WorldWideScience

Sample records for blue led solution

  1. 'No blue' LED solution for photolithography room illumination

    DEFF Research Database (Denmark)

    Ou, Haiyan; Corell, Dennis Dan; Dam-Hansen, Carsten

    2010-01-01

    This paper explored the feasibility of using a LED-based bulb as the illumination light source for photolithography room. A no-blue LED was designed, and the prototype was fabricated. The spectral power distribution of both the LED bulb and the yellow fluorescent tube was measured. Based on that...... color rendering ability than the YFT. Furthermore, LED solution has design flexibility to improve it further. The prototype has been tested with photoresist SU8-2005. Even after 15 days of illumination, no effect was observed. So this LED-based solution was demonstrated to be a very promising light...... source for photolithography room illumination due to its better color rendering in addition to energy efficiency, long life time and design flexibility....

  2. Modeling of spectral characteristics of blue LEDs

    DEFF Research Database (Denmark)

    Thorseth, Anders

    2010-01-01

    are expected to vary with current and junction temperature. Commercial high power blue LEDs were measured with respect to spectral distribution and chromaticity and the result was compared with the model predictions. We have found that the models predict significantly different results with respect...

  3. Blue laser diode (LD) and light emitting diode (LED) applications

    Science.gov (United States)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  4. Nobel Prize in Physics: The birth of the blue LED

    Science.gov (United States)

    Nanishi, Yasushi

    2014-12-01

    The development of practical blue LEDs required great perseverance by several Japanese scientists who had to learn how to fabricate high-quality films of GaN and effectively dope them to create light-emitting p-n junctions.

  5. LED 蓝光危害研究%Research of LED Blue Light Hazard

    Institute of Scientific and Technical Information of China (English)

    赵介军; 乔波; 过峰

    2015-01-01

    随着人们对于照明产品光生物效应的关注, LED照明产品的光生物辐射安全问题,尤其是视网膜蓝光危害已成为人们对于LED产品望而却步的一个重要原因。通过研究LED的蓝光危害,分析了LED蓝光危害产生的原因和可能对人体造成的伤害。并通过实验调研市场上LED照明产品的蓝光危害现状,阐述了如何正确的使用LED产品,从而有效避免蓝光辐射危害。%LED lighting products with its beneficial characteristics, such as energy saving, environmental protection, long life, small size, and etc, have gradually entered people’s life.People started to care about the photobiological effects of lighting products.The photobiological radiation safety of LED lighting products, especially the retinal blue light hazard has become an important reason why people do not choose LED products. This paper analyzed the reasons and their possible harms to the human body which may be caused by LED blue light hazard.And by performing research on current situation of LED lighting products blue light hazard in market, it described how to properly use LED products so as to effectively prevent blue light hazards.

  6. Evaluation of cotton-fabric bleaching using hydrogen peroxide and Blue LED

    Science.gov (United States)

    de Oliveira, Bruno P.; Moriyama, Lilian T.; Bagnato, Vanderlei S.

    2015-06-01

    The raw cotton production requires multiple steps being one of them the removal of impurities acquired during previous processes. This procedure is widely used by textile industries around the world and is called bleaching. The raw cotton is composed by cellulosic and non-cellulosic materials like waxes, pectins and oils, which are responsible for its characteristic yellowish color. The bleaching process aims to remove the non-cellulosic materials concentration in the fabric, increasing its whiteness degree. The most used bleaching method utilizes a bath in an alkali solution of hydrogen peroxide, stabilizers and buffer solutions under high temperature. In the present study we evaluated the possibility of using a blue illumination for the bleaching process. We used blue LEDs (450 nm) to illuminate an acid hydrogen peroxide solution at room temperature. The samples treated by this method were compared with the conventional bleaching process through a colorimetric analysis and by a multiple comparison visual inspection by volunteers. The samples were also studied by a tensile test in order to verify the integrity of the cloth after bleaching. The results of fabric visual inspection and colorimetric analysis showed a small advantage for the sample treated by the standard method. The tensile test showed an increasing on the yield strength of the cloth after blue light bleaching. The presented method has great applicability potential due to the similar results compared to the standard method, with relative low cost and reduced production of chemical waste.

  7. Effect of phototherapy with turquoise vs. blue LED light of equal irradiance in jaundiced neonates

    DEFF Research Database (Denmark)

    Ebbesen, Finn; Vandborg, Pernille K; Madsen, Poul H;

    2016-01-01

    for phototherapy is light emitting diodes (LEDs). AIM: Compare the bilirubin reducing effect in jaundiced neonates treated either with turquoise- or blue LED light with peak emission at 497 nm or 459 nm, respectively, with equal irradiance on the infants. METHODS: Infants with gestational age ≥33 weeks......) decrease of total serum bilirubin was 35.3% (32.5; 37.3) and 33.1% (27.1; 36.8) for infants treated with turquoise- and blue light, respectively. The difference was non-significant (p=0.53). The decrease was positively correlated to postnatal age and negatively to birth weight. CONCLUSION: Using LED light...... of equal irradiance, turquoise- and blue light had equal bilirubin reducing effect on hyperbilirubinemia of neonates.Pediatric Research (2015); doi:10.1038/pr.2015.209....

  8. Output blue light evaluation for phosphor based smart white LED wafer level packages.

    Science.gov (United States)

    Kolahdouz, Zahra; Rostamian, Ali; Kolahdouz, Mohammadreza; Ma, Teng; van Zeijl, Henk; Zhang, Kouchi

    2016-02-22

    This study presents a blue light detector for evaluating the output light of phosphor based white LED package. It is composed of a silicon stripe-shaped photodiode designed and implemented in a 2 μm BiCMOS process which can be used for wafer level integration of different passive and active devices all in just 5 lithography steps. The final device shows a high selectivity to blue light. The maximum responsivity at 480 nm is matched with the target blue LED illumination. The designed structure have better responsivity compared to simple photodiode structure due to reducing the effect of dead layer formation close to the surface because of implantation. It has also a two-fold increase in the responsivity and quantum efficiency compared to previously similar published sensors.

  9. Real-time detection of dental calculus by blue-LED-induced fluorescence spectroscopy.

    Science.gov (United States)

    Qin, Y L; Luan, X L; Bi, L J; Lü, Z; Sheng, Y Q; Somesfalean, G; Zhou, C N; Zhang, Z G

    2007-05-25

    Successful periodontal therapy requires sensitive techniques to discriminate dental calculus from healthy teeth. The aim of the present study was to develop a fluorescence-based procedure to enable real-time detection and quantification of dental calculus. Thirty human teeth--15 teeth with sub- and supragingival calculus and 15 healthy teeth--covered with a layer of physiological saline solution or blood were illuminated by a focused blue LED light source of 405 nm. Autofluorescence spectra recorded along a randomly selected line stretching over the crown-neck-root area of each tooth were utilized to evaluate a so called calculus parameter R, which was selected to define a relationship between the integrated intensities specific for healthy teeth and for calculus in the 477-497 nm (S(A)) and 628-685 nm (S(B)) wavelength regions, respectively. Statistical analysis was performed and a cut-off threshold of R=0.2 was found to distinguish dental calculus from healthy teeth with 100% sensitivity and specificity under various experimental conditions. The results of the spectral evaluation were confirmed by clinical and histological findings. Automated real-time detection and diagnostics for clinical use were implemented by a corresponding software program written in Visual Basic language. The method enables cost-effective and reliable calculus detection, and can be further developed for imaging applications.

  10. Comparative Study of Lettuce and Radish Grown Under Red and Blue LEDs and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.; Massa, Gioia; Newsham, Gerard; Wheeler, Raymond; Birmele, Michele

    2016-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.

  11. Monolithic blue LED series arrays for high-voltage AC operation

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Jin-Ping [Satellite Venture Business Laboratory, University of Tokushima, Tokushima 770-8506 (Japan); Sato, Hisao; Mizobuchi, Takashi; Morioka, Kenji; Kawano, Shunsuke; Muramoto, Yoshihiko; Sato, Daisuke; Sakai, Shiro [Nitride Semiconductor Co. Ltd., Naruto, Tokushima 771-0360 (Japan); Lee, Young-Bae; Ohno, Yasuo [Department of Electrical and Electronic Engineering, University of Tokushima, Tokushima 770-8506 (Japan)

    2002-12-16

    Design and fabrication of monolithic blue LED series arrays that can be operated under high ac voltage are described. Several LEDs, such as 3, 7, and 20, are connected in series and in parallel to meet ac operation. The chip size of a single device is 150 {mu}m x 120 {mu}m and the total size is 1.1 mm x 1 mm for a 40(20+20) LED array. Deep dry etching was performed as device isolation. Two-layer interconnection and air bridge are utilized to connect the devices in an array. The monolithic series array exhibit the expected operation function under dc and ac bias. The output power and forward voltage are almost proportional to LED numbers connected in series. On-wafer measurement shows that the output power is 40 mW for 40(20+20) LED array under ac 72 V. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  12. Supplemental Blue LED Lighting Array to Improve the Signal Quality in Hyperspectral Imaging of Plants

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Mahlein

    2015-06-01

    Full Text Available Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400–500 nm of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs with an emission peak at 470 nm.

  13. Study on Healing Environment Using Green, Blue and Red LED and Aroma

    Science.gov (United States)

    Miyaho, Noriharu; Konno, Noriko; Shimada, Takamasa

    In this paper we evaluated the effects of 1/f fluctuation of Green LED light emitted from the specific object by using psychological and physiological experimental tests of spectral electroencephalogram (EEG) topography. In addition, we also verified that the combination of appropriate aroma, blue LED light irradiation and music such as “Mozart: Serenade in Eine Kleine Nacht Musik” has improved mental healing conditions. We confirmed the possibility that the effect of “Healing” would be improved by the above mentioned environments.

  14. Compound parabolic concentrator design for red, green, blue, and white LED light mixing

    Science.gov (United States)

    Wei, An-Chi; Lo, Shih-Chieh; Hung, Pei-Fang; Lee, Ju-Yi; Yeh, Hong-Yih; Huang, Hong-Cheng; Li, Chia-Ming

    2016-08-01

    A light-mixing module consisting of a compound parabolic concentrator (CPC) and a fiber for mixing light from red, green, blue, and white (RGBW) LEDs was proposed. The design principle was investigated and a design prototype was demonstrated in a simulation. The simulated results showed that the chromatic nonuniformity was reduced to 1/10 when the fiber length was 40 times the core width, and the module efficiencies were more than 80% and more than 60% when the fiber lengths were 350 mm and 5 m, respectively. The proposed module is suitable for solar lighting compensation or indoor lighting, such as plant-factory lighting.

  15. OSL response bleaching of BeO samples, using fluorescent light and blue LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, Daniela Piai; Caldas, Linda V.E., E-mail: dpgroppo@usp.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The optically stimulated luminescence (OSL) is widely used as a dosimetric technique for many applications. In this work, the OSL response bleaching of BeO samples was studied. The samples were irradiated using a beta radiation source ({sup 90}Sr+{sup 90}Y); the bleaching treatments (fluorescent light and blue LEDs) were performed, and the results were compared. Various optical treatment time intervals were tested until reaching the complete bleaching of the OSL response. The best combination of the time interval and bleaching type was analyzed. (author)

  16. Collimating lamp with well color mixing of red/green/blue LEDs.

    Science.gov (United States)

    Sun, Ching-Cherng; Moreno, Ivan; Lo, Yi-Chien; Chiu, Bo-Chun; Chien, Wei-Ting

    2012-01-02

    A novel light luminaire is proposed and experimentally analyzed, which efficiently mixes and projects the tunable light from red, green and blue (RGB) light-emitting diodes (LEDs). Simultaneous light collimation and color mixing is a challenging task because most collimators separate colors, and most color mixers spread the light beam. Our method is simple and compact; it only uses a short light pipe, a thin diffuser, and a total internal reflection lens. We performed an experimental study to find a balance between optical efficiency and color uniformity by changing light recycling and color mixing.

  17. Blue-U.V. homojunction GaN LEDs fabricated by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Beaumont, B.; Haffouz, S.; Leroux, M.; Lorenzini, P.; Gibart, P. [CNRS, Valbonne (France). CRHEA; Calle, F.; Monroy, E.; Calleja, E.; Munoz, E. [Dipt. de Ingeniera Electronica, E.T.S.I. de Telecomunicacion, Univ. Politecnica de Madrid (Spain)

    1998-08-01

    Blue-U.V. gallium nitride light emitting diodes (LEDs) p-n homojunctions were fabricated by metal organics vapour phase epitaxy (MOVPE). P- doping of GaN has been achieved using bismethyl-cyclopentadienyl Mg, (MeCp){sub 2}Mg. With proper design of the growth chamber and thermal annealing, doping densities up to 2 x 10{sup 18}cm{sup -3} have been reached. Photoluminescence (PL) data reveal, in addition to the shallow acceptors, deep Mg related levels. N-doping is straightforward, Si is easily introduced via silane and results in free carrier concentrations up to 10{sup 19}cm{sup -3}. (orig.) 13 refs.

  18. LED-activated methylene blue-loaded Pluronic-nanogold hybrids for in vitro photodynamic therapy.

    Science.gov (United States)

    Simon, Timea; Boca-Farcau, Sanda; Gabudean, Ana-Maria; Baldeck, Patrice; Astilean, Simion

    2013-12-01

    In this work we introduce a new class of multifunctional photodynamic agents based on the coupling of photosensitizer molecules with noble metal nanoparticles, which can be efficiently activated under low light intensity. The favourable modification of the photophysical properties of methylene blue (MB) in MB-loaded Pluronic-nanogold hybrids (Au-PF127-MB) increases the probability of singlet oxygen generation, which in turn allows the use of a light emitting diode (LED) irradiation source instead of commonly used, more invasive lasers. In this regard, Au-PF127-MB treated human lung carcinoma cells (HTB 177) were irradiated at different light doses, using a 660 nm LED source, the results indicating a dose dependent therapeutic effect, decreasing the cell viability down to 13%. Owing to their effectiveness, biocompatibility and integrated imaging and therapeutic functionalities, Au-PF127-MB could represent an important development in the field of biophotonic applications.

  19. Effect of LED Blue Light on Penicillium digitatum and Penicillium italicum Strains.

    Science.gov (United States)

    Lafuente, María T; Alférez, Fernando

    2015-11-01

    Studies on the antimicrobial properties of light have considerably increased due in part to the development of resistance to actual control methods. This study investigates the potential of light-emitting diodes (LED) blue light for controlling Penicillium digitatum and Penicillium italicum. These fungi are the most devastating postharvest pathogens of citrus fruit and cause important losses due to contaminations and the development of resistant strains against fungicides. The effect of different periods and quantum fluxes, delaying light application on the growth and morphology of P. digitatum strains resistant and sensitive to fungicides, and P. italicum cultured at 20°C was examined. Results showed that blue light controls the growth of all strains and that its efficacy increases with the quantum flux. Spore germination was always avoided by exposing the cultures to high quantum flux (700 μmol m(-2) s(-1) ) for 18 h. Continuous light had an important impact on the fungus morphology and a fungicidal effect when applied at a lower quantum flux (120 μmol m(-2) s(-1) ) to a growing fungus. Sensitivity to light increased with mycelium age. Results show that blue light may be a tool for P. digitatum and P. italicum infection prevention during handling of citrus fruits.

  20. Improvement of electroluminescent property of blue LED coated with highly luminescent yellow-emitting phosphors

    Science.gov (United States)

    Jang, H. S.; Won, Y.-H.; Jeon, D. Y.

    2009-06-01

    White light-emitting diodes (WLEDs) were fabricated by combining InGaN-based blue light-emitting diodes (LEDs) with highly luminescent Tb3Al5O12:Ce3+ (TAG:Ce), Y3Al5O12:Ce3+ (YAG:Ce), and Sr3SiO5:Eu2+ (SS:Eu). The TAG:Ce-based WLED showed a color rendering index ( R a ) of 79 and a luminous efficiency ( η L ) of 34.1 lm/W at 20 mA. The YAG:Ce-based WLED and the SS:Eu-based WLED showed low R a values of 75 and 57 but high luminous efficiency values of 38.9 and 41.3 lm/W at 20 mA, respectively. When a mixture of YAG:Ce and SS:Eu was coated on a blue LED and the resultant WLED operated at 20 mA, the WLED showed a highly bright white light similar to daylight ( η L =40.9 lm/W, color temperature T c =5,716 K, and R a =76). Moreover, the WLED showed stable color coordinates against a considerable variation of applied current.

  1. Localized states in the active region of blue LEDs related to a system of extended defects

    Science.gov (United States)

    Davydov, D. V.; Zakgeim, A. L.; Snegov, F. M.; Sobolev, M. M.; Chernyakov, A. E.; Usikov, A. S.; Shmidt, N. M.

    2007-02-01

    Blue light-emitting diodes (LEDs) based on InGaN/GaN quantum wells (QWs) with different characters of the system of extended defects (SEDs) threading through the active region have been studied using the current-voltage (I U), capacitance-voltage (C V), and deep-level transient spectroscopy (DLTS) measurements in the dark and under illumination with white light in a temperature range from 100 to 450 K. The DLTS curves exhibit broad E1 and E2 peaks with amplitudes dependent on the illumination. This behavior can be explained assuming the presence of localized states related to SEDs in the active region of the LED. The LEDs with more developed SEDs are characterized by a greater concentration of donor-type traps, which leads to an increase in the density of free charge carriers in QWs, which screen the electron-hole interaction. This circumstance can be among the factors responsible for a severalfold decrease in the quantum efficiency of such LEDs.

  2. Plant Growth and Photosynthetic Characteristics of Mesembryanthemum crystallinum Grown Aeroponically under Different Blue- and Red-LEDs.

    Science.gov (United States)

    He, Jie; Qin, Lin; Chong, Emma L C; Choong, Tsui-Wei; Lee, Sing Kong

    2017-01-01

    Mesembryanthemum crystallinum is a succulent, facultative crassulacean acid metabolism (CAM) plant. Plant growth and photosynthetic characteristics were studied when M. crystallinum plants were grown indoor under light emitting diodes (LED)-lighting with adequate water supply. Plants were cultured aeroponically for a 16-h photoperiod at an equal photosynthetic photon flux density of 350 μmol m(-2) s(-1) under different red:blue LED ratios: (1) 100:0 (0B); (2) 90:10 (10B); (3) 80:20 (20B); (4) 70:30 (30B); (5) 50:50 (50B); and (6)100:0 (100B). M. crystallinum grown under 10B condition had the highest shoot and root biomass and shoot/root ratio while those grown under 0B condition exhibited the lowest values. Compared to plants grown under 0B condition, all other plants had similar but higher total chlorophyll (Chl) and carotenoids (Car) contents and higher Chl a/b ratios. However, there were no significant differences in Chl/Car ratio among all plants grown under different red- and blue-LEDs. Photosynthetic light use efficiency measured by photochemical quenching, non-photochemical quenching, and electron transport rate, demonstrated that plants grown under high blue-LED utilized more light energy and had more effective heat dissipation mechanism compared to plants grown under 0B or lower blue-LED. Statistically, there were no differences in photosynthetic O2 evolution rate, light-saturated CO2 assimilation rate (Asat), and light-saturated stomatal conductance (gssat) among plants grown under different combined red- and blue-LEDs but they were significantly higher than those of 0B plants. No statistically differences in total reduced nitrogen content were found among all plants. For the total soluble protein, all plants grown under different combined red- and blue-LEDs had similar values but they were significantly higher than that of plants grown under 0B condition. However, plants grown under higher blue-LEDs had significant higher ribulose-1,5-bisphosphate

  3. Color Degradation of Textiles with Natural Dyes and of Blue Scale Standards Exposed to White LED Lamps:Evaluation of White LED Lamps for Effectiveness as Museum Lighting

    Science.gov (United States)

    Ishii, Mie; Moriyama, Takayoshi; Toda, Masahiro; Kohmoto, Kohtaro; Saito, Masako

    White light-emitting diodes (LED) are well suited for museum lighting because they emit neither UV nor IR radiation, which damage artifacts. The color degradation of natural dyes and blue scale standards (JIS L 0841) by white LED lamps are examined, and the performance of white LED lamps for museum lighting is evaluated. Blue scale standard grades 1-6 and silk fabrics dyed with 22 types of natural dyes classified as mid to highly responsive in a CIE technical report (CIE157:2004) were exposed to five types of white LED lamps using different luminescence methods and color temperatures. Color changes were measured at each 15000 lx·hr (500 lx at fabric surface × 300 hr) interval ten times. The accumulated exposure totaled 150000 lx·hr. The data on conventional white LED lamps and previously reported white fluorescent (W) and museum fluorescent (NU) lamps was evaluated. All the white LED lamps showed lower fading rates compared with a W lamp on a blue scale grade 1. The fading rate of natural dyes in total was the same between an NU lamp (3000 K) and a white LED lamp (2869 K). However, yellow natural dyes showed higher fading rates with the white LED lamp. This tendency is due to the high power characteristic of the LED lamp around 400-500 nm, which possibly contributes to the photo-fading action on the dyes. The most faded yellow dyes were Ukon (Curcuma longa L.) and Kihada (Phellodendron amurense Rupr.), and these are frequently used in historic artifacts such as kimono, wood-block prints, and scrolls. From a conservation point of view, we need to continue research on white LED lamps for use in museum lighting.

  4. Correlation between p-GaN growth environment with electrical and optical properties of blue LEDs

    Science.gov (United States)

    Zulonas, Modestas; Titkov, Ilya E.; Yadav, Amit; Fedorova, Ksenia A.; Tsatsulnikov, Andrei F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Slight, Thomas; Meredith, Wyn; Rafailov, Edik U.

    2016-03-01

    Two blue (450 nm) light-emitting diodes (LED), which only differ in top p-GaN layer growth conditions, were comparatively investigated. I-V, C-V, TLM, Electroluminescence (EL) and Photoluminescence (PL) techniques were applied to clarify a correlation between MOCVD carrier gas and internal properties. The A-structure grown in the pure N2 environment demonstrated better parameters than the B-structure grown in the N2/H2 (1:1) gas mixture. The mixed growth atmosphere leaded to an increase of sheet resistances of p-GaN layer. EL and PL measurements confirmed the advantage of the pure N2 utilization, and C(VR) measurement pointed the increase of static charge concentration near the p-GaN interface in the B structure.

  5. Adsorption Kinetics of Methylene Blue from Aqueous Solutions onto Palygorskite

    Institute of Scientific and Technical Information of China (English)

    PENG Shuchuan; WANG Shisheng; CHEN Tianhu; JIANG Shaotong; HUANG Chuanhui

    2006-01-01

    The adsorption kinetics of methylene blue from aqueous solutions on purified palygorskite was investigated. The kinetics data related to the adsorption of methylene blue from aqueous solutions are in good agreement with the pseudo-second order equation in ranges of initial concentration of 120-210 mg/L, oscillation speed of 100-200 r/min and temperature of 298-328K. The experimental results show that methylene blue is only adsorbed onto the external surface of purified palygorskite,and the apparent adsorption activation energy is 13.92 k J/mol. The relatively low apparent adsorption activation energy suggests that the adsorption of methylene blue involves in not only a chemical, but also a physical adsorption process, and it is controlled by the combination of chemical adsorption and liquid-film diffusion.

  6. Photodynamic antimicrobial chemotherapy (PACT) against oral microorganisms with the use of blue LED associated to curcumin

    Science.gov (United States)

    Sampaio, Fernando José P.; Pires-Santos, Gustavo M.; de Oliveira, Susana C. P. S.; Monteiro, Juliana S. C.; Bagnato, Vanderlei S.; Pinheiro, Antônio L. B.

    2016-03-01

    The use of curcumin as antimicrobial agent has been suggested and this effect may be potentialized by appropriate light. This study evaluated the effect of PACT using blue LED (λ450ηm +/- 5ηm, 220mW and spot of 0.785 cm2) associated to Curcumin at different concentrations (75, 37.5, 18.75, 9.37 and 4.68 μg /mL). Microorganisms from the oral mucosa and the posterior region of the tongue were collected and inoculated into test tubes containing 8mL of TSB medium. For these assays were performed 16 readings. In the assays were used culture plate of 24 wells. To each well was added 400 μL of the suspension containing the microorganisms. Suspensions without curcumin were placed in eight wells. Elsewhere, curcumin was applied varying concentrations with pre-irradiation time of 5 min. After stirring, 200 μL aliquot was taken from each well and the readings were immediately carried out by a spectrophotometer (SPECTRA MAX). Assessments of turbidity were performed following CLSI standard methods. After 1 hour of incubation in a bacteriological oven, 200 μL aliquot was removed from the remaining wells for a second reading. The results showed a decrease of total microorganisms in the most of test groups. The best result of the PACT was with 75 μg/mL, showing 81% of inhibition. It is concluded that PACT with blue LED associated to Curcumin could be a potential mechanism for controlling microorganism proliferation on the oral cavity.

  7. The study of blue LED to induce fluorescence spectroscopy and fluorescence imaging for oral carcinoma detection

    Science.gov (United States)

    Zheng, Longjiang; Hu, Yuanting

    2009-07-01

    Fluorescence spectroscopy and fluorescence imaging diagnosis of malignant lesions provides us with a new method to diagnose diseases in precancerous stage. Early diagnosis of disease has significant importance in cancer treatment, because most cancers can be cured well in precancerous, especially when the diffusion of cancer is limited in a restricted region. In this study, Golden hamster models were applied to 5% 9, 10 dimethyl-1, 2-benzanthracene (DMBA) to induce hamster buccal cheek pouch carcinoma three times a week. Rose Bengal, which has been used in clinican for years and avoids visible side-effect to human was chosen as photosensitizer. 405 nm blue LED was used to induce the fluorescence of photosensitizer. After topical application of photosensitizer, characteristic red emission fluorescence peak was observed around 600nm. Similar, normal oral cavity has special luminescence around 480nm. Fluorescence spectroscopy technology is based on analysing emission peaks of photosensitizer in the areas of oral carcinoma, moreover, red-to-green (IR/IG) intensity ratio is also applied as a diagnostic algorithm. A CCD which is connected with a computer is used to take pictures at carcinoma areas through different filters. Fluorescence images from normal hamster buccal cheek pouch are compared with those from carcinogen-induced models of carcinoma, and morphological differences between normal and lesion tissue can be distinguished. The pictures are analyzed by Matlab and shown on the screen of computer. This paper demonstrates that Rose Bengal could be used as photosensitizer to detect oral carcinoma, and blue LED as excitation source could not only have a good effect to diagnose oral carcinoma, but also decrease cost greatly.

  8. Design and fabrication of adjustable red-green-blue LED light arrays for plant research

    Directory of Open Access Journals (Sweden)

    Kenitz J Dustin

    2005-08-01

    Full Text Available Abstract Background Although specific light attributes, such as color and fluence rate, influence plant growth and development, researchers generally cannot control the fine spectral conditions of artificial plant-growth environments. Plant growth chambers are typically outfitted with fluorescent and/or incandescent fixtures that provide a general spectrum that is accommodating to the human eye and not necessarily supportive to plant development. Many studies over the last several decades, primarily in Arabidopsis thaliana, have clearly shown that variation in light quantity, quality and photoperiod can be manipulated to affect growth and control developmental transitions. Light emitting diodes (LEDs has been used for decades to test plant responses to narrow-bandwidth light. LEDs are particularly well suited for plant growth chambers, as they have an extraordinary life (about 100,000 hours, require little maintenance, and use negligible energy. These factors render LED-based light strategies particularly appropriate for space-biology as well as terrestrial applications. However, there is a need for a versatile and inexpensive LED array platform where individual wavebands can be specifically tuned to produce a series of light combinations consisting of various quantities and qualities of individual wavelengths. Two plans are presented in this report. Results In this technical report we describe the practical construction of tunable red-green-blue LED arrays to support research in plant growth and development. Two light fixture designs and corresponding circuitry are presented. The first is well suited for a laboratory environment for use in a finite area with small plants, such as Arabidopsis. The second is expandable and appropriate for growth chambers. The application of these arrays to early plant developmental studies has been validated with assays of hypocotyl growth inhibition/promotion and phototropic curvature in Arabidopsis seedlings

  9. OFDM-based broadband underwater wireless optical communication system using a compact blue LED

    Science.gov (United States)

    Xu, Jing; Kong, Meiwei; Lin, Aobo; Song, Yuhang; Yu, Xiangyu; Qu, Fengzhong; Han, Jun; Deng, Ning

    2016-06-01

    We propose and experimentally demonstrate an IM/DD-OFDM-based underwater wireless optical communication system. We investigate the dependence of its BER performance on the training symbol number as well as LED's bias voltage and driving voltage. With single compact blue LED and a low-cost PIN photodiode, we achieve net bit rates of 225.90 Mb/s at a BER of 1.54×10-3 using 16-QAM and 231.95 Mb/s at a BER of 3.28×10-3 using 32-QAM, respectively, over a 2-m air channel. Over a 2-m underwater channel, we achieve net bit rates of 161.36 Mb/s using 16-QAM, 156.31 Mb/s using 32-QAM, and 127.07 Mb/s using 64-QAM, respectively. The corresponding BERs are 2.5×10-3, 7.42×10-4, and 3.17×10-3, respectively, which are all below the FEC threshold.

  10. Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes

    NARCIS (Netherlands)

    Ouzounis, T.; Heuvelink, E.; Ji, Y.; Schouten, H.J.; Visser, R.G.F.; Marcelis, L.F.M.

    2016-01-01

    A collection of nine tomato genotypes was chosen based on their diversity, phylogeny, availability of genome information, and agronomic traits. The objective of the study was to characterize the effect of red and blue LED (light-emitting diode) lighting on physiological, morphological, developmen

  11. Changes on degree of conversion of dual-cure luting light-cured with blue LED

    Science.gov (United States)

    Bandéca, M. C.; El-Mowafy, O.; Saade, E. G.; Rastelli, A. N. S.; Bagnato, V. S.; Porto-Neto, S. T.

    2009-05-01

    The indirect adhesive procedures constitute recently a substantial portion of contemporary esthetic restorative treatments. The resin cements have been used to bond tooth substrate and restorative materials. Due to recently introduction of the self-bonding resin luting cement based on a new monomer, filler and initiation technology has become important to study the degree of conversion of these new materials. In the present work the polymerization reaction and the filler content of dual-cured dental resin cements were studied by means of infra-red spectroscopy (FT-IR) and thermogravimetry (TG). Twenty specimens were made in a metallic mold (8 mm diameter × 1 mm thick) from each of 2 cements, Panavia® F2.0 (Kuraray) and RelyX™ Unicem Applicap (3M/ESPE). Each specimen was cured with blue LED with power density of 500 mW/cm2 for 30 s. Immediately after curing, 24 and 48 h, and 7 days DC was determined. For each time interval 5 specimens were pulverized, pressed with KBr and analyzed with FT-IR. The TG measurements were performed in Netzsch TG 209 under oxygen atmosphere and heating rate of 10°C/min from 25 to 700°C. A two-way ANOVA showed DC (%) mean values statistically significance differences between two cements ( p 0.05). The Relx-Y™ Unicem mean values were significantly higher than Panavia® F 2.0. The degree of conversion means values increasing with the storage time and the filler content showed similar for both resin cements.

  12. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  13. ADSORPTION OF METHYLENE BLUE FROM AQUEOUS SOLUTION ON ATTAPULGITE

    Institute of Scientific and Technical Information of China (English)

    WANG Deping; LV Pengfei; YAN Yongsheng; LIU Hui; WANG Guanjun

    2007-01-01

    Batch adsorption experiments were carried out for the removal of methylene blue (MB) from aqueous solution using attapulgite as adsorbent. The effects of various parameters such as temperature, contact time, the pH value, and attapulgite dosage on the adsorption performance were investigated. The standard curve and regression equation were established by spectrophotometry. The adsorption experimental results showed that the adsorption equilibrium data were well in accord with Langmuir adsorptive model. The optimal result was acquired under the experimental condition of attapulgite dosage 0.18g, MB concentration 50.0mg/L, pH 10, and adsorption time 20min at room temperature.

  14. Removal of methylene blue from aqueous solution by graphene oxide.

    Science.gov (United States)

    Yang, Sheng-Tao; Chen, Sheng; Chang, Yanli; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2011-07-01

    Graphene oxide (GO) is a highly effective absorbent of methylene blue (MB) and can be used to remove MB from aqueous solution. A huge absorption capacity of 714 mg/g is observed. At initial MB concentrations lower than 250 mg/L, the removal efficiency is higher than 99% and the solution can be decolorized to nearly colorless. The removal process is fast and more efficient at lower temperatures and higher pH values. The increase of ionic strength and the presence of dissolved organic matter would further enhance the removal process when MB concentration is high. The results indicate that GO can be applied in treating industrial effluent and contaminated natural water. The implications to graphene-based environmental technologies are discussed.

  15. A blue-LED-based device for selective photocoagulation of superficial abrasions: theoretical modeling and in vivo validation

    Science.gov (United States)

    Rossi, Francesca; Pini, Roberto; De Siena, Gaetano; Massi, Daniela; Pavone, Francesco S.; Alfieri, Domenico; Cannarozzo, Giovanni

    2010-02-01

    The blue light (~400 nm) emitted by high power Light Emitting Diodes (LED) is selectively absorbed by the haemoglobin content of blood and then converted into heat. This is the basic concept in setting up a compact, low-cost, and easy-to-handle photohaemostasis device for the treatment of superficial skin abrasions. Its main application is in reducing bleeding from superficial capillary vessels during laser induced aesthetic treatments, such as skin resurfacing, thus reducing the treatment time and improving aesthetic results (reduction of scar formation). In this work we firstly present the preliminary modeling study: a Finite Element Model (FEM) of the LED induced photothermal process was set up, in order to estimate the optimal wavelength and treatment time, by studying the temperature dynamics in the tissue. Then, a compact, handheld illumination device has been designed: commercially available high power LEDs emitting in the blue region were mounted in a suitable and ergonomic case. The prototype was tested in the treatment of dorsal excoriations in rats. Thermal effects were monitored by an infrared thermocamera, experimentally evidencing the modest and confined heating effects and confirming the modeling predictions. Objective observations and histopathological analysis performed in a follow-up study showed no adverse reactions and no thermal damage in the treated areas and surrounding tissues. The device was then used in human patients, in order to stop bleeding during Erbium laser skin resurfacing procedure. By inducing LED-based photocoagulation, the overall treatment time was shortened and scar formation was reduced, thus enhancing esthetic effect of the laser procedure.

  16. Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications

    Science.gov (United States)

    2015-01-01

    Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425–570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1–x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically with composition. The films possess remarkably sharp band edges and a clean bandgap, with a single optically active phase. These chloride–bromide perovskites can potentially be used in optoelectronic devices like solar cells and light emitting diodes (LEDs). Here we demonstrate high color-purity, tunable LEDs with narrow emission full width at half maxima (FWHM) and low turn on voltages using thin-films of these perovskite materials, including a blue CH3NH3PbCl3 perovskite LED with a narrow emission FWHM of 5 nm. PMID:26236949

  17. Blue-Green Color Tunable Solution Processable Organolead Chloride-Bromide Mixed Halide Perovskites for Optoelectronic Applications.

    Science.gov (United States)

    Sadhanala, Aditya; Ahmad, Shahab; Zhao, Baodan; Giesbrecht, Nadja; Pearce, Phoebe M; Deschler, Felix; Hoye, Robert L Z; Gödel, Karl C; Bein, Thomas; Docampo, Pablo; Dutton, Siân E; De Volder, Michael F L; Friend, Richard H

    2015-09-09

    Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425-570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1-x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically with composition. The films possess remarkably sharp band edges and a clean bandgap, with a single optically active phase. These chloride-bromide perovskites can potentially be used in optoelectronic devices like solar cells and light emitting diodes (LEDs). Here we demonstrate high color-purity, tunable LEDs with narrow emission full width at half maxima (FWHM) and low turn on voltages using thin-films of these perovskite materials, including a blue CH3NH3PbCl3 perovskite LED with a narrow emission FWHM of 5 nm.

  18. GaN-on-Si blue/white LEDs: epitaxy, chip, and package

    Science.gov (United States)

    Qian, Sun; Wei, Yan; Meixin, Feng; Zengcheng, Li; Bo, Feng; Hanmin, Zhao; Hui, Yang

    2016-04-01

    The dream of epitaxially integrating III-nitride semiconductors on large diameter silicon is being fulfilled through the joint R&D efforts of academia and industry, which is driven by the great potential of GaN-on-silicon technology in improving the efficiency yet at a much reduced manufacturing cost for solid state lighting and power electronics. It is very challenging to grow high quality GaN on Si substrates because of the huge mismatch in the coefficient of thermal expansion (CTE) and the large mismatch in lattice constant between GaN and silicon, often causing a micro-crack network and a high density of threading dislocations (TDs) in the GaN film. Al-composition graded AlGaN/AlN buffer layers have been utilized to not only build up a compressive strain during the high temperature growth for compensating the tensile stress generated during the cool down, but also filter out the TDs to achieve crack-free high-quality n-GaN film on Si substrates, with an X-ray rocking curve linewidth below 300 arcsec for both (0002) and (101¯2) diffractions. Upon the GaN-on-Si templates, prior to the deposition of p-AlGaN and p-GaN layers, high quality InGaN/GaN multiple quantum wells (MQWs) are overgrown with well-engineered V-defects intentionally incorporated to shield the TDs as non-radiative recombination centers and to enhance the hole injection into the MQWs through the via-like structures. The as-grown GaN-on-Si LED wafers are processed into vertical structure thin film LED chips with a reflective p-electrode and the N-face surface roughened after the removal of the epitaxial Si(111) substrates, to enhance the light extraction efficiency. We have commercialized GaN-on-Si LEDs with an average efficacy of 150-160 lm/W for 1mm2 LED chips at an injection current of 350 mA, which have passed the 10000-h LM80 reliability test. The as-produced GaN-on-Si LEDs featured with a single-side uniform emission and a nearly Lambertian distribution can adopt the wafer-level phosphor

  19. LED蓝光泄露安全性研究%Study on the Safety of Blue Light Leak of LED

    Institute of Scientific and Technical Information of China (English)

    申崇渝; 徐征; 赵谡玲; 黄清雨

    2014-01-01

    研究了L ED照明器件的蓝光特性。针对我国的L ED照明现状,通过测试L ED照明器件的光谱成分,根据现行国内外标准GB/T 20145-2006/CIE S009/E:2002和IEC62471:2006,以及CTL-0744_2009-laser决议,分析了L ED光生物安全性,给L ED照明灯具制造和相关安全性标准、法律制定提供参考。L ED中蓝光的辐亮度值低于100W·m -2·Sr-1时对人眼属于无危害类型,正常使用情况下不会对人眼造成伤害,但是应该注意对特殊人群(小孩)的保护,避免长时间直视光源。灯具富蓝化也会影响人的作息规律,因此色温4000 K以下,显色指数80的L ED灯具适合在室内使用,同时还要根据不同的使用距离选择不同的参数的灯具。%In this paper ,the blue light properties of LED illumination devices have been investigated .Against the status quo of China’s LED lighting ,we measured the spectrum component of LED lamps and analyzed the photobiological safety under the current domestic and international standards GB/T 20145-2006/CIE S009/E:2002 and IEC62471 :2006 standards as well as CTL-0744_2009-laser resolution ,which provides the reference to the manufacture of LED lighting lamps as well as related safety standards and laws .If the radiance intensity of blue light in LED is lower than 100 W · m -2 · Sr-1 ,there is no harm to human eyes .LEDs will not cause harm to human eyes under normal use ,but we should pay attention to the protection of special popula-tions (children) ,and make sure that they avoid looking at a light source for a long time .The research has found that the blue-rich lamps can affect the human rule of work and rest ,and therefore ,the LED lamps with color temperature below 4 000 K and color rendering index of 80 are suitable for indoor use .At the same time ,the lamps with different parameters should be selected according to the different distances .

  20. Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris.

    Science.gov (United States)

    Atta, Madiha; Idris, Ani; Bukhari, Ataullah; Wahidin, Suzana

    2013-11-01

    Light quality and the intensity are key factors which render microalgae as a potential source of biodiesel. In this study the effects of various intensities of blue light and its photoperiods on the growth and lipid content of Chlorella vulgaris were investigated by using LED (Light Emitting Diode) in batch culture. C. vulgaris was grown for 13 days at three different light intensities (100, 200 and 300 μmol m(-2)s(-1)). Effect of three different light and dark regimes (12:12, 16:08 and 24:00 h Light:Dark) were investigated for each light intensity at 25°C culture temperature. Maximum lipid content (23.5%) was obtained due to high efficiency and deep penetration of 200 μmol m(-2)s(-1) of blue light (12:12 L:D) with improved specific growth (1.26 d(-1)) within reduced cultivation time of 8 days. White light could produce 20.9% lipid content in 10 days at 16:08 h L:D.

  1. Blue Light Hazard and Risk Group Classification of 8 W LED Tubes, Replacing Fluorescent Tubes, through Optical Radiation Measurements

    Directory of Open Access Journals (Sweden)

    Francesco Leccese

    2015-09-01

    Full Text Available In this paper, the authors discuss the results of a measurement survey of artificial optical radiation emitted by 8 W LED tubes suitable for the substitution of 18 W fluorescent lamps used for general lighting. For both types of lamps, three different color temperatures were chosen, 3000 K, 4000 K, and 6000 K. These measurements were performed to evaluate the photobiological safety of the sources. The radiance and irradiance values have been measured in a wide range of wavelengths (180–3000 nm. The measurement results obtained for the LED tubes have been compared to those of similar measurements obtained for fluorescent lamps. The analysis has been focused on the range of wavelengths 300–700 nm, the blue light range, which turned out to be defining for the risk groups of the lamps. This classification is a function of the maximum permissible exposure time as indicated in the European Standard EN 62471 on the photobiological safety of lamps and lamp systems.

  2. LED lamp

    Science.gov (United States)

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  3. Current-pulse-width control of degradation in II-VI and III-N compound blue-UV-white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Y.; Ando, K.; Nakagawa, S.; Sakamoto, H.; Abe, T.; Kasada, H. [Electrical and Electronic Department, Tottori Univ., Koyama 4-101, Tottori 680-8550 (Japan)

    2012-08-15

    We have studied the cause of shortened lifetime and reduced brightness of wide-gap semiconductor LEDs, and found that generation/enhancement of microscopic point defects have strong association with device lifetime. A pulse-drive technology controlling defect enhancement has been proven new to extend life span of UV-blue-white-LEDs in high efficiency and high brightness operation. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Development of UV-LED/TiO_2 Device and Their Application for Photocatalytic Degradation of Methylene Blue%紫外LED/氧化钛装置的研发及其光催化降解次甲基蓝性能的研究

    Institute of Scientific and Technical Information of China (English)

    代凯; 陈征; 芦露华; 朱光平; 刘忠良; 刘亲壮

    2011-01-01

    In this paper,development of ultraviolet light emitting diode(UV-LED)/TiO2 device and their application for photocatalytic degradation of methylene blue were reported.The UV-LED with an output wavelength of 376 nm in UV-A band was applied as the UV light source for the photocatalytic decomposition of methylene blue.The decomposition of methylene blue in aqueous solution by TiO2 photocatalytic processes with the UV-LED was found to be technically and actually feasible,showing a promising technique for organic waste water treatment by the UV-LED/TiO2 method.%采用UV-A波段中发光波长为376 nm的固体紫外光源技术,设计出大面积UV-LED(ultraviolet light emit-ting diode)纳米光催化有机废水深度处理装置.结果表明:UV-LED/TiO2光催化装置对次甲基蓝有着优良的降解效率,能够为该装置工业化的应用提供科学依据.

  5. Enhanced Ce{sup 3+} photoluminescence by Li{sup +} co-doping in CaO phosphor and its use in blue-pumped white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Zhendong, E-mail: haozd@ciomp.ac.cn; Zhang, Xia; Luo, Yongshi; Zhang, Ligong; Zhao, Haifeng; Zhang, Jiahua, E-mail: zhangjh@ciomp.ac.cn

    2013-08-15

    In this paper, we demonstrate a method to improve the photoluminescence of CaO: Ce{sup 3+} phosphor and delineate its first use in blue-pumped white LEDs. The results show that the yellow emission of Ce{sup 3+} is enhanced by a factor of 1.88 by adding Li{sup +} into CaO host at 474 nm blue light excitation. On analyzing the diffuse reflection spectra and fluorescence decay curves, we reveal that the photoluminescence enhancement is originated from the rise of absorbance to the excitation photons but not from the improvement of the luminescent efficiency. Li{sup +}-improved CaO: Ce{sup 3+} exhibits more red component when it is compared with the commercial Y{sub 3}Al{sub 5}O{sub 12}: Ce{sup 3+} (YAG: Ce{sup 3+}) phosphor, indicating its potential application for high color rendering white LEDs. Thus, a white LED is fabricated by combining blue InGaN LED chip with CaO: Ce{sup 3+}, Li{sup +} phosphor and a warm white light with high color rendering index (R{sub a}) of 80, low correlated color temperature (T{sub c}) of 4524 K, and sufficient luminous efficiency of 50 lm W{sup −1} is obtained. -- Highlights: • The photoluminescence of Ce{sup 3+} in CaO host was enhanced by Li{sup +} co-doping. • A CaO: Ce{sup 3+}, Li{sup +} based white LED was fabricated for the first time. • An efficient warm white light was obtained. • CaO: Ce{sup 3+}, Li{sup +} is expected to be used as a yellow phosphor for blue-pumped white LEDs.

  6. Homogeneous photosensitized degradation of pharmaceuticals by using red light LED as light source and methylene blue as photosensitizer

    NARCIS (Netherlands)

    Ye, Y.; Bruning, H.; Yntema, D.; Mayer, M.; Rijnaarts, H.

    2017-01-01

    Research on employing advanced oxidation processes (AOPs) for pharmaceuticals removal is gaining interests. However, detrimental effects of background water constituents in complex water matrices are limiting their implementation. In this study, we report red light induced methylene blue photosensit

  7. Biosorption of Methyl Blue Onto Tartaric Acid Modified Wheat Bran From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Shuhua Yao

    2012-12-01

    Full Text Available Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made thismaterial a suitable adsorbent to remove 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that theoverall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of theLangmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methylblue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment.

  8. High color rendering white light-emitting-diode illuminator using the red-emitting Eu(2+)-activated CaZnOS phosphors excited by blue LED.

    Science.gov (United States)

    Kuo, Te-Wen; Liu, Wei-Ren; Chen, Teng-Ming

    2010-04-12

    A red phosphor CaZnOS:Eu(2+) was synthesized by solid state reaction and has been evaluated as a candidate for white LEDs. For this material, the XRD, PL, PL excitation (PLE) and diffuse reflection spectra have also been investigated. CaZnOS:Eu(2+) reveals a broad absorption band and good color purity. By utilizing a mixture of red-emitting CaZnOS:Eu(2+), green-emitting (Ba,Sr)(2)SiO(4):Eu(2+) and yellow-emitting Y(3)Al(5)O(12):Ce(3+) as light converters, an intense white InGaN-based blue-LED (~460 nm) was fabricated to exhibit a high color-rendering index Ra of 85 at a correlated color temperature of 4870 K. Based on the results, we are currently evaluating the potential application of CaZnOS:Eu(2+) as a red-emitting blue-chip convertible phosphor.

  9. In vitro effectiveness of 455-nm blue LED to reduce the load of Staphylococcus aureus and Candida albicans biofilms in compact bone tissue.

    Science.gov (United States)

    Rosa, Luciano Pereira; da Silva, Francine Cristina; Viana, Magda Souza; Meira, Giselle Andrade

    2016-01-01

    The aim of this study was to evaluate the effectiveness of a 455-nm blue light-emitting diode (LED), at different application times, to reduce the load of Staphylococcus aureus and Candida albicans biofilms applied to compact bone tissue. The microorganisms S. aureus (ATCC 25923) and C. albicans (ATCC 18804) were used to form biofilms on 160 specimens of compact bones that had been divided into eight experimental groups (n = 10) for each microorganism, according to the times of application of the 455-nm blue LED (1, 2, 3, 4, 5, 7, and 10 min) with an irradiance of 75 mW/cm2. After LED application, decimal dilutions of microorganisms were performed, plated on BHI or Sabouraud agar and incubated for 24 h/35 °C to obtain CFU/mL counts. The findings were statistically analyzed using a ANOVA 5 %. For the group of S. aureus biofilms, all groups of 455-nm LED application differ compared with the control group (p albicans biofilms, only those samples receiving 3, 7, and 10 min of LED application presented a significant difference compared with the control group (p albicans biofilms, especially during 10 min of application.

  10. Sr9Mg(1.5)(PO4)7:Eu(2+): A Novel Broadband Orange-Yellow-Emitting Phosphor for Blue Light-Excited Warm White LEDs.

    Science.gov (United States)

    Sun, Wenzhi; Jia, Yonglei; Pang, Ran; Li, Haifeng; Ma, Tengfei; Li, Da; Fu, Jipeng; Zhang, Su; Jiang, Lihong; Li, Chengyu

    2015-11-18

    A new orange-yellow-emitting Sr9Mg(1.5)(PO4)7:Eu(2+) phosphor was prepared via high-temperature solid-state reaction. The structure and optical properties of it were studied systematically. Sr9Mg(1.5)(PO4)7:Eu(2+) can be well-excited by 460 nm blue InGaN chips and exhibit a wide emission band covering from 470 to 850 nm with two main peaks centered at 523 and 620 nm, respectively, which originate from 5d-4f dipole-allowed transitions of Eu(2+) in different crystallographic sites. The sites attribution, concentration quenching, fluorescence decay analysis, and temperature-dependent luminescence properties were investigated in detail. Furthermore, a warm white LED device was fabricated by combining a 460 nm blue InGaN chip with the optimized orange-yellow-emitting Sr9Mg(1.5)(PO4)7:Eu(2+). The color coordinate, correlated color temperature and color rendering index of the fabricated LED device were (0.393, 0.352), 3437 K, and 86.07, respectively. Sr9Mg(1.5)(PO4)7:Eu(2+) has great potential to serve as an attractive candidate in the application of blue light-excited warm white LEDs.

  11. Adsorptive Removal of Acid Blue 80 Dye from Aqueous Solutions by Cu-TiO2

    OpenAIRE

    Ingrid Johanna Puentes-Cárdenas; Griselda Ma. Chávez-Camarillo; César Mateo Flores-Ortiz; María del Carmen Cristiani-Urbina; Alma Rosa Netzahuatl-Muñoz; Juan Carlos Salcedo-Reyes; Aura Marina Pedroza-Rodríguez; Eliseo Cristiani-Urbina

    2016-01-01

    The adsorption performance of a Cu-TiO2 composite for removing acid blue 80 (AB80) dye from aqueous solutions was investigated in terms of kinetics, equilibrium, and thermodynamics. The effect of operating variables, such as solution pH, initial dye concentration, contact time, and temperature, on AB80 adsorption was studied in batch experiments. AB80 adsorption increased with increasing contact time, initial dye concentration, and temperature and with decreasing solution pH. Modeling of adso...

  12. High-efficiency blue LEDs with thin AlGaN interlayers in InGaN/GaN MQWs grown on Si (111) substrates

    Science.gov (United States)

    Kimura, Shigeya; Yoshida, Hisashi; Ito, Toshihide; Okada, Aoi; Uesugi, Kenjiro; Nunoue, Shinya

    2016-02-01

    We demonstrate high-efficiency blue light-emitting diodes (LEDs) with thin AlGaN interlayers in InGaN/GaN multiquantum wells (MQWs) grown on Si (111) substrates. The peak external quantum efficiency (EQE) ηEQE of 82% at room temperature and the hot/cold factor (HCF) of 94% have been obtained by using the functional thin AlGaN interlayers in the MQWs in addition to reducing threading dislocation densities (TDDs) in the blue LEDs. An HCF is defined as ηEQE(85°C)/ηEQE(25°C). The blue LED structures were grown by metal-organic chemical vapor deposition on Si (111) substrates. The MQWs applied as an active layer have 8- pairs of InGaN/AlyGa1-yN/GaN (0transmission electron microscopy and three-dimensional atom probe analysis that the 1 nm-thick AlyGa1-yN interlayers, whose Al content is y=0.3 or less, are continuously formed. EQE and the HCFs of the LEDs with thin Al0.15Ga0.85N interlayers are enhanced compared with those of the samples without the interlayers in the low-current-density region. We consider that the enhancement is due to both the reduction of the nonradiative recombination centers and the increase of the radiative recombination rate mediated by the strain-induced hole carriers indicated by the simulation of the energy band diagram.

  13. Experimental and numerical study on a micro jet cooling solution for high power LEDs

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An active cooling solution based on close-looped micro impinging jet is proposed for high power light emitting diodes (LEDs). In this system, a micro pump is utilized to enable the fluid circulation, impinging jet is used for heat exchange between LED chips and the present system. To check the feasibility of the present cooling system, the preliminary experiments are conducted without the intention of parameter opti-mization on micro jet device and other system components. The experiment results demonstrate that the present cooling system can achieve good cooling effect. For a 16.4 W input power, the surface temperature of 2 by 2 LED array is just 44.2℃ after 10 min operation, much lower than 112.2℃, which is measured without any active cool-ing techniques at the same input power. Experimental results also show that increase in the flow rate of micro pump will greatly enhance the heat transfer efficiency, how-ever, it will increase power consumption. Therefore, it should have a trade-off be-tween the flow rate and the power consumption. To find a suitable numerical model for next step parameter optimization, numerical simulation on the above experiment system is also conducted in this paper. The comparison between numerical and ex-periment results is presented. For two by two chip array, when the input power is 4 W, the surface average temperature achieved by a steady numerical simulation is 34℃, which is close to the value of 32.8℃ obtained by surface experiment test. The simu-lation results also demonstrate that the micro jet device in the present cooling sys-tem needs parameter optimization.

  14. Experimental and numerical study on a micro jet cooling solution for high power LEDs

    Institute of Scientific and Technical Information of China (English)

    LUO XiaoBing; LIU Sheng; JIANG XiaoPing; CHENG Ting

    2007-01-01

    An active cooling solution based on close-looped micro impinging jet is proposed for high power light emitting diodes (LEDs). In this system, a micro pump is utilized to enable the fluid circulation, impinging jet is used for heat exchange between LED chips and the present system. To check the feasibility of the present cooling system, the preliminary experiments are conducted without the intention of parameter optimization on micro jet device and other system components. The experiment results demonstrate that the present cooling system can achieve good cooling effect. For a 16.4 W input power, the surface temperature of 2 by 2 LED array is just 44.2℃ after 10 min operation, much lower than 112.2℃, which is measured without any active cooling techniques at the same input power. Experimental results also show that increase in the flow rate of micro pump will greatly enhance the heat transfer efficiency, however, it will increase power consumption. Therefore, it should have a trade-off between the flow rate and the power consumption. To find a suitable numerical model for next step parameter optimization, numerical simulation on the above experiment system is also conducted in this paper. The comparison between numerical and experiment results is presented. For two by two chip array, when the input power is 4 W, the surface average temperature achieved by a steady numerical simulation is 34℃, which is close to the value of 32.8℃ obtained by surface experiment test. The simulation results also demonstrate that the micro jet device in the present cooling system needs parameter optimization.

  15. Rare-earth-free red-emitting K2Ge4O9:Mn(4+) phosphor excited by blue light for warm white LEDs.

    Science.gov (United States)

    Ding, Xin; Wang, Qian; Wang, Yuhua

    2016-03-21

    A series of novel K2Ge4O9:Mn(4+) phosphors with red emission under blue light excitation have been synthesized successfully by traditional high-temperature solid-state reaction. The structure of K2Ge4O9 has been investigated by high-resolution transmission electron microscopy, scanning electron microscopy and X-ray powder diffraction with Rietveld refinement. The PL properties have been investigated by measuring diffuse reflection spectra, emission spectra, excitation spectra, decay curves and temperature-dependent spectra. The KGO:0.1% Mn(4+) phosphor can emit red light peaking at 663 nm under UV or blue light excitation. The critical quenching concentration of Mn(4+) was about 0.1 mol%. The concentration quenching mechanism could be a d-d interaction for the Mn(4+) center. The CIE chromaticity coordinates and FWHM are (0.702, 0.296) and 20 nm, which demonstrated that the K2Ge4O9:Mn(4+) has a high color purity. By tuning the weight ratio of yellow and red phosphors, the fabricated white LEDs, using a 455 nm InGaN blue chip combined with a blend of the yellow phosphor YAG:Ce(3+) and the red-emitting KGO:Mn(4+) phosphor driven by a 40 mA current, can get white light with chromaticity coordinates (0.405, 0.356) and CCT 3119 K. These results indicated that K2Ge4O9:Mn(4+) is a potential red phosphor to match blue LED chips to get warm white light.

  16. Elaeagnus angustifolia STONE AS A LOW-COST BIOSORBENT PRECURSOR FOR REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION

    OpenAIRE

    KILIÇ, Murat; POYRAZ, Zakir

    2012-01-01

    In this study, the removal of methylene blue from aqueous solutions by biosorption onto Elaeagnus angustifolia stone has investigated. Optimum biosorption conditions have determined as a function of pH, biosorbent dosage, initial methylene blue concentration, contact time and temperature of the solution for the removal of methylene blue. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models have used to describe the biosorption isotherm model. The experimental data have fitted t...

  17. Fabrication of White LED Using InGaN Blue LED and Ce3+:YVO4 Fluorescence%用Ce3+:YVO4晶体荧光粉与蓝光LED制造自然白光LED

    Institute of Scientific and Technical Information of China (English)

    刘景旺

    2007-01-01

    本文报导了通过结合自行制备的掺铈钒酸钇晶体(Ce3+:YVO4)荧光粉与InGaN/GaN蓝光发光二极管(LED)结合而得的白光发光二极管(W-LED).在室温、正向电压3.5V、正向电流20mA时W-LED的CIE色坐标为(0.32,0.37),接近纯白色(0.33,0.33).

  18. The Fabrication of White LED Using InGaN Blue LED and YAG Fluorescence%用InGaN蓝光LED与YAG荧光粉制造自然白光LED

    Institute of Scientific and Technical Information of China (English)

    王宇方; 杨志坚; 丁晓民; 姚光庆; 段洁菲; 林建华; 张国义

    2002-01-01

    报导了用国内自行研制的InGaN/GaN蓝光发光二极管(LED)与钇铝石榴石(YAG)荧光粉结合而得的白光发光二极管(W-LED).在室温,正向电压3.5V,正向电流20mA时,W-LED轴向亮度为1cd,CIE色坐标为(0.31,0.38),接近纯白色(0.33,0.33).

  19. 可调红蓝光子比例的LED植物光源配光设计方法%Distribution design method for LED plant light source with tunable ratio of red/blue photons

    Institute of Scientific and Technical Information of China (English)

    刘彤; 刘雯; 马建设

    2014-01-01

    light intensities recorded, the total PPF of red and blue components can be computed by the integral of the light intensity over the two wavelength range (i.e. 610nm-720nm for red light and 400nm-510nm for blue light). By constraining the total PPF of the illuminated area, our optical design model could be applied to calculate the total number of LED lamps of each type (as used in this paper, the white and red lamps), and their layout on the light panel. Experimental statistics were set by Matlab as fundamental data in an illuminant lighting system. If the optimization solution was not so ideal, we could change some elements of this mathematical model, such as the type of LED, the ratio of the LED numbers, or adding another type of LED. There are also other factors that should be considered, such as luminous efficiency, cost, electric power, etc. This paper used an example to illustrate the optical design procedure proposed, and the experimental result showed that the designed LED lighting panel could adjust its light quality with the ratio of red and blue light components from 4.0 to 9.0 (in terms of PPF,μmol/s) and at the same time, maintain the total PPF to a constant value.%为了动态控制用于植物生长的人工光源,该文提出一种以光子数作为评价标准,使红蓝光比例连续可调的LED植物生长光源的配光方法。综合考虑红、蓝2种波段光源及其他光谱的作用,该文采用白光LED与红光LED 组合配比,以正向电流下 LED 的光谱密度数据作为计算基础,提出配光设计算法,实现红蓝成分有效光子数维持一定的要求下,红光与蓝光光子数比在指定区间(4:1~9:1之间)连续可调,从而满足植物不同生长状态对光质成分的需要。

  20. Effect of red and blue light emitting diodes "CRB-LED" on in vitro organogenesis of date palm (Phoenix dactylifera L.) cv. Alshakr.

    Science.gov (United States)

    Al-Mayahi, Ahmed Madi Waheed

    2016-10-01

    The objective of the present study is to determine the effect of light source on enhancement of shoot multiplication, phytochemicals, as well as, antioxidant enzyme activities of in vitro cultures of date palm cv. Alshakr. In vitro-grown buds were cultured on Murashige and Skoog (MS) medium and incubated under a conventional white fluorescent light (control), and combinations of red + blue light emitting diode (18:2) (CRB-LED). Results revealed that the treatment of CRB-LED showed a significant increase in the number of shoots compared with the white florescent light. Total soluble carbohydrate "TSCH" (7.10 mg g(-1) DW.), starch (1.63 mg g(-1) DW.) and free amino acids (2.90 mg g(-1) DW.) were significantly higher in CRB-LED (p < 0.05). Additionally, CRB-LED induced a higher peroxidase activity (25.50 U ml(-1)) compared with the white fluorescent light treatment (19.74 U ml(-1)) as control treatment. Potassium, magnesium and sodium contents in (3.62, 13.99 and 2.76 mg g(-1) DW.) were increased in in vitro shoots under CRB-LED treatment in comparison with fluorescent light (p < 0.05). Protein profile showed the appearance of newly bands with the molecular weight of 38 and 60 kDa at the treatment CRB-LED compared with control treatment. Our results demonstrate the positive effects of CRB-LED light during the course of date palm tissue cultures.

  1. An approach to utilize the artificial high power LED UV-A radiation in photoreactors for the degradation of methylene blue.

    Science.gov (United States)

    Betancourt-Buitrago, L A; Vásquez, C; Veitia, L; Ossa-Echeverry, O; Rodriguez-Vallejo, J; Barraza-Burgos, J; Marriaga-Cabrales, N; Machuca-Martínez, F

    2017-01-18

    Utilization of UV LED light is trending in the development of photoreactors for pollutant treatment. In this study, two different geometries were studied in the degradation of methylenebBlue (MB) using high power UVA LED as a source of light. The dosage, initial concentration, electric power, and H2O2 addition were evaluated in the two geometries: a mini CPC (Cilindrical Parabolic Collector) and a vertical cylindrical with external irradiation both coupled with LED UVA. Best degradation was obtained for 0.3 g L(-1) TiO2, 40 min, and 15 ppm of MB of initial concentration in the standard batch reactor. It was found that the best system was a cpc geometry. Also, hydrogen peroxide was used as an electron acceptor and 97% degradation was obtained in 30 min with 10 mM H2O2 and 0.4 g TiO2/L. Power of the LEDs was also evaluated and it was found that 20 W m(-2) is the best operational condition to achieve the best MB degradation avoiding the oxidant species recombination.

  2. 蓝光 LEDs 的转换荧光粉发光效率的测量%Measurements of Luminous Efficacies of Conversion Phosphors for Blue Emitting LEDs

    Institute of Scientific and Technical Information of China (English)

    Jack Silver; Robert Withnall; Anthony Liprnan

    2008-01-01

    In this work we investigate the shift of the colour point of the YAG.Ce phosphor towards the red when Y is substituted by Gd in the YAG lattice or when Pr is added as a co-activator with Ce. We also de-scribe efficiency measurements carried out on in-house samples of (Y, Gd) AG: Ce and YAG. Ce, Pr phos- phors when excited with 470 nm light. We show herein that the luminous efficacies of the (Y,Gd)AG.Ce and YAG..Ce,Pr phosphors decrease with Gd and Pr concentrations, respectively. Another phosphor that we and others have used for colour conversion of blue LED light is SrGa2S4:Eu. At room temperature this phosphor is very efficient, theoretically having a luminous efficacy that is more than 33 % higher than that of YAG.Ce. Luminous efficacy measurements on this phosphor show that the method of preparation is a major factor in the performance of the phosphor. When applied as an external screen phosphor in front of one or more blue LEDs, we have measured luminous efficacies up to 364 lm/W.%本文研究了YAG:Ce荧光粉的色点红移的现象.当YAG晶格点阵中的Y被 Gd 激发或添加了Pr作为 Ce 的共同催化剂时就会发生这种现象.测量了在(Y,Gd)AG:Ce和YAG:Ce,Pr荧光粉样品内部的效率,其激发光线的波长为 470 nm.其结果表明这两种荧光粉的发光效率分别随着Gd和Pr聚集而降低.SrGa2S4:Eu.是另外一种常用的转换蓝光 LED 的颜色的荧光粉.室温下,这种荧光粉效率很高,理论上其发光效率比 YAG:Ce 的发光效率高出 33%.对这种荧光粉效率的测量结果表明其制作过程是影响性能的主要因素.将这种荧光粉印刷在放在-个或多个蓝光 LED 前面的屏幕的表面,测得其发光效率高达 364 lm/W.

  3. Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Murat [Department of Forest Industrial Engineering, Faculty of Forestry, Kahramanmaras Sutcu Imam University, 46060 Kahramanmaras (Turkey); Acemioglu, Bilal, E-mail: acemioglu@kilis.edu.tr [Department of Chemistry, Faculty of Science and Arts, Kilis 7 Aralik University, 79000 Kilis (Turkey); Alma, M. Hakki [Department of Forest Industrial Engineering, Faculty of Forestry, Kahramanmaras Sutcu Imam University, 46060 Kahramanmaras (Turkey); Usta, Mustafa [Department of Forest Industrial Engineering, Faculty of Forestry, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2010-11-15

    In this study, cotton stalk (CS), cotton waste (CW) and cotton dust (CD) was used as sorbents to remove methylene blue (MB) from aqueous solution by batch sorption technique. Effects of initial dye concentration, solution pH, solution temperature and sorbent dose on sorption were studied. It was seen that the removal of methylene blue increased with increasing initial dye concentration (from 25 to 100 mg/l), solution pH (from 5 to 10), solution temperature (from 20 to 50 deg. C) and sorbent dose (from 0.25 to 1.50 g/50 ml). The maximum dye removal was reached at 90 min. Sorption isotherms were analyzed by Langmuir and Freundlich models at different temperatures of 20, 30, 40 and 50 deg. C, and the results were discussed in detail. Moreover, the thermodynamics of sorption were also studied. It was found that the values of standard free energy ({Delta}G{sup o}) were positive for cotton stalk and negative for cotton waste and cotton dust. The values of standard enthalpy ({Delta}H{sup o}) and entropy ({Delta}S{sup o}) were found to be positive, and the obtained results were interpreted in detail. The results of this study showed that cotton stalk, cotton waste and cotton dust could be employed as effective and low-cost materials for the removal of dyes from aqueous solution.

  4. Optical sensor based on fluorescent quenching and pulsed blue LED excitation for long-term monitoring of dissolved oxygen in NASA space bioreactors.

    Science.gov (United States)

    Gao, Frank G; Fay, James M; Mathew, Grace; Jeevarajan, Antony S; Anderson, Melody M

    2005-01-01

    There is a need to monitor the concentration of dissolved oxygen (DO) present in the culture medium for NASA's space cell biology experiments, as well as in earth-based cell cultures. Continuous measurement of DO concentration in the cell culture medium in perfused bioreactors requires that the oxygen sensor provide adequate sensitivity and low toxicity to the cells, as well as maintain calibration over several weeks. Although there are a number of sensors for dissolved oxygen on the market and under development elsewhere, very few meet these stringent conditions. An in-house optical oxygen sensor (HOXY) based on dynamic fluorescent quenching of Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) chloride and a pulsed blue LED light source was developed in our laboratory to address these requirements. The sensing element consisted of the fluorescent dye embedded in a silicone matrix and coated onto a glass capillary. Photobleaching was minimized by a pulsed LED light source. The total noise in the sensor output is 2% and the sensor dynamic range is 0 to 200 mm Hg. The resolution of the sensor is 0.1 mm Hg at 50 mm Hg, and 0.25 mm Hg at 130 mm Hg, while the accuracy is 5%. The LED-based oxygen sensor exhibited stable performance and low drift, making it compatible for space-flight bioreactor systems.

  5. Solution of multi-element LED light sources development automation problem

    Science.gov (United States)

    Chertov, Aleksandr N.; Gorbunova, Elena V.; Korotaev, Valery V.; Peretyagin, Vladimir S.

    2014-09-01

    The intensive development of LED technologies resulted in the creation of multicomponent light sources in the form of controlled illumination devices based on usage of mentioned LED technologies. These light sources are used in different areas of production (for example, in the food industry for sorting products or in the textile industry for quality control, etc.). The use of LED lighting products in the devices used in specialized lighting, became possible due to wide range of colors of light, LED structures (which determines the direction of radiation, the spatial distribution and intensity of the radiation, electrical, heat, power and other characteristics), and of course, the possibility of obtaining any shade in a wide dynamic range of brightness values. LED-based lighting devices are notable for the diversity of parameters and characteristics, such as color radiation, location and number of emitters, etc. Although LED technologies have several advantages, however, they require more attention if you need to ensure a certain character of illumination distribution and/or distribution of the color picture at a predetermined distance (for example, at flat surface, work zone, area of analysis or observation). This paper presents software designed for the development of the multicomponent LED light sources. The possibility of obtaining the desired color and energy distribution at the zone of analysis by specifying the spatial parameters of the created multicomponent light source and using of real power, spectral and color parameters and characteristics of the LEDs is shown as well.

  6. LED Blue Light-induced changes in phenolics and ethylene in citrus fruit: Implication in elicited resistance against Penicillium digitatum infection.

    Science.gov (United States)

    Ballester, Ana-Rosa; Lafuente, María T

    2017-03-01

    The objective was to investigate whether LED Blue Light (LBL) induces changes in phenolics and ethylene production of sweet oranges, and whether they participate in LBL-elicited resistance against the most important postharvest pathogen (Penicillium digitatum) of citrus fruit. The expression of relevant genes of the phenylpropanoid and ethylene biosynthetic pathways during elicitation of resistance was also determined. Different LBL (wavelength 450nm) quantum fluxes were used within the 60-630μmolm(-2)s(-1) range. The HPLC analysis showed that the most relevant increase in phenylpropanoids occurred in scoparone, which markedly increased 3days after exposing fruits to a very high quantum flux (630μmolm(-2)s(-1)) for 18h. However, phenylpropanoids, including scoparone, were not critical factors in LBL-induced resistance. The genes involved in ethylene biosynthesis were differentially regulated by LBL. Ethylene is not involved in elicited resistance, although high LBL levels increased ethylene production in only 1h.

  7. Orangish-yellow-emitting Ca₃Si₂O₇:Eu²⁺ phosphor for application in blue-light based warm-white LEDs.

    Science.gov (United States)

    Huang, Chien-Hao; Liu, Wei-Ren; Chan, Ting-Shan; Lai, Yuan-Tai

    2014-06-07

    A Eu(2+)-activated Ca3Si2O7:Eu(2+) orangish-yellow-emitting phosphor with strong luminescence was synthesized and its crystal structure was determined on the basis of XRD profiles using synchrotron radiation. The crystal structure was refined by the Rietveld refinement method. The excitation and emission spectra of the Ca3Si2O7:Eu(2+) phosphor show broad excitation bands in the range of 240-550 nm and a broad yellow emission band centered at 603 nm, depending on the concentration of Eu(2+). The optimized concentration of Eu(2+) in the Ca3Si2O7:Eu(2+) phosphor was determined to be 0.015 mol. The critical distance and average decay time were found to be short and fast, respectively, ranging from 19.74 Å to 13.69 Å and from 2.56 μs to 2.34 μs on increasing the Eu(2+) doping content. Warm-white light-emitting diodes (LEDs) fabricated using an InGaN-based blue LED chip combined with the Ca3Si2O7:0.015Eu(2+) phosphor gave color rendering indices between 76.0 and 38.9, correlated color temperatures between 1924 K and 4992 K, and tuned CIE chromaticity coordinates in the range from orangish-yellow (0.543, 0.389) to reddish purple (0.333, 0.219). The color coordinates and emission intensity of a Ca3Si2O7:0.015Eu(2+)-based white LED display were slightly yellow-shifted and the intensity increased on increasing the forward-bias current. These results indicate that orangish-yellow-emitting Ca3Si2O7:0.015Eu(2+) can serve as a promising candidate for applications in warm-white LEDs.

  8. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Directory of Open Access Journals (Sweden)

    R. Thalman

    2010-12-01

    Full Text Available The combination of Cavity Enhanced Absorption Spectroscopy (CEAS with broad-band light sources (e.g. Light-Emitting Diodes, LEDs lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0. We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420–490 nm to measure nitrogen dioxide (NO2, glyoxal (CHOCHO, methyl glyoxal (CH3COCHO, iodine oxide (IO, water vapour (H2O and oxygen dimers (O4. We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3–7 × 10−7cm−1. Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype

  9. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Science.gov (United States)

    Thalman, R.; Volkamer, R.

    2010-12-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light-Emitting Diodes, LEDs) lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490 nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), methyl glyoxal (CH3COCHO), iodine oxide (IO), water vapour (H2O) and oxygen dimers (O4). We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm) and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3-7 × 10-7cm-1). Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype LED-CE-DOAS provides a low cost, yet research grade innovative instrument for applications in simulation chambers and in the open atmosphere.

  10. Elaeagnus angustifolia STONE AS A LOW-COST BIOSORBENT PRECURSOR FOR REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Murat KILIÇ

    2012-06-01

    Full Text Available In this study, the removal of methylene blue from aqueous solutions by biosorption onto Elaeagnus angustifolia stone has investigated. Optimum biosorption conditions have determined as a function of pH, biosorbent dosage, initial methylene blue concentration, contact time and temperature of the solution for the removal of methylene blue. Langmuir, Freundlich and Dubinin-Radushkevich (D-R isotherm models have used to describe the biosorption isotherm model. The experimental data have fitted to pseudo-first order, pseudo-second order and intraparticle diffusion model to examine the sorption kinetics. The values of ΔG°, ΔH° and ΔS° have calculated by thermodynamic study to determine the nature of biosorption process. Experimental results have shown that Elaeagnus angustifolia stone can be used as an effective and low cost biosorbent precursor for the removal of methylene blue from aqueous solutions.

  11. Adsorption of Methylene Blue from Aqueous Solution onto a Low-Cost Natural Jordanian Tripoli

    Directory of Open Access Journals (Sweden)

    Atef S. ALzaydien

    2009-01-01

    Full Text Available Background: Dyes and pigments are widely used, mostly in the textiles, paper, plastics, leather, food and cosmetic industry to color products. The release of colored wastewater from these industries may present an eco-toxic hazard. Various techniques like precipitation, ion exchange, chemical oxidation, and adsorption have been used for the removal of toxic pollutant from, wastewater. Methylene blue (MB is selected as a model compound for evaluating the potential of tripoli to remove dye from wastewaters. Objective: In this study, Jordanian low- cost locally available tripoli was studied for its potential use as an adsorbent for removal of a cationic dye (methylene blue,MB from aqueous solution. Factors affecting adsorption, such as , initial dye concentration, pH, contact time , adsorbent dose and temperature, were evaluated. The equilibrium of adsorption was modelled by using the Langmuir , Freundlich, Temkin and Dubinin-Radushkevich isotherm models, the kinetic parameters and intraparticle diffusion were also then determined for the methylene blue-tripoli system. Methodology: The raw tripoli samples were kindly supplied by the Authority of Natural Resources (Jordan, Amman. X-ray diffraction spectroscopy (XRD analysis was carried out with PANalytical X-ray, Philips Analytical. Fourier transform infrared spectrophotometry (FT-IR analysis was conducted. The cation exchange capacity (CEC of tripoli was estimated using The copper bis-ethylenediamine complex method. The specific surface area of tripoli was estimated using Sears’ method by agitating 1.5 g of the tripoli sample in 100 ml of diluted hydrochloric acid of a pH = 3. Adsorption equilibrium studies were carried out by adding 0.5 g of tripoli in a series of 250mL flasks containing 100mL of MB solution of different dye concentrations at four different temperatures (20, 30, and 50 ◦C. The experiments of adsorption kinetics were carried out in stirred batch mode. For each experiment, 0.1 L

  12. LED Lighting for Indoor Sports Facilities: Can Its Use Be Considered as Sustainable Solution from a Techno-Economic Standpoint?

    Directory of Open Access Journals (Sweden)

    Fabio Fantozzi

    2016-06-01

    Full Text Available In this paper, the authors propose a techno-economic comparative analysis between different lighting solutions, using, respectively, floodlight with metal halide lamps, luminaires with fluorescent lamps and LED floodlights. The comparison is aimed to identify general criteria for assessing the techno-economic sustainability of the use of LED lighting for indoor sports facilities, since this solution is very often proposed to achieve a reduction of the electrical power for lighting. From a technical standpoint, the analysis takes into particular consideration the aspects related to the satisfaction of lighting requirements, safety and energy efficiency. From an economic standpoint the investment, the operating and the maintenance costs are evaluated. To make comparisons on an economic basis, specific indicators are used. From the obtained results it is possible to highlight as the solution that uses the LED floodlights is characterized by highest energy efficiency. This solution requires a smaller number of luminaires and it has limited maintenance costs compared to the other solutions, but it has high investment costs, which involve reasonable payback times only when the sports facility is used intensively and for competitions of high level.

  13. Kinetics of Acid Blue 1 Adsorption from Aqueous Solution by Carbonaceous Substrate Produced from Biotic Precursor

    Institute of Scientific and Technical Information of China (English)

    FAZLULLAH,Khan Bangash; SULTAN,Alam; IRSHAD,Ahmad

    2007-01-01

    Adsorption of acid blue 1 from aqueous solution onto carbonaceous substrate produced from the wood of Paulownia tomentosa was investigated. The samples characterized by FTIR, SEM, EDS and XRD techniques, indicated that the surface functional groups like carboxyl, lactones or phenols and ethers have disappeared at high activation temperature (800 ℃) and as a result porous structure was developed that has a positive effect on the adsorption capacity. Bangham and parabolic diffusion models were applied to the kinetic adsorption data, which show that the adsorption of acid blue 1 was a diffusion controlled process. The reaction rate increased with the increase in temperatures of both the adsorption and activation. Thermodynamic parameters like △E≠, △H≠, △S≠ and △G≠ were calculated from the kinetic data. The negative values of △S≠ reflected the decrease in the disorder of the system at the solid-solution interface during adsorption. Gibbs free energy (△G≠), representing the driving force for the affinity of dye for the carbon surface, increased with the increase in sample activation and the adsorption temperatures.

  14. Potential biosorbent derived from Calligonum polygonoides for removal of methylene blue dye from aqueous solution.

    Science.gov (United States)

    Nasrullah, Asma; Khan, Hizbullah; Khan, Amir Sada; Man, Zakaria; Muhammad, Nawshad; Khan, Muhammad Irfan; Abd El-Salam, Naser M

    2015-01-01

    The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R (2)) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution.

  15. Bilirubin isomer distribution in jaundiced neonates during phototherapy with LED light centered at 497 nm (turquoise) vs. 459 nm (blue)

    DEFF Research Database (Denmark)

    Ebbesen, Finn; Madsen, Poul H; Vandborg, Pernille K;

    2016-01-01

    of jaundiced neonates after 24 h of therapy with narrow-band (LED) light centered at 497 nm (turquoise) vs. 459 nm (blue), of essentially equal irradiance. MATERIALS: Eighty-three neonates (≥33 wk gestational age) with uncomplicated hyperbilirubinemia were included in the study. Forty neonates were exposed...... to light centered at 497 nm and 43 infants with light centered at 459 nm. Irradiances were 5.2 × 10(15) and 5.1 × 10(15) photons/cm(2)/s, respectively. RESULTS: After 24 h of treatment no significant differences in serum concentrations of total bilirubin isomers and Z,Z-bilirubin were observed between...... the 2 groups. Interestingly, concentrations of Z,E-bilirubin, and thus also total bilirubin isomers formed during therapy, were highest for infants receiving light centered at 459 nm, while the concentration of E,Z-bilirubin was highest for those receiving light centered at 497 nm. No significant...

  16. Mechanisms of Methylene Blue Degradation in Three-dimensionally Integrated Micro-solution Plasma

    Science.gov (United States)

    Nomura, Ayano; Hayashi, Yui; Tanaka, Kenji; Shirafuji, Tatsuru; Goto, Motonobu

    2015-09-01

    Plasma in aqueous solution has attracted much attention because they are expected to have possibilities to solve water-related environmental issues. In such application-oriented researches, degradation of methylene blue (MB) or other organic dyes has been widely used for investigating the effects of the plasma treatment on the water with organic contaminants. However, there are few reports on the detailed analysis of the products after the plasma treatment of MB aqueous solution for understanding mechanisms of the degradation processes. We have hence analyzed our degradation products using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. We have performed the MB degradation in three-dimensionally integrated micro-solution plasma, which has shown 16-fold higher performance in MB degradation than conventional solution plasma. The results of MALDI-TOF mass spectrometry have indicated the formation of sulfoxides in the first stage of the degradation. Then, the methyl groups on the sulfoxides are partially oxidized. The sulfoxides are separated to form two benzene derivatives after that. Finally, weak functional groups are removed from the benzene derivatives.

  17. Adsorption of Methylene Blue from Aqueous Solution onto Hydrochloric Acid-modified Rectorite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gaoke; LIU Guanfeng; GUO Yadan

    2011-01-01

    H+-rectorite clay,which was prepared by modifying the raw rectorite with 10% hydrochloric acid at 60 ℃C for 24 h,was used as an absorbent for removal of methyl blue (MB) from aqueous solutions.The morphology and the structure and crystallinity of the pristine rectorite and the H+-rectorite were characterized by scanning electron microscopy (SEM) technique and X-ray diffraction (XRD) technique,respectively.The results showed that the H+-rectorite exhibited high adsorption ability than the raw rectorite,and it was found that the removal percentage of MB increased with increasing in adsorbents dose,whereas the adsorption amount q,(mg/g) decreased.The equilibrium was attained within 30 min in adsorption process,and the maximum adsorption capacity of H+-rectorite for methylene blue reached as high as 37 mg/g.Besides,the effect of temperature on the adsorption of MB with H+-rectorite was investigated and the equilibrium data were well fitted to Freundlich equations.The H+-rectorite absorbent saturated with MB can be regenerated by calcinating at 400 ℃ for 2 h and the regenerated absorbent still showed higher percentage removal of MB.

  18. Hybrid multiwalled carbon nanotube--Laponite sorbent for removal of methylene blue from aqueous solutions.

    Science.gov (United States)

    Loginov, Maksym; Lebovka, Nikolai; Vorobiev, Eugene

    2014-10-01

    The article discusses adsorption of methylene blue dye by novel hybrid sorbent consisting of Laponite and multiwalled carbon nanotubes. The sorbent was obtained by sonication of the aqueous suspensions of nanotubes at different concentrations of Laponite. The methods of the methylene blue adsorption, dead-end membrane filtration and environmental scanning electron microscopy were used for the sorbent characterization. It may be concluded from the results of filtration and adsorption experiments that sonication of mixed aqueous suspensions of Laponite and multiwalled carbon nanotubes leads to the formation of hybrid particles (ML-particles) with a core-shell structure. The size and the shape of hybrid particles were determined by nanotubes, while their adsorption properties were determined by Laponite particles attached to the surface of nanotubes. The Laponite content in hybrid particles was corresponding to the Laponite to nanotubes ratio in the initial suspension X(L)=0-1. Due to the presence of Laponite in the sorbent, its adsorbing capacity was much higher as compared to the adsorbing capacity of pure nanotubes, and it was directly proportional to the Laponite content. This sorbent may be used either as a purifying additive or as a filtering layer if it is deposited on the surface of a supporting membrane. Due to relatively large size of hybrid particles, they can be easily separated from the purified solution by filtration or centrifugation.

  19. [Adsorption of methylene blue from aqueous solution onto magnetic Fe3O4/ graphene oxide nanoparticles].

    Science.gov (United States)

    Chang, Qing; Jiang, Guo-Dong; Hu, Meng-Xuan; Huang, Jia; Tang, He-Qing

    2014-05-01

    A simple ultrasound-assisted co-precipitation method was developed to prepare magnetic Fe3O4/graphene oxide (Fe3O4/ GO) nanoparticles. The characterization with transmission electron microscope (TEM) indicated that the products possessed small particle size. The hysteresis loop of the dried Fe3O4/GO nanoparticles demonstrated that the sample had typical features of superparamagnetic material. Batch adsorption studies were carried out to investigate the effects of the initial pH of the solution, the dosage of adsorbent, the contact time and temperature on the adsorption of methylene blue. The results indicated that the composites prepared could be used over a broad pH range (pH 6-9). The adsorption process was very fast within the first 25 min and the equilibrium was reached at 180 min. The adsorption equilibrium and kinetics data fitted well with the Langmuir isotherm model and the pseudo-second-order kinetic model. The adsorption process was a spontaneous and endothermic process in nature. The composite exhibited fairly high adsorption capacity (196.5 mg.g-1) of methylene blue at 313 K. In addition, the magnetic composite could be effectively and simply separated by using an external magnetic field, and then regenerated by hydrogen peroxide and recycled for further use. The results indicated that the adsorbent had a potential in the application of the dye wastewater treatment.

  20. Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution

    Directory of Open Access Journals (Sweden)

    Azadeh Ebrahimian Pirbazari

    2014-08-01

    Full Text Available The adsorption of methylene blue (MB from aqueous solution by alkali treated Foumanat tea waste (ATFTW from agriculture biomass was investigated. The adsorbent was characterized by Scanning Electron Microscopy (SEM, Fourier Transform-Infrared Spectroscopy (FT-IR and nitrogen physisorption. FTIR results showed complexation and ion exchange appear to be the principle mechanism for MB adsorption. The adsorption isotherm data were fitted to Langmuir, Sips, Redlich-Peterson and Freundlich equations, and the Langmuir adsorption capacity, Qmax was found to be 461 mgg−1. It was found that the adsorption of MB increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The removal of MB by ATFTW followed pseudo-second order reaction kinetics based on Lagergren equations. Mechanism studies indicated that the adsorption of MB on the ATFTW was mainly governed by external mass transport where particle diffusion was the rate limiting step.

  1. Elucidating the structure of merocyanine dyes with the ASEC-FEG method. Phenol blue in solution

    Science.gov (United States)

    Franco, Leandro R.; Brandão, Idney; Fonseca, Tertius L.; Georg, Herbert C.

    2016-11-01

    The electronic structure of phenol blue (PB) was investigated in several protic and aprotic solvents, in a wide range of dielectric constants, using atomistic simulations. We employed the sequential QM/MM and the free energy gradient methods to optimize the geometry of PB in each solvent at the MP2/aug-cc-pVTZ level. The ASEC mean field is used to include the ensemble average of the solute-solvent interaction into the molecular hamiltonian, both for the geometry optimization and for the calculations of the electronic properties. We found that the geometry of PB changes considerably, from a polyene-like structure in nonpolar solvents to a cyanine-like in water. Moreover, and quite interestingly, in protic solvents with higher dielectric constant than water, the structure of the molecule is less affected and lies in an intermediate state. The results illustrate the important role played by hydrogen bonds in the conformation of merocyanine dyes.

  2. Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution

    DEFF Research Database (Denmark)

    Sun, Jian-Hui; Shi, Shao-Hui; Lee, Yi-Fan

    2009-01-01

    In this paper, the application of Fenton oxidation process for the decolorization of an azo dye Direct Blue 15 (DB15) in aqueous solution was investigated. The effect of initial pH, dosage of H2O2, H2O2/Fe2+ and H2O2/dye ratios and the reaction temperature on the decolorization efficiency...... and kinetic of the DB15 were studied, the operating parameters were preferred by changing one factor at one time while the other parameters were kept constant. The optimal conditions for the decolorization of DB15 were determined as pH=4.0, [H2O2] = 2.8x10(-3) mol/L, H2O2/Fe2+ ratio = 100: 1, H2O2/dye ratio...... rights reserved....

  3. Adsorptive Removal of Acid Blue 80 Dye from Aqueous Solutions by Cu-TiO2

    Directory of Open Access Journals (Sweden)

    Ingrid Johanna Puentes-Cárdenas

    2016-01-01

    Full Text Available The adsorption performance of a Cu-TiO2 composite for removing acid blue 80 (AB80 dye from aqueous solutions was investigated in terms of kinetics, equilibrium, and thermodynamics. The effect of operating variables, such as solution pH, initial dye concentration, contact time, and temperature, on AB80 adsorption was studied in batch experiments. AB80 adsorption increased with increasing contact time, initial dye concentration, and temperature and with decreasing solution pH. Modeling of adsorption kinetics showed good agreement of experimental data with the pseudo-second-order kinetics model. The experimental equilibrium data for AB80 adsorption were evaluated for compliance with different two-parameter, three-parameter, and four-parameter isotherm models. The Langmuir isotherm model best described the AB80 adsorption equilibrium data. The thermodynamic data revealed that the AB80 adsorption process was endothermic and nonspontaneous. Kinetics, equilibrium, and thermodynamic results indicate that Cu-TiO2 adsorbs AB80 by a chemical sorption reaction.

  4. Adsorption of Methylene Blue from Aqueous Solutions by Polyvinyl Alcohol/Graphene Oxide Composites.

    Science.gov (United States)

    Yang, Xiaoxia; Li, Yanhui; Du, Qiuju; Wang, Xiaohui; Hu, Song; Chen, Long; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2016-02-01

    As a new member of the carbon family, graphene oxide (GO) has shown excellent adsorption ability to micro-pollutants in aqueous solutions. However, its tiny size makes it difficult to be removed from aqueous solutions using the conventional separation methods, which limits its practical application in the environmental protection. In this study, polyvinyl alcohol (PVA) was used as carrier immobilizing GO, and novel PVA/GO composites were prepared. The morphology and physicochemical properties of the composites were characterized by SEM, FTIR and TGA analysis. The adsorption properties of methylene blue (MB) onto the composites were studied through investigating the experimental parameters such as solution pH, adsorbent dosage, contact time and temperature. The isotherm data were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevich models. The calculated maximum adsorption capacity reached 476.2 mg/g at 50% GO content. The pseudo-first-order kinetic, pseudo-second-order kinetic and intra-particle diffusion models were used to explore the adsorption kinetics. The results showed that the dynamic data were fitted to the pseudo-second-order kinetic model.

  5. A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector.

    Directory of Open Access Journals (Sweden)

    Jacob Lamb

    Full Text Available The fluorescence emission spectrum of photosynthetic microorganisms at liquid nitrogen temperature (77 K provides important insights into the organization of the photosynthetic machinery of bacteria and eukaryotes, which cannot be observed at room temperature. Conventionally, to obtain such spectra, a large and costly table-top fluorometer is required. Recently portable, reliable, and largely maintenance-free instruments have become available that can be utilized to accomplish a wide variety of spectroscopy-based measurements in photosynthesis research. In this report, we show how to build such an instrument in order to record 77K fluorescence spectra. This instrument consists of a low power monochromatic light-emitting diode (LED, and a portable CCD array based spectrometer. The optical components are coupled together using a fiber optic cable, and a custom made housing that also supports a dewar flask. We demonstrate that this instrument facilitates the reliable determination of chlorophyll fluorescence emission spectra for the cyanobacterium Synechocystis sp. PCC 6803, and the green alga Chlamydomonas reinhardtii.

  6. Methylene blue 1% solution on the prevention of intraperitoneal adhesion formation in a dog model

    Directory of Open Access Journals (Sweden)

    Marco Augusto Machado Silva

    Full Text Available Intraperitoneal adhesions usually are formed after abdominal surgeries and may cause technical difficulties during surgical intervention, chronic abdominal pain and severe obstructions of the gastrointestinal tract. The current study aimed to evaluate the efficacy of methylene blue (MB 1% solution on the prevention of intraperitoneal postsurgical adhesion formation in a canine surgical trauma model. Twenty bitches were submitted to falciform ligament resection, omentectomy, ovariohysterectomy and scarification of a colonic segment. Prior to abdominal closure, 10 bitches received 1mg kg-1 MB intraperitoneally (MB group and 10 bitches received no treatment (control group, CT. On the 15th postoperative day the bitches were submitted to laparoscopy to assess adhesions. The mean adhesion scores were 13.9 (±5.6 for MB group and 20.5 (±6.4 for the CT group (P=0,043. In conclusion, the 1% MB solution was efficient on the prevention of intraperitoneal postoperative adhesion formation in bitches, especially those involving the colonic serosa.

  7. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology

    Science.gov (United States)

    Ghaedi, Mehrorang; Kokhdan, Syamak Nasiri

    2015-02-01

    The use of cheep, non-toxic, safe and easily available adsorbent are efficient and recommended material and alternative to the current expensive substance for pollutant removal from wastewater. The activated carbon prepared from wood waste of local tree (millet) extensively was applied for quantitative removal of methylene blue (MB), while simply. It was used to re-used after heating and washing with alkaline solution of ethanol. This new adsorbent was characterized by using BET surface area measurement, FT-IR, pH determination at zero point of charge (pHZPC) and Boehm titration method. Response surface methodology (RSM) by at least the number of experiments main and interaction of experimental conditions such as pH of solution, contact time, initial dye concentration and adsorbent dosage was optimized and set as pH 7, contact time 18 min, initial dye concentration 20 ppm and 0.2 g of adsorbent. It was found that variable such as pH and amount of adsorbent as solely or combination effects seriously affect the removal percentage. The fitting experimental data with conventional models reveal the applicability of isotherm models Langmuir model for their well presentation and description and Kinetic real rate of adsorption at most conditions efficiently can be represented pseudo-second order, and intra-particle diffusion. It novel material is good candidate for removal of huge amount of MB (20 ppm) in short time (18 min) by consumption of small amount (0.2 g).

  8. Heterogeneous photodegradation of methylene blue with iron and tea or coffee polyphenols in aqueous solutions.

    Science.gov (United States)

    Morikawa, Claudio Kendi; Shinohara, Makoto

    2016-01-01

    Recently, we developed two new Fenton catalysts using iron (Fe) and spent tea leaves or coffee grounds as raw material. In this study, Fe-to-tea or Fe-to-coffee polyphenol complexes were successfully tested as heterogeneous photo-Fenton catalysts. The photodegradation efficiency of methylene blue solutions with Fe-to-polyphenol complexes was higher than that of homogeneous iron salts in the photo-Fenton process. Furthermore, the tested Fe-to-polyphenol complexes could be reused by simply adding H2O2 to the solutions. After three sequential additions of H2O2, the conventional catalysts FeCl2·4H2O and FeCl3 removed only 16.6% and 53.6% of the dye, while the catalysts made using spent coffee grounds and tea leaves removed 94.4% and 96.0% of the dye, respectively. These results showed that the complexes formed between Fe and chlorogenic acid, caffeic acid, gallic acid and catechin, which are the main polyphenols in tea and coffee, can be used to improve the photo-Fenton process.

  9. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology.

    Science.gov (United States)

    Ghaedi, Mehrorang; Nasiri Kokhdan, Syamak

    2015-02-05

    The use of cheep, non-toxic, safe and easily available adsorbent are efficient and recommended material and alternative to the current expensive substance for pollutant removal from wastewater. The activated carbon prepared from wood waste of local tree (millet) extensively was applied for quantitative removal of methylene blue (MB), while simply. It was used to re-used after heating and washing with alkaline solution of ethanol. This new adsorbent was characterized by using BET surface area measurement, FT-IR, pH determination at zero point of charge (pHZPC) and Boehm titration method. Response surface methodology (RSM) by at least the number of experiments main and interaction of experimental conditions such as pH of solution, contact time, initial dye concentration and adsorbent dosage was optimized and set as pH 7, contact time 18 min, initial dye concentration 20 ppm and 0.2 g of adsorbent. It was found that variable such as pH and amount of adsorbent as solely or combination effects seriously affect the removal percentage. The fitting experimental data with conventional models reveal the applicability of isotherm models Langmuir model for their well presentation and description and Kinetic real rate of adsorption at most conditions efficiently can be represented pseudo-second order, and intra-particle diffusion. It novel material is good candidate for removal of huge amount of MB (20 ppm) in short time (18 min) by consumption of small amount (0.2 g).

  10. AdBlue: the solution retained by Total to reduce the nitrogen oxides releases of heavy lorries; AdBlue: la solution retenue par Total pour reduire les emissions d'oxydes d'azote des poids lourds

    Energy Technology Data Exchange (ETDEWEB)

    Salomon, A.

    2005-09-15

    On the 15 of June 2005, Total has inaugurated, near Lyon, the first French gasoline service station delivering AdBlue to heavy-duty cars. Adblue is an aqueous solution of urea which, injected in exhaust systems, allows to reduce the nitrogen oxides releases. In this technology, called SCR (Selective Catalytic Reduction), nitrogen oxides are converted into nitrogen and steam by the mean of a catalytic converter of AdBlue pulverized in the hot exhaust gas. The releases are abated of about 85%. (O.M.)

  11. Studies on Biosorption of Methylene Blue from Aqueous Solutions by Powdered Palm Tree Flower (Borassus flabellifer

    Directory of Open Access Journals (Sweden)

    M. Srinivas Kini

    2014-01-01

    Full Text Available Biosorption experiments were carried out for the removal of methylene blue (MB using palm tree male flower (PTMF as the biosorbent at various pH, temperature, biosorbent, and adsorbate concentration. The optimum pH was found to be 6.0. The kinetic data were fitted in pseudofirst-order and second-order models. The equilibrium data were well-fitted in Langmuir isotherm and the maximum equilibrium capacities of the biosorbent were found to be 143.6, 153,9, 157.3 mg/g at 303, 313, and 323 K, respectively. Thermodynamic data for the adsorption system indicated spontaneous and endothermic process. The enthalpy and entropy values for adsorption were obtained as 15.06 KJ/mol and 0.129 KJ/mol K, respectively, in the temperature range of 303–323 K. A mathematical model for MB transported by molecular diffusion from the bulk of the solution to the surface of PTMF was derived and the values of liquid phase diffusivity and external mass transfer coefficient were estimated.

  12. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite.

    Science.gov (United States)

    Ai, Lunhong; Zhang, Chunying; Chen, Zhonglan

    2011-09-15

    In this study, we have demonstrated a facile one-step solvothermal method for the synthesis of the graphene nanosheet (GNS)/magnetite (Fe(3)O(4)) composite. During the solvothermal treatment, in situ conversion of FeCl(3) to Fe(3)O(4) and simultaneous reduction of graphene oxide (GO) into graphene in ethylene glycol solution were achieved. Electron microscopy study suggests the Fe(3)O(4) spheres with a size of about 200 nm are uniformly distributed and firmly anchored on the wrinkled graphene layers with a high density. The resulting GNS/Fe(3)O(4) composite shows extraordinary adsorption capacity and fast adsorption rates for removal of organic dye, methylene blue (MB), in water. The adsorption kinetics, isotherms and thermodynamics were investigated in detail to reveal that the kinetics and equilibrium adsorptions are well-described by pseudo-second-order kinetic and Langmuir isotherm model, respectively. The thermodynamic parameters reveal that the adsorption process is spontaneous and endothermic in nature. This study shows that the as-prepared GNS/Fe(3)O(4) composite could be utilized as an efficient, magnetically separable adsorbent for the environmental cleanup.

  13. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars.

    Science.gov (United States)

    Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong

    2016-01-01

    Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB.

  14. Red and blue LED weak light irradiation maintaining quality of cherry tomatoes during cold storage%LED红蓝弱光照射保持樱桃番茄冷库贮藏品质

    Institute of Scientific and Technical Information of China (English)

    雷静; 张娜; 阎瑞香; 许立兴; 李莹; 关文强

    2016-01-01

    Tomatoes are rich in compounds including carotenoids, vitamin C (Vc), and flavonoids, which are believed to be beneficial to human health. The increasing growth in the consumption of fresh cherry tomato (Lycopersicon esculentum Mill.) has driven the demand for developing new green postharvest technology to maintain the quality during cherry tomato’s storage period and shelf life. Blue and red lights among visible light regions may be still useful for the photosynthesis of some fresh products that are not fully mature during storage. Light-emitting diodes (LEDs) technologies could provide some opportunities to develop new equipment and method for controlling postharvest quality of cherry tomato treated by different light sources during storage and shelf life. Mature-green (breaker-stage) tomatoes were harvested and treated continuously with red and blue LED weak light at 4℃ for up to 20 d. Untreated tomatoes (the control) were kept in the dark for the same period. The effects of the treatments on the sensory quality (levels of appearance, color, odor and decay), Vc, reducing sugar, total soluble sugar, total soluble solids, titratable acid and lycopene were evaluated throughout the storage. The results showed that LED irradiation apparatus used in the experiment was stable and reliable. LED red and blue lamps could emit the designated light spectrum and not drift as the change of light intensity. The sensory quality was maintained at high level in all treatment during early storage period. After 10 d storage, the cherry tomatoes irradiated by LED red and blue light began to change color to yellow and red and had significantly better sensory quality than the control treatment (P<0.05), and LED red light had better effect than LED blue light. On the 20th day, the cherry tomatoes in the control showed inferior sensory quality involving flesh severe softening, apparent browning pitting on the peel and fungal decay spot, while the tomatoes irradiated by LED red and

  15. LED亮化照明配电系统解决方案%Solution of LED Brightening Lighting Distribution System

    Institute of Scientific and Technical Information of China (English)

    陈平

    2015-01-01

    Based on the park example,this paper analyzed the solution of LED brightening lighting distribution system.By the arrangement of distributed uninterruptible power supply,and transformation of reactive power compensation system and the circuit topology,the power quality of LED brightening lighting distribution system was improved significantly.The daily maintenance cost is reduced from 20.55 yuan to 0.45 yuan,which dramatically improves the practicality and reliability of lighting distribution system.%分析了某公园LED亮化照明配电系统的解决方案,通过分布式不间断电源的部署,配合无功补偿系统和线路拓扑的改造,大幅提升了LED亮化照明配电系统的电能质量,使维修费成本从每天20.55元下降到了0.45元,显著提升了照明配电系统的实用性和可靠性。

  16. Influence of Different Wavelength Blue LED on Human Optical Biorhythm Effect%不同波长蓝光LED对人体光生物节律效应的影响

    Institute of Scientific and Technical Information of China (English)

    鲁玉红; 王毓蓉; 金尚忠; 曾珊珊; 邵茂丰

    2013-01-01

    以30名视力正常的学生为研究对象,采用剂量作业法、生理参数法和疲劳评价法研究了人体在峰值波长分别为468,457,453 nm的蓝光LED照明下的光生物节律效应.结果表明:在剂量作业法中,蓝光LED对错误率、工作速度和脑力工作指数的影响均为453 nm <457 nm <468 nm;在生理参数法中,468 nm蓝光LED对脉搏的变化影响最大,对收缩/舒张压的影响不明显;在疲劳评价法中,蓝光LED对人体舒适度的影响为453 nm <457 nm <468 nm.综上所述,在3种峰值波长蓝光中,468 nm的蓝光对人体光生物节律影响最大.%Human have different sensitivity under different wavelengths of light.By using dose work method,physiological parameter method and fatigue evaluation method,the human optical biorhythm effect of 30 students with normal vision was studied under the blue LED,whose peak wavelengths are 468,457,and 453 nm.In the dose work method,the influence of blue LED on the error rate,speed of work,and the brainwork efficiency is:453 nm < 457 nm < 468 nm.In physiological parameter method,468 nm blue LED has the greatest impact on the changes of pulse,and insignificant on systolic/diastolic blood pressure.In fatigue evaluation method,effect of blue LED on human comfort is:453 nm <457 nm <468 nm.In conclusion,468 nm blue LED has great influence on human optical biological rhythm.

  17. Different Ratio of Red and Blue LED Regulation Growth and Development of Cucumber Seedlings%不同红蓝配比的LED光调控黄瓜幼苗的生长

    Institute of Scientific and Technical Information of China (English)

    徐文栋; 刘晓英; 焦学磊; 徐志刚

    2015-01-01

    Red and blue light are the most important spectrum absorbed by plants. The demands quantitative of different crops for red or blue light are different. In this study, we adopted red and blue LED, the effects of different ratio of red and blue LED on growth of cucumber seedling were investigated to provide a theoretical basis and data support for cucumber seedlings to light regulation. The results showed that the ratio of red and blue LED regulated growth and development of cucumber seedlings. Except the treatment of 25%red light of R25, with decreasing of red light, the plant height increased. Stem diameter of 75%red light of R75 treatment was the thickest and chlorophyll content was the most. Leaf area of 100%blue light of R0 treatment was the largest. With the decrease of red light, fresh and dry weight of plant ifrst increased then decreased, plant fresh weight, dry weight and healthy index of R75 treatment were signiifcantly greater than those of other treatments. With blue light increased, soluble sugar content decreased. The results suggested that red and blue composited LED light regulation cucumber seedlings growth was promoted and prohibited effects of red and blue light. Under 75%red light of R75, cucumber seedlings is healthier and stronger, and accumulated more biomass. The ratio 3:1 of red and blue composited light can be used reference standard of spectrum modulation for culturing cucumber seedlings in facilities.%红光和蓝光是植物吸收的最主要光谱,不同作物对红光和蓝光光谱的需求有差异。本研究采用LED调制红蓝光的不同配比,研究了不同红蓝配比的LED光对黄瓜幼苗生长的影响,以期为设施黄瓜育苗光调控提供理论依据和数据支撑。结果显示:除红光比例为25%的R25处理外,其他处理的株高随着红光比例的减小而增大;在红光比例为75%的R75处理中,植株茎粗最大、叶绿素含量最高;100%蓝光处理的叶面积最大;随着红

  18. Heptanuclear lanthanide [Ln7] clusters: from blue-emitting solution-stable complexes to hybrid clusters.

    Science.gov (United States)

    Canaj, Angelos B; Tsikalas, George K; Philippidis, Aggelos; Spyros, Apostolos; Milios, Constantinos J

    2014-09-07

    The use of LH3 (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol) and aibH (2-amino-isobutyric acid) in 4f chemistry has led to the isolation of eight new isostructural lanthanide complexes. More specifically, the reaction of the corresponding lanthanide nitrate salt with LH3 and aibH in MeOH, under solvothermal conditions in the presence of NEt3, led to the isolation and characterization of seven complexes with the general formulae [Ln(III)7(OH)2(L')9(aib)]·4MeOH (Ln = Gd, ·4MeOH; Tb, ·4MeOH; Dy, ·4MeOH; Ho, ·4MeOH; Er, ·4MeOH; Tm, ·4MeOH; Yb, ·4MeOH L' = the dianion of the Schiff base between naphthalene aldehyde and 2-amino-isobutyric acid). Furthermore, the isostructural Y(III) analogue, cluster [Y(III)7(OH)2(L')9(aib)]·4MeOH (·4MeOH), was synthesized in a similar manner to . The structure of all eight clusters describes a distorted [M(III)6] octahedron which encapsulates a seventh M(III) ion in an off-centre fashion. Dc magnetic susceptibility studies in the 5-300 K range for complexes reveal the presence of dominant antiferromagnetic exchange interactions within the metallic clusters as evidenced by the negative Weiss constant, θ, while ac magnetic susceptibility measurements show temperature and frequency dependent out-of-phase signals for the [Dy(III)7] analogue (·4MeOH), suggesting potential single molecule magnetism character. Furthermore, for complex , simulation of its dc magnetic susceptibility data yielded very weak antiferromagnetic interactions within the metallic centres. Solid-state emission studies for all clusters display ligand-based emission, while extended 1D and 2D NMR studies for ·4MeOH reveal that the species retain their structural integrity in solution. In addition, TGA measurements for , and revealed excellent thermal stability up to 340 °C for the clusters.

  19. Efficient Solution-Processed Blue Electrophosphorescent Devices Based on a Novel Small-Molecule Host

    Institute of Scientific and Technical Information of China (English)

    HOU Liu-Dong; LI Wei; DUAN Lian; QIU Yong

    2008-01-01

    @@ Efficient blue small molecular phosphorescent light-emitting diodes with a blue phosphorescent dye bis(3,5-difluoro-2-(2-pyridyl)-phenyl-(2-carboxypride) iridium (Ⅲ) (Flrpic) doped into a novel small-molecule host 9,9-bis[4-(3,6-di-tert-butylcarbazol-9-yl)phenyl] fluorene (TBCPF) as the light-emitting layer have been fabricated by spin-coating. The host TBCPF can form homogeneous amorphous films by spin-coating and has triplet energy higher than that of the blue phosphorescent dye Flrpic. All the devices with different Flrpic concentration in the emitting layer give emission from Flrpic indicating complete energy transfer from TBCPF to Flrpic. The device shows the best performance with a peak brightness of 8050cd/m2 at 10.2 V and the maximum current efficiency up to 3.52 cd/A, when the Flrpic doped concentration is as high as 16%.

  20. Adsorption studies of Methylene blue dye from aqueous solution onto phaseolus aureus biomaterials.

    Directory of Open Access Journals (Sweden)

    D. B. Jirekar

    2014-09-01

    Full Text Available Experimental investigation was carried out by using commercially available husk of green gram (phaseolusaureus seed to removal ofmethylene blue from aqueous medium. Husk of green gram seed was characterized by performing particle size distribution. The effect of contact time, effect of initial concentration of dye, effect of dosage, effect of salt, effect of pH, zero point pH and effect of temperature were studied in batch technique. Adsorption kinetic was verified by pseudo-first-order and pseudo-second-order models. The rate of adsorption of methylene blue followed by pseudo-second-order model for the dye concentration studied in the present case. Adsorption of methylene blue on green gram (phaseolusaureus seed husk is also followed by Langmuir and Freundlich adsorption isotherm.

  1. Adsorptive removal of acid blue 113 and tartrazine by fly ash from single and binary dye solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pura, S.; Atun, G. [Istanbul University, Avcilar (Turkey). Dept. of Chemistry

    2009-07-01

    Adsorption of two acid dyestuffs, acid blue 113 (AB) and tartrazine (TA), has been studied from their single and binary solutions by using fly ash (FA) as an adsorbent. The S shaped isotherms observed for dye adsorption from single solutions show that both acid dyes are not preferred at a low concentration region whereas adsorption of the dyes from binary solutions is enhanced via solute-solute interactions. Although the L-shaped isotherm is observed in binary solutions adsorbability of AB decreases in concentrated solutions with respect to single one, time dependency of adsorption is well described with a pseudo-second-order kinetic model as well as the linear relation of Bt vs. t plots (not passing through origin) indicates that film diffusion is effective on dye adsorption. Modeled isotherm curves using isotherm parameters of the Freundlich and Dubinin-Radushkevich (D-R) equations adequately fit to experimental equilibrium data. Equilibrium adsorption of AB in binary solutions has been quite well predicted by the extended Freundlich and the Sheindorf-Rebuhn-Sheintuch (SRS) models. In general, the isotherm curves constructed in the temperature range of 298-328K show that the optimum temperature is 318K for AB removal from both single and binary solutions.

  2. Comparison between the behavior of dosimeters FAM and FAT after irradiation with LED; Comparacao entre o comportamento dos dosimetros FAM e FAT apos irradiacao com LED

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.G.O.; Lima, V.L.; Nascimento, R.K.; Souza, V.L.B., E-mail: vlsouza@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil). Divisao de Laboratorios Tecnico-Cientifico

    2013-08-15

    The work consists in evaluating the photosensitivity of Fricke solution modified by addition of dyes acting as a photosensitizers, comparing the behavior of FAM dosimeters (Fricke solution modified by addition of methylene blue) and FAT (Fricke solution modified by addition of toluidine blue) after irradiation with LED in acrylic phantom. An arrangement of LED, prepared for this purpose and a set of commercially available LED were used for irradiation the samples, as well as an acrylic phantom. The results show that the FAM is more sensitive dosimeter than FAT; samples irradiated with LED demonstrated the sensitivity of the dosimeters to red and blue light obtaining calibration curves with good correlation coefficients, so that these dosimeters may be used in the future for photodynamic therapy dosimetry. (author)

  3. An RNA-Seq Analysis of Grape Plantlets Grown in vitro Reveals Different Responses to Blue, Green, Red LED Light, and White Fluorescent Light.

    Science.gov (United States)

    Li, Chun-Xia; Xu, Zhi-Gang; Dong, Rui-Qi; Chang, Sheng-Xin; Wang, Lian-Zhen; Khalil-Ur-Rehman, Muhammad; Tao, Jian-Min

    2017-01-01

    Using an RNA sequencing (RNA-seq) approach, we analyzed the differentially expressed genes (DEGs) and physiological behaviors of "Manicure Finger" grape plantlets grown in vitro under white, blue, green, and red light. A total of 670, 1601, and 746 DEGs were identified in plants exposed to blue, green, and red light, respectively, compared to the control (white light). By comparing the gene expression patterns with the growth and physiological responses of the grape plantlets, we were able to link the responses of the plants to light of different spectral wavelengths and the expression of particular sets of genes. Exposure to red and green light primarily triggered responses associated with the shade-avoidance syndrome (SAS), such as enhanced elongation of stems, reduced investment in leaf growth, and decreased chlorophyll levels accompanied by the expression of genes encoding histone H3, auxin repressed protein, xyloglucan endotransglycosylase/hydrolase, the ELIP protein, and microtubule proteins. Furthermore, specific light treatments were associated with the expression of a large number of genes, including those involved in the glucan metabolic pathway and the starch and sucrose metabolic pathways; these genes were up/down-regulated in ways that may explain the increase in the starch, sucrose, and total sugar contents in the plants. Moreover, the enhanced root growth and up-regulation of the expression of defense genes accompanied with SAS after exposure to red and green light may be related to the addition of 30 g/L sucrose to the culture medium of plantlets grown in vitro. In contrast, blue light induced the up-regulation of genes related to microtubules, serine carboxypeptidase, chlorophyll synthesis, and sugar degradation and the down-regulation of auxin-repressed protein as well as a large number of resistance-related genes that may promote leaf growth, improve chlorophyll synthesis and chloroplast development, increase the ratio of chlorophyll a (chla

  4. TiO2 and N-Doped TiO2 Induced Photocatalytic Inactivation of Staphylococcus aureus under 405 nm LED Blue Light Irradiation

    OpenAIRE

    Hongfei Chen; Zhong Xie; Xiujuan Jin; Chao Luo; Chao You; Ying Tang; Di Chen; Zhengjia Li; Xiaohong Fan

    2012-01-01

    Irradiation source has been a serious impediment to induce photocatalytic bacterial inactivation which was taken as an advanced indoor air purification technique. Here we reported the synergistic effects of 405 nm LED light and TiO2 photocatalyst in inactivation process of Staphylococcus aureus (S. aureus). In this work, TiO2 and N-doped TiO2 particles were, respectively, suspended into the nutrient broth suspension with S. aureus. Then, the mixed system was exposed to a 405 nm LED light sour...

  5. Separation of Methylene Blue Dye from Aqueous Solution Using Triton X-114 Surfactant

    Directory of Open Access Journals (Sweden)

    Arunagiri Appusamy

    2014-01-01

    Full Text Available In this study, the interaction energy between Triton X-114 surfactant + methylene blue or water and methylene blue + water was investigated using Hartree-Fock (HF theory with 6-31G* basis set. The results of structures and interaction energies show that these complexes have good physical and chemical interactions at atom and molecular levels. However, the Triton X-114 surfactant + methylene blue complex shows stronger molecular interaction compared to other complexes systems. The order of the interaction energy is 4303.472023 (Triton X-114 surfactant + water > -1222.962 (methylene blue + water > -3573.28 (Triton X-114 surfactant + methylene blue kJ·mole−1. Subsequently, the cloud point extraction was carried out for 15 ppm of methylene blue in a mixture at 313.15 and 323.15 K over the surfactant concentration range from 0.01 M to 0.1 M. From the measured data, the excess molar volume was calculated for both phases. The results show a positive deviation in the dilute phase and a negative deviation in the surfactant rich phase. It is confirmed that the interaction between Triton X-114 and methylene blue is stronger than other complex systems due to the presence of chemical and structural orientation. The concentration of dyes and surfactant in the feed mixture and temperature effect in both phases has been studied. In addition, the thermodynamics feasibility and efficiency of the process have also been investigated.

  6. TiO2 and N-Doped TiO2 Induced Photocatalytic Inactivation of Staphylococcus aureus under 405 nm LED Blue Light Irradiation

    Directory of Open Access Journals (Sweden)

    Hongfei Chen

    2012-01-01

    Full Text Available Irradiation source has been a serious impediment to induce photocatalytic bacterial inactivation which was taken as an advanced indoor air purification technique. Here we reported the synergistic effects of 405 nm LED light and TiO2 photocatalyst in inactivation process of Staphylococcus aureus (S. aureus. In this work, TiO2 and N-doped TiO2 particles were, respectively, suspended into the nutrient broth suspension with S. aureus. Then, the mixed system was exposed to a 405 nm LED light source with energy density of about 0.2 W/cm2 for 3 hours. Irradiated suspension was then scanned by UV-vis spectrophotometer for bacteria survive/death rate statistics. Subsequently, the inactivation efficiency was calculated based on the difference of the absorption optical density between experimental and controlled suspensions. Results showed that both TiO2 and N-doped TiO2 particles exhibit potential bacterial inactivation effects under similar experimental conditions. Specifically, N-doped TiO2 with the concentration of 5 g/L displayed enhanced inactivation efficiency against S. aureus under 405 nm LED light irradiation. Thus, it is a promising indoor air purification technique by using N-doped TiO2 particles under the LED light irradiation.

  7. A New Property of Conjugated Polymer PFP: Catalytic Degradation of Methylene Blue Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new property of conjugated polymer poly(furancarbinol-co-phenol)(PFP) was studied.The target copolymer was used as a catalyst after proper heating treatment. And dye methylene blue (MB) could be fully degraded and largely mineralized on PFP, under natural light or even in dark, in a few minutes. Furthermore, the catalytic activity could be preserved after several runs and the catalyst was readily separated. The effect of calcination temperature was also observed.

  8. Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution

    Directory of Open Access Journals (Sweden)

    Chen Ming-Liang

    2011-01-01

    Full Text Available Abstract Carbon nanotube-cadmium selenide (CNT-CdSe composite was synthesized by a facile hydrothermal method derived from multi-walled carbon nanotubes as a stating material. The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy (TEM, and UV-vis diffuse reflectance spectrophotometer. The as-synthesized CNT-CdSe composite efficiently catalyzed the photodegradation of methylene blue in aqueous solutions under visible-light irradiation, exhibiting higher photocatalytic activity.

  9. Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications

    OpenAIRE

    2015-01-01

    This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.nanolett.5b02369 Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425–570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1–x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically ...

  10. New Phosphors for White LEDs

    Institute of Scientific and Technical Information of China (English)

    LIU Ru-Shi

    2004-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or UV LEDs) and photoluminescence phosphors. GaN-based highly efficient blue InGaN LEDs combined with phosphors can produce white light. These solid-state LED lamps have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability, and long operating lifetime (about 100,000 hours). For the purpose of development of high energy-efficient white light sources, we need to produce highly efficient new phosphors, which can absorb excitation energy from blue or UV LEDs and generate emissions.In this paper, we investigate the development of blue or UV LEDs by the appropriate combination of new phosphors which can lead us to obtain high brightness white light. The criteria of choosing the best phosphors, for blue (380-450 nm) and UV (360-400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance light between the light emission from blue LEDs and the yellow YAG:Ce,Gd phosphor is important to obtain white light with high color temperature. The phosphors with high efficiency which can be excited by UV LEDs are important to obtain the white light with high color rendering index.

  11. White Light Production from Blue LEDs: The Synthesis of Small Particle YAG:Ce Type Phosphors for Solid State Lighting%基于蓝光 LED 的白光器件:用于固体发光的小颗粒YAG:Ce 型荧光粉的合成

    Institute of Scientific and Technical Information of China (English)

    Jack Silver; Robert Withnall; George Fern; Anthony Lip-man

    2008-01-01

    Three different synthetic mutes to the production of small particle cerium activated yttrium aluminium garnet (YAG:Ce) phosphors are reported. These YAG.Ce phosphors emit yellow light when excited by blue e-mitting LEDs, with the resulting phosphor conversion LEDs (pcLEDs) generating 'white' light from the mixture of the yellow and blur The dependence of the colour point of the pcLED emission on the loading of the YAG:Ce phosphor is explained. Methods of changing this by the addition of co-activators to modify the lattice composition are also reported. Efficiency measurements on these YAG.Ce phosphors as a function of Ce3+ concentration, firing temperature and exciting wavelength are presented and discussed.%文章介绍了小颗粒 YAG:Ce 荧光粉的三种合成方法.这种荧光粉受到蓝光 LED 发出的光线的激发会发出黄光.在合成的 pcLEDs 里,蓝光和黄光混合形成了白光.本文解释了这种涂有 YAG:Ce 荧光粉的 pcLED 的色点的依赖性以及通过添加修复晶格点阵的催化剂以改变这种依赖型的方法.另外,文章还讨论了 Ce3+ 聚集中心的YAG:Ce 荧光粉的效率的测量、烧成温度、激发波长.

  12. Study of the photocatalytic effect of the Ti-doped hydroxyapatite in the degradation of methylene blue solution

    Directory of Open Access Journals (Sweden)

    Anas Salhi

    2015-03-01

    Full Text Available Organic dyes and colouring textile agents are persistent pollutant materials that are difficult to decompose by microbiological treatment processes. Their oxidation through photocatalysis is an alternative way to prevent contamination of the environment. In this work, calcium deficient hydroxyapatite (HAP was synthesized and doped with different amounts of titanium. The performance capability of prepared catalyst to degrade methylene blue dye (MB in aqueous heterogeneous solutions has been demonstrated. The main parameters which govern the photocatalytic treatment efficiency, such as titanium amount in HAP, initial concentration of MB, amount of the catalyst added to solution, UV-irradiation period and bubbling oxygen have been investigated. Photodegradation of  MB is found to be effective with HAP/Ti 11% in oxygenated medium. However, pH has no significant effect on the yield of discoloration. 

  13. The Use of Ultra-Violet (UV) Light Emitting Diodes (LEDS) in an Advanced Oxidation Process (AOP) with Brilliant Blue FCF as an Indicator

    Science.gov (United States)

    2015-03-26

    tasks of graduate school. Thank you for being my wife and mother to our beautiful daughter. You both have my word that I will do my best to make sure...H2O2 in solution Fill remainder of flask with reverse osmosis deionized water up to the 1 liter mark Drop in stir bar and place on stir plate ...instrument Close the panel Click “Zero” Retrieve solution from the stir plate . Make Calibration Samples (0%, 25%, 50%, 75%, 100%) Using a

  14. Origin of blue photoluminescence from colloidal silicon nanocrystals fabricated by femtosecond laser ablation in solution

    Science.gov (United States)

    Hao, H. L.; Wu, W. S.; Zhang, Y.; Wu, L. K.; Shen, W. Z.

    2016-08-01

    We present a detailed investigation into the origin of blue emission from colloidal silicon (Si) nanocrystals (NCs) fabricated by femtosecond laser ablation of Si powder in 1-hexene. High resolution transmission electron microscopy and Raman spectroscopy observations confirm that Si NCs with average size 2.7 nm are produced and well dispersed in 1-hexene. Fourier transform infrared spectrum and x-ray photoelectron spectra have been employed to reveal the passivation of Si NCs surfaces with organic molecules. On the basis of the structural characterization, UV-visible absorption, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra investigations, we deduce that room-temperature blue luminescence from colloidal Si NCs originates from the following two processes: (i) under illumination, excitons first form within colloidal Si NCs by direct transition at the X or Γ (Γ25 → Γ‧2) point; (ii) and then some trapped excitons migrate to the surfaces of colloidal Si NCs and further recombine via the surface states associated with the Si-C or Si-C-H2 bonds.

  15. The TrueBlue study: Is practice nurse-led collaborative care effective in the management of depression for patients with heart disease or diabetes?

    Directory of Open Access Journals (Sweden)

    Coates Michael

    2009-06-01

    Full Text Available Abstract Background In the presence of type 2 diabetes (T2DM or coronary heart disease (CHD, depression is under diagnosed and under treated despite being associated with worse clinical outcomes. Our earlier pilot study demonstrated that it was feasible, acceptable and affordable for practice nurses to extend their role to include screening for and monitoring of depression alongside biological and lifestyle risk factors. The current study will compare the clinical outcomes of our model of practice nurse-led collaborative care with usual care for patients with depression and T2DM or CHD. Methods This is a cluster-randomised intervention trial. Eighteen general practices from regional and metropolitan areas agreed to join this study, and were allocated randomly to an intervention or control group. We aim to recruit 50 patients with co-morbid depression and diabetes or heart disease from each of these practices. In the intervention group, practice nurses (PNs will be trained for their enhanced roles in this nurse-led collaborative care study. Patients will be invited to attend a practice nurse consultation every 3 months prior to seeing their usual general practitioner. The PN will assess psychological, physiological and lifestyle parameters then work with the patient to set management goals. The outcome of this assessment will form the basis of a GP Management Plan document. In the control group, the patients will continue to receive their usual care for the first six months of the study before the PNs undergo the training and switch to the intervention protocol. The primary clinical outcome will be a reduction in the depression score. The study will also measure the impact on physiological measures, quality of life and on patient attitude to health care delivered by practice nurses. Conclusion The strength of this programme is that it provides a sustainable model of chronic disease management with monitoring and self-management assistance for

  16. 蓝光激发红色荧光粉的研究进展及其在白光LED中的应用%Research Progress and Applications of Blue Light Excited Red Phosphors for white LED

    Institute of Scientific and Technical Information of China (English)

    柏朝晖; 张希艳; 刘全生; 卢利平; 米晓云; 王晓春

    2011-01-01

    Blue light-emitting diodes (LEDs) chip excited yellow phosphor is the main way to achieve white LEDs. It is important to introduce red phosphor into yellow phosphor on the adjustment of the color index and color temperature of white LEDs. This paper emphatically presents and reviews the luminescent properties, latest research development and application on white LED of the broad band emission red phosphors of sulfide, nitride, aluminate phosphors excited by blue chips. Through contrast, it is found that nitride phosphor is the most promising type of red phosphor because it can be effectively excited from the near ultraviolet to green light, emits red fluorescence peaking form 600m to 650nm following various of the matrix composition and has excellent chemical stability, thermal stability. Two or more phosphors instead of single yellow phosphor are conductive to adjust the color temperature of white LED and to improve the color rendering index.%蓝光LED芯片激发黄色荧光粉是目前白光LED的主要实现方式,引入红色荧光粉对调整白光LED的显色指数及色温有重要意义.重点介绍和评述了可被蓝光激发且具有宽发射带的硫化物、氮化物、铝酸盐等几种体系红色荧光粉的发光性质、最新研究成果及在白光LED中的应用.对比发现,氮化物荧光粉可被从近紫外到可见绿光有效激发,随基质组成的不同,可发出峰值波长为600~650nm的红色荧光,且由于其优良的化学稳定性、热稳定性成为最有前途的一类红色荧光粉.采用两种以上的荧光粉代替单一黄色荧光粉,有利于调整白光LED的色温,提高显色指数.

  17. Combination treatment of moderate to severe acne with Xiaocuo facial mask and red-blue LED phototherapy%消痤面膜联合LED红蓝光照射治疗中重度痤疮疗效观察

    Institute of Scientific and Technical Information of China (English)

    张昆梅; 周宇晗; 汪春惠; 向光

    2013-01-01

    Objective:To study the clinical efficacy of Xiaocuo facial mask combined with red - blue LED phototherapy in the treatment of moderate to severe acne. Methods A total of 320 patients with moderate to severe acne (Pillsbury grade II to IV ) were divided into the treatment group (160 patients) and the control group (160 patients). Xiaocuo facial mask combined with red - blue LED phototherapy and drug were given to the treatment group while the control group was treated with drug alone. After 6 weeks, the therapeutic efficacy was analyzed following completion of the therapy. Results The effective rate was 83.48% in the treatment group (severe) , 51.40% in the control group (severe), 94.12% in the treatment group (moderate) and 73.58% in the control group (moderate) . The total effective rate of the control group was significantly higher than the control group (x2>6.63, P<0.01). conclusions The combined therapy of Xiaocuo facial mask and red- blue LED phototherapy is more effective than drug alone in the treatment of morderate to severe acne, and adverse reaction is slight.%目的:探讨消痤面膜联合LED红蓝光照射治疗中重度痤疮的临床疗效.方法:选择中重度(Pillsbur分级为Ⅱ至Ⅳ度)寻常性痤疮320例,随机分为治疗组(160例)和对照组(160例).治疗组在药物治疗的同时,采用消痤面膜联合LED红蓝光照射方法;对照组单用药物治疗,治疗6周后分析其治疗效果.结果:总体效果评价中,治疗组(重度)有效率83.48%,对照组(重度)有效率51.40%;治疗组(中度)有效率94.12%,对照组(中度)有效率73.58%.治疗组(中、重度)有效率均明显高于对照组,差异有统计学意义(x2 >6.63,P<0.01).结论:消痤面膜联合LED红蓝光照射治疗中重度痤疮疗效好,其疗效明显优于单用药物治疗,不良反应轻.

  18. ‘No Blue’ White LED

    DEFF Research Database (Denmark)

    Ou, Haiyan; Corell, Dennis Dan; Dam-Hansen, Carsten

    2010-01-01

    This paper explored the feasibility of making a white LED light source by color mixing method without using the blue color. This ‘no blue’ white LED has potential applications in photolithography room illumination, medical treatment and biophotonics research. A no-blue LED was designed, and the p...

  19. Preparation of a Modified Nanoalumina Sorbent for the Removal of Alizarin Yellow R and Methylene Blue Dyes from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Wasan T. Al-Rubayee

    2016-01-01

    Full Text Available A modified form of γ-alumina nanoparticles prepared by immobilization of 2,4-dinitrophenyl hydrazine on γ-alumina nanoparticles coated with sodium dodecyl sulfate (DNPH-γ-alumina for the removal of the anionic dye (Alizarin yellow R and cationic dye (Methylene blue from aqueous solutions has been investigated. The FTIR, SEM, TEM, XRD, BET, and BJH analysis techniques indicate that the modification reaction has occurred. Batch adsorption study revealed that 0.05 g amount of the modified adsorbent was capable of removing 95.6% and 65.6% of Alizarin yellow (AY and Methylene blue (MB dyes, respectively, in 60 min. The experimental equilibrium data showed that Langmuir isotherm applies well for describing the adsorption behavior, and the maximum adsorption capacity was found to be 47.8 mg/g and 32.8 mg/g for AY and MB on DNPH-γ-alumina, respectively. Kinetic studies showed best applicability of the second-order kinetic model. The DNPH-γ-alumina adsorbent proved capability, effectiveness, and selectivity for the removal of Alizarin yellow R dye. Therefore, it is possible to increase the efficiency of an adsorbent for the removal of pollutants by applying a modification to the surface of the adsorbent, and DNPH as a modifier proved efficient for the removal of a wider range of pollutants including metal ions and dye compounds.

  20. Preparation and Characterization of Nanoscale Zero-Valent Iron-Loaded Porous Sepiolite for Decolorizing Methylene Blue in Aqueous Solutions

    Science.gov (United States)

    Wang, Qingmiao; Ren, Gaofeng; Jia, Feifei; Song, Shaoxian

    2017-02-01

    The preparation and characterization of nanoscale zero-valent iron-loaded porous sepiolite, as well as its application in the decolorization of methylene blue in aqueous solution, have been studied in this work through the measurements of field emission scanning electron microscope with energy dispersive spectrometry, x-ray photoelectron spectrometry, Fourier transform infrared spectroscopy and specific surface area. The results showed that nanoscale zero-valent iron particles were successfully loaded on the surface and interior pores of sepiolite through physical adsorption. It was revealed that the decoloration capacity of methylene blue on nanoscale zero-valent iron-loaded porous sepiolite in water was comparable to that of nanoscale zero-valent iron, and nine times higher than that of natural sepiolite. This indicates that porous sepiolite was a good supporter for the loading of nanoscale zero-valent iron and nanoscale zero-valent iron-loaded sepiolite was a good decolorant because of its high decoloration efficiency and easy separation.

  1. Solution Structure of Reduced Plastocyanin from the Blue-Green Alga Anabaena Variabilis

    DEFF Research Database (Denmark)

    Led, J.J.; Badsberg, U.; Jørgensen, A.M.;

    1996-01-01

    The three-dimensional solution structure of plastocyanin from Anabaena variabilis (A.v. PCu) has been determined by nuclear magnetic resonance spectroscopy. Sixty structures were calculated by distance geometry from 1141 distance restraints and 46 dihedral angle restraints. The distance geometry ...

  2. Solution structure of reduced plastocyanin from the blue-green alga Anabaena variabilis

    DEFF Research Database (Denmark)

    Badsberg, U; Jørgensen, A.M.; Gesmar, H;

    1996-01-01

    The three-dimensional solution structure of plastocyanin from Anabaena variabilis (A.v.PCu) has been determined by nuclear magnetic resonance spectroscopy. Sixty structures were calculated by distance geometry from 1141 distance restraints and 46 dihedral angle restraints. The distance geometry s...

  3. Photocatalytic degradation of bromothymol blue with Ruthenium(II) bipyridyl complex in aqueous basic solution

    Science.gov (United States)

    Fui, Mark Lee Wun; Hang, Ng Kim; Arifin, Khuzaimah; Minggu, Lorna Jeffery; Kassim, Mohammad Bin

    2016-11-01

    Ru(II) bipyridyl photocatalyst with the formula, [Ru(bpy)2(o-CH3-bzpypz)](PF6)2] (Ru01) and [Ru(bpy)2(o-Cl-bzpypz)](PF6)2] (Ru02), where bpy = 2,2'-bipyridyl, o-CH3-bzpypz = (3-(pyridin-2-yl)-1H-pyrazol-1-yl)(o-tolyl)methanone and o-Cl-bzpypz = (2-chlorophenyl)(3-(pyridin-2-yl)-1H-pyrazol-1-yl)methanone, has been successfully synthesized and characterized on the basis of C, H, N elemental analysis, IR, UV-Vis and NMR spectroscopy. Both Ru(II) complexes showed Infrared stretching frequencies at 1742-1736 cm-1 v(C=O), 1605 cm-1 v(C=N) and 842-837 cm-1 v(PF). Full geometry optimization of the complex structures were carried out using DFT method with B3LYP exchange-correlation functional and 6-31G (d,p) basis-set for H, C, N, O and Cl; and LAN2LDZ basis set as effective core potential for the ruthenium centre. The highest-occupied molecular orbital (HOMO) energy levels of Ru01 and Ru02 are -5.63 and -5.55 eV, respectively. The photocatalytic properties of the Ru(II) complexes were evaluated by studying the degradation of aqueous bromothymol blue (BTB) under light illumination. The mechanisms are presented and discussed to highlight the role of the ruthenium complex in the degradation process.

  4. 不同配比红蓝LED光对黄瓜果实产量和品质的影响%Effect of different proportions of red and blue LED lights on yield and quality of fruit of Cucumis ;sativus

    Institute of Scientific and Technical Information of China (English)

    刘晓英; 徐文栋; 焦学磊; 徐志刚

    2016-01-01

    Taking fluorescent lamp as the control, effect of different proportions of red and blue LED lights ﹝including 100% red light, 75% red light-25% blue light ( R31 ) , 50% red light-50% blue light ( R11 ) , 25% red light-75% blue light ( R13 ) and 100% blue light﹞ on traits, yield and nutritional quality of fruit of Cucumis sativus Linn. were researched. The results show that in the treatment group of 100% red light, seedling of C. sativus grows slowly, development of fruit is abnormal, and yield per plant and contents of VC , soluble sugar and soluble protein in fruit are lower than those in other treatment groups. In the treatment group of 100% blue light, development of fruit is normal, fruit yield per plant is significantly lower than that in the combined treatment groups of red and blue LED lights, while contents of soluble sugar, sucrose, free amino acids and soluble solid in fruit are generally significantly higher than those in other treatment groups, and soluble protein content is also high. Fresh weight per fruit of C. sativus in R31 treatment group is significantly higher than that in other treatment groups, fruit yield per plant in R31 and R11 treatment groups is significantly higher than that in other treatment groups, and also, contents of VC and soluble protein in fruit in R11 treatment group are significantly higher than those in other treatment groups. It is suggested that yield per plant and nutritional quality of fruit of C. sativus is affected by synergistic effect of red and blue lights, and more suitable light proportion for culturing C. sativus in greenhouse is 50% red light-50% blue light.%以荧光灯为对照,研究不同配比红蓝LED光处理﹝包括100%红光、75%红光-25%蓝光( R31)、50%红光-50%蓝光(R11)、25%红光-75%蓝光(R13)和100%蓝光﹞对黄瓜(Cucumis sativus Linn.)果实性状、产量及营养品质的影响。结果表明:100%红光处理组黄瓜植株生长缓慢,果实发育异常,果实单株产量及VC

  5. Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Ranxiao Tang

    2017-01-01

    Full Text Available Walnut shell (WS, as an economic and environmental-friendly adsorbent, was utilized to remove methylene blue (MB from aqueous solutions. The effects of WS particle size, solution pH, adsorbent dosage and contact time, and concentration of NaCl on MB removal were systematically investigated. Under the optimized conditions (i.e., contact time ~ 2 h, pH ~ 6, particle size ~ 80 mesh, dye concentration 20 mg/L, and 1.25 g/L adsorbent, the removal percentages can achieve ~97.1%, indicating WS was a promising absorbent to remove MB. Other supplementary experiments, such as Fourier transform infrared spectroscopy (FTIR, dynamic light scattering (DLS, and Brunauer-Emmett-Teller (BET method, were also employed to understand the adsorption mechanisms. FTIR confirmed that the successful adsorption of MB on WS particles was through functional groups of WS. Using DLS method, the interactions between WS particles and dyes under various pH were investigated, which can be ascribed to the electrostatic forces. Kinetic data can be well fitted by the pseudo-second-order model, indicating a chemical adsorption. The adsorption isotherms were well described by both Langmuir and Freundlich models. Dubinin-Radushkevich model also showed that the adsorption process was a chemical adsorption. Thermodynamic data indicated that the adsorption was spontaneous, exothermic, and favorable at room temperature.

  6. Evaluation of La-Doped Mesoporous Bioactive Glass as Adsorbent and Photocatalyst for Removal of Methylene Blue from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Liying Li

    2015-01-01

    Full Text Available A series of La-doped mesoporous bioactive glass (BG-La materials with excellent biosafety and hypotoxicity have been prepared and tested as adsorbent. The study was aimed to evaluate the possibility of utilizing BG-La for the adsorptive removal of methylene blue (MB from aqueous solution and test the adsorption and desorption behavior of this new material. The process parameters affecting adsorption behaviors such as pH, contact time, and initial concentration and the photocatalytic degradation of MB were systematically investigated. The result showed that BG-La had excellent removal rate (R of MB, and BG-La showed better photocatalytic effect than undoped mesoporous bioactive glass (BG. Furthermore, the MB loaded BG-La was easily desorbed with acid solution due to its electronegativity and mesoporous structure. The result indicated that these materials can be employed as candidates for removal of dye pollutant owing to their high removal rate, excellent photocatalytic effect, desorption performance, and their reusability.

  7. Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fixed-bed column study.

    Science.gov (United States)

    Uddin, Md Tamez; Rukanuzzaman, Md; Khan, Md Maksudur Rahman; Islam, Md Akhtarul

    2009-08-01

    Continuous fixed-bed studies were undertaken to evaluate the efficiency of jackfruit leaf powder (JLP) as an adsorbent for the removal of methylene blue (MB) from aqueous solution under the effect of various process parameters like bed depth (5-10cm), flow rate (30-50mL/min) and initial MB concentrations (100-300mg/L). The pH at point of zero charge (pH(PZC)) of the adsorbent was determined by the titration method and a value of 3.9 was obtained. A FTIR of the adsorbent was done before and after the adsorption to find the potential adsorption sites for interaction with methylene blue molecules. The results showed that the total adsorbed quantities and equilibrium uptake decreased with increasing flow rate and increased with increasing initial MB concentration. The longest breakthrough time and maximum MB adsorption were obtained at pH 10. The results showed that the column performed well at low flow rate. Also, breakthrough time and exhaustion time increased with increasing bed depth. The bed-depth service time (BDST) model and the Thomas model were applied to the adsorption of MB at different bed depths, flow rates, influent concentrations and pH to predict the breakthrough curves and to determine the characteristic parameters of the column that are useful for process design. The two model predictions were in very good agreement with the experimental results at all the process parameters studied indicating that they were very suitable for JLP column design.

  8. Adsorption of Methylene Blue from Aqueous Solution onto a Low-Cost Natural Jordanian Tripoli

    Directory of Open Access Journals (Sweden)

    Atef S. ALzaydien

    2009-01-01

    Full Text Available Problem statement: It is well documented that lead is one of contaminants of industrial wastewaters and its pollution exists in the wastewater of many industries. As a result, recent research has focused on the development of cost effective alternatives using various natural sources and industrial wastes. In this setting, the use of low-cost agricultural materials, waste and residues for recovering heavy metals from contaminated industrial effluent has emerged as a potential alternative method to high cost adsorbents. In the present study, adsorption of lead(II ions onto Orange Peel (OP, a typical agricultural byproduct, was investigated systematically with the variation in the parameters of pH, sorbent dosage, contact time and the initial concentration of adsorbate. Langmuir and Freundlich isotherms were used to analyze the equilibrium data. Kinetic and thermodynamic parameters were also calculated to describe the adsorption mechanism. Approach: The Orange Peel (OP was obtained from a local market in the south of Jordan. The orange peel was cut into small pieces using scissors. Then OP was dried at 100°C for 24 h using hot air oven. Qualitative analyses of the main functional groups involved in metal adsorption were performed using a Fourier transformed infrared spectrometer (Perkin-Elmer FTIR 1605, ¨Uberlingen, Germany. Biosorption experiments were carried out in a thermostatic shaker at 180 rpm and at an ambient temperature (20±2°C using 250 mL shaking flasks containing 100 mL of different concentrations and initial pH values of Pb(II solutions, prepared from reagent grade salt Pb(NO32 (Merck. The initial pH values of the solutions were previously adjusted with 0.1 M HNO3 or NaOH and measured using a hand held pH meters (315i/SET. The sorbent (0.2-1.0 g was added to each flask and then the flasks were sealed up to prevent change of volume of the solution during the experiments. After shaking the flasks for

  9. Nursing analysis of red-blue LED and Chuangfukang collagen in treatment of facial acne%LED红蓝光与创福康胶原贴治疗面部痤疮的护理分析

    Institute of Scientific and Technical Information of China (English)

    赵静

    2016-01-01

    Objective to investigate mursing analysis of red-blue LED and Chuangfukang collagen in treatment of facial acne. Methods choose 89 facial acne patients treated in our hospital from January 2015 to January 2016 as research objects, randomly divide them into treatment group (n = 45) and control group (n=44). Two groups were treated with red- blue LED and Chuangfukang collagen therapy, control group was treated with routine nursing measures, and treatment group with comprehensive nursing measures. Compare treatment and nursing effect of two groups.Results through clinical curative effect comparison between two groups, total efficiency of treatment group was 97.78% (44 cases), significantly higher than that of control group was 79.55%(35 cases)(P<0.05); nursing satisfaction rate of treatment group was 93.33%(42 cases), which was better than 75.00% of control group(33 cases), and satisfaction rate and length of stay of treatment group was better than control group (P<0.05).Conclusion red-blue LED and Chuangfukang collagen assissted with comprehensive nursing measures has good effect for facial acne, which is worthy of clinical promotion and application.%目的:探讨LED红蓝光联合创福康胶原贴治疗面部痤疮的护理效果。方法选择2015年1月至2016年1月我院收治的89例面部痤疮患者作为研究对象,随机分为治疗组(n=45)和对照组(n=44),两组均实施LED红蓝光联合创福康胶原贴治疗方法,对照组实施常规护理措施,治疗组实施综合护理措施,比较两组患者的治疗与护理效果。结果两组患者临床治疗效果比较,治疗组总有效率为44例,97.78%,对照组总有效率为35例,79.55%,治疗组总有效率明显高于对照组(P<0.05);两组患者护理满意度与住院时间比较,治疗组护理满意度为42例,93.33%,对照组护理满意度为33例,75.00%,治疗组护理满意率与住院时间均优于对照组(P<0.05)。结论对面

  10. All solution processed low turn-on voltage near infrared LEDs based on core-shell PbS-CdS quantum dots with inverted device structure.

    Science.gov (United States)

    Sanchez, Rafael S; Binetti, Enrico; Torre, Jose A; Garcia-Belmonte, G; Striccoli, Marinella; Mora-Sero, Ivan

    2014-08-07

    Colloidal semiconductor quantum dots (QDs) are extraordinarily appealing for the development of light emitting devices (LEDs) due to tunable and pure color emission, brightness and solution processability. This last advantage of the QD-LEDs is even more evident in the field of infrared emission where the devices currently used are prepared by high cost epitaxial techniques. Here we show the fabrication of low cost NIR QD-LEDs based on high quantum yield core-shell PbS-CdS QDs and a novel inverted device structure. Devices are produced using SnO2:F (FTO) as the conductive transparent contact, nanostructured TiO2 as the electron transport layer (ETL) and poly(3-hexylthiophene) P3HT as the hole transport layer (HTL). Despite the roughness of this ETL, the obtained external quantum efficiencies (EQEs) are similar to previously reported values, obtained with regular configuration and more expensive ITO substrates. A turn-on voltage as low as the QD band gap (1.47 eV) is achieved for a large area (1.54 cm(2)) and relatively stable QD-LEDs.

  11. A Novel Biosorbent, Water-Hyacinth, Uptaking Methylene Blue from Aqueous Solution: Kinetics and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    Md. Nasir Uddin

    2014-01-01

    Full Text Available The adsorption of MB dye from aqueous solution onto HCl acid treated water-hyacinth (H-WH was investigated by carried out batch sorption experiments. The effect of process parameters such as pH, adsorbent dosage, concentrations and contact time, and ionic strength were studied. Adsorption of MB onto H-WH was found highly pH dependent and ionic strength shows negative impact on MB removal. To predict the biosorption isotherms and to determine the characteristic parameters for process design, Langmuir, Freundlich, Temkin, and Halsey isotherms models were utilized to equilibrium data. The adsorption kinetics was tested for pseudo-first-order (PFO, pseudo-second-order (PSO, intraparticle diffusion (IPD, and Bangham’s kinetic models. The Langmuir isotherm model showed the goodness-of-fit among the tested models for equilibrium adsorption of MB over H-WH and indicated the maximum adsorption capacity as 63.30 mg/g. Higher coefficient of determination (R2>0.99 and better agreement between the qe (experimental and qe (calculated values predicted that PSO kinetic model showed the goodness-of-fit for kinetic data along with rate constant 1.66×10-3, 4.42×10-3, and 3.57×10-3 mg·g-1min⁡-1/2⁡, respectively, for the studied concentration range. At the initial stage of adsorption, the overall rate of dye uptake was found to be dominated by external mass transfer, and afterwards, it is controlled by IPD mechanism.

  12. Application of potato (Solanum tuberosum plant wastes for the removal of methylene blue and malachite green dye from aqueous solution

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2016-09-01

    Full Text Available Dye pollutants from the textile, paper, and leather industries are important sources of environmental contamination. In the present study an agricultural waste from potato plant (potato stem powder, PSP and potato leaves powder, PLP was used as an adsorbent for removal of the methylene blue (MB and malachite green (MG dyes from aqueous solution. The adsorbent materials were characterized by scanning electron microscope (SEM and Fourier transform infrared (FTIR spectroscopy. Batch experiments were performed to investigate the effect of physico-chemical parameters, such as pHpzc, ionic strength, adsorbent dose, contact time, initial dyes concentration and temperature. The kinetics of adsorption was studied by applying the pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-second order model better represented the adsorption kinetics and the mechanism was controlled by surface adsorption and intraparticle diffusion. Equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The thermodynamic parameters such as change in enthalpy (ΔH°, entropy (ΔS° and Gibb’s free energy (ΔG° of adsorption systems were also determined and evaluated.

  13. Removal of reactive dye Remazol Brilliant Blue R from aqueous solutions by using anaerobically digested sewage sludge based adsorbents

    Directory of Open Access Journals (Sweden)

    Özçimen Didem

    2016-01-01

    Full Text Available In this study, adsorbents were produced from sewage sludge via chemical and thermal activation processes. Experiments were carried out in a tubular furnace at the heating rate of 20˚C min-1 and temperature of 550 ˚C with a nitrogen flow rate of 400 mL min-1 for 1 h. Dye adsorption experiments were performed with Remazol Brilliant Blue R for its several concentrations under batch equilibrium conditions by comparing sewage sludge based adsorbents with raw material and a commercial activated carbon. Maximum adsorption capacities of carbonized sewage sludge (CSWS and activated sewage sludge (ASWS were found as 7.413 mg g-1 and 9.376 mg g-1 for 100 mg L-1 dye solution, whereas commercial activated carbon had a capacity of 11.561 mg g-1. Freundlich and Langmuir isotherms were used to explain the adsorption mechanism together with pseudo-first-order and pseudo-second-order kinetic models. Langmuir isotherm, which had adsorption capacities of 34.60 mg g-1 (CSWS and 72.99 mg g-1 (ASWS, provided better fit to the equilibrium data than that of Freundlich isotherm. Pseudo second-order, model which had adsorption capacities of 7.451 mg g-1 (CSWS and 9.319 mg g-1 (ASWS, was very favorable to explain the adsorption kinetics of the dye with high regression coefficients.

  14. Removal of methylene blue from its aqueous solution by froth flotation: hydrophobic silica nanoparticle as a collector

    Science.gov (United States)

    Hu, Nan; Liu, Wei; Ding, Linlin; Wu, Zhaoliang; Yin, Hao; Huang, Di; Li, Hongzhen; Jin, Lixue; Zheng, Huijie

    2017-02-01

    Dye pollution has been a severe problem faced by worldwide environmentalists. The use of nanoparticles as adsorbents has attracted widespread interests for effectively removing dyes, while the separation of them from an aqueous solution is a difficult and important subject. For achieving the simultaneous removal of methylene blue (MB) and nanoadsorbents, this work utilized a commercial hydrophobic silica nanoparticle (SNP) (200.0 ± 10.0 nm in average particle size) as a collector and then developed a novel froth flotation technology without using any surfactants. Under the suitable conditions of anhydrous ethanol dosage of 8 mL, pH of 9.0, SNP concentration of 600 mg/L, and flotation column height of 600 mm, the removal efficiencies of MB and SNPs and the volume ratio reached 91.1 ± 4.6%, 93.9 ± 4.7%, and 10.5 ± 0.5, respectively. Subsequently, the recovered MB-adsorbed SNPs in the foamate were separated by free setting due to their high concentration and massive agglomeration. After free setting, MB could be effectively separated from the recovered MB-adsorbed SNPs by using ethanol at pH 2.0 and repeating five cycles of washing-centrifugation. Additionally, the regenerated SNPs could be reused for removing MB up to five times. Overall, this work had a significant meaning for the treatment of dye-contaminated wastewaters.

  15. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon.

    Science.gov (United States)

    Prola, Lizie D T; Machado, Fernando M; Bergmann, Carlos P; de Souza, Felipe E; Gally, Caline R; Lima, Eder C; Adebayo, Matthew A; Dias, Silvio L P; Calvete, Tatiana

    2013-11-30

    Multi-walled carbon nanotubes (MWCNT) and powder activated carbon (PAC) were used as adsorbents for adsorption of Direct Blue 53 dye (DB-53) from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N2 adsorption/desorption isotherms, and scanning and transmission electron microscopy. The effects of initial pH, contact time and temperature on adsorption capacity of the adsorbents were investigated. At pH 2.0, optimum adsorption of the dye was achieved by both adsorbents. Equilibrium contact times of 3 and 4 h were achieved by MWCNT and PAC adsorbents, respectively. The general order kinetic model provided the best fit of the experimental data compared to pseudo-first order and pseudo-second order kinetic adsorption models. For DB-53 dye, the equilibrium data (298-323 K) were best fitted to the Sips isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, with the values of 409.4 and 135.2 mg g(-1) for MWCNT and PAC, respectively. Studies of adsorption/desorption were conducted and the results showed that DB-53 loaded MWCNT could be regenerated (97.85%) using a mixture 50% acetone + 50% of 3 mol L(-1) NaOH. Simulated dye house effluents were used to evaluate the application of the adsorbents for effluent treatment (removal of 99.87% and 97.00% for MWCNT and PAC, respectively, were recorded).

  16. Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Adebayo, Matthew A. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Department of Chemical Sciences, Ajayi Crowther University, PMB 1066 Oyo, Oyo State (Nigeria); Prola, Lizie D.T. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Lima, Eder C., E-mail: eder.lima@ufrgs.br [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Puchana-Rosero, M.J.; Cataluña, Renato; Saucier, Caroline; Umpierres, Cibele S.; Vaghetti, Julio C.P. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Silva, Leandro G. da; Ruggiero, Reinaldo [Institute of Chemistry, Federal University of Uberlândia (UFU), AV. João Naves de Ávila 2121 block 1D—Campus Santa Mônica, 38400-902 Uberlândia, MG (Brazil)

    2014-03-01

    Graphical abstract: - Highlights: • Complexes of carboxy-methylated lignin with Al and Mn were used as adsorbents. • The optimum adsorption conditions were achieved at pH 2 and 298 K. • Maximum adsorption capacities are 73.52 mg g{sup −1} (CML-Al) and 55.16 mg g{sup −1} (CML-Mn). • CML-Al could remove ca. 95.83% of dye-contaminated industrial effluents. • CML-Al and CML-Mn are effective for treatment of simulated dye-house effluents. - Abstract: A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al{sup 3+} (CML-Al) and Mn{sup 2+} (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pH{sub PZC}. The established optimum pH and contact time were 2.0 and 5 h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16 mg g{sup −1} at 298 K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone + 50% of 0.05 mol L{sup −1} NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents.

  17. Removal of methylene blue from aqueous solutions by an adsorbent based on metal-organic framework and polyoxometalate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoxia; Luo, Jing; Zhu, Yating; Yang, Yun; Yang, Shuijin, E-mail: yangshuijin@163.com

    2015-11-05

    A metal-organic framework (Cu{sub 3}(BTC){sub 2}, BTC = 1,3,5-benzenetricarboxylate) composite based on polyoxometalate (H{sub 6}P{sub 2}W{sub 18}O{sub 62}) was synthesized by a simple one-pot solvent-thermal method and applied as an adsorbent to remove methylene blue (MB) from aqueous solution. The chemical structure, morphology and thermostability of the composite were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TG) and N{sub 2} adsorption–desorption isotherms. The removal rate of the composite H{sub 6}P{sub 2}W{sub 18}O{sub 62}@Cu{sub 3}(BTC){sub 2} was greater than that of the pure Cu{sub 3}(BTC){sub 2}, especially at higher initial concentrations, showing that the adsorption performance of porous Cu{sub 3}(BTC){sub 2} can be improved through the modification of H{sub 6}P{sub 2}W{sub 18}O{sub 62}. The effect factors containing the initial concentration, contact time, initial solution pH and temperature of MB adsorption onto the composite were systematically explored. The experimental isotherm data was found to fit the Freundlich model well and the process of MB adsorption onto H{sub 6}P{sub 2}W{sub 18}O{sub 62}@Cu{sub 3}(BTC){sub 2} was controlled by the pseudo-second-order kinetic model. The thermodynamic parameters illustrated that the adsorption was spontaneous and exothermic process. These results show that designing a metal-organic framework composite is a quite promising strategy to achieve extreme application for metal-organic framework. - Graphical abstract: Comparison of removal rate for MB in pure Cu{sub 3}(BTC){sub 2} and H{sub 6}P{sub 2}W{sub 18}O{sub 62}@Cu{sub 3}(BTC){sub 2} at different initial concentration. - Highlights: • Metal-organic framework (MOF) composite in the adsorption application was proposed. • The adsorption rate of MOF was improved by introducing polyoxometalates. • The adsorption isotherm and kinetic was used to

  18. Affordable underwater wireless optical communication using LEDs

    Science.gov (United States)

    Pilipenko, Vladimir; Arnon, Shlomi

    2013-09-01

    In recent years the need for high data rate underwater wireless communication (WC) has increased. Nowadays, the conventional technology for underwater communication is acoustic. However, the maximum data rate that acoustic technology can provide is a few kilobits per second. On the other hand, emerging applications such as underwater imaging, networks of sensors and swarms of underwater vehicles require much faster data rates. As a result, underwater optical WC, which can provide much higher data rates, has been proposed as an alternative means of communication. In addition to high data rates, affordable communication systems become an important feature in the development requirements. The outcome of these requirements is a new system design based on off-the-shelf components such as blue and green light emitting diodes (LEDs). This is due to the fact that LEDs offer solutions characterized by low cost, high efficiency, reliability and compactness. However, there are some challenges to be met when incorporating LEDs as part of the optical transmitter, such as low modulation rates and non linearity. In this paper, we review the main challenges facing the incorporation of LEDs as an integral part of underwater WC systems and propose some techniques to mitigate the LED limitations in order to achieve high data rate communication

  19. Removal of Evans Blue and Yellow thiazole dyes from aqueous solution by Mg-Al-CO3 Layered Double Hydroxides as anion-exchanger

    OpenAIRE

    Mohamed Bouraada; Louis Charles de Ménorval; Hassiba Bessaha

    2014-01-01

    Mg-Al-CO3 Layered double hydroxide (LDH) was prepared by co-precipitation method at constant pH, and subsequently used to remove Evans Blue (EB) and Yellow thiazole (YT) dyes from aqueous solutions. The obtained material was characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), thermal analysis and BET. The kinetic and equilibrium aspects of sorption of the anionic dyes from aqueous solution by Mg-Al-CO3 were investigated in batch mode. The sorp...

  20. Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution.

    Science.gov (United States)

    Kadam, Avinash A; Jang, Jiseon; Lee, Dae Sung

    2016-09-01

    This work focused on the development of pectin-stabilized magnetic graphene oxide Prussian blue (PSMGPB) nanocomposites for removal of cesium from wastewater. The PSMGPB nanocomposite showed an improved adsorption capacity of 1.609mmol/g for cesium, compared with magnetic graphene oxide Prussian blue, magnetic pectin Prussian blue, and magnetic Prussian blue nanocomposites, which exhibited adsorption capacities of 1.230, 0.901, and 0.330mmol/g, respectively. Increased adsorption capacity of PSMGPB nanocomposites was attributed to the pectin-stabilized separation of graphene oxide sheets and enhanced distribution of magnetites on the graphene oxide surface. Scanning electron microscopy images showed the effective separation of graphene oxide sheets due to the incorporation of pectin. The optimum temperature and pH for adsorption were 30°C and 7.0, respectively. A thermodynamic study indicated the spontaneous and the exothermic nature of cesium adsorption. Based on non-linear regression, the Langmuir isotherm fitted the experimental data better than the Freundlich and Tempkin models.

  1. Uniform Cu{sub 2}Cl(OH){sub 3} hierarchical microspheres: A novel adsorbent for methylene blue adsorptive removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei; Gao, Pin; Xie, Jimin, E-mail: xiejm391@sohu.com; Zong, Sekai; Cui, Henglv; Yue, Xuejie

    2013-08-15

    Using the solution phase method without any surfactants or templates, the hierarchical of Cu{sub 2}Cl(OH){sub 3} microspheres were synthesized by freeze drying. The size and surface area of the microspheres are ca. 1–2 µm and 76.61 m{sup 2} g{sup −1}, respectively. A possible formation mechanism is presented based on the experimental results. Methylene blue was chosen to investigate the adsorption capacity of the as-prepared adsorbent. The effects of various experimental parameters, such as pH, initial dye concentration, and contact time were investigated. The results showed that the dye removal increased with the increasing in the initial concentration of the dye and also increased in the amount of microspheres used and initial pH. Adsorption data fitted well with the Freundlich adsorption isotherm. The thermodynamic analysis presented the exothermic, spontaneous and more ordered arrangement process. The microspheres could be employed effective for removal of dyes from aqueous solution. - Graphical abstract: The single-crystalline hierarchical Cu{sub 2}Cl(OH){sub 3} spheres can be prepared for the first time by using a template-free process through freeze-drying. Meanwhile, the hierarchical spheres exhibited high adsorption capacity to methylene blue. Display Omitted - Highlights: • Cu{sub 2}Cl(OH){sub 3} microspheres were successfully synthesized through a freeze drying process. • A possible formation mechanism of hierarchical microspheres was presented. • The Cu{sub 2}Cl(OH){sub 3} microspheres have high methylene blue adsorption capacity. • Methylene blue adsorption is a spontaneous and exothermic process. • The adsorption mechanism of microspheres onto dye was proposed in detail.

  2. Effects of the Red and Blue LED Light Intensity on Lettuce Growthand Photosynthetic Ratein a Closed System%红蓝 LED 光照强度对密闭生态系统中生菜生长状况及光合速率的影响

    Institute of Scientific and Technical Information of China (English)

    沈韫赜; 郭双生; 艾为党; 唐永康

    2014-01-01

    研究利用红蓝LED进行不同光照强度下的生菜培养实验。通过设置不同生长期的对照试验,确定了CELSS中生菜的最佳收获期。试验结果显示,生菜光合速率( Pn)和产量均随光照强度增加而上升,但增幅逐渐变小;通过公式拟合,光照强度达到556μmol· m-2· s-1时,继续增加光照强度产量不再增加,同时光能利用率随着光照强度的增加而降低。在保证生菜供氧能力及产量满足乘员对氧气、食物需求的前提下,选择合适的光照强度水平,可有效提高系统的能源利用效率。出苗后第40天为最佳收获期,此时收获,生菜的日产量和光能利用率最高,营养品质最好。%A lettuce cultivation experiment was performed under different light intensities with 90%red +10%blue LEDs .Meanwhile , contrast experiments with different growth period were set to de-termine the best time for harvest.As a result, the photosynthetic rate (Pn) and yield of lettuce rose as the light intensity elevated , but the rising extent was smaller and smaller .By polynomial curve fitting, we know that when the light intensity reaches 556 μmol· m-2· s-1 , further increase of the light intensity won ’ t raise the yield any more .Meanwhile , when the light intensity increases , the light efficiency will decrease .So, at the premise that the demand for O 2 and food could be satisfied , selecting appropriate light intensity can raise the energy use efficiency .The yield per day , light effi-ciency and nutrition quality of lettuce with a growth period of 40 days were the best .Thus harvesting the lettuce at the 40 th day is the most efficient .

  3. SYNTHESIS AND CHARACTERIZATIONOF ORGANIC FUNCTIONALIZED MESOPOROUS SILICA AND EVALUATE THEIR ADSORPTIVE BEHAVIOR FOR REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Sameer H. Kareem

    2014-01-01

    Full Text Available Three Mesoporous Silica (MPS with different functional groups were prepared by one-step synthesis based on the simultaneous hydrolysis and condensation of tetraethoxy silane with organo-silane in the presence of template surfactant Polydimethylsiloxane-Polyethyleneoxide (PDMS-PEO. The prepared materials were characterized by Fourier Transform Infrared Spectroscopy (FTIR, Thermogravimetric Analysis (TGA and nitrogen adsorption-desorption experiments. The results indicate that the preparation of methyl and phenyl functionalized silica were successful. The adsorption behavior of methylene blue from aqueous systems onto these mesoporous silica has been studied. Batch experiments were carried out to measure the adsorption as a function of contact time, initial concentration (2.5-20 mg L-1 and temperature (288, 298, 308 and 318 K. The equilibrium of the process was achieved within (30-60 min. The adsorption of methylene blue on the mesoporous silica increases with increasing temperature which indicating an endothermic process. Adsorption isotherms were fitted with the Langmuir, Freundlich models. The kinetic data were analyzed using pseudo-first- order and pseudo-second-order models and intraparticle diffusion. The adsorption kinetics of methylene blue on mesoporous silica matched well with pseudo-second order kinetic model.

  4. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Nevine Kamal, E-mail: nkamalamin@yahoo.com [Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria (Egypt)

    2009-06-15

    The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R{sup 2} > 0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy ({Delta}G{sup o}), standard enthalpy ({Delta}H{sup o}), standard entropy ({Delta}S{sup o}), and the activation energy (E{sub a}) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.

  5. Removal of Evans Blue and Yellow thiazole dyes from aqueous solution by Mg-Al-CO3 Layered Double Hydroxides as anion-exchanger

    Directory of Open Access Journals (Sweden)

    Mohamed Bouraada

    2014-06-01

    Full Text Available Mg-Al-CO3 Layered double hydroxide (LDH was prepared by co-precipitation method at constant pH, and subsequently used to remove Evans Blue (EB and Yellow thiazole (YT dyes from aqueous solutions. The obtained material was characterized by powder X-ray diffraction (PXRD, Fourier transform infrared spectroscopy (FTIR, thermal analysis and BET. The kinetic and equilibrium aspects of sorption of the anionic dyes from aqueous solution by Mg-Al-CO3 were investigated in batch mode. The sorption kinetic data were found to be consistent with the pseudo-second-order model. Data for YT and EB sorption by Mg-Al-CO3 were fitted better by the Langmuir equation than by the Freundlich equation based on the determination coefficient values R2 . The maximum adsorption capacities of 222.2 mgg-1 for Yellow thiazole and 107.5 mgg-1 for Evans blue. The thermodynamic parameters including Gibbs free energy (G°, standard enthalpy change (H°, and standard entropy change (S° for the process were calculated. The negative G° value indicates the spontaneity of the removal process.

  6. Comparative Study for Adsorptive Removal of Coralene Blue BGFS Dye from Aqueous Solution by MgO and Fe2O3 as an Adsorbent

    Directory of Open Access Journals (Sweden)

    Parth Desai,

    2014-07-01

    Full Text Available Textile industries represent biggest impact on the environment due to high water consumption and waste water discharge as government control water pollution by setting strength regulation for waste water discharge, removal of color from waste water becomes more and more essential and attractive. Adsorption technology is very efficient in treatment of textile effluent. In this paper comparison of adsorption phenomena of textile dye Anthraquinone blue onto two different adsorbents MgO nano powder and Fe2O3 amorphous powder has been studied for removal of said dye from aqueous solutions. The adsorption of Anthraquinone blue on adsorbents occurs by studying the effects of adsorbent amount, dye concentration, contact time and pH of solution. All results found that MgO nano powder and Fe2O3 provide a fairly high dye adsorption capacity, which combined with their fulfilment of pollution control board’s standards, lack of pollution, lower environmental hazard and low-cost makes them promising for future applications. The present work also provides information on optimum value of different operating parameter for dye removal by two adsorbent.

  7. Removal of the blue 1 dye of aqueous solutions using ferric zeolite; Remocion del colorante azul 1 de soluciones acuosas utilizando zeolita ferrica

    Energy Technology Data Exchange (ETDEWEB)

    Pinedo H, S. Y.

    2010-07-01

    Water is essential to all life forms, including humans. In recent years water use has increased substantially, also has been altered in its capacity as a result of various human activities, such as domestic, industrial and agricultural, also by natural activity. Undoubtedly one of the main pollutants today are the waste generated by the food industry, due to the use of dyes for the production of their products. So it is necessary to restore water quality through treatment systems to remove contaminants, and thus prevent disease and imbalance of ecosystems. Due to the above, it is important to conduct research directed towards finding new ways to remove dyes such as blue 1 used in the food industry, using low cost materials and abundant in nature as zeolites. To accomplish the above, the present study has the purpose to evaluate the adsorption capacity of the blue dye 1 in aqueous solutions. To accomplish that objective, the zeolite material was reconditioned to improve its sorption properties of the material and provide the ability to adsorb pollutants such as this dye. The zeolite material was characterized by scanning electron microscopy and elemental analysis, X-ray diffraction and infrared spectroscopy. To evaluate the ability of blue 1 dye sorption the kinetics and sorption isotherms were determined; the experimental results were adjusted to mathematical models such as pseudo-first order, pseudo second order and Elovich to describe the kinetic process, and the Langmuir, Freundlich and Langmuir-Freundlich to describe sorption isotherms. The results showed that ferric zeolite surface is a heterogeneous material and has a considerable adsorption capacity, which makes it a potential adsorbent for removing color from aqueous streams. Also the sorption of the dye was evaluated at different ph values; the most sorption was carried out at ph values 1, 3 and 11. We also evaluated the change in mass where the sorption capacities for the blue 1 increase by increasing

  8. Highly color rendering YAG:Ce phosphor-converted white light-emitting diode based on dual -blue emitting active regions%基于双蓝光有源区激发YAG:Ce荧光粉的高显色性白光LED

    Institute of Scientific and Technical Information of China (English)

    石培培; 严启荣; 李述体; 章勇

    2012-01-01

    Dual - blue wavelength light - emitting diode (LED) based on mixed InGaN/GaN quantum wells was grown sequentially on the (0001) sapphire substrate by metal - organic chemical vapor deposition ( MOCVD) with p - AlGaN and asymmetry n - AlGaN, respectively. It was found that the asymmetry n - AlGaN layer can improve the distribution uniform of electrons and holes and deduce electron overflow relative to the conventional p - AlGaN, and further reduce the dependence of dual - blue wavelength e-mission spectrum on driving current. In addition, highly color rendering white light emission has been realized from YAG; Ce phosphor - converted white LED based on dual - blue wavelength chip, the color rendering index (CRI) of the corresponding white LED reached 91 at a forward current of 20 mA while that of white LED based on single - blue wavelength chip was only 75.%在(0001)蓝宝石衬底上利用金属有机化学气相沉积系统,分别生长含有p- AlGaN电子阻挡层和反对称n - AlGaN层的双蓝光波长发射的InGaN/GaN混合多量子阱发光二极管(LED).结果发现,与传统的具有p-AlGaN电子阻挡层的双蓝光波长LED相比,这种n- AlGaN层能有效改善电子和空穴在混合多量子阱活性层中的分布均匀性和减少电子溢出,并减弱双蓝光发射光谱对电流的依赖性.此外,基于这种双蓝光波长发射的芯片与YAG:Ce荧光粉封装成白光LED能实现高显色性的白光发射,在20 mA电流驱动下,6500 K色温时显色指数达到91,而基于单蓝光芯片的白光LED显色指数只有75.

  9. REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY ACTIVATED CARBON PREPARED FROM THE PEEL OF CUCUMIS SATIVA FRUIT BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    Manonmani Subbian

    2010-02-01

    Full Text Available The use of low-cost, locally available, highly efficient, and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of methylene blue (MB dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were investigated, and optimal experimental conditions were ascertained. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. The optimum pH for dye adsorption was 6.0. Maximum dye was sequestered within 50 min of the start of each experiment. The adsorption of methylene blue followed the pseudo-second-order rate equation and fit the Langmuir, Freundlich, Dubinin-Radushekevich (D-R, and Tempkin equations well. Maximum removal of MB was obtained at pH 6 as 99.79% for adsorbent doses of 0.6 g/ 50 mL and 25 mg/L initial dye concentrations at room temperature. The maximum adsorption capacity obtained from the Langmuir equation was 46.73 mg g-1. The rate of adsorption was found to conform to pseudo-second-order kinetics with a good correlation (R2 > 0.9677 with intraparticle diffusion as one of the rate-determining steps. Activated carbon developed from the peel of Cucumis sativa fruit can be an attractive option for dye removal from wastewater.

  10. Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters

    Science.gov (United States)

    Song, Yu-Bei; Lv, Shao-Nan; Cheng, Chang-Jing; Ni, Guo-Li; Xie, Xiao-Wa; Huang, Wei; Zhao, Zhi-Gang

    2015-01-01

    Magnetic colloidal nanocrystal clusters (MCNCs) modified with different amounts of poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSMA) have been prepared through simple one-step solvothermal method for removal of methylene blue (MB) from aqueous solution. The prepared MCNCs are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), nitrogen adsorption-desorption technique and dynamic light scattering (DLS). Moreover, effects of the solution pH, contact time, adsorbent dosage, ionic strength and initial dye concentration on MB adsorption onto the MCNCs are systematically investigated. The PSSMA-modified MCNCs show fast and highly-efficient MB removal capacity, which dramatically depends on the immobilization amounts of PSSMA, solution pH and adsorbent dosage. Their adsorption kinetics and isotherms exhibit that the kinetics and equilibrium adsorptions can be well-described by pseudo-second-order kinetic and Langmuir model, respectively. These magnetic nanocomposites, with high separation efficiency, low production cost and recyclable property, are promising as functional adsorbents for efficient removal of cationic organic pollutants from aqueous solution.

  11. Novel magnetic porous carbon spheres derived from chelating resin as a heterogeneous Fenton catalyst for the removal of methylene blue from aqueous solution.

    Science.gov (United States)

    Ma, Junjun; Zhou, Lincheng; Dan, Wenfeng; Zhang, He; Shao, Yanming; Bao, Chao; Jing, Lingyun

    2015-05-15

    Porous magnetic carbon spheres (MCS) were prepared from carbonized chelating resin composites derived from ethylenediaminetetraacetic acid-modified macroporous polystyrene (PS-EDTA) resin, and then loaded with iron composites via ion exchange. The resulting composites were characterized for this study using X-ray diffraction, MÖssbauer spectroscopy, and Raman spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area method, scanning electron microscopy, and vibrating sample magnetometry. The porous magnetic carbon spheres were then used, in the existence of H2O2 and NH2OH, with a view to remove methylene blue from the aqueous solution by catalyze a heterogeneous Fenton reaction. Results indicated excellent removal rates and removal efficiency for this catalytic system. Optimal degradation was achieved (nearly 100% within 10 min) using initial concentrations of 5 mmol H2O2 L(-1), 2.5 mmol L(-1) NH2OH and 40 mg L(-1) methylene blue. The catalyst retained its activity after six reuses, indicating strong stability and reusability. Porosity of the catalyst contributed to its high activity, suggesting its potential application for the industrial treatment of wastewater.

  12. Heteroleptic cyclometalated iridium(III) complexes displaying blue phosphorescence in solution and solid state at room temperature.

    Science.gov (United States)

    Yang, Cheng-Han; Li, Shih-Wen; Chi, Yun; Cheng, Yi-Ming; Yeh, Yu-Shan; Chou, Pi-Tai; Lee, Gene-Hsiang; Wang, Chih-Hsiang; Shu, Ching-Fong

    2005-10-31

    A series of heteroleptic Ir(III) metal complexes 1-3 bearing two N-phenyl-substituted pyrazoles and one 2-pyridyl pyrazole (or triazole) ligands were synthesized and characterized to attain highly efficient, room-temperature blue phosphorescence. The N-phenylpyrazole ligands, dfpzH = 1-(2,4-difluorophenyl)pyrazole, fpzH = 1-(4-fluorophenyl)pyrazole, dfmpzH = 1-(2,4-difluorophenyl)-3,5-dimethylpyrazole, and fmpzH = 1-(4-fluorophenyl)-3,5-dimethylpyrazole, show a similar reaction pattern with respect to the typical cyclometalated (C(wedge)N) chelate, which utilizes its ortho-substituted phenyl segment to link with the central Ir(III) atom, while the second 2-pyridylpyrazole (or triazole) ligand, namely, fppzH = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, fptzH = 3-(trifluoromethyl)-5-(2-pyridyl)triazole, and hptzH = 3-(heptafluoropropyl)-5-(2-pyridyl)triazole, undergoes typical anionic (N--N) chelation to complete the octahedral framework. X-ray structural analyses on complexes [(dfpz)(2)Ir(fppz)] (1a) and [(fmpz)(2)Ir(hptz)] (3d) were established to confirm their molecular structures. Increases of the pipi energy gaps of the Ir(III) metal complexes were systematically achieved with two tuning strategies. One involves the substitution for one or two fluorine atoms at the N-phenyl segment or the introduction of two electron-releasing methyl substituents at the pyrazole segment of the H(C--N) ligands. Alternatively, we have applied the more electron-accepting triazolate in place of the pyrazolate segment for the third (N--N)H ligand. Our results, on the basis of steady-state, relaxation dynamics, and theoretical approaches, lead to a conclusion that, for complexes 1-3, the weakening of iridium metal-ligand bonding strength in the T(1) state plays a crucial role for the fast radiationless deactivation. For the case of [(fmpz)(2)Ir(hptz)] (3d), a thermal deactivation barrier of 4.8 kcal/mol was further deduced via temperature-dependent studies. The results provide a

  13. Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution

    Energy Technology Data Exchange (ETDEWEB)

    Kadirova, Zukhra C., E-mail: zuhra_kadirova@yahoo.com [Institute of General and Inorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77a, Tashkent 100170 (Uzbekistan); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Katsumata, Ken-ichi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Isobe, Toshihiro [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Matsushita, Nobuhiro [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Nakajima, Akira [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Okada, Kiyoshi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan)

    2013-11-01

    The photocatalytic adsorbents BAU-OA, BAU-CL and BAU-HA with varying iron oxide content (9–10 mass%) were prepared by heat treatment at 250 °C from commercial activated carbon (BAU) impregnated with iron oxalate, chloride, tris-benzohydroxamate, respectively. The XRD patterns showed amorphous structure in the BAU-CL sample (S{sub BET} 50 m{sup 2}/g) and low crystallinity (as FeOOH and Fe{sub 2}O{sub 3} phases) in the BAU-HA and BAU-OA samples (S{sub BET} 4 and 111 m{sup 2}/g, respectively). The methylene blue adsorption capacities was decreased in order of BAU-OA < BAU-CL < BAU-HA sample and the adsorption followed Langmuir model. The apparent MB photodegradation rate constant (k{sub app}) was increased in same order BAU-HA < BAU-CL < BAU-OA under the standard experimental conditions (initial MB concentrations 0.015–0.025 mM; sample content – 10 mg/l; initial oxalic acid concentration – 0.43 mM; pH 3–4; UV illumination). The process included high efficiency combination of adsorption, heterogeneous and homogeneous catalysis under UV and solar lights illumination without addition of hydrogen peroxide. The detoxification of water sample containing organic dyes was confirmed after combined sorption-photocatalytic treatment.

  14. Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution

    Directory of Open Access Journals (Sweden)

    Muhammad Khairud Dahri

    2015-12-01

    Full Text Available This study investigated the potential of Casuarina equisetifolia needle (CEN on the removal of two important dyes, methylene blue (MB and malachite green (MG, by batch adsorption experiments. Characterisation of CEN’s functional groups was done using Fourier Transform infrared spectroscopy while elemental analysis was carried out using CHNS analysis and X-ray fluorescence. The experiments were carried out by varying the adsorbent dosage, pH, ionic strength, contact time and initial dye concentration. The pseudo-second-order kinetics model best represented the experimental data for both CEN-MB and CEN-MG systems. The Weber–Morris intraparticle diffusion model showed that intraparticle diffusion is not the rate-limited step for both adsorbates, while the Boyd model suggested both systems could be controlled by film diffusion. The Langmuir, Freundlich and Dubinin–Radushkevich isotherm models were used for describing the adsorption process. Of these, the Langmuir model best represented both adsorbents systems (CEN-MB and CEN-MG giving maximum adsorption capacity (qm of 110.8 and 77.6 mg g−1, respectively, at 25 °C. Thermodynamics studies showed that both adsorption systems are spontaneous and endothermic.

  15. Novel molecular host materials based on carbazole/PO hybrids with wide bandgap via unique linkages for solution-processed blue phosphorescent OLEDs

    Science.gov (United States)

    Ye, Hua; Zhou, Kaifeng; Wu, Hongyu; Chen, Kai; Xie, Gaozhan; Hu, Jingang; Yan, Guobing; Ma, Songhua; Su, Shi-Jian; Cao, Yong

    2016-10-01

    A series of novel molecules with wide bandgap based on electron-withdrawing diphenyl phosphine oxide units and electron-donating carbazolyl moieties through insulated unique linkages of flexible chains terminated by oxygen or sulfur atoms as solution-processable host materials were successfully synthesized for the first time, and their thermal, photophysical, and electrochemical properties were studied thoroughly. These materials possess high triplet energy levels (ET, 2.76-2.77 eV) due to the introduction of alkyl chain to interrupt the conjugation between electron-donor and electron-acceptor. Such high ET could effectively curb the energy from phosphorescent emitter transfer to the host molecules and thus assuring the emission of devices was all from the blue phosphorescent emitter iridium (III) bis [(4,6-difluorophenyl)-pyridinate-N,C2‧]picolinate (FIrpic). Among them, the solution-processed device based on CBCR6OPO without extra vacuum thermal-deposited hole-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 4.16 cd/A. Moreover, the device presented small efficiency roll-off with current efficiency (CE) of 4.05 cd/A at high brightness up to 100 cd/m2. Our work suggests the potential applications of the solution-processable materials with wide bandgap in full-color flat-panel displays and organic lighting.

  16. 浅谈LED显示屏电磁兼容性的解决方案%A Brief Analysis on the LED Display of Electromagnetic Compatibility Solution

    Institute of Scientific and Technical Information of China (English)

    周宗

    2012-01-01

    This article expounds the LED display main radiation's sources and interference's channels. From product's structure and PCB Layout, it provided how to handle EMI's resolution.%本文阐述了LED显示屏产品的主要辐射源和干扰途径,从产品结构和PCBLayout这两大方面。分别提出了抑制EMI的解决方案。

  17. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.

    Science.gov (United States)

    De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P

    2014-01-01

    Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.

  18. White LED with High Package Extraction Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat

  19. Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO₂ and its application to the degradation of real textile wastewater.

    Science.gov (United States)

    Sahoo, Chittaranjan; Gupta, Ashok K; Sasidharan Pillai, Indu M

    2012-01-01

    Methylene blue dye (MB) was degraded photocatalytically in aqueous solution using Ag(+) doped TiO(2) under UV irradiation. The degradations of the dye using untreated TiO(2) and Ag(+) doped TiO(2) were compared. Ag(+) doped TiO(2) was found to be more efficient. Using Ag(+) doped TiO(2) the filtration process was eliminated, as the particles became more settleable. The effect of various parameters such as catalyst loading, initial dye concentration, depth of solution, degree of adsorption, pH and O(2) on dye degradation was studied. The extent of mineralization was studied by observing the COD removal at different time intervals. The effects of various interfering ions such as Cl(-), NO(3) (-), CO(3) (2-), SO(4) (2-), Ca(2+) and Fe(3+) and electron acceptors such as H(2)O(2), KBrO(3) and (NH(4))(2)S(2)O(8) on the dye degradation was also studied. The degradation kinetics fitted well to Langmuir-Hinshelwood pseudo first order rate law. An aqueous solution of MB (20ppm) degraded by more than 99% after UV irradiation for 180 min with Ag(+) doped TiO(2) (2 g/L) and by more than 95% with untreated TiO(2) (2 g/L)(.) The COD removal was more than 91% with Ag(+)doped TiO(2) and more than 86% with untreated TiO(2) after 240 min. The degradation and COD removal of 5 times diluted textile wastewater was more than 98% and 79% respectively with 1 g/L Ag(+) doped TiO(2) after UV irradiation for 420 min.

  20. Kind of Blue - Europa Blues

    DEFF Research Database (Denmark)

    Mortensen, Tore; Kirkegaard, Peter

    2009-01-01

    Bidraget reflekterer over sammenhænge mellem to værker fra det musikalske og litterære område. Det drejer sig om Miles Davis' Kind of Blue fra 1959 og Arne Dahls krimi, Europa Blues fra 2001. Den grundlæggende indfaldsvinkel er det performative, den frie, men samtidigt disciplinerede musikalske...

  1. 2014年诺贝尔物理学奖——蓝光LED的发明%2014 Nobel Prize in Physics——the Invention of Blue LED

    Institute of Scientific and Technical Information of China (English)

    李海

    2015-01-01

    2014年诺贝尔物理学奖授予日本科学家赤崎勇、天野浩和美籍日裔科学家中村修二,以表彰他们“发明的高效蓝色发光二极管(LED)带来了明亮而节能的白色光源”.为了更好地理解这一诺贝尔奖的意义,文章对LED的发光原理、发展历程及获奖者的主要贡献等作简要叙述.

  2. Silkworm exuviae-A new non-conventional and low-cost adsorbent for removal of methylene blue from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hao, E-mail: chenhao2212@sohu.com [School of Pharmaceutical and Chemical Engineering, Taizhou University, Dongfang Road No. 605, Linhai 317000, Zhejiang (China); Zhao Jie; Dai Guoliang [School of Pharmaceutical and Chemical Engineering, Taizhou University, Dongfang Road No. 605, Linhai 317000, Zhejiang (China)

    2011-02-28

    In this paper, silkworm exuviae (SE) waste, an agricultural waste available in large quantity in China, was utilized as low-cost adsorbent to remove basic dye (methylene blue, MB) from aqueous solution by adsorption. Kinetic data and sorption equilibrium isotherms were carried out in batch process. The adsorption kinetic experiments revealed that MB adsorption onto SE for different initial dye concentrations all followed pseudo-second order kinetics and were mainly controlled by the film diffusion mechanism. Batch equilibrium results at different temperatures suggest that MB adsorption onto SE can be described perfectly with Freundlich isotherm model compared with Langmuir and D-R isotherm models, and the characteristic parameters for each adsorption isotherm were also determined. Thermodynamic parameters calculated show the adsorption process has been found to be endothermic in nature. The analysis for the values of the mean free energies of adsorption (E{sub a}), the Gibbs free energy ({Delta}G{sup 0}) and the effect of ionic strength all demonstrate that the whole adsorption process is mainly dominated by ion-exchange mechanism, which has also been verified by variations in FT-IR spectra and pH value before and after adsorption and desorption studies. The results reveal that SE can be employed as a low-cost alternative to other adsorbents for MB adsorption.

  3. Stabilization of a magnetic nano-adsorbent by extracted pectin to remove methylene blue from aqueous solution: A comparative studying between two kinds of cross-likened pectin

    Energy Technology Data Exchange (ETDEWEB)

    Rakhshaee, Roohan, E-mail: rakhshaei@iaurasht.ac.ir [Department of Applied Chemistry, Faculty of Science, Islamic Azad University, Rasht Branch, P.O. Box 41335-3516, Rasht (Iran, Islamic Republic of); Panahandeh, Mohammad [Environmental Research Institute of Jahad Daneshgahi (Iran, Islamic Republic of)

    2011-05-15

    The removal of methylene blue (MB) as a cationic dye from aqueous solution by the stabilized Fe{sub 3}O{sub 4} nano-particles with the extracted pectin from apple waste (FN-PA) increased due to using the cross-linked forms of the bound pectin on the nano-particles surface by glutaraldehyde (FN-PAG) and adipic acid (FN-PAA) as the cross-linking agents. This increase happened in spite of binding some of the adsorbent functional groups of pectin with nano-particles. It can be due to the local concentrate of other free functional groups after connecting with nano-scale particles. Thermodynamic studies showed that the adsorption equilibrium constant and the maximum adsorption capacities increased with increasing temperature for all of the nano-bioparticles. The kinetic followed the second-order models with the highest rate constants viz. 16.23, 19.76 and 23.04 (x10{sup -3} g/mg min) by FN-PAA. The adsorption force arrangement of MB by these nano-biosorbents regarding their activation energy was obtained as: FN-PAA > FN-PAG > FN-PA.

  4. Blue Laser.

    Science.gov (United States)

    1985-12-01

    HOLLOW CATHODE LASER FABRICATION 13 4. EXPERIENCE WITH THE BLUE LASER 18 4.1 Operational and Processing Experience 18 4.2 Performance Testing 20 5...34 -. - . •. SECTION 3 BLUE HOLLOW CATHODE LASER FABRICATION This section presents an overview of the steps taken in creating a HCL. There is...to the laser assembly. These steps can actually be considered as the final steps in laser fabrication because some of them involve adding various

  5. 大功率LED照明装置微热管散热方案分析%Mirco Heat Pipe Cooling Solution for High Power LED Illuminator

    Institute of Scientific and Technical Information of China (English)

    李勇; 李鹏芳; 曾志新

    2010-01-01

    设计了一种新型的带有百叶窗的平板式大功率发光二极管((LED)照明装置.该装置采用高导热系数的铝基板作为多颗大功率LED的散热电路板,用0.4 nmm的铝片作为散热翅片,结合沟槽式微热管构成集发光与散热一体化的输入功率为21 W的照明模组,该模组可根据照明亮度要求重构成不同功率的照明装置.对功率为144 W的照明装置进行了理论分析与实验研究.根据理论计算,每个照明模组的发热量约为18 W,每个照明模组的传热量约为47W;模拟结果表明,在环境温度为30℃,自然对流换热系数为10 W/(m2·K)时,LED芯片最高结温Ta=75℃,而实验测得Ta=75.7℃.

  6. Photodegradation of indigo carmine and methylene blue dyes in aqueous solution by SiC-TiO{sub 2} catalysts prepared by sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Solis, Christian [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); Juarez-Ramirez, Isaias, E-mail: isajua13@yahoo.com [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Moctezuma, Edgar [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); Torres-Martinez, Leticia M. [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Photodegradation of organic dyes is possible using sol-gel SiC-TiO{sub 2} catalysts. Black-Right-Pointing-Pointer SiC-TiO{sub 2} makes a synergy effect that enhances its catalytic activity. Black-Right-Pointing-Pointer Sol-gel allows good dispersion and attachment of TiO{sub 2} particles on SiC surface. Black-Right-Pointing-Pointer SiC-TiO{sub 2} exhibits better activity than TiO{sub 2} (P25) on organic dyes degradation. Black-Right-Pointing-Pointer SiC-TiO{sub 2} catalysts are settled down and easily separated after photocatalysis. - Abstract: Indigo carmine and methylene blue dyes in aqueous solution were photodegraded using SiC-TiO{sub 2} catalysts prepared by sol-gel method. After thermal treatment at 450 Degree-Sign C, SiC-TiO{sub 2} catalysts prepared in this work showed the presence of SiC and TiO{sub 2} anatase phase. Those compounds showed specific surface area values around 22-25 m{sup 2} g{sup -1}, and energy band gap values close to 3.05 eV. In comparison with TiO{sub 2} (P25), SiC-TiO{sub 2} catalysts showed the highest activity for indigo carmine and methylene blue degradation, but this activity cannot be attributed to the properties above mentioned. Therefore, photocatalytic performance is due to the synergy effect between SiC and TiO{sub 2} particles caused by the sol-gel method used to prepare the SiC-TiO{sub 2} catalysts. TiO{sub 2} nanoparticles are well dispersed onto SiC surface allowing the transfer of electronic charges between SiC and TiO{sub 2} semiconductors, which avoid the fast recombination of the electron-hole pair during the photocatalytic process.

  7. Multicolor, High Efficiency, Nanotextured LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  8. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.

    Science.gov (United States)

    Ghaedi, M; Zeinali, N; Ghaedi, A M; Teimuori, M; Tashkhourian, J

    2014-05-05

    In this study, graphite oxide (GO) nano according to Hummers method was synthesized and subsequently was used for the removal of methylene blue (MB) and brilliant green (BG). The detail information about the structure and physicochemical properties of GO are investigated by different techniques such as XRD and FTIR analysis. The influence of solution pH, initial dye concentration, contact time and adsorbent dosage was examined in batch mode and optimum conditions was set as pH=7.0, 2 mg of GO and 10 min contact time. Employment of equilibrium isotherm models for description of adsorption capacities of GO explore the good efficiency of Langmuir model for the best presentation of experimental data with maximum adsorption capacity of 476.19 and 416.67 for MB and BG dyes in single solution. The analysis of adsorption rate at various stirring times shows that both dyes adsorption followed a pseudo second-order kinetic model with cooperation with interparticle diffusion model. Subsequently, the adsorption data as new combination of artificial neural network was modeled to evaluate and obtain the real conditions for fast and efficient removal of dyes. A three-layer artificial neural network (ANN) model is applicable for accurate prediction of dyes removal percentage from aqueous solution by GO following conduction of 336 experimental data. The network was trained using the obtained experimental data at optimum pH with different GO amount (0.002-0.008 g) and 5-40 mg/L of both dyes over contact time of 0.5-30 min. The ANN model was able to predict the removal efficiency with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) at hidden layer with 10 and 11 neurons for MB and BG dyes, respectively. The minimum mean squared error (MSE) of 0.0012 and coefficient of determination (R(2)) of 0.982 were found for prediction and modeling of MB removal, while the respective value for BG was the

  9. Synthesis and Luminescence of Gallium Nitride LED Blue Light Conversion Materials%氮化镓发光二级管蓝光转换材料的合成和发光性质

    Institute of Scientific and Technical Information of China (English)

    姚光庆; 冯艳娥; 段洁菲; 林建华

    2003-01-01

    合成了 Ce3+掺杂的稀土石榴石结构复合氧化物体系 (Y1- xGdx)3Al5O12、 (Y1- xLux)3Al5O12、 (Y1- xLax)3Al5O12、 (Y1- xYbx)3Al5O12和 (Y1- xTbx)3Al5O12.重点研究了 (Y1- xGdx)3Al5O12:Ce3+和 (Y1- xLux)3Al5O12:Ce3+两个体系的晶体结构和发光性质 .这些体系都具有立方石榴石结构 .(Y1- xGdx)3Al5O12:Ce3+体系随 Gd取代 Y,晶胞参数略有增加 .荧光光谱的发射波长随 Gd浓度增加发生红移 ,当 x=0.5时发射波长达到最大值( 560 nm) ,并不再随 Gd含量增加而变化 .(Y1- xLux)3Al5O12:Ce3+的晶胞参数随 Lu取代 Y而减小 ,但均保持了立方石榴石结构 .荧光光谱的发射波长随 Lu3+的增加向短波方向移动 ,Lu3Al5O12:Ce3+的发射波长的峰值为 520 nm,体系的蓝移量是 20 nm.利用分离发光中心的位形坐标模型对波长的移动作了定性解释 .这两个体系的发射波长的可调节特性 ,对改善与氮化镓发光二极管 (LED)匹配的蓝光转换材料的色坐标、色温等显色性质具有重要意义.

  10. Removal of blue indigo and cadmium present in aqueous solutions using a modified zeolitic material and an activated carbonaceous material; Remocion de azul indigo y cadmio presentes en soluciones acuosas empleando un material zeolitico modificado y un material carbonoso activado

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez S, E. E.

    2011-07-01

    In the last years the use of water has been increased substantially, it has been also altered its quality as a result of human activities such as mining, industrial activities and others. Water pollution caused by dyes and heavy metals has adverse effects on the environment, since both pollutants are very persisten even after conventional treatments. Denim blue and cadmium are not biodegradable. There is a growing interest in finding new, efficient and low cost alternative materials to remove such pollutants from the aqueous medium. The purpose of this work was to evaluate a modified zeolitic tuff and an activated carbonaceous material obtained from the pyrolysis of sewage sludge for the removal of denim blue and cadmium. The zeolitic material was modified with Na{sup +} and Fe{sup 3+} solutions to improve its sorption properties for the removal of cadmium and denim blue, respectively. Carbonaceous material was treated with 10% HCl solution to remove ashes. Both materials were characterized by scanning electron microscopy and elemental analysis (EDS), specific surface areas (Bet), thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Simultaneously, the denim blue dye was characterized by infrared spectroscopy and its pKa value was determined, these data allowed the determination of its chemical properties and its acid-base behavior in solution. In the content of this work the term indigo blue was changed by denim blue, as it corresponds to the commercial name of the dye. To assess the sorption capacity of sorbents, the sorption kinetics and sorption isotherms in batch system were determined; the results were fitted to mathematical models such as the pseudo-first order, pseudo second order and second order to describe the sorption kinetics and the Langmuir, Freundlich and Langmuir-Freundlich isotherms to describe sorption processes. The results show that the most efficient material to remove denim blue from aqueous solutions is the carbonaceous

  11. Comparative study of kinetics of adsorption of methylene blue from aqueous solutions using cinnamon plant (Cinnamonum zeylanicum leaf powder and pineapple (Ananas comosus peel powder

    Directory of Open Access Journals (Sweden)

    Satish Dnyandeo Patil

    2012-07-01

    Full Text Available Batch adsorption of methylene blue (MB onto Cinnamon plant (Cinnamonum Zeylanicum leaf powder (CPLP and Pineapple (Ananas Comosus peel powder (PPP was investigated. Different parameters such as initial sorbate concentration, adsorbent dosage, pH, contact time, agitation speed, temperature and particle size. All isotherm models were found to be best fitting with high values of regression coefficient i.e. for Langmuir (R2 = 0.989 to 0.994 for CPLP and 0.993 to 0.995 for PPP, for Freundlich (R2 = 0.996 to 0.998 for CPLP and 0.995 for PPP and for Temkin (R2 = 0.983 to 0.995 for CPLP and 0.984 to 0.989 for PPP. The monolayer (maximum adsorption capacities (qm were found to be 250 and 333.333 mg/g for CPLP and PPP respectively. Lagergen pseudo -second order model best fits the kinetics of adsorption (R2 = 0.999 for CPLP and 1 for PPP. The amount of dye adsorbed at equilibrium qe(the obtained from Lagergen pseudo -second order model were found to be nearly same with the experimental data. Intra particle diffusion plot showed boundary layer effect and larger intercepts indicates greater contribution of surface sorption in rate determining step. Adsorption was found to be directly proportional to pH and temperature but inversely proportional to particle size. Thermodynamic analysis (∆G, ∆H and ∆S values showed adsorption was favourable, spontaneous, endothermic physisorption and increased disorder and randomness at the solid- solution interface of MB with the adsorbents. The forward rate constant was much higher than reverse rate constant suggesting dominance of rate of adsorption. PPP was found to be better adsorbent than CPLP.

  12. The effect of LED illumination on endodontic biofilms

    DEFF Research Database (Denmark)

    Markvart, Merete

    Within endodontics photodynamic therapy (PDT) has been suggested as a disinfectant procedure during root canal treatment. A photoactive dye (photosensitizer), methylene blue or toluidine blue, are activated by a light source, usually lasers or light emitting diodes (LEDs), thereby forming free ox...

  13. Achieving Pure Deep-Blue Electroluminescence with CIE y≤0.06 via a Rational Design Approach for Highly Efficient Non-Doped Solution-Processed Organic Light-Emitting Diodes.

    Science.gov (United States)

    Reddy, Saripally Sudhaker; Sree, Vijaya Gopalan; Cho, Woosum; Jin, Sung-Ho

    2016-11-22

    Deep-blue fluorescent emitters with Commission Internationale de l'Eclairage (CIE) y≤0.06 are urgently needed for high-density storage, full-color displays and solid-state lighting. However, developing such emitters with high color purity and efficiency in solution-processable non-doped organic light-emitting diodes (OLEDs) remains an important challenge. Here, we present the synthesis of two new deep-blue fluorescent emitters (AFpTPI and AFmTPI) based on 10-(9,9-diethyl-9H-fluoren-2-yl)-9,9-dimethyl-9,10-dihydroacridine as a core and 1,3- and/or 1,4-phenylene-linked triphenylimidazole (TPI) analogues for non-doped solution-processable OLEDs. Their thermal, photophysical, electrochemical, and device characteristics are explored, and also strongly supported by density functional theory (DFT) study. AFpTPI and AFmTPI exhibit excellent thermal stability (≈450 °C) with high glass transition temperatures (Tg ; 141-152 °C) and deep-blue emission with high quantum yields. Specifically, the solution-processed non-doped device with AFpTPI as an emitter exhibits a maximum external quantum efficiency (EQE) of 4.56 % with CIE coordinates of (0.15, 0.06), which exactly matches the European Broadcasting Union (EBU) blue standard. In addition, AFmTPI also displays good efficiency and better color purity (EQE: 3.37 %; CIE (0.15, 0.05)). To the best of our knowledge, the present work is the first report on non-doped solution-processable OLEDs with efficiency close to 5 % and CIE y≤0.06.

  14. White LEDs with limit luminous efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Lisitsyn, V. M.; Stepanov, S. A., E-mail: stepanovsa@tpu.ru; Yangyang, Ju [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Lukash, V. S. [JSC Research Institute of Semiconductor Devices, 99a Krasnoarmeyskaja St., Tomsk, 634050 (Russian Federation)

    2016-01-15

    In most promising widespread gallium nitride based LEDs emission is generated in the blue spectral region with a maximum at about 450 nm which is converted to visible light with the desired spectrum by means of phosphor. The thermal energy in the conversion is determined by the difference in the energies of excitation and emission quanta and the phosphor quantum yield. Heat losses manifest themselves as decrease in the luminous efficacy. LED heating significantly reduces its efficiency and life. In addition, while heating, the emission generation output and the efficiency of the emission conversion decrease. Therefore, the reduction of the energy losses caused by heating is crucial for LED development. In this paper, heat losses in phosphor-converted LEDs (hereinafter chips) during spectrum conversion are estimated. The limit values of the luminous efficacy for white LEDs are evaluated.

  15. High Performance Green LEDs by Homoepitaxial

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Christian; Schubert, E Fred

    2009-11-22

    This work's objective was the development of processes to double or triple the light output power from green and deep green (525 - 555 nm) AlGaInN light emitting diode (LED) dies within 3 years in reference to the Lumileds Luxeon II. The project paid particular effort to all aspects of the internal generation efficiency of light. LEDs in this spectral region show the highest potential for significant performance boosts and enable the realization of phosphor-free white LEDs comprised by red-green-blue LED modules. Such modules will perform at and outperform the efficacy target projections for white-light LED systems in the Department of Energy's accelerated roadmap of the SSL initiative.

  16. Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites.

    Science.gov (United States)

    Kumar, Sudhir; Jagielski, Jakub; Yakunin, Sergii; Rice, Peter; Chiu, Yu-Cheng; Wang, Mingchao; Nedelcu, Georgian; Kim, Yeongin; Lin, Shangchao; Santos, Elton J G; Kovalenko, Maksym V; Shih, Chih-Jen

    2016-10-03

    Solution-processed hybrid organic-inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7-10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.

  17. LED-roulette: LED's vervangen balletje

    NARCIS (Netherlands)

    Goossens, P.

    2007-01-01

    Iedereen waagt wel eens een gokje, in een loterij of misschien ook in een casino. Wie droomt er immers niet van om op een gemakkelijke manier rijk te worden? Met de hier beschreven LED-roulette valt weliswaar weinig te winnen, maar het is wel een uitstekende manier om het roulettespel thuis te beoef

  18. 掺锌纳米TiO_2 光催化降解亚甲基蓝研究%Photocatalytic degradation of methylene blue solution by TiO_2 particles Zn~(2+)-doped

    Institute of Scientific and Technical Information of China (English)

    王景芸

    2009-01-01

    选用掺杂锌的纳米TiO_2作为光催化剂对亚甲基蓝进行降解研究.制备工艺参数对样品光催化降解亚甲基蓝的活性具有很大影响,焙烧温度为500 ℃,Zn~(2+)掺入量为0.5%,催化剂的加入量为1 g/L时光催化剂对亚甲基蓝的降解效果最好;亚甲基蓝的初始浓度为5 mg/L降解速率较快.%Methylene blue solution was degraded by TiO_2 particles doped Zn~(2+) as photo-catalyst. Parameters during preparation of the catalyst affected the photocatalytic degradation rate of methylene blue greatly. The photocatalytic degradation rate of methylene blue was the highest when calcining temperature was 500℃, incorporation of Zn~(2+) was 0.5% ,dosage of catalyst was 1 g/L. The degradation was faster when initial concentration of methylene blue was 5 mg/L.

  19. Research on the Photocatalytic Degradability of Methylene Blue Solution by Photocatalysis Bamboo Charcoal Fiber Knitted Fabric%光催化竹炭纤维针织物光催化降解亚甲基蓝的研究

    Institute of Scientific and Technical Information of China (English)

    周荣稳; 王秋美; 刘淑英; 邹志伟; 徐雪梅

    2011-01-01

    In order to develop new functional fabrics, the photocatalytic degradabilltys of methylene blue solution by photocatalysis bamboo charcoal fiber knitted fabric was researched. The relationships were analyzed between the removal rate and the response time, the initial concentration and pH value of methylene blue solution, the distance between the ultraviolet light centre and liquid level. The results were as follows : it indicated an obvious photocatalytic degradation effect of methylene blue solution by photocatalysis bamboo charcoal fiber knitted fabric under UV-irradiation. And the removal rate could reach 67. 02%. When the initial concentration of methylene blue solution is lower, the pH value of methylene blue solution is higher,and the distance between light centre and liquid level is shorter, the effect was better. It indicated that the photocatalysis bamboo charcoal fiber knitted fabric could be used as filter materials and wastewater treatment materials.%为了开发新型功能型织物,研究了光催化竹炭纤维织物对亚甲基蓝溶液的光催化降解效果,分析了反应时间、亚甲基蓝溶液的初始浓度、pH值、光源中心与液面间距离等因素对亚甲基蓝溶液光催化降解效果的影响.结果表明,光催化竹炭纤维针织物在紫外线的照射下对亚甲基蓝溶液产生明显的降解效果,其去除率可达67.02%;亚甲基蓝溶液的初始浓度越低,降解效果越好;亚甲基蓝溶液的初始pH值越高,降解效果越好;光源中心与液面间距较小时织物的光催化降解效果较好.因此,光催化竹炭纤维针织物可用作过滤、污水处理材料等.

  20. 户外全彩LED显示屏光污染防治及技术解决方案探讨%The Discussion of LED Display’s Light Pollution and Technical Solution

    Institute of Scientific and Technical Information of China (English)

    屠孟龙

    2014-01-01

    In this paper, the light pollution of LED outdoor display is discussed. The main light pollution’s references limits , including light invasion, the glare, the LED display’s brightness and sky glow, is proposed. The LED package level solution of the display light pollution has been proposed. Within the valid visible range, the light energy is concentrated here, help to reduce the display power consumption. Within the invalid visible range, try to reduce the light energy distribution and light pollution. By comparison the data of the reduction of light pollution, LED package level solutions can reduce the brightness in the invalid visible range of 10%to 50%of the light pollution.%本论文对LED户外显示屏的光污染问题进行了探讨,对LED显示屏的主要光污染,包括光入侵、眩光、显示屏亮度、夜空辉光等光污染,参照国际照明委员会(CIE)与上海市的限制标准,提出了LED显示屏的光污染的参考限制参数。针对显示屏的光污染,提出了器件级的解决方案。在有效可视范围内,光能量集中分布,有利于降低显示屏功耗,在无效可视范围内,尽量降低光能量分布,减少光污染。经过实测数据的对比,这个器件级的降低光污染解决方案,能有效降低无效可视亮度范围内10%~50%的光污染。

  1. Application of Solar Irradiation / K2S2O8 Photochemical Oxidation Process for the Removal of Reactive Blue 19 Dye fromAqueous Solutions

    Directory of Open Access Journals (Sweden)

    M Abootoraby

    2010-07-01

    Full Text Available "n "n "nBackgroundandObjectives: Dyes are organic compoundswith complex structures,which due to toxicity, carcinogenicity and nonbiodegredabity, this type of pollutants is one of the most important pollutants of the environment. The goal of this researchwas to study the feasibility of the application of solar irradiation in presence of potassium persulfate (K2S2O8 for the removal of Reactive blue19 (RB19 from synthetic wastewater."nMaterials andMethods: This researchwas carried out in laboratory scalewith using of 200ml volume of batchphotoreactor.The effectsofoperatingparameters suchas concentrationofK2S2O8,pH,photoexposure time and preliminary concentrations of dye on decolorization have been evaluated.Different concentrations of pollutant inwastewaterwere prepared by solution of variousmasses of RB19 on tapwater. The reactors were exposedwith natural solar irradiation as aUVAsource from11 amto 14 pm.Themaximumabsorbtion wave length of this dye (!max was determined by spectrophotometer (Unico, 2100. The measurement of dye concentrations was determined with using of standard curve and its best line equation"nResults:Analysis of absorbtion spectra showed that the !max of RB19 is 592 nm. The average intensity of the UVA irradiated from solar system was 54.6 µW/Cm2. The results of decolorization process showed that 38.2%of this dye can be removed within 3 hr in the presence of potassium persulfate and decreasing of pH leads to the elevation of dye removal efficiency. Based on these findings, the efficiency of dye removal with 3h photoexposure time and pH ranges of 4,6 and 8 were found to be 98.2 88.5 and 78.5%, respectively.Also, the results showed that increasing of K2S2O8 dosage leads to elevation of dye removal efficiency in 3h photoexposure time and K2S2O8 dosages within 1-5mmol/L, with the removal efficiency of 75,86,92,95 and 98.5%, respectively.Analysis of data indicates that the kinetic of the removal of RB19 with this process is a first

  2. Warm white LED light by frequency down-conversion of mixed yellow and red Lumogen

    Science.gov (United States)

    Mosca, Mauro; Caruso, Fulvio; Zambito, Leandro; Seminara, Biagio; Macaluso, Roberto; Calı, Claudio; Feltin, Eric

    2013-05-01

    This work reports on the benefits and promising opportunities offered by white LED hybrid technology, based on a mixing perylene-based dyes in order to obtain a warm white light for frequency-down conversion. In a standard Ce:YAG-based white LED, the white light appears cold due to the weakness of red wavelength components in the emission spectrum. In order to obtain a warmer white, one possible solution is to add a red phosphor to the yellow one to move the chromatic coordinates properly, though the luminous efficiency drastically decreases due to the increased light absorption of the coating layer. It is generally believed that the low efficiency of warm white LEDs is the main issue today for LED-based lighting. Using photoluminescence of Lumogen® F Yellow 083, a perylene-based polymer dye commercialized by BASF, and adding a small quantity of another perylene-based dye, Lumogen® F Red 305 (BASF), we obtained high-efficiency warm white LEDs by yellow and red conversion from a standard 450 nm GaN/InGaN royal blue LED. Different weight proportions of dyes were dissolved in solutions with equal amounts of poly-methyl-methacrylate (PMMA) in ethyl acetate, then the LEDs were dip-coated in each solution and optically characterized. Record values of 8.03 lm of luminous flux and 116.11 lm/W of optical efficiency were achieved. Finally, the effects of both driving current, and pump wavelength on LED performances - such as chromatic coordinates, correlated color temperature, color rendering index (CRI), and optical efficiency - were investigated.

  3. Posthuman blues

    CERN Document Server

    Tonnies, Mac

    2013-01-01

    Posthuman Blues, Vol. I is first volume of the edited version of the popular weblog maintained by author Mac Tonnies from 2003 until his tragic death in 2009. Tonnies' blog was a pastiche of his original fiction, reflections on his day-to-day life, trenchant observations of current events, and thoughts on an eclectic range of material he culled from the Internet. What resulted was a remarkably broad portrait of a thoughtful man and the complex times in which he lived, rendered with intellige...

  4. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael

    2014-01-01

    significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state...... applications. Within the coming years, it is expected that the efficiency of blue laser diodes will approach the efficiency of infrared diode lasers. This will enable high efficiency white light generation with very high lumen per watt values. SSL today is mainly based on phosphor converted blue light emitting...... diodes (LEDs). Blue emitting 445-460 nm LED chips with conversion in phosphorescent materials have undergone tremendous development in the last decade with ultra high efficiencies. However, the technology suffers from a decrease in efficiency at high input current densities, known as the “efficiency...

  5. Large area LED package

    Science.gov (United States)

    Goullon, L.; Jordan, R.; Braun, T.; Bauer, J.; Becker, F.; Hutter, M.; Schneider-Ramelow, M.; Lang, K.-D.

    2015-03-01

    Solid state lighting using LED-dies is a rapidly growing market. LED-dies with the needed increasing luminous flux per chip area produce a lot of heat. Therefore an appropriate thermal management is required for general lighting with LEDdies. One way to avoid overheating and shorter lifetime is the use of many small LED-dies on a large area heat sink (down to 70 μm edge length), so that heat can spread into a large area while at the same time light also appears on a larger area. The handling with such small LED-dies is very difficult because they are too small to be picked with common equipment. Therefore a new concept called collective transfer bonding using a temporary carrier chip was developed. A further benefit of this new technology is the high precision assembly as well as the plane parallel assembly of the LED-dies which is necessary for wire bonding. It has been shown that hundred functional LED-dies were transferred and soldered at the same time. After the assembly a cost effective established PCB-technology was applied to produce a large-area light source consisting of many small LED-dies and electrically connected on a PCB-substrate. The top contacts of the LED-dies were realized by laminating an adhesive copper sheet followed by LDI structuring as known from PCB-via-technology. This assembly can be completed by adding converting and light forming optical elements. In summary two technologies based on standard SMD and PCB technology have been developed for panel level LED packaging up to 610x 457 mm2 area size.

  6. Alcian blue-stained particles in a eutrophic lake

    DEFF Research Database (Denmark)

    Worm, J.; Søndergaard, Morten

    1998-01-01

    We used a neutral solution of Alcian Blue to stain transparent particles in eutrophic Lake Frederiksborg Slotss0, Denmark. Alcian Blue-stained particles (ABSP) appeared to be similar to the so-called transparent exopolymer particles (TEP) identified with an acidic solution of Alcian Blue. Our...

  7. Effect of LED lamping on the chlorophylls of leaf mustard

    Science.gov (United States)

    Wu, Shiqiang; Zhu, Liang; Zhao, Fuli; Yang, Bowen; Chen, Zuxin; Cai, Ruhai; Chen, Jiansheng

    The absorption coefficients of chloroplast of leaf mustard were measured by a spectrophotometer. The leaves were collected from seven treatments with different lighting. The chlorophyll content was calculated following Arnon equation. LEDs for filling the light source can increase the conduction of plants. Compared with other treatments, Chlorophyll in the leaves got an higher concentration under the lamping of red LEDS to blue LEDS for 7:1 .

  8. Chitin-Prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C. [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France); Commissariat à l' Energie Atomique, CEA Marcoule, DEN/DTCD/SPDE/LPSD,BP 17171, F-30207 Bagnols sur Cèze (France); Barré, Y. [Commissariat à l' Energie Atomique, CEA Marcoule, DEN/DTCD/SPDE/LPSD,BP 17171, F-30207 Bagnols sur Cèze (France); Vincent, T. [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France); Taulemesse, J.-M. [Ecole des mines d' Alès, Center des Matériaux des Mines d' Alès, 6 avenue de Clavières, F-30319 Alès Cedex (France); Robitzer, M. [Institut Charles Gerhardt – UMR5253, CNRS-UM2-ENSCM-UM1, ICGM-MACS-R2M2, 8 rue de l' Ecole Normale, F-34296 Montpellier Cedex 05 (France); Guibal, E., E-mail: Eric.Guibal@mines-ales.fr [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France)

    2015-04-28

    Highlights: • Prussian blue microparticles incorporated in chitin sponges. • Efficient Cs(I) sorption after water absorption by dry hybrid sponge. • Water draining after sorption for metal confinement and water decontamination. • High decontamination factors and distribution coefficients for Cs(I) and {sup 137}Cs(I). • Effect of freezing conditions on porous structure and textural characterization. - Abstract: Prussian blue (i.e., iron[III] hexacyanoferrate[II], PB) has been synthesized by reaction of iron(III) chloride with potassium hexacyanoferrate and further immobilized in chitosan sponge (cellulose fibers were added in some samples to evaluate their impact on mechanical resistance). The composite was finally re-acetylated to produce a chitin-PB sponge. Experimental conditions such as the freezing temperature, the content of PB, the concentration of the biopolymer and the presence of cellulose fibers have been varied in order to evaluate their effect on the porous structure of the sponge, its water absorption properties and finally its use for cesium(I) recovery. The concept developed with this system consists in the absorption of contaminated water by the composite sponge, the in situ binding of target metal on Prussian blue load and the centrifugation of the material to remove treated water from soaked sponge. This material is supposed to be useful for the fast treatment of accidental dumping of Cs-contaminated water.

  9. LEDs Are Diodes.

    Science.gov (United States)

    Lisensky, George C.; Condren, S. Michael; Widstrand, Cynthia G.; Breitzer, Jonathan; Ellis, Arthur B.

    2001-01-01

    Describes an activity comparing incandescent bulbs and LEDs powered by dc and ac voltage sources to illustrate properties of matter and the interactions of energy and matter. Includes both instructor information and student activity sheet. (Author/YDS)

  10. Modeling LED street lighting.

    Science.gov (United States)

    Moreno, Ivan; Avendaño-Alejo, Maximino; Saucedo-A, Tonatiuh; Bugarin, Alejandra

    2014-07-10

    LED luminaires may deliver precise illumination patterns to control light pollution, comfort, visibility, and light utilization efficiency. Here, we provide simple equations to determine how the light distributes in the streets. In particular, we model the illuminance spatial distribution as a function of Cartesian coordinates on a floor, road, or street. The equations show explicit dependence on the luminary position (pole height and arm length), luminary angle (fixture tilt), and the angular intensity profile (radiation pattern) of the LED luminary. To achieve this, we propose two mathematical representations to model the sophisticated intensity profiles of LED luminaries. Furthermore, we model the light utilization efficiency, illumination uniformity, and veiling luminance of glare due to one or several LED streetlamps.

  11. Increase of energy efficiency in horticultural tissue culture with high-power-LED lighting systems; Energieeffizienzsteigerung pflanzlicher In-vitro-Kulturverfahren mit Hochleistungs-LED-Belichtungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Bornwasser, Thorsten

    2011-07-01

    The lighting of tissue cultures is one of the main cost factors in growing rooms due to the high energy need. A lighting system with high-power light-emitting diodes (HP-LEDs) was tested as an alternative to the conventionally used fluorescent tubes. Therefore the HP-LED-types royal-blue, red, and cool white were used to create different spectral outputs. The photon flux yield, level of efficiency, and spectral shift of the single HP-LEDs were measured beforehand at different operating conditions (i.e. increasing current and junction temperature). The energy efficiency of the HP-LED lighting system was determined at 0.83 {mu}mol W{sup -1}s{sup -1} with the same shelf board distance (300 mm) and average PPFD on the exposed surface as compared to the control lighting system. The energy efficiency of the fluorescent lighting system could reach a maximum value of 0.68 {mu}mol W{sup -1}s{sup -1}. In addition to the reduced energy needs, HP-LED lighting systems reduce the need for cooling energy in culture rooms to regulate the room temperature. HP-LED lighting systems allow the reduction of the shelf board distance due to the small mass volume of LEDs and diminished radiant heat output towards the plant. The lower shelf board distance led to an additional increase of the energy efficiency up to 1.16 {mu}mol W{sup -1}s{sup -1} at a distance of 210 mm. Simultaneously the PPFD distribution was more regular than under the exposure with a fluorescent tube. Beside the increase of energy efficiency, HP-LEDs facilitate the control of the spectral composition. The spectral output can be adjusted to the plants' needs and thereby permit a more optimal production and influence the plant morphology (Nhut und Na, 2010; Morrow, 2008). Various plant tissue cultures and their response to different spectral compositions were investigated with the developed HP-LED lighting system. For none of the tested cultures could a preference for one of the spectral compositions be determined

  12. RS-232 Led Board

    CERN Document Server

    Tskhvaradze, Vladimir

    2007-01-01

    This article demonstrates how to develop a Microchip PIC16F84 based device that supports RS-232 interface with PC. Circuit (LED Board) design and software development will be discussed. PicBasic Pro Compiler from microEngineering Labs, Inc. is used for PIC programming. Development of LED Board Control Console using C/C++ is also briefly discussed. The project requires basic work experience with Microchip PICs, serial communication and programming.

  13. TRUE COLORS: LEDS AND THE RELATIONSHIP BETWEEN CCT, CRI, OPTICAL SAFETY, MATERIAL DEGRADATION, AND PHOTOBIOLOGICAL STIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P.

    2014-08-30

    This document analyzes the optical, material, and photobiological hazards of LED light sources compared to conventional light sources. It documents that LEDs generally produce the same amount of blue light, which is the primary contributor to the risks, as other sources at the same CCT. Duv may have some effect on the amount of blue light, but CRI does not.

  14. Synthesis and Characterization of High Efficiency and Stable Spherical Ag3PO4 Visible Light Photocatalyst for the Degradation of Methylene Blue Solutions

    Directory of Open Access Journals (Sweden)

    Liqin Qin

    2015-01-01

    Full Text Available A facile method for the synthesis of Ag3PO4 visible light photocatalyst has been developed to improve the photocatalytic activity and stability. The as-prepared samples are investigated by X-ray powder diffraction, scanning electron microscopy, infrared spectroscopy, photoluminescence (PL spectroscopy, and UV-Vis diffuse reflectance spectroscopy techniques. The results reveal that the prepared Ag3PO4 has cube structure with a band gap of 2.26 eV. The as-prepared samples show higher photocatalytic activity for methylene blue (MB degradation than that of N-TiO2 under visible light irradiation.

  15. Blue-shift of Eu²⁺ emission in (Ba,Sr)₃Lu(PO₄)₃:Eu²⁺ eulytite solid-solution phosphors resulting from release of neighbouring-cation-induced stress.

    Science.gov (United States)

    Wang, Ziyuan; Xia, Zhiguo; Molokeev, Maxim S; Atuchin, Victor V; Liu, QuanLin

    2014-11-28

    A series of iso-structural eulytite-type (Ba,Sr)3Lu(PO4)3:Eu(2+) solid-solution phosphors with different Sr/Ba ratios were synthesized by a solid-state reaction. Crystal structures of (Ba,Sr)3Lu(PO4)3:Eu(2+) were resolved by the Rietveld method, which shows an eulytite-type cubic Bi4(SiO4)3 structure with cations disordered in a single C3 site while the oxygen atoms were distributed over two partially occupied sites. The emission peaks of Ba((3-x))Sr(x)Lu(PO4)3:Eu(2+) (0 ≤ x ≤ 3) phosphors were blue-shifted, from 506 to 479 nm, with increasing Sr/Ba ratio upon the same excitation wavelength of 365 nm, and such interesting luminescence behaviours can also be found in other eulytite-type (Ba,Sr)3Ln(PO4)3:Eu(2+) (Ln = Y, Gd) solid-solution phosphors. The blue-shift of the Eu(2+) emission with increasing Sr/Ba ratio was ascribed to the variation of the crystal field strength that the 5d orbital of Eu(2+) ion experiences, and a new model based on the Eu-O bond length and released neighboring-cation stress in disordered Ba(2+)/Sr(2+)/Ln(3+) sites is proposed.

  16. [LED lights in dermatology].

    Science.gov (United States)

    Noé, C; Pelletier-Aouizerate, M; Cartier, H

    2017-01-16

    The use in dermatology of light-emitting diodes (LEDs) continues to be surrounded by controversy. This is due mainly to poor knowledge of the physicochemical phases of a wide range of devices that are difficult to compare to one another, and also to divergences between irrefutable published evidence either at the level of in vitro studies or at the cellular level, and discordant clinical results in a variety of different indications: rejuvenation, acne, wound healing, leg ulcers, and cutaneous inflammatory or autoimmune processes. Therapeutic LEDs can emit wavelengths ranging from the ultraviolet, through visible light, to the near infrared (247-1300 nm), but only certain bands have so far demonstrated any real value. We feel certain that if this article remains factual, then readers will have a different, or at least more nuanced, opinion concerning the use of such LED devices in dermatology.

  17. Color vision: retinal blues.

    Science.gov (United States)

    Johnston, Jamie; Esposti, Federico; Lagnado, Leon

    2012-08-21

    Two complementary studies have resolved the circuitry underlying green-blue color discrimination in the retina. A blue-sensitive interneuron provides the inhibitory signal required for computing green-blue color opponency.

  18. High quality GaN-based LED epitaxial layers grown in a homemade MOCVD system

    Institute of Scientific and Technical Information of China (English)

    Yin Haibo; Wang Xiaoliang; Ran Junxue; Hu Guoxin; Zhang Lu; Xiao Hongling; Li Jing; Li Jinmin

    2011-01-01

    A homemade 7 × 2 inch MOCVD system is presented.With this system,high quality GaN epitaxial layers,InGaN/GaN multi-quantum wells and blue LED structural epitaxial layers have been successfully grown.The non-uniformity of undoped GaN epitaxial layers is as low as 2.86%.Using the LED structural epitaxial layers,blue LED chips with area of 350 × 350μm2 were fabricated.Under 20 mA injection current,the optical output power of the blue LED is 8.62 mW.

  19. Facile fabrication of highly efficient AgI/ZnO heterojunction and its application of methylene blue and rhodamine B solutions degradation under natural sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinjun, E-mail: wxjtg2006@126.com; Wan, Xiaoli; Xu, Xiaoning; Chen, Xuenian

    2014-12-01

    Highlights: • A high-efficiency natural sunlight driven AgI/ZnO photocatalysts have been first prepared. • Our method is a simple, environment-friendly and cost-effective process. • The possible photocatalytic mechanism of AgI/ZnO was proposed. • AgI/ZnO exhibits higher efficiency for the degradation of methylene blue and rhodamine B under natural sunlight than a 500 W Xe lamp. - Abstract: The AgI/ZnO heterojunction was successfully synthesized by in situ deposition method and was found to be a natural sunlight driven photocatalyst. The photocatalytic efficiency of AgI/ZnO was evaluated by the degradation of rhodamine B under visible light irradiation. The influence of various operational parameters such as the effect of loading amount, catalyst dosage and initial RhB concentration on the photodegradation was investigated in detail and the results were discussed. The results indicated that the AgI/ZnO composites displayed much higher photocatalytic performances over ZnO as well as AgI. Moreover, the catalyst obviously showed higher efficiency for the degradation of methylene blue and rhodamine B under natural sunlight than a 500 W Xe lamp, and nearly 100% of dyes were degraded only in 120 min under the optimum conditions. At last, the quenching effects of different scavengers suggested that the reactive • OH and h{sup +} play the major role in the RhB degradation.

  20. LED system reliability

    NARCIS (Netherlands)

    Driel, W.D. van; Yuan, C.A.; Koh, S.; Zhang, G.Q.

    2011-01-01

    This paper presents our effort to predict the system reliability of Solid State Lighting (SSL) applications. A SSL system is composed of a LED engine with micro-electronic driver(s) that supplies power to the optic design. Knowledge of system level reliability is not only a challenging scientific ex

  1. Spectroradiometry for LED characterization

    DEFF Research Database (Denmark)

    Dam-Hansen, Carsten

    Radiospectroscopy is the absolute measurement of electromagnetic radiation within a specific wavelength range. For characterization of LED components, light sources and lamps we are interested in absolute measurement of the spectral power distribution, SPD, in the visible and near infrared region...

  2. LED Irradiation of a Photocatalyst for Benzene, Toluene, Ethyl Benzene,and Xylene Decomposition%LED Irradiation of a Photocatalyst for Benzene,Toluene,Ethyl Benzene,and Xylene Decomposition

    Institute of Scientific and Technical Information of China (English)

    JO Wan-Kuen; KANG Hyun-Jung

    2012-01-01

    Studies on the use of gas phase applications of light emitting diodes (LEDs) in photocatalysis are scarce although their photocatalytic decomposition kinetics of environmental pollutants are likely different from those in aqueous solutions.The present study evaluated the use of chips of visible light LEDs to irradiate nitrogen doped titania (N-TiO2) prepared by hydrolysis to decompose gaseous benzene,toluene,ethyl benzene,m-xylene,p-xylene,and o-xylene.Photocatalysts calcined at different temperatures were characterized by various analytical instruments.The degradation efficiency of benzene was close to zero for all conditions.For the other compounds,a conventional 8 W daylight lamp/N-TiO2 unit gave a higher photocatalytic degradation efficiency as compared with that of visible-LED/N-TiO2 units.However,the ratios of degradation efficiency to electric power consumption were higher for the photocatalytic units that used two types of visible-LED lamps (blue and white LEDs).The highest degradation efficiency was observed with the use of a calcination temperature of 350 ℃.The average degradation efficiencies for toluene,ethyl benzene,m-xylene,p-xylene,and o-xylene were 35%,68%,94%,and 93%,respectively.The use of blue-and white-LEDs,high light intensity,and low initial concentrations gave high photocatalytic activities for the photocatalytic units using visible-LEDs.The morphological and optical properties of the photocatalysts were correlated to explain the dependence of photocatalytic activity on calcination temperature.The results suggest that visible-LEDs are energy efficient light source for photocatalytic gas phase applications,but the activity depends on the operational conditions.

  3. Powerful nanosecond light sources based on LEDs for astroparticle physics experiments

    OpenAIRE

    Lubsandorzhiev, B. K.; Poleshuk, R. V.; Shaibonov, B. A. J.; Vyatchin, Y. E.

    2007-01-01

    Powerful nanosecond light sources based on LEDs have been developed for use in astroparticle physics experiments. The light sources use either matrixes of ultra bright blue LEDs or a new generation high power blue LEDs. It's shown that such light sources have light yield of up to 10**10 - 10**12 photons per pulse with very fast light emission kinetics. The described light sources are important for use in calibration systems of Cherenkov and scintillator detectors. The developed light sources ...

  4. [Study of achieving white organic LED by fluorescence dye].

    Science.gov (United States)

    Wang, Jin; Wang, Jing; Zheng, Rong-er; Meng, Ji-wu

    2005-08-01

    Some hybrid organic LEDs are made by using fluorescence dye and InGaN blue-light chip and the possibility of achieving white organic LED is investigated according to light conversion theory. Firstly, the LEDs made by normal method and double-dotting glue method are studied. It is found that the double-dotting glue method is too complex and the LEDs made by this way is low-luminance, so it isn't fit to make LED. Secondly the different weight ratio of 1/1/100, 1/1/200, 2/1.5/100 ax-17/zq-13/AB LEDs are manufactured. The 2/1.5/100 LED's color coordinate is (0.32, 0.30), approaching to white point and the correlative color temperature is 6290K which is close to sunlight. So it is a relatively ideal white lamp-house.

  5. Thermal management for LED applications

    CERN Document Server

    Poppe, András

    2014-01-01

    Thermal Management for LED Applications provides state-of-the-art information on recent developments in thermal management as it relates to LEDs and LED-based systems and their applications. Coverage begins with an overview of the basics of thermal management including thermal design for LEDs, thermal characterization and testing of LEDs, and issues related to failure mechanisms and reliability and performance in harsh environments. Advances and recent developments in thermal management round out the book with discussions on advances in TIMs (thermal interface materials) for LED applications, advances in forced convection cooling of LEDs, and advances in heat sinks for LED assemblies. This book also: Presents a comprehensive overview of the basics of thermal management as it relates to LEDs and LED-based systems Discusses both design and thermal management considerations when manufacturing LEDs and LED-based systems Covers reliability and performance of LEDs in harsh environments Has a hands-on applications a...

  6. Color tunable monolithic InGaN/GaN LED having a multi-junction structure.

    Science.gov (United States)

    Kong, Duk-Jo; Kang, Chang-Mo; Lee, Jun-Yeob; Kim, James; Lee, Dong-Seon

    2016-03-21

    In this study, we have fabricated a blue-green color-tunable monolithic InGaN/GaN LED having a multi-junction structure with three terminals. The device has an n-p-n structure consisting of a green and a blue active region, i.e., an n-GaN / blue-MQW / p-GaN / green-MQW / n-GaN / Al2O3 structure with three terminals for independently controlling the two active regions. To realize this LED structure, a typical LED consisting of layers of n-GaN, blue MQW, and p-GaN is regrown on a conventional green LED by using a metal organic chemical vapor deposition (MOCVD) method. We explain detailed mechanisms of three operation modes which are the green, blue, and cyan mode. Moreover, we discuss optical properties of the device.

  7. Design of Knight LED system

    Science.gov (United States)

    Zheng, Wen; Lou, Yuna; Xiao, Zhihong

    2010-02-01

    This design introduces a used car on the design of LED decorative light strip. This LED named Knight LED. In This system we use ATMEGA8 as the Master MCU Chip. Through the microcontroller to implement the wireless remote control receiver and the LED lights of different modes of switching, different brightness control. Also we use ULN2803 as the LED driver.

  8. 3种亚甲基蓝溶液在充填体微渗漏实验中的应用%Application of methylene blue solution on different concentration in microleakage testing of obturator

    Institute of Scientific and Technical Information of China (English)

    李杰; 王万春; 孙德刚; 吴双燕

    2012-01-01

    Objective To discuss application of methylene blue solution with three kinds of concentration in mic-roleakage test by measuring the depths of their penetration on the edge of obturator. Methods Thirty extracted human premolara were randomly divided into A, B, C groups, with 10 premolars in each group. Classic V cavities with the size of 4 mm ×3 mm × 2 mm were prepared, which were on labial side of each tooth and 1 mm away from cemento-enamel junction (CEJ). Then the cavities were conventionally filled with resin, and were cycled thermally (5 ℃/55 ℃, 400 times). The three groups of teeth were separately placed into methylene blue solution on different concentration (0.5% , A; 1% , B; 2% , C) , then immersed in those solution for 96 h. Later those teeth were washed and ilride and were cut on labial-lingual direction. The direction was perpendicular to the surface of obturator. Root canal microscope was used to observe the condition of their penetration then pictures were taken. Software Image-Pro Plus 6.0 were used to measure the depth of the penetration of methylene blue solution. Results The penetrative depth of methylene blue solution in group A, B, C were respectively (0.74 ±0. 33) mm, (1.51 ±0. 52) mm, (0.96 ±0. 28) mm. There were significant differences among these three groups ( F = 10. 398, P 0. 05 ). Significant differences were found between B and C (t = 3. 155, P < 0. 05 ). Conclusion The bigger penetration speed was kept by 1% methylene blue solution. The smaller speed was kept by that of 0.5% and 2%. The penetration stability of methylene blue solution of 2% was the best, while that of 0.5% was the worst.%目的 研究3种亚甲基蓝溶液在充填体微渗漏实验中的渗透情况及应用.方法 将30颗人离体前磨牙随机均分为A、B、C组,每组10颗.所有离体牙颊面釉牙骨质界冠方1mm处制备4mm ×3 mm×2mm的标准V类洞型.常规树脂充填,将充填的离体牙置于5℃和55℃恒温生

  9. Why Do Proteins Glow Blue?

    CERN Document Server

    Sarkar, Sohini; Hazra, Partha; Mandal, Pankaj

    2014-01-01

    Recent literatures reported blue-green emission from amyloid fibril as exclusive signature of fibril formation. This unusual visible luminescence is regularly used to monitor fibril growth. Blue-green emission has also been observed in crystalline protein and in solution. However, the origin of this emission is not known exactly. Our spectroscopic study of serum proteins reveals that the blue-green emission is a property of protein monomer. Evidences suggest that semiconductor-like band structure of proteins with the optical band-gap in the visible region is possibly the origin of this phenomenon. We show here that the band structure of proteins is primarily the result of electron delocalization through the peptide chain, rather than through the hydrogen bond network in secondary structure.

  10. Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes.

    Science.gov (United States)

    Wang, Yaoguang; Hu, Lihua; Zhang, Guangya; Yan, Tao; Yan, Liangguo; Wei, Qin; Du, Bin

    2017-05-15

    Magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes (mHAP-oMWCNTs), an excellent adsorbent for Pb(II) and methylene blue (MB) removal, was synthesized in the present work. It was characterized by SEM, XRD, FTIR, BET, TGA and zeta potential analysis. mHAP-oMWCNTs displayed better adsorption performance than mHAP, mMWCNTs and HAP-oMWCNTs. The adsorption of Pb(II) and MB mainly depend on the ion-exchange property of HAP and the abundant oxygenic functional groups on oMWCNTs surface. Besides, good magnetic performance of mHAP-oMWCNTs makes it easy to achieve the solid-liquid separation. The adsorption kinetic data described well with the pseudo-second-order model and the equilibrium data fitted well with Frendlich and Langmuir isotherms for Pb(II) and MB, respectively. The maximum adsorption capacity was 698.4mgg(-1) for Pb(II) and 328.4mgg(-1) for MB from Langmuir isotherm. Thermodynamic studies (ΔG0, ΔS>0) implied the both adsorption was endothermic and spontaneous process. Furthermore, the excellent reusability of mHAP-oMWCNTs was confirmed by the desorption experiments. All the results showed mHAP-oMWCNTs has a promising application in water treatment.

  11. Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution.

    Science.gov (United States)

    Ma, Xiaojun; Zhang, Fan; Zhu, Junyan; Yu, Lili; Liu, Xinyan

    2014-07-01

    Activated carbon fiber (C-WACF) with super high surface area and well-developed small mesopores were prepared by liquefied wood and uses wood charcoal (WC) as additive. The characterization and properties of C-WACF were investigated by XRD, XPS and N2 adsorption. Results showed the pore development was significant at temperatures >750°C, and reached a maximum BET surface area (2604.7 m(2)/g) and total pore volume (1.433 cm(3)/g) at 850°C, of which 86.8% was from the contribution of the small mesopores of 2-4 nm. It was also found that the mesopore volume and methylene blue adsorption of C-WACF were highly increased as the temperature increases from 750 to 850°C. Additionally, the reduction of graphitic layers, the obvious changes of functional groups and the more unstable carbons on the surface of C-WACF, which played important roles in the formation of mesopores, were also observed.

  12. Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Song Shuang; Yao Jie [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); He Zhiqiao [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)], E-mail: zqhe@zjut.edu.cn; Qiu Jianping; Chen Jianmeng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2008-03-21

    The aim of this paper was to investigate the efficiency of the ozone-enhanced electrocoagulation (EC) process in the decolorization of C.I. Reactive Blue 19 in water using iron electrodes. We determined the effects of various operating parameters such as initial pH, initial dye concentration, current density, salt concentration, temperature, ozone flow rate, and distance between electrodes on decolorization efficiency in a laboratory-scale reactor. Increasing the initial dye concentration decreased the decolorization efficiency, whereas increasing the distance between electrodes increased it. The other operating factors had both positive and negative effects. With an initial pH of 10.0, an initial dye concentration of 100 mg/L, current density of 10 mA/cm{sup 2}, salt concentration of 3000 mg/L, temperature of 30 deg. C, ozone flow rate of 20 mL/min, and distance between electrodes of 3 cm, over 96% of the color was removed after 10 min. As a consequence, removal of total organic carbon (TOC) was over 80%.

  13. Fluorescent protein integrated white LEDs for displays

    Science.gov (United States)

    Press, Daniel Aaron; Melikov, Rustamzhon; Conkar, Deniz; Nur Firat-Karalar, Elif; Nizamoglu, Sedat

    2016-11-01

    The usage time of displays (e.g., TVs, mobile phones, etc) is in general shorter than their functional life time, which worsens the electronic waste (e-waste) problem around the world. The integration of biomaterials into electronics can help to reduce the e-waste problem. In this study, we demonstrate fluorescent protein integrated white LEDs to use as a backlight source for liquid crystal (LC) displays for the first time. We express and purify enhanced green fluorescent protein (eGFP) and monomeric Cherry protein (mCherry), and afterward we integrate these proteins as a wavelength-converter on a blue LED chip. The protein-integrated backlight exhibits a high luminous efficacy of 248 lm/Wopt and the area of the gamut covers 80% of the NTSC color gamut. The resultant colors and objects in the image on the display can be well observed and distinguished. Therefore, fluorescent proteins show promise for display applications.

  14. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Duller, G.A.T.; Murray, A.S.;

    1999-01-01

    Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LEDs...... (470 nm) gives order of magnitude greater rate of stimulation in quartz than that from conventional blue-green light filtered from a halogen lamp. A practical blue LED OSL configuration is described. From comparisons of OSL decay curves produced by green and blue light sources, and by examination...

  15. Photocatalytic degradation of methylene blue using undoped and Ag-doped TiO{sub 2} thin films deposited by a sol-gel process: Effect of the ageing time of the starting solution and the film thickness

    Energy Technology Data Exchange (ETDEWEB)

    Guillen-Santiago, A.; Mayen, S.A.; Torres-Delgado, G.; Castanedo-Perez, R. [Laboratorio de Investigacion en Materiales, CINVESTAV-IPN, U. Queretaro, Apdo. Postal 1-798, Queretaro, Qro. 76001 (Mexico); Maldonado, A. [Departamento de Ingenieria. Electrica-SEES, CINVESTAV-IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Olvera, M. de la L, E-mail: molvera@cinvestav.mx [Departamento de Ingenieria, Electrica-SEES, CINVESTAV-IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2010-10-25

    Undoped and Ag-doped TiO{sub 2} thin films were deposited on glass substrates by the sol-gel method. A novel propose to prepare the solution is the use of titanium monohydrate oxyacetyl acetonate as the starting reagent. The effect of the ageing time of the starting solution as well as the number of coatings on the photocatalytic degradation of methylene blue (MB) was studied. The variation of the absorption spectra shows the degradation of MB dissolved in water, as a result of the reaction produced on the surface of the films, and promoted by ultraviolet irradiation during 5 h. The results show an optimum photocatalytic activity, in the order of 35%, presented in the 5-immersion Ag-doped TiO{sub 2} thin films, deposited from 7- and 14-day aged solutions. On the other hand, the Ag-doped TiO{sub 2} films deposited at different coatings show small changes in the photocatalytic activity. Morphological studies show the presence of silver particles on the film surface, due to the different number of coatings, affecting the photocatalytic performance.

  16. Straightforward fabrication of stable white LEDs by embedding of inorganic UV-LEDs into bulk polymerized polymethyl-methacrylate doped with organic dyes

    OpenAIRE

    Di Martino, Daniela; Beverina, Luca; Sassi, Mauro; Brovelli, Sergio; Tubino, Riccardo; Meinardi, Francesco

    2014-01-01

    Stable white-emitting down-converted LEDs are straightforwardly prepared by bulk polymerization of an organic dye doped polymethyl-methacrylate (PMMA) shell directly on top of a highly efficient commercial blue-emitting InGaN LED. Our optimized polymerization procedure allows for extending the form factor of achievable luminescence converter (LUCO) material beyond the conventional thin film form and to directly produce devices with light bulb design. The selected organic dyes, the blue-emitti...

  17. Fabrication of LEDs based on III-V nitrides and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, N. [Optoelectronics Technical Division, Toyoda Gosei Co., Ltd., 710 Origuchi, Shimomiyake heiwa-cho, Nakashima-gun, Aichi 490-1312 (Japan)

    2002-08-16

    III-V nitride semiconductors are useful for LEDs with colors ranging from ultraviolet, blue to green. The luminescence of these LEDs shows a high luminosity and a high purity of color, and, therefore, many applications have been realized using these LEDs. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  18. Blue ocean leadership.

    Science.gov (United States)

    Kim, W Chan; Mauborgne, Renée

    2014-05-01

    Ten years ago, two INSEAD professors broke ground by introducing "blue ocean strategy," a new model for discovering uncontested markets that are ripe for growth. In this article, they apply their concepts and tools to what is perhaps the greatest challenge of leadership: closing the gulf between the potential and the realized talent and energy of employees. Research indicates that this gulf is vast: According to Gallup, 70% of workers are disengaged from their jobs. If companies could find a way to convert them into engaged employees, the results could be transformative. The trouble is, managers lack a clear understanding of what changes they could make to bring out the best in everyone. Here, Kim and Mauborgne offer a solution to that problem: a systematic approach to uncovering, at each level of the organization, which leadership acts and activities will inspire employees to give their all, and a process for getting managers throughout the company to start doing them. Blue ocean leadership works because the managers' "customers"-that is, the people managers oversee and report to-are involved in identifying what's effective and what isn't. Moreover, the approach doesn't require leaders to alter who they are, just to undertake a different set of tasks. And that kind of change is much easier to implement and track than changes to values and mind-sets.

  19. SOLUTIONING

    Directory of Open Access Journals (Sweden)

    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.

    2004-11-01

    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  20. Smart LED lighting for major reductions in power and energy use for plant lighting in space

    Science.gov (United States)

    Poulet, Lucie

    Launching or resupplying food, oxygen, and water into space for long-duration, crewed missions to distant destinations, such as Mars, is currently impossible. Bioregenerative life-support systems under development worldwide involving photoautotrophic organisms offer a solution to the food dilemma. However, using traditional Earth-based lighting methods, growth of food crops consumes copious energy, and since sunlight will not always be available at different space destinations, efficient electric lighting solutions are badly needed to reduce the Equivalent System Mass (ESM) of life-support infrastructure to be launched and transported to future space destinations with sustainable human habitats. The scope of the present study was to demonstrate that using LEDs coupled to plant detection, and optimizing spectral and irradiance parameters of LED light, the model crop lettuce (Lactuca sativa L. cv. Waldmann's Green) can be grown with significantly lower electrical energy for plant lighting than using traditional lighting sources. Initial experiments aimed at adapting and troubleshooting a first-generation "smart" plant-detection system coupled to LED arrays resulted in optimizing the detection process for plant position and size to the limits of its current design. Lettuce crops were grown hydroponically in a growth chamber, where temperature, relative humidity, and CO2 level are controlled. Optimal irradiance and red/blue ratio of LED lighting were determined for plant growth during both lag and exponential phases of crop growth. Under optimizing conditions, the efficiency of the automatic detection system was integrated with LED switching and compared to a system in which all LEDs were energized throughout a crop-production cycle. At the end of each cropping cycle, plant fresh and dry weights and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed. Preliminary results indicated that lettuce plants grown under optimizing

  1. Comparison between blue lasers and light-emitting diodes for future solid-state lighting: Comparison between blue lasers and light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wierer, Jonathan J. [Sandia National Laboratories, Albuquerque NM 87185 USA; Tsao, Jeffrey Y. [Sandia National Laboratories, Albuquerque NM 87185 USA; Sizov, Dmitry S. [Corning Incorporated, One Science Center Dr., Corning NY 14831 USA

    2013-08-01

    Solid-state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light-emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission, can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state-of-the-art input-power-density-dependent power-conversion efficiencies; potential improvements both in their peak power-conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.

  2. Spectral Design Flexibility of LED Brings Better life

    DEFF Research Database (Denmark)

    Ou, Haiyan; Corell, Dennis Dan; Ou, Yiyu

    2012-01-01

    white light using different color mixing schemes. The spectral design flexibility of white LED light sources will promote them for novel applications to improve the life quality of human beings. As an initial exploration to make use of the spectral design flexibility, we present an example: 'no blue......' white LED light source for sufferers of disease Porphyria. An LED light source prototype, made of high brightness commercial LEDs applying an optical filter, was tested by a patient suffering from Porphyria. Preliminary results have shown that the sufferer could withstand the light source for much......Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make...

  3. High-power LEDs for plant cultivation

    Science.gov (United States)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  4. Blue cures blue but be cautious

    Directory of Open Access Journals (Sweden)

    Pranav Sikka

    2011-01-01

    Full Text Available Methemoglobinemia is a disorder characterized by the presence of >1% methemoglobin (metHb in the blood. Spontaneous formation of methemoglobin is normally counteracted by protective enzyme systems, for example, nicotinamide adenine dinucleotide phosphate (NADPH methemoglobin reductase. Methemoglobinemia is treated with supplemental oxygen and methylene blue (1-2 mg/kg administered slow intravenously, which acts by providing an artificial electron acceptor for NADPH methemoglobin reductase. But known or suspected glucose-6-phosphate dehydrogenase (G6PD deficiency is a relative contraindication to the use of methylene blue because G6PD is the key enzyme in the formation of NADPH through pentose phosphate pathway and G6PD-deficient individuals generate insufficient NADPH to efficiently reduce methylene blue to leukomethylene blue, which is necessary for the activation of the NADPH-dependent methemoglobin reductase system. So, we should be careful using methylene blue in methemoglobinemia patient before G6PD levels.

  5. High-power LED package requirements

    Science.gov (United States)

    Wall, Frank; Martin, Paul S.; Harbers, Gerard

    2004-01-01

    Power LEDs have evolved from simple indicators into illumination devices. For general lighting applications, where the objective is to light up an area, white LED arrays have been utilized to serve that function. Cost constraints will soon drive the industry to provide a discrete lighting solution. Early on, that will mean increasing the power densities while quantum efficiencies are addressed. For applications such as automotive headlamps & projection, where light needs to be tightly collimated, or controlled, arrays of die or LEDs will not be able to satisfy the requirements & limitations defined by etendue. Ultimately, whether a luminaire requires a small source with high luminance, or light spread over a general area, economics will force the evolution of the illumination LED into a compact discrete high power package. How the customer interfaces with this new package should be an important element considered early on in the design cycle. If an LED footprint of adequate size is not provided, it may prove impossible for the customer, or end user, to get rid of the heat in a manner sufficient to prevent premature LED light output degradation. Therefore it is critical, for maintaining expected LED lifetime & light output, that thermal performance parameters be defined, by design, at the system level, which includes heat sinking methods & interface materials or methdology.

  6. Comparative study of double staining with Lugol's solution and methylene blue and single-staining with Lugol's solution in the diagnosis of esophageal superficial lesions%内镜下卢戈液染色与卢戈液-亚甲蓝双重染色诊断食管浅表性病变对比研究

    Institute of Scientific and Technical Information of China (English)

    武育卫; 胡文华; 高春芳

    2011-01-01

    OBJECTIVE:To compare the diagnostic accuracy of double staining with LugoL's solution and methylene blue and single-staining with LugoL's solution in diagnosing esophageal superficial lesions. METHODS: Esophageal superficial lesions (298 patients) were sprayed with 3% LugoL's solution firstly, and then 0. 5% methylene blue. Depending on the mucosal staining, biopsies specimen was obtained, the result of staining and pathology was contrasted. RESULTS: The patients included 101 early esophageal cancer (EEC) and 23 high-grade intraepithelial neoplasias (HGEN) and 81 low-grade intraepithelial neoplasias (LGEN) and 93 non-in-traepithelial neoplasias (NEN). After staining with LugoL's solution, EEC and HGEN were mostly non-stained, the specificity and sensitivity were 96. 0% (167/174) and 89. 5% (111/124 ); LGEN and NEN were mostly weakly stained, the specificity and sensitivity for LGEN and NEN were 61. 8%(134/217), 91. 4%(74/81) and 57. 6% (118/205), 75. Z% (70/93). After double staining with LugoL's solution and methylene blue, EEC and HGEN were mostly deeply stained by methylene blue but non-stained by LugoL's solution, the specificity and sensitivity were 99. 4% (173/174) and 86. 3% (107/124); LGEN was mostly weakly stained by methylene blue and LugoL's solution, the specificity and sensitivity were 96.8%(210/217) and 81. 5% (66/81), NEN was mostly non-stained by methylene blue but weakly stained by LugoL's solution, the specificity and sensitivity was 100. 0% (205/205) and 69.9% (65/93). The specificity for EEC and HGEN with LugoL's solution staining or double staining was similar ( z = 0. 076, P = 0. 939 1), but the specificity for LGEN and NEN with double staining was higher than that with LugoL' s solution staining (z = 3. 155,P =0.001 6i z = 4. 148,P<0. 000 1). CONCLUSION: The double staining with LugoL's solution and methylene blue can exactly diagnose and identify esophageal superficial lesions, and it is better than LugoL's solution staining in

  7. Enhancing the surface properties of the immobilized Degussa P-25 TiO2 for the efficient photocatalytic removal of methylene blue from aqueous solution

    Science.gov (United States)

    Nawi, M. A.; Zain, Salmiah Md.

    2012-06-01

    A method has been developed for enhancing the surface properties of immobilized Degussa P-25 TiO2 nanoparticles on glass plate supports with excellent photocatalytic activity. The immobilization technique utilized a dip-coating method involving a coating solution containing Degussa P-25 TiO2 particles, epoxidized natural rubber (ENR-50) and poly vinyl chloride (PVC) in a mixture of toluene and dichloromethane. The optimum ratio of ENR/PVC blend was found to be 1:2. Immobilization process of the composite appeared to reduce the specific surface area by at least half of the pristine P-25 TiO2 particles. However, a systematic removal of ENR-50 additive via a 5 h photocatalytic process enabled the immobilized photocatalyst (P-25TiO2/ENR/PVC/5 h) to regenerate the surface area to within 86% of the pristine P-25 TiO2 particles, produce bigger pore volume and smaller particle size. The enhanced surface properties of the immobilized P-25/ENR/PVC/5 h photocatalyst system generated a photocatalytic performance as good as the slurry method of the P-25 TiO2 nanoparticles for the photocatalytic degradation of MB dye in aqueous solution. The immobilized P-25TiO2/ENR/PVC/5 h catalyst plate was also found to be highly reusable up to at least 10 runs without losing its photocatalytic efficiency. Above all, the system could avoid tedious filtration step of the treated water as normally observed with the aqueous slurry system.

  8. Research of the influence of radiation of light from emitting diodes in Fricke solution doped with photosensibilizers of low cost; Averiguacao da influencia da radiacao de diodos emissores de luz na solucao Fricke dopada com fotossensibilizadores de baixo custo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Mayara G.O. de; Lima, Vanessa L. de; Nascimento, Rizia K. do; Santos, Patricia N.C. dos; Souza, Vivianne L.B. de, E-mail: mayaradgf@hotmail.com, E-mail: lemos.nessa@yahoo.com.br, E-mail: riziakeila@hotmail.com, E-mail: patty_fofa007@hotmail.com, E-mail: vlsouza@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-11-01

    This study aims to verify the behavior of FAM dosimeters (Fricke solution doped with methylene blue), FVM (Fricke solution doped with malachite green) and FAT (Fricke solution doped with toluidine blue) after irradiation with LED. Photodynamic therapy (PDT), the newest form of treatment for some types of cancer, is the association of a photosensitizing agent to a light source, in order to induce cancer cell death. PDT does not have a dosimetry and is usually performed with lasers, and photosensitizers imported and expensive. The red and blue were chosen for the experiments. The solution was prepared and Fricke Fricke doped solutions were prepared by adding 100 {mu}g/mL of the photosensitizers. Subsequently, ethanol was added to the dosimeters yielding the FATA , FAME and FVMA. Doped solutions were transferred to test tubes and irradiated in acrylic phantoms. The solutions were irradiated their optical densities measured in a UV - VIS spectrophotometer. Thus, it was found that after irradiation, the dosimeters showed linear behavior showing good correlation coefficients for the samples irradiated with LEDs. The FAME when irradiated with blue light, also showed a linear correlation. However , for FVMA behavior was presented an equation of 2nd degree. Concluding that the LED irradiated dosimeters have shown sensitivity to light so that they can be used for dosimetry in PDT, and the results also show that PDT can be realized with LED photosensitizers and low cost.

  9. Embedded systems for controlling LED matrix displays

    Science.gov (United States)

    Marghescu, Cristina; Drumea, Andrei

    2016-12-01

    LED matrix displays are a common presence in everyday life - they can be found in trains, buses, tramways, office information tables or outdoor media. The structure of the display unit is similar for all these devices, a matrix of light emitting diodes coupled between row and column lines, but there are many options for the display controller that switches these lines. Present paper analyzes different types of embedded systems that can control the LED matrix, based on single board computers, on microcontrollers with different peripheral devices or with programmable logic devices like field programmable gate arrays with implemented soft processor cores. Scalability, easiness of implementation and costs are analyzed for all proposed solutions.

  10. Highly-efficient, tunable green, phosphor-converted LEDs using a long-pass dichroic filter and a series of orthosilicate phosphors for tri-color white LEDs.

    Science.gov (United States)

    Oh, Ji Hye; Oh, Jeong Rok; Park, Hoo Keun; Sung, Yeon-Goog; Do, Young Rag

    2012-01-02

    This study introduces a long-pass dichroic filter (LPDF) on top of a phosphor-converted LED (pc-LED) packing associated with each corresponding tunable orthosilicate ((Ba,Sr)2SiO4:Eu) phosphor in order to fabricate tunable green pc-LEDs. These LPDF-capped green pc-LEDs provide luminous efficacies between 143–173 lm/W at 60 mA in a wavelength range between 515 and 560 nm. These tunable green pc-LEDs can replace green semiconductor-type III-V LEDs, which present challenges with respect to generating high luminous efficacy. We also introduce the highly-efficient tunable green pc-LEDs into tri-color white LED systems that combine an InGaN blue LED and green/red full down-converted pc-LEDs. The effect of peak wavelength in the tunable green pc-LEDs on the optical properties of a tri-color package white LED is analyzed to determine the proper wavelength of green color for tri-color white LEDs. The tri-color white LED provides excellent luminous efficacy (81.5–109 lm/W) and a good color rendering index (64–87) at 6500 K of correlated color temperature (CCT) with the peak wavelength of green pc-LEDs. The luminous efficacy of the LPDF-capped green monochromatic pc-LED and tri-color package with tunable green pc-LEDs can be increased by improving the external quantum efficiency of blue LEDs and the conversion efficiency of green pc-LEDs.

  11. [Effects of LED spectrum combinations on the absorption of mineral elements of hydroponic lettuce].

    Science.gov (United States)

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Mmanake Beauty, Morewane

    2014-05-01

    Lettuce (Lactuca sativa) was hydroponically cultured in a completely enclosed plant factory, in which spectrum proportion-adjustable LED panels were used as sole light source for plant growth. Absorption and content of eleven mineral elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu, B and Mo in Lactuca sativa under different spectral component conditions were studied by ICP -AES technology. The results showed that: (1) Single or combined spectrums corresponding to the absorbing peaks of chlorophyll a and b (450, 660 nm) could enhance the absorbing ability of roots especially for mineral elements Na, Fe, Mn, Cu and Mo, the single red spectrum had the most significant promoting effect under which contents of those four elements were respectively 7. 8, 4. 2, 4. 0 and 3. 7 times more than that under FL; (2) Absorption of K and B was the highest under FL which was 10. 309 mg g-1 and 32. 6 microg g-1 while the values decreased significantly under single or combined spectrum of red and blue; (3) Plants grown under single blue spectrum had the lowest absorption of Ca and Mg which respectively decreased by 35% and 33% than FL; (4) Lettuce grown under the spectrum combination of 30% blue and 70% red had the highest accumulations of biomass while those grown under 20% blue and 80% red had the highest accumulations of the following seven elements Ca, Mg, Na, Fe, Mn, Zn and B. The results provided theoretical basis for adjusting nutrient solution formula and selecting light spectrum of hydroponic lettuce.

  12. QCD-inspired spectra from Blue`s functions

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, M.A. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik]|[Uniwersytet Jagiellonski, Cracow (Poland). Dept. of Theoretical Physics; Papp, G. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Lorand Eoetvoes Univ., Budapest (Hungary). Inst. for Theoretical Physics; Zahed, I. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics

    1996-03-01

    We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether by symmetries or models. In terms of the Blue`s functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter. (orig.)

  13. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert F. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2010-09-30

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films.

  14. EDITORIAL: LED light sources (light for the future) LED light sources (light for the future)

    Science.gov (United States)

    Grandjean, N.

    2010-09-01

    Generating white light from electricity with maximum efficacy has been a long quest since the first incandescent lamp was invented by Edison at the end of the 19th century. Nowadays, semiconductors are making reality the holy grail of converting electrons into photons with 100% efficiency and with colours that can be mixed for white light illumination. The revolution in solid-state lighting (SSL) dates to 1994 when Nakamura reported the first high-brightness blue LED based on GaN semiconductors. Then, white light was produced by simply combining a blue dye with a yellow phosphor. After more than a decade of intensive research the performance of white LEDs is quite impressive, beating by far the luminous efficacy of compact fluorescent lamps. We are likely close to replacing our current lighting devices by SSL lamps. However, there are still technological and fabrication cost issues that could delay large market penetration of white LEDs. Interestingly, SSL may create novel ways of using light that could potentially limit electricity saving. Whatever the impact of SSL, it will be significant on our daily life. The purpose of this special cluster issue is to produce a snapshot of the current situation of SSL from different viewing angles. In an introductory paper, Tsao and co-workers from Sandia National Laboratories, present an energy-economics perspective of SSL considering societal changes and SSL technology evolution. In a second article, Narukawa et al working at Nichia Corporation—the pioneer and still the leading company in SSL—describe the state of the art of current research products. They demonstrate record performance with white LEDs exhibiting luminous efficacy of 183 lm W-1 at high-current injection. Then, a series of topical papers discuss in detail various aspects of the physics and technology of white LEDs Carrier localization in InGaN quantum wells has been considered the key to white LEDs' success despite the huge density of defects. A

  15. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO{sub 2}, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Khataee, A.R. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)], E-mail: a_khataee@tabrizu.ac.ir; Vatanpour, V. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)], E-mail: vahidvatanpoor@yahoo.com; Amani Ghadim, A.R. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)], E-mail: a.r_amani@yahoo.com

    2009-01-30

    This study makes a comparison between UV/Nano-TiO{sub 2}, Fenton, Fenton-like, electro-Fenton (EF) and electrocoagulation (EC) treatment methods to investigate the removal of C.I. Acid Blue 9 (AB9), which was chosen as the model organic contaminant. Results indicated that the decolorization efficiency was in order of Fenton > EC > UV/Nano-TiO{sub 2} > Fenton-like > EF. Desired concentrations of Fe{sup 2+} and H{sub 2}O{sub 2} for the abatement of AB9 in the Fenton-based processes were found to be 10{sup -4} M and 2 x 10{sup -3} M, respectively. In the case of UV/Nano-TiO{sub 2} process, we have studied the influence of the basic photocatalytic parameters such as the irradiation time, pH of the solution and amount of TiO{sub 2} nanoparticles on the photocatalytic decolorization efficiency of AB9. Accordingly, it could be stated that the complete removal of color, after selecting desired operational parameters could be achieved in a relatively short time, about 25 min. Our results also revealed that the most effective decomposition of AB9 was observed with 150 mg/l of TiO{sub 2} nanoparticles in acidic condition. The effect of operational parameters including current density, initial pH and time of electrolysis were studied in electrocoagulation process. The results indicated that for a solution of 20 mg/l AB9, almost 98% color were removed, when the pH was about 6, the time of electrolysis was 8 min and the current density was approximately 25 A/m{sup 2} in electrocoagulation process.

  16. Optimizing Blue Persistent Luminescence in (Sr1-δBaδ)2MgSi2O7:Eu(2+),Dy(3+) via Solid Solution for Use in Point-of-Care Diagnostics.

    Science.gov (United States)

    Finley, Erin; Cobb, Angelica; Duke, Anna; Paterson, Andrew; Brgoch, Jakoah

    2016-10-12

    Inorganic persistent luminescent phosphors are an excellent class of optical reporters for enabling sensitive point-of-care diagnostics, particularly with smartphone-based biosensing devices in testing formats such as the lateral flow assay (LFA). Here, the development of persistent phosphors for this application is focused on the solid solution (Sr1-δBaδ)2MgSi2O7:Eu(2+),Dy(3+) (δ = 0, 0.125, 0.25, 0.375), which is prepared using a high-temperature solid-state reaction as confirmed by synchrotron X-ray powder diffraction. The substitution of barium for strontium enables control over the Eu(2+) 5d-orbital crystal field splitting (CFS) as a tool for tuning the emission wavelength while maintaining luminescence lifetimes >9 min across the composition range. Thermoluminescence measurements of the solid solution provide evidence that trap states contribute to the persistent lifetimes with the trap depths also remaining constant as a function of composition. Time-gated luminescence images of these compounds are captured on a smartphone arranged in a layout to mimic a point-of-care test and demonstrate the viability of using these materials as optical reporters. Moreover, comparing the blue-emitting (Sr0.625Ba0.375)2MgSi2O7:Eu(2+),Dy(3+) and the green-emitting SrAl2O4:Eu(2+),Dy(3+) in a single LFA-type format shows these two compounds can be detected and resolved simultaneously, thereby permitting the development of a multiplexed LFA.

  17. Automated selection of LEDs by luminance and chromaticity coordinate

    CERN Document Server

    Fischer, Ulrich H P; Reinboth, Christian

    2010-01-01

    The increased use of LEDs for lighting purposes has led to the development of numerous applications requiring a pre-selection of LEDs by their luminance and / or their chromaticity coordinate. This paper demonstrates how a manual pre-selection process can be realized using a relatively simple configuration. Since a manual selection service can only be commercially viable as long as only small quantities of LEDs need to be sorted, an automated solution suggests itself. This paper introduces such a solution, which has been developed by Harzoptics in close cooperation with Rundfunk Gernrode. The paper also discusses current challenges in measurement technology as well as market trends.

  18. Blue and White Pot

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    Many recent archaeological studies have proven that the earliest blue and white porcelain was produced from the kiln in Gongxian County, Henan Province in the Tang Dynasty (618-907). It was an important variety of porcelain available for export then. The early blue and white porcelain in the Yuan Dynasty appeared dark and gray. During the reign of Zhizheng, clear blue and white porcelain was produced, indicating

  19. Removal of blue 1 dye of aqueous solutions with a modified clay with iron chloride; Remocion de colorante azul 1 de soluciones acuosas con una arcilla modificada con cloruro de hierro

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, K. A.

    2012-07-01

    At the present time, several technologies have been proposed to remove dyes from water, adsorption is one of the most feasible methods and adsorbents with different properties, such as activated carbon, zeolites, clays and hydrogels among others. In this work, the sorption behavior of blue 1 dye by a natural clay from a site located in the Center-East of Mexico, and other modified with iron chloride were determined. The materials were characterized by X-ray diffraction to analyze its crystal structure, by scanning electron microscopy and elemental microanalysis of energy dispersive X-ray spectrometry to determine the composition and morphology, and the zero point charges were also determined to know the charge distribution on the surface of the clay. The ph effect, contact time, dye concentration and temperature were the parameters considered in this study. The results showed that clay does not suffer any important changes in its structure after the chemical treatments (modification with ferric chloride and contact with blue 1 solutions). The ph influences lightly the adsorption of the dye with natural clay, but the same effect is not observed in the ferric modified clay among the factor ph 6 and 8. The equilibrium time and the sorption capacity for natural clay were 48 hours and 6.16 mg/g, while for the ferric clay were 24 hours and 14.22 mg/g. Adsorption kinetics results were best adjusted to the pseudo first and pseudo second order models. Adsorption isotherms were best adjusted to the Langmuir model, indicating that both clays have a homogeneous surface. Thermodynamic parameters (E, {Delta}S and {Delta}G and {Delta}H) were calculated for the dye adsorption by the natural clay using data of the adsorption kinetics at temperatures between 20 and 50 C, indicating that the adsorption process is exothermic. For the case of ferric clay, it was not possible to calculate these thermodynamic parameters because the adsorption capacities were similar in the range of

  20. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs

    Science.gov (United States)

    Zhang, Feng; Feng, Xiaoting; Zhang, Yi; Yan, Lingpeng; Yang, Yongzhen; Liu, Xuguang

    2016-04-01

    Photoluminescent organosilane-functionalized carbon quantum dots (CQDs), 3.0-3.5 nm in diameter, were synthesized via a facile hydrothermal method using citric acid monohydrate as a precursor and N-(3-(trimethoxysilyl) propyl) ethylenediamine as a coordinating and passivation agent. The optical properties of the as-obtained CQDs were investigated in detail. The CQD aqueous solution emits bright blue-white light under ultraviolet (UV) illumination with a quantum yield of 57.3% and high red-green-blue (RGB) spectral composition of 60.1%, and in particular the CQDs exhibit excitation-independent photoluminescence. The CQDs have a narrow size distribution around 3.1 nm and good film-forming ability through simple heat-treatment. By virtue of these excellent optical characteristics and good film-forming ability, a white light-emitting device (LED) was fabricated by combining a UV-LED chip with a single CQD phosphor film, which exhibited cool white light with a CIE coordinate of (0.31, 0.36), a color rendering index of 84 and a correlated color temperature of 6282 K. In addition, the white LED exhibits good optical stability under various working currents and for different working time intervals. Moreover, the interaction between the carbogenic core and surface groups was discussed using the DMol3 program based on density functional theory. This research suggests the great potential of CQDs for solid-state lighting systems and reveals the effect of the surface state on the photoluminescent mechanism of CQDs.

  1. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs.

    Science.gov (United States)

    Zhang, Feng; Feng, Xiaoting; Zhang, Yi; Yan, Lingpeng; Yang, Yongzhen; Liu, Xuguang

    2016-04-28

    Photoluminescent organosilane-functionalized carbon quantum dots (CQDs), 3.0-3.5 nm in diameter, were synthesized via a facile hydrothermal method using citric acid monohydrate as a precursor and N-(3-(trimethoxysilyl) propyl) ethylenediamine as a coordinating and passivation agent. The optical properties of the as-obtained CQDs were investigated in detail. The CQD aqueous solution emits bright blue-white light under ultraviolet (UV) illumination with a quantum yield of 57.3% and high red-green-blue (RGB) spectral composition of 60.1%, and in particular the CQDs exhibit excitation-independent photoluminescence. The CQDs have a narrow size distribution around 3.1 nm and good film-forming ability through simple heat-treatment. By virtue of these excellent optical characteristics and good film-forming ability, a white light-emitting device (LED) was fabricated by combining a UV-LED chip with a single CQD phosphor film, which exhibited cool white light with a CIE coordinate of (0.31, 0.36), a color rendering index of 84 and a correlated color temperature of 6282 K. In addition, the white LED exhibits good optical stability under various working currents and for different working time intervals. Moreover, the interaction between the carbogenic core and surface groups was discussed using the DMol(3) program based on density functional theory. This research suggests the great potential of CQDs for solid-state lighting systems and reveals the effect of the surface state on the photoluminescent mechanism of CQDs.

  2. Cellular blue naevus

    Directory of Open Access Journals (Sweden)

    Mittal R

    2001-01-01

    Full Text Available A 31-year-old man had asymptomatic, stationary, 1.5X2 cm, shiny, smooth, dark blue nodule on dorsum of right hand since 12-14 years. In addition he had developed extensive eruption of yellow to orange papulonodular lesions on extensors of limbs and buttocks since one and half months. Investigations confirmed that yellow papules were xanthomatosis and he had associated diabetes mellitus and hyperlipidaemia. Biopsy of blue nodule confirmed the clinical diagnosis of cellular blue naevus. Cellular blue naevus is rare and its association with xanthomatosis and diabetes mellitus were interesting features of above patients which is being reported for its rarity.

  3. 钛基IrO2-RuO2阳极电解处理亚甲基蓝溶液%Electrolytic Treatment of Methylene Blue Solution with Ti-based IrO2-RuO2 Anode

    Institute of Scientific and Technical Information of China (English)

    宋冠军; 杨坚; 李文祥

    2012-01-01

    采用钛基IrO2-RuO2为阳极材料,不锈钢为阴极材料,NaCl质量浓度为10g/L的溶液为电解液,对亚甲基蓝溶液进行电化学处理.实验结果表明:处理初始质量浓度为25 mg/L的亚甲基蓝溶液,电解电流0.050 A,电解20 min后亚甲基蓝去除率达95%;处理初始质量浓度为100 mg/L的亚甲基蓝溶液,电解电流0.100 A,电解30 min后亚甲基蓝去除率达98%.随着电解时间和电解电流的增加,亚甲基蓝去除率均增大.%Methylene blue solution was treated by electrochemical method using Ti-based IrO2-RuO2 as anode material, stainless steel as cathode material and NaCl solution with 10 g/L of the mass concentration as electrolyte. The experimental results show that: When the initial mass concentration of methylene blue is 25 mg/L, the electrolysis current is 0.050 A and the electrolysis time is 20 min, the removal rate of methylene blue is 95%; When the initial mass concentration of methylene blue is 100 mg/L, the electrolysis current is 0.100 A and the electrolysis time is 30 min, the removal rate of methylene blue is 98%; The removal rate of methylene blue increases with the increasing of electrolysis time and electrolysis current.

  4. Blue emitting KSCN:xCe phosphor for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Chikte, Devayani, E-mail: devi.awade@gmail.com [G.N. Khalsa College, Matunga, Mumbai 400019 (India); Omanwar, S.K. [Department of Physics, S.G.B. Amravati University, Amravati (India); Moharil, S.V. [Department of Physics, R.T.M. Nagpur University, Nagpur 440010 (India)

    2014-01-15

    The intense blue emitting phosphor KSCN:xCe (x=0.005, 0.01, 0.02, 0.04) is synthesized by a simple, time saving, economical method of re-crystallization through aqueous solution at 353 K. Photoluminescence measurements showed that the said phosphor exhibits emission with good intensity peaking at 450 nm corresponding to d→f transitions of Ce{sup 3+} ion. The excitation spectra monitored at 450 nm shows small peak at 282 nm and broad intense excitation band peaking at 350 nm. The latter lies in near ultraviolet (350–410 nm) emission of UV LED. The phosphor KSCN:0.02Ce{sup 3+} shows CIE 1931 color coordinates as (0.1484, 0.0602) whereas the commercial blue phosphor BAM:Eu{sup 2+} shows the color co-ordinates as (0.1417, 0.1072), respectively, indicating better color purity for KSCN: 0.02Ce{sup 3+} compared to the BAM:Eu{sup 2+} phosphor. The color coordinates of KSCN: 0.02Ce{sup 3+} phosphor (0.1484, 0.0602) are nearer to the color coordinate for blue color suggested by the color systems EBUPAL/SECAM, sRGB Blue as well as Adobe blue(0.15, 0.06). -- Highlights: • Novel phosphor KSCN:xCe prepared for the first time. • Method is simple, time saving, economical, easy to handle. • Intense, blue, Characteristic Ce{sup 3+} emission at 450 nm. • nUV excitation, suitable for solid state lighting.

  5. Comparison of different LED Packages

    Science.gov (United States)

    Dieker, Henning; Miesner, Christian; Püttjer, Dirk; Bachl, Bernhard

    2007-09-01

    In this paper different technologies for LED packaging are compared, focusing on Chip on Board (COB) and SMD technology. The package technology which is used depends on the LED application. A critical fact in LED technology is the thermal management, especially for high brightness LED applications because the thermal management is important for reliability, lifetime and electrooptical performance of the LED module. To design certain and long life LED applications knowledge of the heat flow from LEDs to the complete application is required. High sophisticated FEM simulations are indispensable for modern development of high power LED applications. We compare simulations of various substrate materials and packaging technologies simulated using FLOTHERM software. Thereby different substrates such as standard FR4, ceramic and metal core printed circuit boards are considered. For the verification of the simulated results and the testing of manufactured modules, advanced measurement tools are required. We show different ways to experimentally characterize the thermal behavior of LED modules. The thermal path is determined by the transient thermal analysis using the MicReD T3Ster analyzer. Afterwards it will be compared to the conventional method using thermocouples. The heat distribution over the module is investigated by an IR-Camera. We demonstrate and compare simulation and measurement results of Chip-on-Board (COB) and Sub-Mounted Devices (SMD) technology. The results reveal that for different applications certain packages are ideal.

  6. Low-Cost Illumination-Grade LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Epler, John [Philips Lumileds Lighting Company LLC, San Jose, CA (United States)

    2013-08-31

    technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

  7. Feeling blue? Blue phosphors for OLEDs

    Directory of Open Access Journals (Sweden)

    Hungshin Fu

    2011-10-01

    Full Text Available Research on organic light emitting diodes (OLEDs has been revitalized, partly due to the debut of the OLED TV by SONY in 2008. While there is still plenty of room for improvement in efficiency, cost-effectiveness and longevity, it is timely to report on the advances of light emitting materials, the core of OLEDs, and their future perspectives. The focus of this account is primarily to chronicle the blue phosphors developed in our laboratory. Special attention is paid to the design strategy, synthetic novelty, and their OLED performance. The report also underscores the importance of the interplay between chemistry and photophysics en route to true-blue phosphors.

  8. Effect of Led Lighting Colors for Laying Japanese Quails

    Directory of Open Access Journals (Sweden)

    KC Nunes

    Full Text Available ABSTRACT Time of exposure and light intensity rearing house may affect the performance and egg quality of laying quails. This research aimed at evaluating the live performance, egg quality, biometry of the reproductive system, and the gastrointestinal tract of Japanese quails (Coturnix coturnix japonica exposed to artificial light-emitting diodes (LED of different colors in comparison with fluorescent lamps. A total of 240 Japanese quails were distributed in completely randomized experimental design with four treatments (fluorescent lamp, and green, red, or blue LED lamps with six replicates of 10 birds each. Average egg weight and eggshell thickness were different (p0.05. The oviduct of 64-d-old hens exposed to green LED lighting was shorter (p<0.05 than those exposed to the fluorescent lamp. Red LED can be used to replace the fluorescent lamps, as they promote the same live performance, egg quality, and morphological development of the reproductive tract of laying Japanese quails.

  9. Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode.

    Science.gov (United States)

    Markou, Giorgos

    2014-03-01

    In the present study, semi-continuous cultivation of Arthrospira platensis using various colors of light-emitting diodes (LEDs) as artificial lighting was performed in order to study their effects on the biomass composition of A. platensis. The lowest biomass productivity was obtained with blue LED (4.68 mg l(-1) day(-1)), while the highest was obtained with pink and red LEDs (30.89 and 30.69 mg l(-1) day(-1), respectively). All biomass compound contents were affected by the different colors studied, except that of total carotenoids. The lowest phycocyanin content was observed in pink LED (8.2%) while the maximum in blue LED (17.6 ± 2.4%). Chlorophyll content was lowest in red LED (1.04%) and highest in blue LED (1.42%). The highest protein content was obtained with white and green LEDs (50.1 and 49.8%, respectively), while the lowest was obtained with blue LED (42.1%). Carbohydrate content was contrarily affected as that of proteins. The highest carbohydrate content was obtained in blue LED (11.3%) and the lowest under white and pink LEDs (8.8 and 8.8%, respectively). Lipid content seems to follow the same trend as that of carbohydrates; the highest lipid content was obtained in blue LED (6.0%), and the lowest was obtained under pink LED (3.8%).

  10. Blue Ocean Thinking

    Science.gov (United States)

    Orem, Donna

    2016-01-01

    This article describes a concept called the "blue ocean thinking strategy," developed by W. Chan Kim and Renée Mauborgne, professors at INSEAD, an international graduate school of business in France. The "blue ocean" thinking strategy considers opportunities to create new markets for services, rather than focusing solely on…

  11. Blue Willow Story Plates

    Science.gov (United States)

    Fontes, Kris

    2009-01-01

    In the December 1997 issue of "SchoolArts" is a lesson titled "Blue Willow Story Plates" by Susan Striker. In this article, the author shares how she used this lesson with her middle-school students many times over the years. Here, she describes a Blue Willow plate painting project that her students made.

  12. Impact of LED irradiance on plant photosynthesis and action spectrum of plantlet

    Science.gov (United States)

    Naznin, Most Tahera; Lefsrud, Mark G.

    2014-09-01

    Light emitting diodes (LEDs) can be selected to target the wavelengths absorbed by plantlets, enabling the users to customize the wavelengths of light required for maximum production. The primary purpose of this experiment was to test the effect of different ratios of red to blue LEDs on tomato plantlets photosynthetic action spectrum. Four light treatments including: red LED (100%) and three ratios of red (661 nm) to blue (449 nm) light (5:1, 10:1 and 19:1) at 60 umol m-2 s-1 for this study. The tomato plantlets cultured without blue light showed a three and half-fold decrease in photosynthesis rate. The highest photosynthetic action spectrum was observed at 10:1 but was not significantly difference from the 5:1 and the lowest action spectrum was observed at 100% red LED light. The tomato plantlets grown without the blue light showed a single-fold increase in plantlet height but were not significantly different from the 10:1 red to blue LED light. This research will allow for improved selection of LED lighting for plant tissue culture.

  13. Current State of the Art in High Brightness LEDs

    Science.gov (United States)

    Craford, George

    2007-03-01

    LED's have been commercially available since the 1960's. For many years they were used primarily for indicator applications. The remarkable increase in materials technology and efficiency that has been achieved since the early 1990's for AlInGaP red and amber LEDs, and InGaN green and blue LEDs, has enabled the penetration of markets such as outdoor display, signaling, and automotive brake light and turn signal applications. White LEDs, which are either blue LEDs combined with a phosphor, or a combination of red, green, and blue LEDs, are being used in emerging applications such as cell phone flash, television backlights, projection, and automotive headlights. In addition, to efficiency improvements these applications have required the development of higher power packages and, in some of these applications which are etendue limited, higher luminance devices. High power devices are commercially available which are capable of 140 lumens output and have an efficacy of around 70 lm/W for white emission. New package and chip technologies have been demonstrated which have a luminance of 38 mega nits (Mcd/m^2), approximately 50% more luminance than that of an automotive headlamp halogen bulb (˜25 mega nits). The recent progress in materials technology, packaging, and chip technology makes it clear that LED's will become important for general illumination applications. The rate of LED penetration of this market will depend upon continued increases in performance and lower costs as well as better control of the white spectral emission. Efficiency, current density, and costs are closely linked because the cost in dollars/lumen is inversely proportional to how many lumens can be realized from each unit of device area for a given device type. Performance as high as 138 lm/W, and over 40% wall plug efficiency, has been reported for low power research devices and over 90 lm/W for high power research devices. It is clear that high power commercial products with performance in

  14. From blue jeans to blue genes.

    Science.gov (United States)

    Boon, Laurence M; Vikkula, Miikka

    2009-03-01

    Cutaneous venous anomalies are common. They are blue and vary in size, number, and location and account for most consultations at specialized interdisciplinary clinics for vascular anomalies. Venous lesions are clinically important because they cause pain, dysfunction, destruction of adjacent tissues, and esthetic concern. Only resection and sclerotherapy are helpful, although not always curative. Understanding etiopathogenesis could help design animal models and develop novel therapeutic approaches. John B. Mulliken, MD, envisioned a project to uncover the genetic basis of an inherited form of venous malformation in a large New England family. Recruitment of 2 young fellows resulted in a collaborative project that unraveled the searched-for gene and its mutation. This was an opening for a new era in vascular anomalies. Two blue genes' mutations were discovered, which account for most, if not all, of the inherited forms of venous anomalies, but other genes as well, for rheologically diverse lesions. Differential diagnosis and management has improved, and animal models are being made. This was achieved through the help of Dr Mulliken, who inspired 2 young investigators in blue jeans to find 2 blue genes.

  15. Study on Different Metalloporphyrins for Photocatalytic Degradation of Methylene Blue Solution%不同金属卟啉光催化降解亚甲基蓝性能研究

    Institute of Scientific and Technical Information of China (English)

    何洁; 沈江剑; 冷慧; 冯明珠

    2011-01-01

    以四苯基卟啉(TPP)为原料,通过金属插入反应,获得FeTPP、ZnTPP、CoTPP、MnTPP,并用UV-Vis对其进行了表征.将合成的金属卟啉用于光催化体系,进行亚甲基蓝溶液的光催化降解及催化剂回收实验.结果发现,以CoTPP为催化剂,在高压汞灯光照3 h后,亚甲基蓝溶液的脱色率可迭100%;不同光源的催化效果为:高压汞灯>白炽灯>黑暗;催化剂的活性为:CoTPP>FeTPP>ZnTPP>MnTPP;一次回收后的金属卟啉催化剂活性未出现明显下降.%Four metalloporphyrins, including iron porphyrin, zinc porphyrin, cobalt porphyrin, and manganese porphyrin were synthesized through metal insertion reaction on 5,10,15,20-tetraphenylporphyrin. The structures of obtained compounds were confirmed by UV-Vis spectroscopy. The metalloporphyrins were investigated as photocatalyst for the degradation of methylene blue solution. It was found that the decolorization efficiency was 100% after 3 h illumination with high pressure mercury lamp by using cobalt porphyrin;the catalytic effect of different light sources: high pressure mercury lamp>incandescent>dark;the activity of different catalysts:cobalt porphyrin>iron porphyrin>zinc porphyrin>manganese porphyrin; the activity of recycled catalysts did not decrease obviously.

  16. PENGEMBANGAN LAMPU LED DENGAN TEKNOLOGI PHOTOVOLTAIC (LED-PV SEBAGAI ALAT BANTU PENGUMPUL IKAN PADA PERIKANAN BAGAN

    Directory of Open Access Journals (Sweden)

    Mochamad Arief Sofijanto

    2015-03-01

    mengetahui perbedaan jumlah hasil tangkapan pada bagan tancap akibat perlakuan warna lampu LED yang berbeda. Metode penelitian yang digunakan adalah deskriptif dan experimental fishing dimana rancangan penelitiannya adalah Rancangan Acak Lengkap (RAL dengan perlakuan warna lampu LED sebanyak 5 jenis warna yaitu merah (A, kuning (B, hijau (C, biru (D, dan putih (E dengan 6 kali ulangan. Secara deskriptif hasil penelitian menunjukkan lampu LED dapat digunakan untuk menggantikan lampu petromaks dan lampu LHE. Diperoleh 17 jenis ikan laut yang tertarik pada cahaya lampu LED yang digunakan. Hasil analisis statistik menunjukkan terdapat perbedaan nyata terhadap hasil tangkapan bagan dengan perlakuan warna lampu LED. Berdasarkan Uji Nyata Terkecil dinyatakan bahwa bagan yang menggunakan warna lampu LED biru mendapatkan hasil tangkapan tertinggi kemudian diikuti oleh warna kuning, hijau, putih dan merah.  The set ‘bagan’ (liftnet fishing gear is a kind of fishing gears which using atificial light as fishes gathering. This fishing gear uses an electric generator to turn on the energy saving lamp which hang on under the set ‘bagan’. The price of gasoline more expensive due to the Indonesia government’s fuel subsidy reduced and this make fishing operation costs more expensive for fishermen. This research using the LED lamps that do not use gasoline as fuel because the LED lamps can use the photovoltaic technology (solar cell system. The purposes of this study were: 1 to find out whether the LED lamps can replace the kerosene lamps and saving energy lamps, 2 to know the different in cath using different colours of LED lamps. The reserach methods are descriptive and experimental fishing which used Completely Randomized Design with LED lamps colour treatments i.e: red (A, yellow (B, green (C, blue (D, and white (E, the number of replications are 6 times. LED lamps can be used to replace the kerosene and saving energy lamps. There were 17 species of

  17. 柠檬酸活化赤泥对亚甲基蓝染料废水的吸附净化作用%Adsorptive removal of methylene blue dye wastewater from aqueous solution using citric acid activated red mud

    Institute of Scientific and Technical Information of China (English)

    黄凯; 李一飞; 焦树强; 朱鸿民

    2011-01-01

    The activated red mud was prepared as the adsorbent for the removal of methylene blue (MB), from aqueous solution by the batch adsorption technique under different operational parameters including adsorbent dosage, pH, initial dye concentration, contact temperature and time. The results demonstrate that the adsorption percentage of the citric acid activated red mud is improved evidently, and increases with the increase of activated red mud dosage, white decreases with the increase of initial MB concentration and temperature. The red mud activated by using dilute citric acid is quite effective to improve its adsorption efficiency for the dye molecules from the aqueous solution. The uptake capacity for MB is evaluated as 30 mg/g and the equilibrium data fits well to the Langmuir model, and the adsorption kinetic follows the pseudo-second-order equation with its apparent activation energy equal to 9.88 kj/mol. The thermodynamic parameters, such as the changes in enthalpy and entropy, were determined, revealing the adsorption to be an exothermic yet spontaneous process.%采用一种活化赤泥吸附剂用于水溶液中亚甲基蓝的吸附净化.考察吸附剂用量、pH值、亚甲基蓝浓度、吸附温度和吸附时间对活化赤泥吸附性能的影响规律.结果表明:采用稀柠檬酸活化处理可显著提高赤泥对染料分子的吸附效率;吸附率随吸附剂用量增加而增加,随初始亚甲基蓝浓度和温度升高而降低;测得活化赤泥对亚甲基蓝的最大吸附容量为30 mg/g,吸附过程符合Langmuir等温吸附模型;吸附动力学过程可用准二级动力学方程描述,计算出吸附过程的表观活化能为9.88 kJ/mol.对吸附过程焓和熵值的计算结果表明,活化赤泥对水溶液中亚甲基蓝染料的吸附是一个自发的放热过程.

  18. Phosphors and PDP, LED Technology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Phosphors for PDP has good prospect for the largepotential of PDP industry. LED technology brings new marketto be developed. Developing phosphors for white LED withhigh efficiency and low light attenuation is an urgent work todo. Application of phosphors in color LED is in initial stage.1. Good Prospect of Phosphors for PDPColor PDP is widely used today. Three-prime-colorphosphor excited by VUV is the key material for color PDP.This makes research on three-prime-color phosphor for colorPDP important. Follow...

  19. Blue ocean strategy.

    Science.gov (United States)

    Kim, W Chan; Mauborgne, Renée

    2004-10-01

    Despite a long-term decline in the circus industry, Cirque du Soleil profitably increased revenue 22-fold over the last ten years by reinventing the circus. Rather than competing within the confines of the existing industry or trying to steal customers from rivals, Cirque developed uncontested market space that made the competition irrelevant. Cirque created what the authors call a blue ocean, a previously unknown market space. In blue oceans, demand is created rather than fought over. There is ample opportunity for growth that is both profitable and rapid. In red oceans--that is, in all the industries already existing--companies compete by grabbing for a greater share of limited demand. As the market space gets more crowded, prospects for profits and growth decline. Products turn into commodities, and increasing competition turns the water bloody. There are two ways to create blue oceans. One is to launch completely new industries, as eBay did with online auctions. But it's much more common for a blue ocean to be created from within a red ocean when a company expands the boundaries of an existing industry. In studying more than 150 blue ocean creations in over 30 industries, the authors observed that the traditional units of strategic analysis--company and industry--are of limited use in explaining how and why blue oceans are created. The most appropriate unit of analysis is the strategic move, the set of managerial actions and decisions involved in making a major market-creating business offering. Creating blue oceans builds brands. So powerful is blue ocean strategy, in fact, that a blue ocean strategic move can create brand equity that lasts for decades.

  20. Color Temperature Tunable White-Light LED Cluster with Extrahigh Color Rendering Index

    OpenAIRE

    Minhao Zhang; Yu Chen; Guoxing He

    2014-01-01

    The correlated color temperature (CCT) tunable white-light LED cluster with extrahigh color rendering property has been found by simulation and fabricated, which consists of three WW LEDs (CCT = 3183 K), one red LED (634.1 nm), one green LED (513.9 nm), and one blue LED (456.2 nm). The experimental results show that this cluster can realize the CCT tunable white-lights with a color rendering index (CRI) above 93, special CRI R9 for strong red above 90, average value of the special CRIs of R9...

  1. Le blue-jean

    OpenAIRE

    Miller, Daniel

    2012-01-01

    Le Blue-jean: pourquoi la technologie vient en dernier. La plupart des personnes pensent que la technique (ou la technologie) correspond à ce qui vient en amont du produit. Dans cet article, Daniel Miller s’intéresse plutôt à des cas dans lesquels l’ordre de la séquence est renversé et où le produit précède, ou initie, en quelque sorte, la technique. L’auteur commence par décrire les techniques d’usure artificielle des blue jeans  : une technique qui vise à copier les effets du port des blue ...

  2. Measuring the bioactivity and molecular conformation of typically globular proteins with phenothiazine-derived methylene blue in solid and in solution: A comparative study using photochemistry and computational chemistry.

    Science.gov (United States)

    Ding, Fei; Xie, Yong; Peng, Wei; Peng, Yu-Kui

    2016-05-01

    Methylene blue is a phenothiazine agent, that possesses a diversity of biomedical and biological therapeutic purpose, and it has also become the lead compound for the exploitation of other pharmaceuticals such as chlorpromazine and the tricyclic antidepressants. However, the U.S. Food and Drug Administration has acquired cases of detrimental effects of methylene blue toxicities such as hemolytic anemia, methemoglobinemia and phototoxicity. In this work, the molecular recognition of methylene blue by two globular proteins, hemoglobin and lysozyme was characterized by employing fluorescence, circular dichroism (CD) along with molecular modeling at the molecular scale. The recognition of methylene blue with proteins appears fluorescence quenching via static type, this phenomenon does cohere with time-resolved fluorescence lifetime decay that nonfluorescent protein-drug conjugate formation has a strength of 10(4)M(-1), and the primary noncovalent bonds, that is hydrogen bonds, π-conjugated effects and hydrophobic interactions were operated and remained adduct stable. Meantime, the results of far-UV CD and synchronous fluorescence suggest that the α-helix of hemoglobin/lysozyme decreases from 78.2%/34.7% (free) to 58.7%/23.8% (complex), this elucidation agrees well with the elaborate description of three-dimensional fluorescence showing the polypeptide chain of proteins partially destabilized upon conjugation with methylene blue. Furthermore, both extrinsic fluorescent indicator and molecular modeling clearly exhibit methylene blue is situated within the cavity constituted by α1, β2 and α2 subunits of hemoglobin, while it was located at the deep fissure on the lysozyme surface and Trp-62 and Trp-63 residues are nearby. With the aid of computational analyses and combining the wet experiments, it can evidently be found that the recognition ability of proteins for methylene blue is patterned upon the following sequence: lysozyme

  3. LED minilidar for Mars rover

    Science.gov (United States)

    Shiina, Tatsuo; Yamada, Sonoko; Senshu, Hiroki; Otobe, Naohito; Hashimoto, George; Kawabata, Yasuhiro

    2016-10-01

    A mini-lidar to observe the activity of Martian atmosphere is developed. The 10cm-cube LED mini-lidar was designed to be onboard a Mars rover. The light source of the mini-lidar is a high powered LED of 385nm. LED was adopted as light source because of its toughness against circumference change and physical shock for launch. The pulsed power and the pulse repetition frequency of LED beam were designed as 0.75W (=7.5nJ/10ns) and 500kHz, respectively. Lidar echoes were caught by the specially designed Cassegrain telescope, which has the shorter telescope tube than the usual to meet the 10cm-cube size limit. The high-speed photon counter was developed to pursue to the pulse repetition frequency of the LED light. The measurement range is no shorter than 30m depending back-ground condition. Its spatial resolution was improved as 0.15m (=1ns) by this photon counter. The demonstrative experiment was conducted at large wind tunnel facility of Japan Meteorological Agency. The measurement target was smoke of glycerin particles. The smoke was flowed in the wind tunnel with wind speed of 0 - 5m. Smoke diffusion and its propagation due to the wind flow were observed by the LED mini-lidar. This result suggests that the developed lidar can pursue the structure and the motion of dust devil of >2m.

  4. FROM BLUE JEANS TO BLUE GENES

    OpenAIRE

    Boon, Laurence M.; Vikkula, Miikka

    2009-01-01

    Cutaneous venous anomalies are common. They are blue in color and vary in size, number and location, and account for the majority of consultations at specialized interdisciplinary clinics for vascular anomalies. Venous lesions are clinically important as they cause pain, dysfunction, destruction of adjacent tissues and esthetic concern. Only resection and sclerotherapy are helpful, although not always curative. Understanding etiopathogenesis could help design animal models and develop novel t...

  5. The LED outdoor lighting revolution : Opportunities, threats and mitigation

    Science.gov (United States)

    Aube, Martin

    2017-01-01

    The presence of artificial light at night (ALAN) in environment is now known to have non negligible consequences on the night sky, the fauna, the flora and the human health. A real revolution is undergoing in the outdoor lighting industry threatens the night integrity. This revolution is driven by the advent of the cost-effective Light-Emitting Diode (LED) technology into the outdoor lighting industry. The LEDs provides many opportunities: they are long lasting, easily controlled, and generally allow a more efficient photometric design which, in term, may result in energy savings.After explaining the complex and non-linear behaviour of the propagation of the ALAN into the nocturnal environment, we will outline the potential impact of the ALAN on the human health and on the night sky, and we will introduce some dedicated indicators for its evaluation. We will focus on the role of the blue content of the ALAN in the evaluation of its impact. More specifically we will show how white LED technology, that often shows increased blue light content, compares to the traditional High Pressure Sodium technology. Finally, we will identify the possible mitigations to restrict the adverse impacts of the white LEDs in the urban and rural environment.

  6. Growth and Quality of Chinese Kale Grown Under Different LEDs

    Institute of Scientific and Technical Information of China (English)

    Jintong XlN; Houcheng LlU; Shiwei SONG; Riyuan CHEN; Guangwen SUN

    2015-01-01

    Objective] This study was conducted to investigate the effects of light quality on growth and quality of Chinese kale (Brassica alboglabra Bailey). [Method] Chinese kale was grown in hydroponic under three different Light Emitting Diode (LEDs) conditions [red:blue=8:1 (8R1B), red:blue=6:3 (6R3B) and red:green:blue=6:2:1 (6R2G1B), 12 h light, 50 μmol/(m2·s)]. Then its growth and quality indices including root and shoot fresh weight and dry weight, concentrations of soluble protein, vita-min C, nitrate, soluble phenols, flavonoids, soluble sugar, free amino acids, and ac-tivity of nitrate reductase were measured. [Result] There was no significant differ-ence in plant height, diameter of flower stalk and leaf number among three LED treatments. The fresh weight of shoot, root and plant in 8R1B and 6R2G1B was significantly higher than in 6R3B. The dry weight of shoot and plant in 8R1B was significantly higher than in 6R3B. The concentrations of vitamin C, soluble protein and soluble sugar in flower stalk of 6R3B treatment were significantly higher than those in 8R1B and 6R2G1B, while there was no remarkable difference in concen-trations of reducing sugar, soluble phenol, flavonoids and free amino acid among the three treatments. The nitrate concentration in flower stalk of 6R3B was signifi-cantly lower than in the other two treatments, and the activity of nitrate reductase in 6R3B was significantly higher than in the other two treatments. [Conclusion] The LED treatment of red:blue=6:3 was more suitable for the growth of Chinese kale.

  7. Blue Ribbon Panel Report

    Science.gov (United States)

    An NCI Cancer Currents blog by the NCI acting director thanking the cancer community for contributing to the Cancer Moonshot Blue Ribbon Panel report, which was presented to the National Cancer Advisory Board on September 7.

  8. New York Blue

    Data.gov (United States)

    Federal Laboratory Consortium — New York Blue is used cooperatively by the Laboratory and Stony Brook University as part of the New York Center for Computation Sciences. Ranked as the 28th fastest...

  9. Methylene blue test

    Science.gov (United States)

    Methemoglobinemia - methylene blue test ... No special preparation is required for this test. ... which are genetic (problem with your genes). This test is used to tell the difference between methemoglobinemia ...

  10. Inorganic phosphors in lead-silicate glass for white LEDs

    Science.gov (United States)

    Nikonorov, N. V.; Kolobkova, E. V.; Aseev, V. A.; Bibik, A. Yu.; Nekrasova, Ya. A.; Tuzova, Yu. V.; Novogran, A. I.

    2016-09-01

    Luminescent composites of the "phosphor-in-glass" type, based on a highly reflective lead-silicate matrix and fine-grained powders of YAG:Ce3+ and SiAlON:Eu2+ crystals, are developed and synthesized. Phosphor and glass powders are sintered at a temperature of 550°C to obtain phosphor samples for white LEDs. The composites are analyzed by X-ray diffraction and luminescence spectroscopy. The dependence of the light quantum yield on the SiAlON:Eu2+ content in the samples is investigated. A breadboard of a white LED is designed using a phosphor-in-glass composite based on lead-silicate glass with a low glasstransition temperature. The total emission spectra of a blue LED and glass-based composites are measured. The possibility of generating warm white light by choosing an appropriate composition is demonstrated.

  11. Novel chip coating approaches to improve white LED technology

    Science.gov (United States)

    Hartmann, Paul; Schweighart, Marko; Sommer, Christian; Wenzl, Franz-P.; Zinterl, Ernst; Hoschopf, Hans; Pachler, Peter; Tasch, Stefan

    2008-02-01

    Key market requirements for white LEDs, especially in the general lighting and automotive headlamp segments call for improved concepts and performance of white LEDs based on phosphor conversion. Major challenges are small emission areas, highest possible intensities, long-term color stability, and spatial homogeneity of color coordinates. On the other hand, the increasingly high radiation power of the blue LEDs poses problems for all involved materials. Various thick film coating technologies are widely used for applying the color conversion layer to the semiconductor chip. We present novel concepts based on Silicate phosphors with high performance in terms of spatial homogeneity of the emission and variability of the color temperature. Numerical calculation of the optical properties with the help of state-of-the-art simulation tools was used as a basis for the practical optimization of the layer geometries.

  12. 亚甲基蓝在碳纳米管上的吸附及其热力学%ADSORPTION OF METHYLENE BLUE FROM AQUEOUS SOLUTION ONTO CARBON NANOTUBES AND ITS THERMODYNAMICS

    Institute of Scientific and Technical Information of China (English)

    张延霖; 刘佩红; 舒绪刚

    2011-01-01

    Methylene blue(MB) was chosen as a model dye to investigate the adsorption behaviors of basic dye from aqueous solution onto carbon nanotubes(MWCNTs). Adsorption isotherm of MB onto the MWCNTs was determined at 290,300 and 310 K, using 10mg/L as the initial concentration of MB. Adsorption equilibrium was attained within 8h. Adsorption equilibrium data were fitted to the Langmuir, Freundlich and Sips models and isotherm constants were determined. The equilibrium data were best represented by the Sips isotherm model. The adsorption amount increased gradually with the increase of pH from 3 to 7. Thermodynamic parameters like changes in the free energy of adsorption ( △Gθ) , enthalpy ( △Hθ ) and entropy ( △Sθ ) were calculated. The negative values of △Gθ indicates that the MB adsorption process is spontaneous in nature and dominated by physical adsorption. The positive value of △Hθ and △Sθ show the endothermic nature of MWCNTs system and the increasing confusion degree of MWCNTs system,respectively.%采用亚甲基蓝作为碱性染料,测定了亚甲基蓝初始质量浓度为10 mg/L,吸附平衡8 h,温度290、300、310 K时在多壁碳纳米管上的吸附行为,并拟合了Langmiur、Freundlich和Sips吸附等温模型的吸附参数,发现吸附行为最符合Sips模型;亚甲基蓝溶液在pH值3~7范围内,碳纳米管上的吸附量随pH值增大而增加;分析热力学吸附性质,表明吸附自发进行并以物理吸附为主,吸附为吸热过程,是熵增过程.

  13. Electrically Assisted Photocatalytic Degrada tion of Direct Sky Blue Aqueous Solution with Three-Dimensional Electrodes%三维电极电助光催化降解直接湖蓝水溶液的研究

    Institute of Scientific and Technical Information of China (English)

    安太成; 何春; 朱锡海; 顾浩飞; 陈卫国; 熊亚

    2001-01-01

    Present st udy was to report electrically assisted photocatalyticdegradation of direct sky blue aqueous solution by three-phase three-dimensional electrodes. By illumin ating with 500 W high pressure mercury lamp and initiating with 30 voltage direc t current, a decolorization ratio of higher than 96.8% and COD concentration redu ction of about 66.7% were observed during a period of 30 min in the presence of both photocatalyst and filler electrodes. Compared with these values, the lower decol orization ratios and COD removal obtained by a single application of photochem ical (77.3% and 50.6%) and electrochemical process (88.6% and 62.3%), respective ly. Variety of operating conditions, such as conductivity, cell voltage, pH valu e , initial concentration of substrate, air-flow and concentration of photocataly st, was discussed in detail to ascertain their respective effect on the treatme nt e fficiency. The reaction mechanism also was discussed in the system of electrical ly assisted photocatalytic degradation with three-dimensional electrodes.%以500W高压汞灯为光源,在TiO2光催化剂和电催化剂同时存在下,联合多相三维电极技术与光催化技术,对直接湖蓝5B水溶液进行了电助光催化降解的研究.实验结果表明,浓度为0.5mmol/L的直接湖蓝5B水溶液经30min的光电催化降解,其大环结构可迅速破坏,颜色可迅速褪去,色度去除率高达96.8%,COD去除率可达66.7%.考察了空气流速、光催化剂加入量、底物的初始浓度、电解槽电压、pH值、电导率、以及曝气量等因素对直接湖蓝5B脱色率及COD去除率的影响.

  14. Methylene Blue Removal from Aqueous Solution by Canna Edulis Keri Residual in Fixed-bed Column%芭蕉芋渣对亚甲基蓝的动态吸附研究

    Institute of Scientific and Technical Information of China (English)

    卢玉栋; 叶琳; 吴宗华; 林筱璇

    2011-01-01

    利用芭蕉芋渣填料柱对水中亚甲基蓝(MB)进行动态吸附.探讨了初始质量浓度、床层高度、pH值等因素对穿透曲线的影响,运用数学模型对在不同层高和质量浓度下的吸附数据进行拟合.结果表明,芭蕉芋渣能有效去除水中的亚甲基蓝,随着床层高度的增高、pH的增大和初始质量浓度的减小,芭蕉芋渣填料柱对水中亚甲基蓝的吸附穿透曲线位点向右移.通过数学模型得到的速率常数、相关系数、平衡吸附量和动力学参数,能较好地描述芭蕉芋渣填料柱吸附亚甲基蓝的吸附动力学.%The capability of canna edulis kerl residual to adsorb methylene blue (MB)from aqueous solution was investigated in a fixed-bed column. The effects of important parameters on breakthrough curve, such as the filler height, pH and concentrations of MB were studied. Mathematical dynamic model respectively at different filler height, different pH and different concentrations of high-layer adsorption data were applied to simulate column adsorption data and to obtain relevant parameters. The results showed that canna edulis keri residual as an adsorbent to remove the MB was efficient. As the filler height , the pH increasing and density increasing, the breakthrough point in the breakthrough curves moved to right. The rate constants, correlation coefficients, equilibrium adsorption capacity and kinetic parameters, which were calculated through mathematical models, can be used to describe the adsorption kinetics of MB by canna edulis kerl residual well.

  15. Impurity Influence on Nitride LEDs

    Directory of Open Access Journals (Sweden)

    O.I. Rabinovich

    2014-07-01

    Full Text Available Light emitting diodes (LEDs are widely used nowadays. They are used in major parts of our life. But it is still necessary to improve their characteristics. In this paper the impurity and Indium atoms influence on the LEDs characteristics is investigated by computer simulation. Simulation was carried out in Sim Windows. The program was improved for this purpose by creating new files for AlGaInN heterostructure and devices including more than 25 basic parameters. It was found that characteristics depend on impurity and indium atoms changes a lot. The optimum impurity concentration for doping barriers between quantum wells was achieved. By varying impurity and Indium concentration the distribution in AlGaInN heterostructure LEDs characteristics could be improved.

  16. Color Temperature Tunable White-Light LED Cluster with Extrahigh Color Rendering Index

    Directory of Open Access Journals (Sweden)

    Minhao Zhang

    2014-01-01

    Full Text Available The correlated color temperature (CCT tunable white-light LED cluster with extrahigh color rendering property has been found by simulation and fabricated, which consists of three WW LEDs (CCT = 3183 K, one red LED (634.1 nm, one green LED (513.9 nm, and one blue LED (456.2 nm. The experimental results show that this cluster can realize the CCT tunable white-lights with a color rendering index (CRI above 93, special CRI R9 for strong red above 90, average value of the special CRIs of R9 to R12 for the four saturated colors (red, yellow, green, and blue above 83, and luminous efficacies above 70 lm/W at CCTs of 2719 K to 6497 K.

  17. Color temperature tunable white-light LED cluster with extrahigh color rendering index.

    Science.gov (United States)

    Zhang, Minhao; Chen, Yu; He, Guoxing

    2014-01-01

    The correlated color temperature (CCT) tunable white-light LED cluster with extrahigh color rendering property has been found by simulation and fabricated, which consists of three WW LEDs (CCT = 3183 K), one red LED (634.1 nm), one green LED (513.9 nm), and one blue LED (456.2 nm). The experimental results show that this cluster can realize the CCT tunable white-lights with a color rendering index (CRI) above 93, special CRI R9 for strong red above 90, average value of the special CRIs of R9 to R12 for the four saturated colors (red, yellow, green, and blue) above 83, and luminous efficacies above 70 lm/W at CCTs of 2719 K to 6497 K.

  18. Fabrication of High-power White LEDs and White Light Uniformity Testing

    Institute of Scientific and Technical Information of China (English)

    YU Xin-mei; RAO Hai-bo; HU Yue; LI Jun-fei; HOU Bin

    2007-01-01

    As the blue and yellow lights are complementary colors,a blue InGaN LED chip is coated by a yellow phosphor film to generate white light based on luminescence conversion mechanism.The emitted light of a blue LED is used as the primary source for exciting fluorescent material such as cerium doped yttrium aluminum garnet with the formula Y3Al5O12:Ce3+(in short:YAG:Ce3+).The matching of the spectrum of the blue LED chips and the YAG:Ce3+ yellow phosphor is studied to improve the conversion efficiency.The packaging methods and manufacturing processes for high-power single-chip-white-LEDs are introduced.The uniformity of the output white light is investigated.Based on the characteristics of the high-power white LEDs,some approaches and processes are suggested to improve the light uniformity when they are fabricated.The effectiveness of those approaches on the improvement of LEDs is discussed in detail and some interesting conclusions are also presented.

  19. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry

    2012-01-01

    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  20. Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED

    OpenAIRE

    Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.

    2014-01-01

    Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperat...

  1. III-nitride monolithic LED covering full RGB color gamut

    Science.gov (United States)

    El-Ghoroury, Hussein S.; Chuang, Chih-Li; Kisin, Mikhail V.

    2016-03-01

    We present numerical simulation of III-nitride monolithic multi-color LED covering full red-green-blue (RGB) color gamut. The RGB LED structure was grown at Ostendo Technologies Inc. and has been used in Ostendo proprietary Quantum Photonic Imager (QPI) device. Active region of our RGB LED incorporates specially designed intermediate carrier blocking layers (ICBLs) controlling transport of each type of carriers and subsequent carrier injection redistribution among the optically active quantum wells (QWs) with different emission wavelengths. ICBLs are proved to be essential elements of multi-color LED active region design requiring optimization both in material composition and doping level. Strong interdependence between ICBL parameters and active QW characteristics presents additional challenge to multi-color LED design. Combination of several effects was crucial for adequate simulation of RGB LED color control features. Standard drift-diffusion transport model has been appended with rate equations for dynamic QW-confined carrier populations which appear severely off-balanced from corresponding mobile carrier subsystems. QW overshoot and Auger-assisted QW depopulation were also included into the carrier kinetic model thus enhancing the non-equilibrium character of QW confined populations and supporting the mobile carrier transport across the MQW active region. For device simulation we use COMSOL-based program suit developed at Ostendo Technologies Inc.

  2. Blue light inhibits proliferation of melanoma cells

    Science.gov (United States)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  3. New Processing of LED Phosphors

    OpenAIRE

    Toda, Kenji

    2012-01-01

    In order to synthesize LED phosphor materials, we have applied three novel synthesis techniques, “melt synthesis”, “fluidized bed synthesis” and “vapor-solid hybrid synthesis”, in contrast with the conventional solid state reaction technique. These synthesis techniques are also a general and powerful tool for rapid screening and improvements of new phosphor materials.

  4. Atypical cellular blue nevus or malignant blue nevus?*

    Science.gov (United States)

    Daltro, Luise Ribeiro; Yaegashi, Lygia Bertalha; Freitas, Rodrigo Abdalah; Fantini, Bruno de Carvalho; Souza, Cacilda da Silva

    2017-01-01

    Blue nevus is a benign melanocytic lesion whose most frequent variants are dendritic (common) blue nevus and cellular blue nevus. Atypical cellular blue nevus presents an intermediate histopathology between the typical and a rare variant of malignant blue nevus/melanoma arising in a cellular blue nevus. An 8-year-old child presented a pigmented lesion in the buttock since birth, but with progressive growth in the last two years. After surgical excision, histopathological examination revealed atypical cellular blue nevus. Presence of mitoses, ulceration, infiltration, cytological atypia or necrosis may occur in atypical cellular blue nevus, making it difficult to differentiate it from melanoma. The growth of blue nevus is unusual and considered of high-risk for malignancy, being an indicator for complete resection and periodic follow-up of these patients. PMID:28225968

  5. LED lamp color control system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  6. LED lamp power management system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  7. The Blue Collar Brain

    Directory of Open Access Journals (Sweden)

    Guy eVan Orden

    2012-06-01

    Full Text Available Much effort has gone into elucidating control of the body by the brain, less so the role of the body in controlling the brain. This essay develops the idea that the brain does a great deal of work in the service of behavior that is controlled by the body, a blue collar role compared to the white collar control exercised by the body. The argument that supports a blue collar role for the brain is also consistent with recent discoveries clarifying the white collar role of synergies across the body's tensegrity structure, and the evidence of critical phenomena in brain and behavior.

  8. A Blue Lagoon Function

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2007-01-01

    We consider a specific function of two variables whose graph surface resembles a blue lagoon. The function has a saddle point $p$, but when the function is restricted to any given straight line through $p$ it has a {\\em{strict local minimum}} along that line at $p$.......We consider a specific function of two variables whose graph surface resembles a blue lagoon. The function has a saddle point $p$, but when the function is restricted to any given straight line through $p$ it has a {\\em{strict local minimum}} along that line at $p$....

  9. Treatment of dilute methylene blue-containing wastewater by coupling sawdust adsorption and electrochemical regeneration.

    Science.gov (United States)

    Bouaziz, I; Chiron, C; Abdelhedi, R; Savall, A; Groenen Serrano, K

    2014-01-01

    In the present work, the coupling of adsorption and electrochemical oxidation on a boron-doped diamond (BDD) electrode to treat solutions containing dyes is studied. This coupling may be convenient for the treatment of diluted pollutant that is limited by the low rate of electrooxidation due to mass-transfer limitation. A pre-concentration step by adsorption could minimize the design of the electrochemical reactor. The adsorbent chosen was mixed with softwood sawdust, and methylene blue was chosen as the model dye molecule. Isotherms of adsorption and kinetics were investigated as well as the effects of current density and regeneration time. The BDD electrochemical oxidation of methylene blue adsorbed onto sawdust led simultaneously to its degradation and sawdust regeneration for the next adsorption. It was observed that multiple adsorption and electrochemical regeneration cycles led to an enhancement of adsorption capacity of the sawdust. This study demonstrated that adsorption–electrochemical degradation coupling offers a promising approach for the efficient elimination of organic dyes from wastewater.

  10. Radiometry of flashing LED sources

    Science.gov (United States)

    Gregory, Don A.; Medley, Stephanie; Roberts, Adam

    2008-08-01

    A laboratory based technique has been devised for measuring the illumination characteristics of flashing light emitting diode (LED) sources. The difference between the photopic measurement of a continuous source and a flashing source is that some analytic method must be incorporated into the measurement to account for the response of the eye. Ohno et al have devised an analytic expression for the impulse response of the eye, which closely matches existing forms used for finding effective intensity1. These other forms are the Blondel-Rey equation, the Form Factor method, and the Allard method.4,5,6 Ohno's research suggests a modified Allard method, but offers no procedure for actually making the measurement. In this research, the modified Allard1 method approach has been updated using standard laboratory equipment such as a silicon detector in conjunction with a digital multi-meter and Labview® software to make this measurement. Labview® allows exact computation of the modified Allard method. However, an approximation scheme for the conversion from radiometric units to photopic units must be adopted. The LED spectral form is approximately a Gaussian line shape with full width at half maximum of about 15 to 30nm. The Gaussian curve makes converting from radiometric to photopic units difficult. To simplify, the technique presented here estimates the spectral form of the LEDs to be a Dirac delta function situated at the peak wavelength. This allows the conversion from watts to lumens to be a simple application of the luminous efficiency curve.2 For LEDs with a full width half maximum of 20nm, this scheme is found to be accurate to +/- 5%.

  11. After Stroke, 'Blue' Light May Help Beat the Blues

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_163731.html After Stroke, 'Blue' Light May Help Beat the Blues Akin ... a danger for people recovering from a debilitating stroke. But new research suggests that tweaking a rehabilitation ...

  12. Colorimetry and efficiency of white LEDs: Spectral width dependence

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Elaine; Edwards, Paul R.; Martin, Robert W. [Department of Physics, SUPA, Strathclyde University, Glasgow (United Kingdom)

    2012-03-15

    The potential colour rendering capability and efficiency of white LEDs constructed by a combination of individual red, green and blue (RGB) LEDs are analysed. The conventional measurement of colour rendering quality, the colour rendering index (CRI), is used as well as a recently proposed colour quality scale (CQS), designed to overcome some of the limitations of CRI when narrow-band emitters are being studied. The colour rendering performance is maximised by variation of the peak emission wavelength and relative intensity of the component LEDs, with the constraint that the spectral widths follow those measured in actual devices. The highest CRI achieved is 89.5, corresponding to a CQS value of 79, colour temperature of 3800 K and a luminous efficacy of radiation (LER) of 365 lm/W. By allowing the spectral width of the green LED to vary the CRI can be raised to 90.9, giving values of 82.5 and 370 lm/W for the CQS and LER, respectively. The significance of these values are discussed in terms of optimising the possible performance of RGB LEDs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Plaque Type Blue Naevus

    Directory of Open Access Journals (Sweden)

    Sentamilselvi G

    1997-01-01

    Full Text Available A case of plaque type blue naevus was encountered in a Dermatology Clinic in Madras. The various clinical differential diagnoses are discussed, the hitopathological features described and the benign nature of the tumour stressed. The case is reported for its rarity and to create an awareness of this entity.

  14. Blue rubber bleb naevus

    Directory of Open Access Journals (Sweden)

    Mittal R

    1995-01-01

    Full Text Available A 35 year old female had multiple progressive painful, tender, soft, bluish compressible nodules with the feel of rubber nipples. There was no evidence of gastrointestinal haemangiomas or other systemic abnormalities. Histopathologically, cavernous haemangioma with prominent smooth muscle outline proved the clinical diagnosis of blue rubber bleb naevus. Only cutaneous lesions were seen in the patient.

  15. The "Blue Banana" Revisited

    NARCIS (Netherlands)

    Faludi, A.K.F.

    2015-01-01

    This essay is about the “Blue Banana”. Banana is the name given subsequently by others to a Dorsale européenne (European backbone) identified empirically by Roger Brunet. In a background study to the Communication of the European Commission ‘Europe 2000’, Klaus Kunzmann and Michael Wegener put forwa

  16. The Blue Denmark

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Sornn-Friese, Henrik

    This paper makes an important contribution to the discussion about knowledge based localised externalities in the context of shipping and the maritime sector in Denmark. In the paper we ask if there is a national, knowledge‐based maritime cluster configured around the shipowners in Denmark. This ...... talk about The Blue Denmark....

  17. Blue spectral inflation

    CERN Document Server

    Schunck, Franz E

    2008-01-01

    We reconsider the nonlinear second order Abel equation of Stewart and Lyth, which follows from a nonlinear second order slow-roll approximation. We find a new eigenvalue spectrum in the blue regime. Some of the discrete values of the spectral index n_s have consistent fits to the cumulative COBE data as well as to recent ground-base CMB experiments.

  18. Dark Blue II

    OpenAIRE

    2013-01-01

    Dark Blue II, high fired porcelain, decorated with cobalt chloride, woodfired with salt. 10,5 x 10,5 x 19 cm. Ferdigstilt: 2012. Innkjøpt til Collection of The American Museum of Ceramic Art, Pomona, California, USA.

  19. Essentials for Successful and Widespread LED Lighting Adoption

    Science.gov (United States)

    Khan, Nisa

    2011-03-01

    Solid-state lighting (SSL), with light-emitting diodes (LEDs) as the light source, is a growing and essential field, particularly in regard to the heightened need for global energy efficiency. In recent years, SSL has experienced remarkable advances in efficiency, light output magnitude and quality. Thus such diverse applications as signage, message centers, displays, and special lighting are now adopting LEDs, taking 2010's market to 9.1 billion - 68% growth from the previous year! While this is promising, future growth in both display and lighting applications will rely upon unveiling deeper understanding and key innovations in LED lighting science and technologies. In this presentation, some LED lighting fundamentals, engineering challenges and novel solutions will be discussed to address reduction in efficiency (a.k.a. droop) at high currents, and to obtain uniform light distribution for overcoming LEDs' directional nature. The droop phenomenon has been a subject of much controversy in the industry and despite several studies and claims, a widely-accepted explanation still lacks because of counter arguments and experiments. Recently several research studies have identified that the droop behavior in nitride-based LEDs beyond certain current density ranges can only be comprehensively explained if the current leaking beyond the LED active region is included. Although such studies have identified a few useful current leakage mechanisms outside the active region, no one has included current leakage, due to non-ideal, 3-D device structures that create undesirable current distribution inside and outside the active region. This talk will address achieving desirable current distributions from optimized 3-D device structures that should reduce current leakage and hence the droop behavior. In addition to novel LED design solutions for droop reduction and uniform light distribution, the talk will address cost and yield concerns as they pertain to core material scarcity

  20. Modulation bandwidth enhancement of white-LED-based visible light communications using electrical equalizations

    Science.gov (United States)

    Kwon, D. H.; Yang, S. H.; Han, S. K.

    2015-01-01

    Utilizing the modulation capability of LEDs, there have been many studies about convergence technology to combine illumination and communication. The visible light communication (VLC) system has several advantages such as high security, immunity to RF interference and lower additional cost than comparing to LEDs just for illumination. However, modulation bandwidth of LEDs is not enough for various wireless communication systems. Since the commercial LEDs are designed only for lighting systems; we need an effort to enhance the modulation characteristics of LEDs. When the area of LED is increased, internal junction capacitance of LED is also increased depending on the area of LEDs and then the RC delay time of LED is increased. As a result, the modulation bandwidth of LEDs is limited by large RC delay time. In addition, frequency response of commercial white LED is degraded by the slow response time of the used yellow phosphor. Thus, modulation bandwidth of VLC system is limited to several MHz which is not enough to accommodate high data rate transmission. In this paper, we designed equalization circuit using RLC component for compensating the white LEDs frequency response. Also, we used blue filtering to improve frequency response of white LEDs, which is degraded by yellow phosphorescent component. Power loss by optical filtering and distance is compensated by convex lens. Consequently, we extend the modulation bandwidth of VLC system from 3 MHz to more than 180 MHz, and it allows NRZ-OOK data transmission up to 400 Mbps at 50 cm.

  1. Remoção de azul de metileno de solução aquosa usando zeólitas sintetizadas com amostras de cinzas de carvão diferentes Removal of methylene blue from aqueous solution using zeolite synthesized from different coal fly ashes samples

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2009-01-01

    Full Text Available Batch sorption experiments were carried out to remove methylene blue from its aqueous solutions using zeolites synthesized from fly ashes as an adsorbent. The adsorbents were characterized by XFR, XRD and SEM. Nearly 90 min of contact time are found to be sufficient for the adsorption of dye to reach equilibrium. Equilibrium data have been analyzed using Langmuir and Freundlich isotherms and the results were found to be well represented by the Freundlich isotherm equation. Adsorption data were fitted to both Lagergren first-order and pseudo-second-order kinetic models and the data were found to follow pseudo-second-order kinetics.

  2. Photoluminescence of Bi(2+)-doped BaSO4 as a red phosphor for white LEDs.

    Science.gov (United States)

    Cao, Renping; Peng, Mingying; Qiu, Jianrong

    2012-11-05

    Bi(2+)-doped BaSO(4) phosphor was synthesized in air via solid state reaction method. Three excitation bands and one emission band were observed at 260 nm ((2)P(1/2) → (2)S(1/2)), 452 nm ((2)P(1/2) → (2)P(3/2)(2)), 592 nm ((2)P(1/2) → (2)P(3/2)(1)), and 627 nm ((2)P(3/2)(1) → (2)P(1/2)), respectively. W-LEDs were demonstrated by using a blend composition of BaSO(4):Bi(2+) and YAG:Ce(3+) phosphors pumped with a 455 nm blue LEDs chip. The results indicate that BaSO(4):Bi(2+) phosphor is suitable as potential red phosphor for application in W-LEDs excited with blue LEDs chip.

  3. The development of silicate matrix phosphors with broad excitation band for phosphor-convered white LED

    Institute of Scientific and Technical Information of China (English)

    LUO XiXian; CAO WangHe; SUN Fei

    2008-01-01

    This paper briefly reviews the recent progress in alkaline earth silicate host luminescent materials with broad excitation band for phosphor-convered white LED. Among them, the Sr-rich binary phases (Sr, Ba, Ca, Mg)2SiO4: Eu2+ and (Sr, Ba, Ca, Mg)3SiO5: Eu2+ are excellent phosphors for blue LED chip white LED. They have very broad excitation bands and exhibit strong absorption of blue radiation in the range of 450-480 nm. And they exhibit green and yellow-orange emission under the InGaN blue LED chip radiation, respectively. The luminous efficiency of InGaN-based (Sr, Ba, Ca, Mg)2SiO4: Eu2+ and (Sr, Ba, Ca, Mg)3SiO5: Eu2+ is about 70-80 lm/W, about 95%-105% that of the InGaN-based YAG:Ce, while the correlated color temperature is between 4600-11000 K. Trinary alkaline earth silicate host luminescent materials MO(M=Sr, Ca, Ba)-Mg(Zn)O-SiO2 show strong absorption of deep blue/near-ultraviolet radia-tion in the range of 370-440 nm. They can convert the deep blue/near-ultraviolet radiation into blue, green, and red emissions to generate white light. The realization of high-performance white-light LEDs by this approach presents excellent chromaticity and high color rendering index, and the application disadvantages caused by the mixture of various matrixes can be avoided. Moreover, the application prospects and the trends of research and development of alkaline earth silicate phosphors are also discussed.

  4. University of Nevada Las Vegas LED Display Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-08-31

    The primary objective of this part of the project is to develop and implement a method that compensates for the inefficiency of the green LED. The proposed engineering solution which will be the backbone of this project will be to use RGBW combination in every pixel to save energy. Two different RGBW geometrical pixel configurations will be implemented and compared against traditional LED configurations. These configurations will be analyzed for energy efficiency while keeping the quality of the display the same. Cost of the addition of white LEDs to displays along with energy cost savings will be presented and analyzed.

  5. In vitro inactivation of Enterococcus faecalis with a led device.

    Science.gov (United States)

    D'Ercole, S; Spoto, G; Trentini, P; Tripodi, D; Petrini, M

    2016-07-01

    Non-coherent light-emitting diodes (LEDs) are effective in a large variety of clinical indications; however, the bactericidal activity of LEDs is unclear, although the effectiveness of such lights is well known. Currently, no studies have examined the effects of NIR-LED on bacteria. The aims of this study were to verify the antibacterial activity of 880-nm LED irradiation on a bacterial suspension of Enterococcus faecalis and to compare it with the actions of sodium hypochlorite (NaOCl) and the concurrent use of both treatments. Before we proceeded with the main experiment, we first performed preliminary tests to evaluate the influence of such parameters as the distance of irradiation, the energy density, the irradiation time and the presence of photosensitizers on the antimicrobial effects of LEDs. After treatment, the colony forming units per milliliter (CFU/mL) was recorded and the data were submitted to ANOVA and Bonferroni post hoc tests at a level of significance of 5%. The results showed that LED irradiation, at the parameters used, is able to significantly decrease E. faecalis viability in vitro. The total inhibition of E. faecalis was obtained throughout concurrent treatment of LED and NaOCl (1%) for 5min. The same antimicrobial activity was confirmed in all of the experiments (p<0.05), but no statistically significant differences were found by varying such parameters as the distance of irradiation (from 0.5mm to 10mm), energy density (from 2.37 to 8.15mJ/s), irradiation time (from 5min to 20min) or by adding toluidine blue O (TBO).

  6. Low Cost Heart Rate Monitor Using Led-Led Sensor

    Directory of Open Access Journals (Sweden)

    Ahmed Mahrous Ragib

    2009-01-01

    Full Text Available A high sensitivity, low power and low cost sensor has been developed for photoplethysmography (PPG measurement. The PPG principle was applied to follow the dilatation and contraction of skin blood vessels during the cardiac cycle. A standard light emitting diodes (LEDs has been used as a light emitter and detector, and in order to reduce the space, cost and power, the classical analogue-to-digital converters (ADCs replaced by the pulse-based signal conversion techniques. A general purpose microcontroller has been used for the implementation of measurement protocol. The proposed approach leads to better spectral sensitivity, increased resolution, reduction in cost, dimensions and power consumption. The basic sensing configuration presented is capable of detecting the PPG signal from a finger or toe, and it is very simple to extract the heart rate and heart rate variability from such a signal.

  7. Blue-violet laser modification of titania treated titanium: antibacterial and osteo-inductive effects.

    Directory of Open Access Journals (Sweden)

    Takanori Kawano

    Full Text Available BACKGROUND: Many studies on surface modifications of titanium have been performed in an attempt to accelerate osseointegration. Recently, anatase titanium dioxide has been found to act as a photocatalyst that expresses antibiotic properties and exhibits hydrophilicity after ultraviolet exposure. A blue-violet semiconductor laser (BV-LD has been developed as near-ultraviolet light. The purpose of this study was to investigate the effects of exposure to this BV-LD on surface modifications of titanium with the goal of enhancing osteoconductive and antibacterial properties. METHODS: The surfaces of pure commercial titanium were polished with #800 waterproof polishing papers and were treated with anatase titania solution. Specimens were exposed using BV-LD (λ = 405 nm or an ultraviolet light-emitting diode (UV-LED, λ = 365 nm at 6 mW/cm(2 for 3 h. The surface modification was evaluated physically and biologically using the following parameters or tests: surface roughness, surface temperature during exposure, X-ray diffraction (XRD analysis, contact angle, methylene blue degradation tests, adherence of Porphyromonas gingivalis, osteoblast and fibroblast proliferation, and histological examination after implantation in rats. RESULTS: No significant changes were found in the surface roughness or XRD profiles after exposure. BV-LD exposure did not raise the surface temperature of titanium. The contact angle was significantly decreased, and methylene blue was significantly degraded. The number of attached P. gingivalis organisms was significantly reduced after BV-LD exposure compared to that in the no exposure group. New bone was observed around exposed specimens in the histological evaluation, and both the bone-to-specimen contact ratio and the new bone area increased significantly in exposed groups. CONCLUSIONS: This study suggested that exposure of titanium to BV-LD can enhance the osteoconductivity of the titanium surface and induce antibacterial

  8. Optimal spectra of the phosphor-coated white LEDs with excellent color rendering property and high luminous efficacy of radiation.

    Science.gov (United States)

    He, Guoxing; Yan, Huafeng

    2011-01-31

    A model for spectra of the phosphor-coated white LED (p-W LED) with a blue chip, a red chip, and green and yellow phosphors is presented. The optimal spectra of p-W LEDs with correlated color temperatures (CCTs) of 2700-6500 K have been obtained with a nonlinear program for maximizing luminous efficacy of radiation (LER) under conditions of both color-rendering indices (CRIs) and special CRIs of R9 strong red above 98. The simulation results show that p-W LEDs with one InGaN blue (450 nm) chip, one AlGaInP red (634 nm) chip, and green (507 nm) and yellow (580 nm) silicate phosphors can realize white lights with CRIs of about 98 and special CRIs of R9 for strong red above 98. The average of the special CRIs R9 to R12 for the four saturated colors (red, yellow, green, and blue) is above 95. R13 for the skin of women's faces at about 100, as well as LERs above 296 lm/W at CCTs of 2700-6500 K. LERs of excellent CRI p-W LEDs with one InGaN blue chip, one AlGaInP red chip, and green and yellow silicate phosphors increased by 19-49% when compared with that of excellent CRI p-W LEDs with one InGaN blue chip and green and yellow silicate phosphors, as well as red nitride phosphor.

  9. Differential photodynamic response of cultured cells to methylene blue and toluidine blue: role of dark redox processes.

    Science.gov (United States)

    Blázquez-Castro, Alfonso; Stockert, Juan C; Sanz-Rodríguez, Francisco; Zamarrón, Alicia; Juarranz, Angeles

    2009-03-01

    Cultured cells treated with equal concentrations of thiazine photosensitizers methylene blue (MB) or toluidine blue (TB) showed a distinct photodynamic lethality, with TB being much more effective, when exposed to red light from a LED source. This effect is accounted for because of the differences in the chemical reduction of MB and TB in the intracellular environment. While TB accumulates as blue granular structures, MB does not give such a localization pattern. However, upon exposure of MB-treated cells to oxidant agents, the dye becomes clearly localized in the cytoplasm as blue granules. We propose that massive reduction of MB to its leuco form inside the cell inhibits most of the photodynamic damage, while no such reduction occurs with TB.

  10. THE TRANSATLANTIC BLUE DIPLOMACY

    Directory of Open Access Journals (Sweden)

    Ioana GUTU

    2016-12-01

    Full Text Available The international diplomatic environment has reached to an unprecedented development, involving one of the newly specialized diplomatic types, namely the economic diplomacy. At the core of the fast movements in the diplomatic spheres across the Globe are the international agreements like the Transatlantic Trade and Investment Partnership (TTIP that determined diplomacy to dissolve into new subtypes, evolving from ground to the ocean and implementing new ways of achieving economic and climate sustainability. One of the newly created diplomatic spheres, is the blue ocean diplomacy that acts mainly in accordance with the rules and regulations that are being applied to the transatlantic economy. Even though TTIP encourages the increase of trade flows across the Atlantic, it will also ease the foreign investment procedures that, under the approach of keeping a sustainable environment, will represent one of the most important initiatives in implementing the blue economy concept within the framework of the transatlantic diplomacy.

  11. Faint Blue Galaxies

    CERN Document Server

    Ellis, Richard S

    1997-01-01

    The physical properties of the faint blue galaxy population are reviewed in the context of observational progress made via deep spectroscopic surveys and Hubble Space Telescope imaging of field galaxies at various limits, and theoretical models for the integrated star formation history of the Universe. Notwithstanding uncertainties in the properties of the local population of galaxies, convincing evidence has emerged from several independent studies for a rapid decline in the volume-averaged star formation rate of field galaxies since a redshift z~1. Together with the small angular sizes and modest mean redshift of the faintest detectable sources, these results can be understood in hierarchical models where the bulk of the star formation occurred at redshifts between z~1-2. The physical processes responsible for the subsequent demise of the faint blue galaxy population remains unclear. Considerable progress will be possible when the evolutionary trends can be monitored in the context of independent physical p...

  12. Effects of blue pulsed light on human physiological functions and subjective evaluation

    Directory of Open Access Journals (Sweden)

    Katsuura Tetsuo

    2012-09-01

    Full Text Available Abstract Background It has been assumed that light with a higher irradiance of pulsed blue light has a much greater influence than that of light with a lower irradiance of steady blue light, although they have the same multiplication value of irradiance and duration. We examined the non-visual physiological effects of blue pulsed light, and determined whether it is sensed visually as being blue. Findings Seven young male volunteers participated in the study. We placed a circular screen (diameter 500 mm in front of the participants and irradiated it using blue and/or white light-emitting diodes (LEDs, and we used halogen lamps as a standard illuminant. We applied three steady light conditions of white LED (F0, blue LED + white LED (F10, and blue LED (F100, and a blue pulsed light condition of a 100-μs pulse width with a 10% duty ratio (P10. The irradiance of all four conditions at the participant's eye level was almost the same, at around 12 μW/cm2. We measured their pupil diameter, recorded electroencephalogram readings and Kwansei Gakuin Sleepiness Scale score, and collected subjective evaluations. The subjective bluish score under the F100 condition was significantly higher than those under other conditions. Even under the P10 condition with a 10% duty ratio of blue pulsed light and the F10 condition, the participant did not perceive the light as bluish. Pupillary light response under the P10 pulsed light condition was significantly greater than under the F10 condition, even though the two conditions had equal blue light components. Conclusions The pupil constricted under the blue pulsed light condition, indicating a non-visual effect of the lighting, even though the participants did not perceive the light as bluish.

  13. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of degradation products after treatment of methylene blue aqueous solution with three-dimensionally integrated microsolution plasma

    Science.gov (United States)

    Shirafuji, Tatsuru; Nomura, Ayano; Hayashi, Yui; Tanaka, Kenji; Goto, Motonobu

    2016-01-01

    Methylene blue can be degraded in three-dimensionally integrated microsolution plasma. The degradation products have been analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry to understand the degradation mechanisms. The results of MALDI TOF mass spectrometry have shown that sulfoxide is formed at the first stage of the oxidation. Then, partial oxidation proceeds on the methyl groups left on the sulfoxide. The sulfoxide is subsequently separated to two benzene derivatives. Finally, weak functional groups are removed from the benzene derivatives.

  14. Determination of germination quality of cucumber (Cucumis sativus) seed by LED-induced hyperspectral reflectance imaging

    Science.gov (United States)

    Purpose: We developed a viability evaluation method for cucumber (Cucumis sativus) seed using hyperspectral reflectance imaging. Methods: Reflectance spectra of cucumber seeds in the 400 to 1000 nm range were collected from hyperspectral reflectance images obtained using blue, green, and red LED ill...

  15. Mesa-height Dependent Quantum Efficiency Characteristics of InGaN Micro-LEDs

    KAUST Repository

    Shen, Chao

    2013-01-01

    The mechanisms of mesa-height dependent efficiency and efficiency droop of blue InGaN/GaN micro-LED is presented. Device with a large etch-depth (> 1.3 µm) shows significant strain relief with aggravated current crowding.

  16. Spectral and luminous efficacy change of high-power LEDs under different dimming methods

    Science.gov (United States)

    Gu, Yimin; Narendran, Nadarajah; Dong, Tianming; Wu, Huiying

    2006-08-01

    Dimming is an important and necessary feature for light sources used in general lighting applications. An experimental study was conducted to quantify the spectral and luminous efficacy change of high-power colored and pc-white LEDs under continuous current reduction (CCR) and pulse-width modulation (PWM) dimming schemes. For InGaN-based blue, green, and pc-white LEDs, the peak wavelength shifts were in opposite directions for the two dimming schemes. The peak wavelength showed a blue shift with increased current, most likely due to band filling and QCSE dominated effects. InGaN LEDs exhibited red shifts with increased duty cycle, which is dominated by junction heat. AlInGaP red LEDs show mainly thermal-induced red shift with increased current or duty cycle. In addition, the luminous efficacy was always higher for the CCR dimming scheme at dimmed levels, irrespective of the LED type. Keywords: Light-emitting diodes (LEDs), white LEDs, mixed-color white LEDs, pulse-width modulation (PWM), continuous current reduction (CCR), peak wavelength shift, luminous efficacy

  17. Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell I-V Characterization and Electrical Parameters Determination

    Directory of Open Access Journals (Sweden)

    Anon Namin

    2012-01-01

    Full Text Available I-V characterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell characterization, namely, one tungsten halogen simulator, four monochromatic (red, green, blue, and white LED simulators, one multicolor LED simulator, and one tungsten halogen-blue LED simulator. The seven simulators provide testing at nonstandard test condition. High irradiance from simulators is obtained by employing elevated supply voltage to tungsten halogen lamps and high pulsing voltages to LEDs. This new approach leads to higher irradiance not previously obtained from tungsten halogen lamps and LEDs. From I-V curves, electrical parameters of solar cell are made and corrected based on methods recommended in the IEC 60891 Standards. Corrected values obtained from non-STC measurements are in good agreement with those obtained from Class AAA solar simulator.

  18. Enhancement of Taihu blue algae anaerobic digestion efficiency by natural storage.

    Science.gov (United States)

    Miao, Hengfeng; Lu, Minfeng; Zhao, Mingxing; Huang, Zhenxing; Ren, Hongyan; Yan, Qun; Ruan, Wenquan

    2013-12-01

    Taihu blue algae after different storage time from 0 to 60 d were anaerobic fermented to evaluate their digestibility and process stability. Results showed that anaerobic digestion (AD) of blue algae under 15 d natural storage led to the highest CH4 production of 287.6 mL g(-1) VS at inoculum substrate ratio 2.0, demonstrating 36.69% improvement comparing with that from fresh algae. Storage of blue algae led to cell death, microcystins (MCs) release and VS reduction by spontaneous fermentation. However, it also played an important role in removing algal cell wall barrier, pre-hydrolysis and pre-acidification, leading to the improvement in CH4 yield. Closer examination of volatile fatty acids (VFA) variation, VS removal rates and key enzymes change during AD proved short storage time (≤ 15 d) of blue algae had higher efficiencies in biodegradation and methanation. Furthermore, AD presented significant biodegradation potential for MCs released from Taihu blue algae.

  19. Fluorescent silicon carbide materials for white LEDs and photovoltaics

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Ou, Haiyan; Wellmann, Peter

    Energy efficient materials solutions will be key figures in progressive energy saving applications. We explore a materials growth concept of fluorescent wide bandgap semiconductors for white and infrared LEDs as well as solar cells. This is an emerging scientific field which has not previously been...... explored. The applications include a white LED for general lighting in which the conversion is based on the semiconductor instead of using phosphors. The result is an LED technology which does not need rare earth metals and has a pure white light. In efficient fluorescent materials, the absorption may...... the luminescence appears in the visible region which is used to produce a white LED with pure white light without need of phosphors [2]. The cubic silicon carbide polytype is challenging to master, and we have explored the growth of this crystal structure. It has a lower bandgap, and by a similar doping concept...

  20. Optics designs for an innovative LED lamp family system

    Science.gov (United States)

    Weiss, Herbert; Muschaweck, Julius; Hadrath, Stefan; Kudaev, Sergey

    2011-10-01

    On the general lighting market of LED lamps for professional applications there are still mainly products for single purpose solutions existing. There is a lack of standardised lamp systems like they are common for conventional lighting technologies. Therefore, an LED lamp family system was studied using high power LED with the objective to entirely substitute standard conventional lamp families in general lighting applications in the professional market segment. This comprises the realization of sets of lamp types with compact and linear shapes as well as with light distribution characteristics ranging from diffuse to extreme collimation and exceptionally high candle power. Innovative secondary optics concepts are discussed which allow both, the design of lamps with non-bulky shape and to obtain sufficient colour mixing when using multicolour LED combinations in order to achieve a very high colour rendering quality.

  1. Preparation of heteropolyacid/Fe3 O4 magnetic catalyst and its degradation behaviors for methylene blue solution%杂多酸/Fe3 O4磁性催化剂的制备及其对次甲基蓝溶液的降解

    Institute of Scientific and Technical Information of China (English)

    包沙日勒敖都; 王天舒; 刘宗瑞; 刘景海; 段莉梅

    2014-01-01

    Heteropoly acid/Fe3 O4 magnetic materials were prepared by impregnation method to load differ-ent heteropoly acids on Fe3 O4 magnetic materials and were used as the catalysts for photocatalytic degra-dation of methylene blue solution. The influence of type of light source( ultraviolet and solar light),spe-cies of heteropoly acid[phosphotungstic acid(HPW),phosphomolybdic acid(HPMo)and silicotungstic acid( HSiW)]and catalyst dosage on photocatalytic degradation effect of heteropoly acid/Fe3 O4 magnetic materials was investigated. The results showed that the degradation rate of methylene blue reached 85%under the condition of 250 W mercury lamp irradiation,methylene blue initial concentration 20 mg·L-1 , pH value=5. 5,phosphotungstic acid/Fe3 O4 photocatalyst dosage 30 mg,and photocatalytic time 120 min. The supported heteropoly acid/Fe3 O4 magnetic catalysts for methylene blue solution had better degradation effect than the single Fe3 O4 or heteropolyacid catalyst.%采用浸渍法将磷钨酸、磷钼酸和硅钨酸等杂多酸负载在Fe3 O4磁性材料上,并将杂多酸/Fe3 O4磁性材料作为光催化剂用于降解次甲基蓝溶液,考察了光源类型(紫外光与太阳光)、杂多酸种类及催化剂用量等对光催化降解效果的影响。结果表明,在250 W汞灯照射、次甲基蓝溶液浓度20 mg·L-1、降解体系pH=5.5、光催化剂用量30 mg和光催化120 min条件下,次甲基蓝降解率达85%,负载型杂多酸/Fe3 O4磁性催化剂对次甲基蓝的降解效果明显优于相应单一的Fe3 O4或杂多酸催化剂。

  2. Narrow-band red emitting phosphor BaTiF6:Mn(4+): preparation, characterization and application for warm white LED devices.

    Science.gov (United States)

    Gao, Xiaoli; Song, Yan; Liu, Guixia; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2016-11-28

    As a new class of non-rare-earth red phosphors for high-efficiency warm white light-emitting diodes (white LEDs), Mn(4+) ion activated fluoride compounds have been extensively investigated recently and hold the potential to supersede commercial rare earth doped nitride phosphors. Herein, a series of Mn(4+) ions doped BaTiF6 phosphors have been prepared via the hydrothermal route using citric acid as a surfactant. After a systematic investigation, we illustrate the effects of reaction time, nominal concentration of HF solution, and reaction temperature on the luminescence performance of the phosphor. The BaTiF6:Mn(4+) phosphor generates narrow red emission, which is highly perceived by the human eyes and leads to excellent chromatic saturation of red emission spectra. Simultaneously, concentration and thermal quenching are investigated systematically, and the quenching mechanisms are elucidated in detail. Employing BaTiF6:Mn(4+) as a red phosphor, we fabricate a high-performance white LED with low correlated color temperature of 3974 K, high color rendering index of 90.6 and luminous efficacy of 132.54 lm W(-1). Based on the improvement in correlated color temperature and color rendering index, the BaTiF6:Mn(4+) red phosphor supplements the deficiency of LEDs fabricated by combining blue chips and only YAG:Ce(3+), which suggests that it is a promising commercial red phosphor in warm white LEDs.

  3. Natural Blue Food Colour

    DEFF Research Database (Denmark)

    Roda-Serrat, Maria Cinta

    2017-01-01

    the presence of the chromophore phycocyanobilin (PCB), a covalently attached linear tetrapyrrole. The applications of phycocyanins as food colorants are however limited, as they show poor stability in certain conditions of pH, light and temperature. Cleavage of PCB from the protein followed by careful product...... decreased. PCB was also found to be more sensitive to pH than phycocyanin. Regarding the stability with time, PCB showed a similar stability at pH 3, and worse at pH 5 and pH 7. The change from blue to green colour in acid conditions was attributed to protonation of the chromophore. However, the effect...

  4. LED rear combination lamps: styling, robustness, life, packaging, installation, and opportunities for intelligent signal lighting

    Science.gov (United States)

    Eberle, Stefan; Livschitz, Leonard; Raggio, Jeffrey

    2005-02-01

    The automotive industry is rapidly increasing the adoption of LED technology in all vehicle lighting applications. In the near future, LED solutions are expected to capture significant market share for exterior signal lighting. This paper will investigate why LED signal lighting is important to automotive OEMs and consumers, and will exhibit how the latest product development from Lumileds Lighting can enable the ultimate RCL application: a single LED instead of a conventional light bulb.

  5. Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study.

    Science.gov (United States)

    Mosleh, S; Rahimi, M R; Ghaedi, M; Dashtian, K

    2016-09-01

    An efficient simultaneous sonophotocatalytic degradation of trypan blue (TB) and vesuvine (VS) using Ag3PO4/Bi2S3-HKUST-1-MOF as a novel visible light active photocatalyst was carried out successfully in a continuous flow-loop reactor equipped to blue LED light. Ag3PO4/Bi2S3-HKUST-1-MOF with activation ability under blue light illumination was synthesized and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), photoluminescence (PL) and diffuse reflectance spectra (DRS). The effect of operational parameters such as the initial TB and VS concentration (5-45mg/L), flow rate (30-110mL/min), irradiation and sonication time (10-30min), pH (3-11) and photocatalyst dosage (0.15-0.35g/L) has been investigated and optimized using central composite design (CCD) combined with desirability function (DF). Maximum sonophotodegradation percentage (98.44% and 99.36% for TB and VS, respectively) was found at optimum condition set as: 25mg/L of each dye, 70mL/min of solution flow rate, 25min of irradiation and sonication time, pH 6 and 0.25g/L of photocatalyst dosage. At optimum conditions, synergistic index value was obtained 2.53 that indicated the hybrid systems including ultrasound irradiation and photocatalysis have higher efficiency compared with sum of the individual processes.

  6. Electrical and Optical Excitations in Blue-emitting Π-conjugated Films and LEDs

    Science.gov (United States)

    Wohlgenannt, Markus

    2000-03-01

    We employed a variety of spectroscopies to study electrical and optical excitations in ladder-type poly(p-phenylene) polymer (mLPPP) and polyfluorene (PFO). These spectroscopies include absorption, photoluminescence, photoinduced absorption (PA), charge-induced absorption (CIA) and PA/CIA-detected magnetic resonance (PADMR/CIADMR, respectively). We use the PA and PADMR spectra to identify the spectral features of long-lived excitations, such as photoinduced charged polarons with spin-1/2 and triplet excitons with spin-1. In addition, the dependencies of the photogeneration quantum efficiency on the excitation photon energy show that triplets and polarons in mLPPP are photogenerated independently, by different processes. We show that spin dependent magnetic resonance reduces the number of polarons, however enhances another excitation, which we assign as bipolarons. We also applied the CIA and CIADMR spectroscopies to m-LPPP sandwich device structures to probe the dynamics of injected charges. We observed a CIA band due to polarons scaling linearly with the device current. In addition, we observed two derivative bands with zero crossing at 0.85eV and 1.2eV, respectively. Their intensity increases linearly with the applied electric field and is frequency independent up to 10kHz modulation frequency. We assign these bands to a Stark-effect of transitions involving the electrodes. We also found that the CIADMR spin-1/2 resonance is about 10 times weaker than in PADMR. This demonstrates a rather low polaron pair formation from opposite electrodes in devices, consistent with the observation of rather low external electroluminescence quantum yields.

  7. LED lamps in shipboard lighting systems: Aspects of electromagnetic compatibility

    Directory of Open Access Journals (Sweden)

    Beley V. F.

    2016-12-01

    Full Text Available Trends in the development of different types of light sources and their energy characteristics have been described in the paper. Analysis of regulatory documents has been given. The results of experimental studies of a number of modern LED lamps have been described. Investigation has been made for a number of LED lamps produced by Philips, Xavax and Melitec. The experimental data have been obtained with the complex of devices: the dual-channel oscilloscope (GDS-71042, the power quality analyzer (Fluke-434 and the multi-function device EcoLight-01 (light-, pulse- and luminance meter. It has been shown that operation of LED lamps is characterized by emission of higher current harmonics and reactive power consumption, which depends on the type and design of the lamp driver. It has been found that the value of luminance created by LED lamps in case of acceptable (for ships prolonged deviation of voltage (–10 % is reduced by 3 %; in case of permissible short-term voltage deviation (–20 % luminance is reduced by 7 %. For incandescent lamps this indicator is characterized by a decrease in luminance by 40 % and 60 %, respectively. Despite the low sensitivity to voltage changes (in comparison with other types of lamps, the operation of LED lamps is also associated with the appearance of flicker. Absence of limitations for fluctuations of the light flux in shipboard lighting systems and imperfection of methods for determining the flicker make it difficult to ensure electromagnetic compatibility of LED lamps. Therefore due to reliability, environmental friendliness, energy efficiency and lumen maintenance LED lamps have prospects for introduction into shipboard lighting systems. However, to ensure electromagnetic compatibility of LED lighting systems it is necessary to conduct a detailed study of energy characteristics of LED lamps and to develop appropriate regulatory requirements and technical solutions.

  8. Postpartum Blues and Postpartum Depression

    Directory of Open Access Journals (Sweden)

    Erdem Ö et al.

    2009-09-01

    Full Text Available Postpartum blues which is seen during the postpartum period is a transient psychological state. Most of the mothers experience maternity blues in postpartum period. It remains usually unrecognized by the others. Some sensitive families can misattribute these feelings as depression. In this article, we tried to review the characteristics of maternity blues and its differences from depression. We defined depression and presented the incidence and diagnostic criteria, of major depression as well as the risk factors and clinic findings of postpartum depression. Thus, especially at primary care we aimed to prevent misdiagnosis of both maternity blues and depression

  9. Metallic nanostructures for efficient LED lighting

    NARCIS (Netherlands)

    Lozano, G.; Rodriguez, S. R. K.; Verschuuren, M. A.; Rivas, Gomez

    2016-01-01

    Light-emitting diodes (LEDs) are driving a shift toward energy-efficient illumination. Nonetheless, modifying the emission intensities, colors and directionalities of LEDs in specific ways remains a challenge often tackled by incorporating secondary optical components. Metallic nanostructures suppor

  10. Phosphor-in-glass for high-powered remote-type white AC-LED.

    Science.gov (United States)

    Lin, Hang; Wang, Bo; Xu, Ju; Zhang, Rui; Chen, Hui; Yu, Yunlong; Wang, Yuansheng

    2014-12-10

    The high-powered alternating current (AC) light-emitting diode (LED) (AC-LED), featuring low cost, high energy utilization efficiency, and long service life, will become a new economic growth point in the field of semiconductor lighting. However, flicker of AC-LED in the AC cycles is not healthy for human eyes, and therefore need to be restrained. Herein we report an innovation of persistent "phosphor-in-glass" (PiG) for the remote-type AC-LED, whose afterglow can be efficiently activated by the blue light. It is experimentally demonstrated that the afterglow decay of PiG in the microsecond range can partly compensate the AC time gap. Moreover, the substitution of inorganic glass for organic resins or silicones as the encapsulants would bring out several technological benefits to AC-LED, such as good heat-dissipation, low glare, and excellent physical/chemical stability.

  11. Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs).

    Science.gov (United States)

    Ra, Chae Hun; Kang, Chang-Han; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-10-01

    The effects of light-emitting diode (LED) wavelength, light intensity, nitrate concentration, and time of exposure to different LED wavelength stresses in a two-phase culture on lipid production were evaluated in the microalga, Picochlorum atomus. The biomass produced by red LED light was higher than that produced by purple, blue, green, or yellow LED and fluorescent lights from first phase of two-phase culture. The highest lipid production of P. atomus was 50.3% (w/w) with green LED light at 2days of second phase as light stress. Fatty acid analysis of the microalgae showed that palmitic acid (C16:0) and linolenic acid (C18:3) accounted for 84-88% (w/w) of total fatty acids from P. atomus. The two-phase culture of P. atomus is suitable for biofuel production due to higher lipid productivity and favorable fatty acid composition.

  12. Thermal Design for 5 Watt Power LED

    Institute of Scientific and Technical Information of China (English)

    WANG Cai-feng; NIU Ping-juan; GAO Tie-cheng; YANG Guang-hua; FU Xian-song

    2009-01-01

    With the consideration of the thermal management and heat sink requirements, a cooling device is designed and the thermal resistance of this device is calculated with a single 5 W power LED. The thermal design of a single 5 W power LED is reasonable, effective and the result has been simulated. This design also instruct other power LEDs' thermal design. Provided is a reliable and effective method for the design of power LED illumination lamps and lanterns.

  13. Goniometric characterization of LED based greenhouse lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders; Lindén, Johannes; Corell, Dennis Dan;

    2015-01-01

    This paper describes a demonstration of goniospectroradiometry for characterizations of new light emitting diode (LED) based luminaries for enhanced photosynthesis in greenhouses. It highlights the differences between measurement of the traditional high pressure sodium (HPS) luminaries and the LED...... based luminaries. The LED based luminaries are compared to traditional HPS luminaries; in terms of energy efficiency with regard to the photosynthetic photon flux, and the LED luminaries were found to be more effective than the HPS luminaries...

  14. Ancient origin and maternal inheritance of blue cuckoo eggs.

    Science.gov (United States)

    Fossøy, Frode; Sorenson, Michael D; Liang, Wei; Ekrem, Torbjørn; Moksnes, Arne; Møller, Anders P; Rutila, Jarkko; Røskaft, Eivin; Takasu, Fugo; Yang, Canchao; Stokke, Bård G

    2016-01-12

    Maternal inheritance via the female-specific W chromosome was long ago proposed as a potential solution to the evolutionary enigma of co-existing host-specific races (or 'gentes') in avian brood parasites. Here we report the first unambiguous evidence for maternal inheritance of egg colouration in the brood-parasitic common cuckoo Cuculus canorus. Females laying blue eggs belong to an ancient (∼2.6 Myr) maternal lineage, as evidenced by both mitochondrial and W-linked DNA, but are indistinguishable at nuclear DNA from other common cuckoos. Hence, cuckoo host races with blue eggs are distinguished only by maternally inherited components of the genome, which maintain host-specific adaptation despite interbreeding among males and females reared by different hosts. A mitochondrial phylogeny suggests that blue eggs originated in Asia and then expanded westwards as female cuckoos laying blue eggs interbred with the existing European population, introducing an adaptive trait that expanded the range of potential hosts.

  15. Design of the control system for full-color LED display based on MSP430 MCU

    Science.gov (United States)

    Li, Xue; Xu, Hui-juan; Qin, Ling-ling; Zheng, Long-jiang

    2013-08-01

    The LED display incorporate the micro electronic technique, computer technology and information processing as a whole, it becomes the most preponderant of a new generation of display media with the advantages of bright in color, high dynamic range, high brightness and long operating life, etc. The LED display has been widely used in the bank, securities trading, highway signs, airport and advertising, etc. According to the display color, the LED display screen is divided into monochrome screen, double color display and full color display. With the diversification of the LED display's color and the ceaseless rise of the display demands, the LED display's drive circuit and control technology also get the corresponding progress and development. The earliest monochrome screen just displaying Chinese characters, simple character or digital, so the requirements of the controller are relatively low. With the widely used of the double color LED display, the performance of its controller will also increase. In recent years, the full color LED display with three primary colors of red, green, blue and grayscale display effect has been highly attention with its rich and colorful display effect. Every true color pixel includes three son pixels of red, green, blue, using the space colour mixture to realize the multicolor. The dynamic scanning control system of LED full-color display is designed based on MSP430 microcontroller technology of the low power consumption. The gray control technology of this system used the new method of pulse width modulation (PWM) and 19 games show principle are combining. This method in meet 256 level grayscale display conditions, improves the efficiency of the LED light device, and enhances the administrative levels feels of the image. Drive circuit used 1/8 scanning constant current drive mode, and make full use of the single chip microcomputer I/O mouth resources to complete the control. The system supports text, pictures display of 256 grayscale

  16. Instant BlueStacks

    CERN Document Server

    Judge, Gary

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  17. Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-10

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical

  18. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Scholand, Michael; Dillon, Heather E.

    2012-05-01

    Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two objectives: producing a more detailed and conservative assessment of the manufacturing process and providing a comparative LCA with other lighting products based on the improved manufacturing analysis and taking into consideration a wider range of environmental impacts. In this study, we first analyzed the manufacturing process for a white-light LED (based on a sapphire-substrate, blue-light, gallium-nitride LED pumping a yellow phosphor), to understand the impacts of the manufacturing process. We then conducted a comparative LCA, looking at the impacts associated with the Philips Master LEDbulb and comparing those to a CFL and an incandescent lamp. The comparison took into account the Philips Master LEDbulb as it is now in 2012 and then projected forward what it might be in 2017, accounting for some of the anticipated improvements in LED manufacturing, performance and driver electronics.

  19. Preparation of N-Doped TiO2-ZrO2 Composite Films under Electric Field and Heat Treatment and Assessment of Their Removal of Methylene Blue from Solution

    Directory of Open Access Journals (Sweden)

    Lefu Mei

    2014-01-01

    Full Text Available TiO2-ZrO2 composite film with the grain size of 50 nm was synthesized by electric field and heat (EF&H treatments. Portions of O atoms in the TiO2 network structure were replaced by N atoms as revealed by X-ray photoelectron spectroscopy (XPS and X-ray diffraction (XRD analyses, suggesting formation of a nonstoichiometric compound TiO2-xNx on the composite film. The UV-Vis spectra of the film suggested that the visible light with wavelength of 550 nm could be absorbed for the N-doped composite film after EF&H treatment in comparison to a cutoff wavelength of 400 nm for the composite film without EF treatment. Photocatalytic experiments showed that the degradation rate of methylene blue by N-doped composite films increased significantly under visible light irradiation. The partial replacement of O by doped N played a very important role in narrowing the band gap and improving the visible light photocatalytic reactivity.

  20. Fluorescent Carbon Quantum Dots as Single Light Converter for White LEDs

    Science.gov (United States)

    Feng, Xiaoting; Zhang, Feng; Wang, Yaling; Zhang, Yi; Yang, Yongzhen; Liu, Xuguang

    2016-06-01

    Synthesis of fluorescent carbon quantum dots (CQDs) as single light converter and their application in white light-emitting diodes (LEDs) are reported. CQDs were prepared by a one-step hydrothermal method using glucose and polyethylene glycol 200 as precursors. The structural and optical properties of the CQDs were investigated. The CQDs with uniform size of 4 nm possessed typical excitation-dependent emission wavelength and quantum yield of 3.5%. Under ultraviolet illumination, the CQDs in deionized water emitted bright blue fluorescence and produced broad visible-light emission with high red, green, and blue spectral component ratio of 63.5% (red-to-blue intensity to total intensity), suggesting great potential as single light converter for white LEDs. To demonstrate their potential, a white LED using CQDs as a single light converter was built. The device exhibited cool white light with corresponding color temperature of 5584 K and color coordinates of (0.32, 0.37), belonging to the white gamut. This research suggests that CQDs could be a promising candidate single light converter for white LEDs.

  1. Enhanced Photocatalytic Performance of NiO-Decorated ZnO Nanowhiskers for Methylene Blue Degradation

    OpenAIRE

    I. Abdul Rahman; Ayob, M. T. M.; Radiman, S.

    2014-01-01

    ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation ...

  2. Generation of solar spectrum by using LEDs

    Science.gov (United States)

    Lu, Pengzhi; Yang, Hua; Pei, Yanrong; Li, Jing; Xue, Bin; Wang, Junxi; Li, Jinmin

    2016-09-01

    Light emitting diode (LED) has been recognized as an applicable light source for indoor and outdoor lighting, city beautifying, landscape facilities, and municipal engineering etc. Conventional LED has superior characteristics such as long life time, low power consumption, high contrast, and wide viewing angle. Recently, LED with high color-rendering index and special spectral characteristics has received more and more attention. This paper is intended to report a solar spectrum simulated by multichip LED light source. The typical solar spectrum of 5500k released by CIE was simulated as a reference. Four types of LEDs with different spectral power distributions would be used in the LED light source, which included a 430nm LED, a 480nm LED, a 500nm LED and a white LED. In order to obtain better simulation results, the white LED was achieved by a 450nm LED chip with the mixture of phosphor. The phosphor combination was prepared by mixing green phosphor, yellow phosphor and red phosphor in a certain proportion. The multichip LED light source could provide a high fidelity spectral match with the typical solar spectrum of 5500k by adjusting injection current to each device. The luminous flux, CIE chromaticity coordinate x, y, CCT, and Ra were 104.7 lm, 0.3337, 0.3681, 5460K, and 88.6, respectively. Because of high color-rendering index and highly match to the solar spectrum, the multichip LED light source is a competitive candidate for applications where special spectral is required, such as colorimetric measurements, visual inspection, gemstone identification and agriculture.

  3. FROM CIRCULAR ECONOMY TO BLUE ECONOMY

    Directory of Open Access Journals (Sweden)

    Iustin-Emanuel, ALEXANDRU

    2014-11-01

    Full Text Available Addressing the subject of this essay is based on the background ideas generated by a new branch of science - Biomimicry. According to European Commissioner for the Environment, "Nature is the perfect model of circular economy". Therefore, by imitating nature, we are witnessing a process of cycle redesign: production-consumption-recycling. The authors present some reflections on the European Commission's decision to adopt after July 1, 2014 new measures concerning the development of more circular economies. Starting from the principles of Ecolonomy, which is based on the whole living paradigm, this paper argues for the development within each economy of entrepreneurial policies related to the Blue economy. In its turn, Blue economy is based on scientific analyses that identify the best solutions in a business. Thus, formation of social capital will lead to healthier and cheaper products, which will stimulate entrepreneurship. Blue economy is another way of thinking economic practice and is a new model of business design. It is a healthy, sustainable business, designed for people. In fact, it is the core of the whole living paradigm through which, towards 2020, circular economy will grow more and more.

  4. QCD-inspired spectra from Blue's functions

    CERN Document Server

    Nowak, M A; Zahed, I; Nowak, Maciej A; Papp, Gabor; Zahed, Ismail

    1996-01-01

    We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.

  5. QCD-inspired spectra from Blue's functions

    Science.gov (United States)

    Nowak, Maciej A.; Papp, Gábor; Zahed, Ismail

    1996-02-01

    We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.

  6. Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED

    Science.gov (United States)

    Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.

    2014-03-01

    Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.

  7. Polychromatic white LED using GaN nano pyramid structure

    Science.gov (United States)

    Kim, Taek; Kim, Jusung; Yang, Moonseung; Park, Yongsoo; Chung, U.-In; Ko, Yongho; Cho, Yonghoon

    2013-03-01

    We have developed monolithic white light emitting diodes (LEDs) with a hybrid structure of planar c-planes and nano size hexagonal pyramids. The white spectrum is composed of blue and yellow emissions from the InGaN multi quantum wells (MQWs) on the planar c-planes and on the nano pyramids, respectively. The yellow emission is originated from quantum wells, wires, and dots that are formed at the sides, edges, and tops of the nano-pyramids, respectively. As a result, the emission peaks are different and the entire yellow spectrum is broad enough to make a white in combination with a blue emission. The longer wavelength from the InGaN on nano-pyramids than the wavelength from the InGaN on c-planes is explained by excess In supply from the dielectric selective growth mask. The color temperature is tuned from 3600K to 6400K by controlling the relative area ratio of c-plane and nano-pyramids.

  8. The effects of bluephase LED light on fibroblasts

    Science.gov (United States)

    Malčić, Ana Ivanišević; Pavičić, Ivan; Trošić, Ivančica; Simeon, Paris; Katanec, Davor; Krmek, Silvana Jukić

    2012-01-01

    Objective: The aim of this study was to evaluate the effect of Bluephase light emitting diode (LED) light on cell viability, colony-forming ability and proliferation in V79 cell culture and to determine how much the temperature of the nutrient medium rose. Methods: The investigation included a low (L), soft start (S) and high (H) illumination mode for 20, 40 and 80 seconds. The viability was determined by the trypan blue exclusion test, colony-forming ability by counting colonies 7 days after exposure and cell proliferation by the cell counts on 5 post-exposure days. The temperature change during illumination was recorded (0.1°C sensitivity). Results: In each experimental condition, 90–95% of the cells were viable, which was in the same range as the controls. Colony-forming ability was not found to be significantly lower (P<.05). A significant decrease in proliferation was recorded on the 4th post-exposure day with S and H irrespective of time, on the 3rd day with S for 80 s and H for 40 and 80 s, and with S and H for 80 s on the 2nd day (P<.05).The temperature rise was significant with S (P<.05) and H (P<.05), irrespective of exposure duration. Conclusion: Dependent on total energy density, LED blue light affects the mitotic activity of cells in its path to a certain extent. Altered mitotic activity was not noted with illumination at the low power mode (intensity of 421.7 ±1.1 mW/cm2). The greatest temperature rise was 8.3 °C and occurred at the highest intensity and exposure duration. PMID:22904660

  9. Alcian blue-stained particles in a eutrophic lake

    DEFF Research Database (Denmark)

    Worm, J.; Søndergaard, Morten

    1998-01-01

    We used a neutral solution of Alcian Blue to stain transparent particles in eutrophic Lake Frederiksborg Slotss0, Denmark. Alcian Blue-stained particles (ABSP) appeared to be similar to the so-called transparent exopolymer particles (TEP) identified with an acidic solution of Alcian Blue. Our...... results on the abundance, size distribution and bacterial colonization of ABSP therefore reflect general patterns of TEP. The abundance of ABSP in the size range 3-162 urn and retained by 3 um pore size filters averaged 3.6 ± 2.49 x 10s ml"1 (± SD), which is among the highest concentrations reported...... for comparable size spectra of TEP. On average, 35 % of ABSP (by number) were colonized by bacteria and 8.6 x 105 bacteria ml"1 lake water were attached to ABSP, which corresponds to 7% of the total bacterial abundance....

  10. Phosphors for near UV-Emitting LED's for Efficacious Generation of White Light

    Energy Technology Data Exchange (ETDEWEB)

    McKittrick, Joanna

    2013-09-30

    1) We studied phosphors for near-UV (nUV) LED application as an alternative to blue LEDs currently being used in SSL systems. We have shown that nUV light sources could be very efficient at high current and will have significantly less binning at both the chip and phosphor levels. We identified phosphor blends that could yield 4100K lamps with a CRI of approximately 80 and LPWnUV,opt equal to 179 for the best performing phosphor blend. Considering the fact that the lamps were not optimized for light coupling, the results are quite impressive. The main bottleneck is an optimum blue phosphor with a peak near 440 nm with a full width half maximum of about 25 nm and a quantum efficiency of >95%. Unfortunately, that may be a very difficult task when we want to excite a phosphor at ~400 nm with a very small margin for Stokes shift. Another way is to have all the phosphors in the blend having the excitation peak at 400 nm or slightly shorter wavelength. This could lead to a white light source with no body color and optimum efficacy due to no self-absorption effects by phosphors in the blend. This is even harder than finding an ideal blue phosphor, but not necessarily impossible. 2) With the phosphor blends identified, light sources using nUV LEDs at high current could be designed with comparable efficacy to those using blue LEDs. It will allow us to design light sources with multiple wattages using the same chips and phosphor blends simply by varying the input current. In the case of blue LEDs, this is not currently possible because varying the current will lower the efficacy at high current and alter the color point. With improvement of phosphor blends, control over CRI could improve. Less binning at the chip level and also at the phosphor blend level could reduce the cost of SSL light sources. 3) This study provided a deeper understanding of phosphor characteristics needed for LEDs in general and nUV LEDs in particular. Two students received Ph.D. degrees and three

  11. Blue moons and Martian sunsets.

    Science.gov (United States)

    Ehlers, Kurt; Chakrabarty, Rajan; Moosmüller, Hans

    2014-03-20

    The familiar yellow or orange disks of the moon and sun, especially when they are low in the sky, and brilliant red sunsets are a result of the selective extinction (scattering plus absorption) of blue light by atmospheric gas molecules and small aerosols, a phenomenon explainable using the Rayleigh scattering approximation. On rare occasions, dust or smoke aerosols can cause the extinction of red light to exceed that for blue, resulting in the disks of the sun and moon to appear as blue. Unlike Earth, the atmosphere of Mars is dominated by micron-size dust aerosols, and the sky during sunset takes on a bluish glow. Here we investigate the role of dust aerosols in the blue Martian sunsets and the occasional blue moons and suns on Earth. We use the Mie theory and the Debye series to calculate the wavelength-dependent optical properties of dust aerosols most commonly found on Mars. Our findings show that while wavelength selective extinction can cause the sun's disk to appear blue, the color of the glow surrounding the sun as observed from Mars is due to the dominance of near-forward scattering of blue light by dust particles and cannot be explained by a simple, Rayleigh-like selective extinction explanation.

  12. White LED visible light communication technology research

    Science.gov (United States)

    Yang, Chao

    2017-03-01

    Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.

  13. Thermal Performance Analysis of LED with Multichips

    Institute of Scientific and Technical Information of China (English)

    HAN Yuanyuan; GUO Hong; ZHANG Ximin; YIN Fazhang; CHU Ke; FAN Yeming

    2011-01-01

    The package and system level temperature and thermal stress distributions of 10 W light emitting diode (LED) with 4 chips and 100 W LED with 100 chips were investigated using finite element analysis.The chips were arranged on a Si sheet which is soldered on the copper/diamond composite slug with very high conductivity.The experimental results show that the maximal temperature appears in the chips of both two high power LEDs packages.Compared with the 10 W LEDs package with 4 chips array,the heat issue caused by stacking and coupling of the heat in 100 W LEDs package with 100 chips array is more serious.The chip temperature in the center of the array is much higher,and it decreases with the distance between the chip and the center of LEDs increases.Great thermal stress lies between the chips and the solder,which will reduce the reliability of the package.

  14. Multichip on Aluminum Metal Plate Technology for High Power LED Packaging

    Institute of Scientific and Technical Information of China (English)

    Choong-mo NAM; Mi-hee JI

    2010-01-01

    Multichip on Aluminum Metal Plate(MOAMP) technology with simple structure and low thermal resistance is developed for effective heat removal of Light Emitting Diode(LED) p-n junction and LED lighting module to have high reliability. The thermal resistance of LED modules was numerical and experimental. Thermal resistance from the junction to aluminum metal plate, considering input power of LED module using MOAMP technology, is 3.02 K/W, 3.23 K/W for the measured and calculated, respectively. We expect that the reported MOAMP technology with low thermal resistance will be a promising solution for high power LED lighting modules.

  15. LED背光源前景看好%There's an LED Backlight in Your Future

    Institute of Scientific and Technical Information of China (English)

    Steve Sechrist

    2006-01-01

    @@ LED backlight solution provider Global Lighting Technologies (GLT) (Brecksville, OH) is going to introduce a new family of LED light guides with plans to demonstrate a 24"(61 cm) LCD-TV with an LED backlight.To understand the significance of this announcement, we have to go back to a presentation given last month at the Strategies in Light (SIL) Conference held in San Francisco. There, Seoul Semiconductor VP, Dr. Jae Jo Kim, listed low efficiency (high cost) as the number one obstacle to large LCD adoption of LED lighting particularly, the number of LEDs required to adequately replace today's cold-cathode fluorescent lamps (CCFLs).

  16. New paradigms in LED photometry and colorimetry

    Science.gov (United States)

    Estrada-Hernández, A.; González-Galván, L. P.; Rosas, E.

    2009-09-01

    Motivated by the growing number of applications the light emitting diodes, LEDs, are having in solid-state lighting systems, we summarize the new internationally standardized measurement methods for photometric and colorimetric quantities in LEDs; since they are commonly used to quantify some of the key performance parameters of several products used in automotive industry, traffic signaling, etc. Finally, special emphasis is given to the mismatch corrections factors calculation, and its use when measuring LEDs photometric and colorimetric quantities.

  17. System Reliability for LED-Based Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J Lynn; Mills, Karmann; Lamvik, Michael; Yaga, Robert; Shepherd, Sarah D; Bittle, James; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy; Johnson, Cortina; Evans, Amy

    2014-04-07

    Results from accelerated life tests (ALT) on mass-produced commercially available 6” downlights are reported along with results from commercial LEDs. The luminaires capture many of the design features found in modern luminaires. In general, a systems perspective is required to understand the reliability of these devices since LED failure is rare. In contrast, components such as drivers, lenses, and reflector are more likely to impact luminaire reliability than LEDs.

  18. Quantitative color measurement of pH indicator paper using trichromatic LEDs and TCS230 color sensor

    Science.gov (United States)

    Ghorude, T. N.; Chaudhari, A. L.; Shaligram, A. D.

    2008-11-01

    Quantitative analysis of pH indicator paper color is needed in the various fields. An indigenously developed Tristimulus colorimeter is used in this work for pH Indicator paper color measurement. The colorimeter uses Trichromatic RGB LEDs and a programmable color light to frequency converter (TCS230), combining configurable silicon photodiodes and a current to frequency converter on a single monolithic CMOS integrated circuit. The output is a square wave (50% duty cycle) with frequency directly proportional to light intensity. Digital input and digital output allow directly to a microcontroller. The light to frequency converter reads an 8*8 array of photodiodes. Sixteen photodiodes have red filters, 16 photodiodes have green filters, 16 photodiodes have blue filters, and 16 photodiodes are clear with no filters. All 16 photodiodes of the same colors are connected in parallel and type of photodiode the device uses during operation is pin selectable. Solutions having different standard pH were prepared and indicator paper was dipped in solution, it shows change in color. Using the developed RGB colorimeter chromaticity coordinates were measured and compared with the chromaticity coordinates measured using Ocean Optics HR-4000 high resolution spectrophotometer.

  19. Blue Man袭东京

    Institute of Scientific and Technical Information of China (English)

    Naomi Saeki; 李宝怡

    2008-01-01

    <正>20年前在美国曼克顿风靡一时的Blue Man Group,最近在东京出现,马上成为城中话题。在东京,每年有不少舞台剧演出,但是像Blue Man Group这样备受注目的,近年罕见。Blue Man Group in Tokyo于上年12月开始公演·1个月的门票早在9月中旬

  20. Wide reflected angle DBR red light LED

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The coupled DBR LED with one DBR for reflecting normal incidence light and the other for reflecting inclined incidence light has been grown by MOCVD. For improving the conventional DBR which was used to increase light extraction efficiency in A1GaInP red light LED is analyzed. At 20 mA Dc injection current, the LED peak wave length is 630 nm, and the light intensity of on axis is 137 mcd. The output light power is 2.32 mW. The light intensity and output light power have been improved compared with the conventional LEDs.

  1. Projecting LED product life based on application

    Science.gov (United States)

    Narendran, Nadarajah; Liu, Yi-wei; Mou, Xi; Thotagamuwa, Dinusha R.; Eshwarage, Oshadhi V. Madihe

    2016-09-01

    LED products have started to displace traditional light sources in many lighting applications. One of the commonly claimed benefits for LED lighting products is their long useful lifetime in applications. Today there are many replacement lamp products using LEDs in the marketplace. Typically, lifetime claims of these replacement lamps are in the 25,000-hour range. According to current industry practice, the time for the LED light output to reach the 70% value is estimated according to IESNA LM-80 and TM-21 procedures and the resulting value is reported as the whole system life. LED products generally experience different thermal environments and switching (on-off cycling) patterns when used in applications. Current industry test methods often do not produce accurate lifetime estimates for LED systems because only one component of the system, namely the LED, is tested under a continuous-on burning condition without switching on and off, and because they estimate for only one failure type, lumen depreciation. The objective of the study presented in this manuscript was to develop a test method that could help predict LED system life in any application by testing the whole LED system, including on-off power cycling with sufficient dwell time, and considering both failure types, catastrophic and parametric. The study results showed for the LED A-lamps tested in this study, both failure types, catastrophic and parametric, exist. The on-off cycling encourages catastrophic failure, and maximum operating temperature influences the lumen depreciation rate and parametric failure time. It was also clear that LED system life is negatively affected by on-off switching, contrary to commonly held belief. In addition, the study results showed that most of the LED systems failed catastrophically much ahead of the LED light output reaching the 70% value. This emphasizes the fact that life testing of LED systems must consider catastrophic failure in addition to lumen depreciation, and

  2. Methylene Blue-Ascorbic Acid: An Undergraduate Experiment in Kinetics.

    Science.gov (United States)

    Snehalatha, K. C.; And Others

    1997-01-01

    Describes a laboratory exercise involving methylene blue and L-ascorbic acid in a simple clock reaction technique to illustrate the basic concepts of chemical kinetics. If stock solutions are supplied and each type of experiment takes no more than half an hour, the entire investigation can be completed in three practical sessions of three hours…

  3. Oxidation of Methylene Blue in Aqueous Solutions with Streamer Plasmas%流光放电等离子体液相氧化降解亚甲基蓝

    Institute of Scientific and Technical Information of China (English)

    张祥龙; 王毅; 胡小吐

    2011-01-01

    We analyzed the constitution and performance characteristics of a pulse generator,especially,the structure design of rotating spark gap switch(RSGS),which is the key part that greatly favors electrical field distortion to recover the gap insulation strength for production of streamer,and is also beneficial to simplifying insulation design and prolonging the life of the switch,etc.Moreover,we studied the effects of the main parameters,such as peak voltage,discharge frequency,concentration,volume,air bubbling.Meanwhile,we adopted streamer discharge plasma to oxidize high concentration methylene blue in the liquid phase.The experimental results show that the degradation efficiency and energy density increase with peak voltage and pulse frequency.However,pollutant degradation rate of increase is less than the rate of increase of energy,which can indicate that energy efficiency of low-voltage is higher and consumption of free radical is consistent with the characteristics of the secondary compound.Meanwhile,the electrode style and mass transfer efficiency play important roles in oxidation process.%针对染料废水常规方法难降解等问题,通过使用自行研制的高压窄脉冲电源系统,试验分析了流光放电等离子体对染料污染物主要代表亚甲基蓝(MB)的处理效果。介绍了流光电源装置的构成及工作性能,核心元件八电极旋转火花隙开关(E-RSGS)的结构设计可产生电场畸变从而减少开关开断时间,有利于流光产生;同时延长开关寿命,简化开关绝缘设计。考察了液相流光放电条件下,脉冲电压峰值等因素对亚甲基蓝去除率的影响。实验结果表明:工业质量浓度范围内,提高峰值电压和放电频率可加大注入流光的能量密度,空气曝气量即空气体积流量的增大则增强

  4. Polarized white light from LEDs using remote-phosphor layer sandwiched between reflective polarizer and light-recycling dichroic filter.

    Science.gov (United States)

    Oh, Ji Hye; Yang, Su Ji; Do, Young Rag

    2013-09-09

    This study introduces an efficient polarized, white phosphor-converted, light-emitting diode (pc-LED) using a remote phosphor film sandwiched between a reflective polarizer film (RPF) and a short-wavelength pass dichroic filter (SPDF). The on-axis brightness of polarized white light emission of a RPF/SPDF-sandwiched phosphor film over a blue LED, showed greater recovery than that of a conventional unpolarized remote phosphor film over blue LED, due to the recycling effect of yellow light from an SPDF. The relative luminous efficacy of an RPF/SPDF-sandwiched phosphor film was made 1.40 times better by adding an SPDF on the backside of an RPF-capped phosphor film. A polarization ratio of 0.84 was demonstrated for a white LED with an RPF/SPDF-sandwiched phosphor film, in good agreement with the measured results from the RPF-only sample.

  5. Exploring Service-led Growth Trajectories for Analytical Equipment Providers

    DEFF Research Database (Denmark)

    Raja, Jawwad; Frandsen, Thomas; Mouritsen, Jan

    2016-01-01

    This paper examines the dilemmas encountered by advanced analytical equipment providers in developing service-led growth strategies to expand their business in pursuit of more attractive revenue models. It does so by adopting a case based research approach. The findings detail the capabilities...... and solutions-in different contexts, with a view to expanding markets and developing solution based business models, are discussed. It is argued that analytical equipment providers encounter dilemmas as managing these different trajectories implies different needs in terms of the technological sophistication...

  6. Harnessing spectral property of dual wavelength white LED to improve vertical scanning interferometry.

    Science.gov (United States)

    Chong, Wee Keat; Li, Xiang; Soh, Yeng Chai

    2013-07-01

    Unlike a conventional white light source that emits a continuous and broad spectrum of light, the dual wavelength white light emitting diode (LED) generates white light by mixing blue and yellow lights, so there are two distinct peaks in its intensity spectrum. Prior works had shown that the spectral property of the dual wavelength white LED can affect the vertical scanning interferometry negatively if the spectral effects are not compensated. In this paper, we shall examine this issue by modeling the spectral property and variation of the dual wavelength white LED, followed by investigating its effects on the interference signal of vertical scanning interferometry. Instead of compensating the spectral effects of the dual wavelength white LED, we harness its spectral property to improve the performance of a phase-based height reconstruction algorithm in vertical scanning interferometry.

  7. Conformal phosphor coating using pulsed spray to reduce color deviation of white LEDs.

    Science.gov (United States)

    Huang, Hsin-Tao; Tsai, Chuang-Chuang; Huang, Yi-Pai

    2010-06-21

    This work presents a novel "pulsed spray (PS)" process for the coating of yellow YAG:Ce(3+) phosphor on blue InGaN-based light emitting diodes (LEDs). To coat a phosphor layer of high quality on an LED chip surface, the PS approach is used and studied because of the uniform color distribution, providing a wide range of color temperatures. This PS coating approach applies phosphor by exploiting mechanical principles without risk of chemical pollution. Additionally, it can be applied to wire-bonded LEDs and an array of LED chips on a substrate to fabricate a large-area, planar illumination system of high optical quality, which is easy to manufacture.

  8. A Color LED Driver Implemented by the Active Clamp Forward Converter

    Directory of Open Access Journals (Sweden)

    C. H. Chang

    2013-03-01

    Full Text Available Because light emitting diodes (LEDs have the advantages of dc working voltage, high luminescent efficiency, shortignition time, high reliability and pollution free, they have substituted for incandescent bulbs and fluorescent lampsgradually. In order to simplify circuit complexity, an active clamp forward converter with the sequential color display(SCD control is proposed to drive red, green and blue (RGB LED arrays. The proposed converter has zero-voltageswitching (ZVS operations of both the main switch and the auxiliary switch, resulting in high system efficiency. DrivingRGB LED arrays sequentially by one converter can save components and reduce cost significantly. Additionally, thepulse-width modulation (PWM control is applied to achieve a large chromaticity variation. The circuit operations areanalyzed in detail and the circuit parameters are designed based on the practical considerations. Finally, an illustrativeexample is implemented to demonstrate the feasibility and validity of the proposed LED driver.

  9. Phosphor-converted LEDs with low circadian action for outdoor lighting.

    Science.gov (United States)

    Zabiliūtė, Akvilė; Vaicekauskas, Rimantas; Vitta, Pranciškus; Zukauskas, Artūras

    2014-02-01

    Dichromatic phosphor-converted (pc) light-emitting diodes (LEDs) with low circadian action are proposed for low-luminance photobiologically safe outdoor illumination. The LEDs feature the partial conversion of blue radiation in an orange phosphor with the resulting correlated color temperature in the "firelight" range of 1700-2500 K. The circadian action factor, which is the ratio of the biological efficacy of radiation due to the excitation of intrinsically photosensitive retinal ganglion cells to the mesopic luminous efficacy of radiation, is considerably lower than that of commercial white pc LEDs. The equivalent general color-rendering index estimated with regard to the reduced color-discrimination ability of human vision at low luminances has appropriate values in between those of common white pc LEDs and high-pressure sodium lamp.

  10. 130 LPW 1000 Lm Warm White LED for Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter [Philips Lumileds Lighting Company LLC, San Jose, CA (United States)

    2012-12-21

    An illumination-grade warm-white LED, having correlated color temperature (CCT) between 2700 and 3500 K and capable of producing 1000 lm output at over 130 lm/W at room temperature, has been developed in this program. The high-power warm-white LED is an ideal source for use in indoor and outdoor lighting applications. Over the two year period, we have made the following accomplishments: • Developed a low-cost high-power white LED package and commercialized a series of products with CCT ranging from 2700 to 5700 K under the product name LUXEON M; • Demonstrated a record efficacy of 124.8 lm/W at a flux of 1023 lm, CCT of 3435 K and color rendering index (CRI) over 80 at room temperature in the productized package; • Demonstrated a record efficacy of 133.1 lm/W at a flux of 1015 lm, CCT of 3475 K and CRI over 80 at room temperature in an R&D package. The new high-power LED package is a die-on-ceramic surface mountable LED package. It has four 2 mm2 InGaN pump dice, flip-chip attached to a ceramic submount in a 2x2 array configuration. The submount design utilizes a design approach that combines a high-thermal- conductivity ceramic core for die attach and a low-cost and low-thermal-conductivity ceramic frame for mechanical support and as optical lens carrier. The LED package has a thermal resistance of less than 1.25 K/W. The white LED fabrication also adopts a new batch level (instead of die-by-die) phosphor deposition process with precision layer thickness and composition control, which provides not only tight color control, but also low cost. The efficacy performance goal was achieved through the progress in following key areas: (1) high-efficiency royal blue pump LED development through active region design and epitaxial growth quality improvement (funded by internal programs); (2) improvement in extraction efficiency from the LED package through improvement of InGaN-die-level and package-level optical extraction efficiency; and (3) improvement in phosphor

  11. What Is Happening when the Blue Bottle Bleaches: An Investigation of the Methylene Blue-Catalyzed Air Oxidation of Glucose

    Science.gov (United States)

    Anderson, Laurens; Wittkopp, Stacy M.; Painter, Christopher J.; Liegel, Jessica J.; Schreiner, Rodney; Bell, Jerry A.; Shakhashiri, Bassam Z.

    2012-01-01

    An investigation of the Blue Bottle Experiment, a well-known lecture demonstration reaction involving the dye-catalyzed air oxidation of a reducing sugar in alkaline solution, has delineated the sequence of reactions leading to the bleaching of the dye, the regeneration of color, and so forth. Enolization of the sugar is proposed as a key step in…

  12. Eu-, Tb-, and Dy-Doped Oxyfluoride Silicate Glasses for LED Applications

    DEFF Research Database (Denmark)

    Zhu, C.F.; Wang, J.; Zhang, M.M.

    2014-01-01

    Luminescence glass is a potential candidate for the light-emitting diodes (LEDs) applications. Here, we study the structural and optical properties of the Eu-, Tb-, and Dy-doped oxyfluoride silicate glasses for LEDs by means of X-ray diffraction, photoluminescence spectra, Commission Internationale...... de L’Eclairage (CIE) chromaticity coordinates, and correlated color temperatures (CCTs). The results show that the white light emission can be achieved in Eu/Tb/Dy codoped oxyfluoride silicate glasses under excitation by near-ultraviolet light due to the simultaneous generation of blue, green, yellow...

  13. Session 21.1 - Observations, Advances in LED Technology, and Dark Sky Protection

    Science.gov (United States)

    Duriscoe, Dan M.

    2016-10-01

    The importance of dark sky protection, potential threats to further degradation from LED technology, the announcement of a new world atlas of artificial night sky brightness, and the use of color images from the orbiting International Space Station for monitoring potential sources of light pollution were discussed in the six talks of this session. It was clear from the presentations that the work of professional astronomy depends upon continued restraint in the use of outdoor lighting, especially new LED technology, which relies upon blue-rich sources to support the advantages of high luminous efficacy and resulting energy savings.

  14. Thermal, optical, and electrical engineering of an innovative tunable white LED light engine

    Science.gov (United States)

    Trivellin, Nicola; Meneghini, Matteo; Ferretti, Marco; Barbisan, Diego; Dal Lago, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico

    2014-02-01

    Color temperature, intensity and blue spectrum of the light affects the ganglion receptors in human brain stimulating the human nervous system. With this work we review different methods for obtaining tunable light emission spectra and propose an innovative white LED lighting system. By an in depth study of the thermal, electrical and optical characteristics of GaN and GaP based compound semiconductors for optoelectronics a specific tunable spectra has been designed. The proposed tunable white LED system is able to achieve high CRI (above 95) in a large CCT range (3000 - 5000K).

  15. China Mobile: Expanding "Blue Ocean"

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Driving force is crucial for realizing high-speed growth. The strong driving force from "Blue Ocean Strategy" is an important advantage for China Mobile to realize harmonious and leap-forward development.

  16. Karner Blue Butterfly Recovery Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This recovery plan has been prepared by the Karner Blue Butterfly Recovery Team under the leadership of Dr. David Andow, University of Minnesota-St. Paul. Dr. John...

  17. Ecology of blue straggler stars

    CERN Document Server

    Carraro, Giovanni; Beccari, Giacomo

    2015-01-01

    The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.

  18. LEDs based on conjugated PPV block copolymers

    NARCIS (Netherlands)

    Brouwer, H.J.; Hilberer, A.; Krasnikov, V.V.; Werts, M.; Wildeman, J.; Hadziioannou, G.

    1997-01-01

    A way to control the bandgap in semi-conducting polymers is by preparing polymers with a partially conjugated backbone. In our laboratory, three conjugated copolymers containing PPV trimers as light emitting chromophores have been synthesized, which emit in the blue, green and orange wavelength regi

  19. Effects of spectral parameters on the light properties of red-green-blue white light-emitting diodes.

    Science.gov (United States)

    Xu, Mingsheng; Zhang, Haoxiang; Zhou, Quanbin; Wang, Hong

    2016-06-01

    Red-green-blue white light-emitting diodes (RGB-WLEDs) have great potential as commercial solid-state lighting devices, as well as visible light communication because of their high color-rendering index (CRI) and high response frequency. The quality of light of an RGB-WLED strongly depends on its spectral parameters. In this study, we fabricated RGB-WLEDs with red, blue, and green LEDs and measured the spectral power distribution (SPD). The experimental SPD is consistent with the calculated spectrum. We also measured the SPDs of LEDs with different peak wavelengths and extracted the spectral parameters, which were then used for modeling. We studied the effect of the wavelength and the full width at half-maximum (FWHM) on both the color rendering index and the luminous efficiency (LE) of the RGB-WLED using simulations. We find that the LE improves as the wavelength of the blue LED increases and the wavelength of the red LED decreases. When the wavelength of the green LED increases, the LE increases first, but later decreases. The CRI of the RGB-WLED increases with the wavelengths of the red, blue, and green LEDs first, but then decreases. The optimal wavelengths and FWHMs for maximum color-rendering and LE of the blue, green, and red LEDs are 466, 536, 606 nm; and 26.0, 34.0, and 19.5 nm, respectively.

  20. A modern perspective on the history of semiconductor nitride blue light sources

    Science.gov (United States)

    Maruska, Herbert Paul; Rhines, Walden Clark

    2015-09-01

    In this paper we shall discuss the development of blue light-emitting (LED) and laser diodes (LD), starting early in the 20th century. Various materials systems were investigated, but in the end, the nitrides of aluminum, gallium and indium proved to be the most effective. Single crystal thin films of GaN first emerged in 1968. Blue light-emitting diodes were first reported in 1971. Devices grown in the 1970s were prepared by the halide transport method, and were never efficient enough for commercial products due to contamination. Devices created by metal-organic vapor-phase epitaxy gave far superior performance. Actual true blue LEDs based on direct band-to-band transitions, free of recombination through deep levels, were finally developed in 1994, leading to a breakthrough in LED performance, as well as nitride based laser diodes in 1996. In 2014, the scientists who achieved these critical results were awarded the Nobel Prize in Physics.

  1. Fabrication of ZnO-TiO2 Nanofibers and Its Photocatalytic Activity to Methylene Blue Solution Under Sunshine%ZnO-TiO2纳米纤维的制备及亚甲基蓝的太阳光催化降解

    Institute of Scientific and Technical Information of China (English)

    鞠剑峰; 吴东辉; 石玉军

    2012-01-01

    PVP/ZnO-TiO2 composite nanofibers were fabricated by a combination of sol-gel and electrospinning methods with Ti ( 0C4H, )4, Zn ( N03 )2 and polyvinylpyrrolidone ( PVP) as starting materials. ZnO-TiO2 nanofibers of a diameter of 100 ~ 200 run were obtained by high temperature calcination of the inorganic organic PVP/ZnO-TiO2 composite fibers. The materials were characterized by means of DSC-TGA, FOR and SEM. The photocatalytic degradation of methylene blue using ZnO-TiO2 nanofiber as catalyst under sunshine was investigated. The results show that the ZnO-TiO2 nanofiber had the highest photocatalytic activity for methylene blue degradation when the doping mass fraction of ZnO was 3%. The degradation rate of methylene blue solution reached 99. 4% under sunshine for 6 h,and it was still higher than 95% after eight times' reuse.%以钛酸四丁酯[Ti(OC4H9)4]、硝酸锌和聚乙烯吡咯烷酮(PVP)为原料,采用溶胶-凝胶法和静电纺丝法制备无机有机复合的PVP/ZnO-TiO2纤维,高温焙烧制得直径100~200nm的ZnO-TiO2纳米纤维.通过差动-热重(DSC-TGA)、傅里叶变换红外光谱(FrIR)、扫描电镜(SEM)等进行了表征,并测定了其对亚甲基蓝溶液的太阳光催化性能.结果表明,w(ZnO)=3%时,ZnO-TiO2纳米纤维对亚甲基蓝催化活性最高,太阳光照射6h后降解率达99.4%,重复使用8次降解率仍然在95%以上.

  2. Control of burn wound sepsis in rats by methylene blue-mediated photodynamic treatment

    Science.gov (United States)

    Hasegawa, Hiroyuki; Sato, Shunichi; Kawauchi, Satoko; Saitoh, Daizoh; Shinomiya, Nariyoshi; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2012-02-01

    Control of wound sepsis is an important challenge in traumatology. However, increase in the drug-resistant bacteria makes this challenge considerably difficult in recent years. In this study, we attempted to control burn wound sepsis in rats by photodynamic treatment, which has been reported to be effective against some drug-resistant bacteria. A 20% TBSA (total body surface area) full-thickness burn was made in rat dorsal skin, and five days after injury, a suspension of P. aeruginosa was applied to the wound surface. At 30 min after infection, a methylene blue (MB) solution was applied to the wound surface; 5 min afterwards, the wound was illuminated with a 665-nm light emitting diode (LED) array for 10 min. This treatment (application of MB and illumination) was repeated 3 times successively. The averaged light intensity on the wound surface was 3.3 mW/cm2, the corresponding total light dose being 5.9 J/cm2. One week after injury, the numbers of bacteria in the blood and liver were counted by colony forming assay. In the liver, the number of bacteria of the treated group was significantly lower than that of the sham control group without photodynamic treatment. In the blood, no bacteria were detected in the treated group, while a certain amount of bacteria was detected in the control group. These results demonstrate the efficacy of MB-mediated PDT with a red LED array to control burn wound sepsis.

  3. Reduced Component Count RGB LED Driver

    NARCIS (Netherlands)

    De Pedro, I.; Ackermann, B.

    2008-01-01

    The goal of this master thesis is to develop new drive and contrololutions, for creating white light from mixing the light of different-color LEDs, aiming at a reduced component count resulting in less space required by the electronics and lower cost. It evaluates the LED driver concept proposed in

  4. Led Zeppelin reklaamib Narvat / Anti Ronk

    Index Scriptorium Estoniae

    Ronk, Anti

    2007-01-01

    Ilmus Narva-teemaline kahest CD-st koosnev album, kus ühel plaadil on 60 minutit videot linna vaatamisväärsuste ja informatsiooniga, teisel - briti rockansambli Led Zeppelini teosed Narva sümfooniaorkestri ja rockansambli Led R esituses

  5. Study on the clnical efficacy of epidural injection of methylene blue compound solution used for remission of cancer pain and neuropathic cancer pain%亚甲蓝硬膜外镇痛对癌痛及伴发神经病理性疼痛的疗效观察

    Institute of Scientific and Technical Information of China (English)

    李春香; 乔三福

    2016-01-01

    目的:观察亚甲蓝硬膜外用药对癌痛及伴发神经病理性疼痛的镇痛效果。方法选择疼痛部位在躯干或下肢的癌痛患者40例,其中癌痛20例,癌痛伴发神经病理性疼痛20例,根据疼痛部位选择不同硬膜外穿刺点,分别注入不同剂量的亚甲蓝混合液。观察镇痛效果、镇痛后止痛药使用情况、用药间隔期疼痛程度、有效镇痛时间及不良反应。结果20例癌痛患者镇痛效果好,较注射前镇痛用药减少60%以上,镇痛用药间隔期显著延长,有效镇痛时间在1个月以上。20例伴发神经病理性疼痛的癌痛患者镇痛效果差,较注射前镇痛用药量减少25%~50%,有效镇痛时间12~18 d。40例患者均未出现恶心、呕吐、低血压、呼吸抑制、心律变化等症状,大小便、饮食及双下肢活动均正常。结论亚甲蓝硬膜外用药对晚期癌痛疗效有显著效果,且安全可靠,未见不良反应发生。在癌痛伴发神经病理性疼痛前应用此镇痛方法,会产生更好的镇痛效果。而此镇痛方法对神经病理性疼痛类型的癌痛疗效差。%Objective To observe the analgesic effect of methylene blue compound solution used for remission of cancer pain and neuro-pathic cancer pain by epidural injection. Methods 40 patients with cancer having pain at lower extremities or lower limbs were selected for this study,20 of them suffering with cancer pain,and other 20 patients suffered from neuropathic cancer pain. Different points of spinal puncture were selected according to the different position of cancer pain with different dosage of methylene blue compound solution,it was correspondingly injec-ted into selected positions. The analgesic effect,analgesia after the usage of painkillers,the degree of pain in medication interval,the effective an-algesic duration and adverse reactions were observed. Results Better analgesic effect was found in cancer pain group(20 patients

  6. Advances in LEDs for automotive applications

    Science.gov (United States)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  7. Using LEDs to reduce energy consumption

    Science.gov (United States)

    Eweni, Chukwuebuka E.

    The most popularly used light bulb in homes is the incandescent. It is also the least energy efficient. The filament in the bulb is so thin that it causes resistance in the electricity, which in turn causes the electricity's energy to form heat. This causes the incandescent to waste a lot of energy forming heat rather than forming the light. It uses 15 lumens per watt of input power. A recorded MATLAB demonstration showcased LED versatility and how it can be used by an Arduino UNO board. The objective of this thesis is to showcase how LEDs can reduce energy consumption through the use of an Arduino UNO board and MATLAB and to discuss the applications of LED. LED will be the future of lighting homes and will eventually completely incandescent bulbs when companies begin to make the necessary improvements to the LED.

  8. Accurate colorimetric feedback for RGB LED clusters

    Science.gov (United States)

    Man, Kwong; Ashdown, Ian

    2006-08-01

    We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.

  9. Blue-shift photoluminescence from porous InAlAs

    Science.gov (United States)

    Jiang, Y. C.; Liu, F. Q.; Wang, L. J.; Yin, W.; Wang, Z. G.

    2010-11-01

    A porous InAlAs structure was first obtained by electrochemical etching. Nano-pore arrays were formed when the In0.52Al0.48As membrane was anodized at constant voltages in an HF aqueous solution. These self-assembled structures showed evident blue-shift photoluminescence emissions. While a quantum size effect alone underestimates the blue-shift energy for a sample with a relatively large average pore wall thickness, a novel effect caused by the asymmetric etching is proposed to account for this phenomenon. The results inferred from the x-ray double crystal diffraction are in good agreement with the experimental data.

  10. The Adsorption Efficiency of Chemically Prepared Activated Carbon from Cola Nut Shells by on Methylene Blue

    OpenAIRE

    Julius Ndi Nsami; Joseph Ketcha Mbadcam

    2013-01-01

    The adsorption of methylene blue from aqueous solution onto activated carbon prepared from cola nut shell has been investigated under batch mode. The influence of major parameters governing the efficiency of the process such as, solution pH, sorbent dose, initial concentration, and contact time on the removal process was investigated. The time-dependent experimental studies showed that the adsorption quantity of methylene blue increases with initial concentration and decreasing adsorbent dosa...

  11. Remote monitoring of LED lighting system performance

    Science.gov (United States)

    Thotagamuwa, Dinusha R.; Perera, Indika U.; Narendran, Nadarajah

    2016-09-01

    The concept of connected lighting systems using LED lighting for the creation of intelligent buildings is becoming attractive to building owners and managers. In this application, the two most important parameters include power demand and the remaining useful life of the LED fixtures. The first enables energy-efficient buildings and the second helps building managers schedule maintenance services. The failure of an LED lighting system can be parametric (such as lumen depreciation) or catastrophic (such as complete cessation of light). Catastrophic failures in LED lighting systems can create serious consequences in safety critical and emergency applications. Therefore, both failure mechanisms must be considered and the shorter of the two must be used as the failure time. Furthermore, because of significant variation between the useful lives of similar products, it is difficult to accurately predict the life of LED systems. Real-time data gathering and analysis of key operating parameters of LED systems can enable the accurate estimation of the useful life of a lighting system. This paper demonstrates the use of a data-driven method (Euclidean distance) to monitor the performance of an LED lighting system and predict its time to failure.

  12. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  13. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging

    Science.gov (United States)

    In this study, we develop a viability evaluation method for pepper (Capsicum annuum L.) seed based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumin...

  14. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.

    Science.gov (United States)

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang

    2015-01-26

    To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.

  15. Improving color rendering of Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} white light-emitting diodes based on dual-blue-emitting active layers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian-Wen; Zhang, Yong; Li, Shu-Ti; Yan, Qi-Rong; Zheng, Shu-Wen; He, Miao; Fan, Guang-Han [Institute of Optoelectronic Materials and Technology, South China Normal University, Tianhe District, Guangzhou 510631 (China)

    2011-08-15

    An InGaN/GaN blue-violet light-emitting diode (LED) structure and an InGaN/GaN blue LED structure were grown sequentially on the same sapphire substrate by metal-organic chemical vapor deposition (MOCVD). At the low injection current, the intensity ratio of blue-violet light to blue light was almost constant, while the blue light intensity increased gradually with increasing injection current when the latter was more than 40 mA. High color rendering has been realized for a Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} phosphor-converted white LED based on dual-blue-emitting active layers relative to a single blue-emitting active layer at the same injection current. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Low-cost composites based on porous titania–apatite surfaces for the removal of patent blue V from water: Effect of chemical structure of dye

    Directory of Open Access Journals (Sweden)

    C. El Bekkali

    2016-11-01

    Full Text Available Hydroxyapatite/titania nanocomposites (TiHAp were synthesized from a mixture of a titanium alkoxide solution and dissolution products of a Moroccan natural phosphate. The simultaneous gelation and precipitation processes occurring at room temperature led to the formation of TiHAp nanocomposites. X-ray diffraction results indicated that hydroxyapatite and anatase (TiO2 were the major crystalline phases. The specific surface area of the nanocomposites increased with the TiO2 content. Resulting TiHAp powders were assessed for the removal of the patent blue V dye from water. Kinetic experiments suggested that a sequence of adsorption and photodegradation is responsible for discoloration of dye solutions. These results suggest that such hydroxyapatite/titania nanocomposites constitute attractive low-cost materials for the removal of dyes from industrial textile effluent.

  17. Experimental study of negative capacitance in LEDs

    Institute of Scientific and Technical Information of China (English)

    FENG Lie-feng; WANG Jun; ZHU Chuan-yun; CONG Hong-xia; CHEN Yong; WANG Cun-da

    2005-01-01

    The experimental study on negative capacitance(NC) of various light-emitting diodes(LEDs) is presented.Experimental result shows that all LEDs display the NC phenomenon.The voltage modulated electroluminescence(VMEL) experiment confirms that the reason of negative capacitance is the strong recombination of the injected carriers in the active region of luminescence.The measures also verify that the dependence of NC on voltage and frequency in different LEDs is similar: NC phenomenon is more obvious with higher voltage or lower frequency.

  18. Research and Manufacturing of High Power Integrated LED Light Conversion Source%大功率集成LED光转换光源的研制

    Institute of Scientific and Technical Information of China (English)

    李茂龙; 隋玉龙; 吴粤宁; 戴兴建

    2012-01-01

    介绍了一种应用远程激发技术的大功率集成LED光转换光源,通过使用固晶区无绝缘层的镜面铝基板进行集成封装蓝光LED光源,即COB光源.所制蓝光光源与远程激发荧光粉模块结合制成LED光转换光源.利用镜面铝基板的高导热系数,解决多种LED封装形式下芯片点亮温度过高、光源衰减快的问题.采用LED荧光高分子模块与蓝光芯片分离结合的远程激发技术制成白光光源,解决荧光粉分布不均、热老化、色偏移问题.通过与传统粉胶封装方式制得的大功率集成LED器件比较测试,该种光源具有防眩光、光色均匀度高、长寿命、节能和环保的优点,从而具有更广泛的用途.%A high-power integrated LED light conversion light source applying remote excitation technique was introduced. The blue LED that is COB package blue LED through mirror-free aluminum plate without insulating layer in solid crystal area to develop to LED light conversion source with remote excited phosphor module. The problems of lots of package chip light temperature too high and light attenuation too fast were solved by using high thermal conductivity coefficient of mirror aluminum plate. And it is an effective solution to the issue of uneven distribution of phosphor, thermal aging of phosphor and color offset. Compared with traditional phosphor and resin glue package pattern, the high-power LED has the advantages of anti-dazzle, high light color degree of homogeneity, long life, energy saving, and environmental protection, so as to achieve more widely uses.

  19. Comparison of Riboflavin and Toluidine Blue O as Photosensitizers for Photoactivated Disinfection on Endodontic and Periodontal Pathogens In Vitro.

    Science.gov (United States)

    Nielsen, Henrik Krarup; Garcia, Javier; Væth, Michael; Schlafer, Sebastian

    2015-01-01

    Photoactivated disinfection has a strong local antimicrobial effect. In the field of dentistry it is an emerging adjunct to mechanical debridement during endodontic and periodontal treatment. In the present study, we investigate the effect of photoactivated disinfection using riboflavin as a photosensitizer and blue LED light for activation, and compare it to photoactivated disinfection with the widely used combination of toluidine blue O and red light. Riboflavin is highly biocompatible and can be activated with LED lamps at hand in the dental office. To date, no reports are available on the antimicrobial effect of photoactivated disinfection using riboflavin/blue light on oral microorganisms. Planktonic cultures of eight organisms frequently isolated from periodontal and/or endodontic lesions (Aggregatibacter actinomycetemcomitans, Candida albicans, Enterococcus faecalis, Escherischia coli, Lactobacillus paracasei, Porphyromonas gingivalis, Prevotella intermedia and Propionibacterium acnes) were subjected to photoactivated disinfection with riboflavin/blue light and toluidine blue O/red light, and survival rates were determined by CFU counts. Within the limited irradiation time of one minute, photoactivated disinfection with riboflavin/blue light only resulted in minor reductions in CFU counts, whereas full kills were achieved for all organisms when using toluidine blue O/red light. The black pigmented anaerobes P. gingivalis and P. intermedia were eradicated completely by riboflavin/blue light, but also by blue light treatment alone, suggesting that endogenous chromophores acted as photosensitizers in these bacteria. On the basis of our results, riboflavin cannot be recommended as a photosensitizer used for photoactivated disinfection of periodontal or endodontic infections.

  20. "Clothed in triple blues": sorting out the Italian blues.

    Science.gov (United States)

    Bimler, David; Uusküla, Mari

    2014-04-01

    Cross-cultural comparisons of color perception and cognition often feature versions of the "similarity sorting" procedure. By interpreting the assignment of two color samples to different groups as an indication that the dissimilarity between them exceeds some threshold, sorting data can be regarded as low-resolution similarity judgments. Here we analyze sorting data from speakers of Italian, Russian, and English, applying multidimensional scaling to delineate the boundaries between perceptual categories while highlighting differences between the three populations. Stimuli were 55 color swatches, predominantly from the blue region. Results suggest that at least two Italian words for "blue" are basic, a similar situation to Russian, in contrast to English where a single "blue" term is basic.

  1. Lateral epitaxial overgrowth of aluminum nitride and near ultraviolet LEDs for white lighting applications

    Science.gov (United States)

    Newman, Scott A.

    In recent years, substantial efforts have been made to develop deep ultraviolet AlGaN-based LEDs (200-280 nm) for specialized applications such as bio-detection and non-line-of-sight (NLOS) communications. One of several factors limiting the performance of these devices is the high threading dislocation (TD) density of ˜5x109 cm-2 that results from growing the required AlN base layer on either a SiC or sapphire substrate. Lateral epitaxial overgrowth (LEO) of AlN, the first topic of this dissertation, is a promising technology for growing low TD density AlN templates. Conventional LEO methods relying on selective area growth (SAG) have not been effective for AlxGa1-xN with x > 0.2, because of the high aluminum sticking coefficient for the mask materials and/or contamination of the film by the mask. Therefore, maskless AlN LEO was investigated using metal organic chemical vapor deposition (MOCVD) and hydride vapor phase epitaxy (HVPE). Cracked AlN films with TD densities of LEDs for white lighting applications. Currently, cool white LEDs consisting of a blue GaN/InGaN LED and the YAG:Ce3+ yellow phosphor are available with 107 lm/W efficacy, but have have high correlated color temperatures (CCTs) of ˜5,500 K and poor color rendering indices (CRIs) of ˜75. The alternative approach of combining a NUV LED with suitable NUV-excitation phosphors (e.g., red, green, and blue phosphors) can theoretically allow for high CRI white lighting with relatively good efficacy and a variety of CCTs. When this project began in late 2007, the lack of suitable blue-excitation phosphors suggested that this was the only viable approach to attaining very high CRI white lighting. NUV LEDs with AlN buffers on 6H-SiC substrates and AlGaN/InGaN active regions were first developed to target white phosphors with excitation peaks near 365 nm. Later, NUV LEDs with GaN buffers on sapphire substrates and GaN/InGaN active regions were developed to diagnose problems with the AlGaN/InGaN LEDs and to

  2. Straightforward fabrication of stable white LEDs by embedding of inorganic UV-LEDs into bulk polymerized polymethyl-methacrylate doped with organic dyes

    Science.gov (United States)

    di Martino, Daniela; Beverina, Luca; Sassi, Mauro; Brovelli, Sergio; Tubino, Riccardo; Meinardi, Francesco

    2014-03-01

    Stable white-emitting down-converted LEDs are straightforwardly prepared by bulk polymerization of an organic dye doped polymethyl-methacrylate (PMMA) shell directly on top of a highly efficient commercial blue-emitting InGaN LED. Our optimized polymerization procedure allows for extending the form factor of achievable luminescence converter (LUCO) material beyond the conventional thin film form and to directly produce devices with light bulb design. The selected organic dyes, the blue-emitting Coumarin 30 and a red-emitting diketopyrrolopyrrole derivative, exhibit high compatibility with the free radical polymerization reaction of the PMMA matrix and ensure high stability of the final hybrid device. The control of both the thickness of the PMMA shell and the concentration of the dopant dyes allow for fine tuning of the emission color of the LUCO LED and to obtain white light with CIE chromatic coordinates x = 0.32 and y = 0.33, with rendering index as high as 80. This simple and versatile procedure is not dye-exclusive and is therefore extendable to other molecular systems for color-tunable efficient solid-state lighting sources.

  3. Sediment balances in the Blue Nile River Basin

    Institute of Scientific and Technical Information of China (English)

    Yasir SAALI; Alessandra CROSATO; Yasir AMOHAMED; Seifeldin HABDALLA; Nigel GWRIGHT

    2014-01-01

    Rapid population growth in the upper Blue Nile basin has led to fast land-use changes from natural forest to agricultural land. This resulted in speeding up the soil erosion process in the highlands and increasing sedimentation further downstream in reservoirs and irrigation canals. At present, several dams are planned across the Blue Nile River in Ethiopia and the Grand Ethiopian Renaissance Dam is currently under construction near the border with Sudan. This will be the largest hydroelectric power plant in Africa. The objective of this paper is to quantify the river flows and sediment loads along the Blue Nile River network. The Soil and Water Assessment Tool was used to estimate the water flows from un-gauged sub-basins. To assess model performance, the estimated sediment loads were compared to the measured ones at selected locations. For the gauged sub-basins, water flows and sediment loads were derived from the available flow and sediment data. To fill in knowledge gaps, this study included a field survey in which new data on suspended solids and flow discharge were collected along the Blue Nile and on a number of tributaries. The comparison between the results of this study and previous estimates of the sediment load of the Blue Nile River at El Deim, near the Ethiopian Sudanese border, show that the sediment budgets have the right order of magnitude, although some uncertainties remain. This gives confidence in the results of this study providing the first sediment balance of the entire Blue Nile catchment at the sub-basin scale.

  4. Dyes adsorption blue vegetable and blue watercolor by natural zeolites modified with surfactants;Adsorcion de colorantes azul vegetal y azul acuarela por zeolitas naturales modificadas con surfactantes

    Energy Technology Data Exchange (ETDEWEB)

    Jardon S, C. C.; Olguin G, M. T. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Diaz N, M. C., E-mail: teresa.olguin@inin.gob.m [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Ex-Rancho la Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2009-07-01

    In this work was carried out the dyes removal blue vegetable and blue watercolor of aqueous solutions, to 20 C, at different times and using a zeolite mineral of Parral (Chihuahua, Mexico) modified with hexadecyl trimethyl ammonium bromide or dodecyl trimethyl ammonium bromide. The zeolite was characterized before and after of its adaptation with NaCl and later with HDTMABr and DTMABr. For the materials characterization were used the scanning electron microscopy of high vacuum; elementary microanalysis by X-ray spectroscopy of dispersed energy and X-ray diffraction techniques. It was found that the surfactant type absorbed in the zeolite material influences on the adsorption process of the blue dye. Likewise, the chemical structure between the vegetable blue dye and the blue watercolor, determines the efficiency of the color removal of the water, by the zeolites modified with the surfactants. (Author)

  5. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light.

    Science.gov (United States)

    Das, Probir; Lei, Wang; Aziz, Siti Sarah; Obbard, Jeffrey Philip

    2011-02-01

    Biomass productivity and fatty acid methyl esters (FAME) derived from intracellular lipid of a Nannochloropsis sp. isolated from Singapore's coastal waters were studied under different light wavelengths and intensities. Nannochloropsis sp., was grown in both phototrophic and mixotrophic (glycerol as the carbon source) culture conditions in three primary monochromatic light wavelengths, i.e., red, green and blue LEDs, and also in white LED. The maximum specific growth rate (μ) for LEDs was blue>white>green>red. Nannochloropsis sp. achieved a μ of 0.64 and 0.66 d(-1) in phototrophic and mixotrophic cultures under blue lighting, respectively. The intracellular fatty acid composition of Nannochloropsis sp. varied between cultures exposed to different wavelengths, although the absolute fatty acid content did differ significantly. Maximum FAME yield from Nannochloropsis sp. was 20.45% and 15.11% of dry biomass weight equivalent under photo- and mixotrophic culture conditions respectively for cultures exposed to green LED (550 nm). However, maximum volumetric FAME yield was achieved for phototrophic and mixotrophic cultures (i.e., 55.13 and 111.96 mg/l, respectively) upon cell exposure to blue LED (470 nm) due to highest biomass productivity. It was calculated that incremental exposure of light intensity over the cell growth cycle saves almost 20% of the energy input relative to continuous illumination for a given light intensity.

  6. The use of light-emitting diodes (LED in commercial layer production

    Directory of Open Access Journals (Sweden)

    R Borille

    2013-06-01

    Full Text Available Artificial lighting is one of the most powerful management tools available to commercial layer producers. Artificial light allows anticipating or delaying the beginning of lay, improving egg production, and optimizing feed efficiency. This study aimed at comparing the performance of commercial layers submitted to lighting using different LED colors or conventional incandescent lamps. The study was carried out in a layer house divided in isolated environments in order to prevent any influenced from the neighboring treatments. In total, 360 Isa Brown layers, with an initial age of 56 weeks, were used. The following light sources were used: blue LED, yellow LED, green LED, red LED, white LED, and 40W incandescent light. Birds in all treatment were submitted to a 17-h continuous lighting program, and were fed a corn and soybean meal-based diet. A completely randomized experimental design with subplots was applied, with 24 treatments (six light sources and four periods of three replicates. Egg production (% was significantly different (p0.05 by light source. It was concluded that the replacement of incandescent light bulbs by white and red LEDs does not cause any negative effect on the egg production of commercial layers.

  7. Determining contrast sensitivity functions for monochromatic light emitted by high-brightness LEDs

    Science.gov (United States)

    Ramamurthy, Vasudha; Narendran, Nadarajah; Freyssinier, Jean Paul; Raghavan, Ramesh; Boyce, Peter

    2004-01-01

    Light-emitting diode (LED) technology is becoming the choice for many lighting applications that require monochromatic light. However, one potential problem with LED-based lighting systems is uneven luminance patterns. Having a uniform luminance distribution is more important in some applications. One example where LEDs are becoming a viable alternative and luminance uniformity is an important criterion is backlighted monochromatic signage. The question is how much uniformity is required for these applications. Presently, there is no accepted metric that quantifies luminance uniformity. A recent publication proposed a method based on digital image analysis to quantify beam quality of reflectorized halogen lamps. To be able to employ such a technique to analyze colored beams generated by LED systems, it is necessary to have contrast sensitivity functions (CSFs) for monochromatic light produced by LEDs. Several factors including the luminance, visual field size, and spectral power distribution of the light affect the CSFs. Although CSFs exist for a variety of light sources at visual fields ranging from 2 degrees to 20 degrees, CSFs do not exist for red, green, and blue light produced by high-brightness LEDs at 2-degree and 10-degree visual fields and at luminances typical for backlighted signage. Therefore, the goal of the study was to develop a family of CSFs for 2-degree and 10-degree visual fields illuminated by narrow-band LEDs at typical luminances seen in backlighted signs. The details of the experiment and the results are presented in this manuscript.

  8. Computational Techniques for LED Optical Microcavities

    OpenAIRE

    García Santiago, Xavier

    2015-01-01

    The project consist on the development of numerical methods and computational techniques to model the processes of light extraction in power LED (Light-Emitting Diodes) devices. We aim at the use of complex corrugated microstructures to boost the efficiency of our current LUXEON LED products. In order to study extraction efficiency in these devices a 3D optics model of thin film micro-structures must be developed and tested. In this project we develop a numerical model for computing and st...

  9. A new method to manipulate broiler chicken growth and metabolism: Response to mixed LED light system

    Science.gov (United States)

    Yang, Yefeng; Yu, Yonghua; Pan, Jinming; Ying, Yibin; Zhou, Hong

    2016-05-01

    Present study introduced a new method to manipulate broiler chicken growth and metabolism by mixing the growth-advantage LED. We found that the green/blue LED mixed light system (G-B and G × B) have the similar stimulatory effect on chick body weight with single green light and single blue light (G and B), compared with normal artificial light (P = 0.028). Moreover, the percentage of carcass was significantly greater in the mixed light (G × B) when compared with the single light (P = 0.003). Synchronized with body weight, the mixed light (G-B and G × B) had a significant improved influence on the feed conversion of birds compared with normal light (P = 0.002). A significant improvement in feed conversion were found in mixed light (G × B) compared with single LED light (P = 0.037). G group resulted in a greater high-density lipoprotein cholesterol level than B group (P = 0.002), whereas B group resulted in a greater low-density lipoprotein cholesterol level than G group (P = 0.017). The mixed light significantly increased the birds’ glucose level in comparison with the single light (P = 0.003). This study might establish an effective strategy for maximizing growth of chickens by mixed LED technology.

  10. Blue light inhibits the growth of B16 melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Kawashima, Yuzo [Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima (Japan)

    2002-05-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm{sup 2}) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  11. LEDS GP Success Story: Fostering Coordinated LEDS Support in Kenya (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-03-01

    The LEDS Global Partnership (LEDS GP) strives to advance climate-resilient, low-emission development through catalyzing collaboration, information exchange, and action on the ground. The Government of Kenya is a key LEDS GP member and offers an inspiring example of how LEDS GP is having an impact globally. The 2012 LEDS Collaboration in Action workshop in London provided an interactive space for members to share experiences on cross-ministerial LEDS leadership and to learn about concrete development impacts of LEDS around the world. Inspired by these stories, the Kenya's Ministry of State for Planning, National Development and Vision 2030 (MPND) began to collaborate closely with the Ministry of Environment and Mineral Resources to create strong links between climate change action and development in the country, culminating in the integration of Kenya's National Climate Change Action Plan and the country's Medium Term Development Plan.

  12. New Design of a Low Cost Analogue Current Supply for Power LEDs

    Directory of Open Access Journals (Sweden)

    Radu Bogdan Dragomir

    2013-04-01

    Full Text Available The present paper proposes an innovative and inductive ballast-based power LED supply. This new design LED powering solution is a cost-efficient alternative to high-end switching mode power supply (SMPS used to feed LED clusters. The current supply circuit topology will be explained. The AC component of the LED current is analysed both from the ballast inductance and the value of the DC filtering capacitor standpoint. The PSIM and MATLAB tools have been used to simulate the circuit output when different ballast voltage conditions will be applied. Transitory and steady-state driver performances have been taken into account.

  13. Agminated blue nevus - Case report*

    Science.gov (United States)

    Lisboa, Alice Paixão; Silvestre, Keline Jácome; Pedreira, Renata Leite; Alves, Natália Ribeiro de Magalhães; Obadia, Daniel Lago; Azulay-Abulafia, Luna

    2016-01-01

    Blue nevi are benign melanocytic lesions located in the deeper reticular dermis, consequence of failure of melanocytic migration into the dermal-epidermal junction from the neural crest. Lesions are usually asymptomatic and solitary, but may present in a multiple or agminated (grouped) pattern. The agminated subtype is formed when bluish-pigmented lesions cluster together in a well-defined area. Lesions can be flat or raised. We report the case of a patient who presented multiple bluish macules (1-3 mm in diameter) grouped on the left upper back. Dermoscopy and anatomic pathological examination were consistent with blue nevus. PMID:27828645

  14. Mapping the formation areas of giant molybdenum blue clusters: a spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Botar, Bogdan; Ellern, Arkady; Kogerler, Paul

    2012-05-18

    The self-assembly of soluble molybdenum blue species from simple molybdate solutions has primarily been associated with giant mixed-valent wheel-shaped cluster anions, derived from the {MoV/VI154/176} archetypes, and a {MoV/VI368} lemon-shaped cluster. The combined use of Raman spectroscopy and kinetic precipitation as self-assembly monitoring techniques and single-crystal X-ray diffraction is key to mapping the realm of molybdenum blue species by establishing spherical {MoV/VI102}-type Keplerates as an important giant molybdenum blue-type species. We additionally rationalize the empirical effect of reducing agent concentration on the formation of all three relevant skeletal types: wheel, lemon and spheres. Whereas both wheels and the lemon-shaped {MoV/VI368} cluster are obtained from weakly reduced molybdenum blue solutions, considerably higher reduced solutions lead to {MoV/VI102}-type Keplerates.

  15. Fast and considerable adsorption of methylene blue dye onto graphene oxide.

    Science.gov (United States)

    Zhang, Wenjie; Zhou, Chunjiao; Zhou, Weichang; Lei, Aihua; Zhang, Qinglin; Wan, Qiang; Zou, Bingsuo

    2011-07-01

    The quite efficient adsorption of methylene blue dye from an aqueous solution by graphene oxide was studied. The favorable electrostatic attraction is the main interaction between methylene blue and graphene oxide. As graphene oxide has the special nanostructural properties and negatively charged surface, the positively charged methylene blue molecules can be easily adsorbed on it. In the aqueous solution of methylene blue at 293 K, the adsorption data could be fitted by the Langmuir equation with a maximum adsorption amount of 1.939 mg/mg and a Langmuir adsorption equilibrium constant of 18.486 mL/mg. The adsorption amount increased with the increase of the solution pH (3-11), was not affected significantly by KCl under the examined condition and the adsorption process was exothermic in nature. The fast and considerable adsorption of graphene oxide could be regarded as a potential adsorbent for cationic dye removal in wastewater treatment process.

  16. Synthesis and Photoelectrical Properties of Two Potential Solution-Processed Blue Fluorescent Emitters Based on Fluorene-Arylamine Derivatives End-Capped with Anthracene/Pyrene Molecules%基于蒽/芘分子封端的芴-芳胺衍生物的可溶液加工的蓝光材料的合成与光电性质

    Institute of Scientific and Technical Information of China (English)

    欧阳密; 吴启超; 余振伟; 李洪飞; 张诚

    2014-01-01

    Two novel potential solution-processed blue fluorescent emitters composed of a core fluorene-diphenylamine unit capped with either anthracene (FAn) or pyrene (FPy) were synthesized and characterized. They were both soluble in common organic solvents and solutions gave smooth films after spin coating. Their optical properties in solution and in the film were investigated by UV-visible and photoluminescence (PL) spectroscopy. The PL emission maximum of FAn and FPy in the film state were found to be 449 and 465 nm, respectively. The electrochemical properties of the as-prepared samples were studied by cyclic voltammetry. The estimated highest occupied molecular orbital (HOMO) energy levels were-5.37 and-5.36 eV for FAn and FPy, respectively. These results indicate that the introduction of diphenylamine effectively prevents plane stacking of the molecules in the solid state, which suppresses the formation of long-wavelength aggregates, and the high HOMO levels enhance the hole-injection ability of the compounds. The results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) indicate that the two materials have excellent thermal stability with the glass transition temperature of FAn reaching 207 °C and the thermal decomposition temperature as high as 439 ° C. The good performance of the fluorescent emitters makes them promising candidates as solution-processed blue organic light-emitting diodes.%合成了两类分别基于芘和蒽封端的芴-芳胺衍生物(FAn, FPy)的新型可溶液加工蓝色发光分子,两种材料均溶于常规的有机溶剂,并且可以旋涂成膜.通过紫外-可见光谱和荧光光谱对其在溶液中和固态薄膜下的光学性能进行了表征,发现这两类分子在固态下发射峰分别位于449和465 nm,属于蓝色发光材料.并通过循环伏安法表征了其电化学性能,计算得出FAn和FPy的最高占据分子轨道(HOMO)能级分别为-5.37和-5.36 eV.结果表明N-己基二苯胺

  17. Optimizing Blue Persistent Luminescence in (Sr 1-δ Ba δ ) 2 MgSi 2 O 7: Eu 2+ ,Dy 3+ via Solid Solution for Use in Point-of-Care Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Erin [Univ. of Houston, TX (United States). Dept. of Chemistry; Cobb, Angelica [Univ. of Houston, TX (United States). Dept. of Chemistry; Duke, Anna [Univ. of Houston, TX (United States). Dept. of Chemistry; Paterson, Andrew [Luminostics Inc., Houston, TX (United States); Univ. of Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Brgoch, Jakoah [Univ. of Houston, TX (United States). Dept. of Chemistry

    2016-09-16

    Inorganic persistent luminescent phosphors are an excellent class of optical reporters for enabling sensitive point-of-care diagnostics, particularly with smartphone-based biosensing devices in testing formats such as the lateral flow assay (LFA). Here, the development of persistent phosphors for this application is focused on the solid solution (Sr1-δBaδ)2MgSi2O7:Eu2+,Dy3+ (δ = 0, 0.125, 0.25, 0.375), which is prepared using a high-temperature solid-state reaction as confirmed by synchrotron X-ray powder diffraction. The substitution of barium for strontium enables control over the Eu2+ 5d-orbital crystal field splitting (CFS) as a tool for tuning the emission wavelength while maintaining luminescence lifetimes >9 min across the composition range. Thermoluminescence measurements of the solid solution provide evidence that trap states contribute to the persistent lifetimes with the trap depths also remaining constant as a function of composition. Time-gated luminescence images of these compounds are captured on a smartphone arranged in a layout to mimic a point-of-care test and demonstrate the viability of using these materials as optical reporters. Moreover, comparing the blue-emitting (Sr0.625Ba0.375)2MgSi2O7:Eu2+,Dy3+ and the green-emitting SrAl2O4:Eu2+,Dy3+ in a single LFA-type format shows these two compounds can be detected and resolved simultaneously, thereby permitting the development of a multiplexed LFA.

  18. Degradation and corresponding failure mechanism for GaN-based LEDs

    Science.gov (United States)

    Fu, Jiajia; Zhao, Lixia; Cao, Haicheng; Sun, Xuejiao; Sun, Baojuan; Wang, Junxi; Li, Jinmin

    2016-05-01

    The degradation behaviors of high power GaN-based vertical blue LEDs on Si substrates were measured using in-situ accelerated life test. The results show that the dominant failure mechanism would be different during the operation. Besides that, the corresponding associated failure mechanisms were investigated systematically by using different analysis technologies, such as Scan Electron Microscopy, Reflectivity spectroscopy, Transient Thermal Analysis, Raman Spectra, etc. It is shown that initially, the failure modes were mainly originated from the semiconductor die and interconnect, while afterwards, the following serious deterioration of the radiant fluxes was attributed to the package. The interface material and quality, such as die attach and frame, play an important role in determining the thermal performance and reliability. In addition, the heating effect during the operation will also release the compressive strain in the chip. These findings will help to improve the reliability of GaN-based LEDs, especially for the LEDs with vertical structure.

  19. Controlled preparation of aluminum borate powders for the development of defect-related phosphors for warm white LED lighting

    Science.gov (United States)

    Guimarães, Vinicius F.; Salaün, Mathieu; Burner, Pauline; Maia, Lauro J. Q.; Ferrier, Alban; Viana, Bruno; Gautier-Luneau, Isabelle; Ibanez, Alain

    2017-03-01

    The optimization of the elaboration conditions of a new family of highly emissive white phosphors based on glassy yttrium aluminum borates (g-YAB) compositions is presented. Their preparation from solutions is based on the polymeric precursor method (modified Pechini process), involving non-toxic and low cost precursors. The resulting resins were first dried at moderate temperatures followed by two-step annealing treatments of the obtain powders under controlled atmospheres: a first pyrolysis under nitrogen followed by a calcination under oxygen. This favored the gradual oxidation of organic moieties coming from starting materials, avoiding uncontrolled self-combustion reactions, which generate localized hot spots. This prevented phase segregations and the formation of pyrolytic carbon or carbonates, which are strongly detrimental to the luminescence properties. Thus, coupled chemical analyses and luminescence characterizations showed the high chemical homogeneity of the resulting powders and their intense emissions in the whole visible range. These emissions can be tuned from blue to warm white by adjusting the calcination temperature that is an important advantage for the development of LED devices. We showed that impurities of monovalent and divalent cations act as quenching emission centers for these phosphors. Therefore, by increasing the purity grade, we significantly enhanced the PL emissions leading to high internal quantum yields (80-90%). Finally, cathodoluminescence emissions showed the homogeneous dispersion of emitting centers in the g-YAB matrix.

  20. A portable, inexpensive and microcontrolled spectrophotometer based on white LED as light source and CD media as diffraction grid.

    Science.gov (United States)

    Veras, Germano; Silva, Edvan Cirino; Silva Lyra, Wellington; Soares, Sófacles Figueredo Carreiro; Guerreiro, Thiago Brito; Santos, Sérgio Ricardo Bezerra

    2009-01-15

    A portable, microcontrolled and low-cost spectrophotometer (MLCS) is proposed. The instrument combines the use of a compact disc (CD) media as diffraction grid and white light-emitting diode (LED) as radiation source. Moreover, it employs a phototransistor with spectral sensitivity in visible region as phototransductor, as well as a programmable interrupt controller (PIC) microcontroller as control unit. The proposed instrument was successfully applied to determination of food colorants (tartrazine, sunset yellow, brilliant blue and allura red) in five synthetics samples and Fe(2+) in six samples of restorative oral solutions. For comparison purpose, two commercial spectrophotometers (HP and Micronal) were employed. The application of the t-paired test at the 95% confidence level revealed that there are not significant differences between the concentration values estimated by the three instruments. Furthermore, a good precision in the analyte concentrations was obtained by using MLCS. The overall relative standard deviation (R.S.D.) of each analyte was smaller than 1.0%. Therefore, the proposed instrument offers an economically viable alternative for spectrophotometric chemical analysis in small routine, research and/or teaching laboratories, because its components are inexpensive and of easy acquisition.

  1. Optical communications. V - Light emitting diodes /LED/

    Science.gov (United States)

    Best, S. W.

    1980-10-01

    The process of assembling diode chips is discussed, along with their application in optical communications. Metal plating is performed with an evaporation technique using primarily AuGe on the back side and Al or AuZn on the front side. The assembling of LED-chips with metal casings is illustrated. The chip is mounted on a flat bottom plate and electrical contact is established by means of an alloying or adhesion procedure. A glass fiber can be attached to the diode and then fitted with a casing, or the diode can be assembled with a metal cap and a lense, or with an open cap that is sealed with a clear synthetic resin plastic. The typical emission spectra of an LED and a semiconductor laser are compared. Limitations in the operation of an LED in a photoconductor are examined, taking into account spectral line width and radiated power criteria.

  2. Fractal properties of LED avalanche breakdown

    Directory of Open Access Journals (Sweden)

    Antonina S. Shashkina

    2016-12-01

    Full Text Available The conventional model of the processes occurring in the course of a p–n-junction's partial avalanche breakdown has been analyzed in this paper. Microplasma noise spectra of industrially produced LEDs were compared with those predicted by the model. It was established that the data obtained experimentally on reverse-biased LEDs could not be described in terms of this model. The degree to which the fractal properties were pronounced was shown to be variable by changing the reverse voltage. The discovered fractal properties of microplasma noise can serve as the basis for further studies which are bound to explain the breakdown characteristics of real LEDs and to correct the conventional model of p–n-junction's avalanche breakdown.

  3. Modeling the radiation pattern of LEDs.

    Science.gov (United States)

    Moreno, Ivan; Sun, Ching-Cherng

    2008-02-01

    Light-emitting diodes (LEDs) come in many varieties and with a wide range of radiation patterns. We propose a general, simple but accurate analytic representation for the radiation pattern of the light emitted from an LED. To accurately render both the angular intensity distribution and the irradiance spatial pattern, a simple phenomenological model takes into account the emitting surfaces (chip, chip array, or phosphor surface), and the light redirected by both the reflecting cup and the encapsulating lens. Mathematically, the pattern is described as the sum of a maximum of two or three Gaussian or cosine-power functions. The resulting equation is widely applicable for any kind of LED of practical interest. We accurately model a wide variety of radiation patterns from several world-class manufacturers.

  4. Blue Ocean vs. Five Forces

    NARCIS (Netherlands)

    A.E. Burke (Andrew); A.J. van Stel (André); A.R. Thurik (Roy)

    2010-01-01

    textabstractThe article reports on the authors' research in the Netherlands which focused on a profit model in Dutch retail stores and a so-called blue-ocean approach which requires a new market that attracts consumers and increases profits. Topics include the competitive strategy approach to increa

  5. Blue rubber bleb naevus syndrome

    DEFF Research Database (Denmark)

    Lybecker, Martin Bell; Stawowy, Marek; Clausen, Niels

    2016-01-01

    Blue rubber bleb naevus syndrome (BRBNS) is a rare vascular disorder with malformed veins, or blebs, appearing in the skin or internal organs. Gastrointestinal tract involvement is the most common feature and often subject to bleeding, potentially resulting in chronic occult blood loss and iron...

  6. The blue revolution in asia

    DEFF Research Database (Denmark)

    Jespersen, Karen Sau; Ponte, Stefano; Kelling, Ingrid

    2014-01-01

    In this article, we examine the upgrading trajectories of selected aquaculture value chains in four Asian countries and the links between upgrading and three factors of value chain governance: coordination mechanisms; types of drivers; and domestic regulation. We find instances of improving produ...... of upgrading the "blue revolution" in Asia...

  7. LED Device Illuminates New Path to Healing

    Science.gov (United States)

    2008-01-01

    Among NASA s research goals is increased understanding of factors affecting plant growth, including the effects of microgravity. Impeding such studies, traditional light sources used to grow plants on Earth are difficult to adapt to space flight, as they require considerable amounts of power and produce relatively large amounts of heat. As such, an optimized experimental system requires much less energy and reduces temperature variance without negatively affecting plant growth results. Ronald W. Ignatius, founder and chairman of the board at Quantum Devices Inc. (QDI), of Barneveld, Wisconsin, proposed using light-emitting diodes (LEDs) as the photon source for plant growth experiments in space. This proposition was made at a meeting held by the Wisconsin Center for Space Automation and Robotics, a NASA-sponsored research center that facilitates the commercialization of robotics, automation, and other advanced technologies. The Wisconsin group teamed with QDI to determine whether an LED system could provide the necessary wavelengths and intensities for photosynthesis, and the resultant system proved successful. The center then produced the Astroculture3, a plant growth chamber that successfully incorporated this LED light source, which has now flown on several space shuttle missions. NASA subsequently identified another need that could be addressed with the use of LEDs: astronaut health. A central concern in astronaut health is maintaining healthy growth of cells, including preventing bone and muscle loss and boosting the body s ability to heal wounds all adversely affected by prolonged weightlessness. Thus, having determined that LEDs can be used to grow plants in space, NASA decided to investigate whether LEDs might be used for photobiomodulation therapy (PBMT).

  8. Removal of biological stains from aqueous solution using a flow-through decontamination procedure.

    Science.gov (United States)

    Lunn, G; Klausmeyer, P J; Sansone, E B

    1994-01-01

    Chromatography columns filled with Amberlite XAD-16 were used to decontaminate, using a continuous flow-through procedure, aqueous solutions of the following biological stains: acridine orange, alcian blue 8GX, alizarin red S, azure A, azure B, brilliant blue G, brilliant blue R, Congo red, cresyl violet acetate, crystal violet, eosin B, eosin Y, erythrosin B, ethidium bromide, Giemsa stain, Janus green B, methylene blue, neutral red, nigrosin, orcein, propidium iodide, rose Bengal, safranine O, toluidine blue O, and trypan blue. Adsorption was most efficient for stains of lower molecular weight (removing stains from aqueous solution.

  9. LED module with high index lens

    Energy Technology Data Exchange (ETDEWEB)

    Bierhuizen, Serge J.; Wang, Nanze Patrick; Eng, Gregory W.; Sun, Decai; Wei, Yajun

    2016-07-05

    An array of housings with housing bodies and lenses is molded, or an array of housing bodies is molded and bonded with lenses to form an array of housings with housing bodies and lenses. Light-emitting diodes (LEDs) are attached to the housings in the array. An array of metal pads may be bonded to the back of the array or insert molded with the housing array to form bond pads on the back of the housings. The array is singulated to form individual LED modules.

  10. Preparation of Bismuth Oxide Photocatalyst and Its Application in White-light LEDs

    Directory of Open Access Journals (Sweden)

    Yen-Chang Chu

    2013-01-01

    Full Text Available Bismuth oxide photocatalysts were synthesized and coated on the front surface of phosphor-converted white light-emitting diodes to produce a safe and environmentally benign lighting source. Bismuth oxide photocatalyst powders were synthesized with a spray pyrolysis method at 500°C, 600°C, 700°C, and 800°C. Using the absorption spectrum in the blue and UV regions of the bismuth oxide photocatalysts, the blue light and UV leakage problems of phosphor-converted white LEDs can be significantly reduced. The experimental results showed that bismuth oxide photocatalyst synthesized at 700°C exhibited the most superior spectrum inhibiting ability. The suppressed ratio reached 52.33% in the blue and UV regions from 360 to 420 nm. Related colorimetric parameters and the photocatalyst decomposition ability of fabricated white-light LEDs were tested. The CIE chromaticity coordinates (x,y were (0.349, 0.393, and the correlated color temperature was 4991 K. In addition, the coating layer of photocatalyst can act as an air purifier and diffuser to reduce glare. A value of 66.2±0.60 ppmv of molecular formaldehyde gas can be decomposed in 120 mins.

  11. Design of an Oximeter Based on LED-LED Configuration and FPGA Technology

    Directory of Open Access Journals (Sweden)

    Radovan Stojanovic

    2013-01-01

    Full Text Available A fully digital photoplethysmographic (PPG sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2. The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2. N-LEDs configuration is proposed for multichannel SpO2 measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption.

  12. The effect of radiation of LED modules on the growth of dill (Anethum graveolens L.

    Directory of Open Access Journals (Sweden)

    Frąszczak Barbara

    2016-01-01

    Full Text Available Light quality is thought to affect the growth and development of plants. We examined how light influences the growth and content of some chemical compounds in dill (Anethum graveolens L.. The plants were grown under different light quality. The share of orange and green light in the spectrum was constant and amounted to 10% for either colour. In the first combination (A, 70/10, there was 70% of red light and 10% of blue light. Other combinations had the following proportions: B 60/20, C 50/30, D 40/40 and E 30/50 of red and blue light. The PPFD was about 155 μmol m-2 s-1. Blue light inhibited the elongation growth as well as leaf area. It had positive influence on the accumulation of dry mass, glucose and fructose in the herb. In the combinations with higher percentage of red light the plants were characterised by higher content of essential oils, macronutrients and zinc. To sum up, we can say that the proportion of red and blue light has significant influence on the morphological qualities, chemical composition and dynamics of photosynthesis in these plants. On the other hand, the selection of spectral composition of LEDs will depend on the result we want to achieve.

  13. Patterns of Light Chasing the Spectrum from Aristotle to LEDs

    CERN Document Server

    Beeson, Steven

    2008-01-01

    Light is all around us – even when we do not see it. Our eyes do not detect the higher energy and shorter-than-visible-wavelength ultraviolet radiation, yet we know it is there from the sunburn we receive in Arizona. We know that window glass can block ultraviolet rays so we do not get a burn while driving with the windows rolled up. Our eyes do not detect the low-energy, long-wavelength infrared (IR) radiation but we know it exists from discussions of war applications and televised images of guided weapons targets. We also know about radio waves from the little boxes that talk to us and x-rays from the dentist's office. Patterns of Light, Chasing the Spectrum from Aristotle to LEDs, written by Steve Beeson and Jim Mayer starts with the visible – the straight path of light. It continues with chapters detailing reflection (mirrors, storefront windows) and refraction (eyeglasses, binoculars). Color is then introduced with the query "Why is the sky blue?" After answering that and other similar questions ("Wh...

  14. Vertical thinking in blue light emitting diodes: GaN-on-graphene technology

    Science.gov (United States)

    Bayram, C.; Kim, J.; Cheng, C.-W.; Ott, J.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K.; Park, H.; Dimitrakopoulos, C.

    2014-03-01

    In this work, we show that a 2D cleave layer (such as epitaxial graphene on SiC) can be used for precise release of GaNbased light emitting diodes (LEDs) from the LED-substrate interface. We demonstrate the thinnest GaN-based blue LED and report on the initial electrical and optical characteristics. Our LED device employs vertical architecture: promising excellent current spreading, improved heat dissipation, and high light extraction with respect to the lateral one. Compared to conventional LED layer release techniques used for forming vertical LEDs (such as laser-liftoff and chemical lift-off techniques), our process distinguishes itself with being wafer-scalable (large area devices are possible) and substrate reuse opportunity.

  15. Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications.

    Science.gov (United States)

    Janjua, Bilal; Ng, Tien Khee; Zhao, Chao; Oubei, Hassan Makine; Shen, Chao; Prabaswara, Aditya; Alias, Mohd Sharizal; Alhamoud, Abdullah Ali; Alatawi, Abdullah Awaad; Albadri, Abdulrahman M; Alyamani, Ahmed Y; El-Desouki, Munir M; Ooi, Boon S

    2016-08-22

    Group-III-nitride laser diode (LD)-based solid-state lighting device has been demonstrated to be droop-free compared to light-emitting diodes (LEDs), and highly energy-efficient compared to that of the traditional incandescent and fluorescent white light systems. The YAG:Ce3+ phosphor used in LD-based solid-state lighting, however, is associated with rapid degradation issue. An alternate phosphor/LD architecture, which is capable of sustaining high temperature, high power density, while still intensity- and bandwidth-tunable for high color-quality remained unexplored. In this paper, we present for the first time, the proof-of-concept of the generation of high-quality white light using an InGaN-based orange nanowires (NWs) LED grown on silicon, in conjunction with a blue LD, and in place of the compound-phosphor. By changing the relative intensities of the ultrabroad linewidth orange and narrow-linewidth blue components, our LED/LD device architecture achieved correlated color temperature (CCT) ranging from 3000 K to above 6000K with color rendering index (CRI) values reaching 83.1, a value unsurpassed by the YAG-phosphor/blue-LD counterpart. The white-light wireless communications was implemented using the blue LD through on-off keying (OOK) modulation to obtain a data rate of 1.06 Gbps. We therefore achieved the best of both worlds when orange-emitting NWs LED are utilized as "active-phosphor", while blue LD is used for both color mixing and optical wireless communications.

  16. Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications

    KAUST Repository

    Janjua, Bilal

    2016-08-10

    Group-III-nitride laser diode (LD)-based solid-state lighting device has been demonstrated to be droop-free compared to light-emitting diodes (LEDs), and highly energy-efficient compared to that of the traditional incandescent and fluorescent white light systems. The YAG:Ce3+ phosphor used in LD-based solid-state lighting, however, is associated with rapid degradation issue. An alternate phosphor/LD architecture, which is capable of sustaining high temperature, high power density, while still intensity- and bandwidth-tunable for high color-quality remained unexplored. In this paper, we present for the first time, the proof-of-concept of the generation of high-quality white light using an InGaN-based orange nanowires (NWs) LED grown on silicon, in conjunction with a blue LD, and in place of the compound-phosphor. By changing the relative intensities of the ultrabroad linewidth orange and narrow-linewidth blue components, our LED/LD device architecture achieved correlated color temperature (CCT) ranging from 3000 K to above 6000K with color rendering index (CRI) values reaching 83.1, a value unsurpassed by the YAG-phosphor/blue-LD counterpart. The white-light wireless communications was implemented using the blue LD through on-off keying (OOK) modulation to obtain a data rate of 1.06 Gbps. We therefore achieved the best of both worlds when orange-emitting NWs LED are utilized as “active-phosphor”, while blue LD is used for both color mixing and optical wireless communications.

  17. Preliminary investigations of piezoelectric based LED luminary

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Andersen, Michael A. E.; Meyer, Kaspar Sinding

    2011-01-01

    This paper presents a preliminary study of PT (Piezoelectric Transformer) based SMPS’s (Switch Mode Power Supplies) for LED luminary. The unique properties of PTs (efficiency, power density and EMI) make them highly suitable for this application. Power stage topologies, rectifiers circuits, modul...

  18. LED Lighting in a Performing Arts Building

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. J.; Kaye, S. M. [Univ. of Florida, Gainesville, FL (United States); Coleman, P. M. [Univ. of Florida, Gainesville, FL (United States); Wilkerson, A. M.; Perrin, T. E.; Sullivan, G. P. [Efficiency Solutions, Inc., Richland, WA (United States)

    2014-07-31

    At the University of Florida in Gainesville, the DOE Solid-State Lighting GATEWAY program evaluated LED architectural and theatrical lighting in four academic/performance-related spaces within the Nadine McGuire Theatre + Dance Pavilion. Due to a wise choice of products and luminaire light distributions, the change brought significant quality improvements including improved controllability and color.

  19. Silicon LEDs in FinFET technology

    NARCIS (Netherlands)

    Piccolo, G.; Kuindersma, P.I.; Ragnarsson, L-A.; Hueting, R.J.E.; Collaert, N.; Schmitz, J.

    2014-01-01

    We present what to our best knowledge is the first forward operating silicon light-emitting diode (LED) in fin-FET technology. The results show near-infrared (NIR) emission around 1100 nm caused by band-to-band light emission in the silicon which is uniformly distributed across the lowly doped activ

  20. Decreased scattering coefficient of blue sclerae

    NARCIS (Netherlands)

    Lanting, P J; Borsboom, P C; te Meerman, G J; ten Kate, L P

    1985-01-01

    The optical scattering properties of blue and normal sclerae were studied with a fiber optic scattering monitor. The scattering was clearly reduced in two osteogenesis imperfecta patients with blue sclerae, and low normal in one osteogenesis imperfecta patient without blue sclerae.

  1. Bridging “green gap” of LEDs: Giant light output enhancement and directional control of LEDs via embedded nano-void photonic crystals

    KAUST Repository

    Tsai, Yu-Lin

    2015-11-23

    Green LEDs do not show the same level of performance as their blue and red cousins, greatly hindering the solid-state lighting development, which is so-called “green gap”. In this work, nano-void photonic crystals (NVPCs) were fabricated to embed within the GaN/InGaN green LEDs by using epitaxial lateral overgrowth (ELO) and nano-sphere lithography techniques. The NVPCs act as an efficient scattering back-reflector to outcouple the guided and downward photons, which not only boosting light extraction efficiency of LEDs with an enhancement of 78% but also collimating the view angle of LEDs from 131.5゜to 114.0゜. This could be because the highly scattering nature of NVPCs which reduce the interference giving rise to Fabry-Perot resonance. Moreover, due to the threading dislocation suppression and strain relief by the NVPCs, the internal quantum efficiency was increased by 25% and droop behavior was reduced from 37.4% to 25.9%. The enhancement of light output power can be achieved as high as 151% at a driving current of 350 mA. Giant light output enhancement and directional control via NVPCs points the way towards a promising avenue of solid-state lighting.

  2. The effect of blue light exposure in an ocular melanoma animal model

    Directory of Open Access Journals (Sweden)

    Odashiro Alexandre N

    2009-04-01

    Full Text Available Abstract Background Uveal melanoma (UM cell lines, when exposed to blue light in vitro, show a significant increase in proliferation. In order to determine if similar effects could be seen in vivo, we investigated the effect of blue light exposure in a xenograft animal model of UM. Methods Twenty New Zealand albino rabbits were injected with 1.0 × 106 human UM cells (92.1 in the suprachoroidal space of the right eye. Animals were equally divided into two groups; the experimental group was exposed to blue light, while the control group was protected from blue light exposure. The eyes were enucleated after sacrifice and the proliferation rates of the re-cultured tumor cells were assessed using a Sulforhodamine-B assay. Cells were re-cultured for 1 passage only in order to maintain any in vivo cellular changes. Furthermore, Proliferating Cell Nuclear Antigen (PCNA protein expression was used to ascertain differences in cellular proliferation between both groups in formalin-fixed, paraffin-embedded eyes (FFPE. Results Blue light exposure led to a statistically significant increase in proliferation for cell lines derived from intraocular tumors (p Conclusion There is an increasing amount of data suggesting that blue light exposure may influence the progression of UM. Our results support this notion and warrant further studies to evaluate the ability of blue light filtering lenses to slow disease progression in UM patients.

  3. Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Hwa [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Arunkumar, Paulraj [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Park, Seung Hyok; Yoon, Ho Shin [Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Im, Won Bin, E-mail: imwonbin@jnu.ac.kr [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of)

    2015-03-15

    Highlights: • Designed phosphor blend that mimics diurnal daylight for health benefits. • Developed new phosphor blend composition that mimics natural sunlight under near UV. • The phosphor blend also exhibits high CRI (≥90) under blue LED excitation. • Fabricated WLED exhibited ∼91% spectral resemblance with daylight at 4500 K. • While ∼39.2% spectral resemblance were observed for YAG:Ce{sup 3+} at 4500 K. - Abstract: We demonstrate the feasibility of developing phosphor converted white LED (pc-WLED) that mimics diurnal natural daylight with the newly designed phosphor blend in the color temperature (CCT) 2700–6000 K for health benefits. Natural daylight (sunlight) spectrum possesses broad emission in the visible region and closely approximates black body radiator, with color rendition index (CRI) of 100 under wide CCT (2500–6500 K). Current white light LEDs although are efficient and durable, they are not broad enough compared to daylight. We report new phosphor blend based on Sr{sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+} blue phosphor with broad emission and high CRI ≥ 96 under both near UV and blue excitation. The fabricated WLED has exhibited ∼91% spectral resemblance with natural daylight compared to 39.2% for YAG:Ce{sup 3+} white LED at 4500 K. The developed phosphor blend tunes the spectrum in wider CCT and would be a prospective candidate for full spectrum daylight WLED.

  4. Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Cabot Corporation

    2007-09-30

    The overarching goal of the project was to develop luminescent materials using aerosol processes for making improved LED devices for solid state lighting. In essence this means improving white light emitting phosphor based LEDs by improvement of the phosphor and phosphor layer. The structure of these types of light sources, displayed in Figure 1, comprises of a blue or UV LED under a phosphor layer that converts the blue or UV light to a broad visible (white) light. Traditionally, this is done with a blue emitting diode combined with a blue absorbing, broadly yellow emitting phosphor such as Y{sub 3}Al{sub 5}O{sub 12}:Ce (YAG). A similar result may be achieved by combining a UV emitting diode and at least three different UV absorbing phosphors: red, green, and blue emitting. These emitted colors mix to make white light. The efficiency of these LEDs is based on the combined efficiency of the LED, phosphor, and the interaction between the two. The Cabot SSL project attempted to improve the over all efficiency of the LED light source be improving the efficiency of the phosphor and the interaction between the LED light and the phosphor. Cabot's spray based process for producing phosphor powders is able to improve the brightness of the powder itself by increasing the activator (the species that emits the light) concentration without adverse quenching effects compared to conventional synthesis. This will allow less phosphor powder to be used, and will decrease the cost of the light source; thus lowering the barrier of entry to the lighting market. Cabot's process also allows for chemical flexibility of the phosphor particles, which may result in tunable emission spectra and so light sources with improved color rendering. Another benefit of Cabot's process is the resulting spherical morphology of the particles. Less light scattering results when spherical particles are used in the phosphor layer (Figure 1) compared to when conventional, irregular shaped

  5. Sustainable LED Fluorescent Light Replacement Technology

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-09-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life: Environmental Impact Review – Designs are comparable

  6. Status of Blue Ridge Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

  7. Thermoluminescence (TL) of Egyptian Blue

    Energy Technology Data Exchange (ETDEWEB)

    Schvoerer, M.; Delavergne, M.-C.; Chapoulie, R.

    1988-01-01

    Egyptian Blue is a synthesized crystalline pictorial pigment with formula CaCuSi/sub 4/O/sub 10/. It has been used in Egypt and Mesopotamia from the 3rd millenium B.C. A preliminary experiment on a recently synthesized sample showed that this pigment is thermoluminescent after ..beta.. irradiation (/sup 90/Sr). As the signal intensity grows linearly with the administered dose within the temperature range commonly used in TL dating, we have been looking for this phenomenon from archaeological pigments. It was encountered with two samples found in excavation. From its intensity and stability we concluded that Egyptian Blue can be dated using TL. This first and positive result encouraged us to extend the method to other types of mineral pigments synthesized by early man, and to suggest that it may be used for direct dating of ancient murals.

  8. The Physics of the Blues

    Science.gov (United States)

    Gibson, J. Murray

    2009-03-01

    In looking at the commonalities between music and science, one sees that the musician's palette is based on the principles of physics. The pitch of a musical note is determined by the frequency of the sound wave. The scales that musicians use to create and play music can be viewed as a set of rules. What makes music interesting is how musicians develop those rules and create ambiguity with them. I will discuss the evolution of western musical scales in this context. As a particular example, ``Blue'' notes are very harmonic notes that are missing from the equal temperament scale. The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting. Live keyboard demonstrations will be used. Beyond any redeeming entertainment value the talk will emphasize the serious connections between science and art in music. Nevertheless tips will be accepted.

  9. Filtration through nylon membranes negatively affects analysis of arsenic and phosphate by the molybdenum blue method

    DEFF Research Database (Denmark)

    Heimann, Axel Colin; Jakobsen, Rasmus

    2007-01-01

    Filtering synthetic arsenic- or phosphate-containing solutions (1.5-47.6 mu mol/L) with nylon syringe filters significantly reduced absorbances (by 6-74%) when analyzed with the colorimetric molybdenum blue method. Filtering the same solutions with cellulose acetate syringe filters yielded no sig...

  10. Cooling of led module by various radiators

    Directory of Open Access Journals (Sweden)

    Naumova A. M.

    2015-12-01

    Full Text Available Given article presents the results of an experimental comparison of three radiators which are: pressed radiator made of aluminum plate (basic variant, radiator made of copper wire, and copper/water pulsating heat pipe. The radiators are intended to take off heat from the LED module with the power capacity of 10,55 W. It is established that under natural convection all three radiators can keep temperature level of the circuit board module less than 64 C that lies within the operating range. In comparison with basic variant the use of the copper wire radiator allows lowering of the temperature in the LED module center on 3.9 C, and the same value for the pulsating heat pipe is 7.1 C.

  11. EVALUATING THE CULTURE-LED REGENERATION

    Directory of Open Access Journals (Sweden)

    D'Angelo Francesca

    2010-12-01

    Full Text Available The aim of the paper is to propose a new approach to urban planning, evaluating the culture-led regeneration processes. In the last few years, the cultural turn in urban planning played a central role in the urban studies. In this way we try to elaborate a more robust perspective interpreting the complex phenomenology emerging from the culture-led regeneration processes. Within the concept of complexity we discuss about the metabolic process that are the processes necessary to transform energy, material and information in goods and service functional to the complex urban system life. The approach that will be employed is the MuSIASEM that is based on several novel concept and an innovative methods never applied in this research field.

  12. Notes on LED Installations in Street Illumination

    Directory of Open Access Journals (Sweden)

    Elisabeta Spunei

    2014-09-01

    Full Text Available The paper presents a study made on choosing LED street lighting installations, such that the quality requirements for exterior artificial lighting are fulfilled. We analyze two types of LED street lighting installations from a technical point of view, together with lighting level and brightness values obtained during the measurements. Following on the field measurements, the lighting quality parameters are calculated, and, for the lighting installation with the best performance, optimal mounting suggestions are made. The optimal quality parameters are calculated by simulations using the Dialux software. The same software and the same light sources we also compute an optimal street lighting by determining the size of the installation that provides the best lighting parameter values.

  13. Imprint lithography advances in LED manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Robert; Doyle, Gary; Jones, Chris; LaBrake, Dwayne; Miller, Mike [Molecular Imprints Inc., 1807 West Braker Lane, Building C-11, Austin, TX 78758 (United States)

    2007-07-01

    Imprint lithography is a promising cost effect alternative to e-beam and optical lithography for producing photonic crystals and other nano-scale light extraction and beam directing elements for LEDs; however, there are several challenges that must be overcome before imprint lithography can be applied to typical LED substrates. This paper reviews progress made at Molecular Imprints Inc. (MII) in imprinting representative 3{sup ''} GaN on Sapphire substrates including methods for dealing with substrate non-flatness, multi-die imprint, and imprinting on warped and bowed substrates. The results of imprinting over typical GaN on Sapphire topography and common defects such as fall-on particles and EPI defects is presented along with results on GaN wafers optimized for imprint lithography. Whole wafer thin template replication techniques are also discussed. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Nurse-led management of contraceptive services.

    Science.gov (United States)

    Wilson, Emma

    2014-07-01

    This article discusses the role of the practice nurse (PN) in the provision of health assessment for contraceptive choices. PNs who have an extended role as an independent nurse prescriber must demonstrate the principles of safe prescribing practice, with appropriate and informed assessment of the patient's needs and risk within the limited time of a general practice appointment. With continued professional development, PNs are well placed to provide comprehensive, independent nurse-led contraceptive services.

  15. Study and Design of LED Lighting Systems

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2013-06-01

    Full Text Available In this study, the optical characteristics, thermal characteristics, electrical characteristics of the LED device are studied. After analysis of the significance of the optical model, we establish the model of the LED light source using optical simulation software to analyze the impact of modeling four factors and law, based on ray tracing model intensity distribution with the manufacturers. On this basis, we expand the LED secondary optical design, namely, increasing of LDE method to the light level. After comparing different forms of non-imaging optical components, combined with the actual situation, the final choice is the system composed of rotating parabolic reflector with LDE. Besides, the reflected changing the relative position of the body and LDE space lead to the normal light intensity of the entire system appearing two peaks, but their causes are different. In addition, the method of combining theoretical analysis and computer simulations to study the distribution of LDE array illumination is utilized. Formula on the illumination distribution in the LDB array to a plane parallel thereto is deduced, which is verified by computer simulation and agrees well with it. A quantitative study of the factors affecting the road surface illuminance distribution is made on the basis of previous study, combined with the actual road lighting works. These factors are: LDE array form, the number of LED, spacing between LDE, LDE interval between the street lamps. The derived entire road illumination distribution formula and the corresponding curve gives a basic method for the analysis of such practical problems related outcomes for the LDE illumination optical system design and research basis.

  16. Export-led Growth Hypothesis: Turkey Application

    Directory of Open Access Journals (Sweden)

    İsmail KÜÇÜKAKSOY

    2015-12-01

    Full Text Available This paper aims to investigate validity of “Export-led Growth Hypothesis” for Turkey using quarterly data in period from 2003:Q1 to 2015:Q1. Hypothesis argues that there is causality relationship from real export to real Gross Domestic Product (GDP. Johansen cointegration test, Gregory-Hansen cointegration test, Toda-Yamamoto causality test, Fully Modified Ordinary Least Squares (FMOLS, Canonical cointegrating regression (CCR and Dynamic ordinary least squares (DOLS methods were used in this study. Findings can be summarized as follows: a According to Johansen cointegration test there is no relationship among variables in the long-run whereas Gregory-Hansen cointegration test has determined relationship in the long-run; b According to Toda-Yamamoto causality test there is bidirectional causality between real export and real GDP. This finding proves the validity of “Export-led Growth Hypothesis” for Turkey; c According to FMOLS, CCR, DOLS methods a 1% increase in the real export increases the real GDP by 1.5195%, 1.5552%, 1.3171% respectively in the long-run. These methods prove the validity of “Export-led Growth Hypothesis” for Turkey.

  17. Curing efficiency of modern LED units.

    Science.gov (United States)

    Rencz, Adam; Hickel, Reinhard; Ilie, Nicoleta

    2012-02-01

    Recent reports claim that modern light-emitting diode (LED) curing units improve curing efficiency by increasing the units' irradiance. In this context also, short polymerisation times up to 5 s are proposed. The aim of this study was to examine whether there are differences in the curing efficiency of modern LED curing units by assessing their effect on two different composite materials and by varying the irradiation time. A nano- and a micro-hybrid resin-based composite (RBC) were polymerised for 5, 10 and 20 s with three commercial and a Prototype LED unit (Elipar™ S10). Cylindrical specimens (6 mm in depth, 4 mm in diameter) were prepared in three increments, each 2-mm thick, and were consecutively cured. Degree of cure was measured for 20 min in real time at the bottom of the samples, starting with the photoinitiation. The micro-mechanical properties (modulus of elasticity, E and Vickers hardness, HV) were measured as a function of depth, in 100-μm steps, on the above described samples stored in distilled water for 24 h at 37°C. Data were analysed with multivariate ANOVA followed by Tukey's test, t test and partial eta-squared statistics. In descending order of the strength of their effect, the type of RBC, depth, polymerisation time and curing unit were significant factors affecting the micro-mechanical parameters (p surface, a minimum of 20 s of irradiation is necessary for an adequate polymerisation 2 mm beyond the surface.

  18. Degradation of methylene blue by radio frequency plasmas in water under ultraviolet irradiation.

    Science.gov (United States)

    Maehara, Tsunehiro; Nishiyama, Kyohei; Onishi, Shingo; Mukasa, Shinobu; Toyota, Hiromichi; Kuramoto, Makoto; Nomura, Shinfuku; Kawashima, Ayato

    2010-02-15

    The degradation of methylene blue by radio frequency (RF) plasmas in water under ultraviolet (UV) irradiation was studied experimentally. When the methylene blue solution was exposed to RF plasma, UV irradiation from a mercury vapor lamp enhanced degradation significantly. A lamp without power supply also enhanced degradation since weak UV light was emitted weakly from the lamp due to the excitation of mercury vapor by stray RF power. Such an enhancement is explained by the fact that after hydrogen peroxide is produced via the recombination process of OH radicals around the plasma, OH radicals reproduced from hydrogen peroxide via the photolysis process degrade methylene blue.

  19. Light out-coupling from LEDs by means of metal nanoparticles; Lichtauskopplung aus LEDs mittels Metallnanoteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Goehler, Tino

    2010-12-17

    The external quantum efficiency of light-emitting diodes (LEDs) based on Al- GaAs/InGaAlP is limited by total internal reflection because of the high refractive index (typically between 3 and 4) of the semiconductor. Metal nanoparticles (MNP) deposited on the surface of the LED can be used as dipole scatterers in order to enhance the emission of the LED. In this thesis, first, single gold nanoparticles of various sizes deposited on such an LED were investigated. A clear enhancement is detected as long as the dipole plasmon resonance of the particle is at a shorter wavelength than the LED emission. If the plasmon resonance coincides with the LED emission or is at a larger wavelength, the enhancement turns into suppression. Numerical simulations indicate that this latter effect is mainly caused by the particle quadrupole resonance producing extra absorption. Arrays of MNPs can be produced by a special mask technique called ''Fischer pattern nanolithography'' and manipulated in shape and size by additional steps. Originally, the MNPs produced by this technique are triangular in shape and turn out to suppress the LED emission. After transformation of the particles to spheres, a clear enhancement was detected. Light that would otherwise remain trapped inside the substrate is coupled out by resonant plasmonic scattering. Investigations on analogous structures on a transparent high-index material (GaP) indicate a stronger coupling between the particles than expected on the basis of literature data. (orig.)

  20. Investigation of phosphor-LED lamp for real-time half-duplex wireless VLC system

    Science.gov (United States)

    Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Hsing-Yu; Liu, Yen-Liang; Hsu, Dar-Zu

    2016-06-01

    In this investigation, a 71.3 to 148.4 Mbit s-1 white phosphor-LED visible light communication (VLC) system is proposed and demonstrated under the practical transmission length of 140 to 210 cm. Here, a commercial white-light LED lamp with five cascaded phosphor-LED chips is utilized for illumination and communication simultaneously. In the measurement, we utilize the optical orthogonal frequency division multiplexing quadrature amplitude modulation (OFDM-QAM) with bit-loading algorithm and propose an optimal bias-tee circuit design to improve the modulation bandwidth from 1 MHz to 27 MHz. Moreover, a blue optical filter is not used on the client side. Finally, to realize and demonstrate the real-time transmission performance in the proposed LED VLC system, a commercial OFDM-based digital signal processor (DSP) chip is utilized on the LED lighting side and client side, respectively. Hence, the proposed real-time half-duplex VLC transmission could achieve the 70 Mbit s-1 downstream and upstream data throughputs, under a practical transmission length of 200 cm.

  1. Effect of LED phototherapy (λ630 +/- 20nm) on mast cells during wound healing in hypothyroid

    Science.gov (United States)

    Paraguassú, Gardênia M.; De Castro, Isabele Cardoso V.; Vasconcelos, Rebeca M.; da Guarda, Milena G.; Rodriguez, Tânia T.; Ramalho, Maria José P.; Pinheiro, Antônio Luiz B.; Ramalho, Luciana Maria P.

    2014-02-01

    Hypothyroidism has been associated with the disruption of the body's metabolism, including the healing process. LED phototherapy has been studied using several healing models, but their effects on mast cells proliferation associated to hypothyroidism remains unknown. The aim of this study was to assess the effect LED (λ630+/-20nm) phototherapy on mast cells proliferation during tissue repair in hypothyroid rats. Under general anesthesia, a standard surgical wound (1cm2) was created on the dorsum of 24 male Wistar rats divided into 4 groups of 6 animals each: EC-Control Euthyroid; ED-Euthyroid+LED; HC-Control Hypothyroid and HD-Hypothyroid+LED. The irradiation started immediately after surgery and was repeated every other day for 7 days, when animals death occurred. Hypothyroidism was induced in rats with propylthiouracil (0.05g/100mL) administered orally for 4 weeks and maintained until the end of the experiment. The specimens removed were processed to wax and stained with toluidine blue for mast cell identification. The mast cell proliferation was significantly higher in HC group than in EC group (Mann Whitney, phypothyroidism, prolonging the inflammatory phase of repair, and the LED light has a biomodulative effect on mast cell population, even when hipothyroidism was present.

  2. Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue by α-chitin nanoparticles

    Directory of Open Access Journals (Sweden)

    Solairaj Dhananasekaran

    2016-01-01

    Full Text Available Expelling of dyestuff into water resource system causes major thread to the environment. Adsorption is the cost effective and potential method to remove the dyes from the effluents. Therefore, an attempt was made to study the adsorption of dyestuff (Methylene Blue (MB, Bromophenol Blue (BPB and Coomassie Brilliant Blue (CBB by α-chitin nanoparticles (CNP prepared from Penaeus monodon (Fabricius, 1798 shell waste. On contrary to the most recognizable adsorption studies using chitin, this is the first study using unique nanoparticles of ⩽50 nm used for the dye adsorption process. The results showed that the adsorption process increased with increase in the concentration of CNP, contact time and temperature with the dyestuff, whereas the adsorption process decreased with increase in the initial dye concentration and strong acidic pH. The results from Fourier transform infrared (FTIR spectroscopy confirmed that the interaction between dyestuff and CNP involved physical adsorption. The adsorption process obeys Langmuir isotherm (R2 values were 0.992, 0.999 and 0.992 for MB, BPB and CBB, and RL value lies between 0 and 1 for all the three dyes and pseudo second order kinetics (R2 values were 0.996, 0.999 and 0.996 for MB, BPB and CBB more effectively. The isotherm and kinetic models confirmed that CNP can be used as a suitable adsorbent material for the removal of dyestuff from effluents.

  3. Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED.

    Science.gov (United States)

    Wang, Yuanquan; Wang, Yiguang; Chi, Nan; Yu, Jianjun; Shang, Huiliang

    2013-01-14

    We propose and experimentally demonstrate a novel full-duplex bi-directional subcarrier multiplexing (SCM)-wavelength division multiplexing (WDM) visible light communication (VLC) system based on commercially available red-green-blue (RGB) light emitting diode (LED) and phosphor-based LED (P-LED) with 575-Mb/s downstream and 225-Mb/s upstream transmission, employing various modulation orders of quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM). For the downlink, red and green colors/wavelengths are assigned to carry useful information, while blue chip is just kept lighting to maintain the white color illumination, and for the uplink, the low-cost P-LED is implemented. In this demonstration, pre-equalization and post-equalization are also adopted to compensate the severe frequency response of LEDs. Using this scheme, 4-user downlink and 1-user uplink transmission can be achieved. Furthermore, it can support more users by adjusting the bandwidth of each sub-channel. Bit error rates (BERs) of all links are below pre-forward-error-correction (pre-FEC) threshold of 3.8x 10(-3) after 66-cm free-space delivery. The results show that this scheme has great potential in the practical VLC system.

  4. Perceived learning effectiveness of a course Facebook page: teacher-led versus student-led approach

    Directory of Open Access Journals (Sweden)

    Tugba Orten Tugrul

    2017-01-01

    Full Text Available This research aims to compare the perceived effectiveness of teacher -led and student-led content management approaches embraced in a course Facebook page designed to enhance traditional classroom learning. Eighty-five undergraduate marketing course students voluntarily completed a questionnaire composed of two parts; a depiction of a course Facebook page where both teacher and students can share instructional contents, and questions about perceived learning effectiveness. The findings indicate that students have more favorable evaluations of a student-led approach in sharing instructional contents on a course Facebook Page than a teacher-led approach. Additionally, it is shown that instructional contents posted by both teacher and students enhance the overall learning effectiveness of a course Facebook page incorporated into a traditional classroom teaching.

  5. LED to LED communication with WDM concept for flash light of Mobile phones

    Directory of Open Access Journals (Sweden)

    Devendra J Varanva

    2013-08-01

    Full Text Available After observing recent developments in Free Space Optical Communication especially Visible Light Communication, It is clear that LED is main component as a source. LED being solid state device makes endless list of possibilities. But here we will get through its ability to sense light as well, and use of Wavelength Division Multiplexing (WDM in mobile flash is also suggested, this opens door to many applications.

  6. Assessing the colour quality of LED sources

    DEFF Research Database (Denmark)

    Jost-Boissard, S.; Avouac, P.; Fontoynont, Marc

    2015-01-01

    The CIE General Colour Rendering Index is currently the criterion used to describe and measure the colour-rendering properties of light sources. But over the past years, there has been increasing evidence of its limitations particularly its ability to predict the perceived colour quality of light...... sources and especially some LEDs. In this paper, several aspects of perceived colour quality are investigated using a side-by-side paired comparison method, and the following criteria: naturalness of fruits and vegetables, colourfulness of the Macbeth Color Checker chart, visual appreciation...

  7. Fire Whirls, Vortex Breakdown(?), and Blue Whirls

    Science.gov (United States)

    Oran, Elaine; Xiao, Huahua; Gollner, Michael

    2016-11-01

    As we were investigating the efficiency of fire-whirl burning on water, we observed the usual transformation of a pool fire to a fire whirl, and then suddenly, we saw the fire undergo a third transition. A blue cup appeared around the base of the fire whirl, surrounding the yellow flame, the yellow flame receded into the cup and finally disappeared. What remained was a small, rapidly spinning blue flame that burned until the fuel on the water was consumed. The blue whirl was shaped like a spinning cup, closed at the bottom near the water surface, and spreading in radius moving upwards towards the rim. Above the blue cup lip, there was a purple cone-shaped mist. The fuel was usually n-heptane, but at one point it was crude oil, and still the blue whirl formed naturally. The height of the fire whirl on the laboratory pan was larger than a half meter, and this evolved into a blue whirl about 4-8 cm high. Occasionally the blue whirl would become "unstable" and revert to a transitional state of blue cup holding a yellow flame. When the blue whirl formed, turbulence seemed to disappear, and the flame became quiet. We will show videos of how this happened and discuss the evolution of the fire whirl to the blue whirl in vortex-breakdown concepts. This work was supported by and EAGER award from NSF and Minta Martin Endowment Funds in the Department of Aerospace Engineering at the University of Maryland.

  8. Improved color rendering of phosphor-converted white light-emitting diodes with dual-blue active layers and n-type AlGaN layer.

    Science.gov (United States)

    Yan, Qi-Rong; Zhang, Yong; Li, Shu-Ti; Yan, Qi-Ang; Shi, Pei-Pei; Niu, Qiao-Li; He, Miao; Li, Guo-Ping; Li, Jun-Rui

    2012-05-01

    An InGaN/GaN blue light-emitting diode (LED) structure and an InGaN/GaN blue-violet LED structure were grown sequentially on the same sapphire substrate by metal-organic chemical vapor deposition. It was found that the insertion of an n-type AlGaN layer below the dual blue-emitting active layers showed better spectral stability at the different driving current relative to the traditional p-type AlGaN electron-blocking layer. In addition, color rendering index of a Y3Al5O12:Ce3+ phosphor-converted white LED based on a dual blue-emitting chip with n-type AlGaN reached 91 at 20 mA, and Commission Internationale de L'Eclairage coordinates almost remained at the same point from 5 to 60 mA.

  9. Effects of different carbon dioxide and LED lighting levels on the anti-oxidative capabilities of Gynura bicolor DC

    Science.gov (United States)

    Ren, Jin; Guo, Shuangsheng; Xu, Chunlan; Yang, Chengjia; Ai, Weidang; Tang, Yongkang; Qin, Lifeng

    2014-01-01

    Gynura bicolor DC is not only an edible plant but also a kind of traditional Chinese herbal medicine. G. bicolor DC grown in controlled environmental chambers under 3 CO2 concentrations [450 (ambient), 1500 (elevated), 8000 (super-elevated) μmol mol-1] and 3 LED lighting conditions [white (WL), 85% red + 15% blue (RB15), 70% red + 30% blue (RB30) ] were investigated to reveal plausible antioxidant anabolic responses to CO2 enrichment and LED light quality. Under ambient and elevated CO2 levels, blue light increasing from 15% to 30% was conducive to the accumulation of anthocyanins and total flavonoids, and the antioxidant activity of extract was also increased, but plant biomass was decreased. These results demonstrated that the reinforcement of blue light could induce more antioxidant of secondary metabolites, but depress the effective growth of G. bicolor DC under ambient and elevated CO2 levels. In addition, compared with the ambient and elevated CO2 levels, the increased anthocyanins, total flavonoids contents and antioxidant enzyme activities of G. bicolor DC under super-elevated CO2 level could serve as important components of antioxidative defense mechanism against CO2 stress. Hence, G. bicolor DC might have higher tolerance to CO2 stress.

  10. Phototransferred thermoluminescence from alpha-Al sub 2 O sub 3 :C using blue light emitting diodes

    CERN Document Server

    Bulur, E

    1999-01-01

    Phototransferred thermoluminescence (PTTL) from alpha-Al sub 2 O sub 3 :C single crystals was studied using a blue light emitting diode (LED) for phototransfer of charges from deep traps to the main dosimetry trap. The dose response was found to be linear in the region from approx 5 mGy to approx 5 Gy. It was observed that the corresponding deep traps were located near 500 deg. C and heating to temperatures >600 deg. C removes the PTTL effect induced by the light from the blue LED. The thermal activation energy of the source traps involved in the PTTL production was calculated as 3.23 eV.

  11. Temperature current-voltage characterisation of MOCVD grown InGaN/GaN MQW LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, Grigore; Humphreys, Colin J. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Phillips, Andrew [phconsult Ltd., 54 Covent Garden, Cambridge, CB1 2HR (United Kingdom); Thrush, E.J. [Thomas Swan Scientific Equipment Limited, Buckingway Business Park, Cambridge, CB4 5UK (United Kingdom)

    2006-06-15

    A methodology of temperature current-voltage characterisation for blue GaN-based LED is described, with emphasis on artefacts arising from self-heating at high forward currents and voltage transients at low forward currents. Examples of LEDs with Al{sub 2}O{sub 3} and SiC substrates are discussed, with methods of accounting and avoiding these errors. For the devices studied here it is found that tunnelling dominates the charge transport and that two parallel conduction pathways are present. A method of interpretation of extracted data is also presented, in the context of desired device performance. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Various Shades of Blue's Functions

    CERN Document Server

    Janik, R A; Papp, G; Zahed, I; Janik, Romuald A.; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail

    1997-01-01

    We discuss random matrix models in terms of elementary operations on Blue's functions (functional inverse of Green's functions). We show that such operations embody the essence of a number of physical phenomena whether at/or away from the critical points. We illustrate these assertions by borrowing on a number of recent results in effective QCD in vacuum and matter. We provide simple physical arguments in favor of the universality of the continuum QCD spectral oscillations, whether at zero virtuality, in the bulk of the spectrum or at the chiral critical points. We also discuss effective quantum systems of disorder with strong or weak dissipation (Hatano-Nelson localization).

  13. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L. Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Changyeun Mo

    2014-04-01

    Full Text Available In this study, we developed a viability evaluation method for pepper (Capsicum annuum L. seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB, which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  14. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging.

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon

    2014-04-24

    In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400-700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares-discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400-700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600-700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  15. Model of Band Diagram LED White Light in the System of GaN/InGaN

    Directory of Open Access Journals (Sweden)

    Yu.P. Holovaty

    2015-12-01

    Full Text Available The results of the research of semiconductor multilayer nanostructures suitable for making white light LEDs in the GaN/InGaN with red, green and blue emission spectra formed in a single chip. The methodology and the calculation of the energy levels, the wave functions of the carriers, the electric fields caused by the spontaneous polarization and the piezoelectric effect, the spontaneous emission spectrum and chromaticity coordinates of the total radiation.

  16. Model of Band Diagram LED White Light in the System of GaN/InGaN

    OpenAIRE

    Yu.P. Holovaty; V.G. Kosushkin; N.A. Khahaev; D.A. Romanov; L.M. Chervyakov; E.K. Naimi; S.L. Kozhitov

    2015-01-01

    The results of the research of semiconductor multilayer nanostructures suitable for making white light LEDs in the GaN/InGaN with red, green and blue emission spectra formed in a single chip. The methodology and the calculation of the energy levels, the wave functions of the carriers, the electric fields caused by the spontaneous polarization and the piezoelectric effect, the spontaneous emission spectrum and chromaticity coordinates of the total radiation.

  17. LED Context Lighting System in Residential Areas

    Directory of Open Access Journals (Sweden)

    Sook-Youn Kwon

    2014-01-01

    Full Text Available As issues of environment and energy draw keen interest around the globe due to such problems as global warming and the energy crisis, LED with high optical efficiency is brought to the fore as the next generation lighting. In addition, as the national income level gets higher and life expectancy is extended, interest in the enhancement of life quality is increasing. Accordingly, the trend of lightings is changing from mere adjustment of light intensity to system lighting in order to enhance the quality of one’s life as well as reduce energy consumption. Thus, this study aims to design LED context lighting system that automatically recognizes the location and acts of a user in residential areas and creates an appropriate lighting environment. The proposed system designed in this study includes three types of processing: first, the creation of a lighting environment index suitable for the user’s surroundings and lighting control scenarios and second, it measures and analyzes the optical characteristics that change depending on the dimming control of lighting and applies them to the index. Lastly, it adopts PIR, piezoelectric, and power sensor to grasp the location and acts of the user and create a lighting environment suitable for the current context.

  18. LED context lighting system in residential areas.

    Science.gov (United States)

    Kwon, Sook-Youn; Im, Kyoung-Mi; Lim, Jae-Hyun

    2014-01-01

    As issues of environment and energy draw keen interest around the globe due to such problems as global warming and the energy crisis, LED with high optical efficiency is brought to the fore as the next generation lighting. In addition, as the national income level gets higher and life expectancy is extended, interest in the enhancement of life quality is increasing. Accordingly, the trend of lightings is changing from mere adjustment of light intensity to system lighting in order to enhance the quality of one's life as well as reduce energy consumption. Thus, this study aims to design LED context lighting system that automatically recognizes the location and acts of a user in residential areas and creates an appropriate lighting environment. The proposed system designed in this study includes three types of processing: first, the creation of a lighting environment index suitable for the user's surroundings and lighting control scenarios and second, it measures and analyzes the optical characteristics that change depending on the dimming control of lighting and applies them to the index. Lastly, it adopts PIR, piezoelectric, and power sensor to grasp the location and acts of the user and create a lighting environment suitable for the current context.

  19. An investigation on LED customer’ behavior

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Khoramgah

    2013-03-01

    Full Text Available The recent advances in technology have created a challenge for customer on purchasing electronic devises since the cycle of media production such as TV, Mobile devices, etc. are getting short and people need to replace them by new products. The recent emerge of Light Emitting Diode (LED television has attracted many people and there is a concern to study the impact of important factors on customer behavior in this business. This paper presents an empirical study to study the effects of six variables including customer perception, motivation, cognitive learning, attitude, information and price on customer behavior for LED televisions produced by an Iranian firm in Tehran, Iran. The study designs a questionnaire consists of 27 questions and distributes it among some people who are potential customers of this product. We use multiple regression analysis to study the behavior of different factors on customer behavior. The results of our survey indicate that cognitive learning had the most influencing impact (0.22 on customer behavior followed by price (0.219, motivation (0.203, attitude (0.193, information (0.183 and perception (0.145.

  20. Sonocatalytic degradation of methylene blue with TiO2 pellets in water.

    Science.gov (United States)

    Shimizu, Nobuaki; Ogino, Chiaki; Dadjour, Mahmoud Farshbaf; Murata, Tomoyuki

    2007-02-01

    A series of experiments were carried out to study the degradation of methylene blue by the irradiation of ultrasound onto TiO(2) in aqueous solution. A statistically significant decrease in the concentration of methylene blue was observed after 60 min irradiation. While the reduction was 22% of the initial concentration without H(2)O(2), addition of H(2)O(2) significantly enhanced the degradation of methylene blue for the TiO(2) containing system (85% reduction of the initial concentration). The addition of H(2)O(2) had no effect on the methylene blue degradation when the system contained Al(2)O(3). The degradation ratio of methylene blue was dependent on the amount of TiO(2) and also the specific surface area of TiO(2) in the solution. The effects of radical scavenging agents on the degradation of methylene blue were also investigated for the system with TiO(2). It was found that the radical scavenging agents dimethyl sulfoxide (DMSO), methanol, and mannitol suppressed the degradation, with DMSO being the most effective. The effect of pH on the degradation of methylene blue was further investigated. An U-shaped change in the concentration of methylene blue in the presence of TiO(2) was observed along with the change in pH values (pH 3-12), and the highest degradation ratio was observed at around pH 7. In conclusion, ultrasound irradiation of TiO(2) in aqueous solution resulted in significant generation of hydroxyl radicals, and this process may have potential for the treatment of organic dyes in wastewater.

  1. Silicomolybdenum Blue Colorimetric Determination of Available Si in Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    XUGUOHUA; ZHENGWENJUAN; 等

    1996-01-01

    This paper deals with the determination of available Si content in calcareous soils with Mo blue colorimetric analysis method.The experimental results showed that two acid reagents of sodium acetate buffering solution (pH 4) and 0.025 mol/L citric acid generally had a strong ability of extracting soil available Si,and theri soil filtrates were colorless,On the contrary,two alkaline extractants of 20 mg/mL sodium carbonate and 0.5 mol/L sodium bicarbonate only got a relevantly lower soil avaiable Si and theri extracts appeared deep color of organic and other pigments,which could be decolorized by adding certain amounts of P-free activated charcoal (about 0.1g/g soil),Int the procedure of Mo blue colorimetry,adding proper amount of oxalic acid and K(SbO)C4H4O6 could eliminate the interference of P to Si and Si to P,respectively.The concentration of acids was not the major factor suppressing the interferences between P and Si in the colorimetric analysis.In the medium of 0.2-0.8mole H×+/L sulfuric acid,the intensity of the silicomolybdate blue color did not vary with acidity,no matter whether(NH4)2 Fe(SO4)2 or ascorbic acid was used as reductive reagent.About 10 minutes was needed to from a fully blue complex at 20-25°C,After 30 minutes,the blue color would slowly change into light one,and hence,the colorimetric process should be finished within a short time.

  2. Background story of the invention of efficient blue InGaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shuji [University of California, Santa Barbara, CA (United States)

    2015-06-15

    Shuji Nakamura discovered p-type doping in Gallium Nitride (GaN) and developed blue, green, and white InGaN based light emitting diodes (LEDs) and blue laser diodes (LDs). His inventions made possible energy efficient, solid-state lighting systems and enabled the next generation of optical storage. Together with Isamu Akasaki and Hiroshi Amano, he is one of the three recipients of the 2014 Nobel Prize in Physics. In his Nobel lecture, Shuji Nakamura gives an overview of this research and the story of his inventions. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst.

    Science.gov (United States)

    Sohrabnezhad, Sh

    2011-10-15

    The photocatalytic degradation of methylene blue is investigated in aqueous solution containing CoS/nanoAl-MCM-41 photocatalyst under visible light. The catalyst is characterized by X-ray diffraction (XRD), UV-vis diffused reflectance spectra (UV-vis DRS) and transmission electron microscopy (TEM) techniques. The effect of CoS, nanoAl-MCM-41 support and different wt% of CoS over the support on the photocatalytic degradation and influence of parameters such as CoS loading, catalyst amount, pH and initial concentration of methylene blue on degradation are evaluated. Hypsochromic effects (i.e. blue shifts of spectral bands) resulting from N-demethylation of the dimethylamino group in methylene blue occurs in presence of CoS/nanoAl-MCM-41 under ambient condition. Meanwhile, the bleaching of methylene blue MB, by sulfide ion, in an aqueous solution is studied in the presence nanoAl-MCM-41 catalyst. In the presence of sulfide ions, MB is bleached to its colorless leuco (LMB) and MBH(2)(+) forms. In an acidified solution (pHdye to MBH(2)(+) form is observed. Using nanoAl-MCM-41 with encapsulated CoS nanoparticles only causes demethylation of MB in aqueous solution.

  4. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    Science.gov (United States)

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-05

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature.

  5. Miniaturized LED sources for in vivo optogenetic experimentation

    Science.gov (United States)

    Clements, Isaac P.; Gnade, Andrew G.; Rush, Alexander D.; Patten, Craig D.; Twomey, Mark C.; Kravitz, Alexxai V.

    2013-03-01

    Recently developed optogenetics techniques have enabled researchers to modulate the activity of specific cell types. As a result, complex neural pathways previously regarded as black boxes can now be directly probed, yielding a steadily increasing understanding of the basic neural circuits that underlie health and disease. For in vivo experimentation, fiber-coupled lasers have traditionally been used to illuminate internal brain regions, via an optical fiber that penetrates through overlying tissue. Though able to deliver intense fiber-coupled light, lasers are costly, bulky, and face limitations in output beam stability and temporal precision during modulated outputs. For experiments on unrestricted, behaving animals, a laser-based system also necessitates the use of fiber optic rotary joints, which come with costs and limitations of their own. Here, we report and characterize an alternative light delivery solution, based on high intensity fiber-coupled LEDs that are miniaturized for placement on the end of custom electrical commutators. This design allows for enhanced control of output light and expanded capabilities for optical stimulation as well as simultaneous electrical neural recordings, as with an optrode array. Temporal response of light outputs and light stability during commutator rotation were assessed. The influence of high current optical control signals on adjacent neural recording channels was also explored. To validate the function of this LED based system in in vivo recording scenarios, chronic stimulation experiments were performed.

  6. An Inexpensive Solution Calorimeter

    Science.gov (United States)

    Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter

    2008-01-01

    We describe the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element. This has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute, which led to minimal heat losses. Small temperature changes of 1 K associated with enthalpies of…

  7. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  8. Switched-capacitor isolated LED driver

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Seth R.; Kline, Mitchell

    2016-03-22

    A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.

  9. LED--panacea or marketing hype?

    Science.gov (United States)

    Baillie, Jonathan

    2012-02-01

    With energy efficiency and carbon reduction, and the importance of a relaxing, therapeutic patient environment, ever more in the spotlight, LED lighting's proponents claim the technology offers healthcare estates personnel many of the answers on both fronts. However some observers believe its benefits are being over-sold, often to the detriment of other high-performing types of more 'conventional lighting', and to a sometimes uninitiated audience too easily swayed by slick sales patter. HEJ editor Jonathan Baillie spoke to one highly experienced lighting professional, Nicholas Bukorović, a former employee of Thorn, Cooper, and Thorlux Lighting, and the principal author of the last CIBSE/Society of Light and Lighting (SLL) Guide LG2 on healthcare lighting, to seek some expert illumination.

  10. Growth and characterization of air annealing Mn-doped YAG:Ce single crystal for LED

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Zhong, Jiasong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Zhao, Yinsheng [Pan Asia Technical Automotive Center Co. Ltd., Shanghai 201201 (China); Zhao, Binyu [College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Dong, Yongjun [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800 (China); Zhang, Zhimin; Chen, Zhaoping; Liu, Bingfeng [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China)

    2012-11-25

    Highlights: Black-Right-Pointing-Pointer The YAG:Ce,Mn single crystal was well synthesized by the Czochralski (CZ) method. Black-Right-Pointing-Pointer The emission intensity of the sample has been influenced after annealing. Black-Right-Pointing-Pointer Annealed in the air at 1200 Degree-Sign C was the most optimal annealing condition. Black-Right-Pointing-Pointer The single crystal could be used in the white light LED which emitted by blue light. - Abstract: The growth of Mn-doped YAG:Ce (yttrium aluminum garnet doped cerium) single crystal by the Czochralski (CZ) method and the characterization of its spectroscopy and color-electric parameters are presented. The absorption spectra indicate that the crystal absorbed highly in the 300-500 nm wavelength range. The emission spectrum of the crystal consists of a peak around 538 nm when excited by 460 nm blue light, which prove the YAG:Ce,Mn single crystal could be used in the white light emitting doides (LED). The different charges of Mn ions have different luminescence properties, and the air annealing process for the single crystal would change the concentration of Mn ions with different charges, which could influence the emission intensity of the single crystal.

  11. Effects of LED-backlit computer screen and emotional selfregulation on human melatonin production.

    Science.gov (United States)

    Sroykham, Watchara; Wongsawat, Yodchanan

    2013-01-01

    Melatonin is a circadian hormone transmitted via suprachiasmatic nucleus (SCN) in the hypothalamus and sympathetic nervous system to the pineal gland. It is a hormone necessary to many human functions such as immune, cardiovascular, neuron and sleep/awake functions. Since melatonin enhancement or suppression is reported to be closely related to the photic information from retina, in this paper, we aim further to study both the lighting condition and the emotional self-regulation in different lighting conditions together with their effects on the production of human melatonin. In this experiment, five participants are in three light exposure conditions by LED backlit computer screen (No light, Red light (∼650nm) and Blue light (∼470nm)) for 30 minute (8-8:30pm), then they are collected saliva both before and after the experiments. After the experiment, the participants are also asked to answer the emotional self-regulation questionnaire of PANAS and BRUMS regarding each light exposure condition. These results show that positive mood mean difference of PANAS between no light and red light is significant with p=0.001. Tension, depression, fatigue, confusion and vigor from BRUMS are not significantly changed while we can observe the significant change in anger mood. Finally, we can also report that the blue light of LED-backlit computer screen significantly suppress melatonin production (91%) more than red light (78%) and no light (44%).

  12. Pr3+-doped Li2SrSiO4 red phosphor for white LEDs

    Institute of Scientific and Technical Information of China (English)

    RAO Yang; HU Xiaoye; LIU Tao; ZHOU Xinmu; ZHOU Xuezhen; LI Yongxiu

    2011-01-01

    Novel red phosphors, Li2Sr1-1.5xSiO4:xPr3+ (x=0.002, 0.003,.004,0.005,0.006 and 0.008), were synthesized by conventional solid state reaction and the luminescent properties were investigated. The as-prepared phosphors showed red emission at 610 nm under excitation of blue light at 452 nm, indicating that they were promising candidates for red phosphors in the fabrication of white LEDs via blue LED chips.Their excitation bands at 452, 476 and 487 nm were attributed to transitions of 3H4→3p2, 3H4→3p1+1I6, 3H4→3p0 of Pr3+ ion. The red emissions at 606 and 610 nm were originated from the 3P0-3H6 and 1D2-3H4 transitions of Pr3+. The optimum doping concentration of Pr3+ in Li2Sr1-1.5xSiO4:xPr3+ was determined to be x=0.004.With the concentration of Pr3+ over x=0.004,the fluorescence intensity of Li2Sr1-1.5xSiO4:xPr3+ de creased, indicating the concentration quenching occurred.

  13. Phenylalanine and LED lights enhance phenolic compound production in Tartary buckwheat sprouts.

    Science.gov (United States)

    Seo, Jeong-Min; Arasu, Mariadhas Valan; Kim, Yeon-Bok; Park, Sang Un; Kim, Sun-Ju

    2015-06-15

    The present study aimed to investigate the effects of different l-phenylalanine (l-Phe) concentrations and various light-emitting diodes (LEDs) on the accumulation of phenolic compounds (chlorogenic acid, vitexin, rutin, quercetin, cyanidin 3-O-glucoside, and cyanidin 3-O-rutinoside) in Tartary buckwheat sprouts. We found that 5mM was the optimum l-Phe concentration for the synthesis of total and individual phenolic compounds. The highest rutin (53.09 mg/g DW) and chlorogenic acid (5.62 mg/g DW) content was observed with Red+Blue and white lights. Comprehensive differences in total and individual anthocyanin content were observed between different lights; however, the total anthocyanin content (9.12 mg/g DW) was 1.5-fold higher in blue light. The expression levels of regulatory genes, such as FtDFR and FtANS, were 7.1-fold higher with l-Phe treatment. Gene expression results showed that the phenolic compounds in Tartary buckwheat sprouts increased with the use of l-Phe and LED lights.

  14. Preparation of the methylene blue silica compound microcapsule; Mechirenburushirika fukugo maikuro kapuseru no chosei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Koji [Yamagata University, Yamagata (Japan); Ono, Hideo

    1999-07-05

    By using methylene blue aqueous solution of the cationy for the dispersed phase of the W/0 emulsion, and using this for hydrolysis of TEOS and reaction field of the degeneracy conjunction, force - methylene blue compound microcapsule of 4.0 {mu}m mean particle sizes was prepared. When the water was supplied, though there was elution behavior of the methylene blue from this microcapsule in the condition that the methylene blue was fixed in the silica microcapsule without completely dissolving, the elution amount of methylene blue increased eluate isoelectric point silica, and the pH dependence was shown. Therefore, a part of methylene blue in dispersed phase combines with the silica in Coulomb force like during hydrolysis and degeneracy conjunction of TEOS, and it is fixed in the silica microcapsule resistant, and by the consistency of pH of the eluate, it is meanwhile regarded out for acidic as a dissolution of the methylene blue of the isoelectric point of the silica from the silica microcapsule. (translated by NEDO)

  15. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons.

    Directory of Open Access Journals (Sweden)

    Jens B Bosse

    Full Text Available Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs, however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution.

  16. Fast photocatalytic degradation of methylene blue dye using a low-power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianhua, E-mail: lxh@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072 (China); Yang, Yulou; Shi, Xiaoxuan [School of Environmental Science and Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072 (China); Li, Kexun, E-mail: likx@nankai.edu.cn [School of Environmental Science and Engineering, Nankai University, Tianjin 300074 (China)

    2015-02-11

    Highlights: • Photocatalytic oxidation of methylene blue was studied under laser light irradiation. • Fast removal of methylene blue from aqueous solution was achieved. • The photocatalyst Ag/AgCl is efficient and stable under 443 nm laser light irritation. • Diode laser is a good light source for photocatalytic degradation of dyes. - Abstract: This study focused on the application of diode lasers as alternative light sources for the fast photocatalytic degradation of methylene blue. The photocatalytic decomposition of methylene blue in aqueous solution under 443 nm laser light irradiation was found to be technically feasible using Ag/AgCl nanoparticles as photocatalysts. The effects of various experimental parameters, such as irradiation time, light source, catalyst loading, initial dye concentration, pH, and laser energy on decolorization and degradation were investigated. The mineralization of methylene blue was confirmed by chemical oxygen demand analysis. The results demonstrate that the laser-induced photocatalytic process can effectively degrade methylene blue under the optimum conditions (pH 9.63, 4 mg/L MB concentration, and 1.4 g/L Ag/AgCl nanoparticles)

  17. Blue photoluminescent carbon nanodots from limeade.

    Science.gov (United States)

    Suvarnaphaet, Phitsini; Tiwary, Chandra Sekhar; Wetcharungsri, Jutaphet; Porntheeraphat, Supanit; Hoonsawat, Rassmidara; Ajayan, Pulickel Madhavapanicker; Tang, I-Ming; Asanithi, Piyapong

    2016-12-01

    Carbon-based photoluminescent nanodot has currently been one of the promising materials for various applications. The remaining challenges are the carbon sources and the simple synthetic processes that enhance the quantum yield, photostability and biocompatibility of the nanodots. In this work, the synthesis of blue photoluminescent carbon nanodots from limeade via a single-step hydrothermal carbonization process is presented. Lime carbon nanodot (L-CnD), whose the quantum yield exceeding 50% for the 490nm emission in gram-scale amounts, has the structure of graphene core functionalized with the oxygen functional groups. The micron-sized flake of the as-prepared L-CnD powder exhibits multicolor emission depending on an excitation wavelength. The L-CnDs are demonstrated for rapidly ferric-ion (Fe(3+)) detection in water compared to Fe(2+), Cu(2+), Co(2+), Zn(2+), Mn(2+) and Ni(2+) ions. The photoluminescence quenching of L-CnD solution under UV light is used to distinguish the Fe(3+) ions from others by naked eyes as low concentration as 100μM. Additionally, L-CnDs provide exceptional photostability and biocompatibility for imaging yeast cell morphology. Changes in morphology of living yeast cells, i.e. cell shape variation, and budding, can be observed in a minute-period until more than an hour without the photoluminescent intensity loss.

  18. Colour shift and mechanism investigation on the PMMA diffuser used in LED-based luminaires

    Science.gov (United States)

    Lu, Guangjun; van Driel, W. D.; Fan, Xuejun; Yazdan Mehr, M.; Fan, Jiajie; Qian, Cheng; Jansen, K. M. B.; Zhang, G. Q.

    2016-04-01

    PMMA material is widely used in LED-based luminaires due to several advantages such as excellent optical transparency, durability against radiation, surface hardness (scratch free), rigidity and strength and can be completely recycled. However, few studies have been reported on the colour shift and failure mechanisms caused by this type of material. This paper experimentally investigated PMMA materials with different aging conditions. The following conclusions could be drawn. (1) Discolouration was not observed for any sample subjected to aging of 85 °C for 5000 h, or with additional blue light irradiation for 5000 h, or with additional humidity of 85%RH for 5000 h, or even with aging of 100 °C for 3000 h. (2) The specimen subjected to aging of 150 °C for 360 h has a surface discoloration and has a significant wavelength dependent degradation in the transmission spectrum caused by oxidation. The specimen with aging of 100 °C for 3000 h has a less oxidation, although no significant transmission spectrum reduction was observed. (3) Using such aged specimen as a diffuser mounted on a LED-based luminaire, the radiant flux peak intensity in the blue light area has a more severe reduction than that in the yellow light area, which results in a reduction of the radiant flux intensity ratio of blue light to yellow light and hence induces the colour shift to yellow. The colour shift investigated is 0.005, very close to the general failure criterion of 0.007, while the lumen decay is 10.2%, far less than the failure criterion of 30%.

  19. Comparison of Riboflavin and Toluidine Blue O as Photosensitizers for Photoactivated Disinfection on Endodontic and Periodontal Pathogens In Vitro.

    Directory of Open Access Journals (Sweden)

    Henrik Krarup Nielsen

    Full Text Available Photoactivated disinfection has a strong local antimicrobial effect. In the field of dentistry it is an emerging adjunct to mechanical debridement during endodontic and periodontal treatment. In the present study, we investigate the effect of photoactivated disinfection using riboflavin as a photosensitizer and blue LED light for activation, and compare it to photoactivated disinfection with the widely used combination of toluidine blue O and red light. Riboflavin is highly biocompatible and can be activated with LED lamps at hand in the dental office. To date, no reports are available on the antimicrobial effect of photoactivated disinfection using riboflavin/blue light on oral microorganisms. Planktonic cultures of eight organisms frequently isolated from periodontal and/or endodontic lesions (Aggregatibacter actinomycetemcomitans, Candida albicans, Enterococcus faecalis, Escherischia coli, Lactobacillus paracasei, Porphyromonas gingivalis, Prevotella intermedia and Propionibacterium acnes were subjected to photoactivated disinfection with riboflavin/blue light and toluidine blue O/red light, and survival rates were determined by CFU counts. Within the limited irradiation time of one minute, photoactivated disinfection with riboflavin/blue light only resulted in minor reductions in CFU counts, whereas full kills were achieved for all organisms when using toluidine blue O/red light. The black pigmented anaerobes P. gingivalis and P. intermedia were eradicated completely by riboflavin/blue light, but also by blue light treatment alone, suggesting that endogenous chromophores acted as photosensitizers in these bacteria. On the basis of our results, riboflavin cannot be recommended as a photosensitizer used for photoactivated disinfection of periodontal or endodontic infections.

  20. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting

    Science.gov (United States)

    Brown, C. S.; Schuerger, A. C.; Sager, J. C.

    1995-01-01

    Light-emitting diodes (LEDs) are a potential irradiation source for intensive plant culture systems and photobiological research. They have small size, low mass, a long functional life, and narrow spectral output. In this study, we measured the growth and dry matter partitioning of 'Hungarian Wax' pepper (Capsicum annuum L.) plants grown under red LEDs compared with similar plants grown under red LEDs with supplemental blue or far-red radiation or under broad spectrum metal halide (MH) lamps. Additionally, we describe the thermal and spectral characteristics of these sources. The LEDs used in this study had a narrow bandwidth at half peak height (25 nm) and a focused maximum spectral output at 660 nm for the red and 735 nm for the far-red. Near infrared radiation (800 to 3000 nm) was below detection and thermal infrared radiation (3000 to 50,000 nm) was lower in the LEDs compared to the MH source. Although the red to far-red ratio varied considerably, the calculated phytochrome photostationary state (phi) was only slightly different between the radiation sources. Plant biomass was reduced when peppers were grown under red LEDs in the absence of blue wavelengths compared to plants grown under supplemental blue fluorescent lamps or MH lamps. The addition of far-red radiation resulted in taller plants with greater stem mass than red LEDs alone. There were fewer leaves under red or red plus far-red radiation than with lamps producing blue wavelengths. These results indicate that red LEDs may be suitable, in proper combination with other wavelengths of light, for the culture of plants in tightly controlled environments such as space-based plant culture systems.