hole injection • The blue PHOLEDs with long lifetime due to suppression of quenching process.

  15. Highly efficient non-doped blue organic light emitting devices based on anthracene–pyridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Haykir, Gulcin; Tekin, Emine; Atalar, Taner; Türksoy, Figen

    2013-12-02

    Four different 2-(10-aryl)anthracen-9-yl)pyridine derivatives 5a–d were synthesized via the Suzuki cross-coupling reaction. Photo-physical characteristics of these materials having strong electron donating or electron withdrawing groups were explored. Multilayer small molecule organic light emitting diodes without any dopant were fabricated in the following sequence: Indium tin oxide/4,4′-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (50 nm)/5a–d (30 nm)/4,7-diphenyl-1,10-phenanthroline (30 nm)/LiF/Al. The electroluminescent property of the device fabricated with 5d as an emitter exhibited a high external quantum efficiency of 3.80% (at around 1 mA/cm{sup 2}) with Commission Internationale De L'Eclairage coordinates of (0.14, 0.25). - Highlights: • Synthesis and characterization of 2-(10-aryl)anthracen-9-yl)pyridine derivatives • Thermal, photophysical and electrochemical properties of anthracene derivatives • Emitters from blue to greenish blue for organic light emitting device applications • Organic light emitting device fabrication and characterization of 2-(10-aryl)anthracen-9-yl)pyridine derivatives.

  16. Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Abbaszadeh, D.; Wetzelaer, G. A. H. [Molecular Electronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (Netherlands); Dutch Polymer Institute, P.O. Box 902, 5600 AX, Eindhoven (Netherlands); Nicolai, H. T. [TNO/Holst Centre, High Tech Campus 31, 5605 KN, Eindhoven (Netherlands); Blom, P. W. M., E-mail: blom@mpip-mainz.mpg.de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)

    2014-12-14

    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.

  17. High-Efficiency Blue Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives.

    Science.gov (United States)

    Lee, Sae Youn; Adachi, Chihaya; Yasuda, Takuma

    2016-06-01

    High-efficiency blue thermally activated delayed fluorescence (TADF) molecules, consisting of phenoxaphosphine oxide and phenoxathiin dioxide as acceptor units and 9,9-dimethylacridan as a donor unit, are reported. Maximum external electroluminescence quantum efficiencies of up to 20.5% are achieved in blue organic light-emitting diodes (OLEDs) by employing these materials as TADF emitters.

  18. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.; Lu, Z. H., E-mail: zhenghong.lu@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada); Wang, X.; Wang, S., E-mail: wangs@chem.queensu.ca [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario K7L 3N6 (Canada); Yang, C. [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  19. Novel Blue Light-emitting PPV-based Copolymer Containing Triazole and Carbazole Units

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel alternating conjugated copolymer containing triazole and carbazole units was synthesized by the Wittig reaction. The resulting bipolar conjugated polymer emits a pure light with good thermal stability, which is a promising candidate for polymer light emitting display.

  20. Synthesis, characterization and properties of novel blue light emitting discrete π-functional polymer consisting of carbazole and anthracene units and their applications in polymer light emitting diodes

    Science.gov (United States)

    Gopal, Ram; Huang, Yi-Chiang; Lee, Hsu-Feng; Chang, Ming-Sien; Huang, Wen-Yao

    2017-03-01

    A new novel blue light emitting polymer containing carbazole and anthracene derivatives has been successfully synthesized via polycondensation chemical reaction of diol and difluoro monomers. An effort has been made to raise the band gap of blue light emitter by lowering the conjugation extent in the backbone. The synthesized blue polymer exhibits decent solubility, good process ability, high thermal stability, high glass transition temperature (272 °C) and the decomposition temperature of 358 °C. The UV-vis absorption spectra and photoluminescence spectra depict that the light emission lies in blue region. The solid state photoluminescence (PL) spectra of the polymer (λPL=456 nm) shows red shift (Δλ = 37 nm) as compared with the corresponding solution PL spectra, presumably due to lower intermolecular distance in solid state. The multi-layered polymer light emitting diode was fabricated, using blue polymer with ITO/PEDOT: PSS/BP/LiF/Al architecture. The luminance-voltage (L-V) and current density-voltage (J-V) curves show a maximum luminance of 7544 cd m-2, a maximum emission efficiency of 4.2 cd A-1, a maximum current density of 453 mA cm-2 at a turn-on voltage of 4.5 V. Moreover, the PLED instigate pure blue EL emission, stable at 436 nm with outstanding CIE coordinates of (x = 0.15, y = 0.08), which is close to the pure NTSC blue coordinates of (0.14, 0.08). [Figure not available: see fulltext.

  1. Effects of spectral parameters on the light properties of red-green-blue white light-emitting diodes.

    Science.gov (United States)

    Xu, Mingsheng; Zhang, Haoxiang; Zhou, Quanbin; Wang, Hong

    2016-06-01

    Red-green-blue white light-emitting diodes (RGB-WLEDs) have great potential as commercial solid-state lighting devices, as well as visible light communication because of their high color-rendering index (CRI) and high response frequency. The quality of light of an RGB-WLED strongly depends on its spectral parameters. In this study, we fabricated RGB-WLEDs with red, blue, and green LEDs and measured the spectral power distribution (SPD). The experimental SPD is consistent with the calculated spectrum. We also measured the SPDs of LEDs with different peak wavelengths and extracted the spectral parameters, which were then used for modeling. We studied the effect of the wavelength and the full width at half-maximum (FWHM) on both the color rendering index and the luminous efficiency (LE) of the RGB-WLED using simulations. We find that the LE improves as the wavelength of the blue LED increases and the wavelength of the red LED decreases. When the wavelength of the green LED increases, the LE increases first, but later decreases. The CRI of the RGB-WLED increases with the wavelengths of the red, blue, and green LEDs first, but then decreases. The optimal wavelengths and FWHMs for maximum color-rendering and LE of the blue, green, and red LEDs are 466, 536, 606 nm; and 26.0, 34.0, and 19.5 nm, respectively.

  2. Blue emitting KSCN:xCe phosphor for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Chikte, Devayani, E-mail: devi.awade@gmail.com [G.N. Khalsa College, Matunga, Mumbai 400019 (India); Omanwar, S.K. [Department of Physics, S.G.B. Amravati University, Amravati (India); Moharil, S.V. [Department of Physics, R.T.M. Nagpur University, Nagpur 440010 (India)

    2014-01-15

    The intense blue emitting phosphor KSCN:xCe (x=0.005, 0.01, 0.02, 0.04) is synthesized by a simple, time saving, economical method of re-crystallization through aqueous solution at 353 K. Photoluminescence measurements showed that the said phosphor exhibits emission with good intensity peaking at 450 nm corresponding to d→f transitions of Ce{sup 3+} ion. The excitation spectra monitored at 450 nm shows small peak at 282 nm and broad intense excitation band peaking at 350 nm. The latter lies in near ultraviolet (350–410 nm) emission of UV LED. The phosphor KSCN:0.02Ce{sup 3+} shows CIE 1931 color coordinates as (0.1484, 0.0602) whereas the commercial blue phosphor BAM:Eu{sup 2+} shows the color co-ordinates as (0.1417, 0.1072), respectively, indicating better color purity for KSCN: 0.02Ce{sup 3+} compared to the BAM:Eu{sup 2+} phosphor. The color coordinates of KSCN: 0.02Ce{sup 3+} phosphor (0.1484, 0.0602) are nearer to the color coordinate for blue color suggested by the color systems EBUPAL/SECAM, sRGB Blue as well as Adobe blue(0.15, 0.06). -- Highlights: • Novel phosphor KSCN:xCe prepared for the first time. • Method is simple, time saving, economical, easy to handle. • Intense, blue, Characteristic Ce{sup 3+} emission at 450 nm. • nUV excitation, suitable for solid state lighting.

  3. Vertical thinking in blue light emitting diodes: GaN-on-graphene technology

    Science.gov (United States)

    Bayram, C.; Kim, J.; Cheng, C.-W.; Ott, J.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K.; Park, H.; Dimitrakopoulos, C.

    2014-03-01

    In this work, we show that a 2D cleave layer (such as epitaxial graphene on SiC) can be used for precise release of GaNbased light emitting diodes (LEDs) from the LED-substrate interface. We demonstrate the thinnest GaN-based blue LED and report on the initial electrical and optical characteristics. Our LED device employs vertical architecture: promising excellent current spreading, improved heat dissipation, and high light extraction with respect to the lateral one. Compared to conventional LED layer release techniques used for forming vertical LEDs (such as laser-liftoff and chemical lift-off techniques), our process distinguishes itself with being wafer-scalable (large area devices are possible) and substrate reuse opportunity.

  4. Improved efficiency in blue phosphorescent organic light-emitting diodes by the stepwise doping structure

    Science.gov (United States)

    Yang, Liping; Wang, Xiaoping; Kou, Zhiqi; Ji, Changyan

    2017-04-01

    The electro-optical properties of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be affected by the stepwise doping structure in the emitting layer (EML). A series of multi-EML devices with different doping concentration of blue dopant (FIrpic) are fabricated. The effect of the stepwise doping structure close to the electron transport layer is more obvious than that close to the hole transport layer. When the doping concentration increases gradually from the hole injection side to the electron injection side, the maximum values of the luminance, current and power efficiency can reach to 9745 cd/m2 (at 9 V), 32.0 cd/A and 25.1 lm/W in the device with the asymmetric tri-EML structure, which is improved by about 10% compared with that in the bi-EML device. When the number of the EML is four, the performance of the device becomes worse because of the interface effect resulting from different concentration of dopant.

  5. Influence of confinement layers in the emitting layer of the blue phosphorescent organic light-emitting diodes

    Science.gov (United States)

    Ji, Chang-Yan; Gu, Zheng-Tian; Kou, Zhi-Qi

    2016-10-01

    The electrical and optical properties of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be affected by the various structure of confinement layer in the emitting layer (EML). A series of devices with different electron or hole confinement layer (TCTA or Bphen) are fabricated, it is more effective to balance charge carriers injection for the device with the double electron confinement layers structure, the power efficiency and luminance can reach 17.7 lm/W (at 103 cd/m2) and 3536 cd/m2 (at 8 V). In case of the same double electron confinement layers, another series of devices with different profile of EML are fabricated by changing the confinement layers position, the power efficiency and luminance can be improved to 21.7 lm/W (at 103 cd/m2) and 7674 cd/m2 (at 8 V) when the thickness of EML separated by confinement layers increases gradually from the hole injection side to the electron injection side, the driving voltage can also be reduced.

  6. A new blue-emitting phosphor of Ce 3+-activated CaLaGa 3S 6O for white-light-emitting diodes

    Science.gov (United States)

    Yu, Ruijin; Wang, Jing; Zhang, Mei; Zhang, Jianhui; Yuan, Haibin; Su, Qiang

    2008-03-01

    A new blue-emitting chalcogenide phosphor, Ce3+-activated CaLaGa3S6O, with a high purity crystalline was synthesized by a two-step solid-state reaction. Photoluminescence properties of CaLaGa3S6O:Ce3+ were investigated comparatively with the commercial blue-emitting phosphor BaMgAl10O17:Eu2+. It shows a more perfect and efficient broad absorption band around the 398 nm emission of the commercial near ultraviolet light-emitting diodes (LEDs), and presents a comparable blue-emitting performance. The blue light-emitting LED with the CIE chromaticity coordinates of (0.147, 0.089) was successfully fabricated by precoating CaLaGa3S6O:Ce3+ phosphor onto a 398 nm-emitting InGaN chip. All these results indicate that CaLaGa3S6O:Ce3+ is a promising blue phosphor candidate for white LEDs.

  7. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes.

    Science.gov (United States)

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F

    2017-01-01

      This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance.

  8. LOW-POTENTIAL ELECTROSYNTHESIS OF CONDUCTING AND ELECTROACTIVE OLIGOCATECHOLBORANE WITH BLUE LIGHT-EMITTING PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Bao-yang Lu; Shuai Chen; Lei-qiang Qin; Yao Huang; Jing-kun Xu

    2013-01-01

    Novel conducting oligocatecholborane (OCOB) with electrical conductivity of 3.73 × 10-2 S cm-1 was successfully synthesized by low-potential electropolymerization of catecholborane (COB) in boron trifluoride diethyl etherate at 0.70 V versus Ag/AgC1.FT-IR and 1H-NMR spectra,together with the computational results,proved that COB was polymerized through the coupling at C(4) and C(5) positions and the reactive B-H bond was stable during the electrochemical polymerization.The resulting product was mainly composed of oligomers with short chain lengths by GPC and mass spectral results.The as-formed OCOB film showed good electrochemistry in monomer-free electrolytes with the electrochromic property from opaque blue to sap green.Fluorescence studies indicated that soluble OCOB can emit bright blue light under excitation of 365 nm UV light with the maximum emission at 396 nm and a fluorescence quantum yield of 0.21.The deposited OCOB also exhibited favorable thermal stability and smooth and compact morphology even at high magnifications.

  9. Blue and green organic light-emitting devices with various film thicknesses for color tuning

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Blue and green organic light-emitting devices with a structure of indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1 '-biphenyl-4,4'-diamine (NPB)/aluminum(Ⅲ) bis(2-methyl-8-quinolinato)4 -phenylphenolato (BAlq)/tris(8-hydroxyquinolate)-aluminum (Alq3)/Mg:Ag have been fabricated. Blue to green light emission has been achieved with the change of organic film thickness. Based on energy band diagram and charge carrier tunneling theory, it is concluded that the films of different thicknesses play a role as a color-tuning layer and the color-variable electroluminescence (EL) is ascribed to the modulation function within the charge carrier recombination zone. In the case of heterostructure devices with high performance, the observed EL spectra varies significantly with the thickness of organic films, which is resulted from the shift of recombination region site. It has not been hitherto indicated that the devices compose of identical components could be implemented to realize different color emission by changing the film thickness of functional layers.

  10. Efficiency of Blue Organic Light-emitting Diodes Enhanced by Employing an Exciton Feedback Layer

    Institute of Scientific and Technical Information of China (English)

    Qian-Qian Yu; Xu Zhang; Jing-Xuan Bi; Guan-Ting Liu; Qi-Wen Zhang; Xiao-Ming Wu; Yu-Lin Hua

    2016-01-01

    We report that a novel exciton feedback effect is observed by introducing the bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum (BAlq) inserted between the emitting layer (EML) and the electron transporting layer in blue organic light emitting diodes.As an exciton feedback layer (EFL),the BAlq does not act as a traditional hole blocking effect.The design of this kind of device structure can greatly reduce excitons' quenching due to accumulated space charge at the exciton formation interface.Meanwhile,the non-radiative energy transfer from EFL to the EML can also be utilized to enhance the excitons' formation,which is confirmed by the test of photolumimescent transient lifetime decay and electroluminescence enhancement of these devices.Accordingly,the optimal device presents the improved performances with the maximum current e~ciency of 4.2 cd/A and the luminance of 24600cd/m2,which are about 1.45 times and 1.75 times higher than those of device A (control device) without the EFL,respectively.Simultaneously,the device shows an excellent color stability with a tiny offset of the CIE coordinates (Ax =±0.003,Ay =±0.004) and a relatively lower efficiency roll-off of 26.2% under the driving voltage varying from 3 V to 10 V.

  11. Blue Light Emitting Diodes based on a partially conjugated Si-containing PPV-copolymer in a multilayer configuration

    NARCIS (Netherlands)

    Garten, F; Hilberer, A; Cacialli, F.; Esselink, F.J; van Dam, Y.; Schlatmann, A.R.; Friend, R.H.; Klapwijk, T.M; Hadziioannou, G

    1997-01-01

    Efficient blue Light Emitting Diodes (LEDs) based on a novel partially conjugated co-polymer (SiPPV) have been realized by a combination of techniques known to enhance the quantum efficiency of organic devices. The copolymer is homogeneously blended in a PVK-matrix to reduce the number of non-radiat

  12. Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01

    Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

  13. AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes

    Science.gov (United States)

    Gentle, A. R.; Yambem, S. D.; Burn, P. L.; Meredith, P.; Smith, G. B.

    2016-06-01

    Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissive material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.

  14. Ultraviolet Laser SQUID Microscope for GaN Blue Light Emitting Diode Testing

    Energy Technology Data Exchange (ETDEWEB)

    Daibo, M [Department of Electrical and Electronic Engineering, Faculty of Engineering, Iwate University, Morioka 020-8551 (Japan); Kamiwano, D [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Kurosawa, T [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Yoshizawa, M [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Tayama, N [Department of Electrical and Electronic Engineering, Faculty of Engineering, Iwate University, Morioka 020-8551 (Japan)

    2006-06-01

    We carried out non-contacting measurements of photocurrent distributions in GaN blue light emitting diode (LED) chips using our newly developed ultraviolet (UV) laser SQUID microscope. The UV light generates the photocurrent, and then the photocurrent induces small magnetic fields around the chip. An off-axis arranged HTS-SQUID magnetometer is employed to detect a vector magnetic field whose typical amplitude is several hundred femto-tesla. Generally, it is difficult to obtain Ohmic contacts for p-type GaN because of the low hole concentration in the p-type epitaxial layer and the lack of any available metal with a higher work function compared with the p-type GaN. Therefore, a traditional probecontacted electrical test is difficult to conduct for wide band gap semiconductors without an adequately annealed electrode. Using the UV-laser SQUID microscope, the photocurrent can be measured without any electrical contact. We show the photocurrent vector map which was reconstructed from measured magnetic fields data. We also demonstrate how we found the position of a defect of the electrical short circuits in the LED chip.

  15. High color rendering white light-emitting-diode illuminator using the red-emitting Eu(2+)-activated CaZnOS phosphors excited by blue LED.

    Science.gov (United States)

    Kuo, Te-Wen; Liu, Wei-Ren; Chen, Teng-Ming

    2010-04-12

    A red phosphor CaZnOS:Eu(2+) was synthesized by solid state reaction and has been evaluated as a candidate for white LEDs. For this material, the XRD, PL, PL excitation (PLE) and diffuse reflection spectra have also been investigated. CaZnOS:Eu(2+) reveals a broad absorption band and good color purity. By utilizing a mixture of red-emitting CaZnOS:Eu(2+), green-emitting (Ba,Sr)(2)SiO(4):Eu(2+) and yellow-emitting Y(3)Al(5)O(12):Ce(3+) as light converters, an intense white InGaN-based blue-LED (~460 nm) was fabricated to exhibit a high color-rendering index Ra of 85 at a correlated color temperature of 4870 K. Based on the results, we are currently evaluating the potential application of CaZnOS:Eu(2+) as a red-emitting blue-chip convertible phosphor.

  16. Optical Experiments Using Mini-Torches with Red, Green and Blue Light Emitting Diodes

    Science.gov (United States)

    Kamata, Masahiro; Matsunaga, Ai

    2007-01-01

    We have developed two kinds of optical experiments: color mixture and fluorescence, using mini-torches with light emitting diodes (LEDs) that emit three primary colors. Since the tools used in the experiments are simple and inexpensive, students can easily retry and develop the experiments by themselves. As well as giving an introduction to basic…

  17. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting

    Science.gov (United States)

    Brown, C. S.; Schuerger, A. C.; Sager, J. C.

    1995-01-01

    Light-emitting diodes (LEDs) are a potential irradiation source for intensive plant culture systems and photobiological research. They have small size, low mass, a long functional life, and narrow spectral output. In this study, we measured the growth and dry matter partitioning of 'Hungarian Wax' pepper (Capsicum annuum L.) plants grown under red LEDs compared with similar plants grown under red LEDs with supplemental blue or far-red radiation or under broad spectrum metal halide (MH) lamps. Additionally, we describe the thermal and spectral characteristics of these sources. The LEDs used in this study had a narrow bandwidth at half peak height (25 nm) and a focused maximum spectral output at 660 nm for the red and 735 nm for the far-red. Near infrared radiation (800 to 3000 nm) was below detection and thermal infrared radiation (3000 to 50,000 nm) was lower in the LEDs compared to the MH source. Although the red to far-red ratio varied considerably, the calculated phytochrome photostationary state (phi) was only slightly different between the radiation sources. Plant biomass was reduced when peppers were grown under red LEDs in the absence of blue wavelengths compared to plants grown under supplemental blue fluorescent lamps or MH lamps. The addition of far-red radiation resulted in taller plants with greater stem mass than red LEDs alone. There were fewer leaves under red or red plus far-red radiation than with lamps producing blue wavelengths. These results indicate that red LEDs may be suitable, in proper combination with other wavelengths of light, for the culture of plants in tightly controlled environments such as space-based plant culture systems.

  18. Excellent deep-blue emitting materials based on anthracene derivatives for non-doped organic light-emitting diodes

    Science.gov (United States)

    Wang, Zhiqiang; Liu, Wei; Xu, Chen; Ji, Baoming; Zheng, Caijun; Zhang, Xiaohong

    2016-08-01

    Two deep-blue emitting materials 2-tert-butyl-9,10-bis(3,5-diphenylphenyl)anthracene (An-1) and 2-tert-butyl-9,10-bis(3,5-diphenylbiphenyl-4‧-yl)anthracene (An-2) were successfully synthesized by the Pd-catalyzed Suzuki coupling reaction. Both of these compounds have high thermal stabilities and show strong deep-blue emission as solid-state film as well as in n-hexane solution. Two non-doped electroluminescent devices employing An-1 and An-2 as emitting layers were fabricated by vacuum vapor deposition. These devices exhibited highly efficient and stable deep-blue emission with high color purity. The CIE coordinate and maximum EQE of An-1 based device are 4.2% and (0.16, 0.06), respectively. Device based on An-2 achieved a maximum EQE of 4.0% and a CIE coordinate of (0.16, 0.10).

  19. Phototransferred thermoluminescence from alpha-Al sub 2 O sub 3 :C using blue light emitting diodes

    CERN Document Server

    Bulur, E

    1999-01-01

    Phototransferred thermoluminescence (PTTL) from alpha-Al sub 2 O sub 3 :C single crystals was studied using a blue light emitting diode (LED) for phototransfer of charges from deep traps to the main dosimetry trap. The dose response was found to be linear in the region from approx 5 mGy to approx 5 Gy. It was observed that the corresponding deep traps were located near 500 deg. C and heating to temperatures >600 deg. C removes the PTTL effect induced by the light from the blue LED. The thermal activation energy of the source traps involved in the PTTL production was calculated as 3.23 eV.

  20. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  1. High-efficiency pyrene-based blue light emitting diodes: Aggregation suppression using a calixarene 3D-scaffold

    KAUST Repository

    Chan, Khaileok

    2012-01-01

    An efficient blue light emitting diode based on solution processable pyrene-1,3-alt-calix[4]arene is demonstrated, providing a record current efficiency of 10.5 cd A -1 in a simple non-doped OLED configuration. Complete suppression of pyrene aggregation in the solid state is achieved by controlling chromophore dispersion using the 1,3-alt-calix[4]arene scaffold. © 2012 The Royal Society of Chemistry.

  2. Organic light-emitting diodes based on 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit as the deep-blue emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ji Young; Lee, Seul Bee [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Seok Jae [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-02-27

    A series of 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit, which prevented molecular aggregation and self-quenching effect, was designed and synthesized. By using various bridges between the 9-(2-naphthyl)anthracene group and the triphenylsilane unit, five deep-blue emitters were obtained and applied as non-doped emitting materials in organic light-emitting diodes (OLEDs) with a device structure of indium–tin-oxide (ITO) (180 nm)/4,4-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPB) (50 nm)/emitting materials (30 nm)/4,7-diphenyl-1,10-phenanthroline (Bphen) (30 nm)/lithium quinolate (Liq) (2 nm)/Aluminium (100 nm). All devices showed blue emissions and their electroluminescence efficiencies are sensitive to the structural changes of the emitting materials. In particular, a device using 9-(2-naphthalenyl)-10-[6-(triphenylsilyl)-2-naphthalenyl]-anthracene (4) exhibited high luminous, power and quantum efficiencies of 2.28 cd/A, 1.42 lm/W and 2.40% at 20 mA/cm{sup 2}, respectively, and this device showed the deep blue emission with the CIE coordinates of (0.16, 0.10) at 6.0 V. - Highlights: • We synthesized 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit. • We study the conjugation-length effect on the electroluminescence properties. • The bulky triphenylsilane-anthracene derivatives show resistance to self-aggregation.

  3. Electron-enhanced hole injection in blue polyfluorene-based polymer light-emitting diodes

    NARCIS (Netherlands)

    Woudenbergh, T. van; Wildeman, J.; Blom, P.W.M.; Bastiaansen, J.J.A.M.; Langeveld-Voss, B.M.W.

    2004-01-01

    It has recently been reported that, after electrical conditioning, an ohmic hole contact is formed in poly(9,9-dioctylfluorene) (PFO)-based polymer light-emitting diodes (PLED), despite the large hole-injection barrier obtained with a poly(styrene sulfonic acid)-doped poly(3,4-ethylenedioxythiophene

  4. Light-Emitting-Diodes based on ordered InGaN nanocolumns emitting in the blue, green and yellow spectral range

    Science.gov (United States)

    Bengoechea-Encabo, A.; Albert, S.; Lopez-Romero, D.; Lefebvre, P.; Barbagini, F.; Torres-Pardo, A.; Gonzalez-Calbet, J. M.; Sanchez-Garcia, M. A.; Calleja, E.

    2014-10-01

    The growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN (planar) layers of similar composition and thickness. Electroluminescence spectra show a very small blue shift with increasing current (almost negligible in the yellow device) and line widths slightly broader than those of state-of-the-art InGaN quantum wells.

  5. Improving color rendering of Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} white light-emitting diodes based on dual-blue-emitting active layers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian-Wen; Zhang, Yong; Li, Shu-Ti; Yan, Qi-Rong; Zheng, Shu-Wen; He, Miao; Fan, Guang-Han [Institute of Optoelectronic Materials and Technology, South China Normal University, Tianhe District, Guangzhou 510631 (China)

    2011-08-15

    An InGaN/GaN blue-violet light-emitting diode (LED) structure and an InGaN/GaN blue LED structure were grown sequentially on the same sapphire substrate by metal-organic chemical vapor deposition (MOCVD). At the low injection current, the intensity ratio of blue-violet light to blue light was almost constant, while the blue light intensity increased gradually with increasing injection current when the latter was more than 40 mA. High color rendering has been realized for a Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} phosphor-converted white LED based on dual-blue-emitting active layers relative to a single blue-emitting active layer at the same injection current. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Blue InGaN light-emitting diodes with dip-shaped quantum wells

    Institute of Scientific and Technical Information of China (English)

    Lu Tai-Ping; Wang Hai-Long; Yang Xiao-Dong; LiShu-Ti; Zhang Kang; Liu Chao; Xiao Guo-Wei; Zhou Yu-Gang; ZhengShu-Wen; Yin Yi-An; Wu Le-Juan

    2011-01-01

    InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum wells are numerically investigated by using the APSYS simulation software.It is found that the structure with dipshaped quantum wells shows improved light output power,lower current leakage and less efficiency droop.Based on numerical simulation and analysis,these improvements on the electrical and the optical characteristics are attributed mainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).

  7. Germafluorene conjugated copolymer——synthesis and applications in blue-light-emitting diodes and host materials

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A germafluorene-fluorene copolymer was successfully obtained via Suzuki polymerization.The ger-manium containing copolymer has an efficient blue light emission under the ultraviolet irradiation and its single layer EL device showed the highest brightness of 2630 cd/m2 at 7.8 V and the highest effi-ciency of 0.301 lm/W at 6.2 V.The copolymer can also serve as the host material for phosphorescent metal complexes with the maximum brightness of 15600 cd/m2 and the quantum efficiency of 8.5%.The results are quite promising and promise that as its analogs of fluorene and silafluorene,germafluorene is an excellent building block for blue light-emitting polymers and host materials.

  8. Germafluorene conjugated copolymer——synthesis and applications in blue-light-emitting diodes and host materials

    Institute of Scientific and Technical Information of China (English)

    CHEN RunFeng; ZHU Rui; ZHENG Chao; LIU ShuJuan; FAN QuLi; HUANG Wei

    2009-01-01

    A germafluorene-fluorene copolymer was successfully obtained via Suzuki polymerization. The ger-manium containing copolymer has an efficient blue light emission under the ultraviolet irradiation and its single layer EL device showed the highest brightness of 2630 cd/m2 at 7.8 V and the highest effi-ciency of 0.301 Im/W at 6.2 V. The copolymer can also serve as the host material for phosphorescent metal complexes with the maximum brightness of 15600 cd/m2 and the quantum efficiency of 8.5%. The results are quite promising and promise that as its analogs of fluorene and silafluorene, germafluorene is an excellent building block for blue light-emitting polymers and host materials.

  9. Doped and non-doped organic light-emitting diodes based on a yellow carbazole emitter into a blue-emitting matrix

    CERN Document Server

    Choukri, H; Forget, S; Chenais, S; Castex, M C; Geffroy, B; Ades, D; Siove, A; Choukri, Hakim; Fischer, Alexis; Forget, Sebastien; Chenais, Sebastien; Castex, Marie-Claude; Geffroy, Bernard; Ades, Dominique; Siove, Alain

    2007-01-01

    A new carbazole derivative with a 3,3'-bicarbazyl core 6,6'-substituted by dicyanovinylene groups (6,6'-bis(1-(2,2'-dicyano)vinyl)-N,N'-dioctyl-3,3'-bicarbazyl; named (OcCz2CN)2, was synthesized by carbonyl-methylene Knovenagel condensation, characterized and used as a component of multilayer organic light-emitting diodes (OLEDs). Due to its -donor-acceptor type structure, (OcCz2CN)2 was found to emit a yellow light at max=590 nm (with the CIE coordinates x=0.51; y = 0.47) and was used either as a dopant or as an ultra-thin layer in a blue-emitting matrix of 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi). DPVBi (OcCz2CN)2-doped structure exhibited, at doping ratio of 1.5 weight %, a yellowish-green light with the CIE coordinates (x = 0.31; y = 0.51), an electroluminescence efficiency EL=1.3 cd/A, an external quantum efficiency ext= 0.4 % and a luminance L= 127 cd/m2 (at 10 mA/cm2) whereas for non-doped devices utilizing the carbazolic fluorophore as a thin n...

  10. Increasing the extraction efficiency of blue light emitting diodes via laser patterned Ga-polar p-GaN surface

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Zhiyuan; Liu, Duo; Zhang, Baitao; He, Jingliang; Liu, Hong; Xu, Xiangang [State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100 (China)

    2011-09-15

    We report here the laser patterned Ga-polar p-GaN surface to improve the light extraction efficiency of GaN based blue light emitting diodes (LEDs) by using a pulsed UV laser in combination with a mirror scanner. The patterns created on p-GaN are confirmed to be suitable for light extraction and a 34.9% enhancement of the electroluminescent (EL) emission intensity has been obtained. Detailed discussions on the effects of laser on LEDs and the angular dependence of the emission profile are also provided. This method could be extended to other III-V LEDs and LEDs on SiC for fabricating highly efficient LEDs. The schematic of laser fabrication equipment, SEM image of patterned p-GaN surface and guided-modes extraction photograph of patterned GaN epilayer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. The Comparison of the Efficacy of Blue Light-Emitting Diode Light and 980-nm Low-Level Laser Light on Bone Regeneration.

    Science.gov (United States)

    Dereci, Ömür; Sindel, Alper; Serap Toru, Havva; Yüce, Esra; Ay, Sinan; Tozoğlu, Sinan

    2016-11-01

    The aim of this study is to histologically compare effects of blue light-emitting diode (LED) light (400-490 nm) and Ga-Al-As low-level diode laser light (980 nm) on bone regeneration of calvarial critical-sized defects in rats. Thirty Wistar Albino rats were included in the study. The experimental groups were as follows: blue LED light (400-490 nm) group (LED); 980-nm low-level laser light group (LL); and no-treatment, control group (CL). A critical-sized defect of 8 mm was formed on calvaria of rats. Each animal was sacrificed 21 days after defect formation. Calvarias of all rats were dissected and fixated for histological examination. Histomorphometric measurements of total horizontal length of the newly produced bone tissue, total vertical length of the newly produced bone tissue, and diameter of the newly produced longest bone trabecula were performed with a computer program in micrometers. There was a statistically significant increase in the total horizontal length and total vertical length in LL and LED groups compared to that in the CL group (P  0.05). A statistically significant difference was observed in the longest bone trabecula and LL groups compared to that in CL (P  0.05). In conclusion, blue LED light significantly enhances bone regeneration in critical-sized defects when compared with CL group, but does not have a statistically significant effect on bone regeneration when compared with 980-nm low-level laser light.

  12. Synthesis of Two Blue-light - emitting Complexes with Schiff Base Calixarene as the Ligand

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Two new blue luminescent zinc and beryllium complexes with Schiff base calixarene derivative as the ligand were prepared. Their luminescent properties were determined, which indicated that they had strong blue fluorescent properties. They also had good solubility and film formation. These new complexes can be used as blue organic electroluminescent materials (OELMs) in organic electroluminescent devices.

  13. Synthesis of a Novel Blue- light- emitting Polymer Material Bearing Coumarin Pendants

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel blue luminescent polymer bearing coumarin pendants was prepared. Its luminescent properties were determined indicating that it had strong blue fluorescent properties and good film formation ability. This novel polymer can be used as a blue organic electroluminescent material (OELM) in organic electroluminescent devices.

  14. Efficiency droop alleviation in blue light emitting diodes using the InGaN/GaN triangular-shaped quantum well

    Institute of Scientific and Technical Information of China (English)

    Chen Zhao; Hu Chen Wei-Hua; Xiao-Dong; Yang Wei; Liu Lei; Wan Cheng-Hao; Li Lei; He Yong-Fa; Liu Ning-Yang; Wang Lei; Li Din

    2012-01-01

    The InGaN/GaN blue light emitting diode (LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions (above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.

  15. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light

    Science.gov (United States)

    Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.

    1997-01-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  16. Sputtering of ZnO buffer layer on Si for GaN blue light emitting materials

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The preparation of high quality ZnO/Si substrates for the growth of GaN blue light emitting materials is considered. ZnO thin films have been deposited on Si(100) and Si(111) substrates by conventional magnetron sputtering. Morphology, crystallinity and c-axis preferred orientation of ZnO thin films have been investigated by transmitting electron microscopy (TEM), X-ray diffraction (XRD) and X-ray rocking curve (XRC). It is proved that the ZnO thin films have perfect structure. The full-width-at-half-maximum (FWHM) of the ZnO(002) XRC of these films is about 1°, while the minimum is 0.353°. This result is better than the minimum FWHM (about 2°) reported by other research groups. Moreover, comparison and discussion are given on film structure of ZnO/Si(100) and ZnO/Si(111)

  17. Sputtering of ZnO buffer layer on Si for GaN blue light emitting materials

    Institute of Scientific and Technical Information of China (English)

    贺洪波; 范正修; 姚振钰; 汤兆胜

    2000-01-01

    The preparation of high quality ZnO/Si substrates for the growth of GaN blue light emitting materials is considered. ZnO thin films have been deposited on Si (100) and Si (111) substrates by conventional magnetron sputtering. Morphology, crystallinity and c-axis preferred orientation of ZnO thin films have been investigated by transmitting electron microscopy (TEM), X-ray diffraction (XRD) and X-ray rocking curve (XRC). It is proved that the ZnO thin films have perfect structure. The full-width-at-half-maximum (FWHM) of the ZnO(002) XRC of these films is about 1°, while the minimum is 0.353°. This result is better than the minimum FWHM (about 2°) reported by other research groups. Moreover, comparison and discussion are given on film structure of ZnO/Si(100) and ZnO/Si(111).

  18. Performance improvement of InGaN blue light-emitting diodes with several kinds of electron-blocking layers

    Institute of Scientific and Technical Information of China (English)

    Chen Jun; Fan Guang-Han; Zhang Yun-Yan; Pang Wei; Zheng Shu-Wen; Yao Guang-Rui

    2012-01-01

    The performance of lnGaN blue light-emitting diodes(LEDs)with different kinds of electron-blocking layers is investigated numerically.We compare the simulated emission spectra,electron and hole concentrations,euergy band diagrams,electrostatic fields,and internal quantum efficiencies of the LEDs.The LED using A1GaN with gradually increasing Al content from 0% to 20% as the electron-blocking layer(EBL)has a strong spectrum intensity,mitigates efficiency droop,and possesses higher output power compared with the LEDs with the other three types of EBLs.These advantages could be because of the lower electron leakage current and more effective hole injection.The optical performance of the specifically designed LED is also improved in the case of large injection current.

  19. Electrical and Optical Properties of InGaN/AIGaN Double Heterostructure Blue Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    SHEN Bo; SHI Hong-Tao; ZHANG Rong; CHEN Zhi-Zhong; ZHENG You-Dou

    2001-01-01

    Electrical and optical properties of InGaN/AlGaN double heterostructure blue light-emitting diodes were inves tigated. Measurement of the forward bias current-voltage behaviour of the device demonstrated a departure from the Shockley model of a p-n diode, and it was observed that the dominant mechanism of carrier transport across the junction is associated with carrier tunnelling. Electroluminescence experiments indicated that there was a main emission band around 2.80eV and a relatively weaker peak at 3.2eV. A significant blueshift of the optical emission band was observed, which was consistent with the tunnelling character of electrical characteris tics. Furthermore, the degradation in I - V characteristics and the low resistance ohmic short of the device were observed.

  20. Improved color rendering of phosphor-converted white light-emitting diodes with dual-blue active layers and n-type AlGaN layer.

    Science.gov (United States)

    Yan, Qi-Rong; Zhang, Yong; Li, Shu-Ti; Yan, Qi-Ang; Shi, Pei-Pei; Niu, Qiao-Li; He, Miao; Li, Guo-Ping; Li, Jun-Rui

    2012-05-01

    An InGaN/GaN blue light-emitting diode (LED) structure and an InGaN/GaN blue-violet LED structure were grown sequentially on the same sapphire substrate by metal-organic chemical vapor deposition. It was found that the insertion of an n-type AlGaN layer below the dual blue-emitting active layers showed better spectral stability at the different driving current relative to the traditional p-type AlGaN electron-blocking layer. In addition, color rendering index of a Y3Al5O12:Ce3+ phosphor-converted white LED based on a dual blue-emitting chip with n-type AlGaN reached 91 at 20 mA, and Commission Internationale de L'Eclairage coordinates almost remained at the same point from 5 to 60 mA.

  1. Deep-blue phosphorescent organic light-emitting diode with external quantum efficiency over 30% using novel Ir complex

    Science.gov (United States)

    Inoue, Hideko; Yamada, Yui; Ohsawa, Nobuharu; Seo, Satoshi; Hosoumi, Shunsuke; Watabe, Takeyoshi; Mitsumori, Satomi; Kido, Hiromitsu

    2016-09-01

    We report a newly developed deep-blue phosphorescent iridium complex exhibiting a narrow emission spectrum. The use of this complex resulted in a deep-blue organic light-emitting diode (OLED) with an external quantum efficiency (EQE) exceeding 30%. Two iridium complexes with a 4H-1,2,4-triazole ligand which has an adamantyl group at the 4-position were synthesized, with the resulting effects of the adamantyl group on photoluminescence (PL) behavior investigated. [Ir(Adm1)3] having a 1-adamantyl group did not exhibit any emissions at room temperature, whereas [Ir(Adm2)3] having a 2-adamantyl group exhibited a blue emission with a peak wavelength of 459 nm and a high PL quantum yield of 0.94. Structural transformations between the ground state and excited state were estimated by molecular orbital calculations, which suggests that [Ir(Adm1)3] undergoes a considerably more extensive change than [Ir(Adm2)3]. It is therefore probable that [Ir(Adm1)3] ultimately experiences thermal deactivation owing to structural relaxation. Furthermore, an OLED was fabricated using [Ir(Adm2)3] as a dopant. The associated electroluminescence spectrum had an emission peak at 457 nm and a relatively small shoulder peak at 485 nm, which are consistent with the PL spectrum. A narrowed emission spectrum with a full width at half maximum of 58 nm was obtained, leading to a deep-blue emission with high color purity (CIE, x = 0.15, y = 0.22). This device ultimately exhibited an extremely high EQE of 32% at 2 mA/cm2, which was likely attributable to an increase in outcoupling efficiency via molecular orientation.

  2. The Investigation on Color Purity of Blue Organic Light-Emitting Diodes (BOLED by Hole-Blocking Layer

    Directory of Open Access Journals (Sweden)

    Kan-Lin Chen

    2013-01-01

    Full Text Available Organic light-emitting diodes (OLEDs with triple hole-blocking layer (THBL structure, which consist of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP, 4,4′-bis(2,2′diphenyl vinil-1,1′-biphenyl (DPVBi, and (4,4′-N,N′-dicarbazolebiphenyl (CBP, have been fabricated. Regardless of applied voltage variation, the luminous efficiency of the OLEDs with THBL structure was increased by 41% as compared with the dual hole-blocking layer (DHBL structure. The CIE coordinates of (0.157, 0.111 of device with THBL structure are close to pure blue emission than that of other devices of DHBL. There is a coordinate with the slight shift of ±Δx,y = (0.001, 0.008 for the device with THBL structure during the applied voltage of 6–9 V. The results indicate that the excitons can be effectively confined in the emitting layer of device, leading to an enhancement of luminance efficiency and more stable coordinate.

  3. Sodium cholate-templated blue light-emitting Ag subnanoclusters: in vivo toxicity and imaging in zebrafish embryos.

    Science.gov (United States)

    Chandirasekar, Shanmugam; Chandrasekaran, Chandramouli; Muthukumarasamyvel, Thangavel; Sudhandiran, Ganapasam; Rajendiran, Nagappan

    2015-01-28

    We report a novel green chemical approach for the synthesis of blue light-emitting and water-soluble Ag subnanoclusters, using sodium cholate (NaC) as a template at a concentration higher than the critical micelle concentration (CMC) at room temperature. However, under photochemical irradiation, small anisotropic and spherically shaped Ag nanoparticles (3-11 nm) were obtained upon changing the concentration of NaC from below to above the CMC. The matrix-assisted laser desorption ionization time-of-flight and electrospray ionization mass spectra showed that the cluster sample was composed of Ag4 and Ag6. The optical properties of the clusters were studied by UV-visible and luminescence spectroscopy. The lifetime of the synthesized fluorescent Ag nanoclusters (AgNCs) was measured using a time-correlated single-photon counting technique. High-resolution transmission electron microscopy was used to assess the size of clusters and nanoparticles. A protocol for transferring nanoclusters to organic solvents is also described. Toxicity and bioimaging studies of NaC templated AgNCs were conducted using developmental stage zebrafish embryos. From the survival and hatching experiment, no significant toxic effect was observed at AgNC concentrations of up to 200 μL/mL, and the NC-stained embryos exhibited blue fluorescence with high intensity for a long period of time, which shows that AgNCs are more stable in living system.

  4. Blue emitting halogen-phenoxy substituted 1,8-naphthalimides for potential organic light emitting diode applications

    Science.gov (United States)

    Ulla, Hidayath; Raveendra Kiran, M.; Garudachari, B.; Satyanarayan, M. N.; Umesh, G.; Isloor, A. M.

    2014-11-01

    In this paper, we report the synthesis and characterization of six 1,8-naphthalimides [4a-4c and 5a-5c] obtained by the substitution of electron donating halogen-phenoxy groups at the C-4 position. The derivatives were characterized using 1H NMR, 13C NMR, mass spectra, FT-IR, single crystal XRD; photo-physical, thermal, surface morphological and electrochemical properties were also investigated. The derivatives exhibit deep blue photoluminescence in the range 414-423 nm (in CHCl3) and 457-466 nm (in thin film state) on UV excitation with high Stokes' shifts and good chromaticity. The TGA and DSC analysis showed that the derivatives possess good thermal stability (271-284 °C) and melting points (138-201 °C). The HOMO and LUMO energy levels estimated by cyclic voltammetry are in the range 6.21-6.34 eV and 3.31-3.41 eV respectively corresponding to energy band gaps of 2.98-3.15 eV. These energy values are relatively higher than the commonly used electron transporting materials. The optical and electronic properties of the derivatives were tuned by the introduction of different electron donating halogen-phenoxy groups through C-4 position of the naphthalimide moiety. The emissive and electron-transporting properties of the naphthalimide derivative 4a were studied by fabricating a bi-layer and tri-layer devices. Further a phosphorescent device with 4a as electron transport layer (ETL) exhibited superior performance than the device without any ETL and was comparable with the device using standard Alq3 as ETL. These results indicate that the synthesized naphthalimide derivatives could play an important role in the development of OLEDs.

  5. Hybrid white organic light-emitting devices based on phosphorescent iridium-benzotriazole orange-red and fluorescent blue emitters

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhen-Yuan, E-mail: xiazhenyuan@hotmail.com [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Su, Jian-Hua [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Chang, Chi-Sheng; Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 300 (China)

    2013-03-15

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange-red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N{sup 1},C{sup 3}] iridium acetylacetonate, Ir(TBT){sub 2}(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1 Prime ;4 Prime ,1 Double-Prime ]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT){sub 2}(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N Prime -(4,4 Prime -(1E,1 Prime E)-2,2 Prime -(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange-red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3} ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: Black-Right-Pointing-Pointer An iridium-based orange-red phosphor Ir(TBT){sub 2}(acac) was applied in hybrid white OLEDs. Black-Right-Pointing-Pointer Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. Black-Right-Pointing-Pointer Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  6. Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

    Science.gov (United States)

    Tuan, Pham Anh; Thwe, Aye Aye; Kim, Yeon Bok; Kim, Jae Kwang; Kim, Sun-Ju; Lee, Sanghyun; Chung, Sun-Ok; Park, Sang Un

    2013-12-18

    In this study, the optimum wavelengths of light required for carotenoid biosynthesis were determined by investigating the expression levels of carotenoid biosynthetic genes and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.) exposed to white, blue, and red light-emitting diodes (LEDs). Most carotenoid biosynthetic genes showed higher expression in sprouts irradiated with white light at 8 days after sowing than in those irradiated with blue and red lights. The dominant carotenoids in tartary buckwheat sprouts were lutein and β-carotene. The richest accumulation of total carotenoids was observed in sprouts grown under white light (1282.63 μg g(-1) dry weight), which was relatively higher than that in sprouts grown under blue and red lights (940.86 and 985.54 μg g(-1), respectively). This study might establish an effective strategy for maximizing the production of carotenoids and other important secondary metabolites in tartary buckwheat sprouts by using LED technology.

  7. Hyperbranched polymer-cored star polyfluorenes as blue light-emitting materials

    Institute of Scientific and Technical Information of China (English)

    HAN Yang; SUN MingHao; FEI ZhuPing; BO ZhiShan

    2008-01-01

    Hyperbranched polymer-cored star polyfluorenes with high molecular weights and narrow molecular weight distribution were prepared by palladium-catalyzed one-pot Suzuki polycondensation of multi-functional cores and an AB-type monomer. The optical, electrochemical and thermal properties of the hyperbranched polymer-cored star polymers were investigated. These polymers exhibited good ther-mal and color stability in solid state, and there was no significant blue-green emission after the poly-mers had been annealed in air for 2.5 h. Their three-dimensional hyperbranched structures could ef-fectively reduce the aggregation of the peripheral rigid linear conjugated polyfluorene chains.

  8. Electrical and Optical Properties of a High-Voltage Large Area Blue Light-Emitting Diode

    Science.gov (United States)

    Wang; Wei; Cai; Yong; Huang; Wei; Li; Hai-ou; Zhang; Bao-shun

    2013-08-01

    In this paper, we report a single-chip large area (5×5 mm2) InGaN/GaN blue LED with the optical output power of 4.3 W. This device consists of 24-stages small LED-cells that are connected in series. Driven at 500 mA, the forward voltage is measured to be 87.2 V with a reverse current of 2.63×10-9 A at -120 V. The comparison of two different cooling schemes, i.e., with/without fan cooling, was made; the results suggest that the thermal convection between the heat sink and air is more critical. A simple white LED package was also tried by covering silicone gel mixed with yttrium aluminum garnet (YAG) phosphor. The luminous flux and the correlated color temperature (CCT) were measured to be 1090 lm and 5082 K, when the device was driven at 500 mA. This report also demonstrated the feasibility of the application for camera flash.

  9. BLUE LIGHT-EMITTING COIL-ROD-COIL BLOCK OLIGOMERS WITH RIGID p-HEXAPHENYL AS CHROMOPHORE

    Institute of Scientific and Technical Information of China (English)

    Jiang-feng Fan; Hai-feng He; Xin-hua Wan; Xiao-fang Chen; Qi-feng Zhou

    2006-01-01

    The synthesis and characterization of coil-rod-coil triblock oligomers, poly(ethylene oxide)-b-p-hexaphenyl-b-poly(ethylene oxide), are described. The number of repeating ethylene oxide units in each flexible block are 3 (EO3-PHP-EO3), 8 (EO8-PHP-EO8), 13 (EO13-PHP-EO13), and 17 (EO17-PHP-EO17), respectively. The structures of these oligomers are confirmed by 1H-NMR, 13C-NMR, EA, and MALDI-TOF mass spectrometry. The introduction of soluble poly(ethylene oxide) coils to the rigid p-hexaphenyl segment significantly improves the solubility of the oligomers, so they can form smooth thin films by spin-coating from their solutions. The oligomers are quite thermally stable and have 1% weight loss temperatures at above 340℃ under nitrogen. They can emit strong blue light in both solution and film state, and have fluorescence quantum yields of about 40% in chloroform. They are expected to have potential applications in optoelectronic devices.

  10. Adjunctive dental therapy via tooth plaque reduction and gingivitis treatment by blue light-emitting diodes tooth brushing

    Science.gov (United States)

    Genina, Elina A.; Titorenko, Vladimir A.; Belikov, Andrey V.; Bashkatov, Alexey N.; Tuchin, Valery V.

    2015-12-01

    The efficacy of blue light-emitting toothbrushes (B-LETBs) (405 to 420 nm, power density 2 mW/cm2) for reduction of dental plaques and gingival inflammation has been evaluated. Microbiological study has shown the multifactor therapeutic action of the B-LETBs on oral pathological microflora: in addition to partial mechanical removal of bacteria, photodynamic action suppresses them up to 97.5%. In the pilot clinical studies, subjects with mild to moderate gingivitis have been randomly divided into two groups: a treatment group that used the B-LETBs and a control group that used standard toothbrushes. Indices of plaque, gingival bleeding, and inflammation have been evaluated. A significant improvement of all dental indices in comparison with the baseline (by 59%, 66%, and 82% for plaque, gingival bleeding, and inflammation, respectively) has been found. The treatment group has demonstrated up to 50% improvement relative to the control group. We have proposed the B-LETBs to serve for prevention of gingivitis or as an alternative to conventional antibiotic treatment of this disease due to their effectiveness and the absence of drug side effects and bacterial resistance.

  11. Enhanced forward efficiency of Y3Al5O12:Ce3+ phosphor from white light-emitting diodes using blue-pass yellow-reflection filter.

    Science.gov (United States)

    Oh, Jeong Rok; Cho, Sang-Hwan; Lee, Yong-Hee; Do, Young Rag

    2009-04-27

    This paper reports a simple approach for the design of blue-excitation-light passing and phosphor-yellow-emission-light reflecting dielectric multilayers to recycle the backward emission of Y(3)Al(5)O(12):Ce(3+) (YAG:Ce) yellow phosphors on top of a blue InGaN light-emitting diode (LED) cup. The insertion of modified quarter-wave films of alternate high- and low-refractive index dielectric films (TiO(2)/SiO(2)) into the interface between a YAG:Ce phosphor layer and glass substrate resulted in 1.64 and 1.95 fold increase in efficiency and luminous efficacy of the forward white emission compared with that of a conventional phosphor on top of a blue LED cup with a lower correlated color temperature (< 4000 K).

  12. In vitro and in vivo efficacy of new blue light emitting diode phototherapy compared to conventional halogen quartz phototherapy for neonatal jaundice.

    Science.gov (United States)

    Chang, Yun Sil; Hwang, Jong Hee; Kwon, Hyuk Nam; Choi, Chang Won; Ko, Sun Young; Park, Won Soon; Shin, Son Moon; Lee, Munhyang

    2005-02-01

    High intensity light emitting diodes (LEDs) are being studied as possible light sources for the phototherapy of neonatal jaundice, as they can emit high intensity light of narrow wavelength band in the blue region of the visible light spectrum corresponding to the spectrum of maximal bilirubin absorption. We developed a prototype blue gallium nitride LED phototherapy unit with high intensity, and compared its efficacy to commercially used halogen quartz phototherapy device by measuring both in vitro and in vivo bilirubin photodegradation. The prototype device with two focused arrays, each with 500 blue LEDs, generated greater irradiance than the conventional device tested. The LED device showed a significantly higher efficacy of bilirubin photodegradation than the conventional phototherapy in both in vitro experiment using microhematocrit tubes (44+/-7% vs. 35+/-2%) and in vivo experiment using Gunn rats (30+/-9% vs. 16+/-8%). We conclude that high intensity blue LED device was much more effective than conventional phototherapy of both in vitro and in vivo bilirubin photodegradation. Further studies will be necessary to prove its clinical efficacy.

  13. Highly stable three-band white light from an InGaN-based blue light-emitting diode chip precoated with (oxy)nitride green/red phosphors

    Science.gov (United States)

    Yang, Chih-Chieh; Lin, Chih-Min; Chen, Yi-Jung; Wu, Yi-Tsuo; Chuang, Shih-Ren; Liu, Ru-Shi; Hu, Shu-Fen

    2007-03-01

    A three-band white light-emitting diode (LED) was fabricated using an InGaN-based blue LED chip that emits 455nm blue light, and green phosphor SrSi2O2N2:Eu and red phosphor CaSiN2:Ce that emit 538nm green and 642nm red emissions, respectively, when excited by the 455nm blue light. The luminous efficacy of this white LED is about 30lm /W at a dc of 20mA. With increasing dc from 5.0to60mA, both the coordinates x and y of the white LED tend to be the same, and consequently the Tc is the same and the Ra increases to 92.2.

  14. Simulation study of blue InGaN multiple quantum well light-emitting diodes with different hole injection layers

    Institute of Scientific and Technical Information of China (English)

    Wu Le-Juan; Yin Yi-An; Yang Xiao-Dong; Li Shu-Ti; Liu Chao; Wang Hai-Long; Lu Tai-Ping; Zhang Kang; Xiao Guo-Wei; Zhou Yu-Gang; Zheng Shu-Wen

    2012-01-01

    InGaN-based light-emitting diodes with p-GaN and p-AlGaN hole injection layers are numerically studied using the APSYS simulation software.The simulation results indicate that light-emitting diodes with p-AlGaN hole injection layers show superior optical and electrical performance,such as an increase in light output power,a reduction in current leakage and alleviation of efficiency droop.These improvements can be attributed to the p-AlGaN serving as hole injection layers,which can alleviate the band bending induced by the polarization field,thereby improving both the hole injection efficiency and the electron blocking efficiency.

  15. Growth and characterization of phosphor-free white light-emitting diodes based on InGaN blue quantum wells and green-yellow quantum dots

    Science.gov (United States)

    Yang, Di; Wang, Lai; Lv, Wen-Bin; Hao, Zhi-Biao; Luo, Yi

    2015-06-01

    Phosphor-free white light-emitting diodes consisting of 4 layers of InGaN/GaN quantum dots and 4 layers of quantum wells have been grown by metal organic chemical vapor deposition. A white emission was demonstrated under electrical injection by mixing the green-yellow light from quantum dots and the blue light from quantum wells. At the injection current of 5 mA, the electroluminescence peak wavelengths of quantum dots and quantum wells were 548 nm and 450 nm, respectively, resulting in the color-rendering index Ra of 62. As the injection current increased, a faster emission enhancement of quantum well and an emission blue shift of the quantum dots were observed, which led to the decrease of Ra.

  16. Enhancement of the Color Rendering Index of White Organic Light-Emitting Devices Based on a Blue and Red Emitting Layer with a Y3Al5O12:Ce3+ Green Phosphor Color-Conversion Layer.

    Science.gov (United States)

    Jang, J S; Lee, K S; Lee, E J; Kwon, M S; Kim, T W

    2015-01-01

    White organic light-emitting devices (WOLEDs) were fabricated utilizing blue and red emitting organic light-emitting devices and a color conversion layer (CCL) made of yttrium aluminum garnet (YAG:Ce3+) phosphors embedded into polymethylmethacrylate. The good color balance for the color conversion of the WOLEDs was achieved utilizing 20-nm blue and 10-nm red OLEDs. The electroluminescence spectrum for the fabricated device showed a white color consisting of the blue color from the 4,4-bis(2,2-diphenylethen-1-yl)bipheny layer, the red color from the tris-(8-hydroxyquinolinato) aluminum: 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran layer, and the green color from the YAG:Ce3+ phosphor. The Commission Internationale de l'Eclairage coordinates of the WOLEDs slightly shifted from (0.25, 0.23) of the blue and red emission OLEDs without phosphors to (0.34, 0.35) of the OLEDs with green phosphors, indicative of the pure white color. WOLEDs with a CCL exhibited three wavelength white emissions with a color rendering index of 86.

  17. Rare-earth-free red-emitting K2Ge4O9:Mn(4+) phosphor excited by blue light for warm white LEDs.

    Science.gov (United States)

    Ding, Xin; Wang, Qian; Wang, Yuhua

    2016-03-21

    A series of novel K2Ge4O9:Mn(4+) phosphors with red emission under blue light excitation have been synthesized successfully by traditional high-temperature solid-state reaction. The structure of K2Ge4O9 has been investigated by high-resolution transmission electron microscopy, scanning electron microscopy and X-ray powder diffraction with Rietveld refinement. The PL properties have been investigated by measuring diffuse reflection spectra, emission spectra, excitation spectra, decay curves and temperature-dependent spectra. The KGO:0.1% Mn(4+) phosphor can emit red light peaking at 663 nm under UV or blue light excitation. The critical quenching concentration of Mn(4+) was about 0.1 mol%. The concentration quenching mechanism could be a d-d interaction for the Mn(4+) center. The CIE chromaticity coordinates and FWHM are (0.702, 0.296) and 20 nm, which demonstrated that the K2Ge4O9:Mn(4+) has a high color purity. By tuning the weight ratio of yellow and red phosphors, the fabricated white LEDs, using a 455 nm InGaN blue chip combined with a blend of the yellow phosphor YAG:Ce(3+) and the red-emitting KGO:Mn(4+) phosphor driven by a 40 mA current, can get white light with chromaticity coordinates (0.405, 0.356) and CCT 3119 K. These results indicated that K2Ge4O9:Mn(4+) is a potential red phosphor to match blue LED chips to get warm white light.

  18. Light-Emitting Pickles

    Science.gov (United States)

    Vollmer, M.; Mollmann, K-P.

    2015-01-01

    We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.

  19. Highly Efficient Deep Blue Organic Light-Emitting Diodes Based on Imidazole: Significantly Enhanced Performance by Effective Energy Transfer with Negligible Efficiency Roll-off.

    Science.gov (United States)

    Shan, Tong; Liu, Yulong; Tang, Xiangyang; Bai, Qing; Gao, Yu; Gao, Zhao; Li, Jinyu; Deng, Jian; Yang, Bing; Lu, Ping; Ma, Yuguang

    2016-10-10

    Great efforts have been devoted to develop efficient deep blue organic light-emitting diodes (OLEDs) materials meeting the standards of European Broadcasting Union (EBU) standard with Commission International de L'Eclairage (CIE) coordinates of (0.15, 0.06) for flat-panel displays and solid-state lightings. However, high-performanced deep blue OLEDs are still rare for applications. Herein, two efficient deep blue emitters, PIMNA and PyINA, are designed and synthesized by coupling naphthalene with phenanthreneimidazole and pyreneimidazole, respectively. The balanced ambipolar transporting natures of them are demonstrated by single-carrier devices. Their non-doped OLEDs show deep blue emissions with extremely small CIEy of 0.034 for PIMNA and 0.084 for PyINA, with negligible efficiency roll-off. To take advantage of high photoluminescence quantum efficiency of PIMNA and large fraction of singlet exciton formation of PyINA, doped devices are fabricated by dispersing PyINA into PIMNA, a significantly improved maximum external quantum efficiency (EQE) of 5.05% is obtained through very effective energy transfer with CIE coordinates of (0.156, 0.060), and the EQE remains 4.67% at 1000 cd m-2, which is among the best of deep blue OLEDs reported matching stringent EBU standard well.

  20. The Histopathological Investigation of Red and Blue Light Emitting Diode on Treating Skin Wounds in Japanese Big-Ear White Rabbit.

    Directory of Open Access Journals (Sweden)

    Yanhong Li

    Full Text Available The biological effects of different wavelengths of light emitting diode (LED light tend to vary from each other. Research into use of photobiomodulation for treatment of skin wounds and the underlying mechanisms has been largely lacking. We explored the histopathological basis of the therapeutic effect of photobiomodulation and the relation between duration of exposure and photobiomodulation effect of different wavelengths of LED in a Japanese big-ear white rabbit skin-wound model. Skin wound model was established in 16 rabbits (three wounds per rabbit: one served as control, the other two wounds were irradiated by red and blue LED lights, respectively. Rabbits were then divided into 2 equal groups based on the duration of exposure to LED lights (15 and 30 min/exposure. The number of wounds that showed healing and the percentage of healed wound area were recorded. Histopathological examination and skin expression levels of fibroblast growth factor (FGF, epidermal growth factor (EGF, endothelial marker (CD31, proliferating cell nuclear antigen (Ki67 and macrophagocyte (CD68 infiltration, and the proliferation of skin collagen fibers was assessed. On days 16 and 17 of irradiation, the healing rates in red (15 min and 30 min and blue (15 min and 30 min groups were 50%, 37.5%, 25% and 37.5%, respectively, while the healing rate in the control group was 12.5%. The percentage healed area in the red light groups was significantly higher than those in other groups. Collagen fiber and skin thickness were significantly increased in both red light groups; expression of EGF, FGF, CD31 and Ki67 in the red light groups was significantly higher than those in other groups; the expression of FGF in red (30 min group was not significantly different from that in the blue light and control groups. The effect of blue light on wound healing was poorer than that of red light. Red light appeared to hasten wound healing by promoting fibrous tissue, epidermal and

  1. Novel fluorene-carzazole-based conjugated copolymers containing pyrazoline and benzothiazole segments for blue light-emitting materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of novel fluorene-carbazole-based copolymers with pyrazoline and benzothiazole units were synthesized successfully through Suzuki coupling reactions. The molecular structures and thermal properties of these polymers were characterized by FT-IR,1H NMR, DSC and TGA. GPC results indicated that the weight-average molecular weight (Mw) and polydispersity of these polymers were in range (12,000-14,000) and (1.8-2.0), respectively. The two resulting polymers have high photoluminescence quantum efficiency implying that they may be promising candidates for polymer light-emitting diodes (PLEDs).

  2. Electrosynthesis of Chirality Conducting Poly[N-(9-fluorenylmethoxycarbonyl)-L-phenylalanine] with Good Blue Light-Emitting Properties

    Institute of Scientific and Technical Information of China (English)

    来存远; 郭文娟; 唐新德; 裴梅山

    2012-01-01

    Poly[N-(9-fluorenylmethoxycarbonyl)-L-phenylalanine] (PN9FPA) films with good fluorescence properties and chirality were prepared electrochemically by direct anodic oxidation of N-(9-fluorenylmethoxycarbonyl)- L-phenylalanine (N9FPA) in boron trifluoride diethyletherate (BFEE). Fourier transform infrared spectroscopy measurement showed that the polymerization of N9FPA occurred mainly at the C(2) and C(7) positions. The fluo- rescence spectra indicated that PN9FPA films were blue-light emitters. In addition, the structures and properties of the monomer and the polymers were characterized and evaluated with CV, UV, TGA and SEM.

  3. Mechanisms of Loss in Internal Quantum Efficiency in III-Nitride-based Blue-and Green-Light Emitting Diodes

    Science.gov (United States)

    Huang, Li

    The overarching goals of the research conducted for this dissertation have been to understand the scientific reasons for the losses in the internal quantum efficiency (IQE) in Group III-nitride-based blue and especially green light-emitting diodes (LEDs) containing a multi-quantum well (MQW) active region and to simultaneously develop LED epitaxial structures to ameliorate these losses. The p-type AlGaN EBL was determined to be both mandatory and effective in the prevention of electron overflow from the MQW region into the p-type cladding layer and the resultant lowering of the IQE. The overflow phenomenon was partially due to the low concentration (˜ 5 x 1017 cm-3) and mobility (˜ 10 cm2/(V•s)) of the holes injected into the active region. Electroluminescence (EL) studies of LEDs without an EBL revealed a dominant emission from donor-acceptor pair recombination in the p-type GaN layer. The incorporation of a 90 nm compositionally graded In0-0.1 Ga1-0.9N buffer layer between each MQW and n-GaN cladding layer grown on an Al/SiC substrate resulted in an increase in the luminescence intensity and a blue-shift in the emission wavelength, as observed in photoluminescence (PL) spectra. The graded InGaN buffer layer reduced the stress and thus the piezoelectric field across the MQW; this improved the electron/hole overlap that, in turn, resulted in an enhanced radiative recombination rate and an increase in efficiency. A direct correlation was observed between an increase in the IQE measured in temperature-dependent PL (TDPL) and an increase in the roughness of all the upper InGaN QW/GaN barrier interfaces, as determined using cross-sectional transmission electron microscopy of the MQW. These results agreed in general with the average surface roughness values of the pit-free region on the top GaN barrier determined via atomic force microscopy and the average roughness values of all the interfaces in the MQW calculated from the FWHM of the emission peak in the PL

  4. Sr9Mg(1.5)(PO4)7:Eu(2+): A Novel Broadband Orange-Yellow-Emitting Phosphor for Blue Light-Excited Warm White LEDs.

    Science.gov (United States)

    Sun, Wenzhi; Jia, Yonglei; Pang, Ran; Li, Haifeng; Ma, Tengfei; Li, Da; Fu, Jipeng; Zhang, Su; Jiang, Lihong; Li, Chengyu

    2015-11-18

    A new orange-yellow-emitting Sr9Mg(1.5)(PO4)7:Eu(2+) phosphor was prepared via high-temperature solid-state reaction. The structure and optical properties of it were studied systematically. Sr9Mg(1.5)(PO4)7:Eu(2+) can be well-excited by 460 nm blue InGaN chips and exhibit a wide emission band covering from 470 to 850 nm with two main peaks centered at 523 and 620 nm, respectively, which originate from 5d-4f dipole-allowed transitions of Eu(2+) in different crystallographic sites. The sites attribution, concentration quenching, fluorescence decay analysis, and temperature-dependent luminescence properties were investigated in detail. Furthermore, a warm white LED device was fabricated by combining a 460 nm blue InGaN chip with the optimized orange-yellow-emitting Sr9Mg(1.5)(PO4)7:Eu(2+). The color coordinate, correlated color temperature and color rendering index of the fabricated LED device were (0.393, 0.352), 3437 K, and 86.07, respectively. Sr9Mg(1.5)(PO4)7:Eu(2+) has great potential to serve as an attractive candidate in the application of blue light-excited warm white LEDs.

  5. Highly Efficient Sky-Blue Fluorescent Organic Light Emitting Diode Based on Mixed Cohost System for Thermally Activated Delayed Fluorescence Emitter (2CzPN).

    Science.gov (United States)

    Sun, Jin Won; Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo

    2016-04-20

    The mixed cohosts of 1,3-bis(N-carbazolyl)benzene and 2,8-bis(diphenylphosphoryl)dibenzothiophene have been developed for a highly efficient blue fluorescent oragnic light emitting diode (OLED) doped with a thermally activated delayed fluorescence (TADF) emitter [4,5-di (9H-carbazol-9-yl) phthalonitrile (2CzPN)]. We have demonstrated one of the highest external quantum efficiency of 21.8% in blue fluorescent OLEDs, which is identical to the theoretically achievable maximum electroluminescence efficiency using the emitter. Interestingly, the efficiency roll-off is large even under the excellent charge balance in the device and almost the same as the single host based devices, indicating that the efficiency roll-off in 2CzPN based TADF host is related to the material characteristics, such as low reverse intesystem crossing rate rather than charge imbalance.

  6. Carrier recombination spatial transfer by reduced potential barrier causes blue/red switchable luminescence in C8 carbon quantum dots/organic hybrid light-emitting devices

    Directory of Open Access Journals (Sweden)

    Xifang Chen

    2016-04-01

    Full Text Available The underlying mechanism behind the blue/red color-switchable luminescence in the C8 carbon quantum dots (CQDs/organic hybrid light-emitting devices (LEDs is investigated. The study shows that the increasing bias alters the energy-level spatial distribution and reduces the carrier potential barrier at the CQDs/organic layer interface, resulting in transition of the carrier transport mechanism from quantum tunneling to direct injection. This causes spatial shift of carrier recombination from the organic layer to the CQDs layer with resultant transition of electroluminescence from blue to red. By contrast, the pure CQDs-based LED exhibits green–red electroluminescence stemming from recombination of injected carriers in the CQDs.

  7. Blue-emitting K2Al2B2O7:Eu(2+) phosphor with high thermal stability and high color purity for near-UV-pumped white light-emitting diodes.

    Science.gov (United States)

    Xiao, Wenge; Zhang, Xia; Hao, Zhendong; Pan, Guo-Hui; Luo, Yongshi; Zhang, Ligong; Zhang, Jiahua

    2015-04-06

    Novel blue-emitting K2Al2B2O7:Eu(2+) (KAB:Eu(2+)) phosphor was synthesized by solid state reaction. The crystal structural and photoluminescence (PL) properties of KAB:Eu(2+) phosphor, as well as its thermal properties of the photoluminescence, were investigated. The KAB:Eu(2+) phosphor exhibits broad excitation spectra ranging from 230 to 420 nm, and an intense asymmetric blue emission band centered at 450 nm under λex = 325 nm. Two different Eu(2+) emission centers in KAB:Eu(2+) phosphor were confirmed via their fluorescence decay lifetimes. The optimal concentration of Eu(2+) ions in K2-xEuxAl2B2O7 was determined to be x = 0.04 (2 mol %), and the corresponding concentration quenching mechanism was verified to be the electric dipole-dipole interactions. The PL intensity of the nonoptimized KAB:0.04Eu(2+) phosphor was measured to be ∼58% that of the commercial blue-emitting BaMgAl10O17:Eu(2+) phosphor, and this phosphor has high color purity with the CIE coordinate (0.147, 0.051). When heated up to 150 °C, the KAB:0.04Eu(2+) phosphor still has 82% of the initial PL intensity at room temperature, indicating its high thermal stability. These results suggest that the KAB:Eu(2+) is a promising candidate as a blue-emitting n-UV convertible phosphor for application in white light emitting diodes.

  8. One-Step Preparation of Blue-Emitting (La,Ca)Si3(O,N)5:Ce3+ Phosphors for High-Color Rendering White Light-Emitting Diodes

    Science.gov (United States)

    Yaguchi, Atsuro; Suehiro, Takayuki; Sato, Tsugio; Hirosaki, Naoto

    2011-02-01

    Highly phase-pure (La,Ca)Si3(O,N)5:Ce3+ blue-emitting phosphors were successfully synthesized via the one-step solid-state reaction from the system La2O3-CaO-CeO2-Si3N4. The synthesized (La,Ca)Si3(O,N)5:Ce3+ exhibits tunable blue broadband emission with the dominant wavelength of 466-479 nm and the external quantum efficiency up to ˜45% under 380 nm near-UV (NUV) excitation. Spectral simulations of the trichromatic white light-emitting diodes (LEDs) using (La,Ca)Si3(O,N)5:Ce3+ demonstrated markedly higher color rendering index Ra values of 93-95, compared to 76-90 attained by the systems using a conventional BAM:Eu2+ phosphor or InGaN blue LED. The present achievement indicates the promising applicability of (La,Ca)Si3(O,N)5:Ce3+ as a blue luminescent source for NUV-converting high-color rendering white LEDs.

  9. A dual-blue light-emitting diode based on strain-compensated InGaN-AlGaN/GaN quantum wells

    Institute of Scientific and Technical Information of China (English)

    Yan Qi-Rong; Yan Qi-Ang; Shi Pei-Pei; Niu Qiao-Li; Li Shu-Ti; Zhang Yong

    2013-01-01

    A strain-compensated InGaN quantum well (QW) active region employing a tensile A1GaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode (LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LEDs based on a stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate.It is found that the optimal performance is achieved when the AI composition of the strain-compensated A1GaN layer is 0.12 in blue QW and 0.21 in blue-violet QW.The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW,which can provide a better carrier confinement and effectively reduce leakage current.

  10. Occupational exposure of welders to ultraviolet and "blue light" radiation emitted during TIG and MMA welding based on field measuremants

    Directory of Open Access Journals (Sweden)

    Agnieszka Wolska

    2013-02-01

    Full Text Available Background: The aim of the study was to present the results of welders' occupational exposure to "blue light" and UV radiation carried out at industrial workstations during TIG and MMA welding. Materials and methods: Measurements were performed at 13 workstations (TIG welding: 6; MMA welding: 7, at which different welding parameters and materials were used. The radiation level was measured using a wide-range radiometer and a set of detectors, whose spectral responses were adequately fit to particular hazard under study. The measurement points corresponded with the location of eye and hand. Results: The highest values of eye irradiance were found for aluminum TIG welding. Effective irradiance of actinic UV was within the range Es = 7.79-37.6 W/m2; UVA total irradiance, EUVA = 18-53.1 W/m2 and effective blue-light irradiance EB = 35-67 W/m2. The maximum allowance time ranged from 1.7 to 75 s, which means that in some cases even unintentional very short eye exposure can exceed MPE. Conclusions: The influence of welded material and the type of electrode coating on the measured radiation level were evidenced. The exceeded value of MPE for photochemical hazard arising for the eyes and skin was found at all measured workstations. Welders should use appropriately the eye and face protective equipment and avoid direct staring at welding arc when starting an arcwelding operation. Besides, the lack of head and neck skin protection can induce acute and chronic harmful health effects. Therefore, an appropriate wear of personal protective equipment is essential for welders' health. Med Pr 2013;64(1:69–82

  11. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm-2

    Science.gov (United States)

    Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran

    2016-04-01

    The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.

  12. Comparison of the efficiency of titanium(IV) and iron(III) oxide nanoparticles as mediators in suppression of bacterial growth by radiation of a blue (405 nm) light-emitting diode

    Science.gov (United States)

    Petrov, P. O.; Tuchina, E. S.; Kulikova, M. V.; Kochubei, V. I.; Tuchin, V. V.

    2013-08-01

    The effect of blue (405 nm) radiation of a light-emitting diode in combination with titanium(IV) and iron(III) oxide nanoparticles on S. aureus 209 P, S. simulans, and D. hominis bacteria is studied. It is shown that, upon irradiation of bacteria by blue (405 nm) light, Fe2O3 nanoparticles have a stronger (by 5-30%) antibacterial effect than TiO2 nanoparticles.

  13. SYNTHESIS AND CHARACTERIZATION OF BLUE LIGHT-EMITTING POLY(ARYL ETHER)S CONTAINING PYRIMIDINE-INCORPORATED OLIGOFLUORENE PENDANTS WITH BIPOLAR FEATURE

    Institute of Scientific and Technical Information of China (English)

    Guo-xin Jiang; Chun-lei Bian; Jun-qiao Ding; Li-xiang Wang

    2013-01-01

    Novel blue light-emitting poly(aryl ether)s comprising of bipolar oligofluorene pendants as chromophores have been designed and synthesized,in which pyrimidine and arylamine moieties are utilized as the electron acceptor and electron donor,respectively.Through varying π bridge length from monofluorene to bifluorene and end-cappers from hydrogen to carbazole and diphenylamine,the emission color of the resulting polymers covers from deep blue to greenish blue,and their HOMO and LUMO levels can be modulated to facilitate charge injection to improve the device performance.Polymer lightemitting diodes (PLEDs) are fabricated with the device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) (50 nm)/polymer (80 nm)/Ca (10 nm)/A1 (200 nm).Among these polymers,P2Cz5F-Py with bifluorene bridge and carbazole end-capper shows excellent trade-off between the efficiency and emission wavelength,having a peak luminous efficiency as high as 1.26 cd/A and Commission Internationale de L'Eclairage (CIE) coordinates of (0.17,0.17).

  14. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chiao-Wen Yeh

    2010-03-01

    Full Text Available White light-emitting diodes (WLEDs have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV LEDs and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED or polymer light-emitting diode (PLED, have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450-480 nm and nUV (380-400 nm LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+ is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  15. Understanding different efficiency droop behaviors in InGaN-based near-UV, blue and green light-emitting diodes through differential carrier lifetime measurements

    CERN Document Server

    Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao

    2016-01-01

    Efficiency droop effect under high injection in GaN-based light emitting diodes (LEDs) strongly depends on wavelength, which is still not well understood. In this paper, through differential carrier lifetime measurements on commercialized near-UV, blue, and green LEDs, their different efficiency droop behaviors are attributed to different carrier lifetimes, which are prolonged as wavelength increases. This relationship between carrier lifetime and indium composition of InGaN quantum well is believed owing to the polarization-induced quantum confinement Stark effect. Long carrier lifetime not only increases the probability of carrier leakage, but also results in high carrier concentration in quantum well. In other words, under the same current density, the carrier concentration in active region in near-UV LED is the lowest while that in green one is the highest. If considering the efficiency droop depending on carrier concentration, the behaviors of LEDs with different wavelengths do not show any abnormality. ...

  16. Performance improvement of blue light-emitting diodes with an AlInN/GaN superlattice electron-blocking layer

    Institute of Scientific and Technical Information of China (English)

    Zhao Fang; Yao Guang-Rui; Song Jing-Jing; Ding Bin-Bin; Xiong Jian-Yong; Su Chen; Zheng Shu-Wen

    2013-01-01

    The characteristics of a blue light-emitting diode (LED) with an AlInN/GaN superlattice (SL) electron-blocking layer (EBL) are analyzed numerically.The cartier concentrations in the quantum wells,energy band diagrams,electrostatic fields,and internal quantum efficiency are investigated.The results suggest that the LED with an AlInN/GaN SL EBL has better hole injection efficiency,lower electron leakage,and smaller electrostatic fields in the active region than the LED with a conventional rectangular AlGaN EBL or a A1GaN/GaN SL EBL.The results also indicate that the efficiency droop is markedly improved when an AlInN/GaN SL EBL is used.

  17. Efficient polymer light-emit ting diodes with violet blue emission based on blends of PSiF6-PPP and PSiFC6C6

    Institute of Scientific and Technical Information of China (English)

    TIAN Renyu; MO Yueqi; PENG Junbiao

    2006-01-01

    Efficient polymer light-emitting diodes (PLEDs) with violet blue emission were fabricated using blends of copolymers of paraphenylene-cosilafluorene (PSiF6-PPP) and polymer of poly (9,9'alkyl-3,6-silafluorene) (PSiFC6C6). The performances of the devices are sensitive to the blend ratio.When the mass ratio of PSiF6-PPP to PSiFC6C6 is 1.96% at luminance of 105 cd.m-2, its electroluminescent (EL) spectrum peaks at 398 nm and full width at half maximum is 67 nm. The improvements of the device performances were due to the energy transfer from PSiFC6C6 to PSiF6-PPP and the balanced injection of electrons and holes.

  18. Use of a New Blue Emitter in Color-Stable, Flexible, Polymeric White Light-Emitting Diodes with a Simple Structure

    Science.gov (United States)

    Mohsennia, Mohsen; Bidgoli, Maryam Massah; Boroumand, Farhad Akbari; Khademi, Alireza

    2015-08-01

    New, polymeric white light-emitting diodes with the structure ITO/PEDOT:PSS/BFE + MEH-PPV/Al have been fabricated, in which poly(9,9-dioctylfluorene-co- N, N'-di(phenyl)- N, N'-di(3-carboethoxyphenyl) benzidine (BFE) was used as the blue emitter host and poly [2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene (MEH-PPV) as the red emitter guest. A poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) layer was spin-coated as the hole-injection layer (HIL) on a flexible poly(ethylene terephthalate)/indium tin oxide (PET/ITO) substrate; the cathode was aluminium (Al). The entire simple, low-cost fabrication process was performed without any need for a glove box. The effect of PEDOT:PSS films prepared from the PEDOT:PSS/water solution with two different volume ratios (1:3 and 1:6) as the HIL on the lifetime and output performance of devices was investigated. The device fabricated by using the volume ratio 1:3 emitted white light with high color quality and Commission Internationale de l'Eclairage (CIE) coordinates of (0.34, 0.38), and had a long operating lifetime.

  19. Influence of laser lift-off on optical and structural properties of InGaN/GaN vertical blue light emitting diodes

    Directory of Open Access Journals (Sweden)

    M. H. Doan

    2012-06-01

    Full Text Available The influences of the laser lift-off (LLO process on the InGaN/GaN blue light emitting diode (LED structures, grown on sapphire substrates by low-pressure metalorganic chemical vapor deposition, have been comprehensively investigated. The vertical LED structures on Cu carriers are fabricated using electroplating, LLO, and inductively coupled plasma etching processes sequentially. A detailed study is performed on the variation of defect concentration and optical properties, before and after the LLO process, employing high-resolution transmission electron microscopy (HRTEM, scanning electron microscopy (SEM observations, cathodoluminescence (CL, photoluminescence (PL, and high-resolution X-ray diffraction (HRXRD measurements. The SEM observations on the distribution of dislocations after the LLO show well that even the GaN layer near to the multiple quantum wells (MQWs is damaged. The CL measurements reveal that the peak energy of the InGaN/GaN MQW emission exhibits a blue-shift after the LLO process in addition to a reduced intensity. These behaviors are attributed to a diffusion of indium through the defects created by the LLO and creation of non-radiative recombination centers. The observed phenomena thus suggest that the MQWs, the active region of the InGaN/GaN light emitting diodes, may be damaged by the LLO process when thickness of the GaN layer below the MQW is made to be 5 μm, a conventional thickness. The CL images on the boundary between the KrF irradiated and non-irradiated regions suggest that the propagation of the KrF laser beam and an accompanied recombination enhanced defect reaction, rather than the propagation of a thermal shock wave, are the main origin of the damage effects of the LLO process on the InGaN/GaN MQWs and the n-GaN layer as well.

  20. Variation of the external quantum efficiency with temperature and current density in red, blue, and deep ultraviolet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Hyuk; Lee, Jong Won; Kim, Dong Yeong; Kim, Jong Kyu, E-mail: kimjk@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Cho, Jaehee, E-mail: jcho@chonbuk.ac.kr [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 54896 (Korea, Republic of); Schubert, E. Fred [Department for Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)

    2016-01-14

    The temperature-dependent external quantum efficiencies (EQEs) were investigated for a 620 nm AlGaInP red light-emitting diodes (LEDs), a 450 nm GaInN blue LED, and a 285 nm AlGaN deep-ultraviolet (DUV) LED. We observed distinct differences in the variation of the EQE with temperature and current density for the three types of LEDs. Whereas the EQE of the AlGaInP red LED increases as temperature decreases below room temperature, the EQEs of GaInN blue and AlGaN DUV LEDs decrease for the same change in temperature in a low-current density regime. The free carrier concentration, as determined from the dopant ionization energy, shows a strong material-system-specific dependence, leading to different degrees of asymmetry in carrier concentration for the three types of LEDs. We attribute the EQE variation of the red, blue, and DUV LEDs to the different degrees of asymmetry in carrier concentration, which can be exacerbated at cryogenic temperatures. As for the EQE variation with temperature in a high-current density regime, the efficiency droop for the AlGaInP red and GaInN blue LEDs becomes more apparent as temperature decreases, due to the deterioration of the asymmetry in carrier concentration. However, the EQE of the AlGaN DUV LED initially decreases, then reaches an EQE minimum point, and then increases again due to the field-ionization of acceptors by the Poole-Frenkel effect. The results elucidate that carrier transport phenomena allow for the understanding of the droop phenomenon across different material systems, temperatures, and current densities.

  1. Variation of the external quantum efficiency with temperature and current density in red, blue, and deep ultraviolet light-emitting diodes

    Science.gov (United States)

    Park, Jun Hyuk; Lee, Jong Won; Kim, Dong Yeong; Cho, Jaehee; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-01-01

    The temperature-dependent external quantum efficiencies (EQEs) were investigated for a 620 nm AlGaInP red light-emitting diodes (LEDs), a 450 nm GaInN blue LED, and a 285 nm AlGaN deep-ultraviolet (DUV) LED. We observed distinct differences in the variation of the EQE with temperature and current density for the three types of LEDs. Whereas the EQE of the AlGaInP red LED increases as temperature decreases below room temperature, the EQEs of GaInN blue and AlGaN DUV LEDs decrease for the same change in temperature in a low-current density regime. The free carrier concentration, as determined from the dopant ionization energy, shows a strong material-system-specific dependence, leading to different degrees of asymmetry in carrier concentration for the three types of LEDs. We attribute the EQE variation of the red, blue, and DUV LEDs to the different degrees of asymmetry in carrier concentration, which can be exacerbated at cryogenic temperatures. As for the EQE variation with temperature in a high-current density regime, the efficiency droop for the AlGaInP red and GaInN blue LEDs becomes more apparent as temperature decreases, due to the deterioration of the asymmetry in carrier concentration. However, the EQE of the AlGaN DUV LED initially decreases, then reaches an EQE minimum point, and then increases again due to the field-ionization of acceptors by the Poole-Frenkel effect. The results elucidate that carrier transport phenomena allow for the understanding of the droop phenomenon across different material systems, temperatures, and current densities.

  2. Effect of red and blue light emitting diodes "CRB-LED" on in vitro organogenesis of date palm (Phoenix dactylifera L.) cv. Alshakr.

    Science.gov (United States)

    Al-Mayahi, Ahmed Madi Waheed

    2016-10-01

    The objective of the present study is to determine the effect of light source on enhancement of shoot multiplication, phytochemicals, as well as, antioxidant enzyme activities of in vitro cultures of date palm cv. Alshakr. In vitro-grown buds were cultured on Murashige and Skoog (MS) medium and incubated under a conventional white fluorescent light (control), and combinations of red + blue light emitting diode (18:2) (CRB-LED). Results revealed that the treatment of CRB-LED showed a significant increase in the number of shoots compared with the white florescent light. Total soluble carbohydrate "TSCH" (7.10 mg g(-1) DW.), starch (1.63 mg g(-1) DW.) and free amino acids (2.90 mg g(-1) DW.) were significantly higher in CRB-LED (p < 0.05). Additionally, CRB-LED induced a higher peroxidase activity (25.50 U ml(-1)) compared with the white fluorescent light treatment (19.74 U ml(-1)) as control treatment. Potassium, magnesium and sodium contents in (3.62, 13.99 and 2.76 mg g(-1) DW.) were increased in in vitro shoots under CRB-LED treatment in comparison with fluorescent light (p < 0.05). Protein profile showed the appearance of newly bands with the molecular weight of 38 and 60 kDa at the treatment CRB-LED compared with control treatment. Our results demonstrate the positive effects of CRB-LED light during the course of date palm tissue cultures.

  3. New blue-light-emitting ultralong [Cd(L)(TeO3)] (L = polyamine) organic-inorganic hybrid nanofibre bundles: their thermal stability and acidic sensitivity.

    Science.gov (United States)

    Yao, Hong-Bin; Li, Xiao-Bo; Yu, Shu-Hong

    2009-08-03

    A new type of blue-light-emitting ultralong [Cd(L)(TeO(3))] (L = ethylenediamine, diethylenetriamine) nanofibre bundle has been synthesised under reflux in a mixed solvent media. Inorganic Cd(TeO(3)) layers are assumed to exist in the structures and are connected by the organic amine molecules through the coordination between nitrogen atoms and cadmium ions. The composition and formulae of these hybrid materials, based on the proposed structures, have been identified through element analysis (EA), thermal gravity analysis (TGA) and energy dispersive spectra (EDS). The thermal stabilities and optical properties of these nanofibre bundles have been investigated. Thermal decomposition of [Cd(en)(TeO(3))] (en = ethylenediamine) and [Cd(DETA)(TeO(3))] (DETA = diethylenetriamine) at 450 degrees C allowed the formation of a mixture of CdTe and Cd(TeO(3)) phases, and a pure CdTe phase, respectively. In addition, this new kind of hybrid bundle, which demonstrates blue emission, was found to be sensitive to acids, and the emission intensity is strongly dependent on the acidity of the solutions, implying that these hybrid nanofibre bundles could be potentially applied as acid sensors.

  4. Effect of external tensile stress on blue InGaN/GaN multi-quantum-well light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Wael Z. [Interdisciplinary Program of Photonic Engineering, Chonnam National University, Yongbong 300, Gwangju 500-757 (Korea, Republic of); Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62511 (Egypt); Song, Juhui; Lee, Jung Ju; Ha, Jun Seok; Ryu, Sang-Wan [Interdisciplinary Program of Photonic Engineering, Chonnam National University, Yongbong 300, Gwangju 500-757 (Korea, Republic of); Choi, Hee Seok [Interdisciplinary Program of Photonic Engineering, Chonnam National University, Yongbong 300, Gwangju 500-757 (Korea, Republic of); LG Innotek Co., Ltd., 413-901 Paju (Korea, Republic of); Ryu, Bengso [Interdisciplinary Program of Photonic Engineering, Chonnam National University, Yongbong 300, Gwangju 500-757 (Korea, Republic of); Lee, June Key, E-mail: junekey@chonnam.ac.kr [Interdisciplinary Program of Photonic Engineering, Chonnam National University, Yongbong 300, Gwangju 500-757 (Korea, Republic of)

    2013-10-15

    The influence of external tensile stress on blue InGaN/GaN multi-quantum-well (MQW) light-emitting diodes (LEDs) is demonstrated. It was found that applying external tensile stress effectively compensates for the compressive strain developed in the InGaN active layer, thus reducing the quantum-confined Stark effect by attenuating the piezoelectric polarization from the InGaN layer. With 35 A/cm{sup 2} of current density (∼50 mA), the light output power could be improved by ∼40% when the LEDs were subjected to an external tensile stress. The blueshift in electroluminescence (EL) spectra was reduced by applying the external tensile stress. In contrast, when the LEDs were exposed to external compressive stress, the light output power intensity was decreased by ∼12% at a current density of 35 A/cm{sup 2}. The simulation results confirm that the relaxation of compressive strain in the InGaN/GaN MQW structure results in the reduction of the piezoelectric field and improves the overlap of electron and hole wave functions.

  5. Orangish-yellow-emitting Ca₃Si₂O₇:Eu²⁺ phosphor for application in blue-light based warm-white LEDs.

    Science.gov (United States)

    Huang, Chien-Hao; Liu, Wei-Ren; Chan, Ting-Shan; Lai, Yuan-Tai

    2014-06-07

    A Eu(2+)-activated Ca3Si2O7:Eu(2+) orangish-yellow-emitting phosphor with strong luminescence was synthesized and its crystal structure was determined on the basis of XRD profiles using synchrotron radiation. The crystal structure was refined by the Rietveld refinement method. The excitation and emission spectra of the Ca3Si2O7:Eu(2+) phosphor show broad excitation bands in the range of 240-550 nm and a broad yellow emission band centered at 603 nm, depending on the concentration of Eu(2+). The optimized concentration of Eu(2+) in the Ca3Si2O7:Eu(2+) phosphor was determined to be 0.015 mol. The critical distance and average decay time were found to be short and fast, respectively, ranging from 19.74 Å to 13.69 Å and from 2.56 μs to 2.34 μs on increasing the Eu(2+) doping content. Warm-white light-emitting diodes (LEDs) fabricated using an InGaN-based blue LED chip combined with the Ca3Si2O7:0.015Eu(2+) phosphor gave color rendering indices between 76.0 and 38.9, correlated color temperatures between 1924 K and 4992 K, and tuned CIE chromaticity coordinates in the range from orangish-yellow (0.543, 0.389) to reddish purple (0.333, 0.219). The color coordinates and emission intensity of a Ca3Si2O7:0.015Eu(2+)-based white LED display were slightly yellow-shifted and the intensity increased on increasing the forward-bias current. These results indicate that orangish-yellow-emitting Ca3Si2O7:0.015Eu(2+) can serve as a promising candidate for applications in warm-white LEDs.

  6. Blue Fluorescent Materials Composed of Anthracene-Aryl Amine-Anthracene Derivatives for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Lee, Seul Bee; Song, Ji Young; Yang, Hyung Jin; Kim, Young Kwan; Yoon, Seung Soo

    2015-07-01

    Blue fluorescent emitters based on anthracene-aryl amine-anthracene derivatives were studied for efficient OLEDs. Compound 1 exhibited efficient EL propereties with luminous and power efficien- cies of 4.50 cd/A and 1.75 lm/W at 200 mA/cm2, respectively and CIE coordinates of (0.18, 0.26) at 7.0 V.

  7. Principles of phosphorescent organic light emitting devices.

    Science.gov (United States)

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  8. Effects of the electrode metal structure and the current blocking layer on the characteristics of blue GaN-based light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee S. [Chonnam National University, Gwangju (Korea, Republic of); LG Innotek Co., Ltd., Paju (Korea, Republic of); Tawfik, Wael Z. [Chonnam National University, Gwangju (Korea, Republic of); Beni-Suef University, Beni-Suef (Egypt); Lee, June K. [Chonnam National University, Gwangju (Korea, Republic of)

    2014-03-15

    The influence of the electrode metal structure and the current blocking layer on the characteristics of blue GaN-based light-emitting diodes (LEDs) was investigated. The changes in the electrode metal structure, along with the current blocking layer (CBL) were found to enable control of the optical and the electrical properties of the fabricated LEDs. Thus, the light output power at an injection current of 90 mA was increased by about 8.5% for the LED with a Cr/Al/Ni/Au electrode metal and a SiO{sub 2} CBL and by about 9.0% for the LED with a Ti/Al/Ni/Au electrode metal and without a SiO{sub 2} CBL over the reference LED with only Cr/Ni/Au electrode metal. This was due to the reduction of the current-crowding effect and to the absorption of photons near the P/N pad by the metal electrode. Furthermore, the operating voltage under the same injection current of 90 mA was changed from 3.30 V for the reference LED to 3.37 V and 3.28 V for the LED with a SiO{sub 2} CBL and for the LED with Ti/Al/Ni/Au electrode metal, respectively. The results confirmed that the electrode metal structure and the CBL played critical roles in the improvement of the emission characteristics in GaN-based LEDs.

  9. Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes.

    Science.gov (United States)

    Li, Yuexiang; Jiang, Yuan; Peng, Shaoqin; Jiang, Fengyi

    2010-10-15

    A nitrogen-doped TiO(2) (N-TiO(2)) photocatalyst was prepared by calcination of the hydrolysis precipitate of Ti(SO(4))(2) with aqueous ammonia. The prepared N-TiO(2) was treated with NH(4)F (F-N-TiO(2)) by an impregnation-calcination method. The photocatalyst (F-N-TiO(2)) was characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), UV-vis diffusive reflectance spectroscopy (DRS), BET and X-ray photoelectron spectroscopy (XPS). With blue light-emitting diode (LED) as the light source, its photocatalytic activity for the degradation of formaldehyde was investigated. NH(4)F treatment enhances markedly photocatalytic activity of N-TiO(2). The treatment increases the visible absorption of N-TiO(2), decreases its specific surface area and influences the concentration of oxygen vacancies in N-TiO(2). Photocatalytic activity of F-N-TiO(2) depends on the visible absorption, the specific surface area, and the concentration of oxygen vacancies. The preparation conditions, such as the calcination temperature and the initial molar ratio of NH(4)F to N-TiO(2), have a significant influence on the photocatalytic activity. The doping mechanism of NH(4)F was investigated.

  10. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and inter......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...... highlighted by high pressure optical spectroscopy whilst analogous x-ray diffraction experiments remain less frequent. By focusing on a class of blue-emitting π-conjugated polymers, polyfluorenes, this article reviews optical spectroscopic studies under hydrostatic pressure, addressing the impact of molecular...

  11. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid.

    Science.gov (United States)

    Lin, Ting-An; Chatterjee, Tanmay; Tsai, Wei-Lung; Lee, Wei-Kai; Wu, Meng-Jung; Jiao, Min; Pan, Kuan-Chung; Yi, Chih-Lung; Chung, Chin-Lung; Wong, Ken-Tsung; Wu, Chung-Chih

    2016-08-01

    Extremely efficient sky-blue organic electroluminescence with external quantum efficiency of ≈37% is achieved in a conventional planar device structure, using a highly efficient thermally activated delayed fluorescence emitter based on the spiroacridine-triazine hybrid and simultaneously possessing nearly unitary (100%) photoluminescence quantum yield, excellent thermal stability, and strongly horizontally oriented emitting dipoles (with a horizontal dipole ratio of 83%).

  12. Strong blue and white photoluminescence emission of BaZrO{sub 3} undoped and lanthanide doped phosphor for light emitting diodes application

    Energy Technology Data Exchange (ETDEWEB)

    Romero, V.H. [Centro de Investigaciones en Optica, A. P. 1-948, Leon Gto., 37160 (Mexico); De la Rosa, E., E-mail: elder@cio.mx [Centro de Investigaciones en Optica, A. P. 1-948, Leon Gto., 37160 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro, Qro. 76000 (Mexico); Velazquez-Salazar, J.J. [Department of Physics and Astronomy, The University of Texas at San Antonio One UTSA Circle, San Antonio TX 78249 (United States)

    2012-12-15

    In this paper, we report the obtained strong broadband blue photoluminescence (PL) emission centered at 427 nm for undoped BaZrO{sub 3} observed after 266 nm excitation of submicron crystals prepared by hydrothermal/calcinations method. This emission is enhanced with the introduction of Tm{sup 3+} ions and is stronger than the characteristic PL blue emission of such lanthanide. The proposed mechanism of relaxation for host lattice emission is based on the presence of oxygen vacancies produced during the synthesis process and the charge compensation due to the difference in the electron valence between dopant and substituted ion in the host. Brilliant white light emission with a color coordinate of (x=0.29, y=0.32) was observed by combining the blue PL emission from the host with the green and red PL emission from Tb{sup 3+} and Eu{sup 3+} ions, respectively. The color coordinate can be tuned by changing the ratio between blue, green and red band by changing the concentration of lanthanides. - Graphical abstract: Strong blue emission from undoped BaZrO{sub 3} phosphor and white light emission by doping with Tb{sup 3+} (green) and Eu{sup 3+} (red) after 266 nm excitation. Highlights: Black-Right-Pointing-Pointer Blue emission from BaZrO{sub 3} phosphor. Black-Right-Pointing-Pointer Blue emission enhanced with Tm{sup 3+}. Black-Right-Pointing-Pointer White light from BaZrO{sup 3+} phosphor.

  13. Electrochemical Light-Emitting Gel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Itoh

    2010-06-01

    Full Text Available Light-emitting gel, a gel state electroluminescence material, is reported. It is composed of a ruthenium complex as the emitter, an ionic liquid as the electrolyte, and oxide nanoparticles as the gelation filler. Emitted light was produced via electrogenerated chemiluminescence. The light-emitting gel operated at low voltage when an alternating current was passed through it, regardless of its structure, which is quite thick. The luminescence property of the gel is strongly affected by nanoparticle materials. TiO2 nanoparticles were a better gelation filler than silica or ZnO was, with respect to luminescence stability, thus indicating a catalytic effect. It is demonstrated that the light-emitting gel device, with quite a simple fabrication process, flashes with the application of voltage.

  14. Light Emitting Porous Silicon

    Science.gov (United States)

    1993-05-01

    ml - mm m lm m ~ m m ThO report Page 14 preparation method which has been originally described by Wohler [23] leads to a bright yellow substance with...Solid State Commun. 81, 307 (1992). [221 H. Kautsky, and H. Zocher, Z. Phys. 9,267 (1992). L TNO report Page 28 [231 F. Wohler , Lieb. Ann. 127, 275 (1863...Netherlands Fax + 31 70 328 09 61 Phone + 31 70 326 42 21 TNO- report copy no. e FEL-93eo047r Lh Emitting Porous Silicon sitho(s): DTICHMi.P.Th

  15. Synthesis and electroluminescent properties of blue fluorescent materials based on 9,9-diethyl-N,N-diphenyl-9 H-fluoren-2-amine substituted anthracene derivatives for organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seul Bee; Kim, Chanwoo; Park, Soo Na; Kim, Young Seok [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Lee, Ho Won [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2015-11-30

    Four 9,9-diethyl-N,N-diphenyl-9 H-fluoren-2-amine substituted anthracene derivatives have been designed and synthesized by Suzuki cross coupling reactions. To explore the electroluminescent properties of these blue materials, multilayer blue organic light-emitting diodes were fabricated in the following device structure: indium tin oxide (180 nm)/N,N’-diphenyl-N,N’-(1-napthyl)-(1,1′-phenyl)-4,4′-diamine (50 nm)/blue emitting materials (1–4) (30 nm)/bathophenanthroline (30 nm)/lithium quinolate (2 nm)/Al (100 nm). All devices appeared excellent deep-blue emissions. Among them, a device exhibited a maximum luminance of 5686 cd/m{sup 2}, the luminous, power and external quantum efficiencies of 5.11 cd/A, 3.79 lm/W, and 4.06% with the Commission International de L'Eclairage coordinates of (0.15, 0.15) at 500 cd/m{sup 2}, respectively. - Highlights: • We synthesized blue fluorescent materials based on anthracene derivatives. • The EL efficiencies of these materials depend on the quantum yields in solid states. • These materials have great potential for applications as blue emitter in OLEDs.

  16. ORGANIC LIGHT EMITTING DIODE (OLED

    Directory of Open Access Journals (Sweden)

    Aririguzo Marvis Ijeaku

    2015-09-01

    Full Text Available An Organic Light Emitting Diode (OLED is a device composed of an organic layer that emits lights in response to an electrical current. Organic light emitting diodes have advanced tremendously over the past decades. The different manufacturing processes of the OLED itself to several advantages over flat panel displays made with LCD technology which includes its light weight and flexible plastic substrates, wider viewing angles, improved brightness, better power efficiency and quicker response time. However, its drawbacks include shorter life span, poor color balance, poor outdoor performance, susceptibility to water damage etc.The application of OLEDs in electronics is on the increase on daily basics from cameras to cell phones to OLED televisions, etc. Although OLEDs provides prospects for thinner, smarter, lighter and ultraflexible electronics displays, however, due to high cost of manufacturing, it is not yet widely used.

  17. The advantage of blue InGaN multiple quantum wells light-emitting diodes with p-AlInN electron blocking layer

    Institute of Scientific and Technical Information of China (English)

    Lu Tai-Ping; Wang Hai-Long; Yang Xiao-Dong; Li Shu-Ti; Zhang Kang; Liu Chao; Xiao Guo-Wei; Zhou Yu-Gang; Zheng Shu-Wen; Yin Yi-An; Wu Le-Juan

    2011-01-01

    InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investigated using the APSYS simulation software. It is found that the structure with a p-AIInN electron blocking layer showes improved light output power,lower current leakage,and smaller efficiency droop. Based on numerical simulation and analysis,these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).

  18. Light Emitting Transistors of Organic Single Crystals

    Science.gov (United States)

    Iwasa, Yoshihiro

    2009-03-01

    Organic light emitting transistors (OLETs) are attracting considerable interest as a novel function of organic field effect transistors (OFETs). Besides a smallest integration of light source and current switching devices, OLETs offer a new opportunity in the fundamental research on organic light emitting devices. The OLET device structure allows us to use organic single crystals, in contrast to the organic light emitting diodes (OLEDs), the research of which have been conducted predominantly on polycrystalline or amorphous thin films. In the case of OFETs, use of single crystals have produced a significant amount of benefits in the studies of pursuit for the highest performance limit of FETs, intrinsic transport mechanism in organic semiconductors, and application of the single crystal transistors. The study on OLETs have been made predominantly on polycrystalline films or multicomponent heterojunctions, and single crystal study is still limited to tetracene [1] and rubrene [2], which are materials with relatively high mobility, but with low photoluminescence efficiency. In this paper, we report fabrication of single crystal OLETs of several kinds of highly luminescent molecules, emitting colorful light, ranging from blue to red. Our strategy is single crystallization of monomeric or oligomeric molecules, which are known to have a very high photoluminescence efficiency. Here we report the result on single crystal LETs of rubrene (red), 4,4'-bis(diphenylvinylenyl)-anthracene (green), 1,4-bis(5-phenylthiophene-2-yl)benzene (AC5) (green), and 1,3,6,8-tetraphenylpyrene (TPPy) (blue), all of which displayed ambipolar transport as well as peculiar movement of voltage controlled movement of recombination zone, not only from the surface of the crystal but also from the edges of the crystals, indicting light confinement inside the crystal. Realization of ambipolar OLET with variety of single crystals indicates that the fabrication method is quite versatile to various light

  19. Luminescence properties of blue La1-xCexAl(Si6-zAlz)(N10-zOz) (z˜1) oxynitride phosphors and their application in white light-emitting diode

    Science.gov (United States)

    Takahashi, Kohsei; Hirosaki, Naoto; Xie, Rong-Jun; Harada, Masamichi; Yoshimura, Ken-ichi; Tomomura, Yoshitaka

    2007-08-01

    This letter reports blue oxynitride phosphors of La1-xCexAl(Si6-zAlz)(N10-zOz) (z˜1) (termed JEM crystal phase) and their application for the white light-emitting diodes (LEDs). The JEM phosphor can be excited by 405nm light efficiently, and its spectrum can be tuned widely by changing the Ce concentration. The emission spectrum of this phosphor is as wide as 110nm in full width at half maximum, which is convenient to solid state lighting. The preparation of white LED was attempted by using a 405nm InGaN chip and oxynitride phosphors in this work. High color rendering index >95 was achieved in white LED with various correlated color temperatures, indicating the suitability of the JEM phosphor in solid-state lightings.

  20. Light-Emitting Diodes in the Solid-State Lighting Systems

    CERN Document Server

    Sparavigna, Amelia Carolina

    2014-01-01

    Red and green light-emitting diodes (LEDs) had been produced for several decades before blue emitting diodes, suitable for lighting applications, were widely available. Today, we have the possibility of combining the three fundamental colours to have a bright white light. And therefore, a new form of lighting, the solid-state lighting, has now become a reality. Here we discuss LEDs and some of their applications in displays and lamps.

  1. A novel Ce³⁺ activated Lu₃MgAl₃SiO₁₂ garnet phosphor for blue chip light-emitting diodes with excellent performance.

    Science.gov (United States)

    Shi, Yurong; Zhu, Ge; Mikami, Masayoshi; Shimomura, Yasuo; Wang, Yuhua

    2015-01-28

    A novel Ce(3+) activated Lu3MgAl3SiO12:Ce phosphor was synthesized and found to crystallize in the garnet structure. The crystal structure of the synthesized phosphor has been characterised by X-ray diffraction and Rietveld refinement. Both room and high temperature photoluminescence spectra are utilized to investigate the luminescence properties and crystal field splitting. The high temperature quenching of these phosphors and their quantum efficiency (QE) are also studied using both the prepared YAG:Ce and the commercial YAG:Ce phosphor named P46-y3 as the reference. Upon excitation with blue light, the composition-optimized Lu3MgAl3SiO12:Ce phosphor exhibited strong yellow light with a high QE of 81.2% and better thermal stability than that of the commercial phosphor. The results indicate that the Lu3MgAl3SiO12:Ce phosphor can serve as a candidate for blue chip LEDs.

  2. Hole transport in blue and white emitting polymers

    NARCIS (Netherlands)

    Parshin, Mikhail A.; Ollevier, Jeroen; Van der Auweraer, Mark; de Kok, Margreet M.; Nicolai, Herman T.; Hof, Andre J.; Blom, Paul W. M.

    2008-01-01

    Hole transport in a blue emitting polyspirobifluorene polymer and in a white emitting polymer consisting of a polyspirobifluorene backbone and two dyes (green and red) was studied. The hole mobility was measured using the time-of-flight method as a function of the electric field and temperature in t

  3. White and Red Organic Light Emitting Materials

    Institute of Scientific and Technical Information of China (English)

    CHOW Tahsin J.; CHIU Ching-Wen; TSAI Mu-Lin

    2004-01-01

    Derivatives of 2,3-(1,4-dialkoxyaceno)norbornadiene underwent ring-opening metathesis polymerization (ROMP) upon the catalysis of a ruthenium complex to afford the corresponding polymers. The polymeric materials containing anthracene chromophores emit white electro-luminescence, which can be fabricated into light-emitting diodes (LED). The broad emission band is composed of a blue emission from anthracene and a red emission from aggregates. A single layer device, ITO/polymer/Ca/Al, can be turned on at 7V and exhibits maximum intensity 427 cd/m2 at 15 V. A double layer device, ITO/polymer/TPBI/Mg:Ag (TPBI = (2,2′,2"-(1,3,5-benzenetriyl)-tris(1-phenyl-1H-benzimidazole)) displayed blue light with turn-on voltage 6 V and maximal intensity 930 cd/m2 at 15 V.Derivatives of bisindolylmaleimide were found to form amorphous solid films which exhibit intensive red luminescence. The property of forming glasses can be ascribed to the nonplanar geometry of these molecules. LED devices were fabricated by a layer of pure dye sandwiched between two charge transporting films. The yellow emission spectrum of the devices utilizing Alq (tris(8-hydoxyquinolinato)aluminum) contains a green component from Alq. Pure red emissions can be achieved by replacing Alq with TPBI. Typical devices can be turned on at ~3 V with maximal intensity 2000 cd/m2. White color devices are under current investigation, in which the green Alq layer is replaced by its blue derivative (bis(2-methyl-8-hydoxyquinolinato)(phenolato)aluminum).

  4. Recent Progress toward white organic light emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Tao Yu-Tai

    2004-01-01

    An efficient and stable white organic light emitting diode (WOLED) is highly desirable in potential applications such as lighting, background light source, and full color display.A series of highly fluorescent dyes based on a dipyrazolopyridine skeleton,1,7-diphenyl-l,7-dihydrodipyrazolo[3,4-b,4′,3′-e]pyridine, were synthesized and evaluated as emitting as well as charge-transporting material in the fabrication of electroluminescent devices.Several of the blue derivatives are found to be useful as the source of blue emission in fabricating bright white-emitting devices. The choice of dopants, cathode materials, electron-transporting materials as well as the device configurations greatly affect the emission profile, efficiencies, as well as the device lifetime. The latest progress in achieving a more efficient, color stable, durable white light device will be discussed.

  5. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui

    2013-08-01

    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4-4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host show the peak external quantum efficiency of 4.5% and Commission Internationale d\\'Énclairage (CIE) coordinates of (0.15, 0.07). Hybrid white devices using fluorescent blue emitting layer with 1 and a phosphorescent orange emitting layer based on an iridium-complex show the peak external quantum efficiency above 10% and CIE coordinates of (0.31, 0.37). © 2013 Published by Elsevier B.V.

  6. Achieving Pure Deep-Blue Electroluminescence with CIE y≤0.06 via a Rational Design Approach for Highly Efficient Non-Doped Solution-Processed Organic Light-Emitting Diodes.

    Science.gov (United States)

    Reddy, Saripally Sudhaker; Sree, Vijaya Gopalan; Cho, Woosum; Jin, Sung-Ho

    2016-11-22

    Deep-blue fluorescent emitters with Commission Internationale de l'Eclairage (CIE) y≤0.06 are urgently needed for high-density storage, full-color displays and solid-state lighting. However, developing such emitters with high color purity and efficiency in solution-processable non-doped organic light-emitting diodes (OLEDs) remains an important challenge. Here, we present the synthesis of two new deep-blue fluorescent emitters (AFpTPI and AFmTPI) based on 10-(9,9-diethyl-9H-fluoren-2-yl)-9,9-dimethyl-9,10-dihydroacridine as a core and 1,3- and/or 1,4-phenylene-linked triphenylimidazole (TPI) analogues for non-doped solution-processable OLEDs. Their thermal, photophysical, electrochemical, and device characteristics are explored, and also strongly supported by density functional theory (DFT) study. AFpTPI and AFmTPI exhibit excellent thermal stability (≈450 °C) with high glass transition temperatures (Tg ; 141-152 °C) and deep-blue emission with high quantum yields. Specifically, the solution-processed non-doped device with AFpTPI as an emitter exhibits a maximum external quantum efficiency (EQE) of 4.56 % with CIE coordinates of (0.15, 0.06), which exactly matches the European Broadcasting Union (EBU) blue standard. In addition, AFmTPI also displays good efficiency and better color purity (EQE: 3.37 %; CIE (0.15, 0.05)). To the best of our knowledge, the present work is the first report on non-doped solution-processable OLEDs with efficiency close to 5 % and CIE y≤0.06.

  7. Light-Emitting Devices with Conjugated Polymers

    Directory of Open Access Journals (Sweden)

    Xian-Yu Deng

    2011-03-01

    Full Text Available This article introduces a previous study and tremendous progress in basic theoretical modeling, material developments and device engineering for polymer light-emitting devices (PLEDs.

  8. After Stroke, 'Blue' Light May Help Beat the Blues

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_163731.html After Stroke, 'Blue' Light May Help Beat the Blues Akin ... a danger for people recovering from a debilitating stroke. But new research suggests that tweaking a rehabilitation ...

  9. Light emitting device having peripheral emissive region

    Science.gov (United States)

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  10. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui

    2011-07-28

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency of 4.1% and Commission Internationale dÉnclairage coordinates of (0.16, 0.05). Efficient deep-blue emission as well as high triplet state energy of Cz-2pbb enables fabrication of hybrid white organic light emitting diodes with a single emissive layer. Hybrid white emitting devices based on Cz-2pbb show the peak external quantum efficiency exceeding 10% and power efficiency of 14.8 lm/W at a luminance of 500 cd/m2. © 2011 American Chemical Society.

  11. Semi-polar {1 \\mathbf{\\bar{1}}   0 1} blue and green InGaN/GaN light-emitting diodes on micro-stripe patterned Si (1 0 0)

    Science.gov (United States)

    Reuters, B.; Strate, J.; Wille, A.; Marx, M.; Lükens, G.; Heuken, L.; Heuken, M.; Kalisch, H.; Vescan, A.

    2015-12-01

    A novel III-nitride-based light emitting diode (LED) fabrication process which is based on selective-area epitaxial growth on Si {1 1 1} facets etched into Si (1 0 0) substrates is presented. A micro-stripe pattern is formed with semi-polar {1 \\bar{1}  0 1} crystallographic planes of GaN evolving from an epitaxial lateral overgrowth (ELOG)-like process. The {1 \\bar{1}  0 1} planes of GaN serve as a template for the growth of semi-polar blue and green LED structures with InGaN/GaN multiple quantum wells (MQW). A complete fabrication chain encompassing substrate etching, metalorganic vapor phase epitaxy (MOVPE), characterization, LED processing and device manufacture has been developed. The semi-polar LED stacks are of high crystalline quality, which is manifested by homogeneous InGaN layers in the {1 \\bar{1}  0 1} MQW structure and smooth {1 \\bar{1}  0 1} LED surface planes. Although threading dislocations intersect with the semi-polar {1 \\bar{1}  0 1} MQW, V-shaped defects typically observed in polar c-plane MQW structures are not detected. The blue and green semi-polar LED show only a weak polarization-related wavelength shift at large current densities consistent with the lower built-in electric fields in the semi-polar MQW. At low current densities, the green LED exhibit a strong wavelength shift due to In clustering effects. The blue LED reveal a stable emission color, which indicates a homogeneous In distribution in the wells.

  12. Doping Asymmetry Problem in ZnO: Current Status and Outlook. A Review of Experimental and Theoretical Efforts Focused on Achieving P-Type ZnO Suitable for Light-Emitting Optoelectronic Devices for the Blue/Ultraviolet Spectral Range

    Science.gov (United States)

    2009-04-24

    Richmond VA 23284 USA. (e-mail: hmorkoc@vcu.edu). Donald Silversmith is with the Air Force Office of Scientific Research, Arlington, VA 22203 USA (e...for light-emitting optoelectronic devices for the blue/ultraviolet spectral range. Vitaliy Avrutin, Donald Silversmith , Fellow, IEEE, and Hadis Morkoç

  13. Phosphorescent Nanocluster Light-Emitting Diodes.

    Science.gov (United States)

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    Devices utilizing an entirely new class of earth abundant, inexpensive phosphorescent emitters based on metal-halide nanoclusters are reported. Light-emitting diodes with tunable performance are demonstrated by varying cation substitution to these nanoclusters. Theoretical calculations provide insight about the nature of the phosphorescent emitting states, which involves a strong pseudo-Jahn-Teller distortion.

  14. Tungsten oxide buffer layers fabricated in an inert sol-gel process at room-temperature for blue organic light-emitting diodes.

    Science.gov (United States)

    Höfle, Stefan; Bruns, Michael; Strässle, Stefan; Feldmann, Claus; Lemmer, Uli; Colsmann, Alexander

    2013-08-14

    WO3 deposition from tungsten ethoxide precursor solutions at room temperature is demonstrated. The W(OEt)6 precursor can be converted under inert conditions and hence avoids sample contamination with oxygen, opening a pathway to more stable devices. The stoichiometry of all WO3 layers and the optoelectronic performance of the respective SMOLEDs well match thermally evaporated WO3 and its corresponding SMOLEDs. The solution processed WO3 hole injection layers enable the fabrication of blue phosphorescent OLEDs with low onset voltage and current efficiencies of up to 14 cd A(-1) .

  15. Growth and properties of wide spectral white light emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Xie Zi-Li; Shi Yi; Zheng You-Dou; Zhang Rong; Fu De-Yi; Liu Bin; Xiu Xiang-Qian; Hua Xue-Mei; Zhao Hong; Chen Peng; Han Ping

    2011-01-01

    Wide spectral white light emitting diodes have been designed and grown on a sapphire substrate by using a metal-organic chemical vapor deposition system.Three quantum wells with blue-light-emitting,green-light-emitting and red-light-emitting structures were grown according to the design.The surface morphology of the film was observed by using atomic force microscopy. The films were characterized by their photoluminescence measurements. X-ray diffraction θ/2θ scan spectroscopy was carried out on the multi-quantum wells.The secondary fringes of the symmetric ω/2θ X-ray diffraction scan peaks indicate that the thicknesses and the alloy compositions of the individual quantum wells are repeatable throughout the active region.The room temperature photolumineecence spectra of the structures indicate that the white light emission of the multi-quantum wells is obtained.The light spectrum covers 400-700 nm,which is almost the whole visible light spectrum.

  16. In组分对InGaN/GaN蓝光LED的发光性质的影响%Influence of In Fraction on the Optical Properties of InGaN/GaN Blue Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    崔苗; 周桃飞; 张锦平; 黄小辉

    2011-01-01

    利用扫描透射电子显微术(STEM)和变温光致发光光谱(PL)研究了In组分对InGaN/GaN蓝光LED的发光的影响.STEM发现两个样品量子阱结构相同,低温PL显示低In组分的样品的发光峰位随着温度的升高呈现出经典S(Red-Blue-Red)曲线.目前普遍认为蓝移是In组分分布不均匀造成的局域激子发光的主要原因,然而实验发现高In组分没有出现峰位蓝移,产生这一异常现象的原因主要是因为高In组分造成的势起伏较大,在80 K~160 K条件下造成很大的热势垒,从而阻碍了载流子从强束缚局域态向弱束缚局域态的跃迁.同时,在高温段160 K~300 K载流子的带填充过程在峰位蓝移方面起主要作用.这是由于高In样品的量子限制效应较低In组分的明显,导致高温段峰位整体红移减小.%Scanning transmission electron microscopy (STEM) and temperature dependent photoluminescence (PL) measurement are used to study the influence of In fraction on the optical properties of InGaN/ GaN blue light-emitting diode (LED). STEM results reveal that both of two samples have the same quantum-well structure. Low-temperature dependence of PL shows that the peak energy of one sample with lower In fraction exhibites a classical S type (Red-Blue-Red) with increasing temperature. Currently it is recommended that the blue shift of peak energy (with increasing temperature) is mainly due to exciton recombination, which is caused by inhomogeneous In distribution. However, the sample with higher In fraction doesn't show any blue shift about the peak energy. This unnormal phenomenon can be mainly attributed to the large thermal barrier caused by potential fluctuation of high In composition, which prohibits carriers transition from strong localized state into weak localized state (this process can cause blue shift of energy). Meanwhile, band filling process of carriers becomes prominent in the role of energy blue shift from 160 K to 300 K, this can be

  17. Performance enhancement of blue light-emitting diodes with InGaN/GaN multi-quantum wells grown on Si substrates by inserting thin AlGaN interlayers

    Science.gov (United States)

    Kimura, Shigeya; Yoshida, Hisashi; Uesugi, Kenjiro; Ito, Toshihide; Okada, Aoi; Nunoue, Shinya

    2016-09-01

    We have grown blue light-emitting diodes (LEDs) having InGaN/GaN multi-quantum wells (MQWs) with thin AlyGa1-yN (0 transmission electron microscopy observations and three-dimensional atom probe analysis that 1-nm-thick interlayers with an AlN mole fraction of less than y = 0.3 were continuously formed between GaN barriers and InGaN wells, and that the AlN mole fraction up to y = 0.15 could be consistently controlled. The external quantum efficiency of the blue LED was enhanced in the low-current-density region (≤45 A/cm2) but reduced in the high-current-density region by the insertion of the thin Al0.15Ga0.85N interlayers in the MQWs. We also found that reductions in both forward voltage and wavelength shift with current were achieved by inserting the interlayers even though the inserted AlGaN layers had potential higher than that of the GaN barriers. The obtained peak wall-plug efficiency was 83% at room temperature. We suggest that the enhanced electroluminescence (EL) performance was caused by the introduction of polarization-induced hole carriers in the InGaN wells on the side adjacent to the thin AlGaN/InGaN interface and efficient electron carrier transport through multiple wells. This model is supported by temperature-dependent EL properties and band-diagram simulations. We also found that inserting the interlayers brought about a reduction in the Shockley-Read-Hall nonradiative recombination component, corresponding to the shrinkage of V-defects. This is another conceivable reason for the observed performance enhancement.

  18. C60/N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine:MoO3 as the interconnection layer for high efficient tandem blue fluorescent organic light-emitting diodes.

    Science.gov (United States)

    Wu, Xiaoming; Bi, Wentao; Hua, Yulin; Sun, Jin'e; Xiao, Zhihui; Wang, Li; Yin, Shougen

    2013-06-17

    The high efficient tandem blue fluorescent organic light emitting diodes (OLEDs) with the transparent interconnection layer (ICL) of fullerence (C60)/Molybdenum oxide (MoO3)-doped N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) were presented. A stack consisting of 0.5 nm of LiF and 1 nm of Ca, which is located from C60 to adjacent electron transporting layer is used as an electron injection layer. The experiment results indicate that the luminance of the tandem device is basically equal to that of the traditional single-unit device, but the current density of the tandem device is much less than that of the single-unit device under a same luminance. The current efficiency and the maximal power efficiency of tandem device with LiF/Ca/C60/NPB:MoO3/MoO3-based interconnection layer have been approximately enhanced by 250% and 126%, respectively. In addition, we also analyze that the mechanism of the efficiency enhancement is ascribed to the effective charge separation and transport of the ICL in tandem OLEDs.

  19. Light-Emitting Diodes: A Hidden Treasure

    Science.gov (United States)

    Planinšic, Gorazd; Etkina, Eugenia

    2014-01-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  20. Tuning of the excitation wavelength in Eu(3+)-aminophenyl based polyfluorinated β-diketonate complexes: a red-emitting Eu(3+)-complex encapsulated in a silica/polymer hybrid material excited by blue light.

    Science.gov (United States)

    Usha Gangan, T V; Reddy, M L P

    2015-09-28

    based Eu(3+)-β-diketonate complex is an interesting red-emitting material excited by blue light and therefore may find potential applications in the fields of biological and materials science.

  1. Light extraction efficiency enhancement for fluorescent SiC based white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    Fluorescent SiC based white light-emitting diodes(LEDs) light source, as an innovative energy-efficient light source, would even have longer lifetime, better light quality and eliminated blue-tone effect, compared to the current phosphor based white LED light source. In this paper, the yellow...... mask and a thin layer of Al film have been investigated and all of them showed much enhanced extraction efficiency. All these good results pave the way to a very promising fluorescent SiC based white LED light source...

  2. Spectrum study of top-emitting organic light-emitting devices with micro-cavity structure

    Institute of Scientific and Technical Information of China (English)

    Liu Xiang; Wei Fuxiang; Liu Hui

    2009-01-01

    Blue and white top-emitting organic light-emitting devices OLEDs with cavity effect have been fabricated.TBADN:3%DSAPh and Alq3:DCJTB/TBADN:TBPe/Alq3:C545 were used as emitting materials of microcavity OLEDs.On a patterned glass substrate,silver was deposited as reflective anode,and copper phthalocyanine (CuPc)layer as HIL and 4'-bis[N-(1-Naphthyl)-N-phenyl-amino]biphenyl(NPB)layer as HTL were made.Al/Ag thin films were made as semi-transparent cathode with a transmittance of about 30%.By changing the thickness of indium tin oxide ITO,deep blue with Commission Internationale de L'Eclairage chromaticity coordinates(CIEx,y)of(0.141,0.049)was obtained on TBADN:3%DSAPh devices,and different color(red,blue and green)was obrained on Alq3:DCJTB/TBADN:TBPe/Alq3:C545 devices,full width at half maxima(FWHM)was only 17 nm.The spectral intensity and FWHM of emission in cavity devices have also been studied.

  3. Highly Bright White Organic Light-Emitting Diode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ A highly bright white organic light-emitting diode (OLED) was realized by using a highly bright blue emitting layer, 1,7-diphenyl-4-biphenyl-3,5-dimethyl-l,7-dihydrodipyrazolo[3,4-b;4',3'-e]pyridine (PAP-Ph), together with a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped Alq [tris(8-hydroxyquinolinato) aluminum (Ⅲ)] layer to provide the blue, red and green emission for color mixing. With appropriate thickness control, the white-light OLED has a performance that reaches 24700 cd/m2 at 15 V, 1.93 lm/W at 6.5 V, and >300 cd/m2 at 7.7 mA/em2. The Commission Internationale de l'Eclairage (CIE) coordinates of the emitted light vary in a very small range, from (0.35, 0.34) to (0.34, 0.35), when forward voltages change from 6 to 12 V.

  4. Highly Bright White Organic Light-Emitting Diode

    Institute of Scientific and Technical Information of China (English)

    KO; C.; W.

    2001-01-01

    A highly bright white organic light-emitting diode (OLED) was realized by using a highly bright blue emitting layer, 1,7-diphenyl-4-biphenyl-3,5-dimethyl-l,7-dihydrodipyrazolo[3,4-b;4',3'-e]pyridine (PAP-Ph), together with a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped Alq [tris(8-hydroxyquinolinato) aluminum (Ⅲ)] layer to provide the blue, red and green emission for color mixing. With appropriate thickness control, the white-light OLED has a performance that reaches 24700 cd/m2 at 15 V, 1.93 lm/W at 6.5 V, and >300 cd/m2 at 7.7 mA/em2. The Commission Internationale de l'Eclairage (CIE) coordinates of the emitted light vary in a very small range, from (0.35, 0.34) to (0.34, 0.35), when forward voltages change from 6 to 12 V.  ……

  5. Light-Emitting Diodes: Learning New Physics

    Science.gov (United States)

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  6. Near UV-Blue Excitable Green-Emitting Nanocrystalline Oxide

    Directory of Open Access Journals (Sweden)

    C. E. Rodríguez-García

    2011-01-01

    Full Text Available Green-emitting Eu-activated powders were produced by a two-stage method consisting of pressure-assisted combustion synthesis and postannealing in ammonia. The as-synthesized powders exhibited a red photoluminescence (PL peak located at =616 nm when excited with =395 nm UV. This emission peak corresponds to the 5D0→7F2 transition in Eu3+. After annealing in ammonia, the PL emission changed to an intense broad-band peak centered at =500 nm, most likely produced by 4f65d1→4f7 electronic transitions in Eu2+. This green-emitting phosphor has excitation band in the near UV-blue region (=300–450 nm. X-ray diffraction analysis reveals mainly the orthorhombic EuAlO3 and Al2O3 phases. Transmission electron microscopy observations showed that the grains are formed by faceted nanocrystals (~4 nm of polygonal shape. The excellent excitation and emission properties make these powders very promising to be used as phosphors in UV solid-state diodes coupled to activate white-emitting lamps.

  7. Highly Efficient, Simplified, Solution-Processed Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Young-Hoon; Wolf, Christoph; Cho, Himchan; Jeong, Su-Hun; Lee, Tae-Woo

    2016-01-27

    Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes can be realized by using pure-organic thermally activated delayed fluorescence emitters and a multifunctional buffer hole-injection layer, in which high EQE (≈24%) and current efficiency (≈73 cd A(-1) ) are demonstrated. High-efficiency fluorescence red-emitting and blue-emitting devices can also be fabricated in this manner.

  8. Optical manifold for light-emitting diodes

    Science.gov (United States)

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver

    2008-06-03

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  9. Highly color rendering YAG:Ce phosphor-converted white light-emitting diode based on dual -blue emitting active regions%基于双蓝光有源区激发YAG:Ce荧光粉的高显色性白光LED

    Institute of Scientific and Technical Information of China (English)

    石培培; 严启荣; 李述体; 章勇

    2012-01-01

    Dual - blue wavelength light - emitting diode (LED) based on mixed InGaN/GaN quantum wells was grown sequentially on the (0001) sapphire substrate by metal - organic chemical vapor deposition ( MOCVD) with p - AlGaN and asymmetry n - AlGaN, respectively. It was found that the asymmetry n - AlGaN layer can improve the distribution uniform of electrons and holes and deduce electron overflow relative to the conventional p - AlGaN, and further reduce the dependence of dual - blue wavelength e-mission spectrum on driving current. In addition, highly color rendering white light emission has been realized from YAG; Ce phosphor - converted white LED based on dual - blue wavelength chip, the color rendering index (CRI) of the corresponding white LED reached 91 at a forward current of 20 mA while that of white LED based on single - blue wavelength chip was only 75.%在(0001)蓝宝石衬底上利用金属有机化学气相沉积系统,分别生长含有p- AlGaN电子阻挡层和反对称n - AlGaN层的双蓝光波长发射的InGaN/GaN混合多量子阱发光二极管(LED).结果发现,与传统的具有p-AlGaN电子阻挡层的双蓝光波长LED相比,这种n- AlGaN层能有效改善电子和空穴在混合多量子阱活性层中的分布均匀性和减少电子溢出,并减弱双蓝光发射光谱对电流的依赖性.此外,基于这种双蓝光波长发射的芯片与YAG:Ce荧光粉封装成白光LED能实现高显色性的白光发射,在20 mA电流驱动下,6500 K色温时显色指数达到91,而基于单蓝光芯片的白光LED显色指数只有75.

  10. Dispositivos poliméricos eletroluminescentes Polymeric light emitting devices

    Directory of Open Access Journals (Sweden)

    Hueder P. M. de Oliveira

    2006-04-01

    Full Text Available Here we present an overview of electroluminescent devices that use conjugated polymers as the active media. The principal components of the devices are described and we show some examples of conjugated polymers and copolymers usually employed in polymeric light emitting devices (PLED. Some aspects of the photo and electroluminescence properties as well as of the energy transfer processes are discussed. As an example, we present some of the photophysical properties of poly(fluorenes, a class of conjugated polymers with blue emission.

  11. Light-emitting waveguide-plasmon polaritons

    CERN Document Server

    Rodriguez, S R K; Verschuuren, M A; Rivas, J Gomez

    2013-01-01

    We demonstrate the generation of light in an optical waveguide strongly coupled to a periodic array of metallic nanoantennas. This coupling gives rise to hybrid waveguide-plasmon polaritons (WPPs), which undergo a transmutation from plasmon to waveguide mode and viceversa as the eigenfrequency detuning of the bare states transits through zero. Near zero detuning, the structure is nearly transparent in the far-field but sustains strong local field enhancements inside the waveguide. Consequently, light-emitting WPPs are strongly enhanced at energies and in-plane momenta for which WPPs minimize light extinction. We elucidate the unusual properties of these polaritons through a classical model of coupled harmonic oscillators.

  12. Improvement of carrier distribution in dual wavelength light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Si Zhao; Wei Tongbo; Zhang Ning; Ma Jun; Wang Junxi; Li Jinmin

    2013-01-01

    The effect of different barriers between green and blue light regions in dual wavelength light emitting diodes was studied.Compared with a traditional sample,electroluminescence and photoluminescence spectra of the newly designed samples showed peak intensity improvements and smaller blue-shifts with increasing injection current level,and the bottom quantum-wells light emitting is enhanced.All these phenomena can be ascribed to reduced barrier thickness and indium doping in the quantum-barrier influencing electric fields and more holes injecting into the bottom QWs.

  13. Blue light inhibits the growth of B16 melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Kawashima, Yuzo [Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima (Japan)

    2002-05-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm{sup 2}) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  14. Safety of light emitting diodes in toys.

    Science.gov (United States)

    Higlett, M P; O'Hagan, J B; Khazova, M

    2012-03-01

    Light emitting diodes (LEDs) are increasingly being used in toys. An assessment methodology is described for determining the accessible emission limits for the optical radiation from the toys, which takes account of expected use and reasonably foreseeable misuse of toys. Where data are available, it may be possible to assess the toy from the data sheet alone. If this information is not available, a simple measurement protocol is proposed.

  15. Does antimatter emit a new light?

    Science.gov (United States)

    Santilli, Ruggero Maria

    1997-08-01

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of “the new physics of antimatter” are pointed out.

  16. Efficient organic light emitting-diodes (OLEDs)

    CERN Document Server

    Chang, Yi-Lu

    2015-01-01

    Following two decades of intense research globally, the organic light-emitting diode (OLED) has steadily emerged as the ultimate display technology of choice for the coming decades. Portable active matrix OLED displays have already become prevalent, and even large-sized ultra-high definition 4K TVs are being mass-produced. More exotic applications such as wearable displays have been commercialized recently. With the burgeoning success in displays, researchers are actively bringing the technology forward into the exciting solid-state lighting market. This book presents the knowledge needed for

  17. Silicon Light Emitting Devices in CMOS Technology

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-Da; LIU Hai-Jun; LIU Jin-Bin; GU Ming; HUANG Bei-Ju

    2007-01-01

    @@ Two silicon light emitting devices with different structures are realized in standard 0.35 μm complementary metal-oxide-semiconductor (CMOS) technology. They operate in reverse breakdown mode and can be turned on at 8.3 V. Output optical powers of 13.6nW and 12.1 nW are measured at 10 V and 100 mA, respectively, and both the calculated light emission intensities are more than 1 mW/cm2. The optical spectra of the two devices are between 600-790 nm with a clear peak near 760 nm.

  18. Geometrical design and measurement of light-emitting diode for lighting

    OpenAIRE

    Cheung, Wing-shing; 章永聖

    2015-01-01

    Year 2014 is a milestone in the history of LEDs industry. Isamu Akasaki, Hiroshi Amano and Shuji Nakamura were awarded the Nobel Prize in Physics 2014 for their contribution in the application of “bright and energy-saving white light sources” with invention of efficient blue indium gallium nitrate (InGaN) light-emitting diodes (LED) [1]. This can be treated as an admission of the impotence of LED lighting in the modern human civilization. Although the LED- related technologies had been we...

  19. The AlGaAs light emitting particle detector

    CERN Document Server

    Pozela, J; Silenas, A; Juciene, V; Dapkus, L; Jasutis, V; Tamulaitis, G; Zukauskas, A; Bendorius, R A

    1999-01-01

    An AlGaAs light emitting particle detector was fabricated and investigated experimentally. Light emitting semiconductor Al sub x Ga sub 1 sub - sub x As layers with graded-gap energy band structure were grown, and luminescence spectra were investigated. A light emitting X-ray detector was also fabricated. (author)

  20. Improvement of electroluminescent property of blue LED coated with highly luminescent yellow-emitting phosphors

    Science.gov (United States)

    Jang, H. S.; Won, Y.-H.; Jeon, D. Y.

    2009-06-01

    White light-emitting diodes (WLEDs) were fabricated by combining InGaN-based blue light-emitting diodes (LEDs) with highly luminescent Tb3Al5O12:Ce3+ (TAG:Ce), Y3Al5O12:Ce3+ (YAG:Ce), and Sr3SiO5:Eu2+ (SS:Eu). The TAG:Ce-based WLED showed a color rendering index ( R a ) of 79 and a luminous efficiency ( η L ) of 34.1 lm/W at 20 mA. The YAG:Ce-based WLED and the SS:Eu-based WLED showed low R a values of 75 and 57 but high luminous efficiency values of 38.9 and 41.3 lm/W at 20 mA, respectively. When a mixture of YAG:Ce and SS:Eu was coated on a blue LED and the resultant WLED operated at 20 mA, the WLED showed a highly bright white light similar to daylight ( η L =40.9 lm/W, color temperature T c =5,716 K, and R a =76). Moreover, the WLED showed stable color coordinates against a considerable variation of applied current.

  1. Monolithic white light emitting diodes using a (Ga,In)N-based light converter

    Science.gov (United States)

    Damilano, Benjamin; Lekhal, Kaddour; Kim-Chauveau, Hyonju; Hussain, Sakhawat; Frayssinet, Eric; Brault, Julien; Chenot, Sébastien; Vennéguès, Philippe; De Mierry, Philippe; Massies, Jean

    2014-03-01

    Commercially available inorganic white light emitting diodes (LEDs) are essentially based on the combination of a blue InGaN based LED chip covered by a long wavelength emitting (yellow, red) phosphor. We propose to avoid this step of phosphor deposition by taking advantage of the fact that yellow to red emission can be achieved using InGaN alloys. By stacking an InGaN/GaN multiple quantum well (QW) emitting in the yellow, acting as a light converter, and a short wavelength blue-violet pump LED grown on top, white light emission can be obtained. Furthermore, if we extend the emission spectrum of the light converter into the red, a warm white light color is demonstrated when a pump LED is grown on top. However, the high In content InGaN QWs of the light converter have a low thermal stability and the QW efficiency tends to degrade during the growth of the pump LED. Three different solutions are explored to avoid the thermal degradation of the light converter. The monolithic LED structures were grown by molecular beam epitaxy (MBE), by a combination of both MBE and metal-organic chemical vapor phase epitaxy (MOCVD), or by a low temperature full-MOCVD process. The best results are obtained using a complete MOCVD growth process. The structure and the MOCVD growth conditions are specifically adapted in order to avoid the thermal degradation of the large In composition InGaN QWs emitting at long wavelength during the growth of the subsequent layers.

  2. Electrically and Optically Readable Light Emitting Memories

    Science.gov (United States)

    Chang, Che-Wei; Tan, Wei-Chun; Lu, Meng-Lin; Pan, Tai-Chun; Yang, Ying-Jay; Chen, Yang-Fang

    2014-06-01

    Electrochemical metallization memories based on redox-induced resistance switching have been considered as the next-generation electronic storage devices. However, the electronic signals suffer from the interconnect delay and the limited reading speed, which are the major obstacles for memory performance. To solve this problem, here we demonstrate the first attempt of light-emitting memory (LEM) that uses SiO2 as the resistive switching material in tandem with graphene-insulator-semiconductor (GIS) light-emitting diode (LED). By utilizing the excellent properties of graphene, such as high conductivity, high robustness and high transparency, our proposed LEM enables data communication via electronic and optical signals simultaneously. Both the bistable light-emission state and the resistance switching properties can be attributed to the conducting filament mechanism. Moreover, on the analysis of current-voltage characteristics, we further confirm that the electroluminescence signal originates from the carrier tunneling, which is quite different from the standard p-n junction model. We stress here that the newly developed LEM device possesses a simple structure with mature fabrication processes, which integrates advantages of all composed materials and can be extended to many other material systems. It should be able to attract academic interest as well as stimulate industrial application.

  3. Multicolored Nanofiber Based Organic Light-Emitting Transistor

    DEFF Research Database (Denmark)

    With Jensen, Per Baunegaard; Kjelstrup-Hansen, Jakob; Tavares, Luciana;

    For optoelectronic applications, organic semiconductors have several advantages over their inorganic counterparts such as facile synthesis, tunability via synthetic chemistry, and low temperature processing. Self-assembled, molecular crystalline nanofibers are of particular interest as they could...... form ultra-small light-emitters in future nanophotonic applications. Such organic nanofibers exhibit many interesting optical properties including polarized photo- and electroluminescence, waveguiding, and emission color tunability. We here present a first step towards a multicolored, electrically...... driven device by combining nanofibers made from two different molecules, parahexaphenylene (p6P) and 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP), which emits blue and green light, respectively. The organic nanofibers are implemented on a bottom gate/bottom contact field-effect transistor platform using...

  4. Deep ultraviolet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, X.; Deng, J.; Zhang, J.P.; Lunev, A.; Bilenko, Y.; Katona, T.; Gaska, R. [Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, SC 29209 (United States); Shur, M.S. [Department of Electrical Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Shatalov, M.; Khan, A. [Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2006-05-15

    We report on the development of AlGaN-based deep UV light emitting diodes (LEDs) with emission wavelengths from 254 to 340 nm, focusing on the improvement of 280 nm LEDs efficiency. Under optimal device structure the UV LEDs efficiency was found to strongly depend on the AlGaN material quality. Milliwatt-power level LEDs were demonstrated for the 254-340 nm spectral range, and for 280 nm LEDs powers reaching 2.5 mW was achieved at 20 mA DC. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Atomically thin quantum light-emitting diodes

    Science.gov (United States)

    Palacios-Berraquero, Carmen; Barbone, Matteo; Kara, Dhiren M.; Chen, Xiaolong; Goykhman, Ilya; Yoon, Duhee; Ott, Anna K.; Beitner, Jan; Watanabe, Kenji; Taniguchi, Takashi; Ferrari, Andrea C.; Atatüre, Mete

    2016-09-01

    Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.

  6. Blue light inhibits proliferation of melanoma cells

    Science.gov (United States)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  7. Novel Blue Light—emitting PPV—based Copolymer Containing Trazole and Carbazole Units

    Institute of Scientific and Technical Information of China (English)

    ZeLIU; LiXiangWANG; 等

    2002-01-01

    A novel alternating conjugated copolymer containing triazole and carbazole units was synthesized by the Witting reaction. The resulting bipolar conjugated polymer emits a pure light with good thermal stability, which is a promising candidate for polymer light emitting display.

  8. Organic bistable light-emitting devices

    Science.gov (United States)

    Ma, Liping; Liu, Jie; Pyo, Seungmoon; Yang, Yang

    2002-01-01

    An organic bistable device, with a unique trilayer structure consisting of organic/metal/organic sandwiched between two outmost metal electrodes, has been invented. [Y. Yang, L. P. Ma, and J. Liu, U.S. Patent Pending, U.S. 01/17206 (2001)]. When the device is biased with voltages beyond a critical value (for example 3 V), the device suddenly switches from a high-impedance state to a low-impedance state, with a difference in injection current of more than 6 orders of magnitude. When the device is switched to the low-impedance state, it remains in that state even when the power is off. (This is called "nonvolatile" phenomenon in memory devices.) The high-impedance state can be recovered by applying a reverse bias; therefore, this bistable device is ideal for memory applications. In order to increase the data read-out rate of this type of memory device, a regular polymer light-emitting diode has been integrated with the organic bistable device, such that it can be read out optically. These features make the organic bistable light-emitting device a promising candidate for several applications, such as digital memories, opto-electronic books, and recordable papers.

  9. Synthesis and luminescence properties of Eu2+-activated Ca4Mg5(PO4)6 for blue-emitting phosphor

    Indian Academy of Sciences (India)

    Liu Min; Tang Wanjun; Deng Kejian

    2012-02-01

    Ca4Mg5(PO4)6:Eu2+ blue-emitting phosphor was synthesized by the combustion-assisted synthesis method under reductive atmosphere. The products were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectrum. XRD analysis confirmed the formation of Ca4Mg5(PO4)6 pure phase. Photoluminescence results showed that the phosphor can be excited efficiently by UV light range from 230–400 nm, and then exhibited bright blue light with peak wavelength at 431 nm. It is a very promising candidate as a blue-emitting phosphor for potential applications in display devices.

  10. Phosphor-free polychromatic emission InGaN light-emitting diode

    OpenAIRE

    Feng, Cong; 冯聪

    2016-01-01

    Broadband white light is indispensable for applications involving general illumination and displaying, a task conventionally fulfilled by fluorescent light sources. Light-emitting diodes (LEDs) based on the Group-III nitrides have been taking over that role in recent years, despite the fact that LEDs are inherently monochromatic sources with spectral line-widths in the range of 20 to 50nm. The most adopted industrial solution is to shift part of the light emitted by a blue InGaN chip into lon...

  11. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn; Liu, Bin; Wang, Lianhui [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Shi, Hongying [Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China); Huang, Wei, E-mail: iamdirector@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China)

    2015-02-28

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.

  12. Light-Emitting Diodes: Phosphorescent Nanocluster Light-Emitting Diodes (Adv. Mater. 2/2016).

    Science.gov (United States)

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    On page 320, R. R. Lunt and co-workers demonstrate electroluminescence from earth-abundant phosphorescent metal halide nanoclusters. These inorganic emitters, which exhibit rich photophysics combined with a high phosphorescence quantum yield, are employed in red and near-infrared light-emitting diodes, providing a new platform of phosphorescent emitters for low-cost and high-performance light-emission applications.

  13. Colloidal quantum dot light-emitting devices

    Directory of Open Access Journals (Sweden)

    Vanessa Wood

    2010-07-01

    Full Text Available Colloidal quantum dot light-emitting devices (QD-LEDs have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI. We review the key advantages of using quantum dots (QDs in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs – optical excitation, Förster energy transfer, and direct charge injection – that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt. We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

  14. Effects of blue pulsed light on human physiological functions and subjective evaluation

    Directory of Open Access Journals (Sweden)

    Katsuura Tetsuo

    2012-09-01

    Full Text Available Abstract Background It has been assumed that light with a higher irradiance of pulsed blue light has a much greater influence than that of light with a lower irradiance of steady blue light, although they have the same multiplication value of irradiance and duration. We examined the non-visual physiological effects of blue pulsed light, and determined whether it is sensed visually as being blue. Findings Seven young male volunteers participated in the study. We placed a circular screen (diameter 500 mm in front of the participants and irradiated it using blue and/or white light-emitting diodes (LEDs, and we used halogen lamps as a standard illuminant. We applied three steady light conditions of white LED (F0, blue LED + white LED (F10, and blue LED (F100, and a blue pulsed light condition of a 100-μs pulse width with a 10% duty ratio (P10. The irradiance of all four conditions at the participant's eye level was almost the same, at around 12 μW/cm2. We measured their pupil diameter, recorded electroencephalogram readings and Kwansei Gakuin Sleepiness Scale score, and collected subjective evaluations. The subjective bluish score under the F100 condition was significantly higher than those under other conditions. Even under the P10 condition with a 10% duty ratio of blue pulsed light and the F10 condition, the participant did not perceive the light as bluish. Pupillary light response under the P10 pulsed light condition was significantly greater than under the F10 condition, even though the two conditions had equal blue light components. Conclusions The pupil constricted under the blue pulsed light condition, indicating a non-visual effect of the lighting, even though the participants did not perceive the light as bluish.

  15. Correlated Color Temperature Tunable Multi-chip Light Emitting Diodes Light Source Design

    Institute of Scientific and Technical Information of China (English)

    SHEN Hai-ping; PAN Jian-gen; FENG Hua-jun

    2008-01-01

    One of the methods to derive white light from light emitting diodes(LEDs) is the multi-chip white LED technology, which mixes the light from red, green and blue LEDs. Introduced is an optimal algorithm for the spectrum design of the multi-chip white LEDs in this paper. It optimizes the selection of single color LEDs and drive current controlling, so that the multi-chip white LED achieves the target correlated color temperature(CCT), as well as high luminous efficacy and good color rendering. A CCT tunable LED light source with four high-power LEDs is realized based on the above optimal design. Test results show that it maintains satisfactory color rendering and stable luminous efficacy across the whole CCT tuning range. Finally, discussed are the design improvement and the prospect of the future applications of the CCT tunable LED light source.

  16. Light-emitting diodes for analytical chemistry.

    Science.gov (United States)

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K

    2014-01-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  17. Near infrared polymer light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; YANG Jian; HOU Qiong; MO Yueqi; PENG Junbiao; CAO Yong

    2005-01-01

    High efficiency of near infrared polymer light-emitting diodes with bilayer structure was obtained. The diode structure is ITO/PEDOT/L1/L2/Ba/Al, where L1 is phenyl-substituted poly [p-phenylphenylene vinylene] derivative (P-PPV), L2 is 9,9-dioctylfluorene (DOF) and 4,7- bis(3-hexylthiophen)-2-yl-2,1,3-naphthothiadiazole (HDNT) copolymer (PFHDNT10). The electroluminescence (EL) spectrum of diodes from PFHDNT10 is at 750 nm located in the range of near infrared. The maximum external quantum efficiency is up to 2.1% at the current density of 35 mA/cm2. The improvement of the diode's performances was considered to be the irradiative excitons confined in the interface between L1 and L2 layers.

  18. Logarithmic current electrometer using light emitting diodes

    Science.gov (United States)

    Acharya, Y. B.; Aggarwal, A. K.

    1996-02-01

    The limit of low current measurement using logarithmic current to voltage converter is improved by 6 - 7 orders of magnitude with the use of diodes of large band gap as compared with silicon diodes. Low cost commercially available light emitting diodes (LEDs) have been used for this purpose. A theoretical study and experimental measurement of device constant and reverse saturation currents of the whole class of commercially available LEDs has been carried out. A circuit has been developed which makes use of a new technique for temperature compensation and its performance is compared with the technique in common use. The performance of the amplifier is found to be stable in the temperature range 5 - 600957-0233/7/2/005/img5 for both polarity of signals from 0957-0233/7/2/005/img6 to 0957-0233/7/2/005/img7 A.

  19. Bipolar Host Materials for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Yook, Kyoung Soo; Lee, Jun Yeob

    2016-02-01

    It is important to balance holes and electrons in the emitting layer of organic light-emitting diodes to maximize recombination efficiency and the accompanying external quantum efficiency. Therefore, the host materials of the emitting layer should transport both holes and electrons for the charge balance. From this perspective, bipolar hosts have been popular as the host materials of thermally activated delayed fluorescent devices and phosphorescent organic light-emitting diodes. In this review, we have summarized recent developments of bipolar hosts and suggested perspectives of host materials for organic light-emitting diodes.

  20. Synthesis of quinoline based heterocyclic compounds for blue lighting application

    Science.gov (United States)

    Kumar, Vinod; Gohain, Mukut; Van Tonder, Johannes H.; Ponra, S.; Bezuindenhoudt, B. C. B.; Ntwaeaborwa, O. M.; Swart, H. C.

    2015-12-01

    2,4-Diphenylquinoline (DPQ), derivatives 6-chloro-2,4-diphenylquinoline (DPQ-Cl) and 4‧,6-dichloro-2,4-diphenylquinoline (DPQ-Cl2) were synthesized using a three-component domino reaction. The DPQ, DPQ-Cl and DPQ-Cl2 were characterized by nuclear magnetic resonance spectroscopy, scanning electron microscopy, thermogravimetric analysis (TGA). Fourier transformed infra-red spectroscopy, X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) spectroscopy and photoluminescence spectroscopy. The TGA results showed that the DPQ was more thermally stable with respect to the DPQ-Cl and DPQ-Cl2. The synthesized organic phosphors showed bright emission in the blue region under an UV excitation wavelength of 325 nm with the power of 18 mW. These organic phosphors were found to be efficient candidate and may be used in organic blue light emitting devices.

  1. Blue light curing units--a dermatological hazard?

    Science.gov (United States)

    Chadwick, R G; Traynor, N; Moseley, H; Gibbs, N

    1994-01-08

    The setting reactions of a large number of dental materials are activated upon exposure to visible blue light emitted from a curing unit. Although the wavelength (lambda) from such devices is principally in the visible spectrum (lambda > 400 nm) a small amount of ultraviolet radiation (UV) is also present. Little attention has been paid to the consequences of such exposure upon the skin of dental surgeons' fingers. This investigation studied the level of UVA I (lambda = 340-400 nm) emitted by three commonly used polymerisation sources and assessed the level of protection afforded by six brands of surgical glove. The integrated irradiances of the Translux, Topaz T100 and Heliomat units in the UVA I range were 15861, 3611 and 305 mW/m2 respectively. For all gloves the mean % transmission, at lambda = 400 nm, was less than 4% with the exception of one brand where, in the stretched state, the level of transmission was 7%. It is concluded that the risk of initiating adverse dermatological consequences as a result of exposure to UVA I, emitted by light polymerisation units, is minimal in normal usage. The combined effects of exposure to radiation of this type and contamination of the fingers with quantities of irritant chemicals, such as found in many dental materials, are unknown. Due to the ability of the gloves to shield the skin from both chemicals and UVA I it is recommended that gloves are routinely worn for all light curing procedures.

  2. Recent advances in conjugated polymers for light emitting devices.

    Science.gov (United States)

    Alsalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.

  3. Recent Advances in Conjugated Polymers for Light Emitting Devices

    Directory of Open Access Journals (Sweden)

    Mohan Raja

    2011-03-01

    Full Text Available A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.

  4. A new type of white light-emitting diode light source basing on fluorescent SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Lu, Weifang

    Most of the commercial white light-emitting diode (LED) light sources are made from phosphor coated blue-emitting gallium nitride (GaN) chips. This type white LED light source always has tradeoff between luminous efficacy and color rendering index (CRI). Furthermore, yellow-emitting phosphor decays...... much faster than the semiconductor chip, so the white color will turn into bluish over the time. This paper will propose a new type white LED light source: using fluorescent silicon carbide (SiC) to take the place of phosphor. This new type LED has the following advantages: a) SiC is a wide bandgap...... semiconductor material , so it is stable; b) Fluorescent SiC has very wide emission spectrum, and it could generate white light with very high CRI; c) It is a better substrate than sapphire for the GaN growth in terms of lattice match and thermal conductivity. This paper will cover: the growth of fluorescent Si...

  5. Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells

    Science.gov (United States)

    Park, Il-Kyu; Kim, Ja-Yeon; Kwon, Min-Ki; Cho, Chu-Young; Lim, Jae-Hong; Park, Seong-Ju

    2008-03-01

    A phosphor-free white light-emitting diode (LED) was fabricated with laterally distributed blue and green InGaN /GaN multiple quantum wells (MQWs) grown by a selective area growth method. Photoluminescence and electroluminescence (EL) spectra of the LED showed emission peaks corresponding to the individual blue and green MQWs. The integrated EL intensity ratio of green to blue emission varied from 2.5 to 6.5 with the injection current below 300mA, but remained constant at high injection currents above 300mA. The stability of the emission color at high currents is attributed to parallel carrier injection into both MQWs.

  6. Laminated active matrix organic light-emitting devices

    Science.gov (United States)

    Liu, Hongyu; Sun, Runguang

    2008-02-01

    Laminated active matrix organic light-emitting device (AMOLED) realizing top emission by using bottom-emitting organic light-emitting diode (OLED) structure was proposed. The multilayer structure of OLED deposited in the conventional sequence is not on the thin film transistor (TFT) backplane but on the OLED plane. The contact between the indium tin oxide (ITO) electrode of TFT backplane and metal cathode of OLED plane is implemented by using transfer electrode. The stringent pixel design for aperture ratio of the bottom-emitting AMOLED, as well as special technology for the top ITO electrode of top-emitting AMOLED, is unnecessary in the laminated AMOLED.

  7. Light collection optics for measuring flux and spectrum from light-emitting devices

    Science.gov (United States)

    McCord, Mark A.; DiRegolo, Joseph A.; Gluszczak, Michael R.

    2016-05-24

    Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.

  8. Synthesis, characterization, and photophysical and electroluminescent properties of blue-emitting cationic iridium(III) complexes bearing nonconjugated ligands.

    Science.gov (United States)

    Zhang, Fuli; Ma, Dongxin; Duan, Lian; Qiao, Juan; Dong, Guifang; Wang, Liduo; Qiu, Yong

    2014-07-07

    The development of pure-blue-to-deep-blue-emitting ionic phosphors is an ultimate challenge for full-color displays and white-light sources. Herein we report two series of short-wavelength light-emitting cationic iridium(III) complexes with nonconjugated ancillary and cyclometalating ligands, respectively. In the first series, nonconjugated 1-[(diphenylphosphino)methyl]-3-methylimidazolin-2-ylidene-C,C2' (dppmmi) is used as the ancillary ligand and 2-phenylpyridine (ppy), 2-(2,4-difluorophenyl)pyridine (dfppy), and 1-(2,4-difluorophenyl)-1H-pyrazole (dfppz) are used as cyclometalating ligands. In the second one, nonconjugated 2,4-difluorobenzyl-N-pyrazole (dfbpz) is used as the cyclometalating ligand and 3-methyl-1-(2-pyridyl)benzimidazolin-2-ylidene-C,C(2)' (pymbi) as the ancillary ligand. The synthesis and photophysical and electrochemical properties, together with the X-ray crystal structures of these complexes, have been investigated. At room temperature, blue-emitting complexes [Ir(ppy)2(dppmmi)]PF6 (1) and [Ir(dfppy)2(dppmmi)]PF6 (2; PF6(-) is hexafluorophosphate) show much larger photoluminescence quantum yields of 24% and 46%, respectively. On the contrary, for complexes [Ir(dfppz)2(dppmmi)]PF6 (3) and [Ir(dfbpz)2(pymbi)]PF6 (4), deep-blue luminescence is only observed at low temperature (77 K). Density functional theory calculations are used to rationalize the differences in the photophysical behavior observed upon changes of the ligands. It is shown that the electronic transition dipoles of cationic iridium complexes 1 and 2 are mainly confined to cyclometalated ligands ((3)MLCT and LC (3)π-π*) and those of complex 3 are confined to all of the ligands ((3)MLCT, LC (3)π-π*, and (3)LLCT) because of the high LUMO energy level of dfppz. The emission of 4 mainly originates from the central iridium(III) ion and cyclometalated ligand to ancillary ligand charge transfer ((3)MLCT and (3)LLCT), in contrast to commonly designed cationic complexes using carbene

  9. Efficient semiconductor light-emitting device and method

    Science.gov (United States)

    Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  10. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Hongying; Deng, Lingling; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn; Xu, Ying; Zhao, Xiaofei; Cheng, Fan [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Huang, Wei, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816 (China)

    2014-04-15

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range of 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  11. Bigger, Brighter, Bluer-Better?Current light-emitting devices- adverse sleep properties and preventative strategies.

    Directory of Open Access Journals (Sweden)

    Paul eGringras

    2015-10-01

    Full Text Available ObjectiveIn an effort to enhance the efficiency, brightness and contrast of light-emitting (LE devices during the day, displays often generate substantial short-wavelength (blue-enriched light emissions that can adversely affect sleep. We set out to verify the extent of such short-wavelength emissions, produced by a tablet (iPad Air, e-reader (Kindle Paperwhite 1st generation and smartphone (iPhone 5s and to determine the impact of strategies designed to reduce these light emissions. SettingUniversity of Surrey dedicated chronobiology facility.MethodsFirstly, the spectral power of all the light-emitting (LE devices was assessed when displaying identical text. Secondly, we compared the text output with that of ‘Angry Birds’-a popular top 100 ‘App Store’ game. Finally we measured the impact of two strategies that attempt to reduce the output of short-wavelength light emissions. The first strategy employed an inexpensive commercially available pair of orange-tinted ‘blue-blocking’ glasses. The second tested an app designed to be ‘sleep-aware’ whose designers deliberately attempted to reduce blue-enriched light emissions.ResultsAll the LE devices shared very similar enhanced blue-light peaks when displaying text. This included the output from the backlit Kindle Paperwhite device. The spectra when comparing text to the Angry Birds game were also very similar, although the

  12. Organic light-emitting diodes: High-throughput virtual screening

    Science.gov (United States)

    Hirata, Shuzo; Shizu, Katsuyuki

    2016-10-01

    Computer networks, trained with data from delayed-fluorescence materials that have been successfully used in organic light-emitting diodes, facilitate the high-speed prediction of good emitters for display and lighting applications.

  13. White organic light-emitting devices with mixed interfaces between light emitting layers

    Science.gov (United States)

    Lee, Young Gu; Kee, In Seo; Shim, Hong Shik; Ko, Ick Hwan; Lee, Soonil; Koh, Ken Ha

    2007-06-01

    White organic light-emitting devices with mixed interfaces between emitting layers (MI-EML WOLEDs) showed luminance and efficiency as large as 26213cd/m2 and 9.85cd/A. Efficiencies of MI-EML WOLEDs were about 1.5 times better than those of conventional three-EML WOLEDs for luminance of 1000-5000cd/m2, and their half-decay lifetime showed 3.1 times improvement. Note that if the authors operate typical active-matrix mobile-phone displays based on combination of WOLED and color filters to produce standard white emission for high definition televisions and illumination sources, MI-EML WOLEDs will have advantages of 25% less power consumption and 2.8 times longer lifetime over conventional three-EML WOLEDs.

  14. White Light Emitting Diode Development for General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    James Ibbetson

    2006-05-01

    This report contains a summary of technical achievements during a 3-year project aimed at developing the chip and packaging technology necessary to demonstrate efficient, high flux light-emitting diode (LED) arrays using Cree's gallium nitride/silicon carbide (GaN/SiC) LED technology as the starting point. Novel chip designs and fabrication processes are described that led to high power blue LEDs that achieved 310 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 32.5% and 26.5%, respectively. When combined with phosphor, high power white LEDs with luminous output of 67 lumens and efficacy of 57 lumens per watt were also demonstrated. Advances in packaging technology are described that enabled compact, multi-chip white LED lamp modules with 800-1000 lumens output at efficacies of up to 55 lumens per watt. Lamp modules with junction-to-ambient thermal resistance as low as 1.7 C/watt have also been demonstrated.

  15. Fabrication of white light-emitting diodes based on UV light-emitting diodes with conjugated polymers-(CdSe/ZnS) quantum dots as hybrid phosphors.

    Science.gov (United States)

    Jung, Hyunchul; Chung, Wonkeun; Lee, Chang Hun; Kim, Sung Hyun

    2012-07-01

    White light-emitting diodes (LEDs) were fabricated using GaN-based 380-nm UV LEDs precoated with the composite of blue-emitting polymer (poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy)-1 ,4-phenylene)]), yellow green-emitting polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)]), and 605-nm red-emitting quantum dots (QDs). CdSe cores were obtained by solvothermal route using CdO, Se precursors and ZnS shells were synthesized by using diethylzinc, and hexamethyldisilathiane precursors. The optical properties of CdSe/ZnS QDs were characterized by UV-visible and photoluminescence (PL) spectra. The structural data and composition of the QDs were transmission electron microscopy (TEM), and EDX technique. The quantum yield and size of the QDs were 58.7% and about 6.7 nm, respectively. Three-band white light was generated by hybridizing blue (430 nm), green (535 nm), and red (605 nm) emission. The color-rendering index (CRI) of the device was extremely improved by introducing the QDs. The CIE-1931 chromaticity coordinate, color temperature, and CRI of a white LED at 20 mA were (0.379, 0.368), 3969 K, and 90, respectively.

  16. Using nanoimprint lithography to improve the light extraction efficiency and color rendering of dichromatic white light-emitting diodes

    Science.gov (United States)

    Lee, Yang-Chun; Chen, Hsuen-Li; Lu, Chih-Yu; Wu, Hung-Sen; Chou, Yung-Fang; Chen, Szu-Huang

    2015-10-01

    Despite the efficiency of gallium nitride (GaN)-based blue light-emitting diodes (LEDs), the light extraction arising from the packaging of the phosphor remains an important issue when enhancing the performance of dichromatic white LEDs. In this study, we employed a simple, inexpensive nanoimprinting process to increase both the light extraction efficiency and color rendering of dichromatic white LEDs. We employed the rigorous coupled wave approach (RCWA) to optimize the light extraction efficiency of yellow and blue light. We found that the presence of the light extracting structures could also improve the color rendering of the dichromatic white LEDs, due to the different light extraction efficiencies of the textured structures at different wavelengths. After fabricating inverted pyramid structures on the surface of the encapsulation layer, the intensity of the blue light at 455 nm increased by 20%. When we further considered the color rendering and correlated color temperature (CCT), the enhancement of blue light was 15% and that of yellow light was 4%. Meanwhile, the light extraction of the intensity dip near 490 nm was enhanced significantly (by 25%), resulting in an increased dip-intensity of light at 490 nm relative to the intensities of the blue and yellow light. Accordingly, the color rendering index (CRI) of this dichromatic white LED increased from 69 to 73. Because it improved both the light extraction efficiency and color rendering of dichromatic white LEDs, this simple method should be very helpful for enhancing their applications in solid state illumination.Despite the efficiency of gallium nitride (GaN)-based blue light-emitting diodes (LEDs), the light extraction arising from the packaging of the phosphor remains an important issue when enhancing the performance of dichromatic white LEDs. In this study, we employed a simple, inexpensive nanoimprinting process to increase both the light extraction efficiency and color rendering of dichromatic white

  17. White organic light-emitting diodes with fine chromaticity tuning via ultrathin layer position shifting

    Science.gov (United States)

    Choukri, Hakim; Fischer, Alexis; Forget, Sébastien; Chénais, Sébastien; Castex, Marie-Claude; Adès, Dominique; Siove, Alain; Geffroy, Bernard

    2006-10-01

    Nondoped white organic light-emitting diodes using an ultrathin yellow-emitting layer of rubrene (5,6,11,12-tetraphenylnaphtacene) inserted on either side of the interface between a hole-transporting 4,4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (α-NPB) layer and a blue-emitting 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi) layer are described. Both the thickness and the position of the rubrene layer allow fine chromaticity tuning from deep blue to pure yellow via bright white with CIE coordinates (x =0.33, y =0.32), an ηext of 1.9%, and a color rendering index of 70. Such a structure also provides an accurate sensing tool to measure the exciton diffusion length in both DPVBi and NPB (8.7 and 4.9nm, respectively).

  18. White Organic Light-Emitting Diodes with fine chromaticity tuning via ultrathin layer position shifting

    CERN Document Server

    Choukri, H; Forget, S; Chenais, S; Castex, M C; Ades, D; Siove, A; Geffroy, B; Choukri, Hakim; Fischer, Alexis; Forget, Sebastien; Chenais, Sebastien; Castex, Marie-Claude; Ades, Dominique; Siove, Alain; Geffroy, Bernard

    2006-01-01

    Non-doped white organic light-emitting diodes using an ultrathin yellow-emitting layer of rubrene (5,6,11,12-tetraphenylnaphtacene) inserted on either side of the interface between a hole-transporting NPB (4,4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl) layer and a blue-emitting DPVBi (4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl) layer are described. Both the thickness and the position of the rubrene layer allow fine chromaticity tuning from deep-blue to pure-yellow via bright-white with CIE coordinates (x= 0.33, y= 0.32), a external quantum efficiency of 1.9%, and a color rendering index of 70. Such a structure also provides an accurate sensing tool to measure the exciton diffusion length in both DPVBi and NPB (8.7 and 4.9 nm respectively).

  19. Luminescence characteristics of blue emitting ZnAl{sub 2}O{sub 4}: Ce nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mithlesh, E-mail: mithlesh010757@gmail.com; Mohapatra, M.; Natarajan, V.

    2014-05-01

    Photoluminescence (PL) and Thermally stimulated luminescence (TSL) properties of both virgin and Ce doped ZnAl{sub 2}O{sub 4} phosphors were investigated. The phosphors were synthesized via sol–gel route using the respective metal nitrates and citric acid. The nano particle nature of the phosphor was confirmed by X ray diffraction and dynamic light scattering techniques. Time resolved photoluminescence and photo-acoustic spectroscopic techniques were used to characterize the emission and excitation properties of the system. TSL properties of the nanophosphor showed a single glow peak at 468 K. Various trap parameters and the kinetics for the glow peak were evaluated assuming the Arrhenius behavior for the system. Electron spin resonance (ESR) technique was used to identify the chemical nature of the traps/defects responsible for the glow peak. The emission spectrum of the nanophosphor was plotted on a standard CIE diagram which suggested a strong bluish violet emission from the phosphor system. Further, the intensity of the phosphor was compared with that of commercial blue phosphor to know the commercial utility of the prepared phosphors. - Highlights: • Synthesis of ZnAl{sub 2}O{sub 4}:Ce nano-phosphors by sol–gel route. • Speciation of Ce in the host matrix. • Evaluation of order of kinetics and trap parameters of the system. • ESR–TSL correlation of the observed glow peak. • Evaluation of CIE indices and commercial utility of the blue emitting phosphor.

  20. Towards fully spray coated organic light emitting devices

    OpenAIRE

    GILISSEN, Koen; STRYCKERS, Jeroen; Manca, Jean; DEFERME, Wim

    2014-01-01

    Pi-conjugated polymer light emitting devices have the potential to be the next generation of solid state lighting. In order to achieve this goal, a low cost, efficient and large area production process is essential. Polymer based light emitting devices are generally deposited using techniques based on solution processing e.g.: spin coating, ink jet printing. These techniques are not well suited for cost-effective, high throughput, large area mass production of these organic devices. Ultrasoni...

  1. Perovskite Materials for Light-Emitting Diodes and Lasers.

    Science.gov (United States)

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices.

  2. Color-converted remote phosphor prototype of a multiwavelength excitable borosilicate glass for white light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Tian Hua; Liu Ji-Wen; Qiu Kun; Song Jun; Wang Da-Jian

    2012-01-01

    We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes.This glass can be excited from 394 nm-peaked near ultraviolet light,466 nm-peaked blue light,to 534 nm-peaked green light to emit the desired red light with an excellent transmission in the wavelength range of 400-700 nm which makes this glass suitable for color conversion without a great cost of luminous power loss.In particular,when assembling this glass for commercial white light-emitting diodes,the tested results show that the color rendering index is improved to 84 with a loss of luminous power by 12 percent at average,making this variety of glass promising for inorganic "remote-phosphor" color conversion.

  3. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun

    2016-08-16

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  4. Blue light effects on rose photosynthesis and photomorphogenesis.

    Science.gov (United States)

    Abidi, F; Girault, T; Douillet, O; Guillemain, G; Sintes, G; Laffaire, M; Ben Ahmed, H; Smiti, S; Huché-Thélier, L; Leduc, N

    2013-01-01

    Through its impact on photosynthesis and morphogenesis, light is the environmental factor that most affects plant architecture. Using light rather than chemicals to manage plant architecture could reduce the impact on the environment. However, the understanding of how light modulates plant architecture is still poor and further research is needed. To address this question, we examined the development of two rose cultivars, Rosa hybrida'Radrazz' and Rosa chinensis'Old Blush', cultivated under two light qualities. Plants were grown from one-node cuttings for 6 weeks under white or blue light at equal photosynthetic efficiencies. While plant development was totally inhibited in darkness, blue light could sustain full development from bud burst until flowering. Blue light reduced the net CO(2) assimilation rate of fully expanded leaves in both cultivars, despite increasing stomatal conductance and intercellular CO(2) concentrations. In 'Radrazz', the reduction in CO(2) assimilation under blue light was related to a decrease in photosynthetic pigment content, while in both cultivars, the chl a/b ratio increased. Surprisingly, blue light could induce the same organogenetic activity of the shoot apical meristem, growth of the metamers and flower development as white light. The normal development of rose plants under blue light reveals the strong adaptive properties of rose plants to their light environment. It also indicates that photomorphogenetic processes can all be triggered by blue wavelengths and that despite a lower assimilation rate, blue light can provide sufficient energy via photosynthesis to sustain normal growth and development in roses.

  5. Effect of phototherapy with turquoise vs. blue LED light of equal irradiance in jaundiced neonates

    DEFF Research Database (Denmark)

    Ebbesen, Finn; Vandborg, Pernille K; Madsen, Poul H;

    2016-01-01

    for phototherapy is light emitting diodes (LEDs). AIM: Compare the bilirubin reducing effect in jaundiced neonates treated either with turquoise- or blue LED light with peak emission at 497 nm or 459 nm, respectively, with equal irradiance on the infants. METHODS: Infants with gestational age ≥33 weeks......) decrease of total serum bilirubin was 35.3% (32.5; 37.3) and 33.1% (27.1; 36.8) for infants treated with turquoise- and blue light, respectively. The difference was non-significant (p=0.53). The decrease was positively correlated to postnatal age and negatively to birth weight. CONCLUSION: Using LED light...... of equal irradiance, turquoise- and blue light had equal bilirubin reducing effect on hyperbilirubinemia of neonates.Pediatric Research (2015); doi:10.1038/pr.2015.209....

  6. A modern perspective on the history of semiconductor nitride blue light sources

    Science.gov (United States)

    Maruska, Herbert Paul; Rhines, Walden Clark

    2015-09-01

    In this paper we shall discuss the development of blue light-emitting (LED) and laser diodes (LD), starting early in the 20th century. Various materials systems were investigated, but in the end, the nitrides of aluminum, gallium and indium proved to be the most effective. Single crystal thin films of GaN first emerged in 1968. Blue light-emitting diodes were first reported in 1971. Devices grown in the 1970s were prepared by the halide transport method, and were never efficient enough for commercial products due to contamination. Devices created by metal-organic vapor-phase epitaxy gave far superior performance. Actual true blue LEDs based on direct band-to-band transitions, free of recombination through deep levels, were finally developed in 1994, leading to a breakthrough in LED performance, as well as nitride based laser diodes in 1996. In 2014, the scientists who achieved these critical results were awarded the Nobel Prize in Physics.

  7. High performance gallium nitride based blue light emitting diode material epitaxy and dry etching fabrication technology%氮化镓基高亮度发光二极管材料外延和干法刻蚀技术

    Institute of Scientific and Technical Information of China (English)

    罗毅; 邵嘉平; 郭文平; 韩彦军; 胡卉; 薛松; 孙长征; 郝智彪

    2004-01-01

    通过对氮化镓(Gallium nitride,GaN)基蓝色高亮度发光二极管(High brightness light emitting diode,HB-LED)材料金属有机气相外延(Metal organic vapor phase epitaxy,MOVPE)生长技术的研究和优化以及在有源区内引入新型InxGa1-xN/GaN多量子阱(Multiple quantum wells,MQWs)结构,获得了高性能的HB-LED外延片材料.高分辨率X射线衍射(High resolution X-ray diffraction,HR-XRD)和变温光致荧光谱(Temperature dependent photoluminescence spectra,TD-PL Spectra)测量表明外延材料的异质界面陡峭,单晶质量优异,并由变注入电致荧光谱(Injection dependent electroluminescence spectra,ID-EL spectra)测量获得:HB-LED芯片的峰值发光波长在注入电流为2 mA至120 mA变化下蓝移量小于1 nm,电致荧光谱的半高全宽值(Full width hlf maximum,FWHM)在注入电流为20 mA时仅为18 nm.此外,还介绍了GaN基材料感应耦合等离子体(Inductivelycoupled plasma,ICP)干法刻蚀技术.考虑实际需要,本文作者开发了AlGaN/GaN异质材料的非选择性刻蚀工艺,原子力显微镜(Atomic force microscope,AFM)观察得到AlGaN/GaN刻蚀表面均方根粗糙度RMS仅为0.85nm,与外延片的表面平整度相当.还获得了AlGaN/GaN高选择比的刻蚀技术,GaN和AlGaN的刻蚀选择比为60.

  8. A Closed-Loop Smart Control System Driving RGB Light Emitting Diodes

    KAUST Repository

    Al-Saggaf, Abeer

    2015-05-01

    The demand for control systems that are highly capable of driving solid-state optoelectronic devices has significantly increased with the advancement of their efficiency and elevation of their current consumption. This work presents a closed-loop control system that is based on a microcontroller embedded system capable of driving high power optoelectronic devices. In this version of the system, the device in the center of control is a high-power red, green, and blue light emitting diode package. The system features a graphical user interface, namely an Android mobile phone application, in which the user can easily use to vary the light color and intensity of the light-emitting device wirelessly via Bluetooth. Included in the system is a feedback mechanism constituted by a red, green, and blue color sensor through which the user can use to observe feedback color information about the emitted light. The system has many commercial application including in-door lighting and research application including plant agriculture research fields.

  9. White light generation using 280 nm light emitting diode pumps

    Energy Technology Data Exchange (ETDEWEB)

    Shatalov, M.; Wu, S.; Adivarahan, V.; Sun, W.H.; Chitnis, A.; Yang, J.; Asif Khan, M. [Department of Electrical Engineering, University of South Carolina, 301 Main St., Columbia, SC 29208 (United States); Bilenko, Yu.; Gaska, R. [Sensor Electronics Technology, Inc., 1195 Atlas Rd., Columbia, SC 29209 (United States)

    2005-05-01

    High power 250-280 nm deep ultraviolet (UV) light emitting diode (LED) structures were grown by migration-enhanced metal organic chemical vapour deposition (MEMOCVD) approach allowing for very high material quality for high aluminum composition Al{sub x}Ga{sub 1-x}N layers (x up to 70%). Standard square geometry devices with CW power up to 0.5 mW at 80 mA and pulse power more than 3 mW at 200 mA were fabricated. These high power UV LEDs were mounted into TO type package with phosphor-coated windows. This approach yielded cold white (x=0.26, y=0.26) LED with corrected colour temperature of about 15000 K and averaged color rendering index as high as 90. Due to using of deep UV LED as a pump source excellent stability of CIE 1931 chromaticity coordinate and average colour rendering is achieved. The power conversion efficiency of about 20 % and luminous efficacy of about 210 lm/W was also measured. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Zhou, Liya, E-mail: zhouliyatf@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Gong, Fuzhong [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China)

    2013-03-15

    Highlights: ► Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ► The fabricated white LEDs show good white balance. ► CdSe QDs present well green to yellow band luminescence. ► CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  11. Quantum yield in blue-emitting anthracene derivatives: vibronic coupling density and transition dipole moment density.

    Science.gov (United States)

    Uejima, Motoyuki; Sato, Tohru; Yokoyama, Daisuke; Tanaka, Kazuyoshi; Park, Jong-Wook

    2014-07-21

    A theoretical design principle for enhancement of the quantum yield of light-emitting molecules is desired. For the establishment of the principle, we focused on the S1 states of blue-emitting anthracene derivatives: 2-methyl-9,10-di(2'-naphthyl)anthracene (MADN), 4,9,10-bis(3',5'-diphenylphenyl)anthracene (MAM), 9-(3',5'-diphenylphenyl)-10-(3'',5''-diphenylbiphenyl-4''-yl) anthracene (MAT), and 9,10-bis(3''',5'''-diphenylbiphenyl-4'-yl) anthracene (TAT) [Kim et al., J. Mater. Chem., 2008, 18, 3376]. The vibronic coupling constants and transition dipole moments were calculated and analyzed by using the concepts of vibronic coupling density (VCD) and transition dipole moment density (TDMD), respectively. It is found that the driving force of the internal conversions and vibrational relaxations originate mainly from the anthracenylene group. On the other hand, fluorescence enhancement results from the large torsional distortion of the side groups in the S1 state. The torsional distortion is caused by the diagonal vibronic coupling for the lowest-frequency mode in the Franck-Condon (FC) S1 state, which originates from a small portion of the electron density difference on the side groups. These findings lead to the following design principles for anthracene derivatives with a high quantum yield: (1) reduction in the electron density difference and overlap density between the S0 and S1 states in the anthracenylene group to suppress vibrational relaxation and radiationless transitions, respectively; (2) increase in the overlap density in the side group to enhance the fluorescence.

  12. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset

    Directory of Open Access Journals (Sweden)

    Figueiro MG

    2014-12-01

    Full Text Available Mariana G Figueiro, Barbara Plitnick, Mark S Rea Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA Abstract: Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study and on delaying circadian phase (field study. Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour. The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting. Keywords: circadian phase, dim light melatonin onset, light through closed eyelids, blue light, sleep

  13. High extraction efficiency ultraviolet light-emitting diode

    Science.gov (United States)

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (efficiently inject carriers in all the QWs, are preferred.

  14. White-Light Electroluminescence with Tetraphenylethylene as Emitting Layer of Aggregation-Induced Emissions Enhancement

    Institute of Scientific and Technical Information of China (English)

    罗建芳; 王晓宏; 王筱梅; 苏文明; 陶绪堂; 陈志刚

    2012-01-01

    Tetraphenylethylene (TPE) based molecules with easy synthesis, good thermal stability, and especially their aggregation-induced emissions enhancement (AIEE) effect recently become attractive organic emitting materials due to their potentially practical application in OLEDs. Herein, the AIEE behaviors of tetraphenylethylene dyes (TMTPE and TBTPE) were investigated. Fabricated luminesent device using TMTPE dye as emitting layer displays two strong emitting bands: the blue emission coming from the first-step aggregation and the yellow emission attrib- uted to the second-step aggregation. Thus, it can be utilized to fabricate the white-light OLEDs (WOLEDs) of the single-emitting-component. A three-layer device with the brightness of 1200 cd·m^-2 and current efficiency of 0.78 cd·A^-1 emits the close to white light with the CIE coordinates of x=0.333 and y=0.358, when applied voltage from 8-13 V, verifying that the TPE-based dyes of AIEE effect can be effectively applied in single-emitting- component WOLEDs fabrication.

  15. Design of vertically-stacked polychromatic light-emitting diodes.

    Science.gov (United States)

    Hui, K N; Wang, X H; Li, Z L; Lai, P T; Choi, H W

    2009-06-01

    A new design for a polychromatic light-emitting diode (LED) is proposed and demonstrated. LED chips of the primary colors are physically stacked on top of each other. Light emitted from each layer of the stack passes through each other, and thus is mixed naturally without additional optics. As a color-tunable device, a wide range of colors can be generated, making it suitable for display purposes. As a phosphor-free white light LED, luminous efficacy of 30 lm/watt was achieved.

  16. Tuning the colour of white polymer light emitting diodes

    NARCIS (Netherlands)

    Kok, M.M. de; Sarfert, W.; Paetzold, R.

    2010-01-01

    Colour tuning of white polymer light emitting diode (LED) light sources can be attained by various methods at various stages in the production process of the lamps and/or by the design of the active material incorporated in the LEDs. In this contribution we will describe the methods and discuss the

  17. Flip-chip light emitting diode with resonant optical microcavity

    Science.gov (United States)

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  18. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Lijuan Zou

    2003-08-05

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm{sup 2}, the optimal radiance R could reach 0.38 mW/cm{sup 2}, and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be {approx} 10{sup -5} cm{sup 2}/Vs and {approx} 10{sup -4} cm{sup 2}/Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces.

  19. Recent progress in single chip white light-emitting diodes with the InGaN underlying layer

    Science.gov (United States)

    Wang, Xiaoli; Wang, Xiaohui; Jia, Haiqiang; Xing, Zhigang; Chen, Hong

    2010-03-01

    Tremendous progress has been achieved in white light-emitting diodes (LEDs). To further improve the quality of white light and simplify the fabrication process, a single chip white-light LED with the InGaN underlying layer (UL) was studied and fabricated. The turn-on voltage of this type of LED was 2.7 V, and the spectrum at a forward bias current of 20 mA was comprised of blue (443 nm) and yellow (563 nm) lights. The intensity ratio of blue to yellow light was almost constant with the increasing injection current in a certain scope, most important for the solid state illumination. The useful life test showed the light output level remained at a 90% light output level at the driving current of 40 mA after 300 h, meanwhile, the UV and blue LEDs combined with phosphor reached a 20% value after 144 h within 300 h.

  20. Recent progress in single chip white light-emitting diodes with the InGaN underlying layer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Tremendous progress has been achieved in white light-emitting diodes (LEDs). To further improve the quality of white light and simplify the fabrication process, a single chip white-light LED with the InGaN underlying layer (UL) was studied and fabricated. The turn-on voltage of this type of LED was 2.7 V, and the spectrum at a forward bias current of 20 mA was comprised of blue (443 nm) and yellow (563 nm) lights. The intensity ratio of blue to yellow light was almost constant with the in- creasing injection current in a certain scope, most important for the solid state illumination. The useful life test showed the light output level remained at a 90% light output level at the driving current of 40 mA after 300 h, meanwhile, the UV and blue LEDs combined with phosphor reached a 20% value after 144 h within 300 h.

  1. Spontaneous Emission and Light Extraction Enhancement of Light Emitting Diode Using Partially-Reflecting Metasurface Cavity (PRMC)

    CERN Document Server

    Chen, Luzhou; Kallos, Themos; Caloz, Christophe

    2016-01-01

    The enhancement of the power conversion efficiency (PCE), and subsequent reduction of cost, of light emitting diodes (LEDs) is of crucial importance in the current lightening market. For this reason, we propose here a PCE-enhanced LED architecture, based on a partially-reflecting metasurface cavity (PRMC) structure. This structure simultaneously enhances the light extraction efficiency (LEE) and the spontaneous emission rate (SER) of the LED by enforcing the emitted light to radiate perpendicularly to the device, so as to suppress wave trapping and enhance lateral field confinement, while ensuring cavity resonance matching and maximal constructive field interference. The PRMC structure is designed using a recent surface susceptibility metasurface synthesis technique. A PRMC blue LED design is presented and demonstrated by full-wave simulation to provide LEE and SER enhancements by factors 4.0 and 1.9, respectively, corresponding to a PCE enhancement factor of 7.6, suggesting that the PRMC concept has a promis...

  2. The role of local environment on the electronic properties of a novel blue-emitting donor-acceptor compound

    Science.gov (United States)

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.; Peteanu, Linda A.; Kemboi, Abraham; Picker, Jesse; Fossum, Eric

    2016-09-01

    With the rising popularity of organic light-emitting diodes (OLEDs) in display applications, demand for more efficient blue emitters has increased. We have recently synthesized a novel blue-emitting, donor-acceptor system employing carbazole as the donor and a benzothiazole derivative as the acceptor, BTZ-CBZ. We find that the solution-phase emission of BTZ-CBZ is highly dependent on solvent polarity, both in lineshape and emission maximum, showing a Stokes shift of 50 nm in methylcyclohexane and 150 nm in acetonitrile. This is expected behavior for donor-acceptor compounds due to the presence of a charge-transfer excited state. However, the solid state properties are more important for OLED devices. Using time-dependent density functional theory calculations employing the linear-response (LR) and state-specific (SS) polarizable continuum model (PCM), we explore the effects of solvent reorganization on the emission properties of BTZ-CBZ. SS-PCM reproduces the solvatochromism behavior of BTZ-CBZ in solution, but LR-PCM shows effectively no shift with solvent polarity. We surmise that this is because solvent reorganization is necessary for the solvatochromic effect to occur. The effect of rigid matrices on the emission of BTZ-CBZ has direct implications on its viability as a blue emitter in solid-state OLEDs and which molecular environments will be ideal for devices.

  3. Colour tuning in white hybrid inorganic/organic light-emitting diodes

    Science.gov (United States)

    Bruckbauer, Jochen; Brasser, Catherine; Findlay, Neil J.; Edwards, Paul R.; Wallis, David J.; Skabara, Peter J.; Martin, Robert W.

    2016-10-01

    White hybrid inorganic/organic light-emitting diodes (LEDs) were fabricated by combining a novel organic colour converter with a blue inorganic LED. An organic small molecule was specifically synthesised to act as down-converter. The characteristics of the white colour were controlled by changing the concentration of the organic molecule based on the BODIPY unit, which was embedded in a transparent matrix, and volume of the molecule and encapsulant mixture. The concentration has a critical effect on the conversion efficiency, i.e. how much of the absorbed blue light is converted into yellow light. With increasing concentration the conversion efficiency decreases. This quenching effect is due to aggregation of the organic molecule at higher concentrations. Increasing the deposited amount of the converter does not increase the yellow emission despite more blue light being absorbed. Degradation of the organic converter was also observed during a period of 15 months from LED fabrication. Angular-dependent measurements revealed slight deviation from a Lambertian profile for the blue and yellow emission peaks leading to a small change in ‘whiteness’ with emission angle. Warm white and cool white light with correlated colour temperatures of 2770 K and 7680 K, respectively, were achieved using different concentrations of the converter molecule. Although further work is needed to improve the lifetime and poor colour rendering, these hybrid LEDs show promising results as an alternative approach for generating white LEDs compared with phosphor-based white LEDs.

  4. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control

    Directory of Open Access Journals (Sweden)

    Yano Akira

    2012-11-01

    Full Text Available Abstract Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD. The average photosynthetic PFD (PPFD in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%, which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength, the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1 was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a

  5. Frequency Response of Modulated Electroluminescence of Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    FENG Lie-Feng; LI Yang; LI Ding; WANG Cun-Da; ZHANG Guo-Yi; YAO Dong-Sheng; LIU Wei-Fang; XING Peng-Fei

    2011-01-01

    Frequency responses of modulated electroluminescence (EL) of light-emitting diodes were measured using a testing setup.With increasing frequency of the ac signal,the relative light intensity (RLI) clearly decreases.Furthermore,a peculiar asynchrony between the RLI and ac small-signal is observed.At frequencies higher than 10kHz,the RLI clearly lags behind the ac signal and the absolute value of the lagging angle is nearly proportional to the signal frequency.Using the classical recombination model of light-emitting diodes under ac small-signal modulation,these abnormal characteristics of modulated EL can be clearly explained.High-power light-emitting diodes (LEDs) have received great attention recently owing to their applications in energy-saving lights,display items and many other fields;therefore,the optical and electrical characteristics of LEDs at forward bias hold significant potential for research.[1-4] However,for a new kind of light emission device,the general research on its performance focuses on the light emission and dc currentvoltage (I-V) characteristics.%Frequency responses of modulated electroluminescence (EL) of light-emitting diodes were measured using a testing setup. With increasing frequency of the ac signal, the relative light intensity (RLI) clearly decreases. Furthermore, a peculiar asynchrony between the RLI and ac small-signal is observed. At frequencies higher than 10kHz, the RLI clearly lags behind the ac signal and the absolute value of the lagging angle is nearly proportional to the signal frequency. Using the classical recombination model of light-emitting diodes under ac small-signal modulation, these abnormal characteristics of modulated EL can be clearly explained.

  6. Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes

    NARCIS (Netherlands)

    Ouzounis, T.; Heuvelink, E.; Ji, Y.; Schouten, H.J.; Visser, R.G.F.; Marcelis, L.F.M.

    2016-01-01

    A collection of nine tomato genotypes was chosen based on their diversity, phylogeny, availability of genome information, and agronomic traits. The objective of the study was to characterize the effect of red and blue LED (light-emitting diode) lighting on physiological, morphological, developmen

  7. 预防性和治疗性二极管蓝光照射防治极低出生体质量儿高胆红素血症的疗效比较%Comparison of Efficacy of Prophylactic and Therapeutic Blue-Light Light Emitting Diode Phototherapy for Management of Hyperbilirubinemia in Very Low Birth Weight Infants

    Institute of Scientific and Technical Information of China (English)

    舒桂华; 徐翔; 严语; 朱玲玲

    2014-01-01

    目的比较预防性和治疗性二极管(LED)蓝光照射防治极低出生体质量儿(VLBWI)高胆红素血症的临床疗效。方法选择2012年11月至2014年2月扬州大学临床医学院产科转入新生儿重症监护中心(NICU)住院的80例 VLBWI为研究对象,并采用随机数字表法将其分为采用预防性 LED 蓝光照射的预防组和采用治疗性 LED蓝光照射的治疗组,每组各为40例。观察两组患儿总照射时间、胆红素峰值、黄疸消褪时间、高胆红素血症(血清胆红素水平>171.0μmol/L)发生率及治疗不良反应(发热、腹泻、皮疹、低钙血症、贫血、青铜症)发生情况。本研究遵循的程序符合扬州大学临床医学院人体试验委员会所制定的伦理学标准,得到该委员会批准,分组征得受试对象监护人的知情同意,并与之签署临床研究知情同意书。两组患儿入院胎龄、体质量、入院时间、性别、分娩方式比较,差异均无统计学意义(P>0.05)。结果预防组患儿总照射时间长于治疗组,但两组比较,差异无统计学意义(P>0.05),其胆红素峰值、黄疸消褪时间明显低于治疗组,二者比较,差异有统计学意义(P0.05)。结论预防性 LED 蓝光照射防治VLBWI高胆红素血症虽然总照射时间略长于治疗性 LED蓝光照射,但其临床疗效显著优于后者,具有便捷、高效、安全、治疗不良反应小等优点。%Objective To compare the clinical effects of prophylactic and therapeutic blue-light light emitting diode (LED)phototherapy for the management of hyperbilirubinemia in very low birth weight infant(VLBWI).Methods From November 2012 to February 2014,a total of 80 VLBWI who hospitalized in neonatal intensive care unit(NICU)from maternity ward were included in the study.They were divided into prophylactic group and treatment group with 40 cases in each group according to random number table. The duration of phototherapy,peak levels

  8. Color temperature tunable white light emitting diodes packaged with an omni-directional reflector.

    Science.gov (United States)

    Su, Jung-Chieh; Lu, Chun-Lin

    2009-11-23

    This study proposed a correlated color temperature (CCT) tunable phosphor-converted white light emitting diode (LED) with an omni-directional reflector (ODR). Applying current to each individual InGaN based ultraviolet, purple and blue source LED chip of the white LED package, we can achieve the CCT tunability. The optimum color properties of the resulting white light are (0.3347, 0.3384), 5398 K, 81, 3137-8746 K for color coordinates, CCT, color rendering index (CRI) and CCT tuning range, respectively. Roughening the ODR substrate, we solve the non-uniformity color distribution caused by the reflectance of the ODR and positioning of source LED chips.

  9. A highly efficient white-light-emitting diode based on a two-component polyfluorene/quantum dot composite

    Science.gov (United States)

    Dayneko, S. V.; Samokhvalov, P. S.; Lypenko, D.; Nosova, G. I.; Berezin, I. A.; Yakimanskii, A. V.; Chistyakov, A. A.; Nabiev, I.

    2017-01-01

    Organic light-emitting diodes (OLEDs) are attracting great interest of the scientific community and industry because they can be grown on flexible substrates using relatively simple and inexpensive technologies (solution processes). However, a problem in the fabrication of white OLEDs is that it is difficult to achieve a balance between the intensities of individual emission components in the blue, green, and red spectral regions. In this work, we try to solve this problem by creating a two-component light-emitting diode based on modified polyfluorene (PF-BT), which efficiently emits in the blue-green region, and CdSe/ZnS/CdS/ZnS semiconductor quantum dots emitting in the orange-red region with a fluorescence quantum yield exceeding 90%. By changing the mass ratio of components in the active light-emitting composite within 40-50%, it is possible to transform the diode emission spectrum from cold to warm white light without loss of the diode efficiency. It is very likely that optimization of the morphology of multilayer light-emitting diodes will lead to further improvement of their characteristics.

  10. Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs).

    Science.gov (United States)

    Ra, Chae Hun; Kang, Chang-Han; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-10-01

    The effects of light-emitting diode (LED) wavelength, light intensity, nitrate concentration, and time of exposure to different LED wavelength stresses in a two-phase culture on lipid production were evaluated in the microalga, Picochlorum atomus. The biomass produced by red LED light was higher than that produced by purple, blue, green, or yellow LED and fluorescent lights from first phase of two-phase culture. The highest lipid production of P. atomus was 50.3% (w/w) with green LED light at 2days of second phase as light stress. Fatty acid analysis of the microalgae showed that palmitic acid (C16:0) and linolenic acid (C18:3) accounted for 84-88% (w/w) of total fatty acids from P. atomus. The two-phase culture of P. atomus is suitable for biofuel production due to higher lipid productivity and favorable fatty acid composition.

  11. Experimental investigations into the physics of light emitting conjugated polymers

    CERN Document Server

    Whitelegg, S A

    2001-01-01

    chloroprecursor MEH-PPV in-situ of ITO results in a reaction of the polymer with ITO, which significantly shift the emission to high energies. Electroabsorption spectroscopy is used to probe the internal electric fields within operating polymer light emitting devices. When a PPV based LED in an oxygen/water atmosphere, degradation of the device occurs whereby an electric field develops, which opposes the applied electric field. This opposing electric field subsequently decays when the device is turned to its off state. Operating lifetimes and emission efficiencies of polymer light emitting devices are now approaching values suitable for the manufacture and sale of polymer light emitting based products. However, degradation and device performance still continues to be of chief concern and in order for these to be improved the underlying physical processes have to be identified. This thesis aims to identify some of these processes. An investigation in to the optical absorption and emission properties of insolub...

  12. A New Distyrylarylene Derivative Used as Blue Light Emitter in Organic Electroluminescent Device

    Institute of Scientific and Technical Information of China (English)

    郑新友; 朱文清; 等

    2002-01-01

    A new blue electroluminescent material,distyrylarylene(DSA)derivative,4,4'-bis[2,2-(1-naphthyl,phenyl)vinyl]-1,1-biphenyl(NPVBi)is designed and synthesized.The DSA derivative shows better thermal stability because of its high glass transition temperature.A blue organic light emitting diode(OLED0with the structure ITO/TPD/NPVBi/Alq/LiF/Al is studied.The electroluminescent(EL0spectrum of the OLED exhibits that light emission originates from NPVBi with a peak at 460nm,its Commission Internationale de l'Eclairage(CIE)color coordinates are x=0.16,y=0.15,and showing independence of CIE color coordinates on current density.The new DSA derivative is expectable as a new candidate for blue light emitter in OLEDs.

  13. Frequency-Downconversion Stability of PMMA Coatings in Hybrid White Light-Emitting Diodes

    Science.gov (United States)

    Caruso, Fulvio; Mosca, Mauro; Rinella, Salvatore; Macaluso, Roberto; Calì, Claudio; Saiano, Filippo; Feltin, Eric

    2016-01-01

    We report on the properties of a poly(methyl methacrylate)-based coating used as a host for an organic dye in hybrid white light-emitting diodes. The device is composed by a pump source, which is a standard inorganic GaN/InGaN blue light-emitting diode (LED) emitting at around 450 nm, and a spin-coated conversion layer making use of Lumogen® F Yellow 083. Under prolonged irradiation, the coating exhibits significant bleaching, thus degrading the color rendering performance of the LED. We present experimental results that confirm that the local temperature rise of the operating diode does not affect the conversion layer. It is also proven that, during the test, the photostability of the organic dye is compromised, resulting in a chromatic shift from Commission Internationale de l'Eclairage (CIE) ( x; y) coordinates (0.30;0.39) towards the color of the pump (0.15;0.04). Besides photodegradation of the dye, we address a phenomenon attributed to modification of the polymer matrix activated by the LED's blue light energy as confirmed by ultraviolet-visible and Fourier-transform infrared spectroscopic analyses. Three methods for improving the overall stability of the organic coating are presented.

  14. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke;

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  15. Degradation of light emitting diodes: a proposed methodology*

    Institute of Scientific and Technical Information of China (English)

    Sau Koh; Willem Van Driel; G.Q.Zhang

    2011-01-01

    Due to their long lifetime and high efficacy, light emitting diodes have the potential to revolutionize the illumination industry. However, self heat and high environmental temperature which will lead to increased junction temperature and degradation due to electrical overstress can shorten the life of the light emitting diode. In this research, a methodology to investigate the degradation of the LED emitter has been proposed. The epoxy lens of the emitter can be modelled using simplified Eyring methods whereas an equation has been proposed for describing the degradation of the LED emitters.

  16. Theory of piezo-phototronics for light-emitting diodes.

    Science.gov (United States)

    Zhang, Yan; Wang, Zhong Lin

    2012-09-04

    Devices fabricated by using the inner-crystal piezopotential as a "gate" voltage to tune/control the carrier generation, transport, and recombination processes at the vicinity of a p-n junction are named piezo-phototronics. Here, the theory of the photon emission and carrier transport behavior in piezo-phototronic devices is investigated as a p-n junction light-emitting diode. Numerical calculations are given for predicting the photon emission and current-voltage characteristics of a general piezo-phototronic light-emitting diode.

  17. Photocatalytic Degradation of Methylene Blue with Side-glowing Optical Fiber Deliverying Visible Light

    Institute of Scientific and Technical Information of China (English)

    储金宇; 仲蕾

    2012-01-01

    The side-glowing optical fibers (SOFs) were chosen as the conducting medium of endogenous light; and 20 mg·L-1 methylene blue was chosen as the target to be degraded. The SOF is made up of quartz core with a silicon cladding, which can emit light through side surface more uniformly and transmit light for longer distance to avoid attenuation of light by liquid medium. The filament lamp was chosen as visible light source. Different reaction conditions, such as the presence of optical fiber or not, the quantity of SOF, light irradiation intensity were tested by measuring the methylene blue degradation of methylene blue. The results show that suitable reaction conditions were 1.167 g·L-1 Ag + /TiO 2 with 7% (by mass) of Ag + doped in TiO 2 , and 500 roots of SOF (30 cm length in solution). The photocatalytic degradation efficiency under 300W lamp irradiation for 8h was about 97%. And the photocatalytic degradation efficiency of methylene blue degradation was proportional to SOF quantity, light irradiation intensity and catalytic dosage within a certain range. Compared with general UV and visible light SOFs could save a huge amount of energy and cost, in the potential applications in dealing with organic pollutants on a large scale.

  18. Magnetoelectroluminescence in organic light emitting diodes

    CERN Document Server

    Lawrence, Joseph E; Manolopoulos, David E; Hore, P J

    2016-01-01

    The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurable magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with ex...

  19. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates.

    Science.gov (United States)

    Chen, Shuming; Kwok, Hoi Sing

    2010-01-04

    Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.

  20. Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode

    DEFF Research Database (Denmark)

    Mesta, Murat; Carvelli, Marco; de Vries, Rein J;

    2013-01-01

    we show that it is feasible to carry out Monte Carlo simulations including all of these molecular-scale processes for a hybrid multilayer organic light-emitting diode combining red and green phosphorescent layers with a blue fluorescent layer. The simulated current density and emission profile......In multilayer white organic light-emitting diodes the electronic processes in the various layers--injection and motion of charges as well as generation, diffusion and radiative decay of excitons--should be concerted such that efficient, stable and colour-balanced electroluminescence can occur. Here...... are shown to agree well with experiment. The experimental emission profile was obtained with nanometre resolution from the measured angle- and polarization-dependent emission spectra. The simulations elucidate the crucial role of exciton transfer from green to red and the efficiency loss due to excitons...

  1. Luminescent Enhancement of Heterostructure Organic Light-Emitting Devices Based on Aluminum Quinolines

    Institute of Scientific and Technical Information of China (English)

    Jun-Sheng Yu; Lu Li; Ya-Dong Jiang; Xing-Qiao Ji; Tao Wang

    2007-01-01

    High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenyl-phenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyI-l,l'-biphenyI-4,4'-diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers.

  2. All-Quantum-Dot Infrared Light-Emitting Diodes

    KAUST Repository

    Yang, Zhenyu

    2015-12-22

    © 2015 American Chemical Society. Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport layers built using organic materials and inorganic oxides. Herein, we report the infrared LEDs that use quantum-tuned materials for each of the hole-transporting, the electron-transporting, and the light-emitting layers. We successfully tailor the bandgap and band position of each CQD-based component to produce electroluminescent devices that exhibit emission that we tune from 1220 to 1622 nm. Devices emitting at 1350 nm achieve peak external quantum efficiency up to 1.6% with a low turn-on voltage of 1.2 V, surpassing previously reported all-inorganic CQD LEDs.

  3. All-Quantum-Dot Infrared Light-Emitting Diodes.

    Science.gov (United States)

    Yang, Zhenyu; Voznyy, Oleksandr; Liu, Mengxia; Yuan, Mingjian; Ip, Alexander H; Ahmed, Osman S; Levina, Larissa; Kinge, Sachin; Hoogland, Sjoerd; Sargent, Edward H

    2015-12-22

    Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport layers built using organic materials and inorganic oxides. Herein, we report the infrared LEDs that use quantum-tuned materials for each of the hole-transporting, the electron-transporting, and the light-emitting layers. We successfully tailor the bandgap and band position of each CQD-based component to produce electroluminescent devices that exhibit emission that we tune from 1220 to 1622 nm. Devices emitting at 1350 nm achieve peak external quantum efficiency up to 1.6% with a low turn-on voltage of 1.2 V, surpassing previously reported all-inorganic CQD LEDs.

  4. Dr. Harry Whelan With the Light Emitting Diode Probe

    Science.gov (United States)

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  5. Blue and white light electroluminescence in a multilayer OLED using a new aluminium complex

    Indian Academy of Sciences (India)

    Pabitra K Nayak; Neeraj Agarwal; Farman Ali; Meghan P Patankar; K L Narasimhan; N Periasamy

    2010-11-01

    Synthesis, structure, optical absorption, emission and electroluminescence properties of a new blue emitting Al complex, namely, bis-(2-amino-8-hydroxyquinolinato), acetylacetonato Al(III) are reported. Multilayer OLED using the Al complex showed blue emission at 465 nm, maximum brightness of ∼ 425 cd/m2 and maximum current efficiency of 0.16 cd/A. Another multilayer OLED using the Al complex doped with phosphorescent Ir complex showed `white’ light emission, CIE coordinate (0.41, 0.35), maximum brightness of ∼ 970 cd/m2 and maximum current efficiency of 0.53 cd/A.

  6. Leaf Positioning of Arabidopsis in Response to Blue Light

    Institute of Scientific and Technical Information of China (English)

    Shin-ichiro Inoue; Toshinori Kinoshita; Atsushi Takemiya; Michio Doi; Ken-ichiro Shimazaki

    2008-01-01

    Appropriate leaf positioning is essential for optimizing photosynthesis and plant growth. However, it has not been elucidated how green leaves reach and maintain their position for capturing light. We show here the regulation of leaf positioning under blue light stimuli. When 1-week-old Arabidopsis seedlings grown under white light were transferred to red light (25 μmol m-2s-t) for 5 d, new petioles that appeared were almost horizontal and their leaves were curled and slanted downward. However, when a weak blue light from above (0.1 μmol m-2s-1) was superimposed on red light, the new petioles grew obliquely upward and the leaves were flat and horizontal. The leaf positioning required both phototropin1 (phot1) and nonphototropic hypocotyl 3 (NPH3), and resulted in enhanced plant growth. In an nph3 mutant, neither optimal leaf positioning nor leaf flattening by blue light was found, and blue light-induced growth enhancement was drastically reduced. When blue light was increased from 0.1 to 5 μmol m-2s-1, normal leaf positioning and leaf flattening were induced in both phot1 and nph3 mutants, suggesting that phot2 signaling became functional and that the signaling was independent of phot1 and NPH3 in these responses. When plants were irradiated with blue light (0.1 μmol m-2s-1) from the side and red light from above, the new leaves became oriented toward the source of blue light. When we transferred these plants to both blue light and red light from above, the leaf surface changed its orientation to the new blue light source within a few hours, whereas the petioles initially were unchanged but then gradually rotated, suggesting the plasticity of leaf positioning in response to blue light. We showed the tissue expression of NPH3 and its plasma membrane localization via the coiled-coil domain and the C-terminal region. We conclude that NPH3-mediated phototropin signaling optimizes the efficiency of light perception by inducing both optimal leaf positioning and leaf

  7. Using high-power light emitting diodes for photoacoustic imaging

    DEFF Research Database (Denmark)

    Hansen, René Skov

    The preliminary result of using a high-power light emitting diode, LED, for photoacoustic imaging is presented. The pulsed light source is created by a 1Watt red Luxeon LED. The LED delivers light pulses with 25W peak power when supplied by 40A peak, 60ns wide current pulses. The phantom used...... for the experiment consists of a 3mm high x 5mm wide slice of green colored gelatine overlaid by a 3cm layer of colorless gelatine. The light pulses from the LED is focused on the green gelatine. The photoacoustic response from the green gelatine is detected by a single transducer on the opposite (top) surface...

  8. Atom probe tomography of a commercial light emitting diode

    Science.gov (United States)

    Larson, D. J.; Prosa, T. J.; Olson, D.; Lefebvre, W.; Lawrence, D.; Clifton, P. H.; Kelly, T. F.

    2013-11-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device.

  9. Toward inkjet printing of small molecule organic light emitting diodes

    NARCIS (Netherlands)

    Gorter, H.; Coenen, M.J.J.; Slaats, M.W.L.; Ren, M.; Lu, W.; Kuijpers, C.J.; Groen, W.A.

    2013-01-01

    Thermal evaporation is the current standard for the manufacture of small molecule organic light emitting diodes (smOLEDs), but it requires vacuum process, complicated shadow masks and is inefficient in material utilization, resulting in high cost of ownership. As an alternative, wet solution deposit

  10. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    Science.gov (United States)

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  11. Photon extraction from nitride ultraviolet light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Schowalter, Leo J; Chen, Jianfeng; Grandusky, James R

    2015-02-24

    In various embodiments, a rigid lens is attached to a light-emitting semiconductor die via a layer of encapsulant having a thickness insufficient to prevent propagation of thermal expansion mismatch-induced strain between the rigid lens and the semiconductor die.

  12. Theory Promises Brighter Perspective for Polymeric Light-Emitting-Diodes

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ A new take on the theory of light-emitting polymers suggests that their efficiency can be largely increased, a development that would boost the introduction of flexible displays and possibly reduce the cost of flat panel displays which currently depend on very expansive materials.

  13. Fabrication of multipoint light emitting optical fibers for optogenetics

    Science.gov (United States)

    Sileo, Leonardo; Pisanello, Marco; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-03-01

    Multipoint Light Emitting Optical Fibers (MPF) has been recently demonstrated as a versatile tool for spatially addressable optogenetics experiments. Their fabrication has been possible thanks to a number of key microfabrication technologies, in particular the unique nanofabrication capabilities of a Focused Ion Beam. This work provides the complete description of MPF fabrication, detailing the optimization process for each fabrication step.

  14. CRITICAL ASSESSMENT: Gallium nitride based visible light emitting diodes

    OpenAIRE

    Oliver, Rachel A.

    2016-01-01

    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Maney Publishing. Solid state lighting based on light-emitting diodes (LEDs) is a technology with the potential to drastically reduce energy usage, made possible by the development of gallium nitride and its alloys. However, the nitride materials family exhibits high defect densities and, in the equilibrium wurtzite crystal phase, large piezo-electric and polarisation fields arising a...

  15. Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro.

    Science.gov (United States)

    Chamorro, Eva; Bonnin-Arias, Cristina; Pérez-Carrasco, María Jesús; Muñoz de Luna, Javier; Vázquez, Daniel; Sánchez-Ramos, Celia

    2013-01-01

    Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light-emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light-darkness (12 h/12 h) cycles, using blue-468 nm, green-525 nm, red-616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases-3,-7 activation. It is shown that LED radiations decrease 75-99% cellular viability, and increase 66-89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light-darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC.

  16. Organic light emitting diode with light extracting layer

    Science.gov (United States)

    Lu, Songwei

    2016-06-14

    A light extraction substrate includes a glass substrate having a first surface and a second surface. A light extraction layer is formed on at least one of the surfaces. The light extraction layer is a coating, such as a silicon-containing coating, incorporating nanoparticles.

  17. Supplemental Blue LED Lighting Array to Improve the Signal Quality in Hyperspectral Imaging of Plants

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Mahlein

    2015-06-01

    Full Text Available Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400–500 nm of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs with an emission peak at 470 nm.

  18. Bright light-emitting diodes based on organometal halide perovskite.

    Science.gov (United States)

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J; Friend, Richard H

    2014-09-01

    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.

  19. Enhanced Light Extraction from a GaN-based Light Emitting Diode with Triangle Grating Structure

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2013-05-01

    Full Text Available We propose a simple method to improve the light extraction in GaN based light emitting diode. Conventional light emitting diode has an extraction limitation due to the total internal reflection which occurs at the interface between GaN and air. By using periodic grating etched at the GaN layer, we can couple more emitting light out of the active layer. Tapering the grating structure would facilitate the impedance matching between GaN light emitting diode and air, which can enhance broadband light extraction. We use finite difference time domain method to numerically find the best tapering grating structure. The numerical experiment demonstrate an enhance factor 4 of our proposed structure compared with the conventional one over broad band specctrum.

  20. UV-activated conversion of Hoechst 33258, DAPI, and Vybrant DyeCycle fluorescent dyes into blue-excited, green-emitting protonated forms.

    Science.gov (United States)

    Zurek-Biesiada, Dominika; Kędracka-Krok, Sylwia; Dobrucki, Jurek W

    2013-05-01

    Hoechst 33258, DAPI and Vybrant DyeCycle are commonly known DNA fluorescent dyes that are excited by UV and emit in the blue region of the spectrum of visible light. Conveniently, they leave the reminder of the spectrum for microscopy detection of other cellular targets labeled with probes emitting in green, yellow or red. However, an exposure of these dyes to UV induces their photoconversion and results in production of the forms of these dyes that are excited by blue light and show fluoresce maxima in green and a detectable fluorescence in yellow and orange regions of the spectrum. Photoconversion of Hoechst 33258 and DAPI is reversible and independent of the dye concentration or the presence of DNA. Spectrofluorimetry and mass spectrometry analyses indicate that exposure to UV induces protonation of Hoechst 33258 and DAPI.

  1. Stability study of saturated red polymer light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    XU Wei; PENG JunBiao; XU YunHua; WANG Jian; HUANG Zhe; NIU QiaoLi; CAO Yong

    2007-01-01

    Saturated red polymer light-emitting diodes have been fabricated with a single emitting polymer blend layer of poly[2-(2-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene](MEH-PPV)and poly[9,9-dioctylfluorene-co-4,7-di-2-thienyl-2,1,3-benzothiadiazole](PFO-DBT15).Saturated red emission with the Commission Internationale de I'Eclairage(CIE)coordinates of(0.67,0.33)was obtained.The device stability was investigated.The results showed that energy transfer occurred from MEH-PPV to PFO-DBT15,and MEH-PPV improved the hole injection and transportation.

  2. 4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode

    KAUST Repository

    Duran Retamal, Jose Ramon

    2015-12-21

    Visible Light Communication (VLC) as a new technology for ultrahigh-speed communication is still limited when using slow modulation light-emitting diode (LED). Alternatively, we present a 4-Gbit/s VLC system using coherent blue-laser diode (LD) via 16-quadrature amplitude modulation orthogonal frequency division multiplexing. By changing the composition and the optical-configuration of a remote phosphor-film the generated white light is tuned from cool day to neutral, and the bit error rate is optimized from 1.9 × 10-2 to 2.8 × 10-5 in a blue filter-free link due to enhanced blue light transmission in forward direction. Briefly, blue-LD is an alternative to LED for generating white light and boosting the data rate of VLC. © 2015 Optical Society of America.

  3. Fluorescent Silicon Carbide and its Applications in White Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Ou, Yiyu

    This thesis focuses on the optical properties analysis of Donor-Acceptor-Pair (DAP) co-doped Fluorescent Silicon Carbide (f-SiC) as a wavelengthconversion material in white Light-Emitting Diodes (LEDs). Different methods of fabricating surface Antireflective Structures (ARS) on f-SiC to enhance its...... light extraction efficiency are presented. White LEDs are the most promising techniques to replace the conventional lighting sources. A typical white LED consists of a Gallium Nitride (GaN) blue or Ultraviolet (UV) LED stack and a wavelengthconversion material. Silicon Carbide (SiC) has a wide optical...... investigated the impact of surface ARS on colorimetry and light extraction efficiency of f-SiC based white LED. Furthermore, various approaches of fabricating periodic and pseudoperiodic ARS are demonstrated. By introducing ARS, a significant surface reflection suppression and a considerable omnidirectional...

  4. Combatant Eye Protection: An Introduction to the Blue Light Hazard

    Science.gov (United States)

    2015-12-01

    energy distribution curves are becoming increasingly relevant to our daily lives, as a result of their use in mobile phones, modern televisions ...input for various nonvisual 7 behavior and physiological functions. The nonvisual photoreceptor melanopsin absorbs blue light and triggers the...Sekharan, Wei, and Batista, 2012; Berson, Dunn, and Takao, 2002; Wolf, 2002). Consequently, it is possible that blue light filters may disrupt sleep

  5. Spectral variation of light-emitting diodes based on organic molecules doped polymer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Organic light-emitting diodes based on naphthylimine-gallium complexes doped into a PPV derivative have been fabricated by a spin coating method.Color variation from green to blue with increase of the applied voltage has been observed.And the electroluminescent intensity of the blend samples is much stronger than that of the samples containing the complexes only.The results have been attributed to the variation of the recombination zone and the charge transfer between the materials.The process of the charge transport has been analyzed in detail.

  6. High efficiency III-nitride light-emitting diodes

    Science.gov (United States)

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  7. White organic light-emitting device with both phosphorescent and fluorescent emissive layers

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Juan; Hun Yu-Lin; Wu Xiao-Ming; Wang Yu; Yin Shou-Geng

    2008-01-01

    This paper reports the fabrication of novel white organic light-emitting device(WOLED) by using a high efficiency blue fluorescent dye N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl)vinyl)phenyl)-N-phenylbenzenamine (N-BDAVBi) and a red phosphoresecent dye bis (1-(phenyl) isoquinoline) iridium (Ⅲ) acety-lanetonate (Ir(piq)2(acac)). The configuration of the device was ITO/PVK:TPD/CBP: N-BDAVBi /CBP/ BALq:Ir(piq)2(acac)/BCP/Alq3/LiF:AL. By adjusting the proportion of the dopants (N-BDAVBi, Ir(piq)2(acac)) in the light-emitting layer, white light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35, 0.35) and a maximum luminance of 25350cd/m2 were obtained at an applied voltage of 22V. The WOLED exhibits maximum external quantum and current efficiency of 6.78% and 12ed/A respectively. By placing an undoped spacer CBP layer between the two light-emitting layers and using BCP as hole blocking layer, the colour stabilization slightly changed when the driving voltage increased from 6 to 22 V.

  8. Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E. [ISOM and Dept. Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Kong, X.; Trampert, A. [Paul-Drude-Institut fuer Festkoeperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2013-05-06

    This work reports on the selective area growth by plasma-assisted molecular beam epitaxy and characterization of InGaN/GaN nanocolumnar heterostructures. The optimization of the In/Ga and total III/V ratios, as well as the growth temperature, provides control on the emission wavelength, either in the blue, green, or red spectral range. An adequate structure tailoring and monolithic integration in a single nanocolumnar heterostructure of three InGaN portions emitting in the red-green-blue colors lead to white light emission.

  9. Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns

    Science.gov (United States)

    Albert, S.; Bengoechea-Encabo, A.; Kong, X.; Sanchez-Garcia, M. A.; Calleja, E.; Trampert, A.

    2013-05-01

    This work reports on the selective area growth by plasma-assisted molecular beam epitaxy and characterization of InGaN/GaN nanocolumnar heterostructures. The optimization of the In/Ga and total III/V ratios, as well as the growth temperature, provides control on the emission wavelength, either in the blue, green, or red spectral range. An adequate structure tailoring and monolithic integration in a single nanocolumnar heterostructure of three InGaN portions emitting in the red-green-blue colors lead to white light emission.

  10. Active targeting of tumor cells using light emitting bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Min; Min, Jung Joon; Hong, Yeong Jin; Kim, Hyun Ju; Le, Uuenchi N.; Rhee, Joon Haeng; Song, Ho Chun; Heo, Young Jun; Bom, Hee Seung; Choy, Hyon E [School of Medicine, Chonnam National University, Gwangju (Korea, Republic of)

    2004-07-01

    The presence of bacteria and viruses in human tumors has been recognized for more than 50 years. Today, with the discovery of bacterial strains that specifically target tumors, and aided by genomic sequencing and genetic engineering, there is new interest in the use of bacteria as tumor vectors. Here, we show that bacteria injected intravenously into live animals entered and replicated in solid tumors and metastases using the novel imaging technology of biophotonics. Bioluminescence operon (LuxCDABE) or fluorescence protein, GFP) has been cloned into pUC19 plasmid to engineer pUC19lux or pUC19gfp. Engineered plasmid was transformed into different kinds of wild type (MG1655) or mutant E. coli (DH5, ppGpp, fnr, purE, crpA, flagella, etc.) strains to construct light emitting bacteria. Xenograft tumor model has been established using CT26 colon cancer cell line. Light emitting bacteria was injected via tail vein into tumor bearing mouse. In vivo bioluminescence imaging has been done after 20 min to 14 days of bacterial injection. We observed localization of tumors by light-emitting E. coli in tumor (CT-26) bearing mice. We confirmed the presence of light-emitting bacteria under the fluorescence microscope with E. coli expressing GFP. Althoug varying mutants strain with deficient invading function has been found in tumor tissues, mutant strains of movement (flagella) couldn't show any light signal from the tumor tissue under the cooled CCD camera, indicating bacteria may actively target the tumor cells. Based on their 'tumor-finding' nature, bacteria may be designed to carry multiple genes or drugs for detection and treatment of cancer, such as prodrug-converting enzymes, toxins, angiogenesis inhibitors and cytokines.

  11. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, F.; Wang, Y. L.; Yang, Y. Z., E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-11-23

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation light source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.

  12. Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem.

    Directory of Open Access Journals (Sweden)

    Gilles Vandewalle

    Full Text Available BACKGROUND: Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established. METHODOLOGY/PRINCIPAL FINDINGS: We exposed 15 participants to short duration (50 s monochromatic violet (430 nm, blue (473 nm, and green (527 nm light exposures of equal photon flux (10(13ph/cm(2/s while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus. CONCLUSION/SIGNIFICANCE: These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function.

  13. Effect of LED Blue Light on Penicillium digitatum and Penicillium italicum Strains.

    Science.gov (United States)

    Lafuente, María T; Alférez, Fernando

    2015-11-01

    Studies on the antimicrobial properties of light have considerably increased due in part to the development of resistance to actual control methods. This study investigates the potential of light-emitting diodes (LED) blue light for controlling Penicillium digitatum and Penicillium italicum. These fungi are the most devastating postharvest pathogens of citrus fruit and cause important losses due to contaminations and the development of resistant strains against fungicides. The effect of different periods and quantum fluxes, delaying light application on the growth and morphology of P. digitatum strains resistant and sensitive to fungicides, and P. italicum cultured at 20°C was examined. Results showed that blue light controls the growth of all strains and that its efficacy increases with the quantum flux. Spore germination was always avoided by exposing the cultures to high quantum flux (700 μmol m(-2) s(-1) ) for 18 h. Continuous light had an important impact on the fungus morphology and a fungicidal effect when applied at a lower quantum flux (120 μmol m(-2) s(-1) ) to a growing fungus. Sensitivity to light increased with mycelium age. Results show that blue light may be a tool for P. digitatum and P. italicum infection prevention during handling of citrus fruits.

  14. New Rare-Earth Containing (Sr1-yEuy)2Al2Si10N14O4 Phosphors for Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    Liu Yuhuan; Liu Rushi

    2007-01-01

    Remarkable progress was made in the development of white-light-emitting diodes (LEDs). White LEDs provided a light element having a semiconductor InGaN light-emitting chip (blue or UV LEDs) and luminescent phosphors. Here we reported the sialon s-phase of (Sr,Eu)2Al2Si10N14O4. Eu2+ activator ions that were substituted for the strontium site represented a new type of yellow-green phosphor that could be excited by blue LEDs used for application in the fabrication of white LEDs.

  15. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders

    2012-01-01

    To address the problem of spectral light quality from color mixing light-emitting diode systems, a method for optimizing the spectral output of multicolor LED system with regards to standardized quality parameters has been developed. The composite spectral power distribution from the LEDs...... are simulated using radiometrically measured single LED spectra. The method uses electrical input powers as input parameters and optimizes the resulting spectral power distribution with regard to color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal...

  16. Adoption of Light-Emitting Diodes in Common Lighting Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mary [Navigant Consulting, Suwanee, GA (United States); Chwastyk, Dan [Navigant Consulting, Suwanee, GA (United States)

    2013-05-01

    Report estimating LED energy savings in nine applications where LEDs compete with traditional lighting sources such as incandescent, halogen, high-pressure sodium, and certain types of fluorescent. The analysis includes indoor lamp, indoor luminaire, and outdoor luminaire applications.

  17. White organic light-emitting diodes with an ultra-thin premixed emitting layer

    CERN Document Server

    Jeon, T; Tondelier, Denis; Bonnassieux, Yvan; Forget, Sebastien; Chenais, Sebastien; Ishow, Elena

    2014-01-01

    We described an approach to achieve fine color control of fluorescent White Organic Light-Emitting Diodes (OLED), based on an Ultra-thin Premixed emitting Layer (UPL). The UPL consists of a mixture of two dyes (red-emitting 4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene or fvin and green-emitting 4-di(4'-tert-butylbiphenyl-4-yl)aminobenzaldehyde or fcho) premixed in a single evaporation cell: since these two molecules have comparable structures and similar melting temperatures, a blend can be evaporated, giving rise to thin films of identical and reproducible composition compared to those of the pre-mixture. The principle of fine color tuning is demonstrated by evaporating a 1-nm-thick layer of this blend within the hole-transport layer (4,4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (\\alpha-NPB)) of a standard fluorescent OLED structure. Upon playing on the position of the UPL inside the hole-transport layer, as well as on the premix composition, two independent parameters are available to finel...

  18. White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode

    Directory of Open Access Journals (Sweden)

    Sadaf JR

    2010-01-01

    Full Text Available Abstract We report the fabrication of heterostructure white light–emitting diode (LED comprised of n-ZnO nanotubes (NTs aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet–blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour.

  19. Heterogeneous integration of gallium nitride light-emitting diodes on diamond and silica by transfer printing.

    Science.gov (United States)

    Trindade, A J; Guilhabert, B; Xie, E Y; Ferreira, R; McKendry, J J D; Zhu, D; Laurand, N; Gu, E; Wallis, D J; Watson, I M; Humphreys, C J; Dawson, M D

    2015-04-06

    We report the transfer printing of blue-emitting micron-scale light-emitting diodes (micro-LEDs) onto fused silica and diamond substrates without the use of intermediary adhesion layers. A consistent Van der Waals bond was achieved via liquid capillary action, despite curvature of the LED membranes following release from their native silicon growth substrates. The excellence of diamond as a heat-spreader allowed the printed membrane LEDs to achieve optical power output density of 10 W/cm(2) when operated at a current density of 254 A/cm(2). This high-current-density operation enabled optical data transmission from the LEDs at 400 Mbit/s.

  20. Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20 .

    Science.gov (United States)

    Suzuki, Katsuaki; Kubo, Shosei; Shizu, Katsuyuki; Fukushima, Tatsuya; Wakamiya, Atsushi; Murata, Yasujiro; Adachi, Chihaya; Kaji, Hironori

    2015-12-01

    Triarylboron compounds have attracted much attention, and found wide use as functional materials because of their electron-accepting properties arising from the vacant p orbitals on the boron atoms. In this study, we design and synthesize new donor-acceptor triarylboron emitters that show thermally activated delayed fluorescence. These emitters display sky-blue to green emission and high photoluminescence quantum yields of 87-100 % in host matrices. Organic light-emitting diodes using these emitting molecules as dopants exhibit high external quantum efficiencies of 14.0-22.8 %, which originate from efficient up-conversion from triplet to singlet states and subsequent efficient radiative decay from singlet to ground states.

  1. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non...... was less than 10nm. Analysis of the results shows that in order to achieve sufficient for the white LED color conversion, better surface passivation and nanocrystals with shorter exciton lifetimes and weaker Auger recombination and needed.......-radiative energy transfer from the primary LED to the nanocrystals. LED structures with sub-10 nm separation the between quantum well and the surface and patterned standard bright LEDs are considered for the hybrid devices, which require close proximity of the nanocrystals to the quantum well. The development...

  2. Organic light-emitting diodes from homoleptic square planar complexes

    Science.gov (United States)

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  3. Phosphorescent organic light emitting diodes with high efficiency and brightness

    Science.gov (United States)

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  4. Concave-hemisphere-patterned organic top-light emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Stephen R.; Slootsky, Michael; Lunt, Richard

    2015-06-09

    A first device is provided. The first device includes an organic light emitting device, which further comprises a first electrode, a second electrode, and an organic emissive layer disposed between the first and second electrode. Preferably, the second electrode is more transparent than the first electrode. The organic emissive layer has a first portion shaped to form an indentation in the direction of the first electrode, and a second portion shaped to form a protrusion in the direction of the second electrode. The first device may include a plurality of organic light emitting devices. The indentation may have a shape that is formed from a partial sphere, a partial cylinder, a pyramid, or a pyramid with a mesa, among others. The protrusions may be formed between adjoining indentations or between an indentation and a surface parallel to the substrate.

  5. A Pair of Light Emitting Diodes for Absorbance Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dongyong; Eom, Inyong [Catholic Univ. of Daegu, Gyeongsan (Korea, Republic of)

    2013-10-15

    Two same wavelength LEDs (i. e. an emitter LED and a detector LED, respectively) were successfully used to measure absorbance of BTB solution. A linear calibration with r-squared value of 0.9945 was achieved. 0.03 μM of LOD was observed with a noise level of 2 Χ 10{sup -4} absorbance unit. We are now examining relative sensitivities of different LEDs with distinct wavelength. In the future, building a spectrophotometer equipped with LEDs is quite interesting both in scientifically and pedagogically (i. e. undergraduate lab course). Light emitting diodes (LEDs) have a semiconductor chip (∼1 mm{sup 2} area) mounted on a concave mirror and emit narrow band of wavelengths when forward biased. LEDs have been widely used in many fields. Conventional light bulbs are being replaced by LED bulbs.

  6. White organic light emitting devices with hybrid emissive layers combining phosphorescence and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Lei Gangtie; Chen Xiaolan; Wang Lei; Zhu Meixiang; Zhu Weiguo [Key Lab of Environmental-friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 (China); Wang Liduo; Qiu Yong [Key Lab of Organic-Optoelectronics and Molecular Sciences of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China)], E-mail: lgt@xtu.edu.cn

    2008-05-21

    We fabricated a white organic light-emitting diode (WOLED) by hybrid emissive layers which combined phosphorescence with fluorescence. In this device, the thin layer of 4-(dicyanomethylene)-2-(t-butyl)-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran played the role of undoped red emissive layer which was inserted between two blue phosphorescence emissive layers. The blue phosphorescent dye was bis[(4, 6-difluorophenyl)-pyridinato-N, C{sup 2}] (picolinato) Ir(III), which was doped in the host material, N, N'-dicarbazolyl-1, 4-dimethene-benzene. The WOLED showed stable Commission Internationale de L'Eclairage coordinates and a high efficency of 9.6 cd A{sup -1} when the current density was 1.8 A m{sup -2}. The maximum luminance of the device achieved was 17 400 cd m{sup -2} when the current density was 3000 A m{sup -2}.

  7. Fabrication of natural DNA-containing organic light emitting diodes

    Science.gov (United States)

    Gomez, Eliot F.; Spaeth, Hans D.; Steckl, Andrew J.; Grote, James G.

    2011-09-01

    The process of creating natural DNA-containing bio-organic light emitting diodes is a fascinating journey from salmon fish to the highly-efficient BiOLED. DNA from salmon sperm is used as a high-performance electron blocking layer, to enhance the efficiency of the BiOLED over its conventional OLED counterpart. An overview of the BiOLED fabrication process and its key steps are presented in this paper.

  8. New Optoelectronic Technology Simplified for Organic Light Emitting Diode (OLED)

    OpenAIRE

    Andre F. S. Guedes; Vilmar P. Guedes; Simone Tartari; Mônica L. Souza; Idaulo J. Cunha

    2014-01-01

    The development of Organic Light Emitting Diode (OLED), using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The OLED are the base Poly (3,4-ethylenedioxythiophene), PEDOT, and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by UV-Visible Spectroscopy (UV-Vis), Optical Parameters (OP) and Scanning Electron Microscopy (SEM). In addition,...

  9. Study on electroluminescence from porous silicon light-emitting diode

    Institute of Scientific and Technical Information of China (English)

    Yajun Yang; Qingshan Li; Xianyun Liu

    2006-01-01

    @@ Porous silicon (PS) light-emitting diode (LED) with an ITO/PS/p-Si/Al structure was fabricated by anodic oxidation method. Photoluminescence (PL) of the PS LED was measured with a peak at 593 nm, and electroluminescence (EL) was measured with a peak at 556 nm under the conditions of 7.5-V forward bias and 210-mA current intensity. The spectral width of EL was measured to be about 160 nm.

  10. Wide Area Thermal Processing of Light Emitting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E [ORNL; Joshi, Pooran C [ORNL; Jellison Jr, Gerald Earle [ORNL; Angelini, Joseph Attilio [ORNL; Sabau, Adrian S [ORNL

    2011-10-01

    Laboratory laser materials synthesis of wide bandgap materials has been successfully used to create white light emitting materials (LEMs). This technology development has progressed to the exploration on design and construction of apparatus for wide area doping and phase transformation of wide bandgap material substrates. The objective of this proposal is to develop concepts for wide area doping and phase transformation based on AppliCote Associates, LLC laser technology and ORNL high density pulsed plasma arc technology.

  11. Synthesis of Conjugated Polymers for Light Emitting and Photovoltalc Applications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results The initial report of polymeric light-emitting diodes (PLEDs) based on poly(p-phenylenevinylene) gave birth to an intense research effort in conjugated polymers, primarily focused on the development of optoelectronic and electrochemical devices. Significant developments in modern synthetic chemistry, especially the chemistry of carbon-carbon bond formation have allowed the synthesis of various well-defined conjugated polymers and oligomers with optimized physical properties.Meanwhile, these re...

  12. True Yellow Light-Emitting Diodes as Phosphor for Tunable Color-Rendering Index Laser-Based White Light

    KAUST Repository

    Janjua, Bilal

    2016-10-11

    An urgent challenge for the lighting research community is the lack of efficient optical devices emitting in between 500 and 600 nm, resulting in the “green-yellow gap”. In particular, true green (∼555 nm) and true yellow (∼590 nm), along with blue and red, constitute four technologically important colors. The III-nitride material system, being the most promising choice of platform to bridge this gap, still suffers from high dislocation density and poor crystal quality in realizing high-power, efficient devices. Particularly, the high polarization fields in the active region of such 2D quantum confined structures prevent efficient recombination of carriers. Here we demonstrate a true yellow nanowire (NW) light emitting diode (LED) with peak emission of 588 nm at 29.5 A/cm2 (75 mA in a 0.5 × 0.5 mm2 device) and a low turn-on voltage of ∼2.5 V, while having an internal quantum efficiency of 39%, and without “efficiency droop” up to an injection current density of 29.5 A/cm2. By mixing yellow light from a NW LED in reflective configuration with that of a red, green, and blue laser diode (LD), white light with a correlated color temperature of ∼6000 K and color-rendering index of 87.7 was achieved. The nitride-NW-based device offers a robust, long-term stability for realizing yellow light emitters for tunable color-rendering index solid-state lighting, on a scalable, low-cost, foundry-compatible titanium/silicon substrate, suitable for industry uptake.

  13. The Effect of Different Doses of Blue Light on the Biometric Traits and Photosynthesis of Dill Plants

    Directory of Open Access Journals (Sweden)

    Barbara FRĄSZCZAK

    2016-06-01

    Full Text Available The supplementation of blue light to red light enhanced plant growth compared with the use of red alone. The aim of the study was to determine the effect of different doses of blue light on the biometric traits and photosynthesis of dill plants. The plants were grown in pots in a growth chamber. They were grown in red light (100 μmol m-2 s-1 and blue light (from 10 to 50 μmol m-2 s-1 in five combinations. Light emitting diode modules were the source of light. The plants were evaluated every 7 days during vegetation, for the first time - seven days after germination and later on the 14th, 21st and 28th day after germination. The share of blue light in the spectrum significantly influenced the biometric traits of the dill plants. It significantly inhibited the elongation growth of the plants and negatively affected the increase in fresh weight. A small dose of blue light (20% had positive effect on the plants’ area. The research did not reveal a simple relationship between the amount of blue light and dry weight yield. The value of physiological indexes depended both on the combination and measurement time. The plants from the combination with 30% blue light were characterised by the greatest photosynthesis intensity. An effective share of blue light in the spectrum may range from 10 to 30% in relation to red light and depends on the plant’s development phase and on the result we want to achieve in the cultivation of plants.

  14. A device of comparison of light-emitting diodes for a light stream.

    Directory of Open Access Journals (Sweden)

    G. A. Mirskikh

    2011-03-01

    Full Text Available The simple method of comparison of light-emitting diodes after a light stream and possible construction of setting of this method are presented in this article. Parabolic mirrors are specially entered in a construction, as directing concentrators of light stream, and vibromotor with automatic control. Near one focus of mirrors set a light-emitting diode which is envisaged on a vibromotor, and on an opposite mirror in focus fasten fotodetector. After including to the vibromotor, by oscillation vibrations a light-emitting diode in one of moments is combined with focus of parabolic mirror. Whereupon, a light stream is directed by a parabolic mirror on opposite and gathers in focus last, where and registered by fotodetector. The entered vibration imitates the frequent measuring of stream that saves time on realization of measuring.

  15. Blue light-mediated inactivation of Enterococcus faecalis in vitro.

    Science.gov (United States)

    Pileggi, Giorgio; Wataha, John C; Girard, Myriam; Grad, Iwona; Schrenzel, Jacques; Lange, Norbert; Bouillaguet, Serge

    2013-05-01

    In dentistry, residual infection remains a major cause of failure after endodontic treatment; many of these infections involve Enterococcus faecalis. In the current study, we explored the possibility that blue light activated photosensitizers could be used, in principle, to inactivate this microbe as an adjunct disinfection strategy for endodontic therapy. Three blue light absorbing photosensitizers, eosin-Y, rose bengal, and curcumin, were tested on E. faecalis grown in planktonic suspensions or biofilms. Photosensitizers were incubated for 30 min with bacteria then exposed to blue light (450-500 nm) for 240 s. Sodium hypochlorite (3%) was used as a control. After 48 h, the viability of E. faecalis was estimated by measuring colony-forming units post-exposure vs. untreated controls (CFU/mL). Blue light irradiation alone did not alter E. faecalis viability. For planktonic cultures, blue light activated eosin-Y (5 μM), rose bengal (1 μM), or curcumin (5 μM) significantly (pfaecalis viability compared to exposure to the unirradiated photochemicals. For biofilm cultures, concentrations of light-activated eosin-Y, rose bengal, and curcumin of 100, 10, and 10 μM respectively, completely suppressed E. faecalis viability (pendodontic treatment.

  16. Emitting materials based on phenylanthracene-substituted naphthalene derivatives for organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Woo; Kim, Hye Jeong; Kim, Young Seok; Kim, Jwajin [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of); Lee, Song Eun; Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of)

    2015-09-15

    This study reports the emitting materials based on phenylanthracene-substituted naphthalene derivatives to achieve efficient electroluminescent properties for OLED applications. An OLED device using 4,4′-bis(10-phenylanthracen-9-yl)-1,1′-binaphthalene exhibited the blue emission with the CIE coordinates of (0.19, 0.16) and efficient electroluminescent properties with the luminance, power and external quantum efficiency of 1.70 cd/A, 0.79 lm/W and 1.26% at 20 mA/cm{sup 2}, respectively. Also, the other device using 1,4-bis(10-phenylanthracene-9-yl)naphthalene exhibited white emission with the CIE coordinates of (0.34, 0.43) at 7V, respectively. This device exhibits the luminance, power and external quantum efficiency of 2.22 cd/A, 1.13 lm/W and 0.86% at 20 mA/cm{sup 2}, respectively. - Highlights: • We synthesized fluorescent materials based on phenylanthracene derivatives. • Electroluminescence properties of these materials depend on the molecular structures. • These blue and white materials have great potential for application in OLEDs.

  17. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.

    Science.gov (United States)

    Zhang, Congcong; Chen, Penglei; Hu, Wenping

    2016-03-09

    Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs.

  18. Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses

    CERN Document Server

    Fuchs, Cornelius; Wieczorek, Martin; Gather, Malte C; Hofmann, Simone; Reineke, Sebastian; Leo, Karl; Scholz, Reinhard

    2015-01-01

    We demonstrate enhanced light extraction for monochrome top-emitting organic light-emitting diodes (OLEDs). The enhancement by a factor of 1.2 compared to a reference sample is caused by the use of a hole transport layer (HTL) material possessing a low refractive index (1.52). The low refractive index reduces the in-plane wave vector of the surface plasmon polariton (SPP) excited at the interface between the bottom opaque metallic electrode (anode) and the HTL. The shift of the SPP dispersion relation decreases the power dissipated into lost evanescent excitations and thus increases the outcoupling efficiency, although the SPP remains constant in intensity. The proposed method is suitable for emitter materials owning isotropic orientation of the transition dipole moments as well as anisotropic, preferentially horizontal orientation, resulting in comparable enhancement factors. Furthermore, for sufficiently low refractive indices of the HTL material, the SPP can be modeled as a propagating plane wave within ot...

  19. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis

    2013-01-01

    Light emitting diodes (LEDs) are already used in traffic signals, signage lighting, and automotive applications. However, its ultimate goal is to replace traditional illumination through LED lamps since LED lighting significantly reduces energy consumption and cuts down on carbon-dioxide emission. Despite dramatic advances in LED technologies (e.g., growth, doping and processing technologies), however, there remain critical issues for further improvements yet to be achieved for the realization of solid-state lighting. This book aims to provide the readers with some contemporary LED issues, which have not been comprehensively discussed in the published books and, on which the performance of LEDs is seriously dependent. For example, most importantly, there must be a breakthrough in the growth of high-quality nitride semiconductor epitaxial layers with a low density of dislocations, in particular, in the growth of Al-rich and and In-rich GaN-based semiconductors. The materials quality is directly dependent on th...

  20. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal

    2016-10-06

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  1. Effect of the structure on luminescent characteristics of SRO-based light emitting capacitors

    Science.gov (United States)

    Palacios-Huerta, L.; Cabañas-Tay, S. A.; Luna-López, J. A.; Aceves-Mijares, M.; Coyopol, A.; Morales-Sánchez, A.

    2015-10-01

    In this paper, we study the structural, optical and electro-optical properties of silicon rich oxide (SRO) films, with 6.2 (SRO30) and 7.3 at.% (SRO20) of silicon excess thermally annealed at different temperatures and used as an active layer in light emitting capacitors (LECs). A typical photoluminescence (PL) red-shift is observed as the silicon content and annealing temperature are increased. Nevertheless, when SRO30 films are used in LECs, a resistance switching (RS) behavior from a high current state (HCS) to a low conduction state (LCS) is observed, enhancing the intense blue electroluminescence (EL). This RS produces a long spectral blue-shift (˜227 nm) between the EL and PL band, and it is related to structural defects created by a high current flow through preferential conductive paths breaking off Si-Si bonds from very small silicon nanoparticles (Si-nps) (Eδ (Si ↑ Si ≡ Si) centers). LECs with SRO20 films do not present the RS behavior and only exhibit a slight shift between PL and EL, both in red spectra. The carrier transport in these LEC devices is analyzed as being trap assisted tunnelling and Poole-Frenkel through a quasi ‘continuum’ of defect traps and quantum dots for the conduction mechanism in SRO30 and SRO20 films, respectively. The results prove the feasibility of obtaining light emitting devices by using simple panel structures with Si-nps embedded in the dielectric layer.

  2. Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes

    Science.gov (United States)

    Lee, Y. J.; Lin, P. C.; Lu, T. C.; Kuo, H. C.; Wang, S. C.

    2007-04-01

    An InGaN-based dual-wavelength blue/green (470nm/550nm) light emitting diode (LED) with three terminal operations has been designed and fabricated by using sapphire laser lift-off and wafer-bonding schemes. The device is equivalent to a parallel connection of blue and green LEDs; thus the effective electrical resistance of the device could be reduced. The luminous efficiency is 40lm/W at 20mA, accompanied by a broad electroluminescence emission with a combination of blue and green colors. This monolithically integrated dichromatic lighting structure has great potential in the application of the solid-state lighting.

  3. Effects of blue light on pigment biosynthesis of Monascus.

    Science.gov (United States)

    Chen, Di; Xue, Chunmao; Chen, Mianhua; Wu, Shufen; Li, Zhenjing; Wang, Changlu

    2016-04-01

    The influence of different illumination levels of blue light on the growth and intracellular pigment yields of Monascus strain M9 was investigated. Compared with darkness, constant exposure to blue light of 100 lux reduced the yields of six pigments, namely, rubropunctatamine (RUM), monascorubramine (MOM), rubropunctatin (RUN), monascorubrin (MON), monascin (MS), and ankaflavin (AK). However, exposure to varying levels of blue light had different effects on pigment production. Exposure to 100 lux of blue light once for 30 min/day and to 100 lux of blue light once and twice for 15 min/day could enhance RUM, MOM, MS, and AK production and reduce RUN and MON compared with non-exposure. Exposure to 100 lux twice for 30 min/day and to 200 lux once for 45 min/day decreased the RUM, MOM, MS, and AK yields and increased the RUN and MON. Meanwhile, the expression levels of pigment biosynthetic genes were analyzed by real-time quantitative PCR. Results indicated that gene MpPKS5, mppR1, mppA, mppB, mmpC, mppD, MpFasA, MpFasB, and mppF were positively correlated with the yields of RUN and MON, whereas mppE and mppR2 were associated with RUM, MOM, MS, and AK production.

  4. Luminescence properties of novel red-emitting phosphor InNb1-xPxO4:Eu3+ for white light emitting-diodes

    Directory of Open Access Journals (Sweden)

    Tang An

    2015-06-01

    Full Text Available InNb1-xPxO4:Eu3+ red phosphors were synthesized by solid-state reaction and their luminescence properties were also studied through photoluminescence spectra. The excitation and emission spectra make it clear that the as-prepared phosphors can be effectively excited by near-ultraviolet (UV 394 nm light and blue 466 nm light to emit strong red light located at 612 nm, due to the Eu3+ transition of 5D0 → 7F2. The luminescence intensity is dependent on phosphorus content, and it achieves the maximum at x = 0.4. Excessive phosphorus in the phosphors can result in reduction of luminescence intensity owing to concentration quenching.With the increasing content of phosphorus, the phosphors are prone to emit pure red light. This shows that the InNb1.6P0.4O4:0.04Eu3+ phosphor may be a potential candidate as a red component for white light emitting-diodes.

  5. White organic light-emitting diodes based on C545T doped emitting system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hua-Ping; Zhou, Fan; Zhang, Liang [Department of Materials Science, Shanghai University, Jiading, Shanghai (China); Li, Jun; Jiang, Xue-Yin; Zhang, Zhi-Lin; Zhang, Jian-Hua [Department of Materials Science, Shanghai University, Jiading, Shanghai (China); Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai (China); Zhang, Xiao-Wen [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin (China)

    2012-02-15

    Fluorescent white organic light-emitting diodes (WOLEDs) with single-emitting layer (EML) and double-EML structures were demonstrated using a 2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10(2-benzothiazolyl)quinolizine-[9,9a,1gh]coumarin (C545T) doped emitting system. With the incorporation of double-EML structure, white emission with Commission Internationale de L'Eclairage (CIE) color coordinates of (0.331, 0.335) and luminous efficiency of 8.04 cd/A was obtained. Moreover, WOLED with a single-EML structure shows superior electroluminescence performances such as lower voltage, higher luminance, and enhanced power efficiency. These improvements are attributed to its high energy transfer ability via the intermediation of C545T. The Forster's radius was given to clarify the actual energy transfer process. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. CURRENT STATE OF AUTOMOTIVE LIGHTING EQUIPMENT WITH NON-REPLACEABLE LIGHT SOURCES ON BASIS OF LIGHT-EMITTING DIODE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    S. Sernov

    2012-01-01

    Full Text Available The paper contains information on the current state of automotive lighting equipment. Different designs of automotive lighting devices, their merits and demerits are described in the paper. The paper includes a substantiation of expediency of developing light-emitting diode lighting and proposes recommendations about optimization of their design.

  7. White Organic Light-emitting Diodes with A Sr2 SiO4:Eu3+ Color Conversion Layer%White Organic Light-emitting Diodes with A Sr2SiO4:Eu3+ Color Conversion Layer

    Institute of Scientific and Technical Information of China (English)

    Meiso Yokoyama

    2013-01-01

    Hybrid inorganic/organic white organic light emitting diodes (hybrid-WOLEDs) are fabricated by combining the blue phosphorescent organic light emitting diodes (PHOLEDs) with red Sr2 SiO4∶ Eu3+ phosphor spin coated as a color conversion layer (CCL) over the other side of glass substrate on the devices.The basic configuration of the PHOLEDs consists a host material,N,N'-dicarbazolyl-3,5-benzene (mCP) which doped with a blue phosphorescent iridium complexes iridium (Ⅲ)bis [(4,6-di-fluorophenyl)-pyridinato-N-C2'] (FIrpic) to produce high efficient blue organic light emitting diodes.The hybrid-WOLED shows maximum luminous efficiency of 22.1 cd/ A,maximum power efficiency of 11.26 lm/W,external quantum efficiency of 10.2% and CIE coordinates of (0.32,0.34).Moreover,the output spectra and CIE coordinates of the hybrid-WOLED have a small shift in different driving current density,which demonstrate good color stability.

  8. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    Science.gov (United States)

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R.; Gather, Malte C.

    2016-08-01

    Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm‑2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments.

  9. Thermal resistance of light emitting diode PCB with thermal vias.

    Science.gov (United States)

    Lee, Hyo Soo; Shin, Hyung Won; Jung, Seung Boo

    2012-04-01

    Light emitting diodes (LEDs) are already familiar for use as lighting sources in various electronic devices and displays. LEDs have many advantages such as long life, low power consumption, and high reliability. In the future, as an alternative to fluorescent lighting, LEDs are certain to receive much attention. However, in components related to advanced LED packages or modules there has been an issue regarding the heat from the LED chip. The LED chip is still being developed for use in high-power devices which generate more heat. In this study, we investigate the variation of thermal resistance in LED modules embedded with thermal vias. Through the analysis of thermal resistance with various test vehicles, we obtained the concrete relationship between thermal resistance and the thermal via structure.

  10. Determining contrast sensitivity functions for monochromatic light emitted by high-brightness LEDs

    Science.gov (United States)

    Ramamurthy, Vasudha; Narendran, Nadarajah; Freyssinier, Jean Paul; Raghavan, Ramesh; Boyce, Peter

    2004-01-01

    Light-emitting diode (LED) technology is becoming the choice for many lighting applications that require monochromatic light. However, one potential problem with LED-based lighting systems is uneven luminance patterns. Having a uniform luminance distribution is more important in some applications. One example where LEDs are becoming a viable alternative and luminance uniformity is an important criterion is backlighted monochromatic signage. The question is how much uniformity is required for these applications. Presently, there is no accepted metric that quantifies luminance uniformity. A recent publication proposed a method based on digital image analysis to quantify beam quality of reflectorized halogen lamps. To be able to employ such a technique to analyze colored beams generated by LED systems, it is necessary to have contrast sensitivity functions (CSFs) for monochromatic light produced by LEDs. Several factors including the luminance, visual field size, and spectral power distribution of the light affect the CSFs. Although CSFs exist for a variety of light sources at visual fields ranging from 2 degrees to 20 degrees, CSFs do not exist for red, green, and blue light produced by high-brightness LEDs at 2-degree and 10-degree visual fields and at luminances typical for backlighted signage. Therefore, the goal of the study was to develop a family of CSFs for 2-degree and 10-degree visual fields illuminated by narrow-band LEDs at typical luminances seen in backlighted signs. The details of the experiment and the results are presented in this manuscript.

  11. Blue light does not impair wound healing in vitro.

    Science.gov (United States)

    Masson-Meyers, Daniela Santos; Bumah, Violet Vakunseh; Enwemeka, Chukuka Samuel

    2016-07-01

    Irradiation with red or near infrared light promotes tissue repair, while treatment with blue light is known to be antimicrobial. Consequently, it is thought that infected wounds could benefit more from combined blue and red/infrared light therapy; but there is a concern that blue light may slow healing. We investigated the effect of blue 470nm light on wound healing, in terms of wound closure, total protein and collagen synthesis, growth factor and cytokines expression, in an in vitro scratch wound model. Human dermal fibroblasts were cultured for 48h until confluent. Then a linear scratch wound was created and irradiated with 3, 5, 10 or 55J/cm(2). Control plates were not irradiated. Following 24h of incubation, cells were fixed and stained for migration and fluorescence analyses and the supernatant collected for quantification of total protein, hydroxyproline, bFGF, IL-6 and IL-10. The results showed that wound closure was similar for groups treated with 3, 5 and 10J/cm(2), with a slight improvement with the 5J/cm(2) dose, and slower closure with 55J/cm(2) plight at low fluence does not impair in vitro wound healing. The significant decrease in IL-6 suggests that 470nm light is anti-inflammatory.

  12. White light emitting Ho{sup 3+}-doped CdS nanocrystal ingrained glass nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Chirantan; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [Glass Science and Technology Section, Glass Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India); Goswami, Madhumita [Glass and Advanced Materials Division, Bhaba Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-02-23

    We report the generation of white light from Ho{sup 3+} ion doped CdS nanocrystal ingrained borosilicate glass nanocomposites prepared by the conventional melt-quench method. Near visible 405 nm diode laser excited white light emission is produced by tuning the blue emission from the Ho{sup 3+} ions, green band edge, and orange-red surface-state emissions of the nanocrystalline CdS, which are further controlled by the size of the nanocrystals. The absorption and emission spectra evidenced the excitation of Ho{sup 3+} ions by absorption of photons emitted by the CdS nanocrystals. The high color rendering index (CRI = 84–89) and befitting chromaticity coordinates (x = 0.308–0.309, y = 0.326–0.338) of white light emission, near visible harmless excitation wavelength (405 nm), and high absorbance values at excitation wavelength point out that these glass nanocomposites may serve as a prominent candidate for resin free high power white light emitting diodes.

  13. Transcriptome Analysis Reveals that Red and Blue Light Regulate Growth and Phytohormone Metabolism in Norway Spruce [Picea abies (L. Karst].

    Directory of Open Access Journals (Sweden)

    Fangqun OuYang

    Full Text Available The mechanisms by which different light spectra regulate plant shoot elongation vary, and phytohormones respond differently to such spectrum-associated regulatory effects. Light supplementation can effectively control seedling growth in Norway spruce. However, knowledge of the effective spectrum for promoting growth and phytohormone metabolism in this species is lacking. In this study, 3-year-old Norway spruce clones were illuminated for 12 h after sunset under blue or red light-emitting diode (LED light for 90 d, and stem increments and other growth traits were determined. Endogenous hormone levels and transcriptome differences in the current needles were assessed to identify genes related to the red and blue light regulatory responses. The results showed that the stem increment and gibberellin (GA levels of the seedlings illuminated by red light were 8.6% and 29.0% higher, respectively, than those of the seedlings illuminated by blue light. The indoleacetic acid (IAA level of the seedlings illuminated by red light was 54.6% lower than that of the seedlings illuminated by blue light, and there were no significant differences in abscisic acid (ABA or zeatin riboside [ZR] between the two groups of seedlings. The transcriptome results revealed 58,736,166 and 60,555,192 clean reads for the blue-light- and red-light-illuminated samples, respectively. Illumina sequencing revealed 21,923 unigenes, and 2744 (approximately 93.8% out of 2926 differentially expressed genes (DEGs were found to be upregulated under blue light. The main KEGG classifications of the DEGs were metabolic pathway (29%, biosynthesis of secondary metabolites (20.49% and hormone signal transduction (8.39%. With regard to hormone signal transduction, AUXIN-RESISTANT1 (AUX1, AUX/IAA genes, auxin-inducible genes, and early auxin-responsive genes [(auxin response factor (ARF and small auxin-up RNA (SAUR] were all upregulated under blue light compared with red light, which might have

  14. Improvement of color purity in white OLED based on Zn(HPB){sub 2} as blue emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Eun [Department of Electrical Engineering and NTRC, Dong-A University, Busan, 604-714 (Korea, Republic of); Kim, Won-Sam [Department of Chemistry and Institute of Functional Materials, Inje University, Gimhae, 621-749 (Korea, Republic of); Kim, Byoung-Sang [Department of Electrical Engineering and NTRC, Dong-A University, Busan, 604-714 (Korea, Republic of); Lee, Burm-Jong [Department of Chemistry and Institute of Functional Materials, Inje University, Gimhae, 621-749 (Korea, Republic of); Kwon, Young-Soo [Department of Electrical Engineering and NTRC, Dong-A University, Busan, 604-714 (Korea, Republic of)], E-mail: yskwon@dau.ac.kr

    2008-04-01

    We synthesized zinc (II) [2-(2-hydroxyphenyl)benzoxazole] (Zn(HPB){sub 2}) as blue emitting materials and evaluated in the organic light emitting diodes (OLEDs). The layer of Zn(HPB){sub 2} doped with 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) (Zn(HPB){sub 2}:DCJTB) as emitters has been demonstrated. The structure of the device is indium-tin-oxide (ITO)/N,N'-bis-(1-naphthl)-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB, 40 nm)/Zn(HPB){sub 2}/Zn(HPB){sub 2}:DCJTB/Alq{sub 3} (20 nm)/LiF/Al. The thickness of Zn(HPB){sub 2} layer was 0, 10, 20, 30 nm at the same time the thickness of Zn(HPB){sub 2}:DCJTB layer were 40, 30, 20, 10 nm. When thickness of Zn(HPB){sub 2} layer was 30 nm and the thickness of Zn(HPB){sub 2}:DCJTB layer was 10 nm, white emission is achieved. The Commission Internationale de l'Eclairage (CIE) coordinates of the white emission are (0.304, 0.332) at an applied voltage of 10.5 V.

  15. High-contrast top-emitting organic light-emitting devices

    Institute of Scientific and Technical Information of China (English)

    Chen Shu-Fen; Chen Chun-Yan; Yang Yang; Xie Jun; Huang Wei; Shi Hong-Ying; Cheng Fan

    2012-01-01

    In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhancement stack consists of a thin metal anode layer,a dielectric bilayer,and a thick metal underlayer.The resulting device,with the optimized contrast-enhancement stack thicknesses of Ni (30 nm)/MgF2 (62 nm)/ZnS (16 nm)/Ni (20 nm) and the 25-nm-thick ZnS anti-reflection layer,achieves a luminous reflectance of 4.01% in the visible region and a maximum current efficiency of 0.99 cd/A (at 62.3 mA/cm2) together with a very stable chromaticity.The contrast ratio reaches 561∶1 at an on-state brightness of 1000 cd/m2 under an ambient illumination of 140 lx.In addition,the anti-reflection layer can als0 enhance the transmissivity of the cathode and improve light out-coupling by the effective restraint of microcavity effects.

  16. A Novel White Light Emitting Long-lasting Phosphor

    Institute of Scientific and Technical Information of China (English)

    Bing Fu LEI; Ying Liang LIU; Ze Ren YE; Chun Shan SHI

    2004-01-01

    A novel white light emitting long-lasting phosphor Cd1-xDyxSiO3 is reported in this letter. The Dy3+ doped CdSiO3 phosphor emits white light. The phosphorescence can be seen with the naked eye in the dark clearly even after the 254 nm UV irradiation have been removed for about 30 min. In the emission spectrum of 5% Dy3+ doped CdSiO3 phosphor, there are two emission peaks of Dy3+, 580 nm (4F9/2→6H13/2) and 486 nm (4F9/2→6H15/2), as well as a broad band emission located at about 410 nm. All the three emissions form a white light with CIE chromaticity coordinates x=0.3874, y=0.3760 and the color temperature is 4000 K under 254 nm excitation. It indicated that this phosphor is a promising new luminescent material for practice application.

  17. Evaluation of InGaN/GaN light-emitting diodes of circular geometry.

    Science.gov (United States)

    Wang, X H; Fu, W Y; Lai, P T; Choi, H W

    2009-12-07

    Blue GaN light emitting diodes (LEDs) in the shape of cuboids and circular disks have been fabricated by laser micromachining. The proposed circular geometry serves to enhance overall light extraction on a macro-scale and to improve uniformity of the emission pattern due to the rotational symmetry of the chip. Analysis of the chip shaping effect is carried out by ray-tracing simulations and further supported with mathematical modeling using ideal LED models, and subsequently verified with fabricated devices. In comparison, a 10% improvement in overall emission was observed for circular LEDs over the regular cuboids, consistent with simulations and calculations. The measured emission pattern from the circular LED confirms the axial symmetry of the emission beam.

  18. Luminescent characteristics of LiCaBO3:Eu3+ phosphor for white light emitting diode

    Institute of Scientific and Technical Information of China (English)

    LI Panlai; YANG Zhiping; WANG Zhijun; GUO Qinglin

    2009-01-01

    LiCaBO3:Eu3+ phosphor was synthesized by high solid-state reaction method, and its luminescent characteristics were investigated. The emission and excitation spectra of LiCaBO3:Eu3+ phosphors exhibited that the phosphors could be effectively excited by near ultraviolet (400 nm) and blue (470 nm) light, and emitted red light. The effect of Eu3+ concentration on the emission spectrum of LiCaBO3:Eu3+ phos-phor was studied. The results showed that the emission intensity increased with increasing Eu3~ concentration, and then decreased because of concentration quenching. It reached the maximum at 3mol.% Eu3+, and the concentration self-quenching mechanism was the d-d interaction according to the Dexter theory. Under the conditions of charge compensator Li+, Na+ or K+ incorporated in LiCaBO3, the emission intensities of LiCaBO3:Eu3+ phosphor were enhanced.

  19. Luminescent Characteristics of LiSrBO3:Eu3+ Phosphor for White Light Emitting Diode

    Institute of Scientific and Technical Information of China (English)

    LI Pan-Lai; WANG Zhi-Jun; YANG Zhi-Ping; GUO Qing-Lin

    2009-01-01

    @@ LiSrBBO3:Eu>3+ phosphor is synthesized by a high solid-state reaction method, and its luminescent characteristics are investigated. The emission and excitation spectra of LiSrBO3:Eu>3+ phosphors exhibit that the phosphors can be effectively excited by near ultraviolet (401 nm) and blue (471 nm) light, and emit 615nm red light. The effect of Eu3+ concentration on the emission spectrum of LiSrBO3:Eu>3+ phosphor is studied; the results show that the emission intensity increases with increasing Eu3+ concentration, and then decreases because of concentration quenching. It reaches the maximum at 3mol%, and the concentration self-quenching mechanism is the dipole-dipole interaction according to the Dexter theory. Under the conditions of charge compensation Li+, Na+ or K+ incorporated in LiSrBO3, the luminescent intensities of LiSrBO3:Eu>3+ phosphor are enhanced.

  20. Compound Derived from Anthracene and Pyrazol for a Light-Emitting Diode

    Institute of Scientific and Technical Information of China (English)

    王明亮; 张俊祥; 刘举正; 徐春祥

    2001-01-01

    A new compound, 5-(9-anthryl)-1,3-diphenyl-1H-pyrazol (ADPP), with an anthryl moiety as an emissive groupand a diphenylpyrazoline moiety as a charge transporting group is designed and synthesized. The absorption,photoluminescence, electroluminescence, and electrochemistry are measured. Absorption of ADPP is similar tothat of anthracene in the vibonic structure but shows slight redshifts because anthryl moiety twists strongly withrespect to pyrazol moiety although delocalization still exists between the two moieties. Light-emitting devicesfabricated with ADPP show a bright blue emission at 470nm. The turn-on voltage is 12 V and the light emissionfollows the current closely, indicating an efficient charge injection and transport for both electrons and holes.

  1. Indirect blue light does not suppress nocturnal salivary melatonin in humans in an automobile setting.

    Science.gov (United States)

    Lerchl, Alexander; Schindler, Carina; Eichhorn, Karsten; Kley, Franziska; Erren, Thomas C

    2009-09-01

    In 2007, the International Agency for Research on Cancer (IARC) classified shift work that involves circadian disruption as being probably carcinogenic to humans (Group 2A). In this context, light exposure during the night plays a key role because it can suppress nocturnal melatonin levels when exposures exceed a certain threshold. Blue light around 464 nm is most effective in suppressing melatonin because of the spectral sensitivity of melanopsin, a recently discovered photopigment in retinal ganglion cells; the axons of these cells project to the suprachiasmatic nucleus, a circadian master clock in the brain. Due to advances in light technologies, normal tungsten light bulbs are being replaced by light-emitting diodes which produce quasi-monochromatic or white light. The objective of this study was to assess whether the light-melanopsin-melatonin axis might be affected in automobiles at night which employ the new generation diodes. To this end, we have tested in an experimental automobile setting whether indirect blue light (lambda(max) = 465 nm) at an intensity of 0.22 or 1.25 lx can suppress salivary melatonin levels in 12 male volunteers (age range 17-27 years) who served as their own controls. Daytime levels were low (2.7 +/- 0.5 pg/mL), and night-time levels without light exposure were high (14.5 +/- 1.1 pg/mL), as expected. Low-intensity light exposures had no significant effect on melatonin levels (0.22 lx: 17.2 +/- 2.8 pg/mL; P > 0.05; 1.25 lx: 12.6 +/- 2.0 pg/mL; P > 0.05). It is concluded that indirect blue light exposures in automobiles up to 1.25 lx do not cause unintentional chronodisruption via melatonin suppression.

  2. Neodymium YAG lasers pumped by light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Bilak, V.I.; Goldobin, I.S.; Zverev, G.M.; Kuratev, I.I.; Pashkov, V.A.; Stel' makh, M.F.; Tsvetkov, Y.V.; Solov' eva, N.M.

    1981-11-01

    The results are presented of theoretical and experimental investigations of room-temperature YAG:Nd lasers pumped by light-emitting diodes. The lasing characteristics of a laser operated at the 1.06 and 1.32 ..mu.. wavelengths were investigated in the cw and pulsed regimes and dependences of its parameters on the temperature, pulse repetition frequency, and other factors were studied. In the pulsed regime the laser efficiency was 0.2% and in the cw regime the radiation power reached 50 and 17 mW at the 1.06 and 1.32 ..mu.. wavelengths, respectively.

  3. Capturing triplet emission in white organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [Faculty of EHSE, School of Engineering and IT, B-purple-12, Charles Darwin University, Darwin, NT 0909 (Australia)

    2011-08-15

    The state-of-the art in the white organic light emitting devices (WOLEDs) is reviewed for further developments with a view to enhance the capture of triplet emission. In particular, applying the new exciton-spin-orbit-photon interaction operator as a perturbation, rates of spontaneous emission are calculated in a few phosphorescent materials and compared with experimental results. For iridium based phosphorescent materials the rates agree quite well with the experimental results. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Numerical model of multilayer organic light-emitting devices

    Institute of Scientific and Technical Information of China (English)

    Hu Yue; Rao Hai-Bo

    2009-01-01

    A numerical model of multilayer organic light-emitting devices is presented in this article.This model is based on the drift-diffusion equations which include charge injection,transport,space charge effects,trapping,heterojunction interface and recombination process.The device structure in the simulation is ITO/CuPc(20 nm)/NPD(40 nm)/Alq3(60 nm)/LiF/Al.There are two heterojunctions which should be dealt with in the simulation.The Ⅰ-Ⅴ characteristics,carrier distribution and recombination rate of a device are calculated.The simulation results and measured data are in good agreement.

  5. Camera vibration measurement using blinking light-emitting diode array.

    Science.gov (United States)

    Nishi, Kazuki; Matsuda, Yuichi

    2017-01-23

    We present a new method for measuring camera vibrations such as camera shake and shutter shock. This method successfully detects the vibration trajectory and transient waveforms from the camera image itself. We employ a time-varying pattern as the camera test chart over the conventional static pattern. This pattern is implemented using a specially developed blinking light-emitting-diode array. We describe the theoretical framework and pattern analysis of the camera image for measuring camera vibrations. Our verification experiments show that our method has a detection accuracy and sensitivity of 0.1 pixels, and is robust against image distortion. Measurement results of camera vibrations in commercial cameras are also demonstrated.

  6. Single-layered light-emitting diodes possessing methoxy-modified pyrazoloquinoline dyes in poly-N-vinylcarbazole matrix

    Energy Technology Data Exchange (ETDEWEB)

    Gondek, E. [Institute of Physics, Technical University of Cracow, Podhorazych 1, Cracow (Poland); Danel, A. [Department of Chemistry, Agricultural University of Cracow, ul. Balicka 122, 31-149, Krakow (Poland); Kityk, I.V. [Institute of Physics, J.Dlugosz University Czestochowa, Al.Armii Krajowej13/15, Czestochowa (Poland)], E-mail: i.kityk@ajd.czest.pl

    2008-03-15

    A principal opportunity to operate by current-voltage and electroluminescent-current dependences for the single-layered light-emitting diodes (LED) on the basis of the polyvinylcarbazole (PVK) polymers doped by methoxy-substituted pyrazoloquinoline (PQ) emitting dye chromphore is demonstrated. The principal light-emitting parameters in the architecture ITO/PQ: PVK/Ca (Al) were investigated. The maximally achieved quantum efficiency of the investigated LED was equal to about 0.87% and corresponded to the brightness about the 44 Cd/m{sup 2}. The absence of blue shift for the electroluminescence (EL) compared to PL may indicate on an absence of near-the-surface exciton diffusion for the methoxy-PQ contrary to the phenyl-methyl-substituted PQ. The quantum chemical calculations have shown principal role of the dye chromophore state dipole moments in the observed carrier kinetics determining the EL.

  7. Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis

    Science.gov (United States)

    Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.

    2011-01-01

    The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  8. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    Science.gov (United States)

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species.

  9. Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications.

    Science.gov (United States)

    Janjua, Bilal; Ng, Tien Khee; Zhao, Chao; Oubei, Hassan Makine; Shen, Chao; Prabaswara, Aditya; Alias, Mohd Sharizal; Alhamoud, Abdullah Ali; Alatawi, Abdullah Awaad; Albadri, Abdulrahman M; Alyamani, Ahmed Y; El-Desouki, Munir M; Ooi, Boon S

    2016-08-22

    Group-III-nitride laser diode (LD)-based solid-state lighting device has been demonstrated to be droop-free compared to light-emitting diodes (LEDs), and highly energy-efficient compared to that of the traditional incandescent and fluorescent white light systems. The YAG:Ce3+ phosphor used in LD-based solid-state lighting, however, is associated with rapid degradation issue. An alternate phosphor/LD architecture, which is capable of sustaining high temperature, high power density, while still intensity- and bandwidth-tunable for high color-quality remained unexplored. In this paper, we present for the first time, the proof-of-concept of the generation of high-quality white light using an InGaN-based orange nanowires (NWs) LED grown on silicon, in conjunction with a blue LD, and in place of the compound-phosphor. By changing the relative intensities of the ultrabroad linewidth orange and narrow-linewidth blue components, our LED/LD device architecture achieved correlated color temperature (CCT) ranging from 3000 K to above 6000K with color rendering index (CRI) values reaching 83.1, a value unsurpassed by the YAG-phosphor/blue-LD counterpart. The white-light wireless communications was implemented using the blue LD through on-off keying (OOK) modulation to obtain a data rate of 1.06 Gbps. We therefore achieved the best of both worlds when orange-emitting NWs LED are utilized as "active-phosphor", while blue LD is used for both color mixing and optical wireless communications.

  10. Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications

    KAUST Repository

    Janjua, Bilal

    2016-08-10

    Group-III-nitride laser diode (LD)-based solid-state lighting device has been demonstrated to be droop-free compared to light-emitting diodes (LEDs), and highly energy-efficient compared to that of the traditional incandescent and fluorescent white light systems. The YAG:Ce3+ phosphor used in LD-based solid-state lighting, however, is associated with rapid degradation issue. An alternate phosphor/LD architecture, which is capable of sustaining high temperature, high power density, while still intensity- and bandwidth-tunable for high color-quality remained unexplored. In this paper, we present for the first time, the proof-of-concept of the generation of high-quality white light using an InGaN-based orange nanowires (NWs) LED grown on silicon, in conjunction with a blue LD, and in place of the compound-phosphor. By changing the relative intensities of the ultrabroad linewidth orange and narrow-linewidth blue components, our LED/LD device architecture achieved correlated color temperature (CCT) ranging from 3000 K to above 6000K with color rendering index (CRI) values reaching 83.1, a value unsurpassed by the YAG-phosphor/blue-LD counterpart. The white-light wireless communications was implemented using the blue LD through on-off keying (OOK) modulation to obtain a data rate of 1.06 Gbps. We therefore achieved the best of both worlds when orange-emitting NWs LED are utilized as “active-phosphor”, while blue LD is used for both color mixing and optical wireless communications.

  11. Efficient Hybrid White Organic Light-Emitting Diodes for Application of Triplet Harvesting with Simple Structure

    CERN Document Server

    Hwang, Kyo Min; Lee, Sungkyu; Yoo, Han Kyu; Baek, Hyun Jung; Kim, Jwajin; Yoon, Seung Soo; Kim, Young Kwan

    2016-01-01

    In this study, we fabricated hybrid white organic light-emitting diodes (WOLEDs) based on triplet harvesting with simple structure. All the hole transporting material and host in emitting layer (EML) of devices were utilized with same material by using N,N'-di-1-naphthalenyl-N,N'-diphenyl-[1,1':4',1":4",1"'-quaterphenyl]-4,4"'-diamine (4P-NPD) which were known to be blue fluorescent material. Simple hybrid WOLEDs were fabricated three color with blue fluorescent and green, red phosphorescent materials. We was investigated the effect of triplet harvesting (TH) by exciton generation zone on simple hybrid WOLEDs. Characteristic of simple hybrid WOLEDs were dominant hole mobility, therefore exciton generation zone was expected in EML. Additionally, we was optimization thickness of hole transporting layer and electron transporting layer was fabricated a simple hybrid WOLEDs. Simple hybrid WOLED exhibits maximum luminous efficiency of 29.3 cd/A and maximum external quantum efficiency of 11.2%. Commission Internatio...

  12. Soft lithography microlens fabrication and array for enhanced light extraction from organic light emitting diodes (OLEDs)

    Science.gov (United States)

    Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming

    2014-06-03

    Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.

  13. Organic Light-Emitting Diodes Driven by Organic Transistors

    Institute of Scientific and Technical Information of China (English)

    胡远川; 董桂芳; 王立铎; 梁琰; 邱勇

    2004-01-01

    Organic thin-film field-effect transistors (OTFTs) with pentacene as the semiconductor have been fabricated for driving an organic light-emitting diode (OLED). The driving circuit includes two OTFTs and one storage capacitor. The field-effect mobility of the transistors in the driving circuit is more than 0.3 cm2/Vs, and the on/off ratio is larger than 104. The light-emission area of the OLED is 0. 04mm2 and the brightness is larger than 400cd/m2 when the selected line voltage, data line voltage and drive voltage all are -40 V. The responding characteristics and holding characteristics are also researched when the selected line voltage and the date line voltage are changed.

  14. Quantum key distribution with an entangled light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J. [Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  15. Characterization, Modeling, and Optimization of Light-Emitting Diode Systems

    DEFF Research Database (Denmark)

    Thorseth, Anders

    This thesis explores, characterization, modeling, and optimization of light-emitting diodes (LED) for general illumination. An automated setup has been developed for spectral radiometric characterization of LED components with precise control of the settings of forward current and operating...... comparing the chromaticity of the measured SPD with tted models, the deviation is found to be larger than the lower limit of human color perception. A method has been developed to optimize multicolored cluster LED systems with respect to light quality, using multi objective optimization. The results...... temperature. The automated setup has been used to characterize commercial LED components with respect to multiple settings. It is shown that the droop in quantum efficiency can be approximated by a simple parabolic function. The investigated models of the spectral power distributions (SPD) from LEDs...

  16. Electroluminescence property of organic light emitting diode (OLED)

    Energy Technology Data Exchange (ETDEWEB)

    Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. Pınar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay [Yıldız Technical University, Department of Physics, Esenler, Istanbul (Turkey); Tekin, Emine; Pravadalı, Selin [National Metrology Instıtute of Turkey (TUBİTAK-UME), Kocaeli (Turkey)

    2013-12-16

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  17. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    CERN Document Server

    Li Juan Zo

    2003-01-01

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm sup 2 , the optimal radiance R could reach 0.38 mW/cm sup 2 , and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be approx 10 sup - sup 5 cm sup 2 /Vs and approx 10 sup - sup 4 cm sup 2 /Vs, respectively. Overshoot effects...

  18. New Optoelectronic Technology Simplified for Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2014-06-01

    Full Text Available The development of Organic Light Emitting Diode (OLED, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The OLED are the base Poly (3,4-ethylenedioxythiophene, PEDOT, and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by UV-Visible Spectroscopy (UV-Vis, Optical Parameters (OP and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by UV-Vis has demonstrated that the Quartz/ITO/PEDOT/PANI-X1 layer does not have displacement of absorption for wavelengths greaters after spin-coating and electrodeposition. Thus, the spectral irradiance of the OLED informed the irradiance of 100 W/m2, and this result, compared with the standard Light Emitting Diode (LED, has indicated that the OLED has higher irradiance. After 1000 hours of electrical OLED tests, the appearance of nanoparticles visible for images by SEM, to the migration process of organic semiconductor materials, was present, then. Still, similar to the phenomenon of electromigration observed in connections and interconnections of microelectronic devices, the results have revealed a new mechanism of migration, which raises the passage of electric current in OLED.

  19. Highly efficient light-emitting diodes based on intramolecular rotation

    CERN Document Server

    Di, Dawei; Yang, Le; Jones, Saul; Friend, Richard H; Linnolahti, Mikko; Bochmann, Manfred; Credgington, Dan

    2016-01-01

    The efficiency of an organic light-emitting diode (OLED) is fundamentally governed by the spin of recombining electron-hole pairs (singlet and triplet excitons), since triplets cannot usually emit light. The singlet-triplet energy gap, a key factor for efficient utilization of triplets, is normally positive. Here we show that in a family of materials with amide donor and carbene acceptor moieties linked by a metal, this energy gap for singlet and triplet excitons with charge-transfer character can be tuned from positive to negative values via the rotation of donor and acceptor about the metal-amide bond. When the gap is close to zero, facile intersystem crossing is possible, enabling efficient emission from singlet excitons. We demonstrate solution-processed LEDs with exceptionally high quantum efficiencies (near-100% internal and >27% external quantum efficiencies), and current and power efficiencies (87 cd/A and 75 lm/W) comparable to, or exceeding, those of state-of-the-art vacuum-processed OLEDs and quant...

  20. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    Science.gov (United States)

    Li, Ting

    2013-08-13

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  1. Blue light emission from the heterostructured ZnO/InGaN/GaN

    OpenAIRE

    Wang, Ti; WU Hao; Wang, Zheng; Chen, Chao; Liu, Chang

    2013-01-01

    ZnO/InGaN/GaN heterostructured light-emitting diodes (LEDs) were fabricated by molecular beam epitaxy and atomic layer deposition. InGaN films consisted of an Mg-doped InGaN layer, an undoped InGaN layer, and a Si-doped InGaN layer. Current-voltage characteristic of the heterojunction indicated a diode-like rectification behavior. The electroluminescence spectra under forward biases presented a blue emission accompanied by a broad peak centered at 600 nm. With appropriate emission intensity r...

  2. Photocatalyst-Free and Blue Light-Induced RAFT Polymerization of Vinyl Acetate at Ambient Temperature.

    Science.gov (United States)

    Ding, Chunlai; Fan, Caiwei; Jiang, Ganquan; Pan, Xiangqiang; Zhang, Zhengbiao; Zhu, Jian; Zhu, Xiulin

    2015-12-01

    Vinyl acetate is polymerized in the living way under the irradiation of blue light-emitting diodes (LEDs) or sunlight without photocatalyst at ambient temperature. 2-(Ethoxycarbonothioyl)sulfanyl propanoate is exclusively added and acts as initiator and chain transfer agent simultaneously in the current system. Poly(vinyl acetate) with well-regulated molecular weight and narrow molecular weight distribution (Đ < 1.30) is synthesized. Near quantitative end group fidelity of polymer is demonstrated by nuclear magnetic resonance (NMR) and matrix-assisteed laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).

  3. Effects of blue light on gametophyte development of Laminaria japonica (Laminariales, Phaeophyta)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Laminaria gametophyte was greatly influenced by light in its growth and development. Using light-emitting diodes (LED) as blue and red light sources, we analyzed the light effect on gametophytes development of Laminaria japonica Aresch. The gametophytes were obtained from zoospores collected in April, May,July, 2003 and September, 2004. We found that the growth of gametophytes was stimulated by increasing intensity of blue light (BL) and red light (RL) illumination, of which BL was obviously stronger than that of RL. The fertilization of gametophytes depended largely on BL, and only sufficient BL illumination could take the reproductive effect. In addition, we noticed that there was a significant difference in light responses for gametophytes developed from zoospore collected in different times. For zoospores released in April, under BL1 (73.90 μmol sperms respectively, and further developed towards sporophytes. However, for gametophytes developed in May,July or September, they became multi-cellular and never formed oogonia or antheridia. It is believed that the Laminaria sporangium maturation stage could affect the gametophytes reaction to BL under laboratory culture conditions. Therefore, cryptochrome- or phototropin-like BL photoreceptors is probably involved in BL-induced development of Laminaria gametophytes.

  4. New Framework of Sustainable Indicators for Outdoor LED (Light Emitting Diodes) Lighting and SSL (Solid State Lighting)

    OpenAIRE

    2015-01-01

    Light emitting diodes (LEDs) and SSL (solid state lighting) are relatively new light sources, but are already widely applied for outdoor lighting. Despite this, there is little available information allowing planners and designers to evaluate and weigh different sustainability aspects of LED/SSL lighting when making decisions. Based on a literature review, this paper proposes a framework of sustainability indicators and/or measures that can be used for a general evaluation or to highlight ce...

  5. Phototropins and chloroplast activity in plant blue light signaling

    OpenAIRE

    Goh, Chang-Hyo

    2009-01-01

    In plants, phototropins 1 (phot1) and 2 (phot2) mediate chloroplast movement to blue light (BL). A recent report showed that phototropins (phot) are required for the expression of chloroplast genes in rice. The light-induced responses of phot1a rice mutants result in H2O2-mediated damage to chloroplast photosystems, indicating that phot-regulated responses might be associated with the other photoreceptor, such as cryptochrome (cry) BL receptor. This suggests diversification and specialization...

  6. Ca(La 1-xEu x) 4Si 3O 13 red emitting phosphor for white light emitting diodes

    Science.gov (United States)

    Shen, Changyu; Yang, Yi; Jin, Shongzhong; Ming, Jiangzhou; Feng, Huajun; Xu, Zhihai

    2009-05-01

    Series of Ca(La 1-xEu x) 4Si 3O 13 red emitting phosphor were synthesized by solid-state reaction method. Photoluminescence excitation and emission spectra showed that the phosphors could be efficiently excited by near ultraviolet to blue light from 350 to 470 nm to give bright red emission. There were four emission bands peaking at 591, 615, 655, and 700 nm, due to the transition of the Eu 3+ ( 5D 0→ 7F j ( j=0, 1,2,3,4)), respectively. After using the 3.5% Li 2CO 3 as the flux, the sample's emission intensity increased obviously. White LED was obtained by combining blue LED chip (InGaN-based 460 nm emitting) with Ca(La 1-xEu x) 4Si 3O 13 and YAG:Ce 3+. As the x has the value of 0.5, the InGaN-based Ca(La 0.5Eu 0.5) 4Si 3O 13 WLED presented intense white emitting and good color rendering of over 89.

  7. Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode

    Science.gov (United States)

    Chandramohan, S.; Ryu, Beo Deul; Uthirakumar, P.; Kang, Ji Hye; Kim, Hyun Kyu; Kim, Hyung Gu; Hong, Chang-Hee

    2011-03-01

    We report on the spectral tunability of white light by localized surface plasmon (LSP) effect in a colour converting hybrid device made of CdSe/ZnS quantum dots (QDs) integrated on InGaN/GaN blue light-emitting diodes (LEDs). Silver (Ag) nanoparticles (NPs) are mixed with QDs for generating LSP effect. When the plasmon absorption of Ag NPs is synchronized to the QW emission at 448 nm, the NPs selectively absorb the blue light and subsequently enhance the QD emission. Using this energy transfer scheme, the ( x, y) chromaticity coordinates of the hybrid white LED was tuned from (0.32, 0.17) to (0.43, 0.26), and thereby generated warm white light emission with correlated colour temperature (CCT) around 1800 K. Moreover, a 47% enhancement in the external quantum efficiency (EQE) was realized.

  8. Simulation of mixed-host emitting layer based organic light emitting diodes

    Science.gov (United States)

    Riku, C.; Kee, Y. Y.; Ong, T. S.; Yap, S. S.; Tou, T. Y.

    2015-04-01

    `SimOLED' simulator is used in this work to investigate the efficiency of the mixed-host organic light emitting devices (MH-OLEDs). Tris-(8-hydroxyquinoline) aluminum(3) (Alq3) and N,N-diphenyl-N,N-Bis(3-methylphenyl)-1,1-diphenyl-4,4-diamine (TPD) are used as the electron transport layer (ETL) material and hole transport layer (HTL) material respectively, and the indium-doped tin oxide (ITO) and aluminum (Al) as anode and cathode. Three MH-OLEDs, A, B and C with the same structure of ITO / HTM (15 nm) / Mixed host (70 nm) / ETM (10 nm) /Al, are stimulated with ratios TPD:Alq3 of 3:5, 5:5, and 5:3 respectively. The Poole-Frenkel model for electron and hole mobilities is employed to compute the current density-applied voltage-luminance characteristics, distribution of the electric field, carrier concentrations and recombination rate.

  9. Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of chrysanthemum (Chrysanthemum morifolium).

    Science.gov (United States)

    Jeong, Sung Woo; Park, Semin; Jin, Jong Sung; Seo, On Nuri; Kim, Gon-Sup; Kim, Yun-Hi; Bae, Hanhong; Lee, Gyemin; Kim, Soo Taek; Lee, Won Sup; Shin, Sung Chul

    2012-10-03

    Light-emitting diodes (LEDs) are an efficient alternative to traditional lamps for plant growth. To investigate the influence of LEDs on flowering and polyphenol biosynthesis in the leaves of chrysanthemum, the plants were grown under supplemental blue, green, red, and white LEDs. Flower budding was formed even after a longer photoperiod than a critical day length of 13.5 h per day under blue light illumination. The weights of leaves and stems were highest under the white light illumination growth condition, whereas the weight of roots appeared to be independent of light quality. Among nine polyphenols characterized by high-performance liquid chromatography-tandem mass spectroscopy, three polyphenols were identified for the first time in chrysanthemum. A quantitation and principal component analysis biplot demonstrated that luteolin-7-O-glucoside (2), luteolin-7-O-glucuronide (3), and quercetagetin-trimethyl ether (8) were the highest polyphenols yielded under green light, and dicaffeoylquinic acid isomer (4), dicaffeoylquinic acid isomer (5), naringenin (7), and apigenin-7-O-glucuronide (6) were greatest under red light. Chlorogenic acid (1) and 1,2,6-trihydroxy-7,8-dimethoxy-3-methylanthraquinone (9) were produced in similar concentrations under both light types. The white and blue light appeared inefficient for polyphenol production. Taken together, our results suggest that the chrysanthemum flowering and polyphenol production are influenced by light quality composition.

  10. High Efficiency SEPIC Converter For High Brightness Light Emitting Diodes (LEDs) System

    OpenAIRE

    Qin, Yaxiao

    2012-01-01

    ABSTRACT This thesis presents an investigation into the characteristics of and driving methods for light emitting diode (LED) lamp system. A comprehensive overview on the lighting development is proposed. The characteristic of the light emitting diode (LED) lamp is described and the requirements of the ballast for the light emitting diode (LED) lamp are presented. Although LED lamps have longer lifetime than fluorescent lamps, the short lifetime limitation of LED driver imposed by ele...

  11. A multi-zoned white organic light-emitting diode with high CRI and low color temperature

    Science.gov (United States)

    Zhang, Tao; He, Shou-Jie; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2016-02-01

    White organic light emitting diodes (WOLEDs) is becoming a new platform technology for a range of applications such as flat-panel displays, solid-state lightings etc., and are under intensive research. For general solid-state illumination applications, a WOLED’s color rendering index (CRI) and correlated color temperature (CCT) are two crucial parameters. This paper reports that WOLED device structures can be constructed using four stacked emission layers which independently emit lights at blue, green, yellow and red color respectively. The intensity of each emission layer is then engineered by funneling excitons to the targeted emission layer to achieve an ultrahigh 92 CRI at 5000 cd/m2, and to reduce CCT to below 2500 K.

  12. Two-color light-emitting diodes with polarization-sensitive high extraction efficiency based on graphene

    Science.gov (United States)

    H, Sattarian; S, Shojaei; E, Darabi

    2016-05-01

    In the present study, graphene photonic crystals are employed to enhance the light extraction efficiency (LEE) of two-color, red and blue, light-emitting diode (LED). The transmission characteristics of one-dimensional (1D) Fibonacci graphene photonic crystal LED (FGPC-LED) are investigated by using the transfer matrix method and the scaling study is presented. We analyzed the influence of period, thickness, and permittivity in the structure to enhance the LEE. The transmission spectrum of 1D FGPC has been optimized in detail. In addition, the effects of the angle of incidence and the state of polarization are investigated. As the main result, we found the optimum values of relevant parameters to enhance the extraction of red and blue light from an LED as well as provide perfect omnidirectional and high peak transmission filters for the TE and TM modes.

  13. A Novel Greenish Blue-emitting Amorphous Molecular Material:2,5-Bis {4- [2-naphthyl (phenyl) amino] phenyl} thiophene

    Institute of Scientific and Technical Information of China (English)

    刘平; 童真

    2001-01-01

    A novel greenish blue-emitting amorphous molecular material,2,5-bis{4-[2-naphthyl(phenyl) amino] phenyl} thiophene (BNpA-1T), was designed and synthesized. Its molecular properties, glass-forming property, and application to an organic EL device were investigated.

  14. High-efficiency white organic light-emitting devices with a non-doped yellow phosphorescent emissive layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Juan; Yu Junsheng, E-mail: jsyu@uestc.edu.cn; Hu Xiao; Hou Menghan; Jiang Yadong

    2012-03-30

    Highly efficient phosphorescent white organic light-emitting devices (PHWOLEDs) with a simple structure of ITO/TAPC (40 nm)/mCP:FIrpic (20 nm, x wt.%)/bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2} Prime ] iridium (acetylacetonate) (tbt){sub 2}Ir(acac) (y nm)/Bphen (30 nm)/Mg:Ag (200 nm) have been developed, by inserting a thin layer of non-doped yellow phosphorescent (tbt){sub 2}Ir(acac) between doped blue emitting layer (EML) and electron transporting layer. By changing the doping concentration of the blue EML and the thickness of the non-doped yellow EML, a PHWOLED comprised of higher blue doping concentration and thinner yellow EML achieves a high current efficiency of 31.7 cd/A and Commission Internationale de l'Eclairage coordinates of (0.33, 0.41) at a luminance of 3000 cd/m{sup 2} could be observed. - Highlights: Black-Right-Pointing-Pointer We introduce a simplified architecture for phosphorescent white organic light-emitting device. Black-Right-Pointing-Pointer The key concept of device fabrication is combination of doped blue emissive layer (EML) with non-doped ultra-thin yellow EML. Black-Right-Pointing-Pointer Doping concentration of the blue EML and thickness of the yellow EML are sequentially adjusted. Black-Right-Pointing-Pointer High device performance is achieved due to improved charge carrier balance as well as two parallel emission mechanisms in the EMLs.

  15. InGaN/GaN Tunnel Junctions For Hole Injection in GaN Light Emitting Diodes

    OpenAIRE

    Krishnamoorthy, Sriram; Akyol, Fatih; Rajan, Siddharth

    2014-01-01

    InGaN/GaN tunnel junction contacts were grown on top of an InGaN/GaN blue (450 nm) light emitting diode wafer using plasma assisted molecular beam epitaxy. The tunnel junction contacts enable low spreading resistance n-GaN top contact layer thereby requiring less top metal contact coverage on the surface. A voltage drop of 5.3 V at 100 mA, forward resistance of 2 x 10-2 ohm cm2 and a higher light output power are measured in tunnel junction LED. A low resistance of 5 x 10-4 ohm cm2 was measur...

  16. Focus Issue: Organic light-emitting diodes-status quo and current developments.

    Science.gov (United States)

    List, Emil J W; Koch, Norbert

    2011-11-01

    The guest editors introduce the Optics Express Energy Express supplement Focus Issue, "Organic Light-Emitting Diodes," which includes six invited articles addressing the challenges of light outcoupling and light management in OLEDs.

  17. Light extraction enhancement of organic light-emitting diodes using aluminum zinc oxide embedded anodes.

    Science.gov (United States)

    Hsu, Ching-Ming; Lin, Bo-Ting; Zeng, Yin-Xing; Lin, Wei-Ming; Wu, Wen-Tuan

    2014-12-15

    Aluminum zinc oxide (AZO) has been embedded onto indium tin oxide (ITO) anode to enhance the light extraction from an organic light-emitting diode (OLED). The embedded AZO provides deflection and scattering interfaces on the newly generated AZO/organics and AZO/ITO interfaces rather than the conventional ITO/organic interface. The current efficiency of AZO embedded OLEDs was enhanced by up to 64%, attributed to the improved light extraction by additionally created reflection and scattering of emitted light on the AZO/ITO interfaces which was roughed in AZO embedding process. The current efficiency was found to increase with the increasing AZO embedded area ratio, but limited by the accompanying increases in haze and electrical resistance of the AZO embedded ITO film.

  18. Substrate-Free InGaN/GaN Nanowire Light-Emitting Diodes.

    Science.gov (United States)

    Neplokh, Vladimir; Messanvi, Agnes; Zhang, Hezhi; Julien, Francois H; Babichev, Andrey; Eymery, Joel; Durand, Christophe; Tchernycheva, Maria

    2015-12-01

    We report on the demonstration of substrate-free nanowire/polydimethylsiloxane (PDMS) membrane light-emitting diodes (LEDs). Metal-organic vapour-phase epitaxy (MOVPE)-grown InGaN/GaN core-shell nanowires were encapsulated into PDMS layer. After metal deposition to p-GaN, a thick PDMS cap layer was spin-coated and the membrane was manually peeled from the sapphire substrate, flipped upside down onto a steel holder, and transparent indium tin oxide (ITO) contact to n-GaN was deposited. The fabricated LEDs demonstrate rectifying diode characteristics. For the electroluminescence (EL) measurements, the samples were manually bonded using silver paint. The EL spectra measured at different applied voltages demonstrate a blue shift with the current increase. This shift is explained by the current injection into the InGaN areas of the active region with different average indium content.

  19. Whole device printing for full colour displays with organic light emitting diodes

    Science.gov (United States)

    Choi, Jun-ho; Kim, Kyung-Ho; Choi, Se-Jin; Lee, Hong H.

    2006-05-01

    Whole device printing is presented for realizing full colour displays with red (R), green (G) and blue (B) organic light emitting diodes (OLEDs). In this process, the whole OLED structure is transferred from a patterned mould to a glass substrate. Therefore, a simple step and repeat of the transfer of each of R, G and B OLED for RGB pixels completes the fabrication of the full colour display over a given area. A difference in the work of adhesion at two interfaces enables the transfer. A 'rigiflex' mould is used for the printing. It is rigid enough to allow sub-100 nm resolution and yet flexible enough for intimate contact with the glass substrate, which permits large area application.

  20. A spectrally tunable all-graphene-based flexible field-effect light-emitting device

    Science.gov (United States)

    Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling

    2015-07-01

    The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (~450 nm) to red (~750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole-Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays.

  1. Optimal nitrogen and phosphorus codoping carbon dots towards white light-emitting device

    Science.gov (United States)

    Zhang, Feng; Wang, Yaling; Miao, Yanqin; He, Yuheng; Yang, Yongzhen; Liu, Xuguang

    2016-08-01

    Through a one-step fast microwave-assisted approach, nitrogen and phosphorus co-doped carbon dots (N,P-CDs) were synthesized using ammonium citrate (AC) as a carbon source and phosphates as additive reagent. Under the condition of an optimal reaction time of 140 s, the influence of additive with different N and P content on fluorescent performance of N,P-CDs was further explored. It was concluded that high nitrogen content and moderate phosphorus content are necessary for obtaining high quantum yield (QY) N,P-CDs, among which the TAP-CDs (CDs synthesized using ammonium phosphate as additive reagent) show high quantum yield (QY) of 62% and red-green-blue (RGB) spectral composition of 51.67%. Besides, the TAP-CDs exhibit satisfying thermal stability within 180 °C. By virtue of good optical and thermal properties of TAP-CDs, a white light-emitting device (LED) was fabricated by combining ultraviolet chip with TAP-CDs as phosphor. The white LED emits bright warm-white light with the CIE chromaticity coordinate of (0.38, 0.35) and the corresponding color temperature (CCT) of 4450 K, indicating the potential of TAP-CDs phosphor in white LED.

  2. Emissive ZnO-graphene quantum dots for white-light-emitting diodes.

    Science.gov (United States)

    Son, Dong Ick; Kwon, Byoung Wook; Park, Dong Hee; Seo, Won-Seon; Yi, Yeonjin; Angadi, Basavaraj; Lee, Chang-Lyoul; Choi, Won Kook

    2012-05-27

    Hybrid nanostructures combining inorganic materials and graphene are being developed for applications such as fuel cells, batteries, photovoltaics and sensors. However, the absence of a bandgap in graphene has restricted the electrical and optical characteristics of these hybrids, particularly their emissive properties. Here, we use a simple solution method to prepare emissive hybrid quantum dots consisting of a ZnO core wrapped in a shell of single-layer graphene. We then use these quantum dots to make a white-light-emitting diode with a brightness of 798 cd m(-2). The strain introduced by curvature opens an electronic bandgap of 250 meV in the graphene, and two additional blue emission peaks are observed in the luminescent spectrum of the quantum dot. Density functional theory calculations reveal that these additional peaks result from a splitting of the lowest unoccupied orbitals of the graphene into three orbitals with distinct energy levels. White emission is achieved by combining the quantum dots with other emissive materials in a multilayer light-emitting diode.

  3. Degradation mechanism beyond device self-heating in high power light-emitting diodes

    Science.gov (United States)

    Yung, K. C.; Liem, H.; Choy, H. S.; Lun, W. K.

    2011-05-01

    A unique degradation property of high power InGaN/GaN multiple quantum well (MQW) white light-emitting diodes (LEDs) was identified. The LEDs were stressed under different forward-currents. The various ageing characteristics were analyzed for both the electrical response and electro-luminescence (EL) spectra. The Raman spectroscopy allowed noninvasive probing of LED junction temperature profiles which correlated well with the EL characteristics, showing a junction temperature drop during degradation at certain current levels. In addition to the common observations: (1) a broadening of the light intensity-current (L-I) characteristic in the nonlinear regime, and (2) a shift of the current-voltage (I-V) dependence to higher current levels, the EL spectra showed different temperature responses of the two blue emission peaks, 440 and 463 nm. The former was temperature sensitive and thus related to shallow defect levels, while the latter was thermally stable and deeper defect states were involved in the degradation process. This unique selection rule resulted in the enhancement of the blue emission peak at 463 nm after degrading the LEDs. This study suggests that LED device heating is not directly linked to the degradation process.

  4. Benzophenones as Generic Host Materials for Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Jhulki, Samik; Seth, Saona; Ghosh, Avijit; Chow, Tahsin J; Moorthy, Jarugu Narasimha

    2016-01-20

    Despite the fact that benzophenone has traditionally served as a prototype molecular system for establishing triplet state chemistry, materials based on molecular systems containing the benzophenone moiety as an integral part have not been exploited as generic host materials in phosphorescent organic light-emitting diodes (PhOLEDs). We have designed and synthesized three novel host materials, i.e., BP2-BP4, which contain benzophenone as the active triplet sensitizing molecular component. It is shown that their high band gap (3.91-3.93 eV) as well as triplet energies (2.95-2.97 eV) permit their applicability as universal host materials for blue, green, yellow, and red phosphors. While they serve reasonably well for all types of dopants, excellent performance characteristics observed for yellow and green devices are indeed the hallmark of benzophenone-based host materials. For example, maximum external quantum efficiencies of the order of 19.2% and 17.0% were obtained from the devices fabricated with yellow and green phosphors using BP2 as the host material. White light emission, albeit with rather poor efficiencies, has been demonstrated as a proof-of-concept by fabrication of co-doped and stacked devices with blue and yellow phosphors using BP2 as the host material.

  5. High mobility solution-processed hybrid light emitting transistors

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bright; Kim, Jin Young [School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B., E-mail: e.namdas@uq.edu.au, E-mail: seojh@dau.ac.kr [Centre for Organic Photonics and Electronics, University of Queensland, Brisbane, Queensland 4072 (Australia); Chae, Gil Jo [Department of Materials Physics, Dong-A University, Busan 604-714 (Korea, Republic of); Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Cho, Shinuk [Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Seo, Jung Hwa, E-mail: e.namdas@uq.edu.au, E-mail: seojh@dau.ac.kr [Department of Materials Physics, Dong-A University, Busan 604-714 (Korea, Republic of)

    2014-11-03

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm{sup 2}/V s, current on/off ratios of >10{sup 7}, and external quantum efficiency of 10{sup −2}% at 2100 cd/m{sup 2}. These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective.

  6. TCNQ Interlayers for Colloidal Quantum Dot Light-Emitting Diodes.

    Science.gov (United States)

    Koh, Weon-kyu; Shin, Taeho; Jung, Changhoon; Cho, Dr-Kyung-Sang

    2016-04-18

    CdSe/CdS/ZnS quantum dot light-emitting diodes (QD-LEDs) show increased brightness (from ca. 18 000 to 27 000 cd m(-2) ) with 7,7,8,8-tetracyanoquinodimethane (TCNQ) between the QD and electron-transfer layers of ZnO nanoparticles. As QD/ZnO layers are known to have interface defects, our finding leads to the importance of interface engineering for QD-LEDs. Although the photoluminescent intensity and decay lifetime of ZnO/TCNQ/QD layers are similar to those of ZnO/QD layers, cyclic voltammetry suggests improved charge transfer of TCNQ/ZnO layers compared to that of pure ZnO layers. This helps us to understand the mechanism of electrically driven QD-LED behavior, which differs from that of conventional solid-state LEDs, and enables the rational design of QD-based optoelectronic devices.

  7. Simulations of charge transport in organic light emitting diodes

    CERN Document Server

    Martin, S J

    2002-01-01

    In this thesis, two approaches to the modelling of charge transport in organic light emitting diodes (OLEDs) are presented. The first is a drift-diffusion model, normally used when considering conventional crystalline inorganic semiconductors (e.g. Si or lll-V's) which have well defined energy bands. In this model, electron and hole transport is described using the current continuity equations and the drift-diffusion current equations, and coupled to Poisson's equation. These equations are solved with the appropriate boundary conditions, which for OLEDs are Schottky contacts; carriers are injected by thermionic emission and tunnelling. The disordered nature of the organic semiconductors is accounted for by the inclusion of field-dependent carrier mobilities and Langevin optical recombination. The second approach treats the transport of carriers in disordered organic semi-conductors as a hopping process between spatially and energetically disordered sites. This method has been used previously to account for th...

  8. Model for Triplet State Engineering in Organic Light Emitting Diodes

    CERN Document Server

    Prodhan, Suryoday; Ramasesha, S

    2014-01-01

    Engineering the position of the lowest triplet state (T1) relative to the first excited singlet state (S1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S1 and T1. The factors studied are backbone dimerisation, different donor-acceptor substitutions and twisted geometry. The largest system studied is an eighteen carbon polyene which spans a Hilbert space of about 991 million. We show that for reverse intersystem crossing (RISC) process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors.

  9. Resonance Raman measurements of carotenoids using light emitting diodes

    CERN Document Server

    Bergeson, S D; Eyring, N J; Fralick, J F; Stevenson, D N; Ferguson, S B

    2008-01-01

    We report on the development of a compact commercial instrument for measuring carotenoids in skin tissue. The instrument uses two light emitting diodes (LEDs) for dual-wavelength excitation and four photomultiplier tubes for multichannel detection. Bandpass filters are used to select the excitation and detection wavelengths. The f/1.3 optical system has high optical throughput and single photon sensitivity, both of which are crucial in LED-based Raman measurements. We employ a signal processing technique that compensates for detector drift and error. The sensitivity and reproducibility of the LED Raman instrument compares favorably to laser-based Raman spectrometers. This compact, portable instrument is used for non-invasive measurement of carotenoid molecules in human skin with a repeatability better than 10%.

  10. Response time of light emitting diode-logarithmic electrometer

    Science.gov (United States)

    Acharya, Y. B.; Vyavahare, P. D.

    1998-02-01

    In a logarithmic electrometer which uses a transistor as a nonlinear element, a capacitance is generally connected across the feedback element of the operational amplifier. This stabilizes the loop but degrades the response at low current levels. However the stability problem is not so serious when a junction diode is used. In the present work an attempt was made to study the response time of a logarithmic electrometer which uses a light emitting diode (LED) as a nonlinear element and without external capacitance. The calculated values of rise time are based on an equivalent circuit with a depletion layer capacitance and voltage dependent conductance. These values are found to be in reasonable agreement with the experimentally measured values. This study will be useful in the estimation of dynamical errors in logarithmic electrometers using junction diode/LED, LED photometers and will be helpful in the techniques for improvements of the response time of logarithmic electrometers using a junction diode, particularly at low currents.

  11. Cooling analysis of a light emitting diode automotive fog lamp

    Directory of Open Access Journals (Sweden)

    Zadravec Matej

    2017-01-01

    Full Text Available Efficiency of cooling fins inside of a light emitting diode fog lamp is studied using computational fluid dynamics. Diffusion in heat sink, natural convection and radiation are the main principles of the simulated heat transfer. The Navier-Stokes equations were solved by the computational fluid dynamics code, including Monte Carlo radiation model and no additional turbulence model was needed. The numerical simulation is tested using the existing lamp geometry and temperature measurements. The agreement is excellent inside of few degrees at all measured points. The main objective of the article is to determine the cooling effect of various heat sink parts. Based on performed simulations, some heat sink parts are found to be very ineffective. The geometry and heat sink modifications are proposed. While radiation influence is significant, compressible effects are found to be minor.

  12. Influence of Light-emitting Layer Position on White Organic Light-emitting Diodes%发光层位置对白光有机发光二极管的影响

    Institute of Scientific and Technical Information of China (English)

    向东旭; 李海蓉; 谢龙珍; 杨佳明; 王芳; 员朝鑫; 孙永哲

    2015-01-01

    Two types of white organic light-emitting devices ( WOLED) containing a layered light-emitting region composed of a single blue-emitting host and different fluorescent dopants ( blue and orange) were fabricated. The effi-ciency, lifetime, brightness, spectral voltage-dependence and white balance of devices were investigated. The results show that the performance of the devices strongly depends on the stack order of two emitting layers and the thickness of the emitting layer. It is found that the WOLED with an EML sequence of orange/blue ( from anode to cathode) shows better stability than that with an EML sequence of blue/orange. It is due to the rubrene in orange emitting layer that acts as hole-trap sites and captures the passing holes and hence balances the concentration of electrons and holes. The optimized white device exhibits a favorable CIE coordinates (0. 320 1, 0. 345 9) which is close to the standard white light.%同一种主体材料MADN中混掺不同的掺杂剂,分别制备了两种白光有机发光二极管,测试并研究了它们的发光效率、寿命、发光亮度、电致发光光谱以及色平衡度。结果表明,两种白光器件的性能受发光层的顺序和厚度的影响显著。发光层顺序由阳极到阴极方向为橙/蓝的器件的稳定性要优于发光层顺序为蓝/橙的器件,这是由于橙光发光层中的rubrene对空穴的陷进作用可捕获穿越橙光发光层中的空穴,从而有效地调控了器件内部的电子、空穴浓度的平衡。通过对器件的优化,制得了色坐标为(0.3201,0.3459)的接近标准白光的有机电致发光器件。

  13. Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode

    Science.gov (United States)

    Bachchhav, Manisha Bhanudas; Kulkarni, Mohan Vinayak; Ingale, Arun G.

    2016-12-01

    This work investigates the performance of different cultivation conditions using Light Emitting Diode (LED) as a light source for the production of phycocyanin from Spirulina platensis. With LEDs under autotrophic conditions, red LED produced maximum amount of biomass (8.95 g/l). As compared to autotrophic cultivation with fluorescent lamp (control), cultivations using LEDs under autotrophic and mixotrophic mode significantly enhanced the phycocyanin content. For autotrophic conditions (with LED) phycocyanin content was in the range of 103-242 mg/g of dry biomass, whereas for mixotrophic conditions (0.1% glucose and LED) it was in the range of 254-380 mg/g of dry biomass. Spirulina cultivated with yellow LED under mixotrophic conditions had 5.4-fold more phycocyanin (380 mg/g of dry biomass) than control (70 mg/g of dry biomass). The present study demonstrates that the LEDs under mixotrophic conditions gave sixfold (2497 mg/l) higher yields of phycocyanin as compared to autotrophic condition under white light (415 mg/l).

  14. Engineering of Semiconductor Nanocrystals for Light Emitting Applications

    Directory of Open Access Journals (Sweden)

    Francesco Todescato

    2016-08-01

    Full Text Available Semiconductor nanocrystals are rapidly spreading into the display and lighting markets. Compared with liquid crystal and organic LED displays, nanocrystalline quantum dots (QDs provide highly saturated colors, wide color gamut, resolution, rapid response time, optical efficiency, durability and low cost. This remarkable progress has been made possible by the rapid advances in the synthesis of colloidal QDs and by the progress in understanding the intriguing new physics exhibited by these nanoparticles. In this review, we provide support to the idea that suitably engineered core/graded-shell QDs exhibit exceptionally favorable optical properties, photoluminescence and optical gain, while keeping the synthesis facile and producing QDs well suited for light emitting applications. Solid-state laser emitters can greatly profit from QDs as efficient gain materials. Progress towards fabricating low threshold, solution processed DFB lasers that are optically pumped using one- and two-photon absorption is reviewed. In the field of display technologies, the exploitation of the exceptional photoluminescence properties of QDs for LCD backlighting has already advanced to commercial levels. The next big challenge is to develop the electroluminescence properties of QD to a similar state. We present an overview of QLED devices and of the great perspectives for next generation display and lighting technologies.

  15. Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tze-Bin Song

    2014-03-01

    Full Text Available Organic light emitting diodes (OLEDs have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the conventional indium tin oxide with better alternative transparent conducting electrodes (TCEs is a crucial step. In this review, we focus on the emerging alternative TCE materials for OLED applications, including carbon nanotubes (CNTs, metallic nanowires, conductive polymers and graphene. These materials are selected, because they have been applied as transparent electrodes for OLED devices and achieved reasonably good performance or even higher device performance than that of indium tin oxide (ITO glass. Various electrode modification techniques and their effects on the device performance are presented. The effects of new TCEs on light extraction, device performance and reliability are discussed. Highly flexible, stretchable and efficient OLED devices are achieved based on these alternative TCEs. These results are summarized for each material. The advantages and current challenges of these TCE materials are also identified.

  16. Escaped and Trapped Emission of Organic Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    LIANG Shi-Xiong; WU Zhao-Xin; ZHAO Xuan-Ke; HOU Xun

    2012-01-01

    By locating the emitters around the first and second antinode of the metal electrode, the escaped and trapped emission of small molecule based bottom emission organic light-emitting diodes is investigated by using an integrating sphere, a fiber spectrometer and a glass hemisphere. It is found that the external coupling ratio by locating the emitters at the second antinode (at a distance of 220 nm from the cathode) is 70%, which is higher than that of an emitter at the first antinode (60 nm from the cathode) in theory and experiment. Extending the "half-space" dipole model by taking the dipole radiation pattern into account, we also calculate the optical coupling efficiency for the emitter at both the first and second antinode. Our experimental and theoretical results will benefit the optimization of device structures for the higher out-coupling efficiency.%By locating the emitters around the first and second antinode of the metal electrode,the escaped and trapped emission of small molecule based bottom emission organic light-emitting diodes is investigated by using an integrating sphere,a fiber spectrometer and a glass hemisphere.It is found that the external coupling ratio by locating the emitters at the second antinode (at a distance of 220 nm from the cathode) is 70%,which is higher than that of an emitter at the first antinode (60nm from the cathode) in theory and experiment.Extending the "half-space" dipole model by taking the dipole radiation pattern into account,we also calculate the optical coupling efficiency for the emitter at both the first and second antinode.Our experimental and theoretical results will benefit the optimization of device structures for the higher out-coupling efficiency.

  17. White Organic Light-Emitting Diodes Using Two Phosphorescence Materials in a Starburst Hole-Transporting Layer

    Directory of Open Access Journals (Sweden)

    Tomoya Inden

    2012-01-01

    Full Text Available We fabricated two kinds of white organic light-emitting diodes (WOLEDs; one consisted of two emissive materials of red and blue, and the other of three emissive materials of red, green, and blue. The red and blue emissive materials were phosphorescent. We evaluated the thickness dependence of the CIE coordinate, the external quantum efficiency (EQE, and the luminance by changing the thicknesses of the Ir(btp2acac and FIrpic layers. Samples consisting of three emissive materials revealed the best CIE coordinate and the best EQE in the same sample structure. On the other hand, the samples consisting of two emissive materials revealed the best CIE coordinate and the best EQE in different structures. The best CIE coordinate of (0.33, 0.36 was observed by changing the thicknesses of the stacked active layers. The best EQE was 9.73%, which was observed in the sample consisting of different thickness of stacked active layers.

  18. Selective-area nanoheteroepitaxy for light emitting diode (LED) applications

    Science.gov (United States)

    Wildeson, Isaac H.

    Over 20% of the electricity in the United States is consumed for lighting, and the majority of this energy is wasted as heat during the lighting process. A solid-state (or light emitting diode (LED)-based) light source has the potential of saving the United States billions of dollars in electricity and reducing megatons of global CO2 emissions annually. While white light LEDs are currently on the market with efficiencies that are superior to incandescent and fluorescent light sources, their high up-front cost is inhibiting mass adoption. One reason for the high cost is the inefficiency of green and amber LEDs that can used to make white light. The inefficiency of green and amber LEDs results in more of these chips being required, and thus a higher cost. Improvements in the performance of green and amber LEDs is also required in order to realize the full potential of solid-state lighting. Nanoheteroepitaxy is an interesting route towards achieving efficient green and amber LEDs as it resolves major challenges that are currently plaguing III-nitride LEDs such as high dislocation densities and limited active region critical thicknesses. A method for fabricating III-nitride nanopyramid LEDs is presented that employs conventional processing used in industry. The present document begins with an overview of the current challenges in III-nitride LEDs and the benefits of nanoheteroepitaxy. A process for controlled selective-area growth of nanopyramid LEDs by organometallic vapor phase epitaxy has been developed throughout the course of this work. Dielectric templates used for the selective-area growth are patterned by two methods, namely porous anodic alumina and electron-beam lithography. The dielectric templates serve as efficient dislocation filters; however, planar defects are initiated during lower temperature growth on the nanopyramids. The quantum wells outline six semipolar planes that form each hexagonal pyramid. Quantum wells grown on these semipolar planes

  19. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan; Duan, Yahui; Yang, Yongqiang [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Hu, Nan [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Wang, Xiao [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Sun, Fengbo [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Duan, Yu, E-mail: duanyu@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China)

    2015-10-15

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C{sup 2'}) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors.

  20. Indium-Induced Effect on Polarized Electroluminescence from InGaN/GaN MQWs Light Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    RUAN Jun; YU Tong-Jun; JIA Chuan-Yu; TAO Ren-Chun; WANG Zhan-Guo; ZHANG Guo-Yi

    2009-01-01

    Polarization-resolved edge-emitting electroluminescence (EL) studies of InGaN/GaN MQWs of wavelengths from near-UV (390nm) to blue (468nm) light-emitting diodes (LEDs) are performed.Although the TE mode is dominant in all the samples of InGaN/GaN MQW LEDs,an obvious difference of light polarization properties is found in the InGaN/GaN MQW LEDs with different wavelengths.The polarization degree decreases from 52.4% to 26.9% when light wavelength increases.Analyses of band structures of InGaN/GaN quantum wells and luminescence properties of quantum dots imply that quantum-dot-like behavior is the dominant reason for the low luminescence polarization degree of blue LEDs,and the high luminescence polarization degree of UV LEDs mainly comes from QW confinement and the strain effect.Therefore,indium induced carrier confinement (quantum-dot-like behavior) might play a major role in the polarization degree change of InGaN/GaN MQW LEDs from near violet to blue.

  1. Mechanism of light emission and manufacturing process of vertical-type light-emitting diode grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Lee, Gang Seok; Jeon, Hunsoo; Ahn, Hyung Soo; Yang, Min; Yi, Sam Nyung; Yu, Young Moon; Lee, Sang Chil; Honda, Yoshio; Sawaki, Nobuhiko; Kim, Suck-Whan

    2017-01-01

    We developed a vertical-type light-emitting diode (LED) in which the substrate is removed using a hydride vapor phase epitaxy (HVPE) apparatus consisting of a multi-graphite boat filled with a mixed source and a high-temperature (T ≈ 900 °C) RF heating coil outside the source zone. The new chip-growth process with a significant reduction in the number of production steps is completed in only four steps, namely, photolithography, epitaxial layer growth, sorting, and metallization. We analyze the emission mechanism of these lights from measurement results to validate the characteristics of the light emitted from these vertical-type blue LEDs and white LEDs (WLEDs) without substrates, and propose that this mixed-source HVPE method may be a promising production technique for LEDs.

  2. Review of organic light-emitting diodes with thermally activated delayed fluorescence emitters for energy-efficient sustainable light sources and displays

    Science.gov (United States)

    Volz, Daniel

    2016-04-01

    Thermally activated delayed fluorescence (TADF) is an emerging hot topic. Even though this photophysical mechanism itself has been described more than 50 years ago and optoelectronic devices with organic matter have been studied, improved, and even commercialized for decades now, the realization of the potential of TADF organic light-emitting diodes (OLEDs) happened only recently. TADF has been proven to be an attractive and very efficient alternative for phosphorescent materials, such as dopants in OLEDs, light-emitting electrochemical cells as well as potent emitters for chemiluminescence. In this review, the TADF concept is introduced in terms that are also understandable for nonchemists. The basic concepts behind this mechanism as well as state-of-the-art examples are discussed. In addition, the future economic impact, especially for the lighting and display market, is addressed here. We conclude that TADF materials are especially helpful to realize efficient, durable deep blue and white displays.

  3. Wide-Area Thermal Processing of Light-Emitting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Quick, N. (AppliCote Associates, LLC)

    2011-09-30

    Silicon carbide based materials and devices have been successfully exploited for diverse electronic applications. However, they have not achieved the same success as Si technologies due to higher material cost and higher processing temperatures required for device development. Traditionally, SiC is not considered for optoelectronic applications because it has an indirect bandgap. However, AppliCote Associates, LLC has developed a laser-based doping process which enables light emission in SiC through the creation of embedded p-n junctions. AppliCote laser irradiation of silicon carbide allows two different interaction mechanisms: (1) Laser conversion or induced phase transformation which creates carbon rich regions that have conductive properties. These conductive regions are required for interconnection to the light emitting semiconducting region. (2) Laser doping which injects external dopant atoms into the substrate that introduces deep level transition states that emit light when electrically excited. The current collaboration with AppliCote has focused on the evaluation of ORNL's unique Pulse Thermal Processing (PTP) technique as a replacement for laser processing. Compared to laser processing, Pulse Thermal Processing can deliver similar energy intensities (20-50 kW/cm2) over a much larger area (up to 1,000 cm2) at a lower cost and much higher throughput. The main findings of our investigation; which are significant for the realization of SiC based optoelectronic devices, are as follows: (1) The PTP technique is effective in low thermal budget activation of dopants in SiC similar to the laser technique. The surface electrical conductivity of the SiC samples improved by about three orders of magnitude as a result of PTP processing which is significant for charge injection in the devices; (2) The surface composition of the SiC film can be modified by the PTP technique to create a carbon-rich surface (increased local C:Si ratio from 1:1 to 2.9:1). This is

  4. Process optimization of gravure printed light-emitting polymer layers by a neural network approach

    NARCIS (Netherlands)

    Michels, J.J.; Winter, S.H.P.M. de; Symonds, L.H.G.

    2009-01-01

    We demonstrate that artificial neural network modeling is a viable tool to predict the processing dependence of gravure printed light-emitting polymer layers for flexible OLED lighting applications. The (local) thickness of gravure printed light-emitting polymer (LEP) layers was analyzed using micro

  5. Blue light emission of porous silicon subjected to RTP treatments

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi; YANG Deren; LIN Lei; QUE Duanlin

    2006-01-01

    Porous silicon samples were treated with the rapid thermal process (RTP) under different circumstances (N2, Ar, O2 and Air). Before and after treatments, the samples were checked by means of photoluminescence (PL) spectroscopy and Fourier transform infrared spectroscopy (FTIR). Four blue light emission peaks were found in the PL spectra of porous silicon samples subjected to the RTP treatments at temperatures above 400℃. The peak positions were found not to vary with the circumstances and temperatures of RTP treatments. It is considered that due to oxidation during the RTP treatments, the pole size of Si crystal in porous silicon decreased,resulting in the blue shift of light emission. Correlated with the Si crystal sizes discontinuous hypothesis and previous researchers' theory calculation, the PL peak positions did not vary with the RTP temperature and circumstances.

  6. Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    Science.gov (United States)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2016-01-01

    The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.

  7. Three-dimensional indium distribution in electron-beam irradiated multiple quantum wells of blue-emitting InGaN/GaN devices

    Science.gov (United States)

    Jung, Woo-Young; Seol, Jae-Bok; Kwak, Chan-Min; Park, Chan-Gyung

    2016-03-01

    The compositional distribution of In atoms in InGaN/GaN multiple quantum wells is considered as one of the candidates for carrier localization center, which enhances the efficiency of the light-emitting diodes. However, two challenging issues exist in this research area. First, an inhomogeneous In distribution is initially formed by spinodal decomposition during device fabrication as revealed by transmission electron microscopy. Second, electron-beam irradiation during microscopy causes the compositional inhomogeneity of In to appear as a damage contrast. Here, a systematic approach was proposed in this study: Electron-beam with current density ranging from 0 to 20.9 A/cm2 was initially exposed to the surface regions during microscopy. Then, the electron-beam irradiated regions at the tip surface were further removed, and finally, atom probe tomography was performed to run the samples without beam-induced damage and to evaluate the existence of local inhomegenity of In atoms. We proved that after eliminating the electron-beam induced damage regions, no evidence of In clustering was observed in the blue-emitting InGaN/GaN devices. In addition, it is concluded that the electron-beam induced localization of In atoms is a surface-related phenomenon, and hence spinodal decomposition, which is typically responsible for such In clustering, is negligible for biaxially strained blue-emitting InGaN/GaN devices.

  8. White/blue-emitting, water-dispersible CdSe quantum dots prepared by counter ion-induced polymer collapse

    Science.gov (United States)

    Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.

    2015-09-01

    The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.

  9. Warm-white light-emitting diode with high color rendering index fabricated by combining trichromatic InGaN emitter with single red phosphor.

    Science.gov (United States)

    Sheu, Jinn-Kong; Chen, Fu-Bang; Wang, Yen-Chin; Chang, Chih-Chiang; Huang, Shih-Hsien; Liu, Chun-Nan; Lee, Ming-Lun

    2015-04-06

    We present a trichromatic GaN-based light-emitting diode (LED) that emits near-ultraviolet (n-UV) blue and green peaks combined with red phosphor to generate white light with a low correlated color temperature (CCT) and high color rendering index (CRI). The LED structure, blue and green unipolar InGaN/GaN multiple quantum wells (MQWs) stacked with a top p-i-n structure containing an InGaN/GaN MQW emitting n-UV light, was grown epitaxially on a single substrate. The trichromatic LED chips feature a vertical conduction structure on a silicon substrate fabricated through wafer bonding and laser lift-off techniques. The blue and green InGaN/GaN MQWs were pumped with n-UV light to re-emit low-energy photons when the LEDs were electrically driven with a forward current. The emission spectrum included three peaks at approximately 405, 468, and 537 nm. Furthermore, the trichromatic LED chips were combined with red phosphor to generate white light with a CCT and CRI of approximately 2900 and 92, respectively.

  10. Simulation of mixed-host emitting layer based organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Riku, C.; Kee, Y. Y.; Ong, T. S.; Tou, T. Y. [Faculty of Engineering, Multimedia University, 631000 Cyberjaya (Malaysia); Yap, S. S. [Faculty of Engineering, University of Malaya, 50603 Kuala Lampur (Malaysia)

    2015-04-24

    ‘SimOLED’ simulator is used in this work to investigate the efficiency of the mixed-host organic light emitting devices (MH-OLEDs). Tris-(8-hydroxyquinoline) aluminum(3) (Alq{sub 3}) and N,N-diphenyl-N,N-Bis(3-methylphenyl)-1,1-diphenyl-4,4-diamine (TPD) are used as the electron transport layer (ETL) material and hole transport layer (HTL) material respectively, and the indium-doped tin oxide (ITO) and aluminum (Al) as anode and cathode. Three MH-OLEDs, A, B and C with the same structure of ITO / HTM (15 nm) / Mixed host (70 nm) / ETM (10 nm) /Al, are stimulated with ratios TPD:Alq{sub 3} of 3:5, 5:5, and 5:3 respectively. The Poole-Frenkel model for electron and hole mobilities is employed to compute the current density-applied voltage-luminance characteristics, distribution of the electric field, carrier concentrations and recombination rate.

  11. Evaluation of light-emitting diodes for signage applications

    Science.gov (United States)

    Freyssinier, Jean Paul; Zhou, Yutao; Ramamurthy, Vasudha; Bierman, Andrew; Bullough, John D.; Narendran, Nadarajah

    2004-01-01

    This paper outlines two parts of a study designed to evaluate the use of light-emitting diodes (LEDs) in channel-letter signs. The first part of the study evaluated the system performance of red LED signs and white LED signs against reference neon and cold-cathode signs. The results show a large difference between the actual performance and potential savings from red and white LEDs. Depending on the configuration, a red LED sign could use 20% to 60% less power than a neon sign at the same light output. The light output of the brightest white LED sign tested was 15% lower than the cold-cathode reference, but its power was 53% higher. It appears from this study that the most efficient white LED system is still 40% less efficient than the cold-cathode system tested. One area that offers a great potential for further energy savings is the acrylic diffuser of the signs. The acrylic diffusers measured absorb between 60% and 66% of the light output produced by the sign. Qualitative factors are also known to play an important role in signage systems. One of the largest issues with any new lighting technology is its acceptance by the end user. Consistency of light output and color among LEDs, even from the same manufacturing batch, and over time, are two of the major issues that also could affect the advantages of LEDs for signage applications. To evaluate different signage products and to identify the suitability of LEDs for this application, it is important to establish a criterion for brightness uniformity. Building upon this information, the second part of the study used human factors evaluations to determine a brightness-uniformity criterion for channel-letter signs. The results show that the contrast modulation between bright and dark areas within a sign seems to elicit the strongest effect on how people perceive uniformity. A strong monotonic relationship between modulation and acceptability was found in this evaluation. The effect of contrast seems to be stronger

  12. Light-emitting diodes for solid-state lighting: searching room for improvements

    Science.gov (United States)

    Karpov, Sergey Y.

    2016-03-01

    State-of-the art light-emitting diodes (LEDs) for solid-state lighting (SSL) are reviewed with the focus on their efficiency and ways for its improvement. Mechanisms of the LED efficiency losses are considered on the heterostructure, chip, and device levels, including high-current efficiency droop, recombination losses, "green gap", current crowding, Stokes losses, etc. Materials factors capable of lowering the LED efficiency, like composition fluctuations in InGaN alloys and plastic stress relaxation in device heterostructures, are also considered. Possible room for the efficiency improvement is discussed along with advanced schemes of color mixing and LED parameters optimal for generation of high-quality white light.

  13. High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    David, Aurelien, E-mail: adavid@soraa.com; Hurni, Christophe A.; Aldaz, Rafael I.; Cich, Michael J.; Ellis, Bryan; Huang, Kevin; Steranka, Frank M.; Krames, Michael R. [Soraa Inc., 6500 Kaiser Dr., Fremont, California 94555 (United States)

    2014-12-08

    We report on the light extraction efficiency of III-Nitride violet light-emitting diodes with a volumetric flip-chip architecture. We introduce an accurate optical model to account for light extraction. We fabricate a series of devices with varying optical configurations and fit their measured performance with our model. We show the importance of second-order optical effects like photon recycling and residual surface roughness to account for data. We conclude that our devices reach an extraction efficiency of 89%.

  14. InGaN/GaN超晶格厚度对Si衬底GaN基蓝光发光二极管光电性能的影响∗%Influences of InGaN/GaN sup erlattice thickness on the electronic and optical prop erties of GaN based blue light-emitting dio des grown on Si substrates

    Institute of Scientific and Technical Information of China (English)

    齐维靖; 张萌; 潘拴; 王小兰; 张建立; 江风益

    2016-01-01

    采用有机金属化学气相沉积技术在Si(111)衬底上生长蓝光多量子阱发光二极管(LED)结构,通过在量子阱下方分别插入两组不同厚度的InGaN/GaN超晶格,比较了超晶格厚度对LED光电性能的影响。结果显示:随超晶格厚度增加,样品的反向漏电流加剧;300 K下电致发光仪测得随着电流增加, LED发光光谱峰值的蓝移量随超晶格厚度增加而减少,但不同超晶格厚度的两个样品在300 K下的电致发光强度几乎无差异。结合高分辨X射线衍射仪、扫描电子显微镜、透射电子显微镜对样品的位错密度和V形坑特征分析,明确了两样品反向漏电流产生巨大差异的原因是由于超晶格厚度大的样品具有更大的V形坑和V形坑密度,而V形坑可作为载流子的优先通道,使超晶格更厚的样品反向漏电流加剧。通过对样品非对称(105)面附近的X射线衍射倒易空间图分析,算得超晶格厚度大的样品其InGaN量子阱在GaN上的弛豫度也大,即超晶格厚度增加有利于减小InGaN量子阱所受的应力。综合以上影响LED发光效率的消长因素,导致两样品最终的发光强度相近。%GaN based light-emitting diodes (LEDs) are subjected to a large polarization-related built-in electric field in c-plane InGaN multiple quantum well (MQW) during growth, which causes the reduction of emission efficiency. To mitigate the electric field, a superlattice layer with a numerous good characteristics, such as a small thickness, a high crystalline quality, is embedded in the epitaxial structure of LED. However, the effect of the superlattice thickness on the properties of LED is not fully understood. In this paper, two blue-LED MQW thin film structures with different thickness values of InGaN/GaN superlattice inserted between n-GaN and MQW, are grown on Si (111) substrates by metal-organic chemical vapor deposition. Electronic and optical properties of the two

  15. Characterization of four-color multi-package white light-emitting diodes combined with various green monochromatic phosphor-converted light-emitting diodes

    Science.gov (United States)

    Oh, Ji Hye; Lee, Keyong Nam; Do, Young Rag

    2012-03-01

    In this study, several combinations of multi-package white light-emitting diodes (LEDs), which combine an InGaN blue LED with green, amber, and red phosphor-converted LEDs (pc-LEDs), were characterized by changing the peak wavelength of green pc-LEDs between 515nm and 560nm (515, 521, 530, 540, 550, 560nm) in color temperature of 6,500K and 3,500K. Various green monochromatic pc-LEDs were fabricated by capping a long-wave pass-filter (LWPF) on top of pc-LEDs to improve luminous efficacy and color purity. LWPF-capped green monochromatic pc-LED can address the drawback of green semiconductor-type III-V LED, such as low luminous efficacy in the region of green gap wavelength. Luminous efficacy and color rendering index (CRI) of multi-package white LEDs are compared with changing the driving current of individual LED in various multi-package white LEDs. This study provides a best combination of four-color multi-package white LEDs which has high luminous efficacy and good CRI.

  16. Red/Blue-Shift Dual-Directional Regulation in Blue-Emitting Ca0.8Ba1.2SiO4:Eu2+ Phosphor on Incorporation of Eu2+/Mg2+ Ions

    Science.gov (United States)

    He, Lihua; Zou, Xiao; Wang, Tao; Zheng, Qiaoji; Jiang, Na; Xu, Chenggang; Liu, Yongfu; Lin, Dunmin

    2017-03-01

    Blue-emitting phosphors with composition (Ca0.8Ba1.2)1- x Mg x SiO4: yEu2+ ( x = 0 to 0.11, y = 0.01 to 0.08) have been synthesized via a high-temperature solid-state reaction route and the effects of Mg2+ and Eu2+ codoping on their morphology, crystal structure, and luminescence properties were investigated. For (Ca0.8Ba1.2)1- x Mg x SiO4:0.04Eu2+, the color changed from light-blue to deep-blue region with increasing Mg2+ content from x = 0 to x = 0.11. For (Ca0.8Ba1.2)0.93Mg0.07SiO4: yEu2+, the emission band showed the opposite shift with increasing y from 1% to 8%. Interestingly, increasing Mg2+ addition led to significant reduction in the full-width at half-maximum (FWHM) from 100 nm to 70 nm. Compared with Mg-free samples, the emission intensity of the Mg-containing material with x = 0.07 was enhanced by ˜100%. The optimum doping levels of Mg2+ and Eu2+ were 0.07 and 0.02 for (Ca0.8 Ba1.2)1- x Mg x SiO4:0.04Eu2+ and (Ca0.8Ba1.2)0.93Mg0.07SiO4: yEu2+, respectively. These results indicate that such materials could be good candidate blue-emitting phosphors for use in solid-state lighting and displays.

  17. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    Science.gov (United States)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  18. Evidence of a Light-Sensing Role for Folate in Arabidopsis Cryptochrome Blue-Light Receptors

    Institute of Scientific and Technical Information of China (English)

    Nathalie Hoang; Jean-Pierre Bouly; Margaret Ahmad

    2008-01-01

    Arabidopsis cryptochromes cry1 and cry2 are blue-light signalling molecules with significant structural similarity to photolyases-a class of blue-light-sensing DNA repair enzymes. Like photolyases, purified plant cryptochromes have been shown to bind both flavin and pterin chromophores. The flavin functions as a light sensor and undergoes reduction in response to blue light that initiates the signalling cascade. However, the role of the pterin in plant cryptochromes has until now been unknown. Here, we show that the action spectrum for light-dependent degradation of cry2 has a significant peak of activity at 380 nm, consistent with absorption by a pterin cofactor. We further show that cry1 protein expressed in living insect cells responds with greater sensitivity to 380 nm light than to 450 nm, consistent with a light-harvesting antenna pigment that transfers excitation energy to the oxidized flavin of cry1. The pterin biosynthesis inhibitor DHAP selectively reduces cryptochrome responsivity at 380 nm but not 450 nm blue light in these cell cultures, indicating that the antenna pigment is a folate cofactor similar to that of photolyases.

  19. Time Effectiveness of Ultraviolet C Light (UVC Emitted by Light Emitting Diodes (LEDs in Reducing Stethoscope Contamination

    Directory of Open Access Journals (Sweden)

    Gabriele Messina

    2016-09-01

    Full Text Available Today it is well demonstrated that stethoscopes can be as contaminated as hands, which are a recognized source of Health-Care Associated Infections (HCAIs. Ultraviolet C (UVC light has proven disinfection capacity and the innovative UVC technology of Light Emitting Diode (LED shows several potential benefits. To verify whether the use of UVC LEDs is effective and reliable in stethoscope membrane disinfection after prolonged use, a pre-post intervention study was conducted. A total of 1668 five-minute cycles were performed on two UVC LEDs to simulate their use; thereafter, their disinfection capacity was tested on stethoscope membranes used on a previously auscultated volunteer. Then, a further 1249 cycles were run and finally the LEDs were tested to assess performance in reducing experimental contamination by Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli on the stethoscope membrane. Baseline volunteer contamination identified 104 Colony Forming Units (CFUs while treated Petri dishes had 12 and 15 CFUs (p < 0.001. Statistically significant differences (p < 0.001 were also found relating to the reduction of specific bacteria: in particular, after treatment no CFU were observed for S. aureus and E. coli. UVC LEDs demonstrated the capacity to maintain high levels of disinfection after more than 240 h of use and they were effective against common microorganisms that are causative agents of HCAIs.

  20. Time Effectiveness of Ultraviolet C Light (UVC) Emitted by Light Emitting Diodes (LEDs) in Reducing Stethoscope Contamination

    Science.gov (United States)

    Messina, Gabriele; Fattorini, Mattia; Nante, Nicola; Rosadini, Daniele; Serafini, Andrea; Tani, Marco; Cevenini, Gabriele

    2016-01-01

    Today it is well demonstrated that stethoscopes can be as contaminated as hands, which are a recognized source of Health-Care Associated Infections (HCAIs). Ultraviolet C (UVC) light has proven disinfection capacity and the innovative UVC technology of Light Emitting Diode (LED) shows several potential benefits. To verify whether the use of UVC LEDs is effective and reliable in stethoscope membrane disinfection after prolonged use, a pre-post intervention study was conducted. A total of 1668 five-minute cycles were performed on two UVC LEDs to simulate their use; thereafter, their disinfection capacity was tested on stethoscope membranes used on a previously auscultated volunteer. Then, a further 1249 cycles were run and finally the LEDs were tested to assess performance in reducing experimental contamination by Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli on the stethoscope membrane. Baseline volunteer contamination identified 104 Colony Forming Units (CFUs) while treated Petri dishes had 12 and 15 CFUs (p < 0.001). Statistically significant differences (p < 0.001) were also found relating to the reduction of specific bacteria: in particular, after treatment no CFU were observed for S. aureus and E. coli. UVC LEDs demonstrated the capacity to maintain high levels of disinfection after more than 240 h of use and they were effective against common microorganisms that are causative agents of HCAIs. PMID:27669273

  1. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  2. Effect of BCP ultrathin layer on the performance of organic light-emitting devices

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; YU Jun-sheng; LI Lu; TANG Xiao-qing; JIANG Ya-dong

    2008-01-01

    Based on conventional double layer device, triple layer organic light-emitting diodes (OLEDs) with two heterostructures of indium-tin oxide (ITO)/N,N'-diphenyl-N,N'-his(1-naphthyl)(1,1'-biphenyl)-4,4'-diamine(NPB)/2,9 -dimethyl-4,7 -diphenyl-1,10-phenanthroline (BCP)/8-Hydroxyquinoline aluminum (Alq3)/Mg:Ag using vacuum deposition method have been fabricated. The influence of different film thickness of BCP layer on the performance of OLEDs has been investigated. The results showed that when the thickness of the BCP layer film gradually varied from 0.1 nm to 4.0 nm, the electrolumines-cence (EL) spectra of the OLEDs shifted from green to greenish-blue to blue, and the BCP layer acted as the recombination region of charge carriers related to EL spectrum, enhancing the brightness and power efficiency. The power efficiency of OLEDs reached as high as 7.3 lm/W.

  3. Temperature-dependent efficiency droop behaviors of GaN-based green light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Jiang Rong; Lu Hai; Chen Dun-Jun; Ren Fang-Fang; Yan Da-Wei; Zhang Rong; Zheng You-Dou

    2013-01-01

    The efficiency droop behaviors of GaN-based green light-emitting diodes (LEDs) are studied as a function of temperature from 300 K to 480 K.The overall quantum efficiency of the green LEDs is found to degrade as temperature increases,which is mainly caused by activation of new non-radiative recombination centers within the LED active layer.Meanwhile,the external quantum efficiency of the green LEDs starts to decrease at low injection current level (< 1 A/cm2) with a temperature-insensitive peak-efficiency-current.In contrast,the peak-efficiency-current of a control GaN-based blue LED shows continuous up-shift at higher temperatures.Around the onset point of efficiency droop,the electroluminescence spectra of the green LEDs also exhibit a monotonic blue-shift of peak energy and a reduction of full width at half maximum as injection current increases.Carrier delocalization is believed to play an important role in causing the efficiency droop in GaN-based green LEDs.

  4. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    Science.gov (United States)

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  5. The efficiency challenge of nitride light-emitting diodes for lighting

    KAUST Repository

    Weisbuch, Claude

    2015-03-13

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We discuss the challenges of light-emitting diodes in view of their application to solid-state lighting. The requirement is to at least displace the quite efficient fluorescent, sodium, and high intensity discharge lamps used today in the main energy consuming lighting sectors, industrial, commercial and outdoors, with more efficient and better light quality lamps. We show that both from the point of view of cost of ownership and carbon emissions reduction, the relevant metric is efficiency, more than the cost of lumens. Then, progress from present performance requires identification of the loss mechanisms in light emission from LEDs, and solutions competing with mainstream c-plane LEDS grown on sapphire need to be on par with these. Special attention is devoted to a discussion of the efficiency droop mechanisms, and of a recent direct measurement of Auger generated electrons which appear to be responsible for droop.

  6. Solid state white light emitting systems based on CeF3: RE3+ nanoparticles and their composites with polymers.

    Science.gov (United States)

    Sayed, Farheen N; Grover, V; Dubey, K A; Sudarsan, V; Tyagi, A K

    2011-01-15

    A series of doped CeF(3): RE(3+) (RE(3+): Tb(3+), Eu(3+) and Dy(3+)) nanoparticles were synthesized, with the aim of obtaining a white light emitting composition, by a simple polyol route at 160°C and characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence. Uniformly distributed and highly water-dispersible rectangular nanoparticles (length ~15-20 nm, breadth ~5-10 nm) were obtained. The steady state and time resolved luminescence studies confirmed efficient energy transfer from the host to activator ions. Lifetime studies revealed that optimum luminescence is observed for 2.5 mol% Dy(3+) and 7.5 mol% Tb(3+). The energy transfer efficiencies (Ce(3+) to activators) were found to be 89% for CeF(3): Tb(3+) (7.5 mol%) nanoparticles and 60% for CeF(3): Dy(3+) (2.5 mol%) nanoparticles. Different concentrations of Tb(3+), Eu(3+) and Dy(3+) were doped to achieve a white light emitting phosphor for UV-based LEDs (light emitting diodes). Finally CeF(3), triply doped with 2.0 mol%Tb(3+), 4.5 mol% Eu(3+) and 3.5 mol% Dy(3+), was found to have impressive chromaticity co-ordinates, close to broad day light. The colloidal solutions of doped CeF(3) nanoparticles emitted bright green (Tb(3+)), blue (Dy(3+)) and white (triply doped) luminescence upon host excitation. Composites of poly methyl methacrylate (PMMA) and poly vinyl alcohol (PVA) were made with CeF(3): 5.0 mol%Tb(3+), CeF(3): 5.0 mol% Dy(3+) and triply doped white light emitting composition. The CeF(3)/PMMA (PVA) nanocomposite films, so obtained, are highly transparent (in the visible spectral range) and exhibit strong photoluminescence upon UV excitation.

  7. Dye concentration study in PVK based light emitting diodes

    Science.gov (United States)

    Gautier-Thianche, E.; Sentein, C.; Nunzi, J.-M.; Lorin, A.; Denis, C.; Raimond, P.

    1998-06-01

    Light emitting diodes made of a single spin-coated layer of poly(9-vinylcarbazole) doped with coumarin-515 dye have been prepared. The influence of dye concentration on emission and electrical characteristics is evidenced. Two different regimes are identified. At low concentrations, hole injection barrier raises, holes are trapped and mobility decreases. External quantum efficiency increases with concentration. At concentrations larger than 10 per electron. Coumarin in a single-layer diode improves electron-hole injection and recombination balance more than an additional hole-blocking layer. Nous avons étudié des DEL constituées d'une monocouche de poly(9-vinylcarbazole) (PVK) dopée avec un colorant laser : la coumarine 515. Le taux de dopage en colorant influe sur les caractéristiques courant - tension et sur le rendement quantique d'électroluminescence. Aux faibles taux de dopage, la hauteur de la barrière d'injection des trous augmente, les trous sont piégés dans la matrice et leur mobilité décroît. Le rendement quantique externe augmente avec la concentration de dopant. Aux concentrations supérieures à 10 photoluminescence chute mais le rendement quantique externe augmente jusqu'à 0.1 recombinaison électron-trou bien mieux qu'une couche supplémentaire bloquant l'injection des trous.

  8. Carbazole-containing light- emitting polymers: Properties of excited states

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A series of light-emitting conjugated polymers alternatively involving carbazole and bivinylene arylene moieties in the main chain were synthesized via Wittig-Horner type copolymerization. The photoinduced charge transfer process relating to these polymers was investigated by using the technique of fluorescence spectroscopy. The interaction between excited copolymers and C60 in benzene solution was studied. The fluorescence quenching can be well described by the "sphere-of-action" mechanism. It is believed that two basic steps are involved in the quenching process, i.e. the diffusion of excitation within the conjugated polymers and the dissociation of the exctions trapped by fullerene. The radius of the sphere-of-action can be related to the excitation diffusion length, which depends on the lifetime of the exciton. The dynamic fluorescence quenching of the copolymers by another quencher, 1,4-dicyanobenzene (DCB) was also surveyed. Copolymers with different chain conformations show different temperature effects in the dynamic quenching. A planar conformation is beneficial for the quenching via bimolecular collision.

  9. Optimized Performances of Thick Film Organic Lighting-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-Ru; ZHANG Zhi-Qiang; MA Dong-Ge; SUN Run-Guang

    2008-01-01

    @@ The performance of organic light-emitting diodes (OLEDs) with thick film is optimized.The alternative vana-dium oxide (V2O5) and N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) layers are used to enhance holes in the emissive region, and 4,7-dipheny-1,10-phenanthroline (Bphen) doped 8-tris-hydroxyquinoline alu-minium (Alq3) is used to enhance electrons is the emissive region, thus ITO/V2O5 (8nm)/NPB (52nm)/V2O5 (8nm)/NPB (52 nm)/Alq3 (30 and 45 nm)/Alq3:Bphen (30wt%, 30 and 45 nm)/LiF (1 nm)/Al (120nm) devices are fabricated.The thick-film devices show the turn-on voltage of about 3 V and the maximal power efficiency of 4.51m/W, which is 1.46 times higher than the conventional thin-film OLEDs.

  10. Emission characteristics of light-emitting diodes by confocal microscopy

    Science.gov (United States)

    Cheung, W. S.; Choi, H. W.

    2016-03-01

    The emission profiles of light-emitting diodes have typically be measured by goniophotometry. However this technique suffers from several drawbacks, including the inability to generate three-dimensional intensity profiles as well as poor spatial resolution. These limitations are particularly pronounced when the technique is used to compared devices whose emission patterns have been modified through surface texturing at the micrometer and nanometer scales,. In view of such limitations, confocal microscopy has been adopted for the study of emission characteristics of LEDs. This enables three-dimensional emission maps to be collected, from which two-dimensional cross-sectional emission profiles can be generated. Of course, there are limitations associated with confocal microscopy, including the range of emission angles that can be measured due to the limited acceptance angle of the objective. As an illustration, the technique has been adopted to compare the emission profiles of LEDs with different divergence angles using an objective with a numerical aperture of 0.8. It is found that the results are consistent with those obtained by goniophotometry when the divergence angle is less that the acceptance angle of the objective.

  11. Thin film Encapsulations of Flexible Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tsai Fa-Ta

    2016-01-01

    Full Text Available Various encapsulated films for flexible organic light emitting diodes (OLEDs were studied in this work, where gas barrier layers including inorganic Al2O3 thin films prepared by atomic layer deposition, organic Parylene C thin films prepared by chemical vapor deposition, and their combination were considered. The transmittance and water vapor transmission rate of the various organic and inorgabic encapsulated films were tested. The effects of the encapsulated films on the luminance and current density of the OLEDs were discussed, and the life time experiments of the OLEDs with these encapsulated films were also conducted. The results showed that the transmittance are acceptable even the PET substrate were coated two Al2O3 and Parylene C layers. The results also indicated the WVTR of the PET substrate improved by coating the barrier layers. In the encapsulation performance, it indicates the OLED with Al2O3 /PET, 1 pair/PET, and 2 pairs/PET presents similarly higher luminance than the other two cases. Although the 1 pair/PET encapsulation behaves a litter better luminance than the 2 pairs/PET encapsulation, the 2 pairs/PET encapsulation has much better life time. The OLED with 2 pairs/PET encapsulation behaves near double life time to the 1 pair encapsulation, and four times to none encapsulation.

  12. A novel high color purity blue-emitting phosphor: CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiangong, E-mail: lijiangong01@gmail.com [Department of Electronic Science and Engineering, Huanghuai University, Zhumadian 463000 (China); Yan, Huifang [Department of Foreign Languages and Literature, Huanghuai University, Zhumadian 463000 (China); Yan, Fengmei [Department of Chemistry and Chemical Engineering, Huanghuai University, Zhumadian 463000 (China)

    2016-07-15

    Graphical abstract: - Highlights: • A series of Tm{sup 3+}-doped CaBi{sub 2}B{sub 2}O{sub 7} blue-emitting phosphors were prepared. • The optimum doping content of Tm{sup 3+} ions was found. • The critical distance and concentration quenching mechanism was discussed. • The color purity of as prepared sample was analyzed and compared. - Abstract: A series of Tm{sup 3+}-doped CaBi{sub 2−x}B{sub 2}O{sub 7}:xTm{sup 3+} (0.02 ≤ x ≤ 0.12) blue-emitting phosphors with high color purity were prepared by solid-state reaction method. The crystal structure and luminescence properties of the as-prepared phosphors were studied. This phosphor shows a satisfactory blue performance (peak at 453 nm) due to the {sup 1}D{sub 2} → {sup 3}F{sub 4} transition of Tm{sup 3+} excited by 357 nm light. Investigation of Tm{sup 3+} content dependent emission spectra indicates that x = 0.04 is the optimum doping content of Tm{sup 3+} ions in the CaBi{sub 2}B{sub 2}O{sub 7} host. The critical distance and the concentration quenching mechanism were also investigated. In particular, the color purity of as prepared sample was analyzed and the result shows that the color purity of CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+} is higher than the commercial blue phosphor BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} (BAM:Eu{sup 2+}) and the latest reported Tm{sup 3+} doped blue phosphors. The present work suggests that the CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+} phosphor is a potential blue-emitting candidate for the application in the near-UV WLEDs.

  13. Using Organic Light-Emitting Electrochemical Thin-Film Devices to Teach Materials Science

    Science.gov (United States)

    Sevian, Hannah; Muller, Sean; Rudmann, Hartmut; Rubner, Michael F.

    2004-01-01

    Materials science can be taught by applying organic light-emitting electrochemical thin-film devices and in this method students were allowed to make a light-emitting device by spin coating a thin film containing ruthenium (II) complex ions onto a glass slide. Through this laboratory method students are provided with the opportunity to learn about…

  14. Characterization of Polyaniline Based Polymer Light-Emitting Devices During Operation by Electrical Impedance Spectroscopy

    Science.gov (United States)

    2004-07-01

    regions. 2. Experimental The light-emitting devices were prepared by Covion by spin coating and curing a 80 nm layer of Pani/PSS as HIL onto indium...tin oxide (ITO) patterned glass substrates followed by spin coating of the 80 nm light-emitting polymer layer. A water based Pani/PSS dispersion

  15. Organic Single-Crystal Light-Emitting Transistor Coupling with Optical Feedback Resonators

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Sawabe, Kosuke; Imakawa, Masaki; Maruyama, Kenichi; Yamao, Takeshi; Hotta, Shu; Iwasa, Yoshihiro; Takenobu, Taishi

    2012-01-01

    Organic light-emitting transistors (OLETs) are of great research interest because they combine the advantage of the active channel of a transistor that can control the luminescence of an in-situ light-emitting diode in the same device. Here we report a novel single-crystal OLET (SCLET) that is coupl

  16. Fabrication of InGaN/GaN nanopillar light-emitting diode arrays

    DEFF Research Database (Denmark)

    Ou, Yiyu; Fadil, Ahmed; Ou, Haiyan

    Nanopillar InGaN/GaN green light-emitting diode arrays were fabricated by using self-assembled nanopatterning and dry etching process. Both internal and external quantum efficiency were increased due to strain relaxation and enhanced light extraction.......Nanopillar InGaN/GaN green light-emitting diode arrays were fabricated by using self-assembled nanopatterning and dry etching process. Both internal and external quantum efficiency were increased due to strain relaxation and enhanced light extraction....

  17. Low Level Light Therapy with Light-Emitting Diodes for the Aging Face.

    Science.gov (United States)

    Calderhead, R Glen; Vasily, David B

    2016-07-01

    Low level light therapy (LLLT) with light-emitting diodes (LEDs) is emerging from the mists of black magic as a solid medico-scientific modality, with a substantial buildup of corroborative bodies of evidence for its efficacy and elucidation of the modes of action. Reports are appearing from many different specialties; however, of particular interest to plastic surgeons treating the aging face is the proven action of LED-LLLT on skin cells in both the epidermis and dermis and enhanced blood flow. Thus, LED-LLLT is a safe and effective stand-alone therapy for patients who are prepared to wait until the final effect is perceived.

  18. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  19. White Organic Light-Emitting Devices Based on 2-(2-Hydroxyphenyl) Benzothiazole and Its Chelate Metal Complex

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-Ming; HUA Yu-Lin; WANG Zhao-Qi; ZHENG Jia-Jin; FENG Xiu-Lan; SUN Yuan-Yuan

    2005-01-01

    @@ We present three kinds of organic light-emitting devices (OLED) fabricated to achieve the emission of bright and pure white light. Device A, with a double-layered structure using 2-(2-hydroxyphenyl) benzothiazole (HBT) and poly (N-vinylcarbazole) (PVK) as the emitting layer (EML) and the hole transport layer (HTL) respectively,could realize the blue-green light emission. Bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTZ)2), synthesized with zinc acetate dihydrate and HBT to form a complex, is used as main EMLs in a similar structure to fabricate devices B and C. Bright and pure white light emissions can be obtained from device C which was fabricated with a green-white emitting host Zn(BTZ)2 and red dopant 5,6,11,12-tetraphenylnaphthacene (rubrene). The maximum quantum efficiency of device C could reach 0.63%, and the corresponding brightness and CIE coordinates were 4000cd/m2 and (x = 0.341, y = 0.334) at the driving voltage of 20 V.

  20. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    Science.gov (United States)

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-01

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  1. Magnetic field effect in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Niedermeier, Ulrich

    2009-12-14

    The discovery of a magnetic field dependent resistance change of organic light emitting diodes (OLEDs) in the year 2003 has attracted considerable scientific and industrial research interest. However, despite previous progress in the field of organic spin-electronics, the phenomenon of the ''organic magnetoresistance (OMR) effect'' is not yet completely understood. In order to improve the understanding of the microscopic mechanisms which ultimately cause the OMR effect, experimental investigations as well as theoretical considerations concerning the OMR are addressed in this thesis. In polymer-based OLED devices the functional dependencies of the OMR effect on relevant parameters like magnetic field, operating voltage, operating current and temperature are investigated. Based on these results, previously published models for potential OMR mechanisms are critically analyzed and evaluated. Finally, a concept for the OMR effect is favored which suggests magnetic field dependent changes of the spin state of electron-hole pairs as being responsible for changes in current flow and light emission in OLEDs. In the framework of this concept it is possible to explain all results from own measurements as well as results from literature. Another important finding made in this thesis is the fact that the value of the OMR signal in the investigated OLED devices can be enhanced by appropriate electrical and optical conditioning processes. In particular, electrical conditioning causes a significant enhancement of the OMR values, while at the same time it has a negative effect on charge carrier transport and optical device characteristics. These results can be explained by additional results from charge carrier extraction measurements which suggest that electrical conditioning leads to an increase in the number of electronic trap states inside the emission layer of the investigated OLED devices. The positive influence of trap states on the OMR effect is

  2. Developing Quantum Dot Phosphor-Based Light-Emitting Diodes for Aviation Lighting Applications

    Directory of Open Access Journals (Sweden)

    Fengbing Wu

    2012-01-01

    Full Text Available We have investigated the feasibility of employing quantum dot (QD phosphor-based light-emitting diodes (LEDs in aviation applications that request Night Vision Imaging Systems (NVIS compliance. Our studies suggest that the emerging QD phosphor-based LED technology could potentially be superior to conventional aviation lighting technology by virtue of the marriage of tight spectral control and broad wavelength tunability. This largely arises from the fact that the optical properties of semiconductor nanocrystal QDs can be tailored by varying the nanocrystal size without any compositional changes. It is envisioned that the QD phosphor-based LEDs hold great potentials in cockpit illumination, back light sources of monitor screens, as well as the LED indicator lights of aviation panels.

  3. Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wai Kian, E-mail: tanwaikian@cie.ignite.tut.ac.jp [Center for International Education, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Pulau Pinang 14300 Malaysia (Malaysia); Matsuda, Atsunori, E-mail: matsuda@tut.ee.ac.jp [Center for International Education, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan)

    2015-02-15

    The morphological evolution of the zinc oxide (ZnO) nanostructures generated by hot-water treatment (HWT) of sol–gel derived coatings as a function of temperature from 30 to 90 °C was investigated. With increasing HWT temperature, the ZnO crystals evolved from nanoparticles to rod-like and needle-like nanostructures. High-resolution transmission electron microscope observations of rod-like and needle-like nanostructures generated at 60 and 90 °C indicated single crystal ZnO wurtzite structure was obtained. All the hot-water treated samples exhibited blue emission at approximately 440 nm in room temperature. The intensity of blue emission increased with higher HWT temperatures. The unique photoluminescence emission characteristic remained even after heat-treatment at 400 °C for 1 h. As the emission peak obtained in our work is approximately 440 nm (2.82 eV), the emission peak is corresponding to the electron transition from the interstitial Zn to the top of valence band. This facile formation of blue-emitting ZnO nanostructures at low-temperature can be utilized on substrate with low thermal stability for optoelectronic applications such as light emitting devices and biological fluorescence labeling. - Highlights: • Facile and novel formation of ZnO nanostructures by low temperature hot-water treatment. • No catalyst or inhibitor is used. • Evolution of ZnO nanostructures formation as a function of temperature is reported. • Dominant blue emissions are observed from the as-formed and annealed ZnO films. • Ultraviolet and visible emissions are observed for hot-water treated films.

  4. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light

    NARCIS (Netherlands)

    Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; Ieperen, van W.; Harbinson, J.

    2010-01-01

    The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose–response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an eq

  5. Organic light emitting field effect transistors based on an ambipolar p-i-n layered structure

    Science.gov (United States)

    Maiorano, V.; Bramanti, A.; Carallo, S.; Cingolani, R.; Gigli, G.

    2010-03-01

    A bottom contact/top gate ambipolar "p-i-n" layered light emitting field effect transistor with the active medium inserted between two doped transport layers, is reported. The doping profile results crucial to the capability of emitting light, as well as to the electrical characteristics of the device. In this sense, high output current at relative low applied gate/drain voltage and light emission along the whole large area transistor channel are observed, putting the basis to full integration of organic light emitting field effect transistors in planar complex devices.

  6. Effects and Mechanism of Blue Light on Monascus in Liquid Fermentation

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    2017-03-01

    Full Text Available The effect of light on Monascus and the underlying mechanism have received a great deal of interest for the industrial application of Monascus pigments. In this study, we have examined the effects of blue light on the culture morphology, mycelium growth, pigments, and citrinin yield of Monascus in liquid-state and oscillation fermentation, and explored the mechanism at a physiological level. It was found that blue light affected the colony morphology, the composition (chitin content, and permeability of the Monascus mycelium cell wall in static liquid culture, which indicates blue light benefits pigments secreting from aerial mycelium to culture medium. In liquid oscillation fermentation, the yields of Monascus pigments in fermentation broth (darkness 1741 U/g, blue light 2206 U/g and mycelium (darkness 2442 U/g, blue light 1900 U/g cultured under blue light and darkness are different. The total pigments produced per gram of Monascus mycelium under blue light was also higher (4663 U/g than that in darkness (4352 U/g. However, the production of citrinin (88 μg/g under blue light was evidently lower than that in darkness (150 μg/g. According to the degradation of citrinin caused by blue light and hydrogen peroxide, it can be concluded that blue light could degrade citrinin and inhibit the catalase activity of Monascus mycelium, subsequently suppressing the decomposition of hydrogen peroxide, which is the active species that degrades citrinin.

  7. Effects and Mechanism of Blue Light on Monascus in Liquid Fermentation.

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Wenqing; Chen, Xiying; Cai, Junhui; Wang, Changlu; He, Weiwei

    2017-03-01

    The effect of light on Monascus and the underlying mechanism have received a great deal of interest for the industrial application of Monascus pigments. In this study, we have examined the effects of blue light on the culture morphology, mycelium growth, pigments, and citrinin yield of Monascus in liquid-state and oscillation fermentation, and explored the mechanism at a physiological level. It was found that blue light affected the colony morphology, the composition (chitin content), and permeability of the Monascus mycelium cell wall in static liquid culture, which indicates blue light benefits pigments secreting from aerial mycelium to culture medium. In liquid oscillation fermentation, the yields of Monascus pigments in fermentation broth (darkness 1741 U/g, blue light 2206 U/g) and mycelium (darkness 2442 U/g, blue light 1900 U/g) cultured under blue light and darkness are different. The total pigments produced per gram of Monascus mycelium under blue light was also higher (4663 U/g) than that in darkness (4352 U/g). However, the production of citrinin (88 μg/g) under blue light was evidently lower than that in darkness (150 μg/g). According to the degradation of citrinin caused by blue light and hydrogen peroxide, it can be concluded that blue light could degrade citrinin and inhibit the catalase activity of Monascus mycelium, subsequently suppressing the decomposition of hydrogen peroxide, which is the active species that degrades citrinin.

  8. Design and Analysis of a Quantum Well Light Emitting Triode.

    Science.gov (United States)

    Rajagopalan, Bharath

    1992-01-01

    We present, for the first time, the design and analysis of a novel, quantum well light emitting triode (QWLET), based on a bipolar junction transistor with a quantum well in the base. Modulation of the collector -base voltage controls the radiation emission from the quantum well by sweeping the space-charge region across the well. Detailed analysis is provided for an npn-Al_{.35 }Ga_{.65}As transistor with an undoped GaAs quantum well. Calculations indicate that modulation rates in excess of 1 GHz are possible. The switching-off process is limited by thermionic emission of majority carriers out of the well, whereas the turn -on is controlled by the recombination lifetime in the well. Our calculations reveal that the thermionic emission lifetime of these carriers is ~0.1 ns at an applied field of 5 times 10 ^4 V/cm, while the radiative lifetime is approximately 1-2 ns for carrier densities in excess of 10^{12} cm ^{-2} in the well. For material systems, or choice of parameters, where thermionic emission is insignificant, field induced tunneling of carriers out of the well is considered as a quenching mechanism. However, the tunneling lifetime is ~3.1 mus at a field of 1 times 10^5 V/cm, and therefore we propose a novel scheme to reduce this lifetime to ~3.3 ns through impurity assisted tunneling. Our calculated results also include a capture cross-section of 10^{-14} cm ^2 for carriers into the well, a B coefficient for radiative recombination of 2.4 times 10^{-10} cm ^3/s, and optical power generation of 0.15 muW per μm of length per mA of drive current and peaked at 855 nm. The voltage amplitude needed to modulate the radiation is on the order of 1 to 2 volts.

  9. Positive and negative innate immune responses in zebrafish under light emitting diodes conditions.

    Science.gov (United States)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Li, Wei-Ye; Wu, Chang-Wen

    2016-09-01

    Certain light emitting diodes (LEDs) have become popular in fish farming beacause of a promoting effect on growth and reproduction. However, little information is available on innate immune responses in related tissues under LEDs conditions. The present study assessed the effects of a white fluorescent bulb (the control) and two different light-emitting diodes (LEDs: blue, LDB, peak at 450 nm; red, LDR, 630 nm) on growth and innate immune responses in the serum, liver and ovary of zebrafish for 8 weeks. LDB significantly enhanced specific growth rate (SGR), food intake (FI), and serum globulin levels. In contrast, LDR sharply inhibited SGR, FI, and the levels of albumin and globulin. Under LDB condition, there was an increase in protein levels of alkaline phophatase (AKP) and protein and activity levels of lysozyme (LZM) in the liver, and the levels of mRNA, protein, and activity of LZM in the ovary. Under LDR condition, LZM was dramatically down-regulated at mRNA, protein and activity levels in the ovary, suggesting that LZM was regulated at a transcriptional level. In the liver of the LDR group, though AKP mRNA levels sharply increased, its protein and activity levels significantly declined, indicating that AKP was regulated at translational level. Furthermore, a positive correlation between transcription factor NF-κB RelA mRNA levels and expression levels of AKP and LZM was observed in the liver and ovary, implying a transcriptional regulation of NF-κB RelA. In conclusion, the present study demonstrated a positive effect of LDB and negative effect of LDR on fish growth and innate immune responses, possibly associated with modifications at transcriptional, translational, and post-translational levels, and the transcriptional regulation of the NF-κB signaling molecule.

  10. High-flux focusable color-tunable and efficient white-light-emitting diode light engine for stage lighting

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Pedersen, Henrik Chresten; Petersen, Paul Michael

    2016-01-01

    A color mixing light-emitting diode (LED) light engine that can replace 2-kW halogen–Fresnel spotlightwith high-luminous flux in excess of 20,000 lm is reported for applications in professional stage and studio lighting.The light engine focuses and mixes the light from 210 LEDs of five different...... colors through a microlens array(MA) at the gate of ∅50 mm. Hence, it produces homogeneous color-mixed tunable white light from 3000 to6000 K that can be adjustable from flood to spot position providing 10% translational loss, whereas the correspondingloss from the halogen–Fresnel spotlight is 37......%. The design, simulation, and optimization of the lightengine is described and compared to the experimental characterization of a prototype. The light engine is optimizedthrough the simulated design of reflector, total internal reflection lens, and MA, as well as the number ofLEDs. An optical efficiency of 59...

  11. Recent advances in light outcoupling from white organic light-emitting diodes

    Science.gov (United States)

    Gather, Malte C.; Reineke, Sebastian

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically <30%). Here, we provide an introduction to the underlying physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.

  12. White organic light-emitting devices using Zn(BTZ)2 doped with Rubrene as emitting layer

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jiajin; HUA Yulin; YIN Shougen; FENG Xiulan; WU Xiaoming; SUN Yuanyuan; LI Yongfang; YANG Chunhe; SHUAI Zhigang

    2005-01-01

    Zn(BTZ)2 was synthesized from the complex reaction between zinc acetate dihydrate and 2-(2- hydroxyphenyl) benzothiazolate. Then Zn(BTZ)2 was used as main light-emitting material doped with different amounts of fluorescent dye Rubrene and fabricated a series of white organic light emitting devices. The configurations were as follows: ITO/PVK:TPD/Zn(BTZ)2:Rubrene/Al. The doping concentration of Rubrene in Zn(BTZ)2 was 1.2%, 0.12%, 0.08% and 0.05%, respectively. According to the EL spectra and CIE coordinates of the above devices, the optimum doping concentration (0.05%, weight percent) had been determined. The steady and bright white light emitting of the device with 0.05% doping concentration had been obtained, and the white emission covered a wide range of driving voltage (10-22.5 V). The CIE coordinates were (x=0.341, y=0.334) at the driving voltage of 20 V, which was very close to the equi-energy point (x=0.333, y=0.333), and the corresponding luminance and external quantum efficiency were 4048 Cd/m2 and 0.63% (4.05 Cd/A), respectively. Lastly, we also discussed the emitting mechanisms of the material and the devices.

  13. UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires.

    Science.gov (United States)

    Gao, J; Chen, R; Li, D H; Jiang, L; Ye, J C; Ma, X C; Chen, X D; Xiong, Q H; Sun, H D; Wu, T

    2011-05-13

    Multifunctional single crystalline tin-doped indium oxide (ITO) nanowires with tuned Sn doping levels are synthesized via a vapor transport method. The Sn concentration in the nanowires can reach 6.4 at.% at a synthesis temperature of 840 °C, significantly exceeding the Sn solubility in ITO bulks grown at comparable temperatures, which we attribute to the unique feature of the vapor-liquid-solid growth. As a promising transparent conducting oxide nanomaterial, layers of these ITO nanowires exhibit a sheet resistance as low as 6.4 Ω/[Symbol: see text] and measurements on individual nanowires give a resistivity of 2.4 × 10(-4) Ω cm with an electron density up to 2.6 × 10(20) cm(-3), while the optical transmittance in the visible regime can reach ∼ 80%. Under the ultraviolet excitation the ITO nanowire samples emit blue light, which can be ascribed to transitions related to defect levels. Furthermore, a room temperature ultraviolet light emission is observed in these ITO nanowires for the first time, and the exciton-related radiative process is identified by using temperature-dependent photoluminescence measurements.

  14. Stress-induced piezoelectric field in GaN-based 450-nm light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Wael Z. [Department of Materials Science and Engineering, Chonnam National University, Yongbong 300 Gwangju 500-757 (Korea, Republic of); Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62511 (Egypt); Hyeon, Gil Yong; Lee, June Key, E-mail: junekey@chonnam.ac.kr [Department of Materials Science and Engineering, Chonnam National University, Yongbong 300 Gwangju 500-757 (Korea, Republic of)

    2014-10-28

    We investigated the influence of the built-in piezoelectric field induced by compressive stress on the characteristics of GaN-based 450-nm light-emitting diodes (LEDs) prepared on sapphire substrates of different thicknesses. As the sapphire substrate thickness was reduced, the compressive stress in the GaN layer was released, resulting in wafer bowing. The wafer bowing-induced mechanical stress altered the piezoelectric field, which in turn reduced the quantum confined Stark effect in the InGaN/GaN active region of the LED. The flat-band voltage was estimated by measuring the applied bias voltage that induced a 180° phase shift in the electro-reflectance (ER) spectrum. The piezoelectric field estimated by the ER spectra changed by ∼110 kV/cm. The electroluminescence spectral peak wavelength was blue-shifted, and the internal quantum efficiency was improved by about 22% at a high injection current of 100 mA. The LED on the 60-μm-thick sapphire substrate exhibited the highest light output power of ∼59 mW at an injection current of 100 mA, with the operating voltage unchanged.

  15. [Cataract extraction and blue light--impact on the retina].

    Science.gov (United States)

    Engelmann, K; Funk, R H

    2009-10-01

    This review focuses on the scientific background for the use of "yellow artificial lenses". We will address the fact that numerous basic scientific publications point to a rationale for this practice although it is often difficult to derive clear-cut evidence from clinical epidemiological studies for the preventive use of yellow artificial lenses. In the first part we refer to studies showing that especially the shortwave part of the visible spectrum of light can be harmful for the retina and optic nerve. For this, we have screened the literature for the major sources of radical production and for the targets of oxidative stress after impingement of "blue light" on the retina. Furthermore, we can show that many studies in cell and molecular biology, animal experiments and first clinical trials point to a preferential use of yellow-tinted lenses especially in the elderly and AMD patients.

  16. Antimicrobial blue light therapy for Candida albicans burn infection in mice

    Science.gov (United States)

    Zhang, Yunsong; Wang, Yucheng; Murray, Clinton K.; Hamblin, Michael R.; Gu, Ying; Dai, Tianhong

    2015-05-01

    In this preclinical study, we investigated the utility of antimicrobial blue light therapy for Candida albicans infection in acutely burned mice. A bioluminescent strain of C. albicans was used. The susceptibilities to blue light inactivation were compared between C. albicans and human keratinocyte. In vitro serial passaging of C. albicans on blue light exposure was performed to evaluate the potential development of resistance to blue light inactivation. A mouse model of acute thermal burn injury infected with the bioluminescent strain of C. albicans was developed. Blue light (415 nm) was delivered to mouse burns for decolonization of C. albicans. Bioluminescence imaging was used to monitor in real time the extent of fungal infection in mouse burns. Experimental results showed that C. albicans was approximately 42-fold more susceptible to blue light inactivation in vitro than human keratinocyte (P=0.0022). Serial passaging of C. albicans on blue light exposure implied a tendency for the fungal susceptibility to blue light inactivation to decrease with the numbers of passages. Blue light reduced fungal burden by over 4-log10 (99.99%) in acute mouse burns infected with C. albicans in comparison to infected mouse burns without blue light therapy (P=0.015).

  17. Pilot perception of light emitting diodes versus incandescent elevated runway guard lights

    Science.gov (United States)

    Stevens, Hilary

    Pilots must understand and be aware of the purpose of each airport sign, light and marking, for there are numerous. The Federal Aviation Administration (FAA) is planning on replacing the current incandescent lighting with far more economical LED airport lighting. In preparation for this change, two experiments were conducted for this thesis. Experiment 1 attempted to determine what pilots know about the meaning of the signs, markings and lights on the taxiways and runways through a questionnaire that was developed with the FAA. Experiment 2 evaluated pilot perception of LED lighting compared to current incandescent elevated runway guard lights. The meaning of airfield lights is not often stressed in pilot training and many pilots are unsure as to the intended purpose of specific lighting. Experiment 1 attempted to evaluate the uncertainty of these caution lights. In experiment 1, a knowledge survey about runway lighting and markings was created. The survey was developed by a flight instructor and approved by the Federal Aviation Administration. The surveys were given to about 150 pilots with varying flight ratings and experience levels. Experiment 1 results determined that there is a need for more intensive or remedial training on some airport signals. Results also showed that some runway signals need to have greater cue salience. Experiment 2 was designed to replace the existing elevated runway guard lights at a local airport from incandescent lights to light emitting diodes. Permission to cross onto the runways from a taxiway at airports must be given by the air traffic (ground) controller. The demarcation between taxiway and runway is indicated by the elevated runway guard light (ERGL), which signals to the taxiing pilot to hold short at the border of the runway until permission to cross the intersection is obtained. Incandescent lights are currently installed in the ERGLs. Experiment 2 of this thesis was designed to evaluate pilot's perceptions of the elevated

  18. Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light.

    Science.gov (United States)

    Solhaug, Knut Asbjørn; Xie, Li; Gauslaa, Yngvar

    2014-08-01

    Photosynthesis was compared in two cyanobacterial lichens (Lobaria hallii and Peltigera praetextata) and two green algal lichens (Lobaria pulmonaria and Peltigera leucophlebia) exposed to red, green or blue light. Cyanolichens had substantially lower photosynthetic CO(2) uptake and O(2) evolution than the green algal lichens in blue light, but slightly higher photosynthesis in red and green light. The effective quantum yield of photosystem (PS) II (Φ(PSII)) decreased with increasing red and green light for all species, but in blue light this response occurred in green algal lichens only. Cyanolichen Φ(PSII) increased with increasing blue light at low irradiances, but decreased at stronger exposures. However, after adding red light the efficiency of blue light for photosynthetic O(2) evolution increased by 2.4 times. Because phycobilisomes associated with PSII have a low blue light absorption, our results are consistent with blue light absorption mainly by Chl in PSI. Thereby, unequal allocation of excitation energy between PSII and PSI results in low cyanolichen photosynthesis under blue light. This is new knowledge in the science of lichenology with important implications for e.g. the reliability of using Chl fluorometers with blue light for cyanolichens.

  19. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  20. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    Energy Technology Data Exchange (ETDEWEB)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  1. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    Science.gov (United States)

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-01

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  2. Hydrothermal preparation and photoluminescent property of LiY(MoO4)2:Pr3+red phosphors for white light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    LI Zhao; ZHAO Xicheng; JIANG Yuanru

    2015-01-01

    Praseodymium doped lithium yttrium molybdate LiY1−xPrx(MoO4)2 (x=0.005–0.025) phosphors were successfully prepared by the hydrothermal method. The phase, morphology, and luminescent property of the prepared phosphors were investigated by X-ray diffraction and scanning electron microscopy. The results indicated that doping of Pr3+ions did not change the main phase of the phosphors. The samples emitted red luminescence upon excitation at 453 nm and the strongest emission peak corresponding to the characteristic transition of the Pr3+ion: 3P0→3F2 was observed at 657 nm. LiY(MoO4)2:Pr3+red phosphors could be effectively ex-cited by blue light emitting-diodes to emit red light;thus, acting as potential candidates for compensating the red light deficiency of cerium doped yttrium aluminum garnet yellow phosphor.

  3. Beacon system based on light-emitting diode sources for runways lighting

    Science.gov (United States)

    Montes, Mario González; Vázquez, Daniel; Fernandez-Balbuena, Antonio A.; Bernabeu, Eusebio

    2014-06-01

    New aeronautical ground lighting techniques are becoming increasingly important to ensure the safety and reduce the maintenance costs of the plane's tracks. Until recently, tracks had embedded lighting systems whose sources were based on incandescent lamps. But incandescent lamps have several disadvantages: high energy consumption and frequent breakdowns that result in high maintenance costs (lamp average life-time is ˜1500 operating hours) and the lamp's technology has a lack of new lighting functions, such as signal handling and modification. To solve these problems, the industry has developed systems based on light-emitting diode (LED) technology with improved features: (1) LED lighting consumes one tenth the power, (2) it improves preventive maintenance (an LED's lifetime range is between 25,000 and 100,000 hours), and (3) LED lighting technology can be controlled remotely according to the needs of the track configuration. LEDs have been in use for more than three decades, but only recently, around 2002, have they begun to be used as visual aids, representing the greatest potential change for airport lighting since their inception in the 1920s. Currently, embedded LED systems are not being broadly used due to the specific constraints of the rules and regulations of airports (beacon dimensions, power system technology, etc.). The fundamental requirements applied to embedded lighting systems are to be hosted on a volume where the dimensions are usually critical and also to integrate all the essential components for operation. An embedded architecture that meets the lighting regulations for airport runways is presented. The present work is divided into three main tasks: development of an optical system to optimize lighting according to International Civil Aviation Organization, manufacturing prototype, and model validation.

  4. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Guillermo Bazan; Alexander Mikhailovsky

    2008-08-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is

  5. Multifunctional silicon-based light emitting device in standard complementary metal-oxide-semiconductor technology

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Huang Bei-Ju; Dong Zan; Chen Hong-Da

    2011-01-01

    A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.

  6. A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Peng-Peng Dai; Cong Li; Xin-Tong Zhang; Jun Xu; Xi Chen; Xiu-Li Wang; Yan Jia

    2016-01-01

    Single-phased,high-color-rendering index (CRI) white-light phosphors are emerging as potential phosphor-converted white-light-emitting diodes (WLEDs) and as an alternative to blends of tricolor phosphors.However,it is a challenge to create a high CRI white light from a single-doped activator.Here,we present a high CRI (Ra =91) white-light phosphor,Sr5(PO4)3-x(BO3)xCl:Eu2+,composed of Sr5(PO4)3Cl as the beginning member and Sr5(BO3)3Cl as the end member.This work utilized the solid-solution method,and tunable EU2+ emission was achieved.Color-tunable Eu2+ emissions in response to structural variation were observed in Sr5(PO4)3-x(BO3)xCl solid solutions.This was further confirmed using X-ray Rietveld refinement,electron paramagnetic resonance spectroscopy,and in the photoluminescence spectra.The color-tunable emissions included the white light that originated from the combination of the blue emission of Sr5(PO4)3Cl:Eu2+ and an induced Eu2+ yellow emission at approximately 550 nm in the solid solution.Importantly,the white-light phosphors showed a greater R9 =90.2 under excitation at 365 nm.This result has rarely been reported in the literature and is greater than that of (R9 =14.3) commercial Y3A15O12:Ce3+-based WLEDs.These findings demonstrate the great potential of Sr5(PO4)3-x(BO3)xCl:O.O4Eu2+ as a white-light phosphor for near-UV phosphor-converted WLEDs.These results also provide a shortcut for developing a high CRI white-light phosphor from a single Eu2+-doped compound.

  7. Patternless light outcoupling enhancement method for top-emission organic light-emitting diodes

    Science.gov (United States)

    Kim, Doo-Hoon; Lee, Ho-Nyeon

    2016-11-01

    An increase of 65% in the luminous flux of a top-emission organic light-emitting diode (TE-OLED) was obtained by fabricating a stacked N,N‧-bis(naphthalen-1-yl)-N,N‧-bis(phenyl)benzidine (NPB) (0.2 µm)/CaF2 (2.5 µm) light outcoupling layer on the TE-OLED. The high-refractive-index NPB layer extracted the trapped light energy in the TE-OLED for input into the light outcoupling layer and protected the top cathode of the TE-OLED from damage due to the CaF2 layer. The surface morphology of the CaF2 layer had an irregular shape consisting of randomly dispersed pyramids; the irregular structure scattered the waveguide mode energy into air. By combining the effects of the NPB and CaF2 layers, the external quantum efficiency of the TE-OLED was increased significantly. The light outcoupling layer can be fabricated using a thermal evaporation process without patterning and, hence, provides a practical solution for the enhancement of TE-OLED light outcoupling using a patternless fabrication process.

  8. Light extraction enhancement from organic light-emitting diodes with randomly scattered surface fixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-Ying; Shi, Xiao-Bo; Gao, Chun-Hong; Cai, Shi-Duan; Jin, Yue; Liao, Liang-Sheng, E-mail: lsliao@suda.edu.cn

    2014-09-30

    Graphical abstract: - Highlights: • A combination of scattering layer and roughened substrate is used for light extraction from OLEDs. • The scattering layer is readily achieved by spin-coating the TiO{sub 2} sol. • The enhancement relying scattering depends on the size of TiO{sub 2} nano particles. • With the light extraction techniques the uniform emission is achieved. - Abstract: A combination of a scattering medium layer and a roughened substrate was proposed to enhance the light extraction efficiency of organic light-emitting diodes (OLEDs). Comparing with a reference OLED without any scattering layer, 65% improvement in the forward emission has been achieved with a scattering layer formed on an intentionally roughened external substrate surface of the OLED by spin-coating a sol–gel fabricated matrix containing well dispersed titania (TiO{sub 2}) particles. Such a combination method not only demonstrated efficient extraction of the light trapped in the glass substrate but also achieved homogenous emission from the OLED panel. The proposed technique, convenient and inexpensive, is believed to be suitable for the large area OLED production in lighting applications.

  9. Metal-nitride-oxide-semiconductor light-emitting devices for general lighting.

    Science.gov (United States)

    Berencén, Y; Carreras, Josep; Jambois, O; Ramírez, J M; Rodríguez, J A; Domínguez, C; Hunt, Charles E; Garrido, B

    2011-05-09

    The potential for application of silicon nitride-based light sources to general lighting is reported. The mechanism of current injection and transport in silicon nitride layers and silicon oxide tunnel layers is determined by electro-optical characterization of both bi- and tri-layers. It is shown that red luminescence is due to bipolar injection by direct tunneling, whereas Poole-Frenkel ionization is responsible for blue-green emission. The emission appears warm white to the eye, and the technology has potential for large-area lighting devices. A photometric study, including color rendering, color quality and luminous efficacy of radiation, measured under various AC excitation conditions, is given for a spectrum deemed promising for lighting. A correlated color temperature of 4800K was obtained using a 35% duty cycle of the AC excitation signal. Under these conditions, values for general color rendering index of 93 and luminous efficacy of radiation of 112 lm/W are demonstrated. This proof of concept demonstrates that mature silicon technology, which is extendable to low-cost, large-area lamps, can be used for general lighting purposes. Once the external quantum efficiency is improved to exceed 10%, this technique could be competitive with other energy-efficient solid-state lighting options.

  10. Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris.

    Science.gov (United States)

    Atta, Madiha; Idris, Ani; Bukhari, Ataullah; Wahidin, Suzana

    2013-11-01

    Light quality and the intensity are key factors which render microalgae as a potential source of biodiesel. In this study the effects of various intensities of blue light and its photoperiods on the growth and lipid content of Chlorella vulgaris were investigated by using LED (Light Emitting Diode) in batch culture. C. vulgaris was grown for 13 days at three different light intensities (100, 200 and 300 μmol m(-2)s(-1)). Effect of three different light and dark regimes (12:12, 16:08 and 24:00 h Light:Dark) were investigated for each light intensity at 25°C culture temperature. Maximum lipid content (23.5%) was obtained due to high efficiency and deep penetration of 200 μmol m(-2)s(-1) of blue light (12:12 L:D) with improved specific growth (1.26 d(-1)) within reduced cultivation time of 8 days. White light could produce 20.9% lipid content in 10 days at 16:08 h L:D.

  11. Fully solution-processed organic light-emitting electrochemical cells (OLEC) with inkjet-printed micro-lenses for disposable lab-on-chip applications at ambient conditions

    Science.gov (United States)

    Shu, Zhe; Pabst, Oliver; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2016-02-01

    Microfluidic lab-on-chip devices can be used for chemical and biological analyses such as DNA tests or environmental monitoring. Such devices integrate most of the basic functionalities needed for scientific analysis on a microfluidic chip. When using such devices, cost and space-intensive lab equipment is no longer necessary. However, in order to make a monolithic and cost-efficient/disposable microfluidic sensing device, direct integration of the excitation light source for fluorescent sensing is often required. To achieve this, we introduce a fully solution processable deviation of OLEDs, organic light-emitting electrochemical cells (OLECs), as a low-cost excitation light source for a disposable microfluidic sensing platform. By mixing metal ions and a solid electrolyte with light-emitting polymers as active materials, an in-situ doping and in-situ PN-junction can be generated within a three layer sandwich device. Thanks to this doping effect, work function adaptation is not necessary and air-stable electrode can be used. An ambient manufacturing process for fully solution-processed OLECs is presented, which consist of a spin-coated blue light-emitting polymer plus dopants on an ITO cathode and an inkjet-printed PEDOT:PSS transparent top anode. A fully transparent blue OLEC is able to obtain light intensity > 2500 cd/m2 under pulsed driving mode and maintain stable after 1000 cycles, which fulfils requirements for simple fluorescent on-chip sensing applications. However, because of the large refractive index difference between substrates and air, about 80% of emitted light is trapped inside the device. Therefore, inkjet printed micro-lenses on the rear side are introduced here to further increase light-emitting brightness.

  12. White light-emitting diodes based on nonpolar and semipolar gallium nitride orientations

    Science.gov (United States)

    Demille, Natalie Fellows

    Gallium nitride has become one of the key components when fabricating white light-emitting diodes. Its use as the blue source in conjunction with a wavelength converter such as the yellow emitting phosphor YAG:Ce 3+ is a technology that is commercially available and usable for solid state lighting applications. Currently available white phosphor-based LEDs (pcLEDs) use the basal plane of wurtzite GaN as their source. Although research over the past couple decades has developed this technology into devices with good photometric performance and high reliability, the introduction of nonbasal plane wurtzite GaN orientations have benefits over basal plane GaN that can be incorporated into the white LED. The focus of this research deals with exploring white illumination on nonpolar and semipolar planes of GaN. Light extraction techniques will be described that allowed for high output powers and efficiencies on the c-plane as well as the (1100), (10 11), and (1122) planes of GaN. With higher performing devices, white pcLEDs were fabricated on c-plane, m-plane, and the (1011) semipolar plane. The novelty in the present research is producing white LEDs with nonbasal plane diodes which exhibit optical polarization anisotropy. This feature, absent on the basal plane, allows for tuning photometric quantities both electrically and optically. This is demonstrated on pcLEDs as well as dichromatic LEDs comprised solely of InGaN diodes. As a consequence of these measurements, an apparent optical polarization was seen to be occurring in the luminescence of the YAG:Ce3+ when the system absorbed linearly polarized light. Polarized emission in YAG:Ce3+ was explored by obtaining single crystals of YAG:Ce3+ with different planar orientations. The experiments led to the conclusion that crystal orientation plays no part in the optical polarization. It is suggested that the cause is a result of electric dipole transitions given by various selection rules between the Ce 3+ ion's 4f and 5d

  13. Wirelessly powered ultraviolet light emitting diodes for photocatalytic oxidation

    NARCIS (Netherlands)

    Kuipers, J.; Bruning, H.; Yntema, D.R.; Rijnaarts, H.H.M.

    2015-01-01

    A method is presented to distribute small scale light sources in a photocatalytic slurry reactor. The goal of distributing the light sources is to increase photon transfer efficiency, and thereby increasing the reaction rate, compared to using one single light source. The light sources used in this

  14. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    Science.gov (United States)

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  15. Efficient distributed control of light-emitting diode array lighting systems.

    Science.gov (United States)

    Dong, Jianfei; Pandharipande, Ashish

    2012-07-15

    We consider illumination rendering with distributed control of a lighting system with an array of light-emitting diodes (LEDs). As low-cost microprocessors become standard components in LED drivers, distributing the computation of the control signals to individual LED drivers becomes attractive. Common distributed control algorithms require each individual controller to exchange information with all the others and process it. This incurs too large a communication and processing overhead for a low-cost local controller. In this Letter, we propose a distributed control algorithm for achieving global illumination rendering, wherein a controller only needs to communicate within a selected neighborhood. We present design criteria for defining the communication neighborhood and study its impact on rendering performance.

  16. An optically stabilized fast-switching light emitting diode as a light source for functional neuroimaging.

    Directory of Open Access Journals (Sweden)

    Daniel A Wagenaar

    Full Text Available Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 μs, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes.

  17. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    Science.gov (United States)

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum.

  18. Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer

    Science.gov (United States)

    Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong

    2016-09-01

    Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.

  19. High-flux focusable color-tunable and efficient white-light-emitting diode light engine for stage lighting

    Science.gov (United States)

    Chakrabarti, Maumita; Pedersen, Henrik Chresten; Petersen, Paul Michael; Poulsen, Christian; Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten

    2016-08-01

    A color mixing light-emitting diode (LED) light engine that can replace 2-kW halogen-Fresnel spotlight with high-luminous flux in excess of 20,000 lm is reported for applications in professional stage and studio lighting. The light engine focuses and mixes the light from 210 LEDs of five different colors through a microlens array (MA) at the gate of Ø50 mm. Hence, it produces homogeneous color-mixed tunable white light from 3000 to 6000 K that can be adjustable from flood to spot position providing 10% translational loss, whereas the corresponding loss from the halogen-Fresnel spotlight is 37%. The design, simulation, and optimization of the light engine is described and compared to the experimental characterization of a prototype. The light engine is optimized through the simulated design of reflector, total internal reflection lens, and MA, as well as the number of LEDs. An optical efficiency of 59% and a luminous efficacy of 33 lm/W are achieved, which is three times higher than the 2-kW halogen-Fresnel spotlight. In addition to having color rendering of color rendering index Ra>85 and television lighting consistency index 12>70, the dimmable and tunable white light can be color controlled during the operational time.

  20. White light emitting diode based on InGaN chip with core/shell quantum dots

    Science.gov (United States)

    Shen, Changyu; Hong, Yan; Ma, Jiandong; Ming, Jiangzhou

    2009-08-01

    Quantum dots have many applications in optoelectronic device such as LEDs for its many superior properties resulting from the three-dimensional confinement effect of its carrier. In this paper, single chip white light-emitting diodes (WLEDs) were fabricated by combining blue InGaN chip with luminescent colloidal quantum dots (QDs). Two kinds of QDs of core/shell CdSe /ZnS and core/shell/shell CdSe /ZnS /CdS nanocrystals were synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. This two kinds of QDs exhibited high photoluminescence efficiency with a quantum yield more than 41%, and size-tunable emission wavelengths from 500 to 620 nm. The QDs LED mainly consists of flip luminescent InGaN chip, glass ceramic protective coating, glisten cup, QDs using as the photoluminescence material, pyroceram, gold line, electric layer, dielectric layer, silicon gel and bottom layer for welding. The WLEDs had the CIE coordinates of (0.319, 0.32). The InGaN chip white-light-emitting diodes with quantum dots as the emitting layer are potentially useful in illumination and display applications.

  1. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials.

    Science.gov (United States)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9'-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9',9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  2. Synthesis of Soluble Host Materials for Highly Efficient Red Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Suh, Min Chul; Park, So-Ra; Cho, Ye Ram; Shin, Dong Heon; Kang, Pil-Gu; Ahn, Dong A; Kim, Hyung Suk; Kim, Chul-Bae

    2016-07-20

    New soluble host materials with benzocarbazole and triphenyltriazine moieties, 11-[3-(4,6-diphenyl-[1,3,5]triazin-2-yl)-phenyl]-11H-benzo[a]carbazole and 11-[3'-(4,6-diphenyl-[1,3,5]triazin-2-yl)-biphenyl-4-yl]-11H-benzo[a]carbazole, were synthesized for highly efficient red phosphorescent organic light-emitting diodes (PHOLED). Hole-transporting benzocarbazole moiety and electron transporting triphenyltriazine moiety, which are severely twisted each other enhance the solubility of those materials in common organic solvent. The improved solubility from this molecular design could be due to a reduced π-π stacking interaction, which gives a very uniform film morphology after spin coating of those materials. As a result, we obtained highly efficient soluble PHOLEDs combined with an evaporated blue common layer structure. The resultant red PHOLED exhibited the maximum current efficiency as well as external quantum efficiency values up to 23.7 cd/A and 19.0%.

  3. White light-emitting electrochemical cells based on the Langmuir-Blodgett technique.

    Science.gov (United States)

    Fernández-Hernández, Jesús M; De Cola, Luisa; Bolink, Henk J; Clemente-León, Miguel; Coronado, Eugenio; Forment-Aliaga, Alicia; López-Muñoz, Angel; Repetto, Diego

    2014-11-25

    Light-emitting electrochemical cells (LECs) showing a white emission have been prepared with Langmuir-Blodgett (LB) films of the metallosurfactant bis[2-(2,4-difluorophenyl)pyridine][2-(1-hexadecyl-1H-1,2,3-triazol-4-yl)pyridine]iridium(III) chloride (1), which work with an air-stable Al electrode. They were prepared by depositing a LB film of 1 on top of a layer of poly(N,N'-diphenyl-N,N'-bis(4-hexylphenyl)-[1,1'-biphenyl]-4,4'-diamine (pTPD) spin-coated on indium tin oxide (ITO). The white color of the electroluminescence of the device contrasts with the blue color of the photoluminescence of 1 in solution and within the LB films. Furthermore, the crystal structure of 1 is reported together with the preparation and characterization of the Langmuir monolayers (π-A compression isotherms and Brewster angle microscopy (BAM)) and LB films of 1 (IR, UV-vis and emission spectroscopy, X-ray photoelectron spectroscopy (XPS), specular X-ray reflectivity (SXR), and atomic force microscopy (AFM)).

  4. Efficient white organic light-emitting diodes based on iridium complex sensitized copper complex

    Energy Technology Data Exchange (ETDEWEB)

    Su Zisheng; Li Wenlian; Chu Bei; Xu Maoliang; Che Guangbo; Wang Dan; Han Liangliang; Li Xiao; Zhang Dongyu; Bi Defeng; Chen Yiren [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)], E-mail: wllioel@yahoo.com.cn

    2008-04-21

    Efficient double emission-layer white organic light-emitting diodes comprising a yellow emission from bis[(4,6-difluorophenyl)-pyridinato-N,C{sup 2}](picolinato)Ir(III) (FIrpic) sensitized [Cu(bis[2-(diphenylphosphino)phenyl]ether) (6,7-Dicyanodipyrido[2,2-d : 2', 3'-f] quinoxaline)]BF{sub 4}(Cu{sup I} complex) and a blue emission from 4, 4'-bis(2,2'-diphenylvinyl)-1, 1'-biphenyl (DPVBi) were demonstrated. The emission spectrum can be fine tuned by effectively controlling the thicknesses of the two emission layers. The optimized device with 18 nm FIrpic and the Cu{sup I} complex codoped 4, 4'-N,N'-dicarbazole-biphenyl layer and 12 nm DPVBi layer shows a maximum current efficiency of 8.5 cd A{sup -1}, a maximum power efficiency of 5.3 lm W{sup -1} and a maximum luminance of 3290 cd m{sup -2}. Moreover, the device exhibits a CIE coordinate of (0.345, 0.357) at a bias of 8 V and a slight colour variation with increased voltage from 6 to 16 V.

  5. Influence of Ambient Gas on the Performance of Quantum-Dot Light-Emitting Diodes.

    Science.gov (United States)

    Lin, Qingli; Chen, Fei; Wang, Hongzhe; Shen, Huaibin; Wang, Aqiang; Wang, Lei; Zhang, Fengjuan; Guo, Fang; Li, Lin Song

    2016-05-11

    Here, we report the influence of the ambient gas on the performance of quantum dot-based light-emitting diodes (QD-LEDs). The blue QD-LED devices with the maximum external quantum efficiency of 8.1% and the turn-on voltage of 2.7 V could be obtained in air. The efficiency decreases by 12% and turn-on voltage increases by 0.3 V relative to the control devices fabricated in a N2-filled glovebox. The histogram of maximum external quantum efficiency (EQE) shows average peak EQE of 8.08% and a low standard deviation of 3.63%, suggesting high reproducibility. Correspondingly, the operational lifetime of 376 h is obtained, which is on par with 408 h of devices fabricated in N2. For the devices fabricated in air, relatively high efficiency could be maintained only at low voltages, because of the near balanced injection of carriers under low bias. The measurements of contact potential difference, chemical composition, and surface roughness are used to verify the variation of energy level and surface morphology of films influenced by different ambient gas. These results would offer reasonable guidance for the application of QD-LEDs in actual large-scale production.

  6. Fabrication Methods and Luminescent Properties of ZnO Materials for Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Ching-Ting Lee

    2010-03-01

    Full Text Available Zinc oxide (ZnO is a potential candidate material for optoelectronic applications, especially for blue to ultraviolet light emitting devices, due to its fundamental advantages, such as direct wide band gap of 3.37 eV, large exciton binding energy of 60 meV, and high optical gain of 320 cm−1 at room temperature. Its luminescent properties have been intensively investigated for samples, in the form of bulk, thin film, or nanostructure, prepared by various methods and doped with different impurities. In this paper, we first review briefly the recent progress in this field. Then a comprehensive summary of the research carried out in our laboratory on ZnO preparation and its luminescent properties, will be presented, in which the involved samples include ZnO films and nanorods prepared with different methods and doped with n-type or p-type impurities. The results of ZnO based LEDs will also be discussed.

  7. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    Science.gov (United States)

    Wang, Peng; Bai, Xue; Sun, Chun; Zhang, Xiaoyu; Zhang, Tieqiang; Zhang, Yu

    2016-08-01

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  8. Obtaining mass parameters of compact objects from red-blue shifts emitted by geodesic particles around them

    CERN Document Server

    Becerril, Ricardo; Nucamendi, Ulises

    2016-01-01

    The mass parameters of compact objects such as Boson Stars, Schwarzschild, Reissner Nordstrom and Kerr black holes are computed in terms of the measurable redshift-blueshift (zred, zblue) of photons emitted by particles moving along circular geodesics around these objects and the radius of their orbits. We found bounds for the values of (zred, zblue) that may be observed. For the case of Kerr black hole, recent observational estimates of SrgA\\* mass and rotation parameter are employed to determine the corresponding values of these red-blue shifts.

  9. Visible Color Tunable Emission in Three-Dimensional Light Emitting Diodes by MgO Passivation of Pyramid Tip.

    Science.gov (United States)

    Kim, Ji-Hyun; Ye, Byeong Uk; Park, Joonmo; Yoo, Chul Jong; Kim, Buem Joon; Jeong, Hu Young; Hur, Jin-Hoe; Kim, Jong Kyu; Lee, Jong-Lam; Baik, Jeong Min

    2015-12-23

    We demonstrated visible color tunable three-dimensional (3D) pyramidal light emitting diodes by depositing the MgO on and near the tip of the pyramid as an insulating layer. Here, we show that the degradation of the materials (i.e., p-GaN) crystallinity and the built-in electric field due to the nanoscale geometry of the tip region is responsible for the large leakage current observed in LEDs. Confocal scanning electroluminescence microscopy images clearly showed that the intensity of the light emitted out of the side facet of the pyramid is much higher than that of the light extracted out of the tip surface, indicating that the MgO layer prohibited the carrier injection to the MQWs layer, suppressing the leakage occurring at or near the tip region of the pyramids. The color range of the LEDs can be also tuned by using the MgO layer, a blue-shift by 10.3 nm in the wavelength. This technique is simple and scalable, providing a promising solution for developing 3D pyramidal LEDs with low leakage current and controllable light emission.

  10. Synthesis and Characterization of ZnS:Eu3+ - CMC nanophosphors emitting white light over broad excitation range

    Science.gov (United States)

    de, Dilip; Ahemen, Ikorya; Bruno, Viena

    In this paper we report for the first time the synthesis and characterization of nanophosphors of ZnS:Eu3+ - embedded in sodium carboxymethyl cellulose matrix (CMC) that emits high quality white light over broad range of excitation. The nano-phosphors of cubic (zinc blende) structure were synthesized using precipitation technique with doping concentrations of Eu3+ ions 1 mol% and 5 mol%. The crystal sizes were 2.56 nm and 2.91 nm respectively. Annealing at 300 oC in a sulfur-rich atmosphere altered the crystal size to 4.35 nm and 3.65 nm respectively and the band gap from 4.2 eV to 3.76 eV and 3.81 eV respectively. The as-synthesized samples gave pure orange-red emission when excited at wavelengths of 394 nm and 465 nm. After thermal annealing of the samples, a broad emission band in the blue-green region assigned to defect related states emerged or were enhanced. Also enhanced were the emission lines of Eu3+ ions in the orange-red region. A combination of these two transitions gave white light of different shades (recorded on the CIE 1931 chromaticity diagram) from cool white through Day-light to warm white light, depending on Eu3+ concentration and the excitation wavelengths (UV-330 to blue 465 nm), thus showing great potential applications of these nano-phosphors.

  11. Effects of white light-emitting diode (LED) light exposure with different correlated color temperatures (CCTs) on human lens epithelial cells in culture.

    Science.gov (United States)

    Xie, Chen; Li, Xiuyi; Tong, Jianping; Gu, Yangshun; Shen, Ye

    2014-01-01

    Cataract is the major cause for legal blindness in the world. Oxidative stress on the lens epithelial cells (hLECs) is the most important factor in cataract formation. Cumulative light-exposure from widely used light-emitting diodes (LEDs) may pose a potential oxidative threat to the lens epithelium, due to the high-energy blue light component in the white-light emission from diodes. In the interest of perfecting biosafety standards for LED domestic lighting, this study analyzed the photobiological effect of white LED light with different correlated color temperatures (CCTs) on cultured hLECs. The hLECs were cultured and cumulatively exposed to multichromatic white LED light with CCTs of 2954, 5624, and 7378 K. Cell viability of hLECs was measured by Cell Counting Kit-8 (CCK-8) assay. DNA damage was determined by alkaline comet assay. Intracellular reactive oxygen species (ROS) generation, cell cycle, and apoptosis were quantified by flow cytometry. Compared with 2954 and 5624 K LED light, LED light having a CCT of 7378 K caused overproduction of intracellular ROS and severe DNA damage, which triggered G2 /M arrest and apoptosis. These results indicate that white LEDs with a high CCT could cause significant photobiological damage to hLECs.

  12. A comparison of blue light and caffeine effects on cognitive function and alertness in humans.

    Directory of Open Access Journals (Sweden)

    C Martyn Beaven

    Full Text Available The alerting effects of both caffeine and short wavelength (blue light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention.

  13. A comparison of blue light and caffeine effects on cognitive function and alertness in humans.

    Science.gov (United States)

    Beaven, C Martyn; Ekström, Johan

    2013-01-01

    The alerting effects of both caffeine and short wavelength (blue) light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention.

  14. SPEAKING IN LIGHT - Jupiter radio signals as deflections of light-emitting electron beams in a vacuum chamber

    Science.gov (United States)

    Petrovic, K.

    2015-10-01

    Light emitting electron beam generated in a vacuum chamber is used as a medium for visualizing Jupiter's electromagnetic radiation. Dual dipole array antenna is receiving HF radio signals that are next amplified to radiate a strong electromagnetic field capable of influencing the propagation of electron beam in plasma. Installation aims to provide a platform for observing the characteristics of light emitting beam in 3D, as opposed to the experiments with cathode ray tubes in 2-dimensional television screens. Gas giant 'speaking' to us by radio waves bends the light in the tube, allowing us to see and hear the messages of Jupiter - God of light and sky.

  15. High-Efficiency Saturated Red Bilayer Light-Emitting Diodes: Comparative Studies with Devices from Blend of the Same Light-Emitting Polymers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; HOU Qiong; MO Yue-Qi; PENG Jun-Biao; CAO Yong

    2006-01-01

    @@ High-efficient saturated red light-emitting diodes are realized based on a bilayer of phenyl-substituted poly [p-phenylene vinylene] derivative (P-PPV) and copolymer (PFO-DBT15) of 9,9-dioctylfluorene (DOF) and 4,7-di2-thienyl-2,1,3-benzothiadiazole (DBT).

  16. Semipolar III-nitride light-emitting diodes with negligible efficiency droop up to ˜1 W

    Science.gov (United States)

    Oh, Sang Ho; Yonkee, Benjamin P.; Cantore, Michael; Farrell, Robert M.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2016-10-01

    We demonstrate 1 mm2 blue light-emitting diodes with a negligible efficiency droop up to ˜1 W. LEDs with 12- to 14-nm-thick single quantum wells were grown by metalorganic chemical vapor deposition on a free-standing semipolar (20\\bar{2}\\bar{1}) GaN substrate. Packaged devices showed an external quantum efficiency of 42.3% at 20 A/cm2 with a negligible efficiency droop up to 991 mW at 900 mA. At 900 mA, the thermal droop and hot/cold factor were 8.2% and 0.92, respectively. The adoption of a thick active region resulted in excellent optical and thermal performance characteristics that are suitable for high-power lighting applications.

  17. Synthesis and Property of New Propeller Shaped Emitting Materials for Organic Light-Emitting Devices.

    Science.gov (United States)

    Kang, Seokwoo; Lee, Hayoon; Kim, Beomjin; Park, Youngil; Park, Jongwook

    2016-03-01

    New propeller type emitting compound, namely 3,6-di-anthracen-9-yl-9,10-bis-(4-anthracen-9-yi-phenyl)-phenanthrene[TAnDAP] and 3,6-bis-(10-phenyl-anthracen-9-yl)-9,10-bis-[4-(10-phenyl-anthracen-9-yl)-phenyl]-phenanthrene [TAnPDAP] were synthesized through Suzuki and McMurry reactions. We investigated their physical properties such as optical, electrochemical, and electroluminescent properties. The two compounds were used as an emitting layer in OLED devices: ITO/2-TNATA (60 nm)/NPB (15 nm)/non-doped: TAnDAP or TAnPDAP (35 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). The TAnDAP OLED device showed C.I.E. value of (0.28, 0.41) and luminance efficiency of 3.81 cd/A at 10 mA/cm2. The TAnPDAP device showed C.I.E. value of (0.20, 0.27) and high luminance efficiency of 5.40 cd/A at 10 mA/cm2. TAnPDAP was found to show better luminance efficiency and C.I.E. value than TAnDAP because it has a bulky 9-phenylanthracene.

  18. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting

    Science.gov (United States)

    Krames, Michael R.; Shchekin, Oleg B.; Mueller-Mach, Regina; Mueller, Gerd O.; Zhou, Ling; Harbers, Gerard; Craford, M. George

    2007-06-01

    Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for “warm” white color temperatures (~3000 4000 K) and high color rendering (CRI > 80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1 x 1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs.

  19. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghwan, E-mail: JH.KIM@lucid.msl.titech.ac.jp; Miyokawa, Norihiko; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Toda, Yoshitake [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan)

    2016-01-15

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  20. Efficient light emitting devices based on phosphorescent partially doped emissive layers

    KAUST Repository

    Yang, Xiaohui

    2013-05-29

    We report efficient organic light emitting devices employing an ultrathin phosphor emissive layer. The electroluminescent spectra of these devices can be tuned by introducing a low-energy emitting phosphor layer into the emission zone. Devices with the emissive layer consisting of multiple platinum-complex/spacer layer cells show a peak external quantum efficiency of 18.1%, which is among the best EQE values for platinum-complex based light emitting devices. Devices with an ultrathin phosphor emissive layer show stronger luminance decay with the operating time compared to the counterpart devices having a host-guest emissive layer.

  1. Pulsed Ultraviolet Light Emitting Diodes for Advanced Oxidation of Tartrazine

    Science.gov (United States)

    2015-03-26

    used as a surrogate organic compound . Low pressure Mercury -based lamps currently used in the treatment of water pose potential health risks if...emitted diode (UV LED). Tartrazine was used as a surrogate organic compound . Low pressure Mercury -based lamps currently used in the treatment of...and longer operating life compared to the mercury -based lamps. The apparent first order reaction rate constant for tartrazine degradation

  2. Emission properties of an organic light-emitting diode patterned by a photoinduced autostructuration process

    Science.gov (United States)

    Hubert, C.; Fiorini-Debuisschert, C.; Hassiaoui, I.; Rocha, L.; Raimond, P.; Nunzi, J.-M.

    2005-11-01

    The photoluminescence properties of a periodically structured organic light-emitting diode are presented. Patterning is achieved using an original single-step autostructuration technique based on photoinduced effects in azo-polymer films. We show that single beam laser irradiation can lead to the induction of regular two-dimensional surface relief gratings. The waveguide properties of these microstructures as well as their effect on the emission properties of a light-emitting material are studied. We demonstrate a new straightforward technique to improve external light emission efficiency by outcoupling part of the light that was initially guided into the different diode layers.

  3. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa.

    Science.gov (United States)

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. "Batavia" (green) and cv. "Lollo Rossa" (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m(-2) s(-1) for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m(-2) s(-1) from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m(-2) s(-1) from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m(-2) s(-1) from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m(-2) s(-1) from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent.

  4. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    Science.gov (United States)

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light.

  5. Feeling blue? Blue phosphors for OLEDs

    Directory of Open Access Journals (Sweden)

    Hungshin Fu

    2011-10-01

    Full Text Available Research on organic light emitting diodes (OLEDs has been revitalized, partly due to the debut of the OLED TV by SONY in 2008. While there is still plenty of room for improvement in efficiency, cost-effectiveness and longevity, it is timely to report on the advances of light emitting materials, the core of OLEDs, and their future perspectives. The focus of this account is primarily to chronicle the blue phosphors developed in our laboratory. Special attention is paid to the design strategy, synthetic novelty, and their OLED performance. The report also underscores the importance of the interplay between chemistry and photophysics en route to true-blue phosphors.

  6. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Tarsa, Eric [Cree, Inc., Goleta, CA (United States)

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  7. Stimulatory effects of blue light on the growth, monascin and ankaflavin production in Monascus.

    Science.gov (United States)

    Wang, Changlu; Chen, Di; Chen, Mianhua; Wang, Yurong; Li, Zhenjing; Li, Fengjuan

    2015-05-01

    Light is an important signal for fungi. We analyzed the influence of blue light of various intensities and illumination times on growth, monascin (MS) and ankaflavin (AK) biosyntheses in Monascus strain M9. Blue light changed the color of colonies. The colonies grown in the dark were orange, but turned pale when exposed to continuous blue light. MS production increased by 12.5, 27, and 14.5 % under blue light of 100 lux for 15 min/day, 100 lux for 30 min/day, and 200 lux for 15 min/day, respectively, compared to growth in the dark. AK production increased by 14.4, 22, and 13 % under the same condition. MS and AK production decreased when exposed to blue light of 300 and 450 lux. The expression of pigment biosynthetic genes were analyzed by real-time quantitative PCR and correlated with phenotypic production of MS and AK.

  8. Solution-processable deep red-emitting supramolecular phosphorescent polymer with novel iridium complex for organic light-emitting diodes

    Science.gov (United States)

    Liang, Aihui; Huang, Gui; Wang, Zhiping; Wu, Wenjin; Zhong, Yu; Zhao, Shan

    2016-09-01

    A novel bis(dibenzo-24-crown-8)-functionalized iridium complex with an emission peak at 665 nm was synthesized. Several deep red-emitting supramolecualr phosphorescent polymers (SPPs) as a class of solutionprocessable electroluminescent (EL) emitters were formed by utilizing the efficient non-bonding self-assembly between the resulting iridium complex and bis(dibenzylammonium)-tethered monomers. These SPPs show an intrinsic glass transition with a T g of ca. 90 °C. The photophysical and electroluminescent properties are strongly dependent on the hosts' structures of the supramolecular phosphorescent polymers. The polymer light-emitting diode based on SPP3 displayed a maximal external quantum efficiency (EQE) of 2.14% ph·el-1 and the Commission Internationale de L'Eclairage (CIE) coordinates of (0.70, 0.29).

  9. Silicon light-emitting diodes and lasers photon breeding devices using dressed photons

    CERN Document Server

    Ohtsu, Motoichi

    2016-01-01

    This book focuses on a novel phenomenon named photon breeding. It is applied to realizing light-emitting diodes and lasers made of indirect-transition-type silicon bulk crystals in which the light-emission principle is based on dressed photons. After presenting physical pictures of dressed photons and dressed-photon phonons, the principle of light emission by using dressed-photon phonons is reviewed. A novel phenomenon named photon breeding is also reviewed. Next, the fabrication and operation of light emitting diodes and lasers are described The role of coherent phonons in these devices is discussed. Finally, light-emitting diodes using other relevant crystals are described and other relevant devices are also reviewed.

  10. Microwave assisted transformation of N,N-diphenylamine as precursors of organic light emitting diodes (OLED)

    Energy Technology Data Exchange (ETDEWEB)

    Jefri,; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id [Organic Chemistry Research Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    In this research, study on the transformation of N,N-diphenylamine (DPA) using iodine (I2) utilizing solid state Microwave Assisted Organic Synthesis (MAOS) method has been carried out. The reaction was performed by variations of three parameters namely the mole of reagents, the amount and type of solid support (alumina/Al2O3), and the reaction conditions. Experimental results showed that neutral-alumina was a better solid support than basic-alumina. The optimum temperature for the reaction was approximately at 125-133 °C with reaction time of 15 minutes and microwave reactor power at 500-600 W. The separation of the yellowish green product solution with preparative Thin Layer Chromatography (TLC) method using n-hexane:ethyl acetate = 4:1 (v/v) as eluent yielded two fractions (I and II) and both fractions can undergo fluorescence under 365 nm UV light. Based on the LC chromatogram with methanol:water = 95:5 (v/v) as eluent and its corresponding mass spectra (ESI+), fraction I contained three compounds, which were tetracarbazole A, triphenylamine, and impurities in the form of plasticizer such as bis(2-ethylhexyl) phthalate. Fraction II also contained three compounds, which were tetracarbazole C, tetraphenylhydrazine, and plasticizer such as bis(2-ethylhexyl) phthalate. Both FT-IR (KBr disks) and NMR (500 MHz, CDCl{sub 3}) spectra of fraction I and II confirmed the aromatic amine groups in those compounds. The observed fluorescence colors of fraction I and II were violet and violet-blue, respectively. Based on their structures and fluorescence characters, the compounds in fraction I and II have the potential to be used as Organic Light Emitting Diode (OLED) compound precursors.

  11. Blue Light and Ultraviolet Radiation Exposure from Infant Phototherapy Equipment.

    Science.gov (United States)

    Pinto, Iole; Bogi, Andrea; Picciolo, Francesco; Stacchini, Nicola; Buonocore, Giuseppe; Bellieni, Carlo V

    2015-01-01

    Phototherapy is the use of light for reducing the concentration of bilirubin in the body of infants. Although it has become a mainstay since its introduction in 1958, a better understanding of the efficacy and safety of phototherapy applications seems to be necessary for improved clinical practices and outcomes. This study was initiated to evaluate workers' exposure to Optical Radiation from different types of phototherapy devices in clinical use in Italy. During infant phototherapy the staff monitors babies periodically for around 10 min every hour, and fixation of the phototherapy beam light frequently occurs: almost all operators work within 30 cm of the phototherapy source during monitoring procedures, with most of them commonly working at ≤25 cm from the direct or reflected radiation beam. The results of this study suggest that there is a great variability in the spectral emission of equipments investigated, depending on the types of lamps used and some phototherapy equipment exposes operators to blue light photochemical retinal hazard. Some of the equipment investigated presents relevant spectral emission also in the UVA region. Taking into account that the exposure to UV in childhood has been established as an important contributing factor for melanoma risk in adults and considering the high susceptibility to UV-induced skin damage of the newborn, related to his pigmentary traits, the UV exposure of the infant during phototherapy should be "as low as reasonably achievable," considering that it is unnecessary to the therapy. It is recommended that special safety training be provided for the affected employees: in particular, protective eyewear can be necessary during newborn assistance activities carried out in proximity of some sources. The engineering design of phototherapy equipment can be optimized. Specific requirements for photobiological safety of lamps used in the phototherapy equipment should be defined in the safety product standard for such

  12. Spectral-distortion-free light extraction from organic light-emitting diodes using nanoscale photonic crystal

    Science.gov (United States)

    Shim, Yong Sub; Nyun Kim, Kyu; Hwang, Ju Hyun; Hwee Park, Cheol; Jung, Sun-Gyu; Park, Young Wook; Ju, Byeong-Kwon

    2017-01-01

    Despite their generally good performance, photonic crystal (PC)-based organic light-emitting diodes (OLEDs) encounter a serious spectral distortion problem. In this study, we obtained spectral-distortion-free PC-based OLEDs by lowering the pitch (period of the PC) to less than a half the emission wavelength, using a simple and scalable nanoscale process of laser interference lithography. The demonstrated OLEDs with 200 nm pitch-size nanoscale periodic hole arrays exhibited negligible changes in the Internal Commission on Illumination 1931 color coordinate of Δ (0.0104, 0.0078) and a peak wavelength of Δ0 nm (relative to the reference), while maintaining the function of the internal light extraction layer, manifested as a 23% enhancement of the external quantum efficiency (EQE). The enhancement of the EQE reached 85% after incorporating a micro-lens array. The improved light extraction, spectral-distortion-free characteristic, and excellent color stability over a broad range of viewing angles were successfully derived by performing finite difference time domain simulations.

  13. Freestanding GaN-based light-emitting diode membranes on Y3Al5O12:Ce3+ crystal phosphor plate for efficient white light emission

    Science.gov (United States)

    Feng, Lungang; Li, Yufeng; Xiong, Han; Wang, Shuai; Wang, Jiangteng; Ding, Wen; Zhang, Ye; Yun, Feng

    2016-08-01

    GaN-based light-emitting diode (LED) membranes were peeled from the substrate using electrochemical etching of the bottom sacrificial layer. The freestanding membranes were transferred onto a Y3Al5O12:Ce3+ (YAG:Ce3+) crystal phosphor plate to realize a compact white light source. Verified by the Raman test, the initial strain within the original GaN layers was greatly released after the exfoliation process, which induced alleviation of the quantum confined stark effect. The electroluminescence measurement of a blue LED membranes-on-YAG:Ce3+ plate-structured device was conducted exhibiting color coordinates and a correlated color temperature of (0.3367,0.4525) and 5450 K at 10 mA, respectively.

  14. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, D. [Departamento de Ciência dos Materiais e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica (Portugal); Pinto, A.; Califórnia, A.; Gomes, J. [CeNTI – Centro de Nanotecnologia, Materiais Técnicos, Funcionais e Inteligentes, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão (Portugal); Pereira, L., E-mail: luiz@ua.pt [Departmento de Física e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2016-09-15

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  15. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    Science.gov (United States)

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-03

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized.

  16. Large Size Color-tunable Electroluminescence from Cationic Iridium Complexes-based Light-emitting Electrochemical Cells

    Science.gov (United States)

    Zeng, Qunying; Li, Fushan; Guo, Tailiang; Shan, Guogang; Su, Zhongmin

    2016-06-01

    Solution-processable light-emitting electrochemical cells (LECs) with simple device architecture have become an attractive candidate for application in next generation lighting and flat-panel displays. Herein, single layer LECs employing two cationic Ir(III) complexes showing highly efficient blue-green and yellow electroluminescence with peak current efficiency of 31.6 cd A‑1 and 40.6 cd A‑1, respectively, have been reported. By using both complexes in the device, color-tunable LECs with a single spectral peak in the wavelength range from 499 to 570 nm were obtained by varying their rations. In addition, the fabrication of efficient LECs was demonstrated based on low cost doctor-blade coating technique, which was compatible with the roll to roll fabrication process for the large size production. In this work, for the first time, 4 inch LEC devices by doctor-blade coating were fabricated, which exhibit the efficiencies of 23.4 cd A‑1 and 25.4 cd A‑1 for the blue-green and yellow emission, respectively. The exciting results indicated that highly efficient LECs with controllable color could be realized and find practical application in large size lighting and displays.

  17. A Light Scattering Layer for Internal Light Extraction of Organic Light-Emitting Diodes Based on Silver Nanowires.

    Science.gov (United States)

    Lee, Keunsoo; Shin, Jin-Wook; Park, Jun-Hwan; Lee, Jonghee; Joo, Chul Woong; Lee, Jeong-Ik; Cho, Doo-Hee; Lim, Jong Tae; Oh, Min-Cheol; Ju, Byeong-Kwon; Moon, Jaehyun

    2016-07-13

    We propose and fabricate a random light scattering layer for light extraction in organic light-emitting diodes (OLEDs) with silver nanodots, which were obtained by melting silver nanowires. The OLED with the light scattering layer as an internal light extraction structure was enhanced by 49.1% for the integrated external quantum efficiency (EQE). When a wrinkle structure is simultaneously used for an external light extraction structure, the total enhancement of the integrated EQE was 65.3%. The EQE is maximized to 65.3% at a current level of 2.0 mA/cm(2). By applying an internal light scattering layer and wrinkle structure to an OLED, the variance in the emission spectra was negligible over a broad viewing angle. Power mode analyses with finite difference time domain (FDTD) simulations revealed that the use of a scattering layer effectively reduced the waveguiding mode while introducing non-negligible absorption. Our method offers an effective yet simple approach to achieve both efficiency enhancement and spectral stability for a wide range of OLED applications.

  18. Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes.

    Science.gov (United States)

    Moon, Yoon-Jong; Moon, Daeyoung; Jang, Jeonghwan; Na, Jin-Young; Song, Jung-Hwan; Seo, Min-Kyo; Kim, Sunghee; Bae, Dukkyu; Park, Eun Hyun; Park, Yongjo; Kim, Sun-Kyung; Yoon, Euijoon

    2016-05-11

    Two-dimensional high-index-contrast dielectric gratings exhibit unconventional transmission and reflection due to their morphologies. For light-emitting devices, these characteristics help guided modes defeat total internal reflections, thereby enhancing the outcoupling efficiency into an ambient medium. However, the outcoupling ability is typically impeded by the limited index contrast given by pattern media. Here, we report strong-diffraction, high-index-contrast cavity engineered substrates (CESs) in which hexagonally arranged hemispherical air cavities are covered with a 80 nm thick crystallized alumina shell. Wavelength-resolved diffraction measurements and Fourier analysis on GaN-grown CESs reveal that the high-index-contrast air/alumina core/shell patterns lead to dramatic excitation of the low-order diffraction modes. Large-area (1075 × 750 μm(2)) blue-emitting InGaN/GaN light-emitting diodes (LEDs) fabricated on a 3 μm pitch CES exhibit ∼39% enhancement in the optical power compared to state-of-the-art, patterned-sapphire-substrate LEDs, while preserving all of the electrical metrics that are relevant to LED devices. Full-vectorial simulations quantitatively demonstrate the enhanced optical power of CES LEDs and show a progressive increase in the extraction efficiency as the air cavity volume is expanded. This trend in light extraction is observed for both lateral- and flip-chip-geometry LEDs. Measurements of far-field profiles indicate a substantial beaming effect for CES LEDs, despite their few-micron-pitch pattern. Near-to-far-field transformation simulations and polarization analysis demonstrate that the improved extraction efficiency of CES LEDs is ascribed to the increase in emissions via the top escape route and to the extraction of transverse-magnetic polarized light.

  19. Photoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Lihong Liu, Rong-Jun Xie, Naoto Hirosaki, Takashi Takeda, Chen-ning Zhang, Jiguang Li and Xudong Sun

    2011-01-01

    Full Text Available We have synthesized Yb2+-activated Si6−zAlzOzN8−z (0.05≤z≤2.3, 0.03 mol% ≤Yb2+≤0.7 mol% green phosphors by solid-state reaction at 1900 °C for 2 h under a nitrogen pressure of 1.0 MPa. Phase purity, photoluminescence and its thermal quenching were investigated. A single phase was obtained for all values of z and Yb2+ concentration. A distinct emission band was observed at 540 nm originating from the 5d–4f electronic transition in Yb2+ under 480 nm excitation. The photoluminescence properties mainly depended on the Yb2+ concentration and chemical composition of the matrix. The resultant phosphor showed high thermal stability, that is, the emission intensity at 150 °C was about 82% of that measured at room temperature. The experimental results indicate that β-SiAlON:Yb2+ is a potential green phosphor for white light-emitting diodes (LEDs, which use blue LEDs as the primary light source.

  20. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City

    Energy Technology Data Exchange (ETDEWEB)

    Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R.

    2012-09-30

    A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.