WorldWideScience

Sample records for blue ice lakes

  1. Ice formation in subglacial Lake Vostok, Central Antarctica

    Science.gov (United States)

    Souchez, R.; Petit, J. R.; Tison, J.-L.; Jouzel, J.; Verbeke, V.

    2000-09-01

    The investigation of chemical and isotopic properties in the lake ice from the Vostok ice core gives clues to the mechanisms involved in ice formation within the lake. A small lake water salinity can be reasonably deduced from the chemical data. Possible implications for the water circulation of Lake Vostok are developed. The characteristics of the isotopic composition of the lake ice indicate that ice formation in Lake Vostok occurred by frazil ice crystal generation due to supercooling as a consequence of rising waters and a possible contrast in water salinity. Subsequent consolidation of the developed loose ice crystals results in the accretion of ice to the ceiling of the lake.

  2. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  3. Remote Sensing of Lake Ice Phenology in Alaska

    Science.gov (United States)

    Zhang, S.; Pavelsky, T.

    2017-12-01

    Lake ice phenology (e.g. ice break-up and freeze-up timing) in Alaska is potentially sensitive to climate change. However, there are few current lake ice records in this region, which hinders the comprehensive understanding of interactions between climate change and lake processes. To provide a lake ice database with over a comparatively long time period (2000 - 2017) and large spatial coverage (4000+ lakes) in Alaska, we have developed an algorithm to detect the timing of lake ice using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. This approach generally consists of three major steps. First, we use a cloud mask (MOD09GA) to filter out satellite images with heavy cloud contamination. Second, daily MODIS reflectance values (MOD09GQ) of lake surface are used to extract ice pixels from water pixels. The ice status of lakes can be further identified based on the fraction of ice pixels. Third, to improve the accuracy of ice phenology detection, we execute post-processing quality control to reduce false ice events caused by outliers. We validate the proposed algorithm over six lakes by comparing with Landsat-based reference data. Validation results indicate a high correlation between the MODIS results and reference data, with normalized root mean square error (NRMSE) ranging from 1.7% to 4.6%. The time series of this lake ice product is then examined to analyze the spatial and temporal patterns of lake ice phenology.

  4. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  5. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes.

    Science.gov (United States)

    Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I

    2004-01-29

    Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.

  6. Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula

    Science.gov (United States)

    Davies, Bethan J.; Hambrey, Michael J.; Glasser, Neil F.; Holt, Tom; Rodés, Angél; Smellie, John L.; Carrivick, Jonathan L.; Blockley, Simon P. E.

    2017-12-01

    We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnée valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15-20 m asl in Ablation and Moutonnée valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ± 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ± 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice Shelf.

  7. Recent lake ice-out phenology within and among lake districts of Alaska, U.S.A.

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido

    2013-01-01

    The timing of ice-out in high latitudes is a fundamental threshold for lake ecosystems and an indicator of climate change. In lake-rich regions, the loss of ice cover also plays a key role in landscape and climatic processes. Thus, there is a need to understand lake ice phenology at multiple scales. In this study, we observed ice-out timing on 55 large lakes in 11 lake districts across Alaska from 2007 to 2012 using satellite imagery. Sensor networks in two lake districts validated satellite observations and provided comparison with smaller lakes. Over this 6 yr period, the mean lake ice-out for all lakes was 27 May and ranged from 07 May in Kenai to 06 July in Arctic Coastal Plain lake districts with relatively low inter-annual variability. Approximately 80% of the variation in ice-out timing was explained by the date of 0°C air temperature isotherm and lake area. Shoreline irregularity, watershed area, and river connectivity explained additional variation in some districts. Coherence in ice-out timing within the lakes of each district was consistently strong over this 6 yr period, ranging from r-values of 0.5 to 0.9. Inter-district analysis of coherence also showed synchronous ice-out patterns with the exception of the two arctic coastal districts where ice-out occurs later (June–July) and climatology is sea-ice influenced. These patterns of lake ice phenology provide a spatially extensive baseline describing short-term temporal variability, which will help decipher longer term trends in ice phenology and aid in representing the role of lake ice in land and climate models in northern landscapes.

  8. REGULARITIES OF CONGELATION ICE DEVELOPMENT IN SUBGLACIAL LAKE VOSTOK

    Directory of Open Access Journals (Sweden)

    V. Ya. Lipenkov

    2012-01-01

    Full Text Available Petrographic studies performed on the continuous basis along the two ice cores obtained from holes 5G-1 and 5G-2 at Vostok Station has allowed to characterize with great details the evolution of the ice texture and fabric in the 232-m thick stratum of accreted ice formed from theLakeVostokwater. Conventionally the whole thickness of accreted ice is divided into two strata: lake ice 1 and lake ice 2. Lake ice 1 (3537–3618 m, formed in the sallow strait50 kmupstream of Vostok, is characterized by presence of disseminated mineral inclusions of Lake Vostok sediments, as well as of «water pockets» that represent frozen water inclusions trapped during the ice accretion. The latter constitute less than 1% of the total ice volume, their mean size is about0.5 cm. Gases trapped by «water pockets» during ice formation transform into crystalline inclusions of mixed gas hydrates. Accretion of lake ice 2 (3618–3769 m proceeds in the deep part of the lake at a very small rate that does not assume trapping of liquid water inclusions and gases.Both strata of accreted ice are formed by orthotropic crystal growth from pure water. The main tendency in the evolution of accreted ice texture is growth of the mean crystal size with depth as the lake ice becomes younger towards the ice-water interface. The high-amplitude variations of crystal size and orientation observed around this general trend are shown to be linked with temporal and spatial variability of the supercooled melt-water flux from the northern part of the lake towards the ice formation site. The presence of supercooled water at the crystallization front supports persistent preferable growth of ice crystals with sub-horizontally oriented c-axes. The lack of supercooled water in turn support persistent growth of ice crystals with vertical or inclined with respect to the crystallization front c-axis orientation. It means that each of these preferred fabric orientations could serve as an indicator of

  9. Global Lake and River Ice Phenology Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  10. Circulation and Respiration in Ice-covered Alaskan Arctic Lakes

    Science.gov (United States)

    MacIntyre, S.; Cortés, A.

    2016-12-01

    Arctic lakes are ice-covered 9 months of the year. For some of this time, the sediments heat the overlying water, and respiration in the sediments increases specific conductivity, depletes oxygen, and produces greenhouse gases (GHG). Whether anoxia forms and whether the greenhouse gases are sequestered at depth depends on processes inducing circulation and upward fluxes. Similarly, whether the GHG are released at ice off depends on the extent of vertical mixing at that time. Using time series meteorological data and biogeochemical arrays with temperature, specific conductivity, and optical oxygen sensors in 5 lakes ranging from 1 to 150 ha, we illustrate the connections between meteorological forcing and within lake processes including gravity currents resulting from increased density just above the sediment water interface and internal waves including those induced by winds acting on the surface of the ice and at ice off. CO2 production was well predicted by the initial rate of oxygen drawdown near the bottom at ice on and that the upward density flux depended on lake size, with values initially high in all lakes but near molecular in lakes of a few hectares in size by mid-winter. Both CO2 production and within lake vertical fluxes were independent of the rate of cooling in fall and subsequent within lake temperatures under the ice. Anoxia formed near the sediments in all 5 lakes with the concentration of CH4 dependent, in part, on lake size and depth. Twenty to fifty percent of the greenhouse gases produced under the ice remained in the lakes by the time thermal stratification was established in summer despite considerable internal wave induced mixing at the time of ice off. These observations and analysis lay a framework for understanding the links between within lake hydrodynamics, within year variability, and the fraction of greenhouse gases produced over the winter which evade at ice off.

  11. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet

    International Nuclear Information System (INIS)

    Tedesco, Marco; Alexander, Patrick; Willis, Ian C; Banwell, Alison F; Arnold, Neil S; Hoffman, Matthew J

    2013-01-01

    Supraglacial lake drainage on the Greenland ice sheet opens surface-to-bed connections, reduces basal friction, and temporarily increases ice flow velocities by up to an order of magnitude. Existing field-based observations of lake drainages and their impact on ice dynamics are limited, and focus on one specific draining mechanism. Here, we report and analyse global positioning system measurements of ice velocity and elevation made at five locations surrounding two lakes that drained by different mechanisms and produced different dynamic responses. For the lake that drained slowly (>24 h) by overtopping its basin, delivering water via a channel to a pre-existing moulin, speedup and uplift were less than half those associated with a lake that drained rapidly (∼2 h) through hydrofracturing and the creation of new moulins in the lake bottom. Our results suggest that the mode and associated rate of lake drainage govern the impact on ice dynamics. (letter)

  12. Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska

    Science.gov (United States)

    Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.

    2011-01-01

    Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.

  13. Toward a Lake Ice Phenology Derived from VIIRS Data

    Science.gov (United States)

    Sütterlin, Melanie; Duguay-Tetzlaff, Anke; Wunderle, Stefan

    2017-04-01

    Ice cover on lakes plays an essential role in the physical, chemical, and biological processes of freshwater systems (e.g., ice duration controls the seasonal heat budget of lakes), and it also has many economic implications (e.g., for hydroelectricity, transportation, winter tourism). The variability and trends in the seasonal cycle of lake ice (e.g., timing of freeze-up and break-up) represent robust and direct indicators of climate change; they therefore emphasize the importance of monitoring lake ice phenology. Satellite remote sensing has proven its great potential for detecting and measuring the ice cover on lakes. Different remote sensing systems have been successfully used to collect recordings of freeze-up, break-up, and ice thickness and increase the spatial and temporal coverage of ground-based observations. Therefore, within the Global Climate Observing System (GCOS) Swiss project, "Integrated Monitoring of Ice in Selected Swiss Lakes," initiated by MeteoSwiss, satellite images from various sensors and different approaches are used and compared to perform investigations aimed at integrated monitoring of lake ice in Switzerland and contributing to the collection of lake ice phenology recordings. Within the framework of this project, the Remote Sensing Research Group of the University of Bern (RSGB) utilizes data acquired in the fine-resolution imagery (I) bands (1-5) of the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor that is mounted onboard the SUOMI-NPP. Visible and near-infrared reflectances, as well as thermal infrared-derived lake surface water temperatures (LSWT), are used to retrieve lake ice phenology dates. The VIIRS instrument, which combines a high temporal resolution ( 2 times per day) with a reasonable spatial resolution (375 m), is equipped with a single broad-band thermal I-channel (I05). Thus, a single-channel LSWT retrieval algorithm is employed to correct for the atmospheric influence. The single channel algorithm applied in

  14. Ice-Dammed Lake Drainage Evolution at Russell Glacier, West Greenland

    Directory of Open Access Journals (Sweden)

    Jonathan L. Carrivick

    2017-11-01

    Full Text Available KEY POINTS/HIGHLIGHTSTwo rapid ice-dammed lake drainage events gauged and ice dam geometry measured.A melt enlargement model is developed to examine the evolution of drainage mechanism(s.Lake temperature dominated conduit melt enlargement and we hypothesize a flotation trigger.Glaciological and hydraulic factors that control the timing and mechanisms of glacier lake outburst floods (GLOFs remain poorly understood. This study used measurements of lake level at 15 min intervals and known lake bathymetry to calculate lake outflow during two GLOF events from the northern margin of Russell Glacier, west Greenland. We used measured ice surface elevation, interpolated subglacial topography and likely conduit geometry to inform a melt enlargement model of the outburst evolution. The model was tuned to best-fit the hydrograph rising limb and timing of peak discharge in both events; it achieved Mean Absolute Errors of <5%. About one third of the way through the rising limb, conduit melt enlargement became the dominant drainage mechanism. Lake water temperature, which strongly governed the enlargement rate, preconditioned the high peak discharge and short duration of these floods. We hypothesize that both GLOFs were triggered by ice dam flotation, and localized hydraulic jacking sustained most of their early-stage outflow, explaining the particularly rapid water egress in comparison to that recorded at other ice-marginal lakes. As ice overburden pressure relative to lake water hydraulic head diminished, flow became confined to a subglacial conduit. This study has emphasized the inter-play between ice dam thickness and lake level, drainage timing, lake water temperature and consequently rising stage lake outflow and flood evolution.

  15. Alcian blue-stained particles in a eutrophic lake

    DEFF Research Database (Denmark)

    Worm, J.; Søndergaard, Morten

    1998-01-01

    We used a neutral solution of Alcian Blue to stain transparent particles in eutrophic Lake Frederiksborg Slotss0, Denmark. Alcian Blue-stained particles (ABSP) appeared to be similar to the so-called transparent exopolymer particles (TEP) identified with an acidic solution of Alcian Blue. Our...

  16. Ice-dammed lake drainage evolution at Russell Glacier, west Greenland

    Science.gov (United States)

    Carrivick, Jonathan L.; Tweed, Fiona S.; Ng, Felix; Quincey, Duncan J.; Mallalieu, Joseph; Ingeman-Nielsen, Thomas; Mikkelsen, Andreas B.; Palmer, Steven J.; Yde, Jacob C.; Homer, Rachel; Russell, Andrew J.; Hubbard, Alun

    2017-11-01

    Glaciological and hydraulic factors that control the timing and mechanisms of glacier lake outburst floods (GLOFs) remain poorly understood. This study used measurements of lake level at fifteen minute intervals and known lake bathymetry to calculate lake outflow during two GLOF events from the northern margin of Russell Glacier, west Greenland. We used measured ice surface elevation, interpolated subglacial topography and likely conduit geometry to inform a melt enlargement model of the outburst evolution. The model was tuned to best-fit the hydrograph’s rising limb and timing of peak discharge in both events; it achieved Mean Absolute Errors of Lake water temperature, which strongly governed the enlargement rate, preconditioned the high peak discharge and short duration of these floods. We hypothesize that both GLOFs were triggered by ice dam flotation, and localised hydraulic jacking sustained most of their early-stage outflow, explaining the particularly rapid water egress in comparison to that recorded at other ice-marginal lakes. As ice overburden pressure relative to lake water hydraulic head diminished, flow became confined to a subglacial conduit. This study has emphasised the inter-play between ice dam thickness and lake level, drainage timing, lake water temperature and consequently rising stage lake outflow and flood evolution.

  17. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    Science.gov (United States)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  18. Changes in ice cover thickness and lake level of Lake Hoare, Antarctica - Implications for local climatic change

    Science.gov (United States)

    Wharton, Robert A., Jr.; Mckay, Christopher P.; Clow, Gary D.; Andersen, Dale T.; Simmons, George M., Jr.; Love, F. G.

    1992-01-01

    Results are reported from 10 years of ice-thickness measurements at perennially ice-covered Lake Hoare in southern Victoria Land, Antarctica. The ice cover of this lake had been thinning steadily at a rate exceeding 20 cm/yr during the last decade but seems to have recently stabilized at a thickness of 3.3 m. Data concerning lake level and degree-days above freezing are presented to show the relationship between peak summer temperatures and the volume of glacier-derived meltwater entering Lake Hoare each summer. From these latter data it is inferred that peak summer temperatures have been above 0 C for a progressively longer period of time each year since 1972. Possible explanations for the thinning of the lake ice are considered. The thickness of the ice cover is determined by the balance between freezing during the winter and ablation that occurs all year but maximizes in summer. It is suggested that the term most likely responsible for the change in the ice cover thickness at Lake Hoare is the extent of summer melting, consistent with the rising lake levels.

  19. Multiple climate regimes in an idealized lake-ice-atmosphere model

    Science.gov (United States)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  20. Developing A Model for Lake Ice Phenology Using Satellite Remote Sensing Observations

    Science.gov (United States)

    Skoglund, S. K.; Weathers, K. C.; Norouzi, H.; Prakash, S.; Ewing, H. A.

    2017-12-01

    Many northern temperate freshwater lakes are freezing over later and thawing earlier. This shift in timing, and the resulting shorter duration of seasonal ice cover, is expected to impact ecological processes, negatively affecting aquatic species and the quality of water we drink. Long-term, direct observations have been used to analyze changes in ice phenology, but those data are sparse relative to the number of lakes affected. Here we develop a model to utilize remote sensing data in approximating the dates of ice-on and ice-off for many years over a variety of lakes. Day and night surface temperatures from MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra (MYD11A1 and MOD11A1 data products) for 2002-2017 were utilized in combination with observed ice-on and ice-off dates of Lake Auburn, Maine, to determine the ability of MODIS data to match ground-based observations. A moving average served to interpolate MODIS temperature data to fill data gaps from cloudy days. The nighttime data were used for ice-off, and the daytime measurements were used for ice-on predictions to avoid fluctuations between day and night ice/water status. The 0˚C intercepts of those data were used to mark approximate days of ice-on or ice-off. This revealed that approximations for ice-off dates were satisfactory (average ±8.2 days) for Lake Auburn as well as for Lake Sunapee, New Hampshire (average ±8.1 days), while approximations for Lake Auburn ice-on were less accurate and showed consistently earlier-than-observed ice-on dates (average -33.8 days). The comparison of observed and remotely sensed Lake Auburn ice cover duration showed relative agreement with a correlation coefficient of 0.46. Other remote sensing observations, such as the new GOES-R satellite, and further exploration of the ice formation process can improve ice-on approximation methods. The model shows promise for estimating ice-on, ice-off, and ice cover duration for northern temperate lakes.

  1. Lake Generated Microseisms at Yellowstone Lake as a Record of Ice Phenology

    Science.gov (United States)

    Mohd Mokhdhari, A. A.; Koper, K. D.; Burlacu, R.

    2017-12-01

    It has recently been shown that wave action in lakes produces microseisms, which generate noise peaks in the period range of 0.8-1.2 s as recorded by nearby seismic stations. Such noise peaks have been observed at seven seismic stations (H17A, LKWY, B208, B944, YTP, YLA, and YLT) located within 2 km of the Yellowstone Lake shoreline. Initial work using 2016 data shows that the variations in the microseism signals at Yellowstone Lake correspond with the freezing and thawing of lake ice: the seismic noise occurs more frequently in the spring, summer, and fall, and less commonly in the winter. If this can be confirmed, then lake-generated microseisms could provide a consistent measure of the freezing and melting dates of high-latitude lakes in remote areas. The seismic data would then be useful in assessing the effects of climate change on the ice phenology of those lakes. In this work, we analyze continuous seismic data recorded by the seven seismic stations around Yellowstone Lake for the years of 1995 to 2016. We generate probability distribution functions of power spectral density for each station to observe the broad elevation of energy near a period of 1 s. The time dependence of this 1-s seismic noise energy is analyzed by extracting the power spectral density at 1 s from every processed hour. The seismic observations are compared to direct measurements of the dates of ice-out and freeze-up as reported by rangers at Yellowstone National Park. We examine how accurate the seismic data are in recording the freezing and melting of Yellowstone Lake, and how the accuracy changes as a function of the number of stations used. We also examine how sensitive the results are to the particular range of periods that are analyzed.

  2. Modes of supraglacial lake drainage and dynamic ice sheet response

    Science.gov (United States)

    Das, S. B.; Behn, M. D.; Joughin, I. R.

    2011-12-01

    We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice

  3. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks.

    Science.gov (United States)

    Barnes, David K A; Fleming, Andrew; Sands, Chester J; Quartino, Maria Liliana; Deregibus, Dolores

    2018-06-28

    Sea ice, including icebergs, has a complex relationship with the carbon held within animals (blue carbon) in the polar regions. Sea-ice losses around West Antarctica's continental shelf generate longer phytoplankton blooms but also make it a hotspot for coastal iceberg disturbance. This matters because in polar regions ice scour limits blue carbon storage ecosystem services, which work as a powerful negative feedback on climate change (less sea ice increases phytoplankton blooms, benthic growth, seabed carbon and sequestration). This resets benthic biota succession (maintaining regional biodiversity) and also fertilizes the ocean with nutrients, generating phytoplankton blooms, which cascade carbon capture into seabed storage and burial by benthos. Small icebergs scour coastal shallows, whereas giant icebergs ground deeper, offshore. Significant benthic communities establish where ice shelves have disintegrated (giant icebergs calving), and rapidly grow to accumulate blue carbon storage. When 5000 km 2 giant icebergs calve, we estimate that they generate approximately 10 6 tonnes of immobilized zoobenthic carbon per year (t C yr -1 ). However, their collisions with the seabed crush and recycle vast benthic communities, costing an estimated 4 × 10 4  t C yr -1 We calculate that giant iceberg formation (ice shelf disintegration) has a net potential of approximately 10 6  t C yr -1 sequestration benefits as well as more widely known negative impacts.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Authors.

  4. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.

    2012-01-01

    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  5. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    Science.gov (United States)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing

  6. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series

    Directory of Open Access Journals (Sweden)

    Sofia Antonova

    2016-11-01

    Full Text Available Thermokarst lakes and ponds are major elements of permafrost landscapes, occupying up to 40% of the land area in some Arctic regions. Shallow lakes freeze to the bed, thus preventing permafrost thaw underneath them and limiting the length of the period with greenhouse gas production in the unfrozen lake sediments. Radar remote sensing permits to distinguish lakes with bedfast ice due to the difference in backscatter intensities from bedfast and floating ice. This study investigates the potential of a unique time series of three-year repeat-pass TerraSAR-X (TSX imagery with high temporal (11 days and spatial (10 m resolution for monitoring bedfast ice as well as ice phenology of lakes in the zone of continuous permafrost in the Lena River Delta, Siberia. TSX backscatter intensity is shown to be an excellent tool for monitoring floating versus bedfast lake ice as well as ice phenology. TSX-derived timing of ice grounding and the ice growth model CLIMo are used to retrieve the ice thicknesses of the bedfast ice at points where in situ ice thickness measurements were available. Comparison shows good agreement in the year of field measurements. Additionally, for the first time, an 11-day sequential interferometric coherence time series is analyzed as a supplementary approach for the bedfast ice monitoring. The coherence time series detects most of the ice grounding as well as spring snow/ice melt onset. Overall, the results show the great value of TSX time series for monitoring Arctic lake ice and provide a basis for various applications: for instance, derivation of shallow lakes bathymetry, evaluation of winter water resources and locating fish winter habitat as well as estimation of taliks extent in permafrost.

  7. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    Science.gov (United States)

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  8. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure

    Science.gov (United States)

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T.J.

    2016-01-01

    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term dataset on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted seven days earlier over the past 33 years and that spring weather conditions – especially snowfall – drive yearly variation in ice-off timing. In the most well-studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll-a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  9. LAKE ICE DETECTION IN LOW-RESOLUTION OPTICAL SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    M. Tom

    2018-05-01

    Full Text Available Monitoring and analyzing the (decreasing trends in lake freezing provides important information for climate research. Multi-temporal satellite images are a natural data source to survey ice on lakes. In this paper, we describe a method for lake ice monitoring, which uses low spatial resolution (250 m–1000 m satellite images to determine whether a lake is frozen or not. We report results on four selected lakes in Switzerland: Sihl, Sils, Silvaplana and St. Moritz. These lakes have different properties regarding area, altitude, surrounding topography and freezing frequency, describing cases of medium to high difficulty. Digitized Open Street Map (OSM lake outlines are back-projected on to the image space after generalization. As a pre-processing step, the absolute geolocation error of the lake outlines is corrected by matching the projected outlines to the images. We define the lake ice detection as a two-class (frozen, non-frozen semantic segmentation problem. Several spectral channels of the multi-spectral satellite data are used, both reflective and emissive (thermal. Only the cloud-free (clean pixels which lie completely inside the lake are analyzed. The most useful channels to solve the problem are selected with xgboost and visual analysis of histograms of reference data, while the classification is done with non-linear support vector machine (SVM. We show experimentally that this straight-forward approach works well with both MODIS and VIIRS satellite imagery. Moreover, we show that the algorithm produces consistent results when tested on data from multiple winters.

  10. Lake Ice Detection in Low-Resolution Optical Satellite Images

    Science.gov (United States)

    Tom, M.; Kälin, U.; Sütterlin, M.; Baltsavias, E.; Schindler, K.

    2018-05-01

    Monitoring and analyzing the (decreasing) trends in lake freezing provides important information for climate research. Multi-temporal satellite images are a natural data source to survey ice on lakes. In this paper, we describe a method for lake ice monitoring, which uses low spatial resolution (250 m-1000 m) satellite images to determine whether a lake is frozen or not. We report results on four selected lakes in Switzerland: Sihl, Sils, Silvaplana and St. Moritz. These lakes have different properties regarding area, altitude, surrounding topography and freezing frequency, describing cases of medium to high difficulty. Digitized Open Street Map (OSM) lake outlines are back-projected on to the image space after generalization. As a pre-processing step, the absolute geolocation error of the lake outlines is corrected by matching the projected outlines to the images. We define the lake ice detection as a two-class (frozen, non-frozen) semantic segmentation problem. Several spectral channels of the multi-spectral satellite data are used, both reflective and emissive (thermal). Only the cloud-free (clean) pixels which lie completely inside the lake are analyzed. The most useful channels to solve the problem are selected with xgboost and visual analysis of histograms of reference data, while the classification is done with non-linear support vector machine (SVM). We show experimentally that this straight-forward approach works well with both MODIS and VIIRS satellite imagery. Moreover, we show that the algorithm produces consistent results when tested on data from multiple winters.

  11. CARBON TRACE GASES IN LAKE AND BEAVER POND ICE NEAR THOMPSON, MANITOBA, CANADA

    Science.gov (United States)

    Concentrations of CO2, CO, and CH4 were measured in beaver pond and lake ice in April 1996 near Thompson, Manitoba to derive information on possible impacts of ice melting on corresponding atmospheric trace gas concentrations. CH4 concentrations in beaver pond and lake ice ranged...

  12. Drainage of ice-dammed lakes and glacier retreat - a link

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Kjaer, K. H.; Rysgaard, Søren

    2011-01-01

    surface freshwater run-off is found in the top of the water column in the fjord while sub-glacial meltwater is entrained deeper in the water column. The latter is highly important as this colder buoyant freshwater is pushed to the water surface followed by a compensating deeper landward current bringing...... in the fjord. The large quantity of buoyant freshwater changed the osmotic pressure and pushed redfish to the water surface causing them to die from divers disease. Further investigation suggested that three ice-dammed lakes adjacent to the Narssap Sermia glacier had drained within the previous year. Analysis......-30 times the volume of an ice-dammed lake prior to drainage. The warm water influx in turn causes the glacier to retreat and to gradually become thinner which feeds back to an increase in drainage events of ice-dammed lakes over time. On a larger scale the feedback mechanism between the drainage of lakes...

  13. Drainage of the ice-dammed Lake Tinninilik, West Greenland; implication on bedrock uplift

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Bjørk, Anders Anker

    Drainage of ice-dammed lakes is regularly observed along the margin of the Greenland Ice Sheet. However, the speed of the drainage events and implications can vary depending on the size of the lakes and the local settings. Here, we assess the drainage pattern of Lake Tinninilik, dammed...

  14. Fault-dominated deformation in an ice dam during annual filling and drainage of a marginal lake

    Science.gov (United States)

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Anderson, S.P.; Anderson, R. Scott; Fountain, A.G.; Malm, A.

    2005-01-01

    Ice-dammed Hidden Creek Lake, Alaska, USA, outbursts annually in about 2-3 days. As the lake fills, a wedge of water penetrates beneath the glacier, and the surface of this 'ice dam' rises; the surface then falls as the lake drains. Detailed optical surveying of the glacier near the lake allows characterization of ice-dam deformation. Surface uplift rate is close to the rate of lake-level rise within about 400 m of the lake, then decreases by 90% over about 100 m. Such a steep gradient in uplift rate cannot be explained in terms of ice-dam flexure. Moreover, survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. Evidently, the zone of steep uplift gradient is a fault zone, with the faults penetrating the entire thickness of the ice dam. Fault motion is in a reverse sense as the lake fills, but in a normal sense as the lake drains. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  15. Snowmelt Pattern and Lake Ice Phenology around Tibetan Plateau Estimated from Enhanced Resolution Passive Microwave Data

    Science.gov (United States)

    Xiong, C.; Shi, J.; Wang, T.

    2017-12-01

    Snow and ice is very sensitive to the climate change. Rising air temperature will cause the snowmelt time change. In contrast, the change in snow state will have feedback on climate through snow albedo. The snow melt timing is also correlated with the associated runoff. Ice phenology describes the seasonal cycle of lake ice cover and includes freeze-up and breakup periods and ice cover duration, which is an important weather and climate indicator. It is also important for lake-atmosphere interactions and hydrological and ecological processes. The enhanced resolution (up to 3.125 km) passive microwave data is used to estimate the snowmelt pattern and lake ice phenology on and around Tibetan Plateau. The enhanced resolution makes the estimation of snowmelt and lake ice phenology in more spatial detail compared to previous 25 km gridded passive microwave data. New algorithm based on smooth filters and change point detection was developed to estimate the snowmelt and lake ice freeze-up and break-up timing. Spatial and temporal pattern of snowmelt and lake ice phonology are estimated. This study provides an objective evidence of climate change impact on the cryospheric system on Tibetan Plateau. The results show significant earlier snowmelt and lake ice break-up in some regions.

  16. Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica

    Science.gov (United States)

    Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.

    2016-01-01

    A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.

  17. Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage

    Science.gov (United States)

    Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.

    2017-12-01

    Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.

  18. The study of fresh-water lake ice using multiplexed imaging radar

    Science.gov (United States)

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  19. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    Science.gov (United States)

    Surdu, Cristina M.; Duguay, Claude R.; Fernández Prieto, Diego

    2016-05-01

    Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than 10 months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions - polar oases - with longer growing seasons and greater biological productivity and diversity are secluded from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997-2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath, and Landsat acquisitions were analyzed. Results show that melt onset occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer ice minimum and water-clear-of-ice (WCI) dates, with greater changes being observed for polar-oasis lakes (9-24 days earlier WCI dates for lakes located in polar oases and 2-20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes, which preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.

  20. Supraglacial Lakes in the Percolation Zone of the Western Greenland Ice Sheet: Formation and Development using Operation IceBridge Snow Radar and ATM (2009-2014)

    Science.gov (United States)

    Chen, C.; Howat, I. M.; de la Peña, S.

    2015-12-01

    Surface meltwater lakes on the Greenland Ice Sheet have appeared at higher elevations, extending well into the percolation zone, under recent warming, with the largest expansion occurring in the western Greenland Ice Sheet. The conditions that allow lakes to form atop firn are poorly constrained, but the formation of new lakes imply changes in the permeability of the firn at high elevations, promoting meltwater runoff. We explore the formation and evolution of new surface lakes in this region above 1500 meters, using a combination of satellite imagery and repeat Snow (2-6.5 GHz) radar echograms and LIDAR measurements from NASA's Operation IceBridge of 2009-2014. We identify conditions for surface lake formation at their farthest inland extent and suggest behaviors of persistence and lake drainage are due to differences in regional ice dynamics.

  1. Public Perception of Blue-Algae Bloom Risk in Hongze Lake of China

    Science.gov (United States)

    Huang, Lei; Sun, Kai; Ban, Jie; Bi, Jun

    2010-05-01

    In this work we characterize the public perception of one kind of ecological risk—blue-algae bloom in Hongze Lake, China, based on the psychometric paradigm method. In the first survey of May 2008, 300 respondents of Sihong County adjacent to Hongze Lake were investigated, with a total of 156 questionnaires returned. Then in a second survey of July 2008, 500 respondents from the same research area were investigated, with 318 questionnaires collected. This research firstly attempted to explore the local respondents’ degree of concern regarding ecological changes to Hongze Lake in the last ten years. Secondly, to explore the public perception of blue-algae bloom compared to three typical kinds of hazards including earthquake, nuclear power and public traffic. T-test was used to examine the difference of risk perception in these four hazards over time. The third part of this research, with demographic analysis and nonparametric statistical test, predicted the different groups of respondents’ willingness to accept (WTA) risk of blue-algae bloom in two surveys. Using multiple linear regression analysis, the risk perception model explained 28.3% of variance in the WTA blue-algae bloom risk. The variables of Knowledge, Social effect, Benefit, Controllability and Trust in government were significantly correlated with WTA, which implied that these variables were the main influencing factors explaining the respondents’ willingness to accept risk. The results would help the Chinese government to comprehend the public’s risk perception of the lake ecosystem, inducing well designed communication of risks with public and making effective mitigation policies to improve people’s rational risk judgment.

  2. Ice-dammed lakes reconstruction in the southeastern Scandinavian ice sheet periphery

    Science.gov (United States)

    Anisimov, Nikolai

    2017-04-01

    The study of glacier erosion processes, paleolake dynamics and topographical changes, together give us insight into both localized and broader landscape evolution patterns while also assisting human exploration. After carrying number of paleographic discoveries of North-West of Russia, we've gathered the data requiring generalizing, systemizing, visualizing. Objective: reconstruction of proglacial lakes based on lithostratigraphic and geomorphic analysis using GIS technology. GIS modeling of ice-dammed lakes was done via the ArcGIS Desktop 10 software package. The GIS was used as a means to categorize published, time mapped data and thereby fuse and unify the changes into a single, integrated prototype. Publications on limnologo-glaciological and geomorphological reconstructions of paleotopography and paleolakes north of the Russian plain, along with additional copyrighted and grant-funded GIS studies, together served as resources to authenticate the paleolake contour modeling. A quaternary sediments map and an updated topography map that was designed via semiautomatic vectorization of a topographical map, served as foundations for the electronic shape modeling paleoreconstructions. Based upon preliminary results from publication summaries, and initial data collected when analyzing the maps (quaternary sediments, geomorphological, topographical), the contours and maximum glacial lake rise levels in the southeastern Scandinavian ice sheet periphery, including the levels and contours of their coastline, have been duly identified. Boundary reconstruction of Late Pleistocene lake boundaries have been completed for five sections of the Scandinavian ice sheet: the Molovo-Sheksninskoy, the Belozersko-Kubensky, the Vozhe-Lachsko-Kubensky, the Vazhskoy, and the Severodvinskoy. The territories studied revealed 13 major paleobasins covering an area of more than 1,000 km2, which based upon their position most closely resemble periglacial, intraglacial and postglacial lakes. Of

  3. Acceptability, Use, and Safety of a Mobile Phone App (BlueIce) for Young People Who Self-Harm: Qualitative Study of Service Users' Experience.

    Science.gov (United States)

    Grist, Rebecca; Porter, Joanna; Stallard, Paul

    2018-02-23

    Self-harm is common among adolescents and is associated with a number of negative psychosocial outcomes including a higher risk of suicide. Recent reviews highlight the lack of research into specific interventions for children and young people who self-harm. Developing innovative interventions that are coproduced with individuals with lived experience and that reduce self-harm are key challenges for self-harm prevention. The aim of this study was to explore the acceptability, use, and safety of BlueIce, a mobile phone app for young people who self-harm and who are attending child and adolescent mental health services (CAMHS). This study is part of a mixed methods phase 1 trial of BlueIce. Young people aged 12-17 years attending specialist CAMHS were recruited. Clinicians were invited to refer young people who were self-harming or who had a history of self-harm. On consent being obtained and baseline measures taken, participants used BlueIce as an adjunct to usual care for an initial familiarization period of 2 weeks. If after this time they wanted to continue, they used BlueIce for a further 10 weeks. Semistructured interviews were conducted at postfamiliarization (2 weeks after using BlueIce) and postuse (12 weeks after using BlueIce) to assess the acceptability, use, and safety of BlueIce. We undertook a qualitative analysis using a deductive approach, and then an inductive approach, to investigate common themes. Postfamiliarization interviews were conducted with 40 participants. Of these, 37 participants elected to use BlueIce, with postuse interviews being conducted with 33 participants. Following 6 key themes emerged from the data: (1) appraisal of BlueIce, (2) usability of BlueIce, (3) safety, (4) benefits of BlueIce, (5) agency and control, and (6) BlueIce less helpful. The participants reported that BlueIce was accessible, easy to use, and convenient. Many highlighted the mood diary and mood lifter sections as particularly helpful in offering a way to track

  4. Acceptability, Use, and Safety of a Mobile Phone App (BlueIce) for Young People Who Self-Harm: Qualitative Study of Service Users’ Experience

    Science.gov (United States)

    2018-01-01

    Background Self-harm is common among adolescents and is associated with a number of negative psychosocial outcomes including a higher risk of suicide. Recent reviews highlight the lack of research into specific interventions for children and young people who self-harm. Developing innovative interventions that are coproduced with individuals with lived experience and that reduce self-harm are key challenges for self-harm prevention. Objective The aim of this study was to explore the acceptability, use, and safety of BlueIce, a mobile phone app for young people who self-harm and who are attending child and adolescent mental health services (CAMHS). Methods This study is part of a mixed methods phase 1 trial of BlueIce. Young people aged 12-17 years attending specialist CAMHS were recruited. Clinicians were invited to refer young people who were self-harming or who had a history of self-harm. On consent being obtained and baseline measures taken, participants used BlueIce as an adjunct to usual care for an initial familiarization period of 2 weeks. If after this time they wanted to continue, they used BlueIce for a further 10 weeks. Semistructured interviews were conducted at postfamiliarization (2 weeks after using BlueIce) and postuse (12 weeks after using BlueIce) to assess the acceptability, use, and safety of BlueIce. We undertook a qualitative analysis using a deductive approach, and then an inductive approach, to investigate common themes. Results Postfamiliarization interviews were conducted with 40 participants. Of these, 37 participants elected to use BlueIce, with postuse interviews being conducted with 33 participants. Following 6 key themes emerged from the data: (1) appraisal of BlueIce, (2) usability of BlueIce, (3) safety, (4) benefits of BlueIce, (5) agency and control, and (6) BlueIce less helpful. The participants reported that BlueIce was accessible, easy to use, and convenient. Many highlighted the mood diary and mood lifter sections as

  5. Detection of Supra-Glacial Lakes on the Greenland Ice Sheet Using MODIS Images

    Science.gov (United States)

    Verin, Gauthier; Picard, Ghislain; Libois, Quentin; Gillet-Chaulet, Fabien; Roux, Antoine

    2015-04-01

    During melt season, supra-glacial lakes form on the margins of the Greenland ice sheet. Because of their size exceeding several kilometers, and their concentration, they affect surface albedo leading to an amplification of the regional melt. Furthermore, they foster hydro-fracturing that propagate liquid water to the bedrock and therefore enhance the basal lubrication which may affect the ice motion. It is known that Greenland ice sheet has strongly responded to recent global warming. As air temperature increases, melt duration and melt intensity increase and surface melt area extends further inland. These recent changes may play an important role in the mass balance of the Greenland ice sheet. In this context, it is essential to better monitor and understand supra-glacial spatio-temporal dynamics in order to better assess future sea level rise. In this study MODIS (Moderate Resolution Imaging Spectroradiometer) images have been used to detect supra-glacial lakes. The observation site is located on the West margin of the ice sheet, between 65°N and 70°N where the concentration of lake is maximum. The detection is performed by a fully automatic algorithm using images processing techniques introduced by Liang et al. (2012) which can be summarized in three steps: the selection of usable MODIS images, mainly we exclude images with too many clouds. The detection of lake and the automatic correction of false detections. This algorithm is capable to tag each individual lake allowing a survey of all lake geometrical properties over the entire melt season. We observed a large population of supra-glacial lakes over 14 melt seasons, from 2000 to 2013 on an extended area of 70.000 km2. In average, lakes are observed from June 9 ± 8.7 days to September 13 ± 13.9 days, and reach a maximum total area of 699 km2 ± 146 km2. As the melt season progresses, lakes form higher in altitude up to 1800 m above sea level. Results show a very strong inter-annual variability in term of

  6. Hydrograph Predictions of Glacial Lake Outburst Floods From an Ice-Dammed Lake

    Science.gov (United States)

    McCoy, S. W.; Jacquet, J.; McGrath, D.; Koschitzki, R.; Okuinghttons, J.

    2017-12-01

    Understanding the time evolution of glacial lake outburst floods (GLOFs), and ultimately predicting peak discharge, is crucial to mitigating the impacts of GLOFs on downstream communities and understanding concomitant surface change. The dearth of in situ measurements taken during GLOFs has left many GLOF models currently in use untested. Here we present a dataset of 13 GLOFs from Lago Cachet Dos, Aysen Region, Chile in which we detail measurements of key environmental variables (total volume drained, lake temperature, and lake inflow rate) and high temporal resolution discharge measurements at the source lake, in addition to well-constrained ice thickness and bedrock topography. Using this dataset we test two common empirical equations as well as the physically-based model of Spring-Hutter-Clarke. We find that the commonly used empirical relationships based solely on a dataset of lake volume drained fail to predict the large variability in observed peak discharges from Lago Cachet Dos. This disagreement is likely because these equations do not consider additional environmental variables that we show also control peak discharge, primarily, lake water temperature and the rate of meltwater inflow to the source lake. We find that the Spring-Hutter-Clarke model can accurately simulate the exponentially rising hydrographs that are characteristic of ice-dammed GLOFs, as well as the order of magnitude variation in peak discharge between events if the hydraulic roughness parameter is allowed to be a free fitting parameter. However, the Spring-Hutter-Clarke model over predicts peak discharge in all cases by 10 to 35%. The systematic over prediction of peak discharge by the model is related to its abrupt flood termination that misses the observed steep falling limb of the flood hydrograph. Although satisfactory model fits are produced, the range in hydraulic roughness required to obtain these fits across all events was large, which suggests that current models do not

  7. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009

    Directory of Open Access Journals (Sweden)

    Ruibo Lei

    2011-03-01

    Full Text Available A field programme on light conditions in ice-covered lakes and optical properties of lake ice was performed in seven lakes of Finland and Estonia in February–April 2009. On the basis of irradiance measurements above and below ice, spectral reflectance and transmittance were determined for the ice sheet; time evolution of photosynthetically active radiation (PAR transmittance was examined from irradiance recordings at several levels inside the ice sheet. Snow cover was the dominant factor for transmission of PAR into the lake water body. Reflectance was 0.74–0.92 in winter, going down to 0.18–0.22 in the melting season. The bulk attenuation coefficient of dry snow was 14–25 m–1; the level decreased as the spring was coming. The reflectance and bulk attenuation coefficient of snow-free ice were 0.1–0.4 and 1–5 m–1. Both were considerably smaller than those of snow cover. Seasonal evolution of light transmission was mainly due to snow melting. Snow and ice cover not only depress the PAR level in a lake but also influence the spectral and directional distribution of light.

  8. Behaviour of the lake district ice lobe of the Scandinavian ice sheet during the younger dryas chronozone (ca. 12 800 - 11 500 years ago)

    Energy Technology Data Exchange (ETDEWEB)

    Lunkka, J.P.; Erikkilae, A. [Oulu Univ. (Finland)

    2012-04-15

    It is highly relevant to picture the conditions that prevailed under and in front of the ice sheets as they were stationary or in equilibrium for many hundreds of years. This knowledge is particularly relevant when planning to dispose of spent nuclear fuel in a repository underground. For estimating what kind of conditions might exist at the ice margin basic knowledge is needed from the palaeoice sheets that remained stationary for long periods of time. During Younder Dryas Stadial (c. 12 800 - 11 500 years ago) glaciers remained stationary or advanced worldwide as a result of climate cooling. The major end moraine complexes that run around Fennoscandia, Russian Karelia and the Kola Peninsula were deposited at that time and mark the former Younger Dryas ice margin. It this work the palaeoenvironments have been reconstructed in order to reveal the conditions that existed for more than 1000 years in the area where the former Lake District Ice Lobe of the Scandinavian Ice Sheet was in the Salpausselkae zone in southern Finland. Work was carried out using GIS-based reconstruction tools, sedimentological and geophysical (ground penetrating radar) methods. In addition, a detailed palaeoenvironmental reconstruction was produced for the Kylaeniemi area which forms a part of the Salpausselkae II end moraine. The GIS-based reconstructions clearly indicate that the ice grounding line of the Lake District Ice Lobe was standing in shallow water depth in the Baltic Ice Lake. The water depth in front of Salpausselkae I, which marks the ice margin at c. 12 500 years ago was mainly between 20-40 metres. When the ice margin was in Salpausselkae II at around 11 700 years ago the water depth in front of the ice margin was on average less than 20 metres. Although the surface profile of ice was not possible to calculate subgalcial and ice frontal landforms indicate that subgalcial tunnel systems were responsible for releasing melt water and sediment to the ice margin throughout the

  9. Behaviour of the lake district ice lobe of the Scandinavian ice sheet during the younger dryas chronozone (ca. 12 800 - 11 500 years ago)

    International Nuclear Information System (INIS)

    Lunkka, J.P.; Erikkilae, A.

    2012-04-01

    It is highly relevant to picture the conditions that prevailed under and in front of the ice sheets as they were stationary or in equilibrium for many hundreds of years. This knowledge is particularly relevant when planning to dispose of spent nuclear fuel in a repository underground. For estimating what kind of conditions might exist at the ice margin basic knowledge is needed from the palaeoice sheets that remained stationary for long periods of time. During Younder Dryas Stadial (c. 12 800 - 11 500 years ago) glaciers remained stationary or advanced worldwide as a result of climate cooling. The major end moraine complexes that run around Fennoscandia, Russian Karelia and the Kola Peninsula were deposited at that time and mark the former Younger Dryas ice margin. It this work the palaeoenvironments have been reconstructed in order to reveal the conditions that existed for more than 1000 years in the area where the former Lake District Ice Lobe of the Scandinavian Ice Sheet was in the Salpausselkae zone in southern Finland. Work was carried out using GIS-based reconstruction tools, sedimentological and geophysical (ground penetrating radar) methods. In addition, a detailed palaeoenvironmental reconstruction was produced for the Kylaeniemi area which forms a part of the Salpausselkae II end moraine. The GIS-based reconstructions clearly indicate that the ice grounding line of the Lake District Ice Lobe was standing in shallow water depth in the Baltic Ice Lake. The water depth in front of Salpausselkae I, which marks the ice margin at c. 12 500 years ago was mainly between 20-40 metres. When the ice margin was in Salpausselkae II at around 11 700 years ago the water depth in front of the ice margin was on average less than 20 metres. Although the surface profile of ice was not possible to calculate subgalcial and ice frontal landforms indicate that subgalcial tunnel systems were responsible for releasing melt water and sediment to the ice margin throughout the

  10. Measurement and Analysis of Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design

    Energy Technology Data Exchange (ETDEWEB)

    England, Tony [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; van Nieuwstadt, Lin [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; De Roo, Roger [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Karr, Dale [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Lozenge, David [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Meadows, Guy [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering

    2016-05-30

    This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that has been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.

  11. Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice.

    Science.gov (United States)

    Lipenkov, Vladimir Ya; Ekaykin, Alexey A; Polyakova, Ekaterina V; Raynaud, Dominique

    2016-01-28

    Deep drilling at the Vostok Station has reached the surface of subglacial Lake Vostok (LV) twice-in February 2012 and January 2015. As a result, three replicate cores from boreholes 5G-1, 5G-2 and 5G-3 became available for detailed and revalidation analyses of the 230 m thickness of the accreted ice, down to its contact with water at 3769 m below the surface. The study reveals that the concentration of gases in the lake water beneath Vostok is unexpectedly low. A clear signature of the melt water in the surface layer of the lake, which is subject to refreezing on the icy ceiling of LV, has been discerned in the three different properties of the accreted ice: the ice texture, the isotopic and the gas content of the ice. These sets of data indicate in concert that poor mixing of the melt (and hydrothermal) water with the resident lake water and pronounced spatial and/or temporal variability of local hydrological conditions are likely to be the characteristics of the southern end of the lake. The latter implies that the surface water may be not representative enough to study LV's behaviour, and that direct sampling of the lake at different depths is needed in order to move ahead with our understanding of the lake's hydrological regime. © 2015 The Author(s).

  12. Application of ozonated dry ice (ALIGAL™ Blue Ice) for packaging and transport in the food industry.

    Science.gov (United States)

    Fratamico, Pina M; Juneja, Vijay; Annous, Bassam A; Rasanayagam, Vasuhi; Sundar, M; Braithwaite, David; Fisher, Steven

    2012-05-01

    Dry ice is used by meat and poultry processors for temperature reduction during processing and for temperature maintenance during transportation. ALIGAL™ Blue Ice (ABI), which combines the antimicrobial effect of ozone (O(3)) along with the high cooling capacity of dry ice, was investigated for its effect on bacterial reduction in air, in liquid, and on food and glass surfaces. Through proprietary means, O(3) was introduced to produce dry ice pellets to a concentration of 20 parts per million (ppm) by total weight. The ABI sublimation rate was similar to that of dry ice pellets under identical conditions, and ABI was able to hold the O(3) concentration throughout the normal shelf life of the product. Challenge studies were performed using different microorganisms, including E. coli, Campylobacter jejuni, Salmonella, and Listeria, that are critical to food safety. ABI showed significant (P Food Technologists®

  13. GLERL Great Lakes Ice Thickness Data Base, 1966-1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the winters of 1965/66 through 1976/77, NOAA/Great Lakes Environmental Research Laboratory (GLERL) collected weekly ice thickness and stratigraphy data at up...

  14. Field Investigation of Surface-Lake Processes on Ice Shelves: Results of the 2015/16 Field Campaign on McMurdo Ice Shelf, Antarctica

    Science.gov (United States)

    MacAyeal, Doug; Banwell, Alison; Willis, Ian; Macdonald, Grant

    2016-04-01

    Ice-shelf instability and breakup of the style exhibited by Larsen B Ice Shelf in 2002 remains the most difficult glaciological process of consequence to observe in detail. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain, thereby changing the surface loads the ice-shelf must adjust to. Our model suggest that these fractures resulted in a chain-reaction style drainage of >2750 surface lakes on the Larsen B in the days prior to its demise. To validate this and other models, we began a field project on the McMurdo Ice Shelf (MIS) during the 2015/16 austral summer. Advantages of the MIS study site are: there is considerable surface melting during 3-6 weeks of the summer season, the ice is sufficiently thin (logistical support (McMurdo Station). Here we show initial results from the field campaign, including GPS and water-depth observations of a lake that has filled and drained over multiple week timescales in previous austral summers. We also report on the analysis of high-resolution WorldView satellite imagery from several summers that reveals the complexity of surface meltwater movement in channels and subsurface void spaces. Initial reconnaissance of the largest surface-lake features reveal that they have a central circular depression surrounded by an uplifted ring, which supports one of the central tenets of our ice-shelf flexure theory. A second field season is anticipated for the 2016/17 austral summer.

  15. Seasonal food habits of introduced blue catfish in Lake Oconee, Georgia

    Science.gov (United States)

    Jennings, Cecil A.; Mitchell, Geoffrey E.; Nelson, Chris

    2018-01-01

    Blue catfish (Ictalurus furcatus) are native to the Coosa River drainage in northwest Georgia but have been widely introduced outside of this range including Lake Oconee, a 7677-ha impoundment on the Oconee River in central Georgia. Blue catfish abundance and growth rates have increased dramatically since their introduction in Lake Oconee, but their food habits are unknown. Therefore, food habits of blue catfish in this impoundment were determined by examining the stomachs of 808 specimens in the reservoir’s upper and lower regions across all seasons from summer 2012 to summer 2013. Diet was summarized using the Relative Importance of specific prey by weight. In the upper region of the reservoir, Asian clams (Corbicula fluminea) were the dominant prey item during the summer (75.7%), fall (66.4%), and winter (37.6%); whereas crappie (Pomoxis spp.) was the dominant prey item in the spring (38.7%). Asian clams also were the dominant prey items in the lower region during the fall (68.4%), winter (33.9%), and spring (36.4%). Blue catfish seemed to feed opportunistically on seasonally abundant prey items in both the upper riverine and lower lacustrine portions of the reservoir. Of the many sportfishes in the reservoir, only crappie was an important prey item, and then only in the upper region during the spring. Our results do not support concerns that blue catfish are an apex predator that would decimate the sportfish assemblage in this recently colonized reservoir.

  16. Ecology of Subglacial Lake Vostok (Antarctica, Based on Metagenomic/Metatranscriptomic Analyses of Accretion Ice

    Directory of Open Access Journals (Sweden)

    Tom D'Elia

    2013-03-01

    Full Text Available Lake Vostok is the largest of the nearly 400 subglacial Antarctic lakes and has been continuously buried by glacial ice for 15 million years. Extreme cold, heat (from possible hydrothermal activity, pressure (from the overriding glacier and dissolved oxygen (delivered by melting meteoric ice, in addition to limited nutrients and complete darkness, combine to produce one of the most extreme environments on Earth. Metagenomic/metatranscriptomic analyses of ice that accreted over a shallow embayment and over the southern main lake basin indicate the presence of thousands of species of organisms (94% Bacteria, 6% Eukarya, and two Archaea. The predominant bacterial sequences were closest to those from species of Firmicutes, Proteobacteria and Actinobacteria, while the predominant eukaryotic sequences were most similar to those from species of ascomycetous and basidiomycetous Fungi. Based on the sequence data, the lake appears to contain a mixture of autotrophs and heterotrophs capable of performing nitrogen fixation, nitrogen cycling, carbon fixation and nutrient recycling. Sequences closest to those of psychrophiles and thermophiles indicate a cold lake with possible hydrothermal activity. Sequences most similar to those from marine and aquatic species suggest the presence of marine and freshwater regions.

  17. New age constraints for the Saalian glaciation in northern central Europe: Implications for the extent of ice sheets and related proglacial lake systems

    Science.gov (United States)

    Lang, Jörg; Lauer, Tobias; Winsemann, Jutta

    2018-01-01

    A comprehensive palaeogeographic reconstruction of ice sheets and related proglacial lake systems for the older Saalian glaciation in northern central Europe is presented, which is based on the integration of palaeo-ice flow data, till provenance, facies analysis, geomorphology and new luminescence ages of ice-marginal deposits. Three major ice advances with different ice-advance directions and source areas are indicated by palaeo-ice flow directions and till provenance. The first ice advance was characterised by a southwards directed ice flow and a dominance of clasts derived from southern Sweden. The second ice advance was initially characterised by an ice flow towards the southwest. Clasts are mainly derived from southern and central Sweden. The latest stage in the study area (third ice advance) was characterised by ice streaming (Hondsrug ice stream) in the west and a re-advance in the east. Clasts of this stage are mainly derived from eastern Fennoscandia. Numerical ages for the first ice advance are sparse, but may indicate a correlation with MIS 8 or early MIS 6. New pIRIR290 luminescence ages of ice-marginal deposits attributed to the second ice advance range from 175 ± 10 to 156 ± 24 ka and correlate with MIS 6. The ice sheets repeatedly blocked the main river-drainage pathways and led to the formation of extensive ice-dammed lakes. The formation of proglacial lakes was mainly controlled by ice-damming of river valleys and major bedrock spillways; therefore the lake levels and extends were very similar throughout the repeated ice advances. During deglaciation the lakes commonly increased in size and eventually drained successively towards the west and northwest into the Lower Rhine Embayment and the North Sea. Catastrophic lake-drainage events occurred when large overspill channels were suddenly opened. Ice-streaming at the end of the older Saalian glaciation was probably triggered by major lake-drainage events.

  18. Periodic outburst floods from an ice-dammed lake in East Greenland.

    Science.gov (United States)

    Grinsted, Aslak; Hvidberg, Christine S; Campos, Néstor; Dahl-Jensen, Dorthe

    2017-08-30

    We report evidence of four cycles of outburst floods from Catalina Lake, an ice-dammed lake in East Greenland, identified in satellite imagery between 1966-2016. The lake measures 20-25 km 2 , and lake level drops 130-150 m in each event, corresponding to a water volume of 2.6-3.4 Gt, and a release of potential energy of 10 16  J, among the largest outburst floods reported in historical times. The drainage cycle has shortened systematically, and the lake filling rate has increased over each cycle, suggesting that the drainage pattern is changing due to climate warming with possible implications for environmental conditions in Scoresbysund fjord.

  19. Great Lakes Surface Ice Reports from U.S. Coast Guard

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data consist of ice observations from U.S. Coast Guard vessels operating on the Great Lakes, and from Coast Guard shore stations reported via teletype messages and...

  20. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai.

    Science.gov (United States)

    Liu, Yu; Li, Changyou; Anderson, Bruce; Zhang, Sheng; Shi, Xiaohong; Zhao, Shengnan

    2017-06-01

    Mercury contamination from industrial and agricultural drainage into lakes and rivers is a growing concern in Northern China. Lake Ulansuhai, located in Hetao irrigation district in Inner Mongolia, is the only sink for the all industrial and agricultural drainage and sole outlet for this district to the Yellow River, which is one of the main source of drinking water for the numerous cities and towns downstream. Because Ulansuahi is ice-covered during winter, the QWASI model was modified by adding an ice equation to get a more accurate understanding of the fate and transport of mercury within the lake. Both laboratory and field tests were carried out during the ice growth period. The aquivalence and mass balance approaches were used to develop the modified QWASI + ice model. The margins of error between the modelled and the measured average concentrations of Hg in ice, water, and sediment were 30%, 26.2%, and 19.8% respectively. These results suggest that the new QWASI + ice model could be used to more accurately represent the fate and transport of mercury in the seasonally ice-covered lakes, during the ice growth period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Parameterisation of sea and lake ice in numerical weather prediction models of the German Weather Service

    Directory of Open Access Journals (Sweden)

    Dmitrii Mironov

    2012-04-01

    Full Text Available A bulk thermodynamic (no rheology sea-ice parameterisation scheme for use in numerical weather prediction (NWP is presented. The scheme is based on a self-similar parametric representation (assumed shape of the evolving temperature profile within the ice and on the integral heat budget of the ice slab. The scheme carries ordinary differential equations (in time for the ice surface temperature and the ice thickness. The proposed sea-ice scheme is implemented into the NWP models GME (global and COSMO (limited-area of the German Weather Service. In the present operational configuration, the horizontal distribution of the sea ice is governed by the data assimilation scheme, no fractional ice cover within the GME/COSMO grid box is considered, and the effect of snow above the ice is accounted for through an empirical temperature dependence of the ice surface albedo with respect to solar radiation. The lake ice is treated similarly to the sea ice, except that freeze-up and break-up of lakes occurs freely, independent of the data assimilation. The sea and lake ice schemes (the latter is a part of the fresh-water lake parameterisation scheme FLake show a satisfactory performance in GME and COSMO. The ice characteristics are not overly sensitive to the details of the treatment of heat transfer through the ice layer. This justifies the use of a simplified but computationally efficient bulk approach to model the ice thermodynamics in NWP, where the ice surface temperature is a major concern whereas details of the temperature distribution within the ice are of secondary importance. In contrast to the details of the heat transfer through the ice, the cloud cover is of decisive importance for the ice temperature as it controls the radiation energy budget at the ice surface. This is particularly true for winter, when the long-wave radiation dominates the surface energy budget. During summer, the surface energy budget is also sensitive to the grid-box mean ice

  2. ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya

    Science.gov (United States)

    Wessels, R.L.; Kargel, J.S.; Kieffer, H.H.

    2002-01-01

    We demonstrate an application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images to detect and monitor supraglacial lakes on glaciers in the Mount Everest region in Tibet (Xizang) and Nepal. ASTER offers powerful capabilities to monitor supraglacial lakes in terms of (1) surface area, growth and disappearance (spatial resolution = 15 m), (2) turbidity (15 m resolution), and (3) temperature (90 m resolution). Preliminary results show an overall similarity of supraglacial lakes on three glaciers. Lakes have widely varying turbidity as indicated by color in visible/near-infrared bands 1-3, the largest lakes being bright blue (highly turbid), cold (near 0??C) and hydrautically connected with other lakes and supraglacial streams, while small lakes are mostly dark blue (relatively clear water), warmer (>4??C), and appear hydrautically isolated. High levels of turbidity in supraglacial lakes indicate high rates of meltwater input from streams or erosion of ice cliffs, and thus are an indirect measure relating to the activity and hydraulic integration of the lake with respect to other lakes and streams in the glacier.

  3. Subglacial Lake Vostok (Antarctica accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya.

    Directory of Open Access Journals (Sweden)

    Yury M Shtarkman

    Full Text Available Lake Vostok, the 7(th largest (by volume and 4(th deepest lake on Earth, is covered by more than 3,700 m of ice, making it the largest subglacial lake known. The combination of cold, heat (from possible hydrothermal activity, pressure (from the overriding glacier, limited nutrients and complete darkness presents extreme challenges to life. Here, we report metagenomic/metatranscriptomic sequence analyses from four accretion ice sections from the Vostok 5G ice core. Two sections accreted in the vicinity of an embayment on the southwestern end of the lake, and the other two represented part of the southern main basin. We obtained 3,507 unique gene sequences from concentrates of 500 ml of 0.22 µm-filtered accretion ice meltwater. Taxonomic classifications (to genus and/or species were possible for 1,623 of the sequences. Species determinations in combination with mRNA gene sequence results allowed deduction of the metabolic pathways represented in the accretion ice and, by extension, in the lake. Approximately 94% of the sequences were from Bacteria and 6% were from Eukarya. Only two sequences were from Archaea. In general, the taxa were similar to organisms previously described from lakes, brackish water, marine environments, soil, glaciers, ice, lake sediments, deep-sea sediments, deep-sea thermal vents, animals and plants. Sequences from aerobic, anaerobic, psychrophilic, thermophilic, halophilic, alkaliphilic, acidophilic, desiccation-resistant, autotrophic and heterotrophic organisms were present, including a number from multicellular eukaryotes.

  4. Bottom Fixed Platform Dynamics Models Assessing Surface Ice Interactions for Transitional Depth Structures in the Great Lakes: FAST8 – IceDyn

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Dale G. [Univ. of Michigan, Ann Arbor, MI (United States); Yu, Bingbin [Principle Power, Inc., Emeryville, CA (United States); Sirnivas, Senu [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-04-01

    To create long-term solutions for offshore wind turbines in a variety of environmental conditions, CAE tools are needed to model the design-driving loads that interact with an offshore wind turbine system during operation. This report describes our efforts in augmenting existing CAE tools used for offshore wind turbine analysis with a new module that can provide simulation capabilities for ice loading on the system. This augmentation was accomplished by creating an ice-loading module coupled to FAST8, the CAE tool maintained by the NREL for simulating land-based and offshore wind turbine dynamics. The new module includes both static and dynamic ice loading that can be applied during a dynamic simulation of the response of an offshore wind turbine. The ice forces can be prescribed, or influenced by the structure’s compliant response, or by the dynamics of both the structure and the ice floe. The new module covers ice failure modes of spalling, buckling, crushing, splitting, and bending. The supporting structure of wind turbines can be modeled as a vertical or sloping form at the waterline. The Inward Battered Guide Structure (IBGS) foundation designed by Keystone Engineering for the Great Lakes was used to study the ice models coupled to FAST8. The IBGS foundation ice loading simulations in FAST8 were compared to the baseline simulation case without ice loading. The ice conditions reflecting those from Lake Huron at Port Huron and Lake Michigan at North Manitou were studied under near rated wind speed of 12 m/s for the NREL 5-MW reference turbine. Simulations were performed on ice loading models 1 through 4 and ice model 6 with their respective sub-models. The purpose of ice model 5 is to investigate ice loading on sloping structures such as ice-cones on a monopile and is not suitable for multi-membered jacketed structures like the IBGS foundation. The key response parameters from the simulations, shear forces and moments from the tower base and IBGS foundation

  5. Gravity anomaly at a Pleistocene lake bed in NW Alaska interpreted by analogy with Greenland's Lake Taserssauq and its floating ice tongue

    Science.gov (United States)

    Barnes, D.F.

    1987-01-01

    A possible example of a very deep glacial excavation is provided by a distinctive gravity low located at the front of a valley glacier that once flowed into glacial Lake Aniuk (formerly Lake Noatak) in the western Brooks Range. Geologic and geophysical data suggest that sediments or ice filling a glacially excavated valley are the most probable cause of the 30-50 mGal anomaly. Reasonable choices of geometric models and density contrasts indicate that the former excavation is now filled with a buried-ice thickness of 700 m or sediment thicknesses greater than 1 km. No direct evidence of efficient excavation was observed in Greenland, but efficient glacial erosion behind a floating polar ice tongue could explain the excavation that caused the Alaskan gravity anomaly. -from Author

  6. Diversity and Abundance of Ice Nucleating Strains of Pseudomonas syringae in a Freshwater Lake in Virginia, USA.

    Science.gov (United States)

    Pietsch, Renée B; Vinatzer, Boris A; Schmale, David G

    2017-01-01

    The bacterium Pseudomonas syringae is found in a variety of terrestrial and aquatic environments. Some strains of P. syringae express an ice nucleation protein (hereafter referred to as Ice+) allowing them to catalyze the heterogeneous freezing of water. Though P. syringae has been sampled intensively from freshwater sources in France, little is known about the genetic diversity of P. syringae in natural aquatic habitats in North America. We collected samples of freshwater from three different depths in Claytor Lake, Virginia, USA between November 2015 and June 2016. Samples were plated on non-selective medium (TSA) and on medium selective for Pseudomonas (KBC) and closely related species to estimate the total number of culturable bacteria and of Pseudomonas , respectively. A droplet freezing assay was used to screen colonies for the Ice+ phenotype. Ice+ colonies were then molecularly identified based on the cts (citrate synthase) gene and the 16S rDNA gene. Phylogenetic analysis of cts sequences showed a surprising diversity of phylogenetic subgroups of P. syringae . Frequencies of Ice+ isolates on P. syringae selective medium ranged from 0 to 15% per sample with the highest frequency being found in spring. Our work shows that freshwater lakes can be a significant reservoir of Ice+ P. syringae . Future work is needed to determine the contribution of P. syringae from freshwater lakes to the P. syringae populations present in the atmosphere and on plants and, in particular, if freshwater lakes could be an inoculum source of P. syringae -caused plant disease outbreaks.

  7. Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet

    DEFF Research Database (Denmark)

    Chu, Vena W.; Smith, Laurence C; Rennermalm, Asa K.

    2009-01-01

    ) supraglacial lake drainage events from MODIS. Results confirm that the origin of the sediment plume is meltwater release from the ice sheet. Interannual variations in plume area reflect interannual variations in surface melting. Plumes appear almost immediately with seasonal surface-melt onset, provided...... the estuary is free of landfast sea ice. A seasonal hysteresis between melt extent and plume area suggests late-season exhaustion in sediment supply. Analysis of plume sensitivity to supraglacial events is less conclusive, with 69% of melt pulses and 38% of lake drainage events triggering an increase in plume...... area. We conclude that remote sensing of sediment plume behavior offers a novel tool for detecting the presence, timing and interannual variability of meltwater release from the ice sheet....

  8. A Smartphone App (BlueIce) for Young People Who Self-Harm: Open Phase 1 Pre-Post Trial

    Science.gov (United States)

    Porter, Joanna; Grist, Rebecca

    2018-01-01

    Background Recent years have seen a significant increase in the availability of smartphone apps for mental health problems. Despite their proliferation, few apps have been specifically developed for young people, and almost none have been subject to any form of evaluation. Objective This study aimed to undertake a preliminary evaluation of a smartphone app (BlueIce), coproduced with young people and designed to help young people manage distress and urges to self-harm. We aimed to assess the acceptability, safety, and use of BlueIce and to explore the effects on the primary outcome of self-harm and the secondary outcomes of psychological functioning. Methods We undertook an open trial where we recruited young people aged 12 to 17 years attending specialist child and adolescent mental health services (CAMHS) who were currently self-harming or had a history of self-harm. Eligible participants were assessed at baseline and then given BlueIce. They were assessed 2 weeks later (post familiarization) and again at 12 weeks (post use). A behavior-screening questionnaire (Strengths and Difficulties Questionnaire) was completed along with standardized measures of depression (Mood and Feelings Questionnaire or MFQ) and anxiety (Revised Child Anxiety and Depression Scale or RCADS), taking into account self-reports of self-harm, app helpfulness, and safety. Results All core CAMHS professional groups referred at least 1 young person. Out of 40 young people recruited, 37 (93%) elected to use BlueIce after familiarization, with 29 out of 33 (88%) wanting to keep it at the end of the study. No young person called the emergency numbers during the 12-week trial, and no one was withdrawn by his or her clinician due to increased risk of suicide. Almost three-quarters (73%) of those who had recently self-harmed reported reductions in self-harm after using BlueIce for 12 weeks. There was a statistically significant mean difference of 4.91 (t31=2.11; P=.04; 95% CI 0.17-9.64) on postuse

  9. The importance of record length in estimating the magnitude of climatic changes: an example using 175 years of lake ice-out dates in New England

    Science.gov (United States)

    Hodgkins, Glenn A.

    2013-01-01

    Many studies have shown that lake ice-out (break-up) dates in the Northern Hemisphere are useful indicators of late winter/early spring climate change. Trends in lake ice-out dates in New England, USA, were analyzed for 25, 50, 75, 100, 125, 150, and 175 year periods ending in 2008. More than 100 years of ice-out data were available for 19 of the 28 lakes in this study. The magnitude of trends over time depends on the length of the period considered. For the recent 25-year period, there was a mix of earlier and later ice-out dates. Lake ice-outs during the last 50 years became earlier by 1.8 days/decade (median change for all lakes with adequate data). This is a much higher rate than for longer historical periods; ice-outs became earlier by 0.6 days/decade during the last 75 years, 0.4 days/ decade during the last 100 years, and 0.6 days/decade during the last 125 years. The significance of trends was assessed under the assumption of serial independence of historical ice-out dates and under the assumption of short and long term persistence. Hypolimnion dissolved oxygen (DO) levels are an important factor in lake eutrophication and coldwater fish survival. Based on historical data available at three lakes, 32 to 46 % of the interannual variability of late summer hypolimnion DO levels was related to ice-out dates; earlier ice-outs were associated with lower DO levels.

  10. High-Frequency Observations of Temperature and Dissolved Oxygen Reveal Under-Ice Convection in a Large Lake

    Science.gov (United States)

    Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew

    2017-12-01

    Detailed observations of thermal structure over an entire winter in a large lake reveal the presence of large (10-20 m) overturns under the ice, driven by diurnal solar heating. Convection can occur in the early winter, but the most vigorous convection occurred near the end of winter. Both periods are when our lake ice model suggest thinner ice that would have been transparent. This under-ice convection led to a deepening of the mixed layer over time, consistent with previous short-term studies. During periods of vigorous convection under the ice at the end of winter, the dissolved oxygen had become supersaturated from the surface to 23 m below the surface, suggesting abundant algal growth. Analysis of our high-frequency observations over the entire winter of 2015 using the Thorpe-scale method quantified the scale of mixing. Furthermore, it revealed that changes in oxygen concentrations are closely related to the intensity of mixing.

  11. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes.

    Science.gov (United States)

    Özkundakci, Deniz; Gsell, Alena S; Hintze, Thomas; Täuscher, Helgard; Adrian, Rita

    2016-01-01

    How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally ice-covered temperate lakes which are particularly vulnerable to the presence or absence of ice. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), covering 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter-severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait-based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using ice thickness measurements as a winter-severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no ice cover; phototrophic taxa) or severe winters (i.e., thick ice cover; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in ice-cover durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different

  12. ERS-1 SAR monitoring of ice growth on shallow lakes to determine water depth and availability in north west Alaska

    Science.gov (United States)

    Jeffries, Martin; Morris, Kim; Liston, Glen

    1996-01-01

    Images taken by the ERS-1 synthetic aperture radar (SAR) were used to identify and to differentiate between the lakes that freeze completely to the bottom and those that do not, on the North Slope, in northwestern Alaska. The ice thickness at the time each lake froze completely is determined with numerical ice growth model that gives a maximum simulated thickness of 2.2 m. A method combining the ERS-1 SAR images and numerical ice growth model was used to determine the ice growth and the water availability in these regions.

  13. Time-series measurements of methane (CH4) distribution during open water and ice-cover in lakes throughout the Mackenzie River Delta (Canada)

    Science.gov (United States)

    McIntosh, H.; Lapham, L.; Orcutt, B.; Wheat, C. G.; Lesack, L.; Bergstresser, M.; Dallimore, S. R.; MacLeod, R.; Cote, M.

    2016-12-01

    Arctic lakes are known to emit large amounts of methane to the atmosphere and their importance to the global methane (CH4) cycle has been recognized. It is well known CH4 builds up in Arctic lakes during ice-cover, but the amount of and when the CH4 is released to the atmosphere is not well known. Our preliminary results suggest the largest flux of CH4 from lakes to the atmosphere occurs slightly before complete ice-out; while others have shown the largest flux occurs when lakes overturn in the spring. During ice-out, CH4 can also be oxidized by methane oxidizing bacteria before it can efflux to the atmosphere from the surface water. In order to elucidate the processes contributing to Arctic lake CH4 emissions, continuous, long-term and large scale spatial sampling is required; however it is difficult to achieve in these remote locations. We address this problem using two sampling techniques. 1) We deployed osmotically powered pumps (OsmoSamplers), which were able to autonomously and continuously collect lake bottom water over the course of a year from multiple lakes in the Mackenzie River Delta. OsmoSamplers were placed in four lakes in the mid Delta near Inuvik, Northwest Territories, Canada, two lakes in the outer Delta, and two coastal lakes on Richard's Island in 2015. The dissolved CH4 concentration, stable isotope content of CH4 (δ13C-CH4), and dissolved sulfate concentrations in bottom water from these lakes will be presented to better understand methane dynamics under the ice and over time. 2) Along with the time-series data, we will also present data from discrete samples collected from 40 lakes in the mid Delta during key time periods, before and immediately after the spring ice-out. By determining the CH4 dynamics throughout the year we hope to improve predictions of how CH4 emissions may change in a warming Arctic environment.

  14. Samarium-Neodymium model age and Geochemical (Sr-Nd) signature of a bedrock inclusion from lake Vostok accretion ice.

    Science.gov (United States)

    Delmonte, B.; Petit, J. R.; Michard, A.; Basile-Doelsch, I.; Lipenkov, V.

    2003-04-01

    We investigated properties of the basal ice from Vostok ice core as well as the sediment inclusions within the accreted ice. The Vostok ice core preserves climatic information for the last 420 kyrs down to 3310m depth, but below this depth the horizontal layers of the climatic record are disrupted by the glacier dynamics. From 3450 m to 3538 m depth thin bedrock particles, as glacial flour, are entrapped. Glacial flour is released in the northern area lake, where glacier mostly melts and contributes to sediment accumulation. In the southern area, close to Vostok station, the lake water freezes and the upstream glacial flour does not contribute to sedimentation. The accreted ice contains visible sediment inclusions down to 3608 m (accretion ice 1), while below this depth and likely down to the water interface (˜3750 m), the ice is clear (accretion ice 2). The fine inclusions (1-2mm in diameter) from Accretion Ice 1 mostly consist of fine clays and quartz aggregates and we suggest they are entrained into ice as the glacier floats over shallow depth bay then it grounds against a relief rise. Afterward the glacier freely floats over the deep lake before reaching Vostok, and accreted ice 2 is clean. Sm-Nd dating of one of two inclusions at 3570 m depth gives 1.88 (+/-0.13)Ga (DM model age), corresponding to 1.47 Ga (TCHUR), suggesting a Precambrian origin. Also the isotopic signature of such inclusion (87Sr/86Sr= 0.8232 and eNd= -16) and that of a second one (87Sr/86Sr= 0.7999 and eNd= -15) are coherent with the nature of an old continental shield. Sediments that may initially accumulate in the shallow bay prior the Antarctic glaciation, should have been eroded and exported out of the lake by the glacier movement, this assuming processes for ice accretion and for sediment entrapping operate since a long time. As the glacial flour from upstream does not contribute to sedimentation, sediments need to be renewed at the surface of the bedrock rising question about the way

  15. Life under ice: Investigating microbial-related biogeochemical cycles in the seasonally-covered Great Lake Onego, Russia

    Science.gov (United States)

    Thomas, Camille; Ariztegui, Daniel; Victor, Frossard; Emilie, Lyautey; Marie-Elodie, Perga; Life Under Ice Scientific Team

    2016-04-01

    The Great European lakes Ladoga and Onego are important resources for Russia in terms of drinking water, energy, fishing and leisure. Because their northern location (North of Saint Petersburgh), these lakes are usually ice-covered during winter. Due to logistical reasons, their study has thus been limited to the ice-free periods, and very few data are available for the winter season. As a matter of fact, comprehension of large lakes behaviour in winter is very limited as compared to the knowledge available from small subpolar lakes or perennially ice-covered polar lakes. To tackle this issue, an international consortium of scientists has gathered around the « life under ice » project to investigate physical, chemical and biogeochemical changes during winter in Lake Onego. Our team has mainly focused on the characterization and quantification of biological processes, from the water column to the sediment, with a special focus on methane cycling and trophic interactions. A first « on-ice » campaign in March 2015 allowed the sampling of a 120 cm sedimentary core and the collection of water samples at multiple depths. The data resulting from this expedition will be correlated to physical and chemical parameters collected simultaneously. A rapid biological activity test was applied immediately after coring in order to test for microbial activity in the sediments. In situ adenosine-5'-triphosphate (ATP) measurements were carried out in the core and taken as an indication of living organisms within the sediments. The presence of ATP is a marker molecule for metabolically active cells, since it is not known to form abiotically. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) were extracted from these samples, and quantified. Quantitative polymerase chain reactions (PCR) were performed on archaeal and bacterial 16S rRNA genes used to reconstruct phylogenies, as well as on their transcripts. Moreover, functional genes involved in the methane and nitrogen cycles

  16. Causes and effects of long periods of ice cover on a remote high Alpine lake

    Directory of Open Access Journals (Sweden)

    Michael STURM

    2000-09-01

    Full Text Available The response of the physical and chemical limnology of Hagelseewli (2339 m a.s.l. to local meteorological forcing was investigated from 1996 to 1998 using an automatic weather station, thermistor chains, water samples and sediment traps. On-site meteorological measurements revealed the paramount importance of local topographic shading for the limnology of the lake. A high cliff to the south diminishes incident radiation by 15% to 90%, resulting in a long period of ice cover. Hence, the spring and summer seasons are extremely condensed, allowing only about 2 months per year for mixing, oxygen uptake, nutrient inflow, water exchange and phytoplankton growth. Regular measurements of water temperature, chemistry and diatom composition show that Hagelseewli responds very rapidly to changes in nutrient concentrations and light conditions. This response is restricted mainly to an extremely short productivity pulse, which takes place as soon as the lake is completely free of ice. Ice-free conditions are indicated by the occurrence of planktonic diatoms. In contrast to most low-altitude lakes, maximum productivity occurs in the middle of the water column (6-9 m, where first light, and then soluble reactive phosphorus (SRP, are the limiting factors. During the period of thawing, large amounts of ammonium enter the lake. Nevertheless, allochthonous nutrient input is not important because SRP, the limiting nutrient for algal growth, originates from the sediments. Water chemistry data and data from sediment traps show that, although autochthonous calcite precipitation does occur, the calcite crystals are redissolved completely in the bottom waters during the extended period of ice cover. Thus, the most important factor for changes in the nutrient budget, primary production and preservation of calcite is the bottom water oxygen status, which is governed by the occurrence of an ice-free period. We hypothesise that the duration of the ice-free period is of

  17. Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)

    Science.gov (United States)

    Layden, Aisling; MacCallum, Stuart N.; Merchant, Christopher J.

    2016-06-01

    A tuning method for FLake, a one-dimensional (1-D) freshwater lake model, is applied for the individual tuning of 244 globally distributed large lakes using observed lake surface water temperatures (LSWTs) derived from along-track scanning radiometers (ATSRs). The model, which was tuned using only three lake properties (lake depth, snow and ice albedo and light extinction coefficient), substantially improves the measured mean differences in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes, when compared to the observed LSWTs. Lakes whose lake-mean LSWT persists below 1 °C for part of the annual cycle are considered to be seasonally ice-covered. For trial seasonally ice-covered lakes (21 lakes), the daily mean and standard deviation (2σ) of absolute differences between the modelled and observed LSWTs are reduced from 3.07 °C ± 2.25 °C to 0.84 °C ± 0.51 °C by tuning the model. For all other trial lakes (14 non-ice-covered lakes), the improvement is from 3.55 °C ± 3.20 °C to 0.96 °C ± 0.63 °C. The post tuning results for the 35 trial lakes (21 seasonally ice-covered lakes and 14 non-ice-covered lakes) are highly representative of the post-tuning results of the 244 lakes. For the 21 seasonally ice-covered lakes, the modelled response of the summer LSWTs to changes in snow and ice albedo is found to be statistically related to lake depth and latitude, which together explain 0.50 (R2adj, p = 0.001) of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p = 0.003) of the variance. Lake characteristic information (snow and ice albedo and light extinction coefficient) is not available for many lakes. The approach taken to tune the model, bypasses the need to acquire detailed lake characteristic values. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction coefficient for the 244 lakes provide some guidance on improving FLake LSWT modelling.

  18. Towards monitoring surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery

    Science.gov (United States)

    Miles, Katie E.; Willis, Ian C.; Benedek, Corinne L.; Williamson, Andrew G.; Tedesco, Marco

    2017-07-01

    Supraglacial lakes are an important component of the Greenland Ice Sheet’s mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days versus daily) but a higher spatial resolution (25-40 m versus 250-500 m), is then used together with a fully-automated lake drainage detection algorithm. Rapid (days) and slow (> 4 days) drainages are investigated for both small (summer. Drainage events of small lakes occur at lower elevations (mean 159 m), and slightly earlier (mean 4.5 days) in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1270 m mean elevation). Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1593 m and 1185 m, respectively). Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  19. High and Increasing Shoreline Erosion Rates of Thermokarst Lakes Set in Ice-Rich Permafrost Terrain of the Arctic Coastal Plain of Alaska

    Science.gov (United States)

    Bondurant, A. C.; Arp, C. D.; Jones, B. M.; Shur, Y.; Daanen, R. P.

    2017-12-01

    Thermokarst lakes are a dominant landform shaping landscapes and impacting permafrost on the Arctic Coastal Plain (ACP) of northern Alaska, a region of continuous permafrost. Here lakes cover greater than 20% of the landscape and drained lake basins cover an additional 50 to 60% of the landscape. The formation, expansion, and drainage of thaw lakes has been described by some researchers as part of a natural cycle that has reworked the ACP landscape during the Holocene. Yet the factors and processes controlling contemporary thermokarst lake expansion remain poorly described. This study focuses on the factors controlling expansion rates of thermokarst lakes in three ACP regions that vary in landscape history, ground-ice content, and lake morphology (i.e. size and depth), as well as evaluating changes through time. Through the use of historical aerial imagery, satellite imagery, and field observations, this study identifies the controlling factors at multiple spatial and temporal scales to better understand the processes relating to thermokarst lake expansion. Studies of 35 lakes across the ACP shows regional differences in expansion rate related to permafrost ice content ranging from an average expansion rate of 0.62 m/yr where ice content is highest ( 86%) to 0.16 m/yr where ice content is lowest (45%-71%). A subset of these lakes analyzed over multiple time periods show increasing rates of erosion, with average rates being 37% higher over the period 1979-2002 (0.73 m/yr) compared to 1948-1979 (0.53 m/yr). These increased rates of erosion have important implications for the regional hydrologic cycle and localized permafrost degradation. Predicting how thermokarst lakes will behave locally and on a landscape scale is increasingly important for managing habitat and water resources and informing models of land-climate interactions in the Arctic.

  20. Toward Monitoring Surface and Subsurface Lakes on the Greenland Ice Sheet Using Sentinel-1 SAR and Landsat-8 OLI Imagery

    Directory of Open Access Journals (Sweden)

    Katie E. Miles

    2017-07-01

    Full Text Available Supraglacial lakes are an important component of the Greenland Ice Sheet's mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days vs. daily but a higher spatial resolution (25–40 vs. 250–500 m, is then used together with a fully automated lake drainage detection algorithm. Rapid (<4 days and slow (>4 days drainages are investigated for both small (<0.125 km2, the minimum size detectable by MODIS and large (≥0.125 km2 lakes through the summer. Drainage events of small lakes occur at lower elevations (mean 159 m, and slightly earlier (mean 4.5 days in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1,270 m mean elevation. Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively. These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1,593 and 1,185 m, respectively. Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  1. Glacial lakes in Austria - Distribution and formation since the Little Ice Age

    Science.gov (United States)

    Buckel, J.; Otto, J. C.; Prasicek, G.; Keuschnig, M.

    2018-05-01

    Glacial lakes constitute a substantial part of the legacy of vanishing mountain glaciation and act as water storage, sediment traps and sources of both natural hazards and leisure activities. For these reasons, they receive growing attention by scientists and society. However, while the evolution of glacial lakes has been studied intensively over timescales tied to remote sensing-based approaches, the longer-term perspective has been omitted due a lack of suitable data sources. We mapped and analyzed the spatial distribution of glacial lakes in the Austrian Alps. We trace the development of number and area of glacial lakes in the Austrian Alps since the Little Ice Age (LIA) based on a unique combination of a lake inventory and an extensive record of glacier retreat. We find that bedrock-dammed lakes are the dominant lake type in the inventory. Bedrock- and moraine-dammed lakes populate the highest landscape domains located in cirques and hanging valleys. We observe lakes embedded in glacial deposits at lower locations on average below 2000 m a.s.l. In general, the distribution of glacial lakes over elevation reflects glacier erosional and depositional dynamics rather than the distribution of total area. The rate of formation of new glacial lakes (number, area) has continuously accelerated over time with present rates showing an eight-fold increase since LIA. At the same time the total glacier area decreased by two-thirds. This development coincides with a long-term trend of rising temperatures and a significant stepping up of this trend within the last 20 years in the Austrian Alps.

  2. Simulation of surface temperature and ice cover of large northern lakes with 1-D models: a comparison with MODIS satellite data and in situ measurements

    Directory of Open Access Journals (Sweden)

    H. Kheyrollah Pour

    2012-03-01

    Full Text Available Lake surface temperature (LST and ice phenology were simulated for various points differing in depth on Great Slave Lake and Great Bear Lake, two large lakes located in the Mackenzie River Basin in Canada's Northwest Territories, using the 1-D Freshwater Lake model (FLake and the Canadian Lake Ice Model (CLIMo over the 2002–2010 period, forced with data from three weather stations (Yellowknife, Hay River and Deline. LST model results were compared to those derived from the Moderate Resolution Imaging Spectroradiometer (MODIS aboard the Earth Observing System Terra and Aqua satellite platforms. Simulated ice thickness and freeze-up/break-up dates were also compared to in situ observations. Both models showed a good agreement with daily average MODIS LSTs on an annual basis (0.935  ≤  relative index of agreement  ≤  0.984 and 0.94  ≤  mean bias error  ≤  4.83. The absence of consideration of snow on lake ice in FLake was found to have a large impact on estimated ice thicknesses (25 cm thicker on average by the end of winter compared to in situ measurements; 9 cm thicker for CLIMo and break-up dates (6 d earlier in comparison with in situ measurements; 3 d later for CLIMo. The overall agreement between the two models and MODIS LST products during both the open water and ice seasons was good. Remotely sensed data are a promising data source for assimilation into numerical weather prediction models, as they provide the spatial coverage that is not captured by in situ data.

  3. Methane isotopic signature of gas bubbles in permafrost winter lake ice: a tool for quantifying variable oxidation levels

    Science.gov (United States)

    Sapart, C. J.; Boereboom, T.; Roeckmann, T.; Tison, J.-L.

    2012-04-01

    Methane (CH4) is a strong greenhouse gas and its atmospheric mixing ratio has strongly increased since pre-industrial times. This increase was primarily due to emissions from anthropogenic sources, but there is growing concern about possible feedbacks of natural sources in a changing climate. Thawing of permafrost areas in the Arctic is considered as an important feedback, since the Arctic region undergoes the fastest climate change and hosts large carbon stocks. Subarctic lakes are considered as "hotspots" for CH4 emissions, but the role of the ice cover during the winter period is not well understood to date. Here, we present measurements of CH4 mixing ratio and δ13C-CH4 in 4 types of bubbles identified in subarctic lake ice covers located in a sporadic or discontinuous permafrost area. Our analysis reveals that different bubble types contain CH4 with different, specific isotopic signatures. The evolution of mixing ratio and δ13C-CH4 suggest that oxidation of dissolved CH4 is the most important process determining the isotopic composition of CH4 in bubbles. This results from gas exsolution occurring during the ice growth process. A first estimate of the CH4 oxidation budget (mean = 0.12 mg CH4 m-2 d-1) enables to quantify the impact of the ice cover on CH4 emissions from subartic lakes. The increased exchange time between gases coming from the sediments and the water column, due to the capping effect of the lake ice cover, reduces the amount of CH4 released "as is" and favours its oxidation into carbon dioxide; the latter being further added to the HCO3- pool through the carbonate equilibration reactions.

  4. Occurrence of bacteria in Blue Marsh Lake and selected tributaries, Berks County, Pennsylvania; September-October 2001

    Science.gov (United States)

    Zimmerman, Michele L.

    2002-01-01

    The Commonwealth of Pennsylvania has water-quality standards that limit the number of specific bacteria in water that is considered safe for recreational use. Bacteria such as fecal streptococci, fecal coliforms, and Escherichia coli (E. coli) are used to assess recreational water quality because they usually live in the intestines of warm-blooded animals. Fecal indicator bacteria commonly are associated with waterborne disease-causing organisms (pathogens). These indicator bacteria are used routinely as a measure of the quality of water for recreational activities such as swimming, boating, and water skiing. If the indicator bacteria are present, effective measures could be taken to prevent the transmission or epidemic outbreak of waterborne diseases as a result of contamination of these waters from human or animal waste.Blue Marsh Lake is on Tulpehocken Creek in Berks County, Pa., and drains a largely agricultural basin. Land use in the basin is approximately 60 percent cropland, and 85 percent of the farms are livestock and poultry farms.The potential sources of fecal bacteria are:geese that inhabit the recreational areas of the lake,humans that visit the Dry Brooks Day Use Area (swimming area), andfarm animals, wastewater facilities, and household septic systems in the basin (bacteria from these sources could enter the lake through tributaries).To meet the recreational water-quality standard, lake water may not have more than 200 colony-forming units (CFU) of fecal coliforms per 100 milliliters (mL). During the week of July 23, 2001, data collected by the U.S. Army Corps of Engineers (USACE) at the swimming area at Blue Marsh Lake showed concentrations of fecal coliforms in the water exceeding the standard. To determine the extent of elevated concentrations of fecal indicator bacteria, further study of the lake and selected tributaries was needed.

  5. Evaluating the Duration and Continuity of Potential Climate Records From the Allan Hills Blue Ice Area, East Antarctica

    Science.gov (United States)

    Kehrl, Laura; Conway, Howard; Holschuh, Nicholas; Campbell, Seth; Kurbatov, Andrei V.; Spaulding, Nicole E.

    2018-05-01

    The current ice core record extends back 800,000 years. Geologic and glaciological evidence suggests that the Allan Hills Blue Ice Area, East Antarctica, may preserve a continuous record that extends further back in time. In this study, we use ice-penetrating radar and existing age constraints to map the internal stratigraphy and age structure of the Allan Hills Main Ice Field. The dated isochrones provide constraints for an ice flow model to estimate the age of ice near the bed. Previous drilling in the region recovered stratigraphically disturbed sections of ice up to 2.7 million years old. Our study identifies a site 5 km upstream, which likely preserves a continuous record through Marine Isotope Stage 11 with the possibility that the record extends back 1 million years. Such records would provide new insight into the past climate and glacial history of the Ross Sea Sector.

  6. Holocene glacial history of the west Greenland Ice Sheet inferred from cosmogenic exposure ages and threshold lakes

    DEFF Research Database (Denmark)

    Larsen, Nicolaj Krog; Kjaer, K. H.; Colding, Sune Oluf

    2011-01-01

    In this study, we use a combination of 10Be exposure ages and threshold lakes to constrain the ice sheet history in Godthåbs- and Buksefjorden, west Greenland (63-64°N) during the Holocene. The 10Be cosmogenic exposure ages have been used to quantify both the ice retreat and thinning of the west...

  7. Himalayan Lake- and River-Impacting Landslides and Ice Avalanches: Some So Deadly, Some No Problem

    Science.gov (United States)

    Kargel, J. S.; Karki, A.; Haritashya, U. K.; Shugar, D. H.; Harrison, S.

    2017-12-01

    Scientific attention to landslides and ice avalanches in Nepal was heightened by the 2015 Gorkha earthquake. However, landslides and ice avalanches— some deadly— are frequent in this mountainous, glacierized country and across High Mountain Asia. River blocking landslides (RBLs) often create dangerous situations due to upstream impoundments and downstream landslide dammed outburst floods (LDOFs). Factors affecting RBL hazards include: Volumes and masses of ice, rock, and water; shape factors of the valley and landslide; grain size-frequency distribution; river hydrograph; and seasonal and weather factors. These factors affect processes such as slumping and erosion of the RBL by overflow or piping, buoyant lifting of dam material, melting of a landslide ice core, liquefaction, overfill overtopping or tsunami overtopping by subsequent landslides into the impoundment, and the volume and peak discharge of an LDOF. Not all processes aggravate hazards; a high ice:rock ratio, for example, can result in immediate tunneling by the river with no subsequent impoundment. A dam composed of mainly boulders with few fines likewise can prevent effective damming; however, a wide spectrum of the particle-size-distribution can make a long-lasting, benign dam. The most hazardous RBLs include those creating large dams and rapidly-filled impoundments, but which can rapidly and catastrophically break up, especially at sites of repeated terrain collapses. The particle size-frequency of a landslide dam depends substantially on bedrock lithology and structure. Vulnerabilities and warning times also affect whether an upstream impoundment flood or LDOF will exert a large toll. For landslide susceptibility assessments, usual treatments involving mountain slopes, valley shape, and seismic activity should be complemented by quantitative measures of bedrock lithology and weathering state, the potential energy and distribution of unstable masses, and recorded historic or prehistoric RBLs in

  8. Climate-Induced Thresholds In Lake-Watershed Systems: Understanding The Compounding Effects Of Early Ice-Out And Episodic Nutrient Loadings

    Science.gov (United States)

    Jain, S.; Beyene, M. T.

    2017-12-01

    In temperate regions, the sustainability of lake-watershed systems is intimately tied to the climate, ice phenology, annual march of human activities, and biophysical dynamics. Using the state of Maine in the United States as our focal region, one with over 5000 lakes. The recent rise in water temperatures, drop in water quality, depletion of fish stocks has raised concerns over the future state of these lakes. This study takes the "social-ecological systems" view of Maine lakes with focus on climate-induced shifts in the ice-cover duration. The resulting readjustments in the nutrient load assimilation, decrease in lake water quantity, increased radiative heating on phytoplankton productivity and economic and other losses to the community due to cancellation of winter recreation opportunities have the potential to reshape this vulnerable system. We use conceptual models, delineated social-ecological system, empirical-statistical analyses to grasp the complexity of this multifaceted system. Prospects for seasonal climate predictability and impact of the future trajectories of El Nino/Southern Oscillation are also discussed.

  9. Safe Loads on Ice Sheets (Ice Engineering. Number 13)

    National Research Council Canada - National Science Library

    Haynes, F. D; Carey, Kevin L; Cattabriga, Gioia

    1996-01-01

    Every winter, ice sheets that grow on lakes and rivers in northern states are used for ice roads, ice bridges, construction platforms, airstrips, and recreational activities, It becomes very important...

  10. Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic winter situation – a case study using a limited area model

    Directory of Open Access Journals (Sweden)

    Kalle Eerola

    2014-12-01

    Full Text Available At the end of January 2012, a low-level cloud from partly ice-free Lake Ladoga caused very variable 2-m temperatures in Eastern Finland. The sensitivity of the High Resolution Limited Area Model (HIRLAM to the lake surface conditions was tested in this winter anticyclonic situation. The lake appeared to be (incorrectly totally covered by ice when the lake surface was described with its climatology. Both parametrisation of the lake surface state by using a lake model integrated to the NWP system and objective analysis based on satellite observations independently resulted in a correct description of the partly ice-free Lake Ladoga. In these cases, HIRLAM model forecasts were able to predict cloud formation and its movement as well as 2-m temperature variations in a realistic way. Three main conclusions were drawn. First, HIRLAM could predict the effect of Lake Ladoga on local weather, when the lake surface state was known. Second, the current parametrisation methods of air–surface interactions led to a reliable result in conditions where the different physical processes (local surface processes, radiation and turbulence were not strong, but their combined effect was important. Third, these results encourage work for a better description of the lake surface state in NWP models by fully utilising satellite observations, combined with advanced lake parametrisation and data assimilation methods.

  11. Characterizing Microbial Mat Morphology with Structure from Motion Techniques in Ice-Covered Lake Joyce, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Mackey, T. J.; Leidman, S. Z.; Allen, B.; Hawes, I.; Lawrence, J.; Jungblut, A. D.; Krusor, M.; Coleman, L.; Sumner, D. Y.

    2015-12-01

    Structure from Motion (SFM) techniques can provide quantitative morphological documentation of otherwise inaccessible benthic ecosystems such as microbial mats in Lake Joyce, a perennially ice-covered lake of the Antarctic McMurdo Dry Valleys (MDV). Microbial mats are a key ecosystem of MDV lakes, and diverse mat morphologies like pinnacles emerge from interactions among microbial behavior, mineralization, and environmental conditions. Environmental gradients can be isolated to test mat growth models, but assessment of mat morphology along these gradients is complicated by their inaccessibility: the Lake Joyce ice cover is 4-5 m thick, water depths containing diverse pinnacle morphologies are 9-14 m, and relevant mat features are cm-scale. In order to map mat pinnacle morphology in different sedimentary settings, we deployed drop cameras (SeaViewer and GoPro) through 29 GPS referenced drill holes clustered into six stations along a transect spanning 880 m. Once under the ice cover, a boom containing a second GoPro camera was unfurled and rotated to collect oblique images of the benthic mats within dm of the mat-water interface. This setup allowed imaging from all sides over a ~1.5 m diameter area of the lake bottom. Underwater lens parameters were determined for each camera in Agisoft Lens; images were reconstructed and oriented in space with the SFM software Agisoft Photoscan, using the drop camera axis of rotation as up. The reconstructions were compared to downward facing images to assess accuracy, and similar images of an object with known geometry provided a test for expected error in reconstructions. Downward facing images identify decreasing pinnacle abundance in higher sedimentation settings, and quantitative measurements of 3D reconstructions in KeckCAVES LidarViewer supplement these mat morphological facies with measurements of pinnacle height and orientation. Reconstructions also help isolate confounding variables for mat facies trends with measurements

  12. Unstable Titan-generated Rayleigh-Taylor Lakes Impact Ice

    Science.gov (United States)

    Umurhan, O. M.; Korycansky, D. G.; Zahnle, K. J.

    2014-12-01

    The evolution of surface morphology on Titan, Triton, and other worlds is strongly influenced by the interplay of various fluid dynamical processes. Specifically, overturning instabilities can easily arise due to the special circumstances of landform evolution that probably occurred on these worlds. On Titan, large impacts that formed basins like Menrva crater (and possibly Hotei Regio) would have generated impact-melt ice lakes unstably arranged over less dense ice. Cantaloupe terrains, for example as seen on Triton, may be the result of condensation of volatiles (methane, nitrogen) leading to unstably stratified layers of different compositions and densities. In each of these cases, Rayleigh-Taylor instabilities leading to large scale diapirism may be at play. In addition to the dynamics of these instabilities, other physical effects (e.g. heat diffusion, freezing/melting, porosity, temperature dependent viscosity) likely play an important role in the evolution of these features. In this ongoing study, we examine the properties of unstably stratified fluids in which the lower less-dense ice has a temperature dependent viscosity. Surprisingly, we find that there exists an optimal disturbance length scale corresponding to the fastest growth of the Rayleigh-Taylor instability. For unstably stratified layers of water (low viscosity heavy liquid lying above an ice whose viscosity increases with depth) the fastest growing mode corresponds to 40-60 km scales with overturn times of approximately 100 days. We present a detailed numerical stability analysis in a corresponding Boussinessq model (in the creeping flow limit) incorporating thermal conduction and latent heat release and we examine the stability properties surveying a variety of parameters. We have also developed a two-dimensional numerical code (a hybrid spectral/compact-differencing scheme) to model the evolution of such systems for which we shall present preliminary numerical results depicting the outcome of

  13. Glacial Lake Pickering: stratigraphy and chronology of a proglacial lake dammed by the North Sea Lobe of the British-Irish Ice Sheet

    OpenAIRE

    Evans, David J.A.; Bateman, Mark D.; Roberts, David H.; Medialdea, Alicia; Hayes, Laura; Duller, Geoff A.T.; Fabel, Derek; Clark, Chris D.

    2016-01-01

    We report the first chronology, using four new optically stimulated luminescence dates, on the sedimentary record of Glacial Lake Pickering, dammed by the North Sea Lobe of the British–Irish Ice Sheet during the Dimlington Stadial (24–11 ka cal BP). Dates range from 17.6 ± 1.0 to 15.8 ± 0.9 ka for the sedimentation of the Sherburn Sands at East Heslerton, which were formed by multiple coalescing alluvial fans prograding into the falling water levels of the lake and fed by progressively larger...

  14. Modeling thermal structure, ice cover regime and sensitivity to climate change of two regulated lakes - a Norwegian case study

    Science.gov (United States)

    Gebre, Solomon; Boissy, Thibault; Alfredsen, Knut

    2013-04-01

    A great number of river and lakes in Norway and the Nordic region at large are regulated for water management such as hydropower production. Such regulations have the potential to alter the thermal and hydrological regimes in the lakes and rivers downstream impacting on river environment and ecology. Anticipated changes as a result of climate change in meteorological forcing data such as air temperature and precipitation cause changes in the water balance, water temperature and ice cover duration in the reservoirs. This may necessitate changes in operational rules as part of an adaptation strategy for the future. In this study, a one dimensional (1D) lake thermodynamic and ice cover model (MyLake) has been modified to take into account the effect of dynamic outflows in reservoirs and applied to two small but relatively deep regulated lakes (reservoirs) in Norway (Follsjøen and Tesse). The objective was to assess climate change impacts on the seasonal thermal characteristics, the withdrawal temperatures, and the reservoir ice cover dynamics with current operational regimes. The model solves the vertical energy balance on a daily time-step driven by meteorological and hydrological forcings: 2m air temperature, precipitation, 2m relative humidity, 10m wind speed, cloud cover, air pressure, solar insolation, inflow volume, inflow temperature and reservoir outflows. Model calibration with multi-seasonal data of temperature profiles showed that the model performed well in simulating the vertical water temperature profiles for the two study reservoirs. The withdrawal temperatures were also simulated reasonably well. The comparison between observed and simulated lake ice phenology (which were available only for one of the reservoirs - Tesse) was also reasonable taking into account the uncertainty in the observational data. After model testing and calibration, the model was then used to simulate expected changes in the future (2080s) due to climate change by considering

  15. THERMODYNAMICS OF PARTIALLY FROZEN COOLING LAKES

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.; Casterline, M.; Salvaggio, C.

    2010-01-05

    The Rochester Institute of Technology (RIT) collected visible, SWIR, MWIR and LWIR imagery of the Midland (Michigan) Cogeneration Ventures Plant from aircraft during the winter of 2008-2009. RIT also made ground-based measurements of lake water and ice temperatures, ice thickness and atmospheric variables. The Savannah River National Laboratory (SRNL) used the data collected by RIT and a 3-D hydrodynamic code to simulate the Midland cooling lake. The hydrodynamic code was able to reproduce the time distribution of ice coverage on the lake during the entire winter. The simulations and data show that the amount of ice coverage is almost linearly proportional to the rate at which heat is injected into the lake (Q). Very rapid melting of ice occurs when strong winds accelerate the movement of warm water underneath the ice. A snow layer on top of the ice acts as an insulator and decreases the rate of heat loss from the water below the ice to the atmosphere above. The simulated ice cover on the lake was not highly sensitive to the thickness of the snow layer. The simplicity of the relationship between ice cover and Q and the weak responses of ice cover to snow depth over the ice are probably attributable to the negative feedback loop that exists between ice cover and heat loss to the atmosphere.

  16. Ice stream behaviour and deglaciation of the Scandinavian Ice Sheet in the Kuittijärvi area, Russian Karelia

    Directory of Open Access Journals (Sweden)

    Juha-Pekka Lunkka

    2008-01-01

    Full Text Available Glacial landforms of the Lake Kuittijärvi area, Russian Karelia, which covers an area of more than 7000 km^2, were studied in detail using aerial photography and satellite imagery methods and on-site field observations. This was done to reconstruct a detailed historyof Scandinavian ice sheet behaviour in the Lake Kuittijärvi area. The results indicate that the Lake Tuoppajärvi sub-ice stream (TIS that formed the northern part of the Kuusamo-White Sea ice stream and the Lake Kuittijärvi sub-ice stream (KIS, which was part of theNorthern Karelian ice stream, operated in the area during the last deglaciation. Subglacially formed lineation patterns associated with other indicative landforms such as end moraines and esker ridges indicate a clear age relationship between the ice streams’ activity and that the KIS was active after the linear landforms were created by the TIS. It is estimated that deglaciation of the TIS from the Kalevala end moraine to the Lake Pääjärvi end moraine took place between ca. 11 300 – 10 900 calendar years ago. It seems that the terminus of the KIS marker by the Kalevala end moraine was also formed around 11 300 calendar years ago but the KIS remained active longer than the TIS. Both of these sub-ice streams terminated into a glacial lake that was part of a larger White Sea Basin ice lake.

  17. Northeast Atlantic blue whiting

    OpenAIRE

    Heino, Mikko

    2010-01-01

    Heino, M. 2010. Northeast Atlantic blue whiting. In Life cycle spatial patterns of small pelagic fish in the Northeast Atlantic, pp. 59-64. Ed by P. Petitgas. ICES Cooperative Research Report 306. ICES, Copenhagen.

  18. Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic Lake

    Directory of Open Access Journals (Sweden)

    Anne D. Jungblut

    2013-01-01

    Full Text Available Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a “natural experiment” on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm per year and accrue ~0.18 µg chlorophyll-a cm−2 y−1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited “climax” communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure.

  19. The development of blue ice moraines from englacial debris bands as detected by GPR, Mt Achernar, central Transantarctic Mountains, Antarctica

    Science.gov (United States)

    Kassab, C.; Lindback, K.; Pettersson, R.; Licht, K.; Graly, J. A.; Kaplan, M. R.

    2016-12-01

    Blue ice moraines cover a small percentage of Antarctica, but can contain a significant record of ice sheet dynamics and climate over multiple glacial cycles. Previous work has focused on the temporal and provenance record contained within these moraines and less on mechanisms by which such deposits form and their temporal evolution. In order to create a conceptual model of their formation, >25 km of ground penetrating radar transects at 25 and 100 MHz frequencies were collected at the Mt Achernar moraine adjacent to Law Glacier. Here, ice ablation causes debris bands to emerge and deliver sediment to the surface. Most transects were collected perpendicular to the ice-moraine margin, and extend from the actively flowing Law Glacier ice to a distance of 2 km into the moraine. The 25 and 100 MHz transects penetrate to a depth of 200 m and 60 m respectively and reveal a relatively complex internal stratigraphy. Closest to the ice-moraine margin, stratigraphy is not well resolved due to a high amount of clutter. Steeply dipping parallel reflections first emerge 400m away from the ice margin and dip toward Law Glacier. These reflections continue inwards to 1450m, where the reflections become more closely spaced. Hummocky topography and parallel ridge/trough topography dominate the geomorphic expression. The hummocky topography corresponds to the region where reflections are not well resolved. The ridges are interpreted to be debris bands that are emerging at the surface, similar to those along the margin of the Law Glacier where debris is newly emerging. The reflections in the GPR transects indicate that debris is transported from depth to the surface of the ice where it accumulates forming the Mt Achernar moraine. It appears that the various reflection patterns correspond to unique surface geomorphic expressions. The reflections also indicate that at least the first 2 km of debris rich buried ice in the moraine can be linked to the actively flowing Law Glacier

  20. Comparison of the Microbial Diversity and Abundance Between the Freshwater Land-Locked Lakes of Schirmacher Oasis and the Perennially Ice-Covered Lake Untersee in East Antarctica

    Science.gov (United States)

    Huang, Jonathan; Hoover, Richard B.; Swain, Ashit; Murdock, Chris; Bej, Asim K.

    2010-01-01

    Extreme conditions such as low temperature, dryness, and constant UV-radiation in terrestrial Antarctica are limiting factors of the survival of microbial populations. The objective of this study was to investigate the microbial diversity and enumeration between the open water lakes of Schirmacher Oasis and the permanently ice-covered Lake Untersee. The lakes in Schirmacher Oasis possessed abundant and diverse group of microorganisms compared to the Lake Untersee. Furthermore, the microbial diversity between two lakes in Schirmacher Oasis (Lake L27C and L47) was compared by culture-based molecular approach. It was determined that L27Chad a richer microbial diversity representing 5 different phyla and 7 different genera. In contrast L47 consisted of 4 different phyla and 6 different genera. The difference in microbial community could be due to the wide range of pH between L27C (pH 9.1) and L47 (pH 5.7). Most of the microbes isolated from these lakes consisted of adaptive biological pigmentation. Characterization of the microbial community found in the freshwater lakes of East Antarctica is important because it gives a further glimpse into the adaptation and survival strategies found in extreme conditions.

  1. Seasonal Variations in Relative Weight of Lake Trout (Salvelinus namaycush), Kokanee Salmon (Oncorhynchus nerka), Rainbow Trout (Onocorhynchus mykiss), and Brown Trout (Salmo trutta) in Blue Mesa Reservoir, Colorado

    OpenAIRE

    Midas, Madeline; Williams, Asia; Cooper, Cindy; Courtney, Michael

    2013-01-01

    Blue Mesa Reservoir is the largest body of water in Colorado and is located on the western slope of the Rocky Mountains at an elevation of 7520 feet. Blue Mesa Reservoir contains recreationally important populations of lake trout (Salvelinus namaycush), kokanee salmon (Oncorhynchus nerka), rainbow trout (Onocorhynchus mykiss), and brown trout (Salmo trutta). A management challenge in recent years has been the overpopulation of lake trout, which has led to a steep decline in abundance of kokan...

  2. Neutron activation analysis of sixteenth- and seventeenth-century European blue glass trade beads from the eastern Great Lakes area of North America

    International Nuclear Information System (INIS)

    Hancock, R.G.V.; Chafe, A.; Kenyon, I.

    1994-01-01

    Sixteenth- and seventeenth-century European blue glass trade beads from aboriginal sites in the eastern Great Lakes area of North America have been analysed non-destructively using low neutron dose instrumental neutron activation analysis, so that the beads could be returned to their keepers. Dark blue (cobalt-coloured) beads are readily separable from turquoise (copper-coloured) beads. Differences in the chemistries of the turquoise blue beads appear to be useful in separating glass beads from the two centuries. Low calcium, sixteenth-century turquoise beads tend to disintegrate by a leaching of the alkali metals. (Author)

  3. Uniaxial Compressive Strength and Fracture Mode of Lake Ice at Moderate Strain Rates Based on a Digital Speckle Correlation Method for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2017-05-01

    Full Text Available Better understanding of the complex mechanical properties of ice is the foundation to predict the ice fail process and avoid potential ice threats. In the present study, uniaxial compressive strength and fracture mode of natural lake ice are investigated over moderate strain-rate range of 0.4–10 s−1 at −5 °C and −10 °C. The digital speckle correlation method (DSCM is used for deformation measurement through constructing artificial speckle on ice sample surface in advance, and two dynamic load cells are employed to measure the dynamic load for monitoring the equilibrium of two ends’ forces under high-speed loading. The relationships between uniaxial compressive strength and strain-rate, temperature, loading direction, and air porosity are investigated, and the fracture mode of ice at moderate rates is also discussed. The experimental results show that there exists a significant difference between true strain-rate and nominal strain-rate derived from actuator displacement under dynamic loading conditions. Over the employed strain-rate range, the dynamic uniaxial compressive strength of lake ice shows positive strain-rate sensitivity and decreases with increasing temperature. Ice obtains greater strength values when it is with lower air porosity and loaded vertically. The fracture mode of ice seems to be a combination of splitting failure and crushing failure.

  4. Chronology and alteration of cyclic drainage events for ice-dammed Lake Tiningnilik, Greenland, in 2010

    DEFF Research Database (Denmark)

    Haase, Eric Juergen; Furuya, Masato; Korsgaard, Niels Jákup

    pattern in nature lasting through the 19th and 20th centuries until now. In summer 2010 the lake drained after just 7 years and at a lower water stand than the 2003 pre-drainage levels. This represents an adjustment to new equilibrium conditions with the ice dam and might be an index of recent local...... climate change in Greenland. We take a close look at Lake Tiningnilik and previous studies to constrain the timing of the drainage events using historical air photos and satellite imagery starting in the 1940s and 1970s, respectively. Tiningnilik has been occasionally surveyed on the ground since the 1980...

  5. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    Science.gov (United States)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  6. Methane emissions from permafrost thaw lakes limited by lake drainage.

    NARCIS (Netherlands)

    van Huissteden, J.; Berrittella, C.; Parmentier, F.J.W.; Mi, Y.; Maximov, T.C.; Dolman, A.J.

    2011-01-01

    Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane. They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs,). Their expansion is enhanced by

  7. Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part II: Analysis of lake surface temperature and ice cover

    Directory of Open Access Journals (Sweden)

    Homa Kheyrollah Pour

    2014-09-01

    Full Text Available This paper presents results from a study on the impact of remote-sensing Lake Surface Water Temperature (LSWT observations in the analysis of lake surface state of a numerical weather prediction (NWP model. Data assimilation experiments were performed with the High Resolution Limited Area Model (HIRLAM, a three-dimensional operational NWP model. Selected thermal remote-sensing LSWT observations provided by the Moderate Resolution Imaging Spectroradiometer (MODIS and Advanced Along-Track Scanning Radiometer (AATSR sensors onboard the Terra/Aqua and ENVISAT satellites, respectively, were included into the assimilation. The domain of our experiments, which focussed on two winters (2010–2011 and 2011–2012, covered northern Europe. Validation of the resulting objective analyses against independent observations demonstrated that the description of the lake surface state can be improved by the introduction of space-borne LSWT observations, compared to the result of pure prognostic parameterisations or assimilation of the available limited number of in-situ lake temperature observations. Further development of the data assimilation methods and solving of several practical issues are necessary in order to fully benefit from the space-borne observations of lake surface state for the improvement of the operational weather forecast. This paper is the second part of a series of two papers aimed at improving the objective analysis of lake temperature and ice conditions in HIRLAM.

  8. Lake Sediment Records as an Indicator of Holocene Fluctuations of Quelccaya Ice Cap, Peru and Regional Climate

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.; Baranes, H. E.

    2012-12-01

    The past fluctuations of Quelccaya Ice Cap, (QIC; 13°S, 70°W, 5200 m asl) located in the southeastern Peruvian Andes, provide a record of tropical climate since the last glacial-interglacial transition. A detailed surficial geomorphic record of past glacial extents developed over the last several decades (e.g. Mercer and Palacios 1977; Buffen et al. 2009; Kelly et al. 2012 accepted) demonstrates that QIC is a dynamic glacial system. These records show that the ice cap was larger than present and retreating by ~11,500 yr BP, and smaller than present between ~7,000 and ~4,600 yr BP. The most recent advance occurred during the late Holocene (Little Ice Age;LIA), dated with 10Be surface exposure ages (510±90 yrs (n = 8)) (Stroup et al. in prep.). This overrode earlier deposits obscuring a complete Holocene record; we aim to address the gaps in glacial chronology using the sedimentary record archived in lakes. We retrieved two sets cores (8 and 5 m-long) from Laguna Challpacocha (13.91°S, 70.86°W, 5040 m asl), a lake that currently receives meltwater from QIC. Four radiocarbon ages from the cores suggest a continuous record dating to at least ~10,500 cal. yr BP. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, grayscale and X-ray fluorescence chemistry indicate changes in the amount of clastic sediment deposition. We interpret clastic sediments to have been deposited from ice cap meltwater, thus indicating more extensive ice. Clastic sediments compose the top of the core from 4 to 30 cm depth, below there is a sharp transition to organic sediments radiocarbon dated to (500±30 and 550±20 cal. yr BP). The radiocarbon ages are similar to the 10Be dated (LIA) glacial position. At least three other clastic units exist in the core; dating to ~2600-4300, ~4800-7300 and older then ~10,500 cal. yr BP based on a linear age model with four radiocarbon dates. We obtained two, ~4 m long, cores from Laguna Yanacocha (13.95°S,70.87

  9. Timing of Glacial Lake Missoula Outburst Floods and the southwestern Cordilleran Ice Sheet retreat.

    Science.gov (United States)

    Hendy, I. L.; Bervid, H. D.; Carlson, A. E.

    2017-12-01

    Glacial Lake Missoula formed when the Purcell Trench Lobe dammed the Clark Fork River in Montana and catastrophically collapsed repeatedly through the last glacial period as the southern Cordilleran Ice Sheet advanced and retreated. A well-dated 50-kyr jumbo piston core MD02-2496 (48.97˚ N, 127.04˚ W, water depth of 1243 m) collected from the continental slope 75 km off Vancouver Island contains evidence of these floods. The in-situ bulk elemental composition of the 35-m core was determined at 1 mm intervals using an ITRAX X-ray Fluorescence (XRF) Core Scanner (Cox Analytical Instruments) at the Sediment Geochemistry Lab of the College of Earth, Ocean, and Atmospheric Sciences at Oregon State University. With 40 mixed planktonic foraminifera and bulk organic carbon 14C ages, the core provides a high-resolution resolution record of glaciomarine sedimentation during deglaciation. A series of >81 layers of fine-grained sediments with ancient (K/Ar ages of 300 Ma and eNd of -8) shale-like (high Rb counts) composition can be found between 19.6 and 9.2 m below coretop. These layers are interspersed by coarser grained, young (K/Ar ages of 100 Ma and eNd of -3) sediments containing ice-rafted debris (IRD). The composition and age of the layers indicates the sediments originated in Glacial Lake Missoula and were transported by ocean currents 250 miles north along the west coast of North America. The flood layers begin at 19.5 ka with five thin (5 cm thick) appear after 19.3 ka. At 17.1 ka, IRD concentrations increase from 50 grains g-1 from 16.5-16.35 ka, except in flood layers, as the Juan de Fuca Strait deglaciated. Another 16 flood layers occur from 16.3-15.65 ka; however, the base and top of these layers are diffuse rather than abrupt like earlier flood layers suggesting enhanced mixing between flood and melt waters. The final flood layers from 14.9-14.5 ka are thin (Lake Missoula flood sedimentation changed during the advance and retreat of the Cordilleran Ice Sheet.

  10. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    Science.gov (United States)

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  11. Source of Lake Vostok Cations Constrained with Strontium Isotopes

    Directory of Open Access Journals (Sweden)

    William Berry Lyons

    2016-08-01

    Full Text Available Lake Vostok is the largest sub-glacial lake in Antarctica. The primary source of our current knowledge regarding the geochemistry and biology of the lake comes from the analysis of refrozen lake water associated with ice core drilling. Several sources of dissolved ions and particulate matter to the lake have been proposed, including materials from the melted glacier ice, the weathering of underlying geological materials, hydrothermal activity and underlying, ancient evaporitic deposits. A sample of Lake Vostok Type 1 accretion ice has been analyzed for its 87Sr/86Sr signature as well as its major cation and anion and Sr concentrations. The strontium isotope ratio of 0.71655 and the Ca/Sr ratio in the sample strongly indicate that the major source of the Sr is from aluminosilicate minerals from the continental crust. These data imply that at least a portion of the other cations in the Type 1 ice also are derived from continental crustal materials and not hydrothermal activity, the melted glacier ice, or evaporitic sources.

  12. Multiple Nonconformities in Ice-Walled Lake Successions Indicate Periods with Cold Summers (24.4 - 22.5 ka, 21.1 - 19.2 ka, 18.5 - 18.1 ka) during the Last Deglaciation in Northeastern Illinois, USA

    Science.gov (United States)

    Curry, B. B.

    2014-12-01

    Unprecedented age control on many last glacial stratigraphic units and morainal ice-margin positions are interpreted from AMS radiocarbon ages of tundra plant macrofossils archived in low-relief ice-walled lake plain (IWLP) deposits the Lake Michigan Lobe (south-central Laurentide Ice Sheet). IWLPs are periglacial features that formed on morainal dead-ice permafrost. Lacustrine sediment, and the fossils contained therein, had physical and temporal proximity to the glacier which formed the underlying moraine. In modern ice-walled lakes, as the lake's ice cover begins to melt, moats form which allows access of sloughing tundra-mantled active layer sediment (soil) into the lakes. Multiple AMS ages from two sites with proglacial sediment buried by glacial max LIS diamicton, and IWLPs reveal evidence of episodic plant growth and sedimentation including ca. 24.0 to 24.4 ka (post Shelby Phase), 22.5 to 21.1 ka (post Livingston Phase), 18.1 to 17.4 ka (post Woodstock Phase). Although presently based on negative evidence, the associated nonconformities (listed in title) indicate periods when cold conditions did not promote development of the estival moat. Although the evidence does not preclude tundra growth during the cold summers, there was little landscape modification due to limited thawing of the active layer. At approximately the onset of the 19.2-18.5 "warm" period, at least two large deglacial discharge events flooded the Fox and Kankakee tributary valleys of the Illinois River. The latter, known as the Kankakee Torrent, occurred at 19.05 - 18.85 ka (σ1 range) at the Oswego channel complex. The temporal coincidence of the torrents and sedimentation in ice-walled lakes suggests that the post-Livingston Phase nonconformity (21.1 - 19.2 ka) was a period of lessened meltwater discharge through subglacial conduits (tunnel valleys) as the frozen toe promoted formation of subglacial lakes, buildup of pore-water pressures, and the release of subglacial water as "torrents

  13. Detection of subglacial lakes in airborne radar sounding data from East Antarctica.

    Science.gov (United States)

    Carter, S. P.; Blankenship, D. D.; Peters, M. E.; Morse, D. L.

    2004-12-01

    Airborne ice penetrating radar is an essential tool for the identification of subglacial lakes. With it, we can measure the ice thickness, the amplitude of the reflected signal from the base of the ice, the depth to isochronous surfaces and, with high quality GPS, the elevation of the ice surface. These four measurements allow us to calculate the reflection coefficient from the base of the ice, the hydrostatic head, the surface slope and basal temperature. A subglacial lake will be characterized by: a consistently high reflection coefficient from the base of the ice, a nearly flat hydraulic gradient at a relative minimum in the hydraulic potential, an exceptionally smooth ice surface, and an estimated basal temperature that is at or near the pressure melting point of ice. We have developed a computerized algorithm to identify concurrences of the above-mentioned criteria in the radar data sets for East Antarctica collected by the University of Texas (UT). This algorithm is henceforth referred to as the "lake detector". Regions which meet three or more of the above mentioned criteria are identified as subglacial lakes, contingent upon a visual inspection by the human operator. This lake detector has added over 40 lakes to the most recent inventory of subglacial lakes for Antarctica. In locations where the UT flight lines approach or intersect flight lines from other airborne radar surveys, there is generally good agreement between the "lake detector" lakes and lakes identified in these data sets. In locations where the "lake detector" fails to identify a lake which is present in another survey, the most common failing is the estimated basal temperature. However, in some regions where a bright, smooth basal reflector is shown to exist, the lake detector may be failing due to a persistent slope in the hydraulic gradient. The nature of these "frozen" and "sloping" lakes is an additional focus of this presentation.

  14. The Alaska Lake Ice and Snow Observatory Network (ALISON): Hands-on Experiential K- 12 Learning in the North

    Science.gov (United States)

    Morris, K.; Jeffries, M.

    2008-12-01

    The Alaska Lake Ice and Snow Observatory Network (ALISON) was initiated by Martin Jeffries (UAF polar scientist), Delena Norris-Tull (UAF education professor) and Ron Reihl (middle school science teacher, Fairbanks North Star Borough School District). The snow and ice measurement protocols were developed in 1999-2000 at the Poker Flat Research Range (PFRR) by Geophysical Institute, University of Alaska scientists and tested by home school teacher/students in winter 2001-2002 in Fairbanks, AK. The project was launched in 2002 with seven sites around the state (PFRR, Fairbanks, Barrow, Mystic Lake, Nome, Shageluk and Wasilla). The project reached its broadest distribution in 2005-2006 with 22 sites. The schools range from urban (Wasilla) to primarily Alaska native villages (Shageluk). They include public schools, charter schools, home schooled students and parents, informal educators and citizen scientists. The grade levels range from upper elementary to high school. Well over a thousand students have participated in ALISON since its inception. Equipment is provided to the observers at each site. Measurements include ice thickness (with a hot wire ice thickness gauge), snow depth and snow temperature (surface and base). Snow samples are taken and snow density derived. Snow variables are used to calculate the conductive heat flux through the ice and snow cover to the atmosphere. All data are available on the Web site. The students and teachers are scientific partners in the study of lake ice processes, contributing to new scientific knowledge and understanding while also learning science by doing science with familiar and abundant materials. Each autumn, scientists visit each location to work with the teachers and students, helping them to set up the study site, showing them how to make the measurements and enter the data into the computer, and discussing snow, ice and polar environmental change. A number of 'veteran' teachers are now setting up the study sites on

  15. Rise and fall of a small ice-dammed lake - Role of deglaciation processes and morphology

    Science.gov (United States)

    Nehyba, Slavomír; Hanáček, Martin; Engel, Zbyněk; Stachoň, Zdeněk

    2017-10-01

    A small ice-dammed lake, which developed along the margin of Nordenskiöldbreen on the northern coast of Adolfbukta, (central Spitsbergen, Svalbard) has been studied by a combination of facies analysis, ground penetrating radar, analysis of photos and satellite imagery, and by surface mapping by Unmanned Aerial Vehicle (drone). The lake existed between the years 1990-2012 and occupied two partial depressions in the bedrock, separated by a bedrock ridge for the dominant period of its history. Whereas the eastern depression was almost completely infilled due to direct fluvial input, the western depression revealed only thin sedimentary cover and was dotted from the eastern depression by an outflow of surficial waters. Gilbert delta deposits with typical tripartite zones of topset, foreset and bottomset were recognised in the eastern depression. Topset was comprised by deposits of a braided river. Foreset is formed by deposits of sediment gravity flows (turbidity currents and debris flows). Bottomset is represented by alternating suspension deposits and deposits of hyperpycnal underflows (low-density turbidity currents). The ruling factors of the evolution of the delta were glacier retreat, bedrock morphology, both affecting the relative lake level, and the rate of sediment delivery. Glacier retreat over stepped and inclined bedrock morphology led to delta prograding and downstepping. The recognised fluvio-deltaic terraces revealed four lake level falls followed by fluvial downcutting, erosion and redeposition of the older deltaic/lake deposits, the shifting of the lake's position towards the damming glacier and the transition of the sediment input in the same direction. The termination of the lake was a result of further glacier retreat and the opening of subglacial drainage.

  16. Ice and mineral licks used by caribou in winter

    Directory of Open Access Journals (Sweden)

    Douglas C. Heard

    1990-09-01

    Full Text Available In winter, barren-ground caribou obtain minerals from ice and soil licks. Between December and April we have seen caribou cratering on the surface of frozen lakes and licking the ice. Ice samples from eight licks on four lakes contained concentrations of calcium, magnesium, sodium, potassium, phosphorus, chloride and sulphate many times higher than in the surrounding unlicked ice or than would be expected in lake water. Soil licks being used in March and June had high concentrations of calcium, magnesium, sodium phosphorus and potassium. In winter caribou may be seeking supplements of all of the major mineral elements (calcium, magnesium, sodium and potassium at ice and soil licks because lichens, their staple winter diet, are low in minerals and may also reduce the absorption of some minerals.

  17. Seismic Monitoring and Characterization of the 2012 Outburst Flood of the Ice-Dammed Lake A.P.Olsen (NE Greenland)

    Science.gov (United States)

    Behm, M.; Walter, J. I.; Binder, D.; Mertl, S.

    2017-12-01

    Since the Zackenberg Research Station (ZRS) in NE-Greenland was established in 1995, regular floods of the adjacent Zackenberg River have been observed. The floods result from the sudden discharge of a marginal, ice-dammed lake at the pre-dominantly cold-based A.P. Olsen Ice Cap about 35 km inland. The lake filling usually starts with the melting season in May/June and ends with the flood sometime after early July. The run-off water from the lake discharges through the subsurface of the adjacent Argo glacier. The actual migration paths and depth of the water within the glacier are unknown until it re-appears at the glacier terminus at a distance of 4 km to the ice-dam. In spring 2012 a surface seismic monitoring network was installed on Argo glacier in 2-3 m boreholes near the lake to acquire continuous data for the whole fill- and drain cycle from start of May to end of November. The network comprises 3 stations with three-component sensors and 2 stations designed as tripartite arrays with vertically oriented sensors. The maximum interstation distance is 1.2 km. Microseismic event detection and localization is facilitated by the homogenous seismic structure of the ice and the extremely high S/N ratio of the borehole installations. An initial detection based on an STA/LTA algorithm and event assocator results in order-of-magnitude 100,000 seismic events. These events are generally attributed to the opening of surface crevasses due to the presence of weak body waves and strong surface wave energy, interpreted to be Rayleigh waves with dominant frequencies around 1-4 Hz. Time-lapse cross-correlations of the ambient seismic noise field reconstruct the surface waves travelling between the stations. Weekly stacks of the cross-correlations are stable, and show a distinct change correlated with the outburst flood. Apparent surface wave velocities increase slightly several weeks prior to the outburst event, which itself is characterized by a decrease in the correlation

  18. Second-Year Results from the Circumarctic Lakes Observation Network (CALON) Project

    Science.gov (United States)

    Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Eisner, W. R.; Frey, K. E.; Gaglioti, B.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2013-12-01

    Beginning in April 2012, over 55 lakes in northern Alaska were instrumented as the initial phase of CALON, a project designed to document landscape-scale variability in physical and biogeochemical processes of Arctic lakes developed atop permafrost. The current network has nine observation nodes along two latitudinal transects that extend from the Arctic Ocean south 200 km to the foothills of the Brooks Range. At each node, six representative lakes of differing area and depth were instrumented at different intensity levels, and a suite of instruments were deployed to collect field measurements on lake physiochemistry, lake-surface and terrestrial climatology, and lake bed and permafrost temperature. Each April, sensors measuring water temperature and water depth are deployed through the ice and water samples are collected. Sensors are downloaded from lakes and meteorological stations in August, recording a timeline of lake regimes and events from ice decay to the summertime energy and water balance. In general, lake ice thickness increased with latitude. In 2012, ice on deeper (>2 m) lakes was about 1.4 m thick in the Arctic Foothills and 1.7 m thick near the Arctic Ocean coast. Lake ice thickness was about 20 cm thicker in winter 2013 although winter temperatures were several degrees warmer than the previous year; this is likely due to a thinner snow cover in 2013. Lake ice elevations agree with this general trend, showing higher absolute elevation in April 2013 compared to 2012 for most of the surveyed lakes. Regionally, ice-off occurs 2-4 weeks later on lakes near the coast, although there is significant inter-lake variability related to lake depth. Following ice-off, rapid lake warming occurs and water temperature varies synchronously in response to synoptic weather variations and associated changes in net radiation and turbulent heat fluxes. Average mid-summer (July) lake temperatures spanned a relatively wide range in 2012 from 7°C to 18°C, with higher

  19. Limitations for life in Lake Vostok, Antarctica

    Science.gov (United States)

    Bulat, S. A.; Alekhina, I. A.; Lipenkov, V. Ya.; Leitchenkov, G. L.; Raynaud, D.; Petit, J. R.

    2003-04-01

    Ribosomal RNA gene sequence data indicates that both glacial and accretion (re-frozen lake water) Vostok ice samples are exceedingly clean in regard to microbe content. This makes ice sample decontamination (from drilling fluid and human activity) a crucial issue. The 4km thick ice sheet and the 0.8 Ma transit time to reach the lake make a severe constrain on the transit of microbes. At present no any evidence for revived microbes is reported for deep glacial Vostok ice core. This is probably due to the presence of liquid water films at the grain boundaries and the dissolved oxygen which both may be harmful for microbial cells/DNA survival. Even more horrible conditions are faced by microorganisms when they are released in the open lake since oxygen is expected to be in excess here (up to 1.3 g/l) making the open lake a 'cold oxygen reactor'. Such a high oxygen tension can be highly toxic and even chemically destructive for living cells and DNA. Indeed, until now we have no indication for undamaged full-sized small rDNA subunit for bacteria and archaea in Vostok accretion ice core up to 3623 m horizon. Thus, it seems that open lake provides no habitat for free-living bacteria. In the 15 kyr old accreted ice core from 3607 m depth, which contains sediment inclusions, we found puzzling signatures for three moderately thermophilic-like chemolithoautotroph-related bacteria. In fact, a hydrothermal environment is likely existing in deep crustal faults within the lake bedrock. Seeping solutions from the crust encouraged by rare seismotectonic events boost hydrothermal plume and may flush out 'crustal' bacteria and mineral products up to their vents. Some of them likely open in a shallow bay upstream Vostok where microbes and sediments may steadily be trapped by a rapid process of accretion. In accreted ice, absence of gas, shorter time and larger ice crystals make DNA better preserved. Lake Vostok can be viewed as a well isolated from the above surface biota ecosystem

  20. The color of melt ponds on Arctic sea ice

    Science.gov (United States)

    Lu, Peng; Leppäranta, Matti; Cheng, Bin; Li, Zhijun; Istomina, Larysa; Heygster, Georg

    2018-04-01

    Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness Hi enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to Hi for thin ice (Hi 1.5 m), similar to the behavior of melt-pond albedo. The distribution of the incident solar spectrum F0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve Hi and Hp. Retrievals of Hi for thin ice (Hi measurements than retrievals for thick ice, but those of Hp are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.

  1. Thermal Regime of A Deep Temperate Lake and Its Response to Climate Change: Lake Kuttara, Japan

    Directory of Open Access Journals (Sweden)

    Kazuhisa A. Chikita

    2018-02-01

    Full Text Available A deep temperate lake, Lake Kuttara, Hokkaido, Japan (148 m deep at maximum was completely ice-covered every winter in the 20th century. However, ice-free conditions of the lake over winter occurred three times in the 21st century, which is probably due to global warming. In order to understand how thermal regime of the lake responds to climate change, a change in lake mean water temperature from the heat storage change was calculated by integrating observed water temperature over water depths and by numerical calculation of heat budget components based on hydrometeorological data. As a result, a temporal variation of lake mean water temperature from the heat budget calculation was very reasonable to that from the observed water temperature (determination coefficient R2 = 0.969. The lowest lake mean temperature for non-freeze was then evaluated at −1.87 °C, referring to the zero level at 6.80 °C. The 1978–2017 data at a meteorological station near Kuttara indicated that there are significant (less than 5% level long-term trends for air temperature (+0.024 °C/year and wind speed (−0.010 m/s/year. In order to evaluate the effects of climate change on freeze-up patterns, a sensitivity analysis was carried out for the calculated lake mean water temperature. It is noted that, after two decades, the lake could be ice-free once per every two years.

  2. 2006 Program of Study: Ice

    Science.gov (United States)

    2007-03-01

    form a debris flow. One such debris flow, initiated by a glacial lake flood in Peru in 1941, devastated the city of Huaraz, killing over 6000 people [5...ice, a series of’ prototype interlocking fingers is formed which grow ats the ice floes areI compressed and the ice floes plough through one another

  3. Energy-balance and melt contributions of supraglacial lakes, Langtang Khola, Nepal

    Science.gov (United States)

    Miles, E. S.; Willis, I. C.; Pellicciotti, F.; Steiner, J. F.; Buri, P.; Arnold, N. S.

    2014-12-01

    As Himalayan debris-covered glaciers retreat and thin in response to climate warming, their long, low-gradient tongues generate substantial meltwater which often collects to form surface lakes. Supraglacial lakes on debris covered glaciers present a mechanism of atmosphere-glacier energy transfer that is poorly-studied, and only conceptually included in mass-balance studies. The ponded water can enhance energy transfer as compared to dry debris cover, while also acting as a reservoir of melt-available energy. Supraglacial lakes occur in association with debris-free ice cliffs, another poorly-constrained but critical component of glacier melt. Understanding the role of supraglacial lakes requires precise monitoring of lake volume, estimation of inlet and outlet flows, and consideration of the energy balance across three surfaces: atmosphere-lake, lake-ice, and lake-saturated debris layer. This research progresses previous modeling work on the energy and mass balance of such supraglacial lakes. Lakes were monitored during the monsoon of 2013 on Lirung Glacier in the Langtang Himal of Nepal with pressure transducers and temperature sensors, while UAV-derived DEMs were used to determine lake geometry. Lake albedo was measured to vary between 0.08 and 0.12, and a nearby on-glacier AWS was used to drive the energy balance. Results indicate that the lakes act as a significant recipient of energy, and suggest that lakes are an important part of an active supraglacial hydrologic system during the monsoon. Melt generated by the lake in contact with bare ice is calculated to be 3-5 cm/day, while energy conducted through saturated lake-bottom debris only resulted in 1-2 mm/day melt. The subaqueous melt rates are of similar magnitude to observed ice-cliff melt rates, allowing lake-cliff systems to persist. Energy leaving the lake system through englacial conduits may be the most important contribution to the glacier's mass balance, driving surface evolution to form new ice

  4. Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves

    Science.gov (United States)

    Warren, Stephen G.; Roesler, Collin S.; Morgan, Vincent I.; Brandt, Richard E.; Goodwin, Ian D.; Allison, Ian

    1993-01-01

    Although most icebergs are blue, green icebergs are seen occasionally in the Antarctic ocean. Chemical and isotopic analysis of samples from green icebergs indicate that the ice consists of desalinated frozen seawater, as does the basal ice from the Amery Ice Shelf. Spectral reflectance of a green iceberg measured near 67°S, 62°E, confirms that the color is inherent to the ice, not an artifact of the illumination. Pure ice appears blue owing to its absorption of red photons. Addition of a constituent that absorbs blue photons can shift the peak reflectance from blue to green. Such a constituent was identified by spectrophotometric analysis of core samples from this iceberg and from the Amery basal ice, and of seawater samples from Prydz Bay off the Amery Ice Shelf. Analysis of the samples by fluorescence spectroscopy indicates that the blue absorption, and hence the inherent green color, is due to the presence of marine-derived organic matter in the green iceberg, basal ice, and seawater. Thick accumulations of green ice, in icebergs and at the base of ice shelves, indicate that high concentrations of organic matter exist in seawater for centuries at the depth of basal freezing.

  5. Positive-Buoyancy Rover for Under Ice Mobility

    Science.gov (United States)

    Leichty, John M.; Klesh, Andrew T.; Berisford, Daniel F.; Matthews, Jaret B.; Hand, Kevin P.

    2013-01-01

    A buoyant rover has been developed to traverse the underside of ice-covered lakes and seas. The rover operates at the ice/water interface and permits direct observation and measurement of processes affecting freeze- over and thaw events in lake and marine environments. Operating along the 2- D ice-water interface simplifies many aspects of underwater exploration, especially when compared to submersibles, which have difficulty in station-keeping and precision mobility. The buoyant rover consists of an all aluminum body with two aluminum sawtooth wheels. The two independent body segments are sandwiched between four actuators that permit isolation of wheel movement from movement of the central tether spool. For normal operations, the wheels move while the tether spool feeds out line and the cameras on each segment maintain a user-controlled fixed position. Typically one camera targets the ice/water interface and one camera looks down to the lake floor to identify seep sources. Each wheel can be operated independently for precision turning and adjustments. The rover is controlled by a touch- tablet interface and wireless goggles enable real-time viewing of video streamed from the rover cameras. The buoyant rover was successfully deployed and tested during an October 2012 field campaign to investigate methane trapped in ice in lakes along the North Slope of Alaska.

  6. Long-term ice phenology records from eastern-central Europe

    Science.gov (United States)

    Takács, Katalin; Kern, Zoltán; Pásztor, László

    2018-03-01

    A dataset of annual freshwater ice phenology was compiled for the largest river (Danube) and the largest lake (Lake Balaton) in eastern-central Europe, extending regular river and lake ice monitoring data through the use of historical observations and documentary records dating back to AD 1774 and AD 1885, respectively. What becomes clear is that the dates of the first appearance of ice and freeze-up have shifted, arriving 12-30 and 4-13 days later, respectively, per 100 years. Break-up and ice-off have shifted to earlier dates by 7-13 and 9-27 days/100 years, except on Lake Balaton, where the date of break-up has not changed significantly. The datasets represent a resource for (paleo)climatological research thanks to the strong, physically determined link between water and air temperature and the occurrence of freshwater ice phenomena. The derived centennial records of freshwater cryophenology for the Danube and Balaton are readily available for detailed analysis of the temporal trends, large-scale spatial comparison, or other climatological purposes. The derived dataset is publicly available via PANGAEA at https://doi.org/10.1594/PANGAEA.881056" target="_blank">https://doi.org/10.1594/PANGAEA.881056.

  7. Long-term ice phenology records from eastern–central Europe

    Directory of Open Access Journals (Sweden)

    K. Takács

    2018-03-01

    Full Text Available A dataset of annual freshwater ice phenology was compiled for the largest river (Danube and the largest lake (Lake Balaton in eastern–central Europe, extending regular river and lake ice monitoring data through the use of historical observations and documentary records dating back to AD 1774 and AD 1885, respectively. What becomes clear is that the dates of the first appearance of ice and freeze-up have shifted, arriving 12–30 and 4–13 days later, respectively, per 100 years. Break-up and ice-off have shifted to earlier dates by 7–13 and 9–27 days/100 years, except on Lake Balaton, where the date of break-up has not changed significantly. The datasets represent a resource for (paleoclimatological research thanks to the strong, physically determined link between water and air temperature and the occurrence of freshwater ice phenomena. The derived centennial records of freshwater cryophenology for the Danube and Balaton are readily available for detailed analysis of the temporal trends, large-scale spatial comparison, or other climatological purposes. The derived dataset is publicly available via PANGAEA at https://doi.org/10.1594/PANGAEA.881056.

  8. Investigating palaeo-subglacial lakes in the central Barents Sea

    Science.gov (United States)

    Esteves, M.; Shackleton, C.; Winsborrow, M.; Andreassen, K.; Bjarnadóttir, L. R.

    2017-12-01

    In the past decade hundreds of subglacial lakes have been detected beneath the Antarctic Ice Sheet, and several more beneath the Greenland Ice Sheet. These are important components of the subglacial hydrological system and can influence basal shear stress, with implications for ice sheet dynamics and mass balance, potentially on rapid timescales. Improvements in our understanding of subglacial hydrological systems are therefore important, but challenging due to the inaccessibility of contemporary subglacial environments. Whilst the beds of palaeo-ice sheets are easier to access, few palaeo-subglacial lakes have been identified due to uncertainties in the sedimentological and geomorphological diagnostic criteria. In this study we address these uncertainties, using a suite of sedimentological, geomorphological and modelling approaches to investigate sites of potential palaeo-subglacial lakes in the central Barents Sea. Geomorphological signatures of hydraulic activity in the area include large meltwater channels, tunnel valleys, and several interlinked basins. Modelling efforts indicate the potential for subglacial hydraulic sinks within the area during the early stages of ice retreat since the Last Glacial Maximum. In support of this, sedimentological observations indicate the presence of a dynamic glaciolacustrine depositional environment. Using the combined results of the modelling, geomorphology, and sedimentological analyses, we conclude that palaeo-subglacial lakes are likely to have formed on the northwestern banks of Thor Iversenbanken, central Barents Sea, and suggest that numerous other subglacial lakes may have been present beneath the Barents Sea Ice Sheet. Furthermore, we investigate and refine the existing diagnostic criteria for the identification of palaeo-subglacial lakes.

  9. PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK

    Directory of Open Access Journals (Sweden)

    G. I. Leychenkov

    2012-01-01

    Full Text Available In early February 2012, the drill hole at the Vostok Station encountered theLakeVostokwater. This step is important to study the lake composition including possible microbial life and to model subglacial environments however, the next ambitious target of the Vostok Drilling Project is sampling of bottom sediments, which contain the unique record of ice sheet evolution and environmental changes in centralAntarcticafor millions of years. In this connection, the forecast of sedimentary succession based on existing geophysical data, study of mineral inclusions in the accretion ice cores and tectonic models is important task. Interpretation of Airborne geophysical data suggests thatLakeVostokis the part of spacious rift system, which exists at least from Cretaceous. Reflection and refraction seismic experiments conducted in the southern part ofLakeVostokshow very thin (200–300 m stratified sedimentary cover overlying crystalline basement with velocity of 6.0–6.2 km/s. At present, deposition in southernLakeVostokis absent and similar conditions occurred likely at least last3 m.y. when ice sheet aboveLakeVostokchanged insignificantly. It can be also inferred that from the Late Miocene the rate of deposition inLakeVostokwas extremely low and so the most of sedimentary section is older being possibly of Oligocene to early to middle Miocene age when ice sheet oscillated and deposition was more vigorous. If so, the sampling of upper few meters of this condensed section is very informative in terms of history of Antarctic glaciation. Small thickness of sedimentary cover raises a question about existence of lake (rift depression during preglacial and early glacial times.

  10. Micro-hole and multigrain quartz luminescence dating of Paleodeltas at Lake Fryxell, McMurdo Dry Valleys (Antarctica), and relevance for lake history

    DEFF Research Database (Denmark)

    Berger, G.W.; Doran, P.T.; Thomsen, Kristina Jørkov

    2013-01-01

    Relict (perched) lacustrine deltas around the perennially ice-covered lakes in the Taylor Valley, Antarctica, imply that these lakes were up to 40 times larger in area than at present since the last glacial maximum (LGM). These deltas have been used to constrain ice-margin positions in Taylor Val...

  11. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    Science.gov (United States)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  12. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    Science.gov (United States)

    2015-09-30

    as the ship encountered smaller ice floes. The first spectra is shown in dark blue and later spectra transitioning to aqua. SWAN spectra at this time...with no ice representation, is shown in black for reference. Figure 2 below shows the dissipation rate as a function of frequency by several...shown with the black lines. These estimates are created using large numbers of inexpensive simulations for Beaufort and Chukchi Seas in 2012, to

  13. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    Science.gov (United States)

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  14. High geothermal heat flux measured below the West Antarctic Ice Sheet

    Science.gov (United States)

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  15. GPR capabilities for ice thickness sampling of low salinity ice and for detecting oil in ice

    Energy Technology Data Exchange (ETDEWEB)

    Lalumiere, Louis [Sensors by Design Ltd. (Canada)

    2011-07-01

    This report discusses the performance and capabilities test of two airborne ground-penetrating radar (GPR) systems of the Bedford Institute of Oceanography (BIO), Noggin 1000 and Noggin 500, for monitoring low salinity snow and ice properties which was used to measure the thickness of brackish ice on Lake Melville in Labrador and on a tidal river in Prince Edward Island. The work of other researchers is documented and the measurement techniques proposed are compared to the actual GPR approach. Different plots of GPR data taken over snow and freshwater ice and over ice with changing salinity are discussed. An interpretation of brackish ice GPR plots done by the Noggin 1000 and Noggin 500 systems is given based on resolution criterion. Additionally, the capability of the BIO helicopter-borne GPR to detect oil-in-ice has been also investigated, and an opinion on the likelihood of the success of GPR as an oil-in-ice detector is given.

  16. Ecology under lake ice

    NARCIS (Netherlands)

    Hampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H.; North, Rebecca L.; Stockwell, Jason D.; Adrian, Rita; Weyhenmeyer, Gesa A.; Arvola, Lauri; Baulch, Helen M.; Bertani, Isabella; Bowman, Larry L., Jr.; Carey, Cayelan C.; Catalan, Jordi; Colom-Montero, William; Domine, Leah M.; Felip, Marisol; Granados, Ignacio; Gries, Corinna; Grossart, Hans-Peter; Haberman, Juta; Haldna, Marina; Hayden, Brian; Higgins, Scott N.; Jolley, Jeff C.; Kahilainen, Kimmo K.; Kaup, Enn; Kehoe, Michael J.; MacIntyre, Sally; Mackay, Anson W.; Mariash, Heather L.; Mckay, Robert M.; Nixdorf, Brigitte; Noges, Peeter; Noges, Tiina; Palmer, Michelle; Pierson, Don C.; Post, David M.; Pruett, Matthew J.; Rautio, Milla; Read, Jordan S.; Roberts, Sarah L.; Ruecker, Jacqueline; Sadro, Steven; Silow, Eugene A.; Smith, Derek E.; Sterner, Robert W.; Swann, George E. A.; Timofeyev, Maxim A.; Toro, Manuel; Twiss, Michael R.; Vogt, Richard J.; Watson, Susan B.; Whiteford, Erika J.; Xenopoulos, Marguerite A.

    Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experi-ence periods of snow and ice cover. Relatively little is known of winter ecology in these systems,due to a historical research focus on summer ‘growing seasons’. We executed the first global

  17. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    Science.gov (United States)

    Narama, Chiyuki; Daiyrov, Mirlan; Duishonakunov, Murataly; Tadono, Takeo; Sato, Hayato; Kääb, Andreas; Ukita, Jinro; Abdrakhmatov, Kanatbek

    2018-04-01

    Four large drainages from glacial lakes occurred during 2006-2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000 m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary), and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth-drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i) a debris landform containing ice (ice-cored moraine complex), (ii) a depression with water supply on a debris landform as a potential lake basin, and (iii) no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2) in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s-1 at peak discharge.

  18. Deliberations on Microbial Life in the Subglacial Lake Vostok, East Antarctica

    Science.gov (United States)

    Bulat, S.; Alekhina, I.; Lipenkov, V.; Lukin, V.; Marie, D.; Petit, J.

    2004-12-01

    The objective was to estimate microbial contents of accretion (lake originating) ice from the Lake Vostok buried beneath 4-km thick East Antarctic ice sheet with the ultimate goal to discover microbial life in this extreme icy environment featured by no light, close to freezing point temperature, ultra-low DOC contents, and an excess of oxygen. The PCR based bacterial and archaeal 16S ribosomal RNA gene sequencing constrained by Forensic Biology and Ancient DNA research criteria was used as a main approach. Epifluorescent and confocal microscopies as well as flow cytometry were implemented. DNA study showed that the accretion ice is essentially bacteria- and archaea-free. Up to now, the only accretion ice type 1 featured by mica-clay sediments presence and namely one horizon of four studied (3607m) allowed the recovery a few bacterial phylotypes. This unexpectedly included the chemolithoautotrophic thermophile Hydrogenophilus thermoluteolus and two more unclassified phylotypes all passing numerous contaminant controls. In contrast, the deeper and cleaner accretion ice 2 (three cores) with no sediments presence and near detection limit gas contents gave no reliable signals. The microbes detected in accretion ice 1 are unbelievable to resist an excess of oxygen in the lake water body (700 - 1300 mg O2/l). They are supposed to be thriving in rather warm anoxic sediments in deep faults at the lake bottom and sporadically flushing out along with sediments to the lake veins in a shallow depth bay due to a seismotectonic activity likely operating in the lake environment. A few geophysical and geological evidences support this scenario. In the bay the presence of mica-clay sediments, higher accretion rate due to relief rise and likely oxygen-depleted upper layer of water can provide microbes with a chance to escape the high oxygen tension by the rapid entrapment into accretion ice 1. Sediment-free accretion ice 2, which forms above a deeper part of the lake, shows no

  19. A Viable Microbial Community in a Subglacial Volcanic Crater Lake, Iceland

    Science.gov (United States)

    Gaidos, Eric; Lanoil, Brian; Thorsteinsson, Thorsteinn; Graham, Andrew; Skidmore, Mark; Han, Suk-Kyun; Rust, Terri; Popp, Brian

    2004-09-01

    We describe a viable microbial community in a subglacial lake within the Grímsvötn volcanic caldera, Iceland. We used a hot water drill to penetrate the 300-m ice shelf and retrieved lake water and volcanic tephra sediments. We also acquired samples of borehole water before and after penetration to the lake, overlying glacial ice and snow, and water from a nearby subaerial geothermal lake for comparative analyses. Lake water is at the freezing point and fresh (total dissolved solids = 260 mg L-1). Detectable numbers of cells were found in samples of the lake water column and tephra sediments: 2 × 104 ml-1 and 4 × 107 g-1, respectively. Plate counts document abundant cold-adapted cultivable organisms in the lake water, but not in the borehole (before penetration) or glacial ice. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from genomic DNA extracted from Gr??msv??tn samples indicates that the lake community is distinct from the assemblages of organisms in borehole water (before penetration) and the overlying ice and snow. Sequencing of selected DGGE bands revealed that many sequences are highly similar to known psychrophilic organisms or cloned DNA from other cold environments. Significant uptake of 14C-labeled bicarbonate occurred in dark, low-temperature incubations of lake water samples, indicating the presence of autotrophs. Acetylene reduction assays under similar incubation conditions showed no significant nitrogen fixation potential by lake water samples. This may be a consequence of the inhibition of diazotrophy by nitrogen in the lake.

  20. Final Results From the Circumarctic Lakes Observation Network (CALON) Project

    Science.gov (United States)

    Hinkel, K. M.; Arp, C. D.; Eisner, W. R.; Frey, K. E.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2015-12-01

    Since 2012, the physical and biogeochemical properties of ~60 lakes in northern Alaska have been investigated under CALON, a project to document landscape-scale variability of Arctic lakes in permafrost terrain. The network has ten nodes along two latitudinal transects extending inland 200 km from the Arctic Ocean. A meteorological station is deployed at each node and six representative lakes instrumented and continuously monitored, with winter and summer visits for synoptic assessment of lake conditions. Over the 4-year period, winter and summer climatology varied to create a rich range of lake responses over a short period. For example, winter 2012-13 was very cold with a thin snowpack producing thick ice across the region. Subsequent years had relatively warm winters, yet regionally variable snow resulted in differing gradients of ice thickness. Ice-out timing was unusually late in 2014 and unusually early in 2015. Lakes are typically well-mixed and largely isothermal, with minor thermal stratification occurring in deeper lakes during calm, sunny periods in summer. Lake water temperature records and morphometric data were used to estimate the ground thermal condition beneath 28 lakes. Application of a thermal equilibrium steady-state model suggests a talik penetrating the permafrost under many larger lakes, but lake geochemical data do not indicate a significant contribution of subpermafrost groundwater. Biogeochemical data reveal distinct spatial and seasonal variability in chlorophyll biomass, chromophoric dissolved organic carbon (CDOM), and major cations/anions. Generally, waters sampled beneath ice in April had distinctly higher concentrations of inorganic solutes and methane compared with August. Chlorophyll concentrations and CDOM absorption were higher in April, suggesting significant biological/biogeochemical activity under lake ice. Lakes are a positive source of methane in summer, and some also emit nitrous oxide and carbon dioxide. As part of the

  1. Lasting Effects of Glacial Lake Outburst Floods on Subglacial Drainage Networks

    Science.gov (United States)

    Robbins, M.; Hendy, I. L.; Bassis, J. N.; Aciego, S.; Stevenson, E. I.

    2017-12-01

    Supraglacial lakes forming in the ablation zone around the Greenland Ice Sheet will likely migrate toward higher elevations as polar temperatures rise through the 21st century. Present understanding of lake drainage shows it can temporarily enhance ice sheet motion, but other possible effects and interactions - especially with older pre-existing subglacial reservoirs - remain unexamined. Here we investigate possible enduring effects of the record high 2012 melt year on the en/subglacial hydrologic network, how this network responds to immediate high fluxes of water from floods, and how these phenomena might connect to previously isolated subglacial pools. Lake Hullet is a large ice dammed lake situated in south Greenland 22km up-ice from where Kiattuut Sermiat (KS) branches from a larger outlet glacier. Lake Hullet rests on bedrock and is contained by a bedrock ridge. It drains roughly annually through Lake Hullet's hydrologic network in a glacial lake outburst flood (GLOF) when water level rises such that it can flow over the obstructive ridge. Subglacial water samples collected from the toe of KS in July 2013 pre-flood were dated using U isotopes with 222Rn concentrations as well as noble gas ratios. These two independent methods reveal an exceedingly old water age of > 1000 years, indicating existence of isolated enduring subglacial meltwater pool(s). A comparison field study at the KS toe in August and September 2015 re-examined glacial hydrochemistry in a time series. 2015 222Rn concentrations are lower than 2013 values, suggesting less water-rock interaction, a reduction in residence time, and a proximal meltwater source. Increased water volume from the record high 2012 melt year may have enlarged the existing en/subglacial drainage network further into the ice sheet releasing meltwater with longer residence times beneath the ice, with effects lasting into subsequent melt seasons due to the stability of channels maintained from recurrent floods. These

  2. Yedomas in Alaska: Evolution of ice-rich landscapes in a changing climate

    Science.gov (United States)

    Stephani, E.; Kanevskiy, M. Z.; Fortier, D.; Shur, Y.; Jorgenson, T. T.; Dillon, M.; Bray, M.

    2011-12-01

    Yedomas (Ice complexes) have developed on lands that remained unglaciated during the Late-Pleistocene. Ground exposure to cold climate allowed large syngenetic ice wedges to form typically in fine-grained, organic-rich, and ice-rich enclosing sediments, resulting in particularly ice-rich and thick sequences. Changing climate since has triggered geomorphological changes of these ice-rich landscapes and now contemporary climate conditions generally favour their degradation. Yedoma remnants have been observed in areas of Alaska including in the northern part of Seward Peninsula and Iktilik River area where we studied their metrics, cryostratigraphy, soil properties, and their degradation processes. Understanding the dynamic of this particular periglacial landscape and determining its properties is essential for modeling its future evolution in a changing climate. At our three study sites, presence of typical geomorphological features and cryostratigraphic units revealed information on the landscape evolution since deposition of these ice-rich strata. A Yedoma deposit in the northern part of Seward Peninsula comprised ice wedges at least 36 m-deep. The enclosing sediment was characterized by an ice-rich cryofacies of coarse silt with microlenticular cryostructure and abundant fine rootlets. The intermediate layer, a typical extremely ice-rich layer located below the active layer, was observed above the Yedoma deposit in areas less affected by thermo-degradation. In the thermo-degraded areas characterized by an irregular terrain surface, the intermediate layer was replaced by the generally ice-poor taberal cryofacies which corresponds to a deposit that was formerly ice-rich, thawed, drained, and eventually refrozen. Yedoma remnants in their contemporary degrading state can be recognized with their abundant thermokarst lakes, drained lake basins, and drainage gullies. Thermokarst lakes can be particularly deep because of the considerable amount of ground ice that can

  3. Timing of the Little Ice Age in southern Greenland

    DEFF Research Database (Denmark)

    Kjær, Kurt H.; Kjeldsen, Kristian K.; Bjørk, Anders A.

    2013-01-01

    as a signal for ice-free terrain being overridden by LIA glacier advances, and data from threshold lakes showing the onset of glacier-fed lakes, thus revealing the advance-maximum phase initiating the LIA. Finally, we have compiled lichenometry results indicating the onset of bedrock vegetation succeeding ice......Northern hemisphere temperatures reached their Holocene minimum and most glaciers reached their maximum during The Little Ice Age (LIA), but the timing of specific cold intervals is site-specific. In southern Greenland, we have compiled data from organic matter incorporated in LIA sediments, used...

  4. Diffuse scattering in Ih ice

    International Nuclear Information System (INIS)

    Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor

    2014-01-01

    Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)

  5. Predicting future glacial lakes in Austria using different modelling approaches

    Science.gov (United States)

    Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers

  6. Analysis of ERS 1 synthetic aperture radar data of frozen lakes in northern Montana and implications for climate studies

    Science.gov (United States)

    Hall, Dorothy K.; Fagre, Daniel B.; Klasner, Fritz; Linebaugh, Gregg; Liston, Glen E.

    1994-01-01

    Lakes that freeze each winter are good indicators of regional climate change if key parameters, such as freeze-up and breakup date and maximum ice thickness, are measured over a decade-scale time frame. Synthetic aperture radar (SAR) satellite data have proven to be especially useful for measurement of climatologically significant parameters characteristic of frozen lakes. In this paper, five lakes in Glacier National Park, Montana, have been studied both in the field and using Earth Remote-Sensing Satellite (ERS) 1 SAR data during the 1992-1993 winter. The lakes are characterized by clear ice, sometimes with tubular or rounded bubbles, and often with a layer of snow ice on top of the clear ice. They are also often snow covered. Freeze-up is detected quite easily using ERS 1 SAR data as soon as a thin layer of ice forms. The effect of snow ice on the backscatter is thought to be significant but is, as yet, undetermined. On the five lakes studied, relative backscatter was found to increase with ice thickness until a maximum was reached in February. Breakup, an often ill-defined occurrence, is difficult to detect because surface water causes the SAR signal to be absorbed, thus masking the ice below. Comparison of the bubble structure of thaw lakes in northern Alaska with lakes in northern Montana has shown that the ice structure is quite different, and this difference may contribute to differential SAR signature evolution in the lakes of the two areas.

  7. Life in Ice: Implications to Astrobiology

    Science.gov (United States)

    Hoover, Richard B.

    2009-01-01

    During the 2008 Tawani International Expedition Schirmacher Oasis/Lake Untersee Antarctica Expedition, living and instantly motile bacteria were found in freshly thawed meltwater from ice of the Schirmacher Oasis Lakes, the Anuchin Glacier ice and samples of the that perennial ice sheet above Lake Untersee. This phenomenon of living bacteria encased in ice had previously been observed in the 32,000 year old ice of the Fox Tunnel. The bacteria found in this ice included the strain FTR1T which was isolated and published as valid new species (Carnobacterium pleistocenium) the first validly published living Pleistocene organism still alive today. Living bacteria were also extracted from ancient ice cores from Vostok, Antarctica. The discovery that many strains of bacteria are able to survive and remain alive while frozen in ice sheets for long periods of time may have direct relevance to Astrobiology. The abundance of viable bacteria in the ice sheets of Antarctica suggests that the presence of live bacteria in ice is common, rather than an isolated phenomenon. This paper will discuss the results of recent studies at NSSTC of bacteria cryopreserved in ice. This paper advances the hypothesis that cryopreserved cells, and perhaps even viable bacterial cells, may exist today--frozen in the water-ice of lunar craters, the Polar Caps or craters of Mars; or in the permafrost of Mars; ice and rocks of comets or water bearing asteroids; or in the frozen crusts of the icy moons of Jupiter and Saturn. The existence of bacterial life in ice suggests that it may not be necessary to drill through a thick ice crust to reach liquid water seas deep beneath the icy crusts of Europa, Ganymede and Enceladus. The presence of viable bacteria in the ice of the Earth s Polar Caps suggests that the possibility that cryo-panspermia (i.e., the trans-planetary transfer of microbial life by impact ejection/spallation of bacteria-rich polar ice masses) deserves serious consideration and study as a

  8. Ice thickness profile surveying with ground penetrating radar at Artesonraju Glacier, Peru

    Science.gov (United States)

    Chisolm, Rachel; Rabatel, Antoine; McKinney, Daene; Condom, Thomas; Cochacin, Alejo; Davila Roller, Luzmilla

    2014-05-01

    Tropical glaciers are an essential component of the water resource systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glaciers in terms of thickness changes. In the upper Paron Valley (Cordillera Blanca, Peru), an emerging lake has begun to form at the terminus of the Artesonraju Glacier, and this lake has key features, including overhanging ice and loose rock likely to create slides, that could trigger a catastrophic GLOF if the lake continues to grow. Because the glacier mass balance and lake mass balance are closely linked, ice thickness measurements and measurements of the bed slope of the Artesonraju Glacier and underlying bedrock can give us an idea of how the lake is likely to evolve in the coming decades. This study presents GPR data taken in July 2013 at the Artesonraju Glacier as part of a collaboration between the Unidad de Glaciologia y Recursos Hidricos (UGRH) of Peru, the Institut de Recherche pour le Développement (IRD) of France and the University of Texas at Austin (UT) of the United States of America. Two different GPR units belonging to UGRH and UT were used for subsurface imaging to create ice thickness profiles and to characterize the total volume of ice in the glacier. A common midpoint

  9. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    Directory of Open Access Journals (Sweden)

    C. Narama

    2018-04-01

    Full Text Available Four large drainages from glacial lakes occurred during 2006–2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000  m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary, and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth–drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i a debris landform containing ice (ice-cored moraine complex, (ii a depression with water supply on a debris landform as a potential lake basin, and (iii no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2 in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s−1 at peak discharge.

  10. Antarctic Active Subglacial Lake Inventory from ICESat Altimetry, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains lake boundaries, volume changes, and gridded elevations for 124 active subglacial lakes beneath the Antarctic ice sheet. Lakes were identified...

  11. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    John S. Irving; R. P. Breckenridge

    1992-12-01

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface

  12. Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes

    Science.gov (United States)

    Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.

    2014-12-01

    Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.

  13. Laser induced fluorescence emission (L.I.F.E.): in situ and remote detection of life in Antarctic and Alaskan ice

    Science.gov (United States)

    Storrie-Lombardi, Michael C.; Sattler, Birgit

    2009-08-01

    Once thought to be a barren desert devoid of life, it now appears that Earth's cryosphere is an ice ecosystem harbouring a rich community of metabolically active microorganisms inhabiting ice, snow, water, and lithic environments. The ability to rapidly survey this ecosystem during in situ and orbital missions is of considerable interest for monitoring Earth's carbon budget and for efficiently searching for life on Mars or any exoplanet with an analogous cryosphere. Laser induced fluorescence emission (L.I.F.E.) imaging and spectroscopy using excitation in ultraviolet (UV) wavelengths have been proposed as non-destructive astrobiological survey tools to search for amino acids, nucleic acids, microbial life, and polycyclic aromatic hydrocarbons (PAHs) deep in the Mars regolith. However, the technique is easily adapted to search for larger, more complex biomolecular targets using longer wavelength sources. Of particular interest is the ability for excitation at blue, green, and red wavelengths to produce visible and near infrared fluorescence of photosynthetic pigments in cyanobacteria-dominated microbial communities populating the ice of alpine, Arctic, and Antarctic lakes, glaciers, ice sheets, and even the supercooled water-ice droplets of clouds. During the Tawani 2008 International Antarctic Expedition we tested the in situ use of the technique as part of a field campaign in the Dry Valleys of Schirmacher Oasis and Lake Untersee, Queen Maud Land, Antarctica. In the spring of 2009, we performed airborne remote sensing tests of the technology in Alaska. In this paper we review our in situ laser detection experiments and present for the first time preliminary results on our efforts to detect cryosphere L.I.F.E. from an airborne platform.

  14. Connection of the Late Paleolithic archaeological sites of the Chuya depression with geological evidence of existence of the Late Pleistocene ice-dammed lakes

    Science.gov (United States)

    Agatova, A. R.; Nepop, R. K.

    2017-07-01

    The complexity of the age dating of the Pleistocene ice-dammed paleolakes in the Altai Mountains is a reason why geologists consider the Early Paleolithic archaeological sites as an independent age marker for dating geological objects. However, in order to use these sites for paleogeographic reconstructions, their locations, the character of stratification, and the age of stone artifacts need to be comprehensively studied. We investigate 20 Late Paleolithic archaeological sites discovered in the Chuya depression of the Russian Altai (Altai Mountains) with the aim of their possible use for reconstructions of the period of development of the Kurai-Chuya glacio-limnosystem in the Late Neopleistocene. The results of our investigation show that it is improper to use the Paleolithic archaeological sites for the dating of the existence period and the draining time of ice-dammed lakes of the Chuya Depression in the modern period of their study owing to a lack of quantitative age estimates, a wide age range of possible existence of these sites, possible redeposition of the majority of artifacts, and their surface occurrence. It is established that all stratified sites where cultural layers are expected to be dated in the future lie above the uppermost and well-expressed paleolake level (2100 m a.s.l.). Accordingly, there are no grounds to determine the existence time of shallower paleolakes. Since the whole stone material collected below the level of 2100 m a.s.l. is represented by surface finds, it is problematic to use these artifacts for absolute geochronology. The Late Paleolithic Bigdon and Chechketerek sites are of great interest for paleogeographic reconstructions of ice-dammed lakes. The use of iceberg rafting products as cores is evidence that these sites appeared after the draining of a paleolake (2000 m a.s.l.). At this time, the location of these archaeological sites on the slope of the Chuya Depression allows one to assume the existence of a large lake as deep

  15. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts

    Science.gov (United States)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.

    2015-12-01

    Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping

  16. PROSPECTS FOR LIFE IN THE SUBGLACIAL LAKE VOSTOK, EAST ANTARCTICA

    Directory of Open Access Journals (Sweden)

    S. A. Bulat

    2012-01-01

    Full Text Available The objective was to estimate the genuine microbial content of ice samples from refrozen water (accretion ice from the subglacialLakeVostok(Antarctica buried beneath the 4-km thick East Antarctic ice sheet as well as surface snow nearby Vostok station. The lake ice samples were extracted by heavy deep ice drilling from3764 mbelow the surface reaching the depth3769.3 mby February 2011 (lake entering. High pressure, an ultra low carbon and chemical content, isolation, complete darkness and the probable excess of oxygen in water for millions of years characterize this extreme environment. A decontamination protocol was first applied to samples selected for the absence of cracks to remove the outer part contaminated by handling and drilling fluid. Preliminary indications showed the accretion ice samples to be almost gas free with the very low impurity content. Flow cytometry showed the very low unevenly distributed biomass in both accretion (0–19 cells per ml and glacier (0–24 cells per ml ice and surface snow (0–0.02 cells per ml as well while repeated microscopic observations were unsuccessful meaning that the whole Central East Antarctic ice sheet seems to be microbial cell-free.We used strategies of Ancient DNA research that include establishing contaminant databases and criteria to validate the amplification results. To date, positive results that passed the artifacts and contaminant databases have been obtained for a few bacterial phylotypes only in accretion ice samples featured by some bedrock sediments. Amongst them are the chemolithoautotrophic thermophile Hydrogenophilus thermoluteolus of beta-Proteobacteria, the actinobacterium rather related (95% to Ilumatobacter luminis and one unclassified phylotype distantly related (92% to soil-inhabiting uncultured bacteria. Combined with geochemical and geophysical considerations, our results suggest the presence of a deep biosphere, possibly thriving within some active faults of the bedrock

  17. The last Scandinavian ice sheet in northwestern Russia: ice flow patterns and decay dynamics

    DEFF Research Database (Denmark)

    Demidov, L.; Houmark-Nielsen, Michael; Kjær, Kurt Henrik

    2006-01-01

    in Russia than previously outlined and the time of termination at 18-16 cal. kyr BP was almost 10 kyr delayed compared to the southwestern part of the ice sheet. We argue that the lithology of the ice sheets' substrate, and especially the location of former proglacial lake basins, influenced the dynamics......Advance of the Late Weichselian (Valdaian) Scandinavian Ice Sheet (SIS) in northwestern Russia took place after a period of periglacial conditions. Till of the last SIS, Bobrovo till, overlies glacial deposits from the previous Barents and Kara Sea ice sheets and marine deposits of the Last...

  18. Surficial geologic map of Berrien County, Michigan, and the adjacent offshore area of Lake Michigan

    Science.gov (United States)

    Stone, Byron D.; Kincare, Kevin A.; O'Leary, Dennis W.; Newell, Wayne L.; Taylor, Emily M.; Williams, Van S.; Lundstrom, Scott C.; Abraham, Jared E.; Powers, Michael H.

    2017-12-13

    The surficial geologic map of Berrien County, southwestern Michigan (sheet 1), shows the distribution of glacial and postglacial deposits at the land surface and in the adjacent offshore area of Lake Michigan. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics, stratigraphic relationships, and age. Drill-hole information correlated in cross sections provides details of typical stratigraphic sequences that compose one or more penetrated geologic map units. A new bedrock geologic map (on sheet 2) includes contours of the altitude of the eroded top of bedrock and shows the distribution of middle Paleozoic shale and carbonate units in the subcrop. A sediment thickness map (also on sheet 2) portrays the extent of as much as 150 meters of surficial materials that overlie the bedrock surface.The major physical features of the county are related principally to deposits of the last Laurentide ice sheet that advanced and then retreated back through the region from about 19,000 to 14,000 radiocarbon years before present. Glacial and postglacial deposits underlie the entire county; shale bedrock crops out only in the adjacent offshore area on the bottom of Lake Michigan. All glacial deposits and glacial meltwater deposits in Berrien County are related to the late Wisconsinan glacial advances of the Lake Michigan ice lobe and its three regional recessional moraines, which cross the county as three north-northeast-trending belts.From east to west (oldest to youngest), the three moraine belts are known as the Kalamazoo, Valparaiso, and Lake Border morainic systems. The till-ridge morainic systems (Lake Border and local Valparaiso morainic systems) consist of multiple, elongate moraine ridges separated by till plains and lake-bottom plains. Tills in ground and end moraines in Berrien County are distinguished as informal units, and are correlated with three proposed regional till units in southwestern Michigan

  19. Life and death of ice cliffs and lakes on debris covered glaciers - insights from a new dataset from the Nepalese Himalaya

    Science.gov (United States)

    Steiner, Jakob; Buri, Pascal; Miles, Evan; Ragettli, Silvan; Pellicciotti, Francesca

    2016-04-01

    Numerous studies suggest that supraglacial ice cliffs and lakes could be one contributing factor to relatively high overall ablation rates on debris covered glaciers. While some studies have quantified backwasting rates, developments over the larger scale have not yet been assessed. Field work and earlier studies during three seasons in the Langtang catchment in the Nepalese Himalaya has given some insights into how these landforms develop, from initial emergence to persistence and disappearance. From 6 sets of concurrent high-resolution satellite imagery and DEMs between 2006 and 2015 and an additional image from 1974, we assembled an extensive dataset of these landforms on all glaciers in the catchment, including nearly 4000 individual lakes and cliffs. We show that ice cliffs appear in combination with lakes or without and there are lakes that are not bordered by a cliff. Numbers vary strongly between seasons, especially as lakes show strong seasonal variability. There are furthermore different types of cliff forms - circular, lateral and longitudinal - that give an indication of their formation process. Circular cliffs form with either collapsing subglacial channels or overdeepenings caused by water accumulating on the surface, while lateral cliffs are likely associated with underlying crevasses. Some of the cliff and lake systems remain at the same location on-glacier over a number of years, while most move with the whole glacier body down valley. From the DEMs determine preferential slopes and expositions of the cliffs in the catchment which have been shown to be essential aspects in explaining the backwasting process. In combination with field observations from one glacier, where most of these types were present, we can infer development processes of a number of systems over the whole catchment. It is also apparent that densities of these landforms vary greatly over the glacier surface, which can be explained with velocities or underlying bed topography in

  20. Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia - observations and modeling (Lena River Delta, Siberia)

    Science.gov (United States)

    Boike, J.; Georgi, C.; Kirilin, G.; Muster, S.; Abramova, K.; Fedorova, I.; Chetverova, A.; Grigoriev, M.; Bornemann, N.; Langer, M.

    2015-10-01

    Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop

  1. Effect of permafrost thaw on the dynamics of lakes recharged by ice-jam floods: case study in Yukon Flats, Alaska

    Science.gov (United States)

    Steve M. Jepsen,; Walvoord, Michelle Ann; Voss, Clifford I.; Rover, Jennifer R.

    2016-01-01

    Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite-derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modeling. We observed gradients in water surface elevation between neighboring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to “fill-and-spill” over topographic depressions (surface sills), as we observed for the Twelvemile-Buddy Lake pair following a May 2013 ice-jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill-and-spill) to shallow groundwater flow (“fill-and-seep”). Such a shift is possible in the next several hundred years of ground surface warming, and may bring about more synchronous water level changes between neighboring lakes following large flood events. This relationship offers a potentially useful tool, well-suited to remote sensing, for identifying long-term changes in shallow groundwater flow resulting from thawing of permafrost.

  2. Emerging Glacial Lakes in the Cordillera Blanca, Peru: A Case Study at Arteson Glacier

    Science.gov (United States)

    Chisolm, R. E.; Mckinney, D. C.; Gomez, J.; Voss, K.

    2012-12-01

    Tropical glaciers are an essential component of the water resources systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glacier mass balance. This study presents GPR data taken in July 2012 at the Arteson glacier in the Cordillera Blanca, Peru. A new lake has begun to form at the terminus of the Arteson glacier, and this lake has key features, including overhanging ice and loose rock likely to create landslides, that could trigger a catastrophic GLOF if the lake continues to grow. This new lake is part of a series of three lakes that have formed below the Arteson glacier. The two lower lakes, Artesonraju and Paron, are much larger so that if there were an avalanche or landslide into the new lake below Arteson glacier, the impact could potentially be more catastrophic than a GLOF from one single lake. Estimates of how the lake mass balance is likely to evolve due to the retreating glacier are key to assessing the flood risk from this dynamic three-lake system. Because the glacier mass balance and lake mass balance are closely linked, the ice thickness measurements and measurements of the bed slope of the Arteson glacier and underlying bedrock give us a clue to how the lake is likely to evolve. GPR measurements of

  3. Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA

    DEFF Research Database (Denmark)

    Smith, Larry N.; Sohbati, Reza; Buylaert, Jan-Pieter

    2018-01-01

    Glaciolacustrine sediments in the Clark Fork River valley at Garden Gulch, near Drummond, Montana, USA record highstand positions of the ice-dammed glacial Lake Missoula and repeated subaerial exposure. During these highstands the lake was at greater than 65% of its recognized maximum capacity......-level fluctuation, occurred over time scales of decades to ∼2 ka. Bioturbated sandy slopewash dated at 10.6 ± 0.9 ka and 11.9 ± 1.2 ka unconformably overlies the upper glaciolacustrine deposits. The uppermost sediments, above the glaciolacustrine section, are younger than the Glacier Peak tephra (13.7-13.4 cal ka B...... the lake's highstand position due to ice-dam failure likely led to scour in the downstream portions of the glacial Lake Missoula basin and megafloods in the Channeled Scabland....

  4. Surface and Subsurface Meltwater Ponding and Refreezing on the Bach Ice Shelf, Antarctic Peninsula

    Science.gov (United States)

    Willis, I.; Haggard, E.; Benedek, C. L.; MacAyeal, D. R.; Banwell, A. F.

    2017-12-01

    There is growing concern about the stability and fate of Antarctic ice shelves, as four major ice shelves on the Antarctic Peninsula have completely disintegrated since the 1950s. Their collapse has been linked to the southward movement of the -9 oC mean annual temperature isotherm. The proximal causes of ice shelf instability are not fully known, but an increase in surface melting leading to water ponding and ice flexure, fracture and calving has been implicated. Close to the recently collapsed Wilkins Ice Shelf, the Bach Ice Shelf (72°S 72°W) may be at risk from break up in the near future. Here, we document the changing surface hydrology of the Bach Ice Shelf between 2001 and 2017 using Landsat 7 & 8 imagery. Extensive surface water is identified across the Bach Ice Shelf and its tributary glaciers. Two types of drainage system are observed, drainage into firn via simple stream networks and drainage into the ocean via more complex networks. There are differences between the surface hydrology on the ice shelf and the tributary glaciers, as well as variations within and between summer seasons linked to surface air temperature fluctuations. We also document the changing subsurface hydrology of the ice shelf between 2014 and 2017 using Sentinel 1 A/B SAR imagery. Forty-five subsurface features are identified and analysed for their patterns and temporal evolution. Fourteen of the features show similar characteristics to previously-identified buried lakes and some occur in areas associated with surface lakes in previous years. The buried lakes show seasonal variability in area and surface backscatter, which varies with surface air temperature, and are consistent with the presence, enlargement and contraction of liquid water bodies. Buried lakes are an overlooked source of water loading on ice shelves, which may contribute to ice shelf flexure and potential fracture.

  5. Dragon Lake, Siberia

    Science.gov (United States)

    2002-01-01

    Nicknamed 'Dragon Lake,' this body of water is formed by the Bratskove Reservoir, built along the Angara river in southern Siberia, near the city of Bratsk. This image was acquired in winter, when the lake is frozen. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on December 19, 1999. This is a natural color composite image made using blue, green, and red wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  6. Contributions of an ancient evaporitic-type reservoir to subglacial Lake Vostok chemistry

    Science.gov (United States)

    De Angelis, M.; Petit, J.-R.; Savarino, J.; Souchez, R.; Thiemens, M. H.

    2004-06-01

    We present here the first comprehensive study of the chemical composition of accretion ice from Lake Vostok. Ion chromatographic analyses were performed on samples obtained along the deeper part of the Vostok ice core. Samples were taken from 3350 down to 3611 m depth, both in glacier ice and subglacial lake ice. The total ionic contents of two accretion ice layers—a few meters thick and centered around 3540 and 3590 m depth—are several times lower than those of glacier ice. Very low concentrations were also observed in the deeper part of accretion ice, below 3609 m depth. Elsewhere, the total ionic content is variable but remains 5 to 50 times higher than in glacier ice. Whatever its total ionic content, the ionic composition of accretion ice is significantly different from what is observed in glacier ice. It is dominated by sodium chloride, homogeneously distributed throughout the ice lattice, as well as calcium and magnesium sulfate, likely located in solid inclusions, or to a lesser extent at grain boundaries. Chemical considerations combined with additional studies of sulfur and oxygen isotopes in sulfate, and iron measurements strongly suggest that glacier water recycling and bedrock hydrolysis do not play a prominent role in providing impurities to accretion ice. It is more likely that NaCl rich water carrying fine sulfate salt particles is sporadically incorporated in the ice accreting in a shallow bay upstream from Vostok. The origin of such salty water, which should also contribute to Lake salinity, is discussed.

  7. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden)

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  8. Ice sheet hydrology from observations

    International Nuclear Information System (INIS)

    Jansson, Peter

    2010-11-01

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  9. Low Velocity Seismic Waves Produced by Stick-Slip Processes During the Drainage of Two Supraglacial Lakes in Greenland

    Science.gov (United States)

    Kenyon, P. M.; Orantes, E. J.; Grynewize, S.; Tedesco, M.

    2016-12-01

    The drainage of supraglacial lakes over the Greenland ice sheet has been shown to have a significant impact on ice dynamics and subglacial hydrology. As supraglacial lakes drain, they produce seismic waves that can be detected on both local and regional scales. Studying such waves and the originating phenomena has the potential to advance our understanding of the subglacial processes involved. Here we present the results of an analysis of high frequency seismic waves generated during the drainage of two supraglacial lakes in southwestern Greenland. The two lakes drained by contrasting mechanisms. One (Lake Half Moon) drained slowly by overflow into an existing moulin. Here GPS data, recorded during the drainage, show an increase in ice sheet velocity that begins well before the time of maximum lake depth. The other lake (Lake Ponting) drained suddenly by hydrofracture through the lake bed. In this case, the GPS data show an increase in velocity that is essentially simultaneous with the maximum lake depth. In both cases, vertical component seismograms were obtained from the Greenland Ice Sheet Monitoring Network (GLISN) for several hours before and after the lake drainage. Arrival times were picked manually, using the criterion that an arrival must have a minimum amplitude of twice the noise level. The arrivals were then plotted on graphs of time versus distance from the lake in question. Several linear trends are visible on each graph. The velocities calculated from the slopes of these trends are unexpectedly low. We suggest that one explanation for this might be that the waves are traveling in a layer of till at the base of the ice sheet, that forms a low velocity channel. When compared with GPS and lake depth data, the origin times of the waves coincide with the velocity increase in both cases. Therefore, we conclude that the waves are being generated by stick-slip processes involving the slippage of the ice sheet on an underlying layer of till.

  10. Key Lake spill. Final report

    International Nuclear Information System (INIS)

    1984-03-01

    On January 5, 1984 contaminated water overflowed a storage reservoir at the Key Lake uranium mill onto the ice on a neighboring lake, into a muskeg area and onto a road. Outflow continued for two days, partially undercutting a retaining dyke. This report concludes the spill was the result of poor operation by the Key Lake Mining Corp.. The environmental impact will be minimal after cleanup. Improvements can be made in the regulatory process, and it is necessary to prepare for possible future mishaps

  11. An integrated approach to the remote sensing of floating ice

    Science.gov (United States)

    Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.

    1976-01-01

    Review article on remote sensing applications to glaciology. Ice parameters sensed include: ice cover vs open water, ice thickness, distribution and morphology of ice formations, vertical resolution of ice thickness, ice salinity (percolation and drainage of brine; flushing of ice body with fresh water), first-year ice and multiyear ice, ice growth rate and surface heat flux, divergence of ice packs, snow cover masking ice, behavior of ice shelves, icebergs, lake ice and river ice; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational ice forecasting are also discussed.

  12. Lake Tana's piscivorous Barbus (Cyprinidae, Ethiopia) ecology - evolution - exploitation

    NARCIS (Netherlands)

    Graaf, de M.

    2003-01-01

    The 15 Barbus species of Lake Tana, a large shallow lake located at an altitude of 1830 m in the north-western highlands of Ethiopia, form the only remaining intact species flock of large (max. 100cm) cyprinid fishes. Lake Tana is the source of the Blue Nile and high waterfalls (40 m) at

  13. Regionalisation for lake level simulation – the case of Lake Tana in the Upper Blue Nile, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. H. M. Rientjes

    2011-04-01

    Full Text Available In this study lake levels of Lake Tana are simulated at daily time step by solving the water balance for all inflow and outflow processes. Since nearly 62% of the Lake Tana basin area is ungauged a regionalisation procedure is applied to estimate lake inflows from ungauged catchments. The procedure combines automated multi-objective calibration of a simple conceptual model and multiple regression analyses to establish relations between model parameters and catchment characteristics.

    A relatively small number of studies are presented on Lake Tana's water balance. In most studies the water balance is solved at monthly time step and the water balance is simply closed by runoff contributions from ungauged catchments. Studies partly relied on simple ad-hoc procedures of area comparison to estimate runoff from ungauged catchments. In this study a regional model is developed that relies on principles of similarity of catchments characteristics. For runoff modelling the HBV-96 model is selected while multi-objective model calibration is by a Monte Carlo procedure. We aim to assess the closure term of Lake Tana's water balance, to assess model parameter uncertainty and to evaluate effectiveness of a multi-objective model calibration approach to make hydrological modeling results more plausible.

    For the gauged catchments, model performance is assessed by the Nash-Sutcliffe coefficient and Relative Volumetric Error and resulted in satisfactory to good performance for six, large catchments. The regional model is validated and indicated satisfactory to good performance in most cases. Results show that runoff from ungauged catchments is as large as 527 mm per year for the simulation period and amounts to approximately 30% of Lake Tana stream inflow. Results of daily lake level simulation over the simulation period 1994–2003 show a water balance closure term of 85 mm per year that accounts to 2.7% of the total lake inflow. Lake level

  14. Lake trout in northern Lake Huron spawn on submerged drumlins

    Science.gov (United States)

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  15. Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland

    Science.gov (United States)

    Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim

    2015-04-01

    In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic

  16. Comparative limnology of strip-mine lakes

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, J D

    1964-01-01

    Lakes were classified according to chemical properties. The concentration of the ferric iron oxides was responsible for a reddish-black turbidity which, in turn, played a major role in the thermal stratification of red strip-mine lakes. Owing to the lack of measurable turbidity and as a result of selective absorption of visible solar radiation, other strip-mine lakes appeared blue in color. The annual heat budget and the summer heat budget are essentially equivalent under saline conditions. Regardless of the physical and chemical conditions of the strip-mine lakes, heat income was a function of the circulating water mass. The progressive oxidation and precipitation of the iron oxides is the key to the classification of strip-mine lakes.

  17. Sea Ice Properties and Processes. Proceedings of the W. F. Weeks Sea Ice Symposium Held In San Francisco, California on December 1988

    Science.gov (United States)

    1990-02-01

    probability density functions lected on different types of laboratory grown saline ice and lake ice. Car- fromt Figure I Ofor different laborator y...advection effects as prescribed from a clima - The model is applied to the central gyre of the tological seasonal cycle. Various wind stresses repre

  18. Climate change and the long-term viability of the World's busiest heavy haul ice road

    Science.gov (United States)

    Mullan, Donal; Swindles, Graeme; Patterson, Tim; Galloway, Jennifer; Macumber, Andrew; Falck, Hendrik; Crossley, Laura; Chen, Jie; Pisaric, Michael

    2017-08-01

    Climate models project that the northern high latitudes will warm at a rate in excess of the global mean. This will pose severe problems for Arctic and sub-Arctic infrastructure dependent on maintaining low temperatures for structural integrity. This is the case for the economically important Tibbitt to Contwoyto Winter Road (TCWR)—the world's busiest heavy haul ice road, spanning 400 km across mostly frozen lakes within the Northwest Territories of Canada. In this study, future climate scenarios are developed for the region using statistical downscaling methods. In addition, changes in lake ice thickness are projected based on historical relationships between measured ice thickness and air temperatures. These projections are used to infer the theoretical operational dates of the TCWR based on weight limits for trucks on the ice. Results across three climate models driven by four RCPs reveal a considerable warming trend over the coming decades. Projected changes in ice thickness reveal a trend towards thinner lake ice and a reduced time window when lake ice is at sufficient thickness to support trucks on the ice road, driven by increasing future temperatures. Given the uncertainties inherent in climate modelling and the resultant projections, caution should be exercised in interpreting the magnitude of these scenarios. More certain is the direction of change, with a clear trend towards winter warming that will reduce the operation time window of the TCWR. This illustrates the need for planners and policymakers to consider future changes in climate when planning annual haulage along the TCWR.

  19. Estimating Spring Condensation on the Great Lakes

    Science.gov (United States)

    Meyer, A.; Welp, L.

    2017-12-01

    The Laurentian Great Lakes region provides opportunities for shipping, recreation, and consumptive water use to a large part of the United States and Canada. Water levels in the lakes fluctuate yearly, but attempts to model the system are inadequate because the water and energy budgets are still not fully understood. For example, water levels in the Great Lakes experienced a 15-year low period ending in 2013, the recovery of which has been attributed partially to decreased evaporation and increased precipitation and runoff. Unlike precipitation, the exchange of water vapor between the lake and the atmosphere through evaporation or condensation is difficult to measure directly. However, estimates have been constructed using off-shore eddy covariance direct measurements of latent heat fluxes, remote sensing observations, and a small network of monitoring buoys. When the lake surface temperature is colder than air temperature as it is in spring, condensation is larger than evaporation. This is a relatively small component of the net annual water budget of the lakes, but the total amount of condensation may be important for seasonal energy fluxes and atmospheric deposition of pollutants and nutrients to the lakes. Seasonal energy fluxes determine, and are influenced by, ice cover, water and air temperatures, and evaporation in the Great Lakes. We aim to quantify the amount of spring condensation on the Great Lakes using the National Center for Atmospheric Prediction North American Regional Reanalysis (NCEP NARR) Data for Winter 2013 to Spring 2017 and compare the condensation values of spring seasons following high volume, high duration and low volume, low duration ice cover.

  20. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009

  1. Endmembers of Ice Shelf Melt

    Science.gov (United States)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  2. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Directory of Open Access Journals (Sweden)

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  3. Regional Geomorphological Conditions Related to Recent Changes of Glacial Lakes in the Issyk-Kul Basin, Northern Tien Shan

    Directory of Open Access Journals (Sweden)

    Mirlan Daiyrov

    2018-03-01

    Full Text Available To assess the current state of glacial lakes, we examine the seasonal lake-area changes of 339 glacial lakes in the Teskey and Kungoy Ranges of the Issyk-Kul Basin, Kyrgyzstan, during 2013–2016 based on optical satellite images (Landsat7/ETM+ and 8/OLI. The glacial lakes are classified into six types based on their seasonal variations in area: stable, increasing, decreasing, appearing, vanishing, and short-lived. We then track the number of each type in a given year and examine how each number changes from one year to the next. We find that many appearing, vanishing, and short-lived types occurred in both mountain ranges, having a large variability in number that is not directly related to the local short-term summer temperature anomaly, nor to precipitation or glacier recession. However, those in the Teskey Range vary significantly more than those in the Kungoy Range. To determine if the changing number and distribution of the various lake types may be due to changes in ground ice, we apply differential interferometric synthetic aperture radar (DInSAR analysis using ALOS-2/PALSAR-2 for the debris landforms behind which glacial lakes appear. In the Teskey Range, ground ice occurs in 413 out of a total of 930 debris landforms, whereas in the Kungoy Range, ground ice occurs in 71 out of 180. In zones with predominant glacier-retreat during 1971–2010 (from Corona KH-4B and ALOS/PRISM, the Teskey Range had 180 new lake depressions as potential lake-basins, whereas the Kungoy Range had just 22. Existing depressions also expanded when melting ice produced subsidence. Such subsidence, together with debris landforms containing ground ice and ice tunnels, appear to cause the observed large number variability. In particular, the deposition of ice and debris by tunnel collapse or the freezing of storage water in a debris landform may close-off an ice tunnel, causing a lake to appear. Subsequent re-opening via melting of such blockage would produce

  4. Rapid thinning and collapse of lake calving Yakutat Glacier, Southeast Alaska

    Science.gov (United States)

    Trussel, Barbara Lea

    Glaciers around the globe are experiencing a notable retreat and thinning, triggered by atmospheric warming. Tidewater glaciers in particular have received much attention, because they have been recognized to contribute substantially to global sea level rise. However, lake calving glaciers in Alaska show increasingly high thinning and retreat rates and are therefore contributors to sea level rise. The number of such lake calving systems is increasing worldwide as land-terminating glaciers retreat into overdeepened basins and form proglacial lakes. Yakutat Glacier in Southeast Alaska is a low elevation lake calving glacier with an accumulation to total area ratio of 0.03. It experienced rapid thinning of 4.43 +/- 0.06 m w.e. yr-1 between 2000-2010 and terminus retreat of over 15 km since the beginning of the 20th century. Simultaneously, adjacent Yakutat Icefield land-terminating glaciers thinned at lower but still substantial rates (3.54 +/- 0.06 m w.e. yr -1 for the same time period), indicating lake calving dynamics help drive increased mass loss. Yakutat Glacier sustained a ˜3 km long floating tongue for over a decade, which started to disintegrate into large tabular icebergs in 2010. Such floating tongues are rarely seen on temperate tidewater glaciers. The floating ice was weakened by surface ablation, which then allowed rifts to form and intersect. Ice velocity from GPS measurements showed that the ice on the floating tongue was moving substantially faster than grounded ice, which was attributed to rift opening between the floating and grounded ice. Temporal variations of rift opening were determined from time-lapse imagery, and correlated well with variations in ice speeds. Larger rift opening rates occurred during and after precipitation or increased melt episodes. Both of these events increased subglacial discharge and could potentially increase the subaqueous currents towards the open lake and thus increase drag on the ice underside. Simultaneously

  5. Mapping of a Hydrological Ice Sheet Drainage Basin on the West Greenland Ice Sheet Margin from ERS-1/2 SAR Interferometry, Ice-Radar Measurement, and Modelling

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Bøggild, C.E.; Stenseng, L.

    2002-01-01

    importance of the potential of the ice overburden pressure compared to the bedrock topography. The meltwater run-off for the basin delineations was modelled with an energy-balance model calibrated with observed ice-sheet ablation and compared to a 25 year time series of measured basin run-off. The standard......The hydrological ice-sheet basin draining into the Tasersiaq lake, West Greenland (66°13'N, 50°30'W), was delineated, First using standard digital elevation models (DEMs) for ice-sheet surface and bedrock, and subsequently using a new high-resolution dataset, with a surface DEM derived from repeat......-track interferometric synthetic aperture radar (SAR) and a bedrock topography derived from an airborne 60 MHz ice-penetrating radar. The extent of the delineation was calculated from a water-pressure potential as a function of the ice-sheet surface and bedrock elevations and a hydraulic factor κ describing the relative...

  6. Can greening of aquaculture sequester blue carbon?

    Science.gov (United States)

    Ahmed, Nesar; Bunting, Stuart W; Glaser, Marion; Flaherty, Mark S; Diana, James S

    2017-05-01

    Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.

  7. Using multi-year reanalysis-derived recharge rates to drive a groundwater model for the Lake Tana region of Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Dokou, Z.; Kheirabadi, M.; Nikolopoulos, E. I.; Moges, S. A.; Bagtzoglou, A. C.; Anagnostou, E. N.

    2017-12-01

    Ethiopia's high inter-annual variability in local precipitation has resulted in droughts and floods that stress local communities and lead to economic and food insecurity. Better predictions of water availability can supply farmers and water management authorities with critical guidance, enabling informed water resource allocation and management decisions that will in turn ensure food and water security in the region. The work presented here focuses on the development and calibration of a groundwater model of the Lake Tana region, one of the most important sub-basins of the Blue Nile River Basin. Groundwater recharge, which is the major groundwater source in the area, depends mainly on the seasonality of precipitation and the spatial variation in geology. Given that land based precipitation data are sparse in the region, two approaches for estimating groundwater recharge were used and compared that both utilize global atmospheric reanalysis driven by remote sensing datasets. In the first approach, the reanalysis precipitation dataset (ECMWF reanalysis adjusted based on GPCC) together with evapotranspiration and surface run-off estimates are used to calculate the groundwater recharge component using water budget equations. In the second approach, groundwater recharge estimates (subsurface runoff) are taken directly from a Land Surface model (FLDAS Noah), provided at a monthly time scale and 0.1˚ x 0.1˚ spatial resolution. The reanalysis derived recharge rates in both cases are incorporated into the groundwater model MODFLOW, which in combination with a Lake module that simulates the Lake water budget, offers a unique capability of improving the predictability of groundwater and lake levels in the Lake Tana basin. Model simulations using the two approaches are compared against in-situ observations of groundwater and lake levels. This modeling effort can be further used to explore climate variability effects on groundwater and lake levels and provide guidance to

  8. Estimating Summer Ocean Heating in the Arctic Ice Pack Using High-Resolution Satellite Imagery

    Science.gov (United States)

    2014-09-01

    8 D. THE BEAUFORT SEA ICE MARGINAL ICE ZONE ...............................9 1. Sea Ice - Albedo Feedback...seasonal evolution of sea ice albedo for MYI (blue) and FYI (red). Plot (c) is the daily solar heat input. Plot (d) is the time averaged solar heat... ice cover has decreased extensively, particularly in the summer months (from Lee et al. 2012). 13 1. Sea Ice - Albedo Feedback Albedo is a

  9. Lake sediments as natural seismographs: Earthquake-related deformations (seismites) in central Canadian lakes

    Science.gov (United States)

    Doughty, M.; Eyles, N.; Eyles, C. H.; Wallace, K.; Boyce, J. I.

    2014-11-01

    Central Canada experiences numerous intraplate earthquakes but their recurrence and source areas remain obscure due to shortness of the instrumental and historic records. Unconsolidated fine-grained sediments in lake basins are 'natural seismographs' with the potential to record ancient earthquakes during the last 10,000 years since the retreat of the Laurentide Ice Sheet. Many lake basins are cut into bedrock and are structurally-controlled by the same Precambrian basement structures (shear zones, terrane boundaries and other lineaments) implicated as the source of ongoing mid-plate earthquake activity. A regional seismic sub-bottom profiling of lakes Gull, Muskoka, Joseph, Rousseau, Ontario, Wanapitei, Fairbanks, Vermilion, Nipissing, Georgian Bay, Mazinaw, Simcoe, Timiskaming, Kipawa, Parry Sound and Lake of Bays, encompassing a total of more than 2000 kilometres of high-resolution track line data supplemented by multibeam and sidescan sonar survey records show a consistent sub-bottom stratigraphy of relatively-thick lowermost lateglacial facies composed of interbedded semi-transparent mass flow facies (debrites, slumps) and rhythmically-laminated silty-clays. Mass flows together with cratered ('kettled') lake floors and associated deformations reflect a dynamic ice-contact glaciolacustrine environment. Exceptionally thick mass flow successions in Lake Timiskaming along the floor of the Timiskaming Graben within the seismically-active Western Quebec Seismic Zone (WQSZ), point to a higher frequency of earthquakes and slope failure during deglaciation and rapid glacio-isostatic rebound though faulting continues into the postglacial. Lateglacial faulting, diapiric deformation and slumping of coeval lateglacial sediments is observed in Parry Sound, Lake Muskoka and Lake Joseph, which are all located above prominent Precambrian terrane boundaries. Lateglacial sediments are sharply overlain by relatively-thin rhythmically-laminated and often semi

  10. The Blue Marble

    Science.gov (United States)

    2002-01-01

    This spectacular Moderate Resolution Imaging Spectroradiometer (MODIS) 'blue marble' image is based on the most detailed collection of true-color imagery of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from MODIS, illustrating MODIS' outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic, and atmospheric features of the Earth. The land and coastal ocean portions of this image is based on surface observations collected from June through September 2001 and combined, or composited, every eight days to compensate for clouds that might block the satellite's view on any single day. Global ocean color (or chlorophyll) data was used to simulate the ocean surface. MODIS doesn't measure 3-D features of the Earth, so the surface observations were draped over topographic data provided by the U.S. Geological Survey EROS Data Center. MODIS observations of polar sea ice were combined with observations of Antarctica made by the National Oceanic and Atmospheric Administration's AVHRR sensor-the Advanced Very High Resolution Radiometer. The cloud image is a composite of two days of MODIS imagery collected in visible light wavelengths and a third day of thermal infra-red imagery over the poles. A large collection of imagery based on the blue marble in a variety of sizes and formats, including animations and the full (1 km) resolution imagery, is available at the Blue Marble page. Image by Reto Stockli, Render by Robert Simmon. Based on data from the MODIS Science Team

  11. Nye Lecture: Water Under Ice: Curiosities, Complexities, and Catastrophes

    Science.gov (United States)

    Clarke, G. K.

    2006-12-01

    Meltwater beneath glaciers and ice sheets activates some of the most curious and impressive phenomena known to glaciology. These range from the generation of miniscule electrokinetic currents by water flow through subglacial sediment to massive outburst floods that rearrange landscapes and deliver freshwater pulses to the ocean. The source of this water varies but is some mix of surface water and water melted from the glacier base by geothermal and frictional heating. The outflow of subglacial water is somewhat affected by bed topography but the dominant influence is from gradients in ice overburden pressure and thus from the surface topography of the ice sheet. Upslope water flow is possible and large adverse bed slopes are required before topographic water traps can exist. As a consequence, subglacial topographic basins tend to be leaky and less than 5% of the area of the contemporary Antarctic Ice Sheet provides suitable habitat for subglacial lakes. Following a variety of subglacial pathways, water can migrate toward the ice margins, either as a liquid or as refrozen meltwater accreted to the ice base. The morphology of the subglacial water system is thought to comprise a combination of sheet-like, channel-like, and vein-like elements, all of which lend themselves to mathematical representation. Water transport processes need not operate in a steady fashion and morphological switching between sheet-like and channel-like endmembers is linked to spectacular events such as glacier surges and outburst floods. Large outbursts of proglacially or subglacially-stored meltwater, the classic Icelandic j{ö}kulhaups, continue to occur in glaciated regions of the world and much larger floods were released during the Late Pleistocene--Early Holocene deglaciation of the Northern Hemisphere. Whether large subglacial lakes like Lake Vostok, Earth's seventh largest lake, have similar potential for delivering cataclysmic floods remains uncertain. The recent detection of a small

  12. Observing a catastrophic thermokarst lake drainage in northern Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  13. Reconstructing Heat Fluxes Over Lake Erie During the Lake Effect Snow Event of November 2014

    Science.gov (United States)

    Fitzpatrick, L.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Spence, C.; Chen, J.; Shao, C.; Posselt, D. J.; Wright, D. M.; Lofgren, B. M.; Schwab, D. J.

    2017-12-01

    The extreme North American winter storm of November 2014 triggered a record lake effect snowfall (LES) event in southwest New York. This study examined the evaporation from Lake Erie during the record lake effect snowfall event, November 17th-20th, 2014, by reconstructing heat fluxes and evaporation rates over Lake Erie using the unstructured grid, Finite-Volume Community Ocean Model (FVCOM). Nine different model runs were conducted using combinations of three different flux algorithms: the Met Flux Algorithm (COARE), a method routinely used at NOAA's Great Lakes Environmental Research Laboratory (SOLAR), and the Los Alamos Sea Ice Model (CICE); and three different meteorological forcings: the Climate Forecast System version 2 Operational Analysis (CFSv2), Interpolated observations (Interp), and the High Resolution Rapid Refresh (HRRR). A few non-FVCOM model outputs were also included in the evaporation analysis from an atmospheric reanalysis (CFSv2) and the large lake thermodynamic model (LLTM). Model-simulated water temperature and meteorological forcing data (wind direction and air temperature) were validated with buoy data at three locations in Lake Erie. The simulated sensible and latent heat fluxes were validated with the eddy covariance measurements at two offshore sites; Long Point Lighthouse in north central Lake Erie and Toledo water crib intake in western Lake Erie. The evaluation showed a significant increase in heat fluxes over three days, with the peak on the 18th of November. Snow water equivalent data from the National Snow Analyses at the National Operational Hydrologic Remote Sensing Center showed a spike in water content on the 20th of November, two days after the peak heat fluxes. The ensemble runs presented a variation in spatial pattern of evaporation, lake-wide average evaporation, and resulting cooling of the lake. Overall, the evaporation tended to be larger in deep water than shallow water near the shore. The lake-wide average evaporations

  14. Evidence for stagnation of the Harvard sublobe (Lake Michigan lobe) in Northeastern Illinois, U.S.A., from 24 000 to 17 600 BP and subsequent tundra-like ice-marginal paleoenvironments from 17 600 to 15 700 BP

    Science.gov (United States)

    Curry, B. Brandon; Yansa, C.H.

    2004-01-01

    Glacial deposits of the last glaciation associated with the Harvard sublobe (Lake Michigan lobe) in northeastern Illinois, U.S.A., occur between sediment with dateable organics. The lower organics include fragments of Picea sp. as young as 24 000 ?? 270 BP. The supraglacial organics occur sparsely in laminated silt and fine sand in landforms that are positioned relatively high on the landscape, such as deposits from ice-walled lakes. These terrestrial organics yield ages that are 2500 to 1300 14C years older than organics at the base of sediment successions in nearby kettle basins. Basal 14C ages from four upland sites range from 17 610 ?? 270 to 16 120 ?? 80 BP. Our revised time-distance diagram of the Harvard sublobe now reflects a period of stagnation from 24 000 to about 17 600 BP. The supraglacial lacustrine silt yielded plant macrofossil assemblages of primarily tundra plants, including Salix herbacea and Dryas integrifolia. These plants likely grew in supraglacial and ice-marginal environments. The ostracode fauna include Cytherissa lacustris and Limnocythere friabilis. Geomorphic relations and ostracode ecology indicate that more than 17 m of ice buttressed some of the supraglacial lakes.

  15. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  16. Microbial processes at the beds of glaciers and ice sheets: a look at life below the Whillans Ice Stream

    Science.gov (United States)

    Mikucki, J.; Campen, R.; Vancleave, S.; Scherer, R. P.; Coenen, J. J.; Powell, R. D.; Tulaczyk, S. M.

    2017-12-01

    Groundwater, saturated sediments and hundreds of subglacial lakes exist below the ice sheets of Antarctica. The few Antarctic subglacial environments sampled to date all contain viable microorganisms. This is a significant finding because microbes are known to be key in mediating biogeochemical cycles. In sediments, microbial metabolic activity can also result in byproducts or direct interactions with sediment particles that influence the physical and geochemical characteristics of the matrix they inhabit. Subglacial Lake Whillans (SLW), a fresh water lake under the Whillans Ice Stream that drains into the Ross Sea at its grounding zone, was recently sampled as part of the NSF-funded Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. Sediments from both SLW and its grounding zone contain microbial taxa related to iron, sulfur, nitrogen and methane oxidizers. In addition to molecular data, biogeochemical measurements and culture based experiments on Whillans sediments support the notion that the system is chemosynthetic with energy derived in part by cycling inorganic compounds. Etch pitting and mineral precipitates on fossil sponge spicules suggest that spicules may also provide microbial nutrients in these environments. Perhaps the most widespread microbial process that affects sediment structure and mineral weathering is the production of extra polymeric substances (EPS). Several phylogenetic groups detected in Whillans sediments are known to produce EPS and we have observed its production in pure cultures enriched directly from these sediments. Our data sheds light on how microbial life persists below the Antarctic Ice Sheet despite extended isolation in icy darkness, and how these microbes may be shaping their environment.

  17. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  18. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  19. Geothermal Flux, Basal Melt Rates, and Subglacial Lakes in Central East Antarctica

    Science.gov (United States)

    Carter, S. P.; Blankenship, D. D.; Morse, D. L.

    2002-12-01

    The lakes beneath the East Antarctic ice sheet represent a unique environment on Earth, entirely untouched by human interference. Life forms which survive in this cold, lightless, high pressure environment may resemble the life forms which survived through "snowball earth" and evolved into the life forms we know today (Kirchvink, 2000). Recent airborne radar surveys over Dome C and the South Pole regions allow us to assess where these lakes are most likely to exist and infer melting and freezing rates at base of the ice sheet. Lakes appear as strong, flat basal reflectors in airborne radar sounding data. In order to determine the absolute strength of the reflector it is important to accurately estimate signal loss due to absorption by the ice. As this quantity is temperature sensitive, especially in regions where liquid water is likely to exist, we have developed a one dimensional heat transfer model, incorporating surface temperature, accumulation, ice sheet thickness, and geothermal flux. Of the four quantities used for our temperature model, geothermal flux has usually proven to be the most difficult to asses, due to logistical difficulties. A technique developed by Fahnestock et al 2001 is showing promise for inferring geothermal flux, with airborne radar data. This technique assumes that internal reflectors, which result from varying electrical properties within the ice column, can be approximated as constant time horizons. Using ice core data from our study area, we can place dates upon these internal layers and develop an age versus depth relationship for the surveyed region, with margin of error of +- 50 m for each selected layer. Knowing this relationship allows us to infer the vertical strain response of the ice to the stress of vertical loading by snow accumulation. When ice is frozen to the bed the deeper ice will accommodate the increased stress of by deforming and thinning (Patterson 1994). This thinning of deeper layers occurs throughout most of our

  20. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    Science.gov (United States)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  1. Contrasting evidence of Holocene ice margin retreat, south-western Greenland

    DEFF Research Database (Denmark)

    Levy, L. B.; Larsen, N. K.; Davidson, T. A.

    2017-01-01

    Constraining the Greenland Ice Sheet's (GrIS) response to Holocene climate change provides calibrations for ice sheet models that hindcast past ice margin fluctuations. Ice sheet models predict enhanced ice retreat in south-western Greenland during the middle Holocene; however, few geological...... observations corroborating the extensive retreat are available. We present new data from lake sediment cores from the Isua region, south-western Greenland, which provide constraints on Holocene fluctuations of the GrIS margins. Our data indicate that the main GrIS margin was 30 km west of its present...

  2. Hydrological Controls on Ecosystem Dynamics in Lake Fryxell, Antarctica.

    Directory of Open Access Journals (Sweden)

    Radu Herbei

    Full Text Available The McMurdo Dry Valleys constitute the largest ice free area of Antarctica. The area is a polar desert with an annual precipitation of ∼ 3 cm water equivalent, but contains several lakes fed by glacial melt water streams that flow from four to twelve weeks of the year. Over the past ∼20 years, data have been collected on the lakes located in Taylor Valley, Antarctica as part of the McMurdo Dry Valley Long-Term Ecological Research program (MCM-LTER. This work aims to understand the impact of climate variations on the biological processes in all the ecosystem types within Taylor Valley, including the lakes. These lakes are stratified, closed-basin systems and are perennially covered with ice. Each lake contains a variety of planktonic and benthic algae that require nutrients for photosynthesis and growth. The work presented here focuses on Lake Fryxell, one of the three main lakes of Taylor Valley; it is fed by thirteen melt-water streams. We use a functional regression approach to link the physical, chemical, and biological processes within the stream-lake system to evaluate the input of water and nutrients on the biological processes in the lakes. The technique has been shown previously to provide important insights into these Antarctic lacustrine systems where data acquisition is not temporally coherent. We use data on primary production (PPR and chlorophyll-A (CHLfrom Lake Fryxell as well as discharge observations from two streams flowing into the lake. Our findings show an association between both PPR, CHL and stream input.

  3. Archaeal community changes in Lateglacial lake sediments: Evidence from ancient DNA

    Science.gov (United States)

    Ahmed, Engy; Parducci, Laura; Unneberg, Per; Ågren, Rasmus; Schenk, Frederik; Rattray, Jayne E.; Han, Lu; Muschitiello, Francesco; Pedersen, Mikkel W.; Smittenberg, Rienk H.; Yamoah, Kweku Afrifa; Slotte, Tanja; Wohlfarth, Barbara

    2018-02-01

    The Lateglacial/early Holocene sediments from the ancient lake at Hässeldala Port, southern Sweden provide an important archive for the environmental and climatic shifts at the end of the last ice age and the transition into the present Interglacial. The existing multi-proxy data set highlights the complex interplay of physical and ecological changes in response to climatic shifts and lake status changes. Yet, it remains unclear how microorganisms, such as Archaea, which do not leave microscopic features in the sedimentary record, were affected by these climatic shifts. Here we present the metagenomic data set of Hässeldala Port with a special focus on the abundance and biodiversity of Archaea. This allows reconstructing for the first time the temporal succession of major Archaea groups between 13.9 and 10.8 ka BP by using ancient environmental DNA metagenomics and fossil archaeal cell membrane lipids. We then evaluate to which extent these findings reflect physical changes of the lake system, due to changes in lake-water summer temperature and seasonal lake-ice cover. We show that variations in archaeal composition and diversity were related to a variety of factors (e.g., changes in lake water temperature, duration of lake ice cover, rapid sediment infilling), which influenced bottom water conditions and the sediment-water interface. Methanogenic Archaea dominated during the Allerød and Younger Dryas pollen zones, when the ancient lake was likely stratified and anoxic for large parts of the year. The increase in archaeal diversity at the Younger Dryas/Holocene transition is explained by sediment infilling and formation of a mire/peatbog.

  4. Holocene glacier fluctuations inferred from lacustrine sediment, Emerald Lake, Kenai Peninsula, Alaska

    Science.gov (United States)

    LaBrecque, Taylor S.; Kaufman, Darrell S.

    2016-01-01

    Physical and biological characteristics of lacustrine sediment from Emerald Lake were used to reconstruct the Holocene glacier history of Grewingk Glacier, southern Alaska. Emerald Lake is an ice-marginal threshold lake, receiving glaciofluvial sediment when Grewingk Glacier overtops the topographic divide that separates it from the lake. Sub-bottom acoustical profiles were used to locate core sites to maximize both the length and resolution of the sedimentary sequence recovered in the 4-m-long cores. The age model for the composite sequence is based on 13 14C ages and a 210Pb profile. A sharp transition from the basal inorganic mud to organic-rich mud at 11.4 ± 0.2 ka marks the initial retreat of Grewingk Glacier below the divide of Emerald Lake. The overlaying organic-rich mud is interrupted by stony mud that records a re-advance between 10.7 ± 0.2 and 9.8 ± 0.2 ka. The glacier did not spill meltwater into the lake again until the Little Ice Age, consistent with previously documented Little Ice Ages advances on the Kenai Peninsula. The retreat of Grewingk Glacier at 11.4 ka took place as temperature increased following the Younger Dryas, and the subsequent re-advance corresponds with a climate reversal beginning around 11 ka across southern Alaska.

  5. Ice-dammed lake drainage in west Greenland: Drainage pattern and implications on ice flow and bedrock motion

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Bjørk, Anders

    2017-01-01

    of surface loading in addition to ice mass change, when assessing glacial isostatic adjustment or elastic rebound using geodetic data. Moreover, the results illustrates a linkage between subglacial discharge and ice surface velocity, important for assessing ice flux, and thus mass balance, in a future...

  6. Great Lakes Aerial Photos of Ice Conditions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The collection consists of approximately 50,000 high-quality negatives and transparencies showing ice cover impact on navigation or hydroelectric operation from 1963...

  7. Glacier Instability, Rapid Glacier Lake Growth and Related Hazards at Belvedere Glacier, Macugnaga, Italy

    Science.gov (United States)

    Huggel, C.; Kaeaeb, A.; Haeberli, W.; Mortara, G.; Chiarle, M.; Epifani, F.

    2002-12-01

    Starting in summer 2000, Belvedere Glacier, near Macugnaga, Italian Alps, developed an extraordinary change in flow, geometry and surface appearance. A surge-type flow acceleration started in the lower parts of the Monte-Rosa east face, leading to strong crevassing and deformation of Belvedere Glacier, accompanied by bulging of its orographic right margin. In September 2001, a small supraglacial lake developed on the glacier. High water pressure and accelerated movement lasted into winter 2001/2002. The ice, in places, started to override moraines from the Little Ice Age. In late spring and early summer 2002, the supraglacial lake grew at extraordinary rates reaching a maximum area of more than 150'000 m2 by end of June. The evolution of such a large supraglacial lake, a rather unique feature in the Alps, was probably enabled by changes in the subglacial drainage system in the course of the surge-like developments with high water pressure in the glacier. At the end of June, an enhanced growth of the lake level with a rise of about 1 m per day was observed such that the supraglacial lake became a urgent hazard problem for the community of Macugnaga. Emergency measures had to be taken by the Italian Civil Protection. The authors thereby acted as the official expert advisers. Temporal evacuations were ordered and a permanent monitoring and alarm system was installed. Pumps with a maximum output of 1 m3/s were brought to the lake. Bathymetric studies yielded a maximum lake depth of 55 m and a volume of 3.3 millions of cubic meters of water. Aerial photography of 1995, 1999, September 2001 and October 2001 was used to calculate ice flow velocities and changes in surface altitude. Compared to the period of 1995 to 1999, the flow accelerated by about five times in 2001 (max. speeds up to 200 m/yr). Surface uplift measured was about 10-15 m/yr. The results of the photogrammetric studies were used to evaluate different possible lake-outburst scenarios, in particular

  8. Bioaccumulation of Stentorin, the Probable Causative Agent for Discolored ("Purple") Eggs and Ovaries in Blue Catfish (Ictalurus furcatus) from Eufaula Lake, Oklahoma, USA.

    Science.gov (United States)

    Gale, Robert W; Papoulias, Diana M; Schmitt, Christopher J

    2015-08-18

    Observations of reddish to "purple" discolored eggs in the ovaries of adult female blue catfish (Ictalurus furcatus) from the northern arm of Eufaula Lake, a eutrophic multiuse impoundment in east-central Oklahoma, were first reported in 2006. Blue catfish eggs are normally cream to light yellow. Reports peaked in 2007-2008 and declined through 2009-2010; purple eggs have not been reported between 2010 and 2014. In the laboratory, all tissues and fluids of affected fish were strongly orange-red fluorescent under UV illumination, with the fluorescence most apparent in the lipid-rich ovaries and eggs. The causative agent was isolated chromatographically and confirmed by mass spectrometry as stentorin (1,3,4,6,8,10,11,13-octahydroxy-2,5-diisopropyl-phenanthro[1,10,9,8,o,p,q,r,a]perylene-7,14-dione), the fluorescent, lipophilic pigment associated with the photoreceptor protein of the ciliated protozoan Stentor coeruleus (Heterotrichea; Stentoridae). Larval medaka (Orizias latipes) readily consumed S. coeruleus in the laboratory and were observed to fluoresce in the same manner as the affected blue catfish. Potential deleterious effects of stentorin bioaccumulation remain to be determined, as do the geographic extent and the identities of other fluorescent compounds isolated from catfish eggs and ovaries.

  9. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  10. Subaquatic moraine amphitheatre in Lake Thun

    OpenAIRE

    Fabbri, Stefano Claudio; Weiss, Benedikt J.; Hübscher, Christian; Horstmeyer, Heinrich; Schmelzbach, Cédric; Büchi, Marius; Herwegh, Marco; Schlunegger, Fritz; Anselmetti, Flavio

    2016-01-01

    The combination of a recently acquired high-resolution multibeam bathymetric dataset with 2D multichannel reflection seismic data from perialpine Lake Thun reveals new insights into the evolution of the lake basin upon deglaciation and a so far unknown subaquatic moraine. These new data improve our socomprehension of the landforms associated with the ice-contact zone, the facies architecture of the sub- to proglacial units, the related depositional processes, and thus the retreat mechanisms o...

  11. Pleistocene glaciers, lakes, and floods in north-central Washington State

    Science.gov (United States)

    Waitt, Richard B.; Haugerud, Ralph A.; Kelsey, Harvey M.

    2017-01-01

    The Methow, Chelan, Wenatchee, and other terrane blocks accreted in late Mesozoic to Eocene times. Methow valley is excavated in an exotic terrane of folded Mesozoic sedimentary and volcanic rocks faulted between crystalline blocks. Repeated floods of Columbia River Basalt about 16 Ma drowned a backarc basin to the southeast. Cirques, aretes, and U-shaped hanging troughs brand the Methow, Skagit, and Chelan headwaters. The Late Wisconsin Cordilleran icesheet beveled the alpine topography and deposited drift. Cordilleran ice flowed into the heads of Methow tributaries and overflowed from Skagit tributaries to greatly augment Chelan trough's glacier. Joined Okanogan and Methow ice flowed down Columbia valley and up lower Chelan trough. This tongue met the icesheet tongue flowing southeast down Chelan valley. Successively lower ice-marginal channels and kame terraces show that the icesheet withered away largely by downwasting. Immense late Wisconsin floods from glacial Lake Missoula occasionally swept the Chelan-Vantage reach of Columbia valley by different routes. The earliest debacles, nearly 19,000 cal yr BP (by radiocarbon methods), raged 335 m deep down the Columbia and built high Pangborn bar at Wenatchee. As Cordilleran ice blocked the northwest of Columbia valley, several giant floods descended Moses Coulee and backflooded up the Columbia. As advancing ice then blocked Moses Coulee, Grand Coulee to Quincy basin became the westmost floodway. From Quincy basin many Missoula floods backflowed 50 km upvalley past Wenatchee 18,000 to 15,500 years ago. Receding ice dammed glacial Lake Columbia centuries more--till it burst about 15,000 years ago. After Glacier Peak ashfall about 13,600 years ago, smaller great flood(s) swept down the Columbia from glacial Lake Kootenay in British Columbia. A cache of huge fluted Clovis points had been laid atop Pangborn bar (East Wenatchee) after the Glacier Peak ashfall. Clovis people came two and a half millennia after the last

  12. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    Science.gov (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  13. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years

    Science.gov (United States)

    Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke; Korhonen, Johanna; Yasuyuki Aono,

    2016-01-01

    Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality.

  14. Measurement of sea ice thickness using electromagnetic sounding; Denji tansaho wo mochiita kaihyoatsu no keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Kawauchi, K; Suzuki, I; Goto, N [Muroran Institute of Technology, Hokkaido (Japan); Hoshiyama, K

    1997-10-22

    Thickness of sea ice is measured by an electromagnetic method making use of the peculiarities of sea ice. Sea ice floats on the seawater (saline water), and the result is two horizontal layers greatly different from each other in conductivity, with seawater being highly conductive and ice being non-conductive. A study is conducted on Lake Kumatori, a saline lake in Abashiri City, in which effort a board of naturally frozen sea ice and a board of sea ice allowed to form on the sea surface at a spot from which ice has been removed are examined. A portable electromagnetic probe EM38 of GEONICS Company is employed to perform measurement in a horizontal dipole mode. To determine the relationship between the obtained conductivity measurements and sea ice thickness, holes are bored in the sea ice boards for the measurement of their thickness for the formulation of an experimental regression equation. Measurements along the traverse line 1 and traverse line 3 are converted into sea ice thickness by use of the experimental regression equation, and the result is that ice thickness is the greatest near the quay growing thinner away from the shore. The study shows that sea ice thickness may be measured accurately by electromagnetic probing. 3 refs., 10 figs.

  15. Geothermal Heat Flux Underneath Ice Sheets Estimated From Magnetic Satellite Data

    DEFF Research Database (Denmark)

    Fox Maule, Cathrine; Purucker, M.E.; Olsen, Nils

    The geothermal heat flux is an important factor in the dynamics of ice sheets, and it is one of the important parameters in the thermal budgets of subglacial lakes. We have used satellite magnetic data to estimate the geothermal heat flux underneath the ice sheets in Antarctica and Greenland...

  16. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    Science.gov (United States)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    Thermokarst lake depth is controlled by the amount of excess ice in near-surface permafrost, with lake depths of about 1 - 3 m in areas of epigenetic permafrost and over 10 m in areas of syngenetic permafrost. An important exception to these general patterns is found on the inner Arctic Coastal Plain (ACP) of northern Alaska, where deep lakes occur in Pleistocene-aged, ground-ice poor sandy terrain. These lakes cover 20% of the currently inactive sand sheet and dune deposit (referred to as the Pleistocene Sand Sea) that comprises approximately 7000 km2 of the ACP. Surrounded by high and eroding bluffs, sand sea lakes lie in natural depressions and are characterized by wide, shallow littoral shelves and central troughs that are typically oriented NNW to SSE and can reach depths greater than 20 m. Despite their unique form and extensive coverage, these lakes have received little prior study and a literature gap remains regarding regional water storage. This research classifies sand sea lakes, estimates individual lake volume, and provides a first quantification of water storage in a region of the lake-dominated ACP. We measured bathymetric profiles in 19 sand sea lakes using a sonar recorder to capture various lake depth gradients. Bathymetric surveys collected by oil industry consultants, lake monitoring programs, and habitat studies serve as additional datasets. These field measured lake depth data points were used to classify Color Infrared Photography, WorldView-2 satellite imagery, and Landsat-OLI satellite imagery to develop a spectral depth-classification algorithm and facilitate the interpolation of the bathymetry for study lakes in the inner ACP. Finally, we integrate the remotely sensed bathymetry and imagery-derived lake surface area to estimate individual and regional-scale lake volume. In addition to the natural function of these lakes in water storage, energy balance, and habitat provision, the need for winter water supply to build ice roads for oil

  17. Holocene fluctuations of Quelccaya Ice Cap, Peru based on lacustrine and surficial geologic archives

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.

    2013-12-01

    Peru's Quelccaya Ice Cap (QIC; 13.9°S, 70.8°W, ~5200-5670 m asl) is an important site for understanding tropical paleoclimate, mainly because of annually layered ice cores that provide an ~1800 year long record of tropical paleoclimatic conditions (e.g., Thompson et al., 2013). Here, we present a detailed record of QIC fluctuations using surficial deposits and lake sediments that extend back to late glacial time. We compare the late Holocene records of QIC 10Be-dated moraines and ice core data with lake sediments from a nearby glacially fed lake to establish the framework we use to interpret a Holocene long sediment record from a glacially fed lake. We also examine sediments from a nearby non-glacial lake to constrain non-glacial clastic input. We collected two ~5 m-long sediment cores, one from Laguna Challpacocha, which is currently fed by QIC meltwater, and one from the Laguna Yanacocha, which has not received QIC meltwater since ~12.3 ka. Changes in magnetic susceptibility, loss on ignition, bulk density and X-ray fluorescence chemistry combined with 14C and 210Pb chronologies provide information about sediment transported to the lakes. Retreat from the late Holocene extent defined by the 10Be-dated moraine record (~0.52 ka) is contemporaneous with a sharp transition from organic to clastic sedimentation in the Challpacocha core at ~ 0.52 ka. This implies that glacially-sourced clastic sedimentation, as tracked by loss on ignition, Ti counts and bulk density, increased during ice cap recession. Based on these same proxy data, we suggest the following Holocene history of QIC: QIC receded from the Challpacocha basin by ~10.6 ka. Increased clastic sedimentation at 8.2 - 4.1, 3.6 - 2.7 ka and from 0.55 ka - present are interpreted as times of ice cap recession. The increased clastic sedimentation at ~8.2 - 4.1 ka is consistent with surficial deposits near the present-day ice margin that indicate that at ~7.0 - 4.6 ka QIC was smaller than at present (Buffen et al

  18. Subglacial hydrology of the lake district ice lobe during the Younger Dryas (ca. 12 500 - 11 600 years ago) in the Kylaeniemi area, SE Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lunkka, J. P.; Moisio, K.; Vainio, A. [Univ. of Oulu (Finland)

    2013-07-15

    It is essential to gain knowledge on the subglacial hydrological conditions at the glacier bed / bedrock interface when assessing how bedrock fracture zones affect subglacial melt water flow and in which subglacial zones pressurized and oxygen-rich melt water penetrates into the bedrock fracture systems. In the warm-based glacier zones, a part of subglacial melt water will penetrate deep into the fracture systems although the major part of melt water is drained to and beyond the ice margin via subglacial tunnel networks especially in the areas where ice is flowing on the crystalline bedrock. During the last deglaciation phase of the former Scandinavian Ice Sheet, glaciofluvial accumulations were deposited and these sediment accumulations are highly important when picturing the subglacial hydrology of different ice streams during deglaciation in the crystalline bedrock area. The aim of the present work was to map the bedrock fracture zones in the Kylaeniemi area and to shed light on the subglacial hydrology of the Scandinavian Ice Sheet's Lake District Ice Stream that occupied the Kylaeniemi area during the Younger Dryas between ca. 12 500 - 11 600 years ago. The special emphasis within this general aim was to study the relationship between bedrock fracture zones and the routes of subglacial drainage paths. The methods used to map and study bedrock fracture zones and subglacial drainage paths included remotes sensing methods, field observations, ground penetrating radar (GPR) investigations and GIS-based reconstructions. Conventional geological field methods aided by the GPR-method were also used to map bedrock exposures and their structures and to define the type of glaciofluvial sediments and glaciofluvial landform associations. Two main fracture zone sets occur in the study area. The most prominent bedrock fracture zone set trends NW-SE while the other, less prominent fracture zone set is aligned in NE-SW direction. The majority of the minor joint sets in

  19. Subglacial hydrology of the lake district ice lobe during the Younger Dryas (ca. 12 500 - 11 600 years ago) in the Kylaeniemi area, SE Finland

    International Nuclear Information System (INIS)

    Lunkka, J. P.; Moisio, K.; Vainio, A.

    2013-07-01

    It is essential to gain knowledge on the subglacial hydrological conditions at the glacier bed / bedrock interface when assessing how bedrock fracture zones affect subglacial melt water flow and in which subglacial zones pressurized and oxygen-rich melt water penetrates into the bedrock fracture systems. In the warm-based glacier zones, a part of subglacial melt water will penetrate deep into the fracture systems although the major part of melt water is drained to and beyond the ice margin via subglacial tunnel networks especially in the areas where ice is flowing on the crystalline bedrock. During the last deglaciation phase of the former Scandinavian Ice Sheet, glaciofluvial accumulations were deposited and these sediment accumulations are highly important when picturing the subglacial hydrology of different ice streams during deglaciation in the crystalline bedrock area. The aim of the present work was to map the bedrock fracture zones in the Kylaeniemi area and to shed light on the subglacial hydrology of the Scandinavian Ice Sheet's Lake District Ice Stream that occupied the Kylaeniemi area during the Younger Dryas between ca. 12 500 - 11 600 years ago. The special emphasis within this general aim was to study the relationship between bedrock fracture zones and the routes of subglacial drainage paths. The methods used to map and study bedrock fracture zones and subglacial drainage paths included remotes sensing methods, field observations, ground penetrating radar (GPR) investigations and GIS-based reconstructions. Conventional geological field methods aided by the GPR-method were also used to map bedrock exposures and their structures and to define the type of glaciofluvial sediments and glaciofluvial landform associations. Two main fracture zone sets occur in the study area. The most prominent bedrock fracture zone set trends NW-SE while the other, less prominent fracture zone set is aligned in NE-SW direction. The majority of the minor joint sets in

  20. The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska

    Science.gov (United States)

    Edwards, Mary E.; Grosse, Guido; Jones, Benjamin M.; McDowell, Patricia F.

    2016-01-01

    Thermokarst processes characterize a variety of ice-rich permafrost terrains and often lead to lake formation. The long-term evolution of thermokarst landscapes and the stability and longevity of lakes depend upon climate, vegetation and ground conditions, including the volume of excess ground ice and its distribution. The current lake status of thermokarst-lake landscapes and their future trajectories under climate warming are better understood in the light of their long-term development. We studied the lake-rich southern marginal upland of the Yukon Flats (northern interior Alaska) using dated lake-sediment cores, observations of river-cut exposures, and remotely-sensed data. The region features thick (up to 40 m) Quaternary deposits (mainly loess) that contain massive ground ice. Two of three studied lakes formed ~ 11,000–12,000 cal yr BP through inferred thermokarst processes, and fire may have played a role in initiating thermokarst development. From ~ 9000 cal yr BP, all lakes exhibited steady sedimentation, and pollen stratigraphies are consistent with regional patterns. The current lake expansion rates are low (0 to drainage, nor of multiple lake generations within a basin. However, LiDAR images reveal linear “corrugations” (> 5 m amplitude), deep thermo-erosional gullies, and features resembling lake drainage channels, suggesting that highly dynamic surface processes have previously shaped the landscape. Evidently, widespread early Holocene permafrost degradation and thermokarst lake initiation were followed by lake longevity and landscape stabilization, the latter possibly related to establishment of dense forest cover. Partial or complete drainage of three lakes in 2013 reveals that there is some contemporary landscape dynamism. Holocene landscape evolution in the study area differs from that described from other thermokarst-affected regions; regional responses to future environmental change may be equally individualistic.

  1. Implications of climate change for water resources in the Great Lakes basin

    International Nuclear Information System (INIS)

    Clamen, M.

    1990-01-01

    Several authors have suggested the following impacts of global warming for the Great Lakes region. The average annual warming is predicted by one model to be ca 4.5 degree C, slightly more in winter and slightly less in summer. Annual precipitation is projected to increase by ca 8% for points in the central and western basin, but to decrease by 3-6% for the eastern basin. Basin snowpack could be reduced by up to 100% and the snow season shortened by 2-4 weeks, resulting in a reduction of more than 50% in available soil moisture. Buoyancy-driven turnovers of the water column on four of the six lakes may not occur at all. Presently the phenomena occurs twice per year on all the lakes. Ice formation would be greatly reduced. Maximum ice cover may decline from 72-0% for Lake Superior, 38-0% for Lake Michigan, 65-0% for Lake Huron, 90-50% for Lake Erie and 33-0% for Lake Ontario. Net basin supplies would be reduced probably in the range 15-25% below the current mean value. Possible responses include integrated studies and research, better and continually updated information, assessment of public policies in the U.S. and Canada, enhanced private planning efforts, and increased global cooperation

  2. Bioaccumulation of stentorin, the probable causative agent for discolored (“purple”) eggs and ovaries in blue catfish (Ictalurus furcatus) from Eufaula Lake, Oklahoma, USA

    Science.gov (United States)

    Gale, Robert W.; Papoulias, Diana M.; Schmitt, Christopher J.

    2015-01-01

    Observations of reddish to “purple” discolored eggs in the ovaries of adult female blue catfish (Ictalurus furcatus) from the northern arm of Eufaula Lake, a eutrophic multiuse impoundment in east-central Oklahoma, were first reported in 2006. Blue catfish eggs are normally cream to light yellow. Reports peaked in 2007–2008 and declined through 2009–2010; purple eggs have not been reported between 2010 and 2014. In the laboratory, all tissues and fluids of affected fish were strongly orange-red fluorescent under UV illumination, with the fluorescence most apparent in the lipid-rich ovaries and eggs. The causative agent was isolated chromatographically and confirmed by mass spectrometry as stentorin (1,3,4,6,8,10,11,13-octahydroxy-2,5-diisopropyl-phenanthro[1,10,9,8,o,p,q,r,a]perylene-7,14-dione), the fluorescent, lipophilic pigment associated with the photoreceptor protein of the ciliated protozoan Stentor coeruleus (Heterotrichea; Stentoridae). Larval medaka (Orizias latipes) readily consumed S. coeruleus in the laboratory and were observed to fluoresce in the same manner as the affected blue catfish. Potential deleterious effects of stentorin bioaccumulation remain to be determined, as do the geographic extent and the identities of other fluorescent compounds isolated from catfish eggs and ovaries.

  3. Effects of acidity on primary productivity in lakes: phytoplankton. [Lakes Panther, Sagamore, and Woods

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G R

    1979-01-01

    Relationships between phytoplankton communities and lake acidity are being studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Numbers of phytoplankton species observed as of July 31, 1979 are Woods 27, Sagamore 38, and Panther 64, conforming to other observations that species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity found in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly instead of occuring very close to ice-out. Contributions of netplankton (net > 48 ..mu..m), nannoplankton (48 > nanno > 20 ..mu..m) and ultraplankton (20 > ultra >0.45 ..mu..m) to productivity per m/sup -2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification leading to decreased availability of phosphorus). The amount of /sup 14/C-labelled dissolved photosynthate (/sup 14/C-DOM), as a percent of total productivity, is ordered Woods > Sagamore > Panther. This is consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. (ERB)

  4. Protecting the endangered lake salmon

    International Nuclear Information System (INIS)

    Soimakallio, H.; Oesch, P.

    1997-01-01

    In addition to the Ringed Seal, the labyrinthine Saimaa lake system created after the Ice Age also trapped a species of salmon, whose entire life cycle became adapted to fresh water. In order to improve the living conditions of this lake salmon which - like the ringed seal - is today classified as an endangered species, an intensive research programme has been launched. The partners include the Finnish Game and Fisheries Research Institute, fishing and environmental authorities and - in collaboration with UPM-Kymmene Oy and Kuurnan Voima Oy - the IVO subsidiary Pamilo Oy

  5. Protecting the endangered lake salmon

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, H.; Oesch, P. [ed.

    1997-11-01

    In addition to the Ringed Seal, the labyrinthine Saimaa lake system created after the Ice Age also trapped a species of salmon, whose entire life cycle became adapted to fresh water. In order to improve the living conditions of this lake salmon which - like the ringed seal - is today classified as an endangered species, an intensive research programme has been launched. The partners include the Finnish Game and Fisheries Research Institute, fishing and environmental authorities and - in collaboration with UPM-Kymmene Oy and Kuurnan Voima Oy - the IVO subsidiary Pamilo Oy

  6. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    Science.gov (United States)

    Xiao, K.; Griffis, T. J.; Baker, J. M.; Bolstad, P. V.; Erickson, M. D.; Lee, X.; Wood, J. D.; Hu, C.

    2017-12-01

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. For example, the water level of White Bear Lake (WBL) declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The annual evaporation for years 2014 through 2016 were 559±22 mm, 779±81 mm, and 766±11 mm, respectively. The larger evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicated that WBL evaporation increased by about 3.8 mm yr-1. Mass balance analysis implied that the lake level declines at WBL during 1986-1990 and 2003-2012 were mainly caused by the coupled low precipitation and high evaporation. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm yr-1 over this century, which is largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan

  7. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    Science.gov (United States)

    Xiao, Ke; Griffis, Timothy J.; Baker, John M.; Bolstad, Paul V.; Erickson, Matt D.; Lee, Xuhui; Wood, Jeffrey D.; Hu, Cheng; Nieber, John L.

    2018-06-01

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. White Bear Lake (WBL) is a notable example. Its water level declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The estimated annual evaporation losses for years 2014 through 2016 were 559 ± 22 mm, 779 ± 81 mm, and 766 ± 11 mm, respectively. The higher evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicate that WBL evaporation increased during this time by about 3.8 mm year-1, which was driven by increased wind speed and lake-surface vapor pressure gradient. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm year-1 over this century, largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan lakes.

  8. Wave Attenuation and Gas Exchange Velocity in Marginal Sea Ice Zone

    Science.gov (United States)

    Bigdeli, A.; Hara, T.; Loose, B.; Nguyen, A. T.

    2018-03-01

    The gas transfer velocity in marginal sea ice zones exerts a strong control on the input of anthropogenic gases into the ocean interior. In this study, a sea state-dependent gas exchange parametric model is developed based on the turbulent kinetic energy dissipation rate. The model is tuned to match the conventional gas exchange parametrization in fetch-unlimited, fully developed seas. Next, fetch limitation is introduced in the model and results are compared to fetch limited experiments in lakes, showing that the model captures the effects of finite fetch on gas exchange with good fidelity. Having validated the results in fetch limited waters such as lakes, the model is next applied in sea ice zones using an empirical relation between the sea ice cover and the effective fetch, while accounting for the sea ice motion effect that is unique to sea ice zones. The model results compare favorably with the available field measurements. Applying this parametric model to a regional Arctic numerical model, it is shown that, under the present conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a conventional parameterization is used.

  9. 20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.

    Science.gov (United States)

    Molnia, B.F.; Post, A.; Carlson, P.R.

    1996-01-01

    Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations

  10. Ecology and potential for fishery of the small barbs (Cyprinidae, Teleostei) of Lake Tana, Ethiopia

    NARCIS (Netherlands)

    Dejen, E.

    2003-01-01

    Lake Tana is by far the largest lake of Ethiopia and source of the Blue Nile. By feeding on zooplankton, small barbs (< 10 cm) occupy a central position in Lake Tana's ecosystem. Catching them could release pressure on the overexploited, unique species flock of large barbs (up to 100 cm).

  11. Localized Glacier Deformation Associated with Filling and Draining of a Glacier-Dammed Lake and Implications for Outburst Flood Hydraulics

    Science.gov (United States)

    Cunico, M. L.; Walder, J. S.; Fountain, A. G.; Trabant, D. C.

    2001-12-01

    During the summer of 2000, we measured displacements of 22 survey targets on the surface of Kennicott Glacier, Alaska, in the vicinity of Hidden Creek Lake, an ice-dammed lake in a tributary valley that fills and drains annually. Targets were distributed over a domain about equal in width to the lake, from near the glacier/lake margin to a distance of about 1 km from the margin. Targets were surveyed over a 24-day period as the lake filled and then drained. Lake stage was independently monitored. Vertical movement of targets generally fell off with distance d from the lake. As the lake filled, targets with d typically about 0.5 m/d--with a few targets rising slightly faster than the lake. The rate of vertical movement fell off rapidly with distance from the lake: for d = ca. 600 m--roughly twice the local ice thickness--targets moved upward only about 10% as fast as lake stage. Vertical movement of targets with d > ca. 1 km seemed to be uncorrelated with lake stage. The general pattern is consistent with the idea that a wedge of water extended beneath the glacier to a distance of perhaps 300 to 400 m from the visible margin of the lake and exerts buoyant stresses on the ice that were transmitted into the main body of the glacier and caused flexure. This scenario bears some resemblance to tidal deflections of ice shelves or tidewater glaciers. For a given value of lake stage, target elevations were invariably higher as the lake drained than as the lake filled. Moreover, survey targets at a distance of about 400 m or more from the lake continued to rise for some time even after the lake began to drain. The lag time between the beginning of lake drainage and the beginning of target downdrop increased with distance from the lake, with the lag being about 14 hours at a distance of 400 m from the lake. (The lake drained completely in approximately 75 hours.) The likeliest explanations for the departure from reversibility and the existence of the time lag are either (i) a

  12. Year-Round Carbon Fluxes in a Subarctic Landscape Show the Importance of Lake Emissions According to Season

    Science.gov (United States)

    Jammet, M.; Crill, P. M.; Friborg, T.

    2014-12-01

    Lakes are increasingly recognized as important components of the global terrestrial carbon budget. Northern lakes are especially of interest due to a high density of open-water ecosystems in Northern latitudes and a potential increase in lake areal extent where permafrost is thawing. A better understanding of lake-atmosphere interactions requires long-term and direct measurement of surface fluxes. This is rarely achieved in Northern landscapes where seasonally ice-covered lakes are mostly studied during the open water season, and measurement methods do not always allow an integration of all gas transport pathways to the atmosphere. We present here ecosystem-scale data from Stordalen (68°20'N, 19°03'E), a thawing permafrost peatland in subarctic Sweden, where an eddy covariance system is used in an innovative way to quantify the importance of methane (CH4) emissions from a shallow lake. After more than a year of surface flux monitoring, it is found that spring is a crucial season for lake-atmosphere CH4 exchange. Despite its shallow depth, more than half of annual CH4 emissions from the lake were recorded at ice-out, suggesting significant winter CH4 production in lake sediments. Lake water dynamics seemed to drive the observed spring release rates. In contrast, summer methane emissions in Stordalen were dominated by the minerotrophic fens. This underlines the importance of considering the full annual budget when assessing the carbon source strength of seasonally ice-covered lakes. Carbon dioxide fluxes were also monitored and will be briefly discussed, as well as the significance of northern lakes spring burst for global atmospheric CH4 budget.

  13. Aerosol Emissions from Great Lakes Harmful Algal Blooms

    Energy Technology Data Exchange (ETDEWEB)

    May, Nathaniel W. [Department; Olson, Nicole E. [Department; Panas, Mark [Department; Axson, Jessica L. [Department; Tirella, Peter S. [Department; Kirpes, Rachel M. [Department; Craig, Rebecca L. [Department; Gunsch, Matthew J. [Department; China, Swarup [William; Laskin, Alexander [William; Ault, Andrew P. [Department; Department; Pratt, Kerri A. [Department; Department

    2017-12-20

    In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the chemical species present in lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, a laboratory LSA generator produced aerosols from freshwater samples collected from Lake Michigan and Lake Erie during HAB and non-bloom conditions. Particles were analyzed for size and chemical composition by single particle mass spectrometry, electron microscopy, and fluorescence microscopy, with three distinct types of LSA identified with varying levels of organic carbon and biological material associated with calcium salts. LSA autofluorescence increases with blue-green algae concentration, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of LSA with biological mass spectral markers also increases with particle diameter (greater than 0.5 μm), showing that HABs have size-dependent impacts on aerosol composition. The highest number fraction of LSA enriched in organic carbon were observed in particles less than 0.5 μm in diameter. Understanding the transfer of organic and biogenic material from freshwater to the atmosphere via LSA particles is crucial for determining health and climate effects due to HABs.

  14. 76 FR 35909 - Temporary Concession Contract for Blue Ridge Parkway

    Science.gov (United States)

    2011-06-20

    ... accommodations, food and beverage, retail sales, boat rentals, and other services at Crabtree Falls, Price Lake... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-CONC-0511-7182; 2410-OYC] Temporary Concession Contract for Blue Ridge Parkway AGENCY: National Park Service, Interior. ACTION: Notice of...

  15. Deglaciation of the Eurasian ice sheet complex

    Science.gov (United States)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Auriac, Amandine; Whitehouse, Pippa L.; Stroeven, Arjen P.; Shackleton, Calvin; Winsborrow, Monica; Heyman, Jakob; Hall, Adrian M.

    2017-08-01

    The Eurasian ice sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum with a span of over 4500 km and responsible for around 20 m of eustatic sea-level lowering. Whilst recent terrestrial and marine empirical insights have improved understanding of the chronology, pattern and rates of retreat of this vast ice sheet, a concerted attempt to model the deglaciation of the EISC honouring these new constraints is conspicuously lacking. Here, we apply a first-order, thermomechanical ice sheet model, validated against a diverse suite of empirical data, to investigate the retreat of the EISC after 23 ka BP, directly extending the work of Patton et al. (2016) who modelled the build-up to its maximum extent. Retreat of the ice sheet complex was highly asynchronous, reflecting contrasting regional sensitivities to climate forcing, oceanic influence, and internal dynamics. Most rapid retreat was experienced across the Barents Sea sector after 17.8 ka BP when this marine-based ice sheet disintegrated at a rate of ∼670 gigatonnes per year (Gt a-1) through enhanced calving and interior dynamic thinning, driven by oceanic/atmospheric warming and exacerbated by eustatic sea-level rise. From 14.9 to 12.9 ka BP the EISC lost on average 750 Gt a-1, peaking at rates >3000 Gt a-1, roughly equally partitioned between surface melt and dynamic losses, and potentially contributing up to 2.5 m to global sea-level rise during Meltwater Pulse 1A. Independent glacio-isostatic modelling constrained by an extensive inventory of relative sea-level change corroborates our ice sheet loading history of the Barents Sea sector. Subglacial conditions were predominately temperate during deglaciation, with over 6000 subglacial lakes predicted along with an extensive subglacial drainage network. Moreover, the maximum EISC and its isostatic footprint had a profound impact on the proglacial hydrological network, forming the Fleuve Manche mega-catchment which had an area of

  16. Dynamics of glacial lakes in Malaya Almatinka River basin according to the ground-based monitoring data

    Directory of Open Access Journals (Sweden)

    N. N. Kasatkin

    2014-01-01

    Full Text Available Monitoring of three moraine lakes (two of which are located on frontal moraines, and one is lateral lasted some years. It was defined that each lake has individual temperature mode which depends partly by air temperature and much more by incoming melted waters, volumeof their accumulation and typeof underlying rocks. Type of underlying rock in which the lake kettleis formed has decisive importance. Direct contact of lake water with glacierice gives its temperature during ablation period of 2.54 °С or in 3.1 times lower, than in frontal lakes. That’s why the dam quicklycollapses and the lake volume increases. Dams of the lakeslocated on frontal moraines are subject of destructionmuch less. Dynamics of these lakes is caused by retreat of glaciers, and the maximum depths are fixed in the central part of a lake. Water temperatureduring the cold period remainshere steadily positive and promotesformation of filtration channels in the layer with moraine sediments which almost without ice. The increasing of lakes occurs due to ice ablation from the nearest glacier. Precipitations, if they influence to the change of water level in lakes, are not essential.

  17. Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data

    Science.gov (United States)

    Jones, Benjamin M.; Gusmeroli, Alessio; Arp, Christopher D.; Strozzi, Tazio; Grosse, Guido; Gaglioti, Benjamin V.; Whitman, Matthew S.

    2013-01-01

    Arctic freshwater ecosystems have responded rapidly to climatic changes over the last half century. Lakes and rivers are experiencing a thinning of the seasonal ice cover, which may increase potential over-wintering freshwater habitat, winter water supply for industrial withdrawal, and permafrost degradation. Here, we combined the use of ground penetrating radar (GPR) and high-resolution (HR) spotlight TerraSAR-X (TSX) satellite data (1.25 m resolution) to identify and characterize floating ice and grounded ice conditions in lakes, ponds, beaded stream pools, and an alluvial river channel. Classified ice conditions from the GPR and the TSX data showed excellent agreement: 90.6% for a predominantly floating ice lake, 99.7% for a grounded ice lake, 79.0% for a beaded stream course, and 92.1% for the alluvial river channel. A GIS-based analysis of 890 surface water features larger than 0.01 ha showed that 42% of the total surface water area potentially provided over-wintering habitat during the 2012/2013 winter. Lakes accounted for 89% of this area, whereas the alluvial river channel accounted for 10% and ponds and beaded stream pools each accounted for landscape features such as beaded stream pools may be important because of their distribution and role in connecting other water bodies on the landscape. These findings advance techniques for detecting and knowledge associated with potential winter habitat distribution for fish and invertebrates at the local scale in a region of the Arctic with increasing stressors related to climate and land use change.

  18. Assimilation of lake water surface temperature observations using an extended Kalman filter

    Directory of Open Access Journals (Sweden)

    Ekaterina Kourzeneva

    2014-10-01

    Full Text Available A new extended Kalman filter (EKF-based algorithm to assimilate lake water surface temperature (LWST observations into the lake model/parameterisation scheme Freshwater Lake (FLake has been developed. The data assimilation algorithm has been implemented into the stand-alone offline version of FLake. The mixed and non-mixed regimes in lakes are treated separately by the EKF algorithm. The timing of the ice period is indicated implicitly: no ice if water surface temperature is measured. Numerical experiments are performed using operational in-situ observations for 27 lakes and merged observations (in-situ plus satellite for 4 lakes in Finland. Experiments are analysed, potential problems are discussed, and the role of early spring observations is studied. In general, results of experiments are promising: (1 the impact of observations (calculated as the normalised reduction of the LWST root mean square error comparing to the free model run is more than 90% and (2 in cross-validation (when observations are partly assimilated, partly used for validation the normalised reduction of the LWST error standard deviation is more than 65%. The new data assimilation algorithm will allow prognostic variables in the lake parameterisation scheme to be initialised in operational numerical weather prediction models and the effects of model errors to be corrected by using LWST observations.

  19. The predominance of young carbon in Arctic whole-lake CH4 and CO2 emissions and implications for Boreal yedoma lakes.

    Science.gov (United States)

    Elder, C.; Xu, X.; Walker, J. C.; Walter Anthony, K. M.; Pohlman, J.; Arp, C. D.; Townsend-Small, A.; Hinkel, K. M.; Czimczik, C. I.

    2017-12-01

    Lakes in Arctic and Boreal regions are hotspots for atmospheric exchange of the greenhouse gases CO2 and CH4. Thermokarst lakes are a subset of these Northern lakes that may further accelerate climate warming by mobilizing ancient permafrost C (> 11,500 years old) that has been disconnected from the active C cycle for millennia. Northern lakes are thus potentially powerful agents of the permafrost C-climate feedback. While they are critical for projecting the magnitude and timing these feedbacks from the rapidly warming circumpolar region, we lack datasets capturing the diversity of northern lakes, especially regarding their CH4contributions to whole-lake C emissions and their ability to access and mobilize ancient C. We measured the radiocarbon (14C) ages of CH4 and CO2 emitted from 60 understudied lakes and ponds in Arctic and Boreal Alaska during winter and summer to estimate the ages of the C sources yielding these gases. Integrated mean ages for whole-lake emissions were inferred from the 14C-age of dissolved gases sampled beneath seasonal ice. Additionally, we measured concentrations and 14C values of gases emitted by ebullition and diffusion in summer to apportion C emission pathways. Using a multi-sourced mass balance approach, we found that whole-lake CH4 and CO2 emissions were predominantly sourced from relatively young C in most lakes. In Arctic lakes, CH4 originated from 850 14C-year old C on average, whereas dissolved CO2 was sourced from 400 14C-year old C, and represented 99% of total dissolved C flux. Although ancient C had a minimal influence (11% of total emissions), we discovered that lakes in finer-textured aeolian deposits (Yedoma) emitted twice as much ancient C as lakes in sandy regions. In Boreal, yedoma-type lakes, CH4 and CO2 were fueled by significantly older sources, and mass balance results estimated CH4-ebullition to comprise 50-60% of whole-lake CH4 emissions. The mean 14C-age of Boreal emissions was 6,000 14C-years for CH4-C, and 2

  20. Report on limnological, biological and ecological observations of lakes on the Soya Coast, East Antarctica

    Directory of Open Access Journals (Sweden)

    Sakae Kudoh

    2008-11-01

    Full Text Available Observations on the limnological properties, samplings of waters and bottom assemblages for biological and ecological studies, and some field experimental studies at several lakes in Soya Coast ice-free areas, were carried out during the austral summer season in the 49th Japanese Antarctic Research Expedition (JARE, 2007-2008. These studies were planned as one of the research projects named, "Studies on the changes of polar environments and ecosystems (P-3" and the monitoring studies named "Monitoring for ecosystems (M-4" during the 7th term of the Japanese Antarctic Research Expedition Plans. Field studies were done from 22 December 2007 to 13 February 2008, while our Ice Breaker Shirase stayed at/near off Syowa Station. To clarify the relationships among seasonal changes of environmental factors and biological responses, frequent field observations were performed at Naga Ike, one of the freshwater lakes in the Skarvsnes ice-free area. General limnological and biological samplings at the other lakes in the area (14 lakes near the Kizahasi Beach field base camp were also done during the term. Observations and samplings distant from the base camp, four lakes in eastern Skarvsnes, a lake in Skallen, and three lakes in Langhovde, were also done using a helicopter for transportation. From Namazu Ike (temporary name in eastern Skarvsnes, submersible video cameras were retrieved and so-called `algal crest', benthic moss-algal assemblages, were sampled by scuba diving. Benthic copepods were sampled quantitatively from Nurume Ike in Langhovde. From Hyoga Ike (temporary name, a snow-dammed glacial lake which lost its water by recent breakage (during the JARE-46 wintering period, thin bio-film samples were collected from the present lake shore formerly part of the lake bed.

  1. Balance of the West Antarctic Ice Sheet

    Science.gov (United States)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project

  2. A Citizen Science Program for Monitoring Lake Stages in Northern Wisconsin

    Science.gov (United States)

    Kretschmann, A.; Drum, A.; Rubsam, J.; Watras, C. J.; Cellar-Rossler, A.

    2011-12-01

    Historical data indicate that surface water levels in northern Wisconsin are fluctuating more now than they did in the recent past. In the northern highland lake district of Vilas County, Wisconsin, concern about record low lake levels in 2008 spurred local citizens and lake associations to form a lake level monitoring network comprising citizen scientists. The network is administered by the North Lakeland Discovery Center (NLDC, a local NGO) and is supported by a grant from the Citizen Science Monitoring Program of the Wisconsin Department of Natural Resources (WDNR). With technical guidance from limnologists at neighboring UW-Madison Trout Lake Research Station, citizen scientists have installed geographic benchmarks and staff gauges on 26 area lakes. The project engages citizen and student science participants including homeowners, non-profit organization member-participants, and local schools. Each spring, staff gauges are installed and referenced to fixed benchmarks after ice off by NLDC and dedicated volunteers. Volunteers read and record staff gauges on a weekly basis during the ice-free season; and maintain log books recording lake levels to the nearest 0.5 cm. At the end of the season, before ice on, gauges are removed and log books are collected by the NLDC coordinator. Data is compiled and submitted to a database management system, coordinated within the Wisconsin Surface Water Integrated Monitoring System (SWIMS), a statewide information system managed by the WDNR in Madison. Furthermore, NLDC is collaborating with the SWIMS database manager to develop data entry screens based on records collected by citizen scientists. This program is the first of its kind in Wisconsin to utilize citizen scientists to collect lake level data. The retention rate for volunteers has been 100% over the three years since inception, and the program has expanded from four lakes in 2008 to twenty-six lakes in 2011. NLDC stresses the importance of long-term monitoring and the

  3. Dynamic interactions between glacier and glacial lake in the Bhutan Himalaya

    Science.gov (United States)

    Tsutaki, S.; Fujita, K.; Yamaguchi, S.; Sakai, A.; Nuimura, T.; Komori, J.; Takenaka, S.; Tshering, P.

    2012-04-01

    A number of supraglacial lakes formed on the termini of debris-covered glaciers in the Bhutan Himalaya as a result of glacier retreat due to climate change. The terminal part of the lake-terminating glaciers flow faster than that of the land-terminating glaciers because the basal ice motion is enhanced by high subglacial water pressure generated by lake water. Increased ice flux caused by the accelerated glacier flow could be dissipated through the calving process which reduced the glacier thickness. It is important to understand the interaction between lake formation and glacier dynamics. Although glacier flow velocity has been measured by remote-sensing analysis in several regions of the Himalayas, glacier thinning rates have not been observed by neither in-situ nor remote-sensing approaches. The lack of field data raises limitation to interpretations for glacier dynamics. We investigate the influence of the presence/absence of glacial lakes on glacier dynamics and changes in surface elevation. We study two debris-covered glaciers in the Lunana region, the Bhutan Himalaya. Thorthormi Glacier is a land-terminating glacier with some supraglacial lakes while Lugge Glacier is a lake-terminating glaciers. We surveyed the surface elevation of debris-covered areas of the two glaciers in 2004 and 2011 by a differential GPS. Change in surface elevation of the lake-terminating Lugge Glacier (-5.4--2.4 m yr-1) was much more negative than that of the land-terminating Thorthormi Glacier (-3.3-0.6 m yr-1). Surface flow speed of the Thorthormi Glacier measured during 2002-2004 was faster in the upper reaches (~90 m yr-1) and reduced toward the downstream (40 m yr-1). In contrast, the surface flow speed at the Lugge Glacier measured in the same periods was 40-55 m yr-1 and the greatest at the lower most part. Observed spatial distribution of surface flow velocity at both glaciers were evaluated by a two-dimensional numerical flow model. Calculated emergence velocities are 1

  4. A computationally efficient depression-filling algorithm for digital elevation models, applied to proglacial lake drainage

    NARCIS (Netherlands)

    Berends, Constantijn J.; Van De Wal, Roderik S W

    2016-01-01

    Many processes govern the deglaciation of ice sheets. One of the processes that is usually ignored is the calving of ice in lakes that temporarily surround the ice sheet. In order to capture this process a "flood-fill algorithm" is needed. Here we present and evaluate several optimizations to a

  5. Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA

    Science.gov (United States)

    Smith, Larry N.; Sohbati, Reza; Buylaert, Jan-Pieter; Lian, Olav B.; Murray, Andrew; Jain, Mayank

    2018-03-01

    Glaciolacustrine sediments in the Clark Fork River valley at Garden Gulch, near Drummond, Montana, USA record highstand positions of the ice-dammed glacial Lake Missoula and repeated subaerial exposure. During these highstands the lake was at greater than 65% of its recognized maximum capacity. The initial lake transgression deposited a basal sand unit. Subsequent cycles of lake-level fluctuations are recorded by sequences of laminated and cross laminated silt, sand, and clay deformed by periglacial processes during intervening periods of lower lake levels. Optically stimulated luminescence (OSL) dating of quartz sand grains, using single-aliquot regenerative-dose procedures, was carried out on 17 samples. Comparison of infrared stimulated luminescence (IRSL) from K-rich feldspar to OSL from quartz for all the samples suggests that they were well bleached prior to deposition and burial. Ages for the basal sand and overlying glaciolacustrine exposure surfaces are indistinguishable within one standard deviation, and give a weighted mean age of 20.9 ± 1.3 ka (n = 11). Based on sedimentological and stratigraphic analysis we infer that the initial transgression, and at least six cycles of lake-level fluctuation, occurred over time scales of decades to ∼2 ka. Bioturbated sandy slopewash dated at 10.6 ± 0.9 ka and 11.9 ± 1.2 ka unconformably overlies the upper glaciolacustrine deposits. The uppermost sediments, above the glaciolacustrine section, are younger than the Glacier Peak tephra (13.7-13.4 cal ka B.P.), which was deposited across parts of the drained lake basin, but has not been found at Garden Gulch. Our study indicates that glacial Lake Missoula reached >65 percent of maximum capacity by about 20.9 ± 1.3 ka and either partially or completely drained twelve times from this position. Rapid lowering from the lake's highstand position due to ice-dam failure likely led to scour in the downstream portions of the glacial Lake Missoula basin and megafloods in the

  6. Recent glacier retreat and lake formation in the Querecocha watershed, Cordillera Blanca, Peru

    Science.gov (United States)

    López Moreno, J.; Valero-Garces, B.; Revuelto, J.; Azorín-Molina, C.; Bazo, J.; Cochachin, A.; Fontaneda, S.; Mark, B. G.

    2013-12-01

    In the Andes, and specifically in the Peruvian mountains a marked decrease of the glaciated area has occurred since the end of the Little Ice Age, and it has been accelerated since the last decades of the 20th century. As a result of the glacier retreat new pro-glaciar lakes are originated, and often the area and volume of existing ones increases. The study of these newly-formed lakes and their recent evolution may provide a better understanding of the hydrological and geomorphological evolution of deglaciated areas, and a better evaluation of the risk of glacial lakes outburst floods (GLOFS). In this work, we use 26 annual Landsat Thematic Mapper images from 1975 to 2010 to determine changes of the glaciated surface, snow line elevation and lakes formation in the headwaters of the Querecocha watershed in Cordillera Blanca (Perú). We also present the information derived from 10 short sediment cores (up to 50 cm long) retrieved along several transects in Yanamarey Lake. Both data sets inform of the sediment yield and lake development in recently deglaciated environments of the Andes. Results demonstrate that only one third of the surface covered by ice in 1975 remained in 2010. In this period, snowline has shifted up more than 100 meters in elevation in both, Yanamarey North and South areas respectively. At the same time, new lakes have been formed very quickly in these deglaciated areas. Preliminary 137Cs dating of Yanamarey sediment core indicates that at least the top 50 cm of the lake sequence deposited after 1960. This is coherent with the Landsat image of 1975 that showed the current surface of the lake still covered by ice. The high sediment rate (> 1 cm/yr) in the lake demonstrates the very high sediment yield in these geomorphically active settings. The sediment cores are composed of cm-thick sequences defined by grain-size (silt-clay) common in proglacial lakes reflecting the variability of hydrological response associated to the glacier retreat in the

  7. Human locomotion on ice: the evolution of ice-skating energetics through history.

    Science.gov (United States)

    Formenti, Federico; Minetti, Alberto E

    2007-05-01

    More than 3000 years ago, peoples living in the cold North European regions started developing tools such as ice skates that allowed them to travel on frozen lakes. We show here which technical and technological changes determined the main steps in the evolution of ice-skating performance over its long history. An in-depth historical research helped identify the skates displaying significantly different features from previous models and that could consequently determine a better performance in terms of speed and energy demand. Five pairs of ice skates were tested, from the bone-skates, dated about 1800 BC, to modern ones. This paper provides evidence for the fact that the metabolic cost of locomotion on ice decreased dramatically through history, the metabolic cost of modern ice-skating being only 25% of that associated with the use of bone-skates. Moreover, for the same metabolic power, nowadays skaters can achieve speeds four times higher than their ancestors could. In the range of speeds considered, the cost of travelling on ice was speed independent for each skate model, as for running. This latter finding, combined with the accepted relationship between time of exhaustion and the sustainable fraction of metabolic power, gives the opportunity to estimate the maximum skating speed according to the distance travelled. Ice skates were probably the first human powered locomotion tools to take the maximum advantage from the biomechanical properties of the muscular system: even when travelling at relatively high speeds, the skating movement pattern required muscles to shorten slowly so that they could also develop a considerable amount of force.

  8. Geology and environments of subglacial Lake Vostok.

    Science.gov (United States)

    Leitchenkov, German L; Antonov, Anton V; Luneov, Pavel I; Lipenkov, Vladimir Ya

    2016-01-28

    The reconstruction of the geological (tectonic) structure and environments of subglacial Lake Vostok is based on geophysical surveys and the study of mineral particles found in cores of accreted ice and frozen lake water (sampled after the lake was unsealed). Seismic reflection and refraction investigations conducted in the southern part of Lake Vostok show very thin (200-300 m) sedimentary cover overlying a crystalline basement. Most of this thin veneer is thought to have been deposited during temperate-glacial conditions in Oligocene to Middle Miocene time (ca 34-14 Ma). The composition of the lake-bottom sediments can be deduced from mineral inclusions found in cores of accreted ice. Inclusions are represented by soft aggregates consisting mainly of clay-mica minerals and micrometre-sized quartz grains. Some of these inclusions contain subangular to semi-rounded rock clasts (siltstones and sandstones) ranging from 0.3 to 8 mm in size. In total, 31 zircon grains have been identified in two rock clasts and dated using SHRIMP-II. The ages of the studied zircons range from 0.6 to 2.0 Ga with two distinct clusters between 0.8 and 1.15 Ga and between 1.6 and 1.8 Ga. Rock clasts obviously came from the western lake shore, which is thus composed of terrigenous strata with an age of not older than 600 Ma. The sedimentary nature of the western lake shore is also confirmed by seismic refraction data showing seismic velocities there of 5.4-5.5 km s(-1) at the bedrock surface. After Lake Vostok was unsealed, its water (frozen and sampled next season) was also studied with scanning electron microscopy and X-ray microprobe analysis. This study showed the existence of calcium carbonate and silica microparticles (10-20 μm across) in frozen water. © 2015 The Author(s).

  9. Freshwater ice as habitat: partitioning of phytoplankton and bacteria between ice and water in central European reservoirs

    Czech Academy of Sciences Publication Activity Database

    McKay, R.M.L.; Prášil, Ondřej; Pechar, L.; Lawrenz, Evelyn; Rozmarynowycz, M.; Bullerjahn, G. S.

    2015-01-01

    Roč. 7, č. 6 (2015), s. 887-898 ISSN 1758-2229 R&D Projects: GA MŠk LO1416; GA MŠk EE2.3.30.0059 Institutional support: RVO:61388971 Keywords : COVERED LAKE-ERIE * ANTARCTIC SEA-ICE * LONG-TERM CHANGES Subject RIV: EE - Microbiology, Virology Impact factor: 3.500, year: 2015

  10. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    changes in ELA where you can track an “on-off” type of mass balance switch. To place these ELA changes into temporal context, we propose to investigate proglacial lake environments below the various catchments. We intend to take rock flour as an indicator that the individual catchment is above the ELA. By contrasting the chronology from different catchments we can assemble minor ELA changes. Such an approach could be applied for other ice caps in Greenland and other areas, such as the Quelccaya Ice Cap, Peru.

  11. Quick Release of Internal Water Storage in a Glacier Leads to Underestimation of the Hazard Potential of Glacial Lake Outburst Floods From Lake Merzbacher in Central Tian Shan Mountains

    Science.gov (United States)

    Shangguan, Donghui; Ding, Yongjian; Liu, Shiyin; Xie, Zunyi; Pieczonka, Tino; Xu, Junli; Moldobekov, Bolot

    2017-10-01

    Glacial meltwater and ice calving contribute to the flood volume of glacial lakes such as Lake Merzbacher in the Tian Shan Mountains of central Asia. In this study, we simulated the lake's volume by constructing an empirical relationship between the area of Lake Merzbacher, determined from satellite images, and the lake's water storage, derived from digital elevation models. Results showed that the lake water supply rate before Glacial Lake Outburst Floods (GLOFs) generally agreed well with those during the GLOFs from 2009 to 2012 but not in 2008 and 2015. Furthermore, we found that the combination of glacial meltwater and ice calving is not enough to fully explain the supply rate during GLOFs in 1996 and 1999, suggesting other factors affect the supply rate during GLOFs as well. To examine this further, we compared the water supply rate before and during GLOF events in 1999 and 2008. We inferred that quickly released short-term and intermediate-term water storage by glaciers have likely contributed to both flood events in those years. This study highlights the need to improve our understanding of the supply component of outburst floods, such as irregularly released stored water may lead to GLOF events with generally three different types: case I (singular event-triggered englacial water release), case II (glacier melt due to temperature changes), and case III (englacial water release mixed with glacier melt).

  12. Searching for traces of life in subglacial Lake Vostok (Antarctica) in terms of forward contamination: the lessons for exploration of icy environments on Mars

    Science.gov (United States)

    Bulat, S. A.; Alekhina, I. A.; Lipenkov, V. Ya.; Petit, J.-R.

    Bacterial 16S ribosomal gene analysis guarded by criteria for trace DNA analysis and Ancient DNA research clearly testifies for the very low biomass in accretion ice from giant subglacial Lake Vostok buried beneath 4-km thick East Antarctic ice sheet. It seems that the accretion ice is essentially germ-free indicating that the water body should also be hosting a highly sparse life, if any, unless the lake water lost its biological contents during accretion process. Due to this the search for life in Lake Vostok is constrained by a high chance of contamination similar to forward-contamination upon searching for life on Mars and other icy planets. Of 16 bacterial phylotypes initially recovered from the accretion ice the only one was kept with confident relevance to the lake environment while 15 others were presumed to be contaminants on the basis of indexing contaminant criteria developed for Lake Vostok and similar icy environments. The current way to avoid contamination appears to use stringent ice chemistry-based decontamination procedures and comprehensive biological controls including establishment of contemporary contaminant database as a prerequisite to identify and categorize sources of contaminants. More challenge would be to advance cleanliness and sterilization approaches and procedures in order to achieve and measure the level of cleanliness appropriate for tools exploring environments like Lake Vostok. As a guide for searching for life in (sub)glacial environments on Earth or Mars and Jovian's Europa our recommendations can be summarized as follows: (i) apply stringent ice decontamination procedures to meet chemistry and trace DNA analysis standards, (ii) document biological contents of various environments including humans in contact with ice samples (development of contaminant database), (iii) ensure in using relevant methods to cover both known and expected biodiversity and (iv) verify microbial findings through their possible metabolic profiles

  13. The First Results of Monitoring the Formation and Destruction of the Ice Cover in Winter 2014-2015 on Ilmen Lake according to the Measurements of Dual-Frequency Precipitation Radar

    Science.gov (United States)

    Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Andreeva, Z. V.

    2017-12-01

    The launch of the Dual-frequency Precipitation Radar (DPR) opens up new opportunities for studying and monitoring the land and inland waters. It is the first time radar with a swath (±65°) covering regions with cold climate where waters are covered with ice and land with snow for prolonged periods of time has been used. It is also the first time that the remote sensing is carried out at small incidence angles (less than 19°) at two frequencies (13.6 and 35.5 GHz). The high spatial resolution (4-5 km) significantly increases the number of objects that can be studied using the new radar. Ilmen Lake is chosen as the first test object for the development of complex programs for processing and analyzing data obtained by the DPR. The problem of diagnostics of ice-cover formation and destruction according to DPR data has been considered. It is shown that the dependence of the radar backscatter cross section on the incidence angle for autumn ice is different from that of spring ice, and can be used for classification. A comparison with scattering on the water surface has shown that, at incidence angles exceeding 10°, it is possible to discern all three types of reflecting surfaces: open water, autumn ice, and spring ice, under the condition of making repeated measurements to avoid possible ambiguity caused by wind.

  14. Rapid changes in the level of Kluane Lake in Yukon Territory over the last millennium

    Science.gov (United States)

    Clague, John J.; Luckman, Brian H.; Van Dorp, Richard D.; Gilbert, Robert; Froese, Duane; Jensen, Britta J. L.; Reyes, Alberto V.

    2006-09-01

    The level of Kluane Lake, the largest lake in Yukon Territory, was lower than at present during most of the Holocene. The lake rose rapidly in the late seventeenth century to a level 12 m above present, drowning forest and stranding driftwood on a conspicuous high-stand beach, remnants of which are preserved at the south end of the lake. Kluane Lake fell back to near its present level by the end of the eighteenth century and has fluctuated within a range of about 3 m over the last 50 yr. The primary control on historic fluctuations in lake level is the discharge of Slims River, the largest source of water to the lake. We use tree ring and radiocarbon ages, stratigraphy and sub-bottom acoustic data to evaluate two explanations for the dramatic changes in the level of Kluane Lake. Our data support the hypothesis of Hugh Bostock, who suggested in 1969 that the maximum Little Ice Age advance of Kaskawulsh Glacier deposited large amounts of sediment in the Slims River valley and established the present course of Slims River into Kluane Lake. Bostock argued that these events caused the lake to rise and eventually overflow to the north. The overflowing waters incised the Duke River fan at the north end of Kluane Lake and lowered the lake to its present level. This study highlights the potentially dramatic impacts of climate change on regional hydrology during the Little Ice Age in glacierised mountains.

  15. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    Science.gov (United States)

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional

  16. Ice thickness estimations based on multi-temporal glacier inventories - potential and challenges

    Science.gov (United States)

    Helfricht, Kay; Huss, Matthias; Otto, Jan-Christoph

    2016-04-01

    The ongoing glacier retreat exposes a large number of surface depressions in the former glacier bed that can be filled with water or act as sediment traps. This has already been observed at various sites in Austria and in other mountain areas worldwide. The formation of glacial lakes can constitute an important environmental and socio-economic impact on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. In general, information on ice thickness distribution is the basis for simulating future glacier change. We used the approach proposed by Huss and Farinotti (2012) to model the ice thickness distribution and potential locations of subglacial depressions. The study is part of the FUTURELAKE project that seeks to model the formation of new glacier lakes and their possible future evolution in the Austria Alps. The required data on glacier extent, surface elevation and slope were taken from the Austrian Glacier Inventories GI1 from 1969, GI2 from 1998 and GI3 from2006 (Fischer et al., 2015). The different glacier outlines and surface elevations from the inventories enable us to evaluate (i) the robustness of the modelled bedrock depressions with respect to different glacier settings, (ii) the power of the model to simulate recently formed glacial lakes, (iii) the similarities in calculated ice thickness distributions across the inventories and (iv) the feasibility of simulating observed changes in ice thickness and glacier volume. In general, the modelled localization of large potential depressions was relatively stable using the observed glacier settings. A number of examples show that recently formed glacial lakes could be detected by the model based on previous glacier extents. The locations of maximum ice depths within different elevation zones appeared to be sensitive to changes in glacier width. However, observed ice thickness changes and, thus, volume changes between the inventories could

  17. Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models

    Science.gov (United States)

    Flament, T.; Berthier, E.; Rémy, F.

    2014-04-01

    We describe a major subglacial lake drainage close to the ice divide in Wilkes Land, East Antarctica, and the subsequent cascading of water underneath the ice sheet toward the coast. To analyse the event, we combined altimetry data from several sources and subglacial topography. We estimated the total volume of water that drained from Lake CookE2 by differencing digital elevation models (DEM) derived from ASTER and SPOT5 stereo imagery acquired in January 2006 and February 2012. At 5.2 ± 1.5 km3, this is the largest single subglacial drainage event reported so far in Antarctica. Elevation differences between ICESat laser altimetry spanning 2003-2009 and the SPOT5 DEM indicate that the discharge started in November 2006 and lasted approximately 2 years. A 13 m uplift of the surface, corresponding to a refilling of about 0.6 ± 0.3 km3, was observed between the end of the discharge in October 2008 and February 2012. Using the 35-day temporal resolution of Envisat radar altimetry, we monitored the subsequent filling and drainage of connected subglacial lakes located downstream of CookE2. The total volume of water traveling within the theoretical 500-km-long flow paths computed with the BEDMAP2 data set is similar to the volume that drained from Lake CookE2, and our observations suggest that most of the water released from Lake CookE2 did not reach the coast but remained trapped underneath the ice sheet. Our study illustrates how combining multiple remote sensing techniques allows monitoring of the timing and magnitude of subglacial water flow beneath the East Antarctic ice sheet.

  18. Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion

    Science.gov (United States)

    Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.; Smith, Jacqueline A.; Abbott, Mark B.

    2008-08-01

    We developed records of clastic sediment flux to 13 alpine lakes in Peru, Ecuador, and Bolivia, and compared these with independently dated records of regional glaciation. Our objectives are to determine whether a strong relationship exists between the extent of ice cover in the region and the rate of clastic sediment delivery to alpine lakes, and thus whether clastic sediment records serve as reliable proxies for glaciation during the late Pleistocene. We isolated the clastic component in lake sediment cores by removing the majority of the biogenic and authigenic components from the bulk sediment record, and we dated cores by a combination of radiocarbon and tephrochronology. In order to partially account for intra-basin differences in sediment focusing, bedrock erosivity, and sediment availability, we normalized each record to the weighted mean value of clastic sediment flux for each respective core. This enabled the stacking of all 13 lake records to produce a composite record that is generally representative of the tropical Andes. There is a striking similarity between the composite record of clastic sediment flux and the distribution of ˜100 cosmogenic radionuclide (CRN) exposure ages for erratics on moraine crests in the central Peruvian and northern Bolivian Andes. The extent of ice cover thus appears to be the primary variable controlling the delivery of clastic sediment to alpine lakes in the region, which bolsters the increasing use of clastic sediment flux as a proxy for the extent of ice cover in the region. The CRN moraine record and the stacked lake core composite record together indicate that the expansion of ice cover and concomitant increase in clastic sediment flux began at least 40 ka, and the local last glacial maximum (LLGM) culminated between 30 and 20 ka. A decline in clastic sediment flux that began ˜20 ka appears to mark the onset of deglaciation from the LLGM, at least one millennium prior to significant warming in high latitude regions

  19. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    Directory of Open Access Journals (Sweden)

    Sophie eCharvet

    2012-12-01

    Full Text Available High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion overlying a saline, anoxic water column (monimolimnion. The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However the sequences of other taxa such as ciliates, chrysophytes, Cercozoa and Telonema varied with depth, between years and during the transition to ice-free conditions. These results imply that there are seasonally active taxa in the surface waters of the lake that are sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column.

  20. A linked lake system beneath Thwaites Glacier, West Antarctica reveals an efficient mechanism for subglacial water flow.

    Science.gov (United States)

    Smith, B. E.; Gourmelen, N.; Huth, A.; Joughin, I. R.

    2016-12-01

    In this presentation we show the results of a multi-sensor survey of a system of subglacial lakes beneath Thwaites Glacier, West Antarctica. This is the first substantial active (meaning draining or filling on annual time scales) lake system detected under the fast-flowing glaciers of the Amundsen Coast. Altimetry data show that over the 2013 calendar year, four subglacial lakes drained, essentially simultaneously, with the bulk of the drainage taking place over the course the first three months of the year. The largest of the lakes appears to have drained around 3.7 km3 of water, with the others each draining less than 1 km3. The high-resolution radar surveys conducted in this area by NASA's IceBridge program allow detailed analysis of the subglacial hydrologic potential, which shows that the potential map in this area is characterized by small closed basins that should not, under the common assumption that water flow is directed down the gradient of the hydropotential, allow long-range water transport. The lakes' discharge demonstrates that, at least in some cases, water can flow out of apparently closed hydropotential basins. Combining a basal-flow routing map with a map of basal melt production suggests that the largest drainage event could recur as often as every 22 years, provided that overflow or leakage of mapped hydropotential basins allows melt water transport to refill the lake. An analysis of ice-surface speed records both around the lakes and at the Thwaites grounding line shows small changes in ice speed, but none clearly associated with the drainage event, suggesting that, at least in this area where subglacial melt is abundant, the addition of further water to the subglacial hydrologic system need not have any significant effect on ice flow. It is likely that the main impact of the lake system on the glacier is that as an efficient mechanism to remove meltwater from the system, it drains water that would otherwise flow through less efficient

  1. Assessment of thermobaric state and change of the mass balance in the subgkacial Lake Vostok after drilling-in

    Directory of Open Access Journals (Sweden)

    A. N. Markov

    2014-01-01

    Full Text Available Estimation of temperature and pressure conditions in the subglacial reservoirs is one of the most important tasks of modern subglacial research, since it provides an adequate tool for predicting the process of their accessing. This paper presents the estimation of pressure in the subglacial reservoirs for different baric system statuses. Opening of isolated subglacial reservoirs is attended by disturbance of their thermobaric equilibrium, thus the conditions of phase transition are changed on the entire surface of the ice-water contact. At the same time reducing the pressure in the subglacial reservoirs leads to «lowering» of the phase transition of ice-water boundary and to the growth of additional layer of congelation ice on the entire bottom surface of the ice sheet contact with water. Realized accessing of Lake Vostok and technology re-entry involves water rise into the borehole from the lake as one of the steps to prevent pollution of relict water system. With the use of this technology the reliability of estimate the pressure in Lake Vostok is extremely important and, consequently, the value of the differential pressure when the borehole accesses with lake. The paper presents analysis of the possible consequences of incorrect estimation of the pressure in isolated water system of Lake Vostok, when the borehole accesses in conditions of incomplete compensation of subglacial water pressure by hydrostatic pressure of the drilling fluid column.

  2. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    DEFF Research Database (Denmark)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.

    2015-01-01

    Liquid water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground...... this zone to be a confined aquifer situated in sediments with a porosity of 23-42%. Discovery of this aquifer suggests that subsurface liquid water may be more pervasive in regions of continuous permafrost than previously thought and may represent an extensive habitat for microbial populations. Key Points...... Geophysical survey finds low resistivities beneath a lake in Antarctic Dry Valleys Liquid brine abundant beneath Antarctic lake Aquifer provides microbial refugium in cold desert environment...

  3. Methane bubbling from northern lakes: present and future contributions to the global methane budget.

    Science.gov (United States)

    Walter, Katey M; Smith, Laurence C; Chapin, F Stuart

    2007-07-15

    Large uncertainties in the budget of atmospheric methane (CH4) limit the accuracy of climate change projections. Here we describe and quantify an important source of CH4 -- point-source ebullition (bubbling) from northern lakes -- that has not been incorporated in previous regional or global methane budgets. Employing a method recently introduced to measure ebullition more accurately by taking into account its spatial patchiness in lakes, we estimate point-source ebullition for 16 lakes in Alaska and Siberia that represent several common northern lake types: glacial, alluvial floodplain, peatland and thermokarst (thaw) lakes. Extrapolation of measured fluxes from these 16 sites to all lakes north of 45 degrees N using circumpolar databases of lake and permafrost distributions suggests that northern lakes are a globally significant source of atmospheric CH4, emitting approximately 24.2+/-10.5Tg CH4yr(-1). Thermokarst lakes have particularly high emissions because they release CH4 produced from organic matter previously sequestered in permafrost. A carbon mass balance calculation of CH4 release from thermokarst lakes on the Siberian yedoma ice complex suggests that these lakes alone would emit as much as approximately 49000Tg CH4 if this ice complex was to thaw completely. Using a space-for-time substitution based on the current lake distributions in permafrost-dominated and permafrost-free terrains, we estimate that lake emissions would be reduced by approximately 12% in a more probable transitional permafrost scenario and by approximately 53% in a 'permafrost-free' Northern Hemisphere. Long-term decline in CH4 ebullition from lakes due to lake area loss and permafrost thaw would occur only after the large release of CH4 associated thermokarst lake development in the zone of continuous permafrost.

  4. Properties of the subglacial till inferred from supraglacial lake drainage

    Science.gov (United States)

    Neufeld, J. A.; Hewitt, D.

    2017-12-01

    The buildup and drainage of supraglacial lakes along the margins of the Greenland ice sheet has been previously observed using detailed GPS campaigns which show that rapid drainage events are often preceded by localised, transient uplift followed by rapid, and much broader scale, uplift and flexure associated with the main drainage event [1,2]. Previous models of these events have focused on fracturing during rapid lake drainage from an impermeable bedrock [3] or a thin subglacial film [4]. We present a new model of supraglacial drainage that couples the water flux from rapid lake drainage events to a simplified model of the pore-pressure in a porous, subglacial till along with a simplified model of the flexure of glacial ice. Using a hybrid mathematical model we explore the internal transitions between turbulent and laminar flow throughout the evolving subglacial cavity and porous till. The model predicts that an initially small water flux may locally increase pore-pressure in the till leading to uplift and a local divergence in the ice velocity that may ultimately be responsible for large hydro-fracturing and full-scale drainage events. Furthermore, we find that during rapid drainage while the presence of a porous, subglacial till is crucial for propagation, the manner of spreading is remarkably insensitive to the properties of the subglacial till. This is in stark contrast to the post-drainage relaxation of the pore pressure, and hence sliding velocity, which is highly sensitive to the permeability, compressibility and thickness of subglacial till. We use our model, and the inferred sensitivity to the properties of the subglacial till after the main drainage event, to infer the properties of the subglacial till. The results suggest that a detailed interpretation of supraglacial lake drainage may provide important insights into the hydrology of the subglacial till along the margins of the Greenland ice sheet, and the coupling of pore pressure in subglacial till

  5. Fluctuations of Lake Eyre, South Australia

    Science.gov (United States)

    2002-01-01

    Lake Eyre is a large salt lake situated between two deserts in one of Australia's driest regions. However, this low-lying lake attracts run-off from one of the largest inland drainage systems in the world. The drainage basin is very responsive to rainfall variations, and changes dramatically with Australia's inter-annual weather fluctuations. When Lake Eyre fills,as it did in 1989, it is temporarily Australia's largest lake, and becomes dense with birds, frogs and colorful plant life. The Lake responds to extended dry periods (often associated with El Nino events) by drying completely.These four images from the Multi-angle Imaging SpectroRadiometer contrast the lake area at the start of the austral summers of 2000 and 2002. The top two panels portray the region as it appeared on December 9, 2000. Heavy rains in the first part of 2000 caused both the north and south sections of the lake to fill partially and the northern part of the lake still contained significant standing water by the time these data were acquired. The bottom panels were captured on November 29, 2002. Rainfall during 2002 was significantly below average ( http://www.bom.gov.au/ ), although showers occurring in the week before the image was acquired helped alleviate this condition slightly.The left-hand panels portray the area as it appeared to MISR's vertical-viewing (nadir) camera, and are false-color views comprised of data from the near-infrared, green and blue channels. Here, wet and/or moist surfaces appear blue-green, since water selectively absorbs longer wavelengths such as near-infrared. The right-hand panels are multi-angle composites created with red band data from MISR's 60-degree forward, nadir and 60-degree backward-viewing cameras, displayed as red, green and blue, respectively. In these multi-angle composites, color variations serve as a proxy for changes in angular reflectance, and indicate textural properties of the surface related to roughness and/or moisture content.Data from

  6. Human impacts on river ice regime in the Carpathian Basin

    Science.gov (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    River ice is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of ice phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river ice freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river ice regime. The ice regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular ice phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river ice regime (Ashton, 1986). To decrease the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river ice congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river ice appearance and freeze-up (Starosolsky, 1990). Water pollution affects ice regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river ice regime. Selected

  7. Spatial dynamics of thermokarst and thermo-erosion at lakes and ponds in North Siberia and Northwest Alaska using high-resolution remote sensing

    Science.gov (United States)

    Grosse, G.; Tillapaugh, M.; Romanovsky, V. E.; Walter, K. M.; Plug, L. J.

    2008-12-01

    Formation, growth, and drainage of thermokarst lakes in ice-rich permafrost deposits are important factors of landscape dynamics in extent Arctic lowlands. Monitoring of spatial and temporal dynamics of such lakes will allow an assessment of permafrost stability and enhance the capabilities for modelling and quantifying biogeochemical processes related to permafrost degradation in a warming Arctic. In this study we use high-resolution remote sensing and GIS to analyze the development of thermokarst lakes and ponds in two study regions in North Siberia and Northwest Alaska. The sites are 1) the Cherskii region in the Kolyma lowland (Siberia) and 2) the Kitluk River area on the northern Seward Peninsula (Alaska). Both regions are characterized by continuous permafrost, a highly dissected and dynamic thermokarst landscape, uplands of Late Pleistocene permafrost deposits with high excess ice contents, and a large total volume of permafrost-stored carbon. These ice-rich Yedoma or Yedoma-like deposits are highly vulnerable to permafrost degradation forced by climate warming or other surface disturbance. Time series of high- resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Time series of high-resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Processes identified include thaw slumping, wave undercutting of frozen sediments or peat blocks and subsequent mass wasting, thaw collapse of near-shore zones, sinkhole formation and ice-wedge tunnelling, and gully formation by thermo-erosion. We use GIS-based tools to relate the remote sensing results to field data (ground ice content, topography, lithology, and relative age

  8. Pathophysiology and Toxicokinetic Studies of Blue-Green Algae Intoxication in the Swine Model

    Science.gov (United States)

    1991-06-26

    Carmichael, W. W., Kleppe, G., Hooser, S. B., and Haschek, W. M. (1987) Blue-grezn algae (Microcystis aeruginosa) hepatotoxicosis in dairy cows . Am. J. Vet...Kleppe, G., Hooser, S. B., and Haschek, W. M. (1987) Blue-green algae (Microcystis aeruginosa) hepatotoxicosis in dairy cows . Am. J. Vet. Res. 48...containing (per 500 ml) 100 ml of fetal bovine serum (FBS) and 0.3 ml of insulin (100 U/ml), and placed on ice. Uptake of Dihydromicrocystin-LR into

  9. Evolving hydrologic connectivity in discontinuous permafrost lowlands: what it means for lake systems

    Science.gov (United States)

    Walvoord, M. A.; Jepsen, S. M.; Rover, J.; Voss, C. I.; Briggs, M. A.

    2015-12-01

    Permafrost influence on the hydrologic connectivity of surface water bodies in high-latitude lowlands is complicated by subsurface heterogeneity and the propensity of the system to change over time. In general, permafrost limits the subsurface exchange of water, solute, and nutrients between lakes and rivers. It follows that permafrost thaw could enhance subsurface hydrologic connectivity among surface water bodies, but the impact of this process on lake distribution is not well known. Changes in the extent of lakes in interior Alaska have important ecological and societal impacts since lakes provide (1) critical habitat for migratory arctic shorebirds and waterfowl, fish, and wildlife, and (2) provisional, recreational, and cultural resources for local communities. We utilize electromagnetic imaging of the shallow subsurface and remote sensing of lake level dynamics in the Yukon Flats of interior Alaska, USA, together with water balance modeling, to gain insight into the influence of discontinuous permafrost on lowland lake systems. In the study region with relatively low precipitation, observations suggest that lakes that are hydrologically isolated during normal conditions are sustained by periodic river flooding events, including ice-jam floods that occur during river ice break-up. Climatically-influenced alterations in flooding frequency and intensity, as well as depth to permafrost, are quantitatively assessed in the context of lake maintenance. Scenario modeling is used to evaluate lake level evolution under plausible changing conditions. Model results demonstrate how permafrost degradation can reduce the dependence of typical lowland lakes on flooding events. Study results also suggest that river flooding may recharge a more spatially widespread zone of lakes and wetlands under future scenarios of permafrost table deepening and enhanced subsurface hydrologic connectivity.

  10. Ecology of playa lakes

    Science.gov (United States)

    Haukos, David A.; Smith, Loren M.

    1992-01-01

    Between 25,000 and 30,000 playa lakes are in the playa lakes region of the southern high plains (Fig. 1). Most playas are in west Texas (about 20,000), and fewer, in New Mexico, Oklahoma, Kansas, and Colorado. The playa lakes region is one of the most intensively cultivated areas of North America. Dominant crops range from cotton in southern areas to cereal grains in the north. Therefore, most of the native short-grass prairie is gone, replaced by crops and, recently, grasses of the Conservation Reserve Program. Playas are the predominant wetlands and major wildlife habitat of the region.More than 115 bird species, including 20 species of waterfowl, and 10 mammal species have been documented in playas. Waterfowl nest in the area, producing up to 250,000 ducklings in wetter years. Dominant breeding and nesting species are mallards and blue-winged teals. During the very protracted breeding season, birds hatch from April through August. Several million shorebirds and waterfowl migrate through the area each spring and fall. More than 400,000 sandhill cranes migrate through and winter in the region, concentrating primarily on the larger saline lakes in the southern portion of the playa lakes region.The primary importance of the playa lakes region to waterfowl is as a wintering area. Wintering waterfowl populations in the playa lakes region range from 1 to 3 million birds, depending on fall precipitation patterns that determine the number of flooded playas. The most common wintering ducks are mallards, northern pintails, green-winged teals, and American wigeons. About 500,000 Canada geese and 100,000 lesser snow geese winter in the playa lakes region, and numbers of geese have increased annually since the early 1980’s. This chapter describes the physiography and ecology of playa lakes and their attributes that benefit waterfowl.

  11. High-resolution boundary conditions of an old ice target near Dome C, Antarctica

    Science.gov (United States)

    Young, Duncan A.; Roberts, Jason L.; Ritz, Catherine; Frezzotti, Massimo; Quartini, Enrica; Cavitte, Marie G. P.; Tozer, Carly R.; Steinhage, Daniel; Urbini, Stefano; Corr, Hugh F. J.; van Ommen, Tas; Blankenship, Donald D.

    2017-08-01

    A high-resolution (1 km line spacing) aerogeophysical survey was conducted over a region near the East Antarctic Ice Sheet's Dome C that may hold a 1.5 Myr climate record. We combined new ice thickness data derived from an airborne coherent radar sounder with unpublished data that was in part unavailable for earlier compilations, and we were able to remove older data with high positional uncertainties. We generated a revised high-resolution digital elevation model (DEM) to investigate the potential for an old ice record in this region, and used laser altimetry to confirm a Cryosat-2 derived DEM for inferring the glaciological state of the candidate area. By measuring the specularity content of the bed, we were able to find an additional 50 subglacial lakes near the candidate site, and by Doppler focusing the radar data, we were able to map out the roughness of the bed at length scales of hundreds of meters. We find that the primary candidate region contains elevated rough topography interspersed with scattered subglacial lakes and some regions of smoother bed. Free subglacial water appears to be restricted from bed overlain by ice thicknesses of less than 3000 m. A site near the ice divide was selected for further investigation. The high resolution of this ice thickness data set also allows us to explore the nature of ice thickness uncertainties in the context of radar geometry and processing.

  12. Late-Quaternary glacial to postglacial sedimentation in three adjacent fjord-lakes of the Québec North Shore (eastern Canadian Shield)

    Science.gov (United States)

    Poiré, Antoine G.; Lajeunesse, Patrick; Normandeau, Alexandre; Francus, Pierre; St-Onge, Guillaume; Nzekwe, Obinna P.

    2018-04-01

    High-resolution swath bathymetry imagery allowed mapping in great detail the sublacustrine geomorphology of lakes Pentecôte, Walker and Pasteur, three deep adjacent fjord-lakes of the Québec North Shore (eastern Canada). These sedimentary basins have been glacio-isostatically uplifted to form deep steep-sided elongated lakes. Their key geographical position and limnogeological characteristics typical of fjords suggest exceptional potential for long-term high-resolution paleoenvironmental reconstitutions. Acoustic subbottom profiles acquired using a bi-frequency Chirp echosounder (3.5 & 12 kHz), together with cm- and m-long sediment core data, reveal the presence of four acoustic stratigraphic units. The acoustic basement (Unit 1) represents the structural bedrock and/or the ice-contact sediments of the Laurentide Ice Sheet and reveals V-shaped bedrock valleys at the bottom of the lakes occupied by ice-loaded sediments in a basin-fill geometry (Unit 2). Moraines observed at the bottom of lakes and in their structural valleys indicate a deglaciation punctuated by short-term ice margin stabilizations. Following ice retreat and their isolation, the fjord-lakes were filled by a thick draping sequence of rhythmically laminated silts and clays (Unit 3) deposited during glaciomarine and/or glaciolacustrine settings. These sediments were episodically disturbed by mass-movements during deglaciation due to glacial-isostatic rebound. AMS 14C dating reveal that the transition between deglaciation of the lakes Pentecôte and Walker watersheds and the development of para- and post-glacial conditions occurred around 8000 cal BP. The development of the lake-head river delta plain during the Holocene provided a constant source of fluvial sediment supply to the lakes and the formation of turbidity current bedforms on the sublacustrine delta slopes. The upper sediment succession (i.e., ∼4-∼6.5 m) consists of a continuous para-to post-glacial sediment drape (Unit 4) that contains

  13. Automatic detection of subglacial lakes in radar sounder data acquired in Antarctica

    Science.gov (United States)

    Ilisei, Ana-Maria; Khodadadzadeh, Mahdi; Dalsasso, Emanuele; Bruzzone, Lorenzo

    2017-10-01

    Subglacial lakes decouple the ice sheet from the underlying bedrock, thus facilitating the sliding of the ice masses towards the borders of the continents, consequently raising the sea level. This motivated increasing attention in the detection of subglacial lakes. So far, about 70% of the total number of subglacial lakes in Antarctica have been detected by analysing radargrams acquired by radar sounder (RS) instruments. Although the amount of radargrams is expected to drastically increase, from both airborne and possible future Earth observation RS missions, currently the main approach to the detection of subglacial lakes in radargrams is by visual interpretation. This approach is subjective and extremely time consuming, thus difficult to apply to a large amount of radargrams. In order to address the limitations of the visual interpretation and to assist glaciologists in better understanding the relationship between the subglacial environment and the climate system, in this paper, we propose a technique for the automatic detection of subglacial lakes. The main contribution of the proposed technique is the extraction of features for discriminating between lake and non-lake basal interfaces. In particular, we propose the extraction of features that locally capture the topography of the basal interface, the shape and the correlation of the basal waveforms. Then, the extracted features are given as input to a supervised binary classifier based on Support Vector Machine to perform the automatic subglacial lake detection. The effectiveness of the proposed method is proven both quantitatively and qualitatively by applying it to a large dataset acquired in East Antarctica by the MultiChannel Coherent Radar Depth Sounder.

  14. A multi-decadal remote sensing study on glacial change in the North Patagonia Ice Field Chile

    Science.gov (United States)

    Tetteh, Lucy Korlekwor

    Glaciers in the North Patagonian Ice Fields are temperate glaciers and can be studied to understand the dynamics of climate change. However, the ice field has been neglected in mass balance studies. In this study, multi decadal study of glacial mass balance, glacier retreat and glacial lake expansion in the North Patagonia were studied. Landsat (TM, ETM+ and 8) and ASTER images were used. San Quintin glacier experienced the highest retreat. Demarcation of glacier lakes boundaries indicated an increase in glacial lake area an addition of 4 new glacial lakes. Nef glacier recorded the highest mass gain of 9.91 plus or minus 1.96 m.w.e.a.-1 and HPN-4 glacier recorded the highest mass loss of -8.9 plus or minus 1.96 m.w.e.a. -1. However, there is a high uncertainty in the elevation values in the DEM due to the rugged nature of the terrain and presence of the heavy snow cover.

  15. Anaglyph, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed

  16. Evaluation of heavy metals pollution of Nokoue Lake

    African Journals Online (AJOL)

    use

    African Journal of Environmental Science and Technology Vol. 5(3), pp. 255-261, March ... Key words: Nokoue Lake, pollution, heavy metal, texture. INTRODUCTION ... certain anthropogenic trace metals released by industries and domestic .... storage on ice, complete filling containers, use of plastic materials for storage ...

  17. Too Warm, Two Poles: Super Interglacial Teleconnections and Possible Dual Pole Ice Sheet Stability

    Science.gov (United States)

    Brigham-Grette, J.; Deconto, R. M.; Roychowdhury, R.; de Wet, G.; Keisling, B. A.; Melles, M.; Minyuk, P.

    2017-12-01

    Geologic records of the warm Pliocene and Pleistocene super interglacials from both the Arctic and the Antarctic show us that ice sheets are more vulnerable to subtle polar warming than once thought. The continuous 3.6 million-year old sediment record from Lake El'gygytgyn (Lake E), the largest, deepest unglaciated Arctic lake located in central Chukotka, Russia, contains evidence of the warm forested Pliocene and the transition to changing glacial/interglacial climate cycles including at least 9 super interglacials and numerous other strong interglacials. Most of these super interglacials especially MIS 11 and 31, record conditions warmer than MIS 5e and many occur when global cycles are dominated by apparent 41ka forcing during the transition from the warm Pliocene to stronger G/IG variability. Given community consensus on the reduction of the Greenland Ice sheet (GIS) during MIS5e, we suggest that previous interglacials likely forced even larger reductions in the GIS, perhaps consistent with cosmogenic isotope exposure histories. We can best match MIS 11 and 31 from the Antarctic ANDRILL records when diatomaceous ooze deposition in the past recovered from under the modern Ross Ice Shelf suggests collapse of the WAIS and open water conditions. It is possible that a large number of the other Lake E super interglacials correspond to other intervals of WAIS collapse, within the uncertainly of the ANDRILL chronology. The forcing of super interglacials was not necessarily the result of high atmospheric CO2 but the result of preconditioning during periods of extremely low eccentricity and high obliquity. The challenge is now to incorporate oceanographic models (as suggested in Melles et al. 2012) to gauge ice sheet and ocean circulation sensitivity and timescales to preconditioning. Yet confirmation of past warming driving frequent ice sheet collapse in both hemispheres is clear geologically-based evidence that informs our future. Today, anthropogenic CO2 emissions are

  18. Hydrological Balance of Lake Tana, Upper Blue Nile Basin, Ethiopia

    NARCIS (Netherlands)

    Rientjes, T.H.M.; Perera, Janaka B.U.; Haile, Alemseged T.; Haile, A.T.; Gieske, Ambro S.M.; Booij, Martijn J.; Reggiani, Paolo; Melesse, Assefa M.

    2011-01-01

    In recent years, few studies are presented on the water balance of Lake Tana. In these studies, the water balance is closed by unknown runoff contributions from ungauged catchments. Studies relied on simple procedures of area comparison to estimate runoff from ungauged catchments. In this study,

  19. Ecology and potential for fishery of the small barbs (Cyprinidae, Teleostei) of Lake Tana, Ethiopia

    OpenAIRE

    Dejen, E.

    2003-01-01

    Lake Tana is by far the largest lake of Ethiopia and source of the Blue Nile. By feeding on zooplankton, small barbs (< 10 cm) occupy a central position in Lake Tana's ecosystem. Catching them could release pressure on the overexploited, unique species flock of large barbs (up to 100 cm). Aiming at small barbs, we need first to assess its possible impact on the food web and productivity. To advise on sustainable management, the biology and ecology of the small Barbus species in Lake Tana w...

  20. Water-quality study of Tulpehocken Creek, Berks County, Pennsylvania, prior to impoundment of Blue Marsh Lake

    Science.gov (United States)

    Barker, James L.

    1977-01-01

    Blue Marsh Lake is planned as a multipurpose impoundment to be constructed on Tulpehocken Creek near Bernville, Berks County, Pennsylvania. Prior to construction, samples of water, bed material, and soil were collected throughout the impoundment site to determine concentrations of nutrients, insecticides, trace metals, suspended sediment, and bacteria. Analyses of water suggest the Tulpehocken Creek basin to be a highly fertile environment. Nitrogen and phosphorus concentrations near the proposed dam site had median values of 4.5 and 0.13 mg/L, respectively. Suspended sediment discharges average between 100 and 200 tons (90.7 to 181.4 metric tons) per day during normal flows but may exceed 10,000 tons (9,070 metric tons) per day during storm runoff. Highest yields were measured during winter and early spring. Concentrations range from 3 mg/L to more than 500 mg/L. Bed material samples contain trace quantities of aldrin, DDT, DDD, DDE, dieldrin, and chlordane. Polychlorinated biphyenyls (PCB's) ranged from 10 to 100 μg/kg. Soils at the impoundment site are of average fertility. However, the silt loam texture is ideal for attachment and growth of aquatic plants. Bacteria populations indicative of recent fecal contamination are prevalent in the major inflows to the proposed lake. Fecal Coliform exceeded the standards recommended by the Federal Water Pollution Administration Committee on Water Quality Criteria for public water supply in 29 percent of the monthly samples, and exceeded the recommended public bathing waters standard in 83 percent of the samples collected from June to September. Arsenic from an industrial waste was found in the water, suspended sediment, and bed material of Tulpehocken Creek in concentrations of 0 to 30 μg/l, 2 to 879 μg/l, and 1 to 79 μg/g, respectively. It represents a potential environmental hazard; however, the measured concentrations are less than that known to be harmful to man, fish, or wildlife, according to published water

  1. Response of faults to climate-driven changes in ice and water volumes on Earth's surface.

    Science.gov (United States)

    Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios

    2010-05-28

    Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.

  2. Observations of Blue Discharges Associated With Negative Narrow Bipolar Events in Active Deep Convection

    Science.gov (United States)

    Liu, Feifan; Zhu, Baoyou; Lu, Gaopeng; Qin, Zilong; Lei, Jiuhou; Peng, Kang-Ming; Chen, Alfred B.; Huang, Anjing; Cummer, Steven A.; Chen, Mingli; Ma, Ming; Lyu, Fanchao; Zhou, Helin

    2018-03-01

    On 19 August 2012, the Imager of Sprites and Upper Atmospheric Lightning on board the FORMOSAT-2 satellite captured a sequence of seven blue discharges within 1 min that emanated from a parent thunderstorm over Lake Taihu in East China. The analysis of lightning activity produced in the thunderstorm indicates that at least six of these events occurred in association with negative narrow bipolar events (NBEs) that were concurrent with the blue discharge by less than 1 ms, and negative cloud-to-ground occurred within 6 s before each blue discharge, which is in agreement with the modeling presented by Krehbiel et al. (2008). Therefore, the frequent occurrence of negative cloud-to-ground could provide the favorable condition for the production of blue discharges, and negative NBEs are probably the initial event of blue discharges. The detection of negative NBEs might provide a convenient approach to detect the occurrence of blue discharges as lightning bolt shooting upward from the top of energetic thunderstorms.

  3. New high-resolution record of Holocene climate change in the Weddell Sea from combined biomarker analysis of the Patriot Hills blue ice area

    Science.gov (United States)

    Fogwill, Christopher; Turney, Chris; Baker, Andy; Ellis, Bethany; Cooper, Alan; Etheridge, David; Rubino, Mauro; Thornton, David; Fernando, Francisco; Bird, Michale; Munksgaard, Niels

    2017-04-01

    We report preliminary analysis of biomarkers (including dissolved organic matter (DOM) and DNA) from the Patriot Hills blue ice area (BIA), from the Ellsworth Mountains in the Weddell Sea Embayment. Preliminary isotopic and multiple gas analysis (CO2, CH4, N2O and CO) demonstrate that the Holocene comprises more than 50% of the 800m long BIA record, and in combination isotopic and biomarker analysis reveals a remarkable record of centennial variability through the Holocene in this sector of the Weddell Sea. Analysis using a Horiba Aqualog - which measures the fluorescence of DOM by producing a map of the fluorescence through an excitation-emission matrix (EEM) - identifies the presence of two marine protein-like components in both modern snow pit samples and within the Holocene part of Patriot Hills BIA transect. Intriguingly, the modern seasonal trends in DOM, recorded in contemporary snow pits, have relatively low signals compared to those recorded in the mid-Holocene record, suggesting a reduction in DOM signal in contemporary times. Given that the δD excess data suggests the source of precipitation has remained constant through the Holocene, the biomarker signal must relate to multi-year marine productivity signals from the Weddell Sea. The marked variability in DOM between the mid-Holocene and contemporary times can only relate to periods of sustained, enhanced biological productivity in the Weddell Sea associated with shifts in Southern Annular Mode, sea ice variability, changes in ventilation or polynya activity. Here we discuss the possible drivers of these changes and describe how this approach at this BIA could benefit conventional ice core records regionally.

  4. Determining Late Pleistocene to Early Holocene deglaciation of the Baltic Ice Lake through sedimentological core sample analysis of IODP Site M0064

    Science.gov (United States)

    Kelly, A. L.; Passchier, S.

    2016-12-01

    This study investigates the deglaciation history of the Scandinavian Ice Sheet (SIS) within the Baltic Sea's Hanö Bay from the Late Pleistocene to the Holocene using samples from International Ocean Discovery Program (IODP) Site M0064. The research aims to understand how the speed of deglaciation influences Baltic Ice Lake (BIL) drainage patterns and relative sea level changes on a high-resolution timescale. Glacial history of the SIS has been studied through glacial till analysis, surface exposure dating, and modeling, encompassing its most recent deglaciation 20-14ka BP, and suggests ice retreated from the project site 16.7ka BP. Between 17 and 14ka BP global sea level rose 4 meters per century, accompanied by a dramatic increase in atmospheric carbon. This period of rapid sea level rise and global warming is a valuable analog for understanding the Earth's current and projected climate. This project uses particle size analysis to better understand the late-glacial depositional environment in Hanö Bay, and ICP-OES geochemical analysis for evidence pertaining to changing sediment provenance and bottom water oxygenation in the BIL. Diamicton is present between 47 and 9 mbsf in Hole M0064D. At 8 mbsf, the sediment exhibits a prominent upward transition from well-laminated cm-scale grey to more thinly laminated reddish brown rhythmites. With calculated Al/Ti ratios, we find that there is not much provenance change in the sequence, however we see fluctuations in Mn/Al ratios, implying shifts in sediment color may be chemical, possibly indicating redox changes in the water column during sediment deposition. Although we find that particle size in the varve sequence does not change, this factor may be driving chemical fluctuations in the diamicton. These results increase the understanding of ice retreat, paleocirculation and relative sea level changes in the Baltic Sea at the onset of the last deglaciation.

  5. Monitoring Snow and Land Ice Using Satellite data in the GMES Project CryoLand

    Science.gov (United States)

    Bippus, Gabriele; Nagler, Thomas

    2013-04-01

    The main objectives of the project "CryoLand - GMES Service Snow and Land Ice" are to develop, implement and validate services for snow, glaciers and lake and river ice products as a Downstream Service within the Global Monitoring for Environment and Security (GMES) program of the European Commission. CryoLand exploits Earth Observation data from current optical and microwave sensors and of the upcoming GMES Sentinel satellite family. The project prepares also the basis for the cryospheric component of the GMES Land Monitoring services. The CryoLand project team consists of 10 partner organisations from Austria, Finland, Norway, Sweden, Switzerland and Romania and is funded by the 7th Framework Program of the European Commission. The CryoLand baseline products for snow include fractional snow extent from optical satellite data, the extent of melting snow from SAR data, and coarse resolution snow water equivalent maps from passive microwave data. Experimental products include maps of snow surface wetness and temperature. The products range from large scale coverage at medium resolution to regional products with high resolution, in order to address a wide user community. Medium resolution optical data (e.g. MODIS, in the near future Sentinel-3) and SAR (ENVISAT ASAR, in the near future Sentinel-1) are the main sources of EO data for generating large scale products in near real time. For generation of regional products high resolution satellite data are used. Glacier products are based on high resolution optical (e.g. SPOT-5, in the near future Sentinel-2) and SAR (TerraSAR-X, in the near future Sentinel-1) data and include glacier outlines, mapping of glacier facies, glacier lakes and ice velocity. The glacier products are generated on users demand. Current test areas are located in the Alps, Norway, Greenland and the Himalayan Mountains. The lake and river ice products include ice extent and its temporal changes and snow extent on ice. The algorithms for these

  6. Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia.

    Science.gov (United States)

    Afonina, Ekaterina Yu; Tashlykova, Natalya A

    2018-02-01

    The plankton community of sixteen saline lakes located on Onon-Torey plain (Northeastern Mongolia) during the filling phase and the raising of the water level was investigated in July 2011. Thirty-five taxa of phytoplankton and thirty-one species of zooplankton were found. For phytoplankton, blue-green algae ( Merismopedia elegans , Anabaenopsis elenkinii , Arthrospora fusiformis , Spirulina major , Lyngbya sp., Oscillatoria sp.) and green algae ( Monoraphidium minutum , Tetrastrum komarekii , Ankyra ocellata , Oocystis sp.) were dominant. For zooplankton, Filinia longiseta, Brachionus plicatilis , B. variabilis , Hexarthra mira (Rotifera), Daphnia magna , Moina brachiata , M. mongolica (Cladocera), Arctodiaptomus bacillifer , Mixodiaptomus incrassatus , Metadiaptomus asiaticus (Copepoda) dominated. Mineralization, active hydrogen ratio, dissolved oxygen and water temperature were the main factors influencing the diversity, structure and distribution of plankton organisms in the steppe lakes during low water level. The RDA analysis for phytoplankton and zooplankton from different lakes was carried out for selected two groups which included lakes and a subset related species. The first group is of oligohaline and mesohaline lakes in which mostly green algae, rotifers and copepods inhabit. The second group is of mesohaline and polyhaline lakes with mainly blue-green algae , some crustaceans and rotifers inhabiting. High abundance and biomass of Spirulina major , Oscillatoria sp. and Brachionus variabilis were observed in lakes with high mineralization, pH and temperature.

  7. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas

    Science.gov (United States)

    Wang, Weicai; Gao, Yang; Iribarren Anacona, Pablo; Lei, Yanbin; Xiang, Yang; Zhang, Guoqing; Li, Shenghai; Lu, Anxin

    2018-04-01

    Glacial lake outburst floods (GLOFs) have recently become one of the primary natural hazards in the Himalayas. There is therefore an urgent need to assess GLOF hazards in the region. Cirenmaco, a moraine-dammed lake located in the upstream portion of Zhangzangbo valley, Central Himalayas, has received public attention after its damaging 1981 outburst flood. Here, by combining remote sensing methods, bathymetric survey and 2D hydraulic modeling, we assessed the hazard posed by Cirenmaco in its current status. Inter-annual variation of Cirenmaco lake area indicates a rapid lake expansion from 0.10 ± 0.08 km2 in 1988 to 0.39 ± 0.04 km2 in 2013. Bathymetric survey shows the maximum water depth of the lake in 2012 was 115 ± 2 m and the lake volume was calculated to be 1.8 × 107 m3. Field geomorphic analysis shows that Cirenmaco glacial lake is prone to GLOFs as mass movements and ice and snow avalanches can impact the lake and the melting of the dead ice in the moraine can lower the dam level. HEC-RAS 2D model was then used to simulate moraine dam failure of the Cirenmaco and assess GLOF impacts downstream. Reconstruction of Cirenmaco 1981 GLOF shows that HEC-RAS can produce reasonable flood extent and water depth, thus demonstrate its ability to effectively model complex GLOFs. GLOF modeling results presented can be used as a basis for the implementation of disaster prevention and mitigation measures. As a case study, this work shows how we can integrate different methods to GLOF hazard assessment.

  8. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    Science.gov (United States)

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  9. A model assessment of the ability of lake water in Terra Nova Bay, Antarctica, to induce the photochemical degradation of emerging contaminants.

    Science.gov (United States)

    Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2016-11-01

    The shallow lakes located in Terra Nova Bay, Antarctica, are free from ice for only up to a couple of months (mid December to early/mid February) during the austral summer. In the rest of the year, the ice cover shields the light and inhibits the photochemical processes in the water columns. Previous work has shown that chromophoric dissolved organic matter (CDOM) in these lakes is very reactive photochemically. A model assessment is here provided of lake-water photoreactivity in field conditions, based on experimental data of lake water absorption spectra, chemistry and photochemistry obtained previously, taking into account the water depth and the irradiation conditions of the Antarctic summer. The chosen sample contaminants were the solar filter benzophenone-3 and the antimicrobial agent triclosan, which have very well known photoreactivity and have been found in a variety of environmental matrices in the Antarctic continent. The two compounds would have a half-life time of just a few days or less in the lake water during the Antarctic summertime, largely due to reaction with CDOM triplet states ((3)CDOM*). In general, pollutants that occur in the ice and could be released to lake water upon ice melting (around or soon after the December solstice) would be quickly photodegraded if they undergo fast reaction with (3)CDOM*. With some compounds, the important (3)CDOM* reactions might favour the production of harmful secondary pollutants, such as 2,8-dichlorodibenzodioxin from the basic (anionic) form of triclosan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Organic carbon accumulation and reactivity in central Swedish lakes during the Holocene

    Science.gov (United States)

    Chmiel, H.; Kokic, J.; Niggemann, J.; Dittmar, T.; Sobek, S.

    2012-04-01

    Sedimentation and burial of particulate organic carbon (POC), received from terrestrial sources and from lake internal primary production, are responsible for the progressive accumulation and long-term storage of organic matter in lake basins. For lakes in the boreal zone of central Sweden it can be presumed, that the onset of POC accumulation occurred during the early Holocene (˜8000 BP.) after the retreat of the Scandinavian ice sheet. In this study we investigated carbon mass accumulation rates (CMARs), as well as sources and reactivity of deposited organic material, for seven lakes in central Sweden (60°N, 15°E), in order to obtain a detailed temporal resolution of carbon burial and preservation in boreal lakes. Sediment long-cores were sampled in March 2011 from the ice, and CMARs were calculated from water contents, dry bulk densities, carbon contents and radiocarbon (14C) ages of the depth profiles. To indicate the sources of the organic material and characterize its diagenetic state, we determined carbon-nitrogen ratios (C/N) as well as amounts and compositions of lignin phenols. The transitions from organic rich sediment layers to glacial till deposits were found to be in sediment depths of ˜3 m in each lake. POC contents were on average highest (25-34 wt. % C), in small lakes (≤ 0.07 km2) and lowest (10-18 wt. % C) in the larger lakes (≥ 165 km2). The CMARs over the Holocene showed significant variations and were on average lower in the early Holocene, compared to recent accumulation rates. C/N values and the composition of lignin phenols further provided indications of important changes in organic matter source and reactivity over the Holocene. In summary, our data suggest that boreal lake sediments were a significantly stronger sink for organic carbon during the last ~150 years than during earlier periods of the Holocene.

  11. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.

    2012-01-01

    Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect

  12. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    Science.gov (United States)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    rates markedly increased after the YD and the ice sheet became limited to the Canadian Shield. This hard-bed substrate brought a change in the character of ice streaming, which became less frequent but generated much broader terrestrial ice streams. The final collapse of the ice sheet saw a series of small ephemeral ice streams that resulted from the rapidly changing ice sheet geometry in and around Hudson Bay. Our reconstruction indicates that the LIS underwent a transition from a topographically-controlled ice drainage network at the LGM to an ice drainage network characterised by less frequent, broad ice streams during the later stages of deglaciation. These deglacial ice streams are mostly interpreted as a reaction to localised ice-dynamical forcing (flotation and calving of the ice front in glacial lakes and transgressing sea; basal de-coupling due to large amount of meltwater reaching the bed, debuttressing due to rapid changes in ice sheet geometry) rather than as conveyors of excess mass from the accumulation area of the ice sheet. At an ice sheet scale, the ice stream drainage network became less widespread and less efficient with the decreasing size of the deglaciating ice sheet, the final elimination of which was mostly driven by surface melt.

  13. Some aspects of the last glaciation in the Mazury Lake District (north-eastern Poland

    Directory of Open Access Journals (Sweden)

    Pochocka-Szwarc Katarzyna

    2013-06-01

    Full Text Available The morphology of the Mazury Lake District (north-eastern Poland dates from 24-19 ka (main stadial of the youngest Vistulian glaciation. During this last glacial maximum (MIS 2 a belt with lacustrine basins was formed when the ice sheet retreated at the end of the Pomeranian phase. The ice-sheet retreat is morphologically also expressed by the occurrence of end moraines. The study area is situated in the Skaliska Basin, in the northern part of the Lake District (near the Polish/ Russian border, at the periphery of zone with end moraines. Originally the basin was an ice-dammed depression filled with melt water; the water flowed out into the developing Pregoła valley when the ice retreated and did no longer dam off the depression. The basin, which is surrounded by hill-shaped moraines, is filled now with Late Glacial and Holocene glaciolacustrine sediments. The organic sediments of the basin record the history of the Late Glacial and Holocene climatic changes in this region.

  14. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    Science.gov (United States)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  15. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    Science.gov (United States)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  16. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    OpenAIRE

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindb?ck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and exa...

  17. Climate simulation and flood risk analysis for 2008-40 for Devils Lake, North Dakota

    Science.gov (United States)

    Vecchia, Aldo V.

    2008-01-01

    generated future duration of the current wet period. On the basis of the simulations, and assuming ice-free conditions and calm wind, the Devils Lake flood elevation for an annualized flood risk of 1 percent (analogous to a “100-year” riverine flood) was estimated to be 1,454.6 feet for a 10-year time horizon (2008­­­–17). Therefore, without adjusting for wind or ice, a residence near Devils Lake at elevation 1,454.6 feet has the same chance of being flooded sometime during the next 10 years as a residence at the edge of the 100-year flood plain along a river. Adjusting for the effects of wind or ice, which will increase the flood elevations for many locations near the lakes, was not within the scope of this study.

  18. Paleolimnologic and modeling perspectives on the physical and ecological sensitivity of Arctic tundra lakes to temperature changes

    Science.gov (United States)

    Daniels, W.; Russel, J.; Giblin, A. E.; Longo, W. M.; Morrill, C.; Holland-Stergar, P.; Rose, R.; Huang, Y.

    2016-12-01

    Temperatures are warming rapidly across the Arctic, with the potential to substantially alter freshwater ecosystem structure and functioning. Some important processes, such as allochthonous loading or carbon burial, may respond too slowly to observe in modern monitoring efforts, and therefore require alternative approaches to accurately assess. Here we analyze the physical and ecological sensitivity of Alaska tundra lakes to climate change through the lenses of paleolimnology and lake thermal modeling. We compare a 10,000 year long record of biomarker-inferred temperature change (leaf wax hydrogen isotopes) to independent indicators of lake primary production (chlorophyll a), algal community structure (diatom assemblages), and allochthonous inputs (XRF chemistry) from Lake E5 and Upper Capsule Lake near the Toolik Field Station in Alaska (69 °N, 150 °W). Temperatures varied on the order of 2-5 °C over the last 10,000 years, and warmed 1-2 °C during the post-industrial period. Shifts in diatom communities in both lakes reflect increased lake stratification and lake pH during warmer intervals of the Holocene. While lake stratification is a direct response to temperature, we propose that the pH response is due to a combination of two factors. First, an increase in the length of the ice-free season promotes ventilation of respired CO2 out of the lakes. Thermal modeling suggests that lake ice coverage changes by approximately 6-8 days/°C, and so we expect that ice-cover changed by as much as 3-4 weeks throughout the Holocene. Secondarily, sediment core calcium concentrations suggest increased base cation and alkalinity inputs during warmer periods, most likely due to the thermal-induced deepening of the soil active layer and enhanced carbonate rock weathering. Carbon and chlorophyll concentrations appear negatively correlated with temperature over most the Holocene, attributable to the temperature effect on organic matter respiration, although periods of enhanced

  19. Assessing Lake Level Variability and Water Availability in Lake Tana, Ethiopia using a Groundwater Flow Model and GRACE Satellite Data

    Science.gov (United States)

    Hasan, E.; Dokou, Z.; Kirstetter, P. E.; Tarhule, A.; Anagnostou, E. N.; Bagtzoglou, A. C.; Hong, Y.

    2017-12-01

    Lake Tana is the source of the Blue Nile and Ethiopia's largest natural buffer against seasonal variations of rainfall. Assessing the interactions between the lake level fluctuation, hydroclimatic variabilities and anthropogenic factors is essential to detect drought conditions and identify the role of human management in controlling the Lake water balance. Via an extended record of Total Water Storage (TWS) anomalies for the period 1960-2016, a water budget model for the lake water inflow/outflow was developed. Estimates of Lake Level Altimetry (LLA) based on in-situ and satellite altimetry were composited from 1960-2016 and compared to the extended TWS anomalies, the self-calibrated Palmer Drought Severity Index (scPDSI), the El Niño Southern Oscillation (ENSO) and the historical lake water levels and releases. In addition, the simulated lake levels and water budget from a coupled groundwater and lake model of the Lake Tana basin were compared to the above results. Combining the different approaches, the water budget of the lake can be monitored, the drought conditions can be identified and the role of human management in the lake can be determined. For instance, three major drought periods are identified, 1970 to 1977, 1979 to 1987 and 1990 to 1998, each succeeded with an interposed flooding related recovery year, i.e. 1978, 1988 and 1999. The drought/flooding events were attributed mainly to the ENSO interactions that resulted in lake level fluctuations. The period from 2002-2006 was associated with a remarkable decline of the lake level that was attributed partly in drought conditions and the full flow regulation of the Chara Chara weir at the lake outlet, initiated in 2001.

  20. Exploring the Recovery Lakes region and interior Dronning Maud Land, East Antarctica, with airborne gravity, magnetic and radar measurements

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Ferraccioli, Fausto

    2017-01-01

    for major Dronning Maud Land ice stream systems, from the grounding lines up to the Recovery Lakes drainage basin, and filled in major data voids in Antarctic data compilations, such as AntGP for gravity data, ADMAP for magnetic data and BEDMAP2 for ice thickness data and the sub-ice topography. We present...

  1. Multi-pathogen waterborne disease outbreak associated with a dinner cruise on Lake Michigan.

    Science.gov (United States)

    Serdarevic, F; Jones, R C; Weaver, K N; Black, S R; Ritger, K A; Guichard, F; Dombroski, P; Emanuel, B P; Miller, L; Gerber, S I

    2012-04-01

    We report an outbreak associated with a dinner cruise on Lake Michigan. This took place on the same day as heavy rainfall, which resulted in 42·4 billion liters of rainwater and storm runoff containing highly diluted sewage being released into the lake. Of 72 cruise participants, 41 (57%) reported gastroenteritis. Stool specimens were positive for Shigella sonnei (n=3), Giardia (n=3), and Cryptosporidium (n=2). Ice consumption was associated with illness (risk ratio 2·2, P=0·011). S. sonnei was isolated from a swab obtained from the one of the boat's ice bins. Environmental inspection revealed conditions and equipment that could have contributed to lake water contaminating the hose used to load potable water onto the boat. Knowledge of water holding and distribution systems on boats, and of potential risks associated with flooding and the release of diluted sewage into large bodies of water, is crucial for public health guidance regarding recreational cruises.

  2. White Arctic vs. Blue Arctic: Making Choices

    Science.gov (United States)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  3. A comparison of basal reflectivity and ice velocity in East Antarctica

    Directory of Open Access Journals (Sweden)

    R. W. Jacobel

    2010-10-01

    Full Text Available Ground-based radio echo sounding data acquired along the 1700 km US-ITASE traverse have been used to determine ice attenuation and relative basal reflectivity across the major catchments funneling ice from East Antarctica to the Ross Ice Shelf. We find that basal reflectivity varies locally by up to 40 dB which we interpret as due to changes in the phase state at the bed. Some, though not all, areas of high local reflectivity are observed to have flat-lying bed reflections indicative of sub-glacial lakes. We compare basal reflectivity to ice balance velocity and find a general association of higher flow speeds with high radar reflection strength. This set of observations from two independent remotely sensed geophysical data sets extends the range of field observations to the interior of East Antarctica and confirms the importance of basal lubrication on modulating the ice dynamics of the largest ice sheet on the planet.

  4. Stereo Pair, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR

  5. ENVIRONMENT PROTECTION AND ENVIRONMENT MONITORING ISSUES IN THE PROJECTS OF SUBGLACIAL LAKES STUDIES IN ANTARCTICA

    Directory of Open Access Journals (Sweden)

    I. A. Alekhina

    2012-01-01

    Full Text Available Antarctic subglacial lakes can represent extreme natural habitats for microorganisms from the position of their evolution and adaptation, as well as they can contain the information on Antarctic ice sheet history and climatic changes in their sediments. Now only direct measurements and sampling from these habitats can answer on many fundamental questions. Special precaution should be complied at penetration into these unique relic environments without unfavorable impacts and contamination. A number of recommendations were developed on levels of cleanliness and sterility during direct exploration and research of subglacial environments. Documents considered in the article are the first and necessary steps for appropriate and long-term ecological management of subglacial Antarctic environments. Today there are three projects of subglacial aquatic environment research which are in preparation and realization – the Russian project of Lake Vostok, the similar British project of Lake Ellsworth and the American project on Whillans Ice Stream. The programs of ecological stewardship for direct exploration of these lakes are discussed. All these subglacial aquatic objects of further exploration and research are so various on their structure, age and regime, that only results of all programs as a whole can help to draw us a uniform picture of a subglacial ecological system. Ecological stewardship of these should provide the minimal ecological impact with maximal scientific results. On the basis of existing documents and recommendations the general approaches and the program of ecological stewardship for Lake Vostok research are discussed. Study of drilling fluid, drilling chips, Vostok ice core and the fresh frozen water will allow to make an assessment of biological and chemical contamination as a result of the first penetration and to modify the further stewardship program for the second penetration and direct exploration of lake water.

  6. Holocene surge-history of the Eyjabakkajökull glacier inferred from varved lake sediments on eastern Iceland

    Science.gov (United States)

    Striberger, J.; Bjorck, S.; Ingolfsson, O.; Kjaer, K.; Snowball, I.; Uvo, C. B.

    2009-12-01

    Properties of varved lake sediments from Lake Lögurinn on eastern Iceland and their link to glacial processes of Eyjabakkajökull, a surging outlet glacier of the Vatnajökull ice cap, is examined. An 18 m long sediment sequence obtained from the lake, covering at least the past ~ 9 200 years, displays a distinct recurring pattern of light-coloured clay dominated laminae sections. The thickness of the light-coloured laminae is mainly controlled by the amount of glacial rock flour transported from Eyjabakkajökull. These light laminae are interlaid by coarser dark-coloured laminae mainly formed by suspended matter transported to the lake by the large non-glacial river Grímsá. During the recent surge of Eyjabakkajökull in 1972, the amount of suspended matter transported to the lake increased significantly. The surge was followed by years of recurring drainages of Lake Háöldulón, an ice-dammed lake that was formed shortly after the surge. As a result, the amount of glacial rock flour transported to Lake Lögurinn was higher than usual as long as Lake Háöldulón continued to drain (i.e. as long as the ice front was in an advanced position enough to dam the lake). This increase in glacially derived rock flour is reflected in the sediments, as the varve that was formed in 1972 constitutes the thickest light-coloured laminae deposited during the 20th century, which is followed by the second thickest light-coloured laminae, deposited in 1973. From there on, the thicknesses of the light-coloured laminae gradually fade out. Based on these modern observations, we suggest that the recurring cyclic pattern of light-coloured clay dominated laminae sections in the sediment sequence is related to past surges of Eyjabakkajökull, followed by drainages of Lake Háöldulón. Recurring cycles of light-coloured clay dominated laminae began to develop close to the Hekla-3 and Hekla-4 tephras (ca. 3000-4000 years BP), which also coincides with the time when the varves became

  7. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.

    Science.gov (United States)

    Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M

    2018-06-02

    Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. River ice implications related to water power production in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Asvall, R.P. [Norwegian Water Resources and Energy Directorate, Oslo (Norway). Hydrology Dept.

    2009-07-01

    Nearly 99 per cent of the electricity produced in Norway is based on water power. While the period of large power development is over, the current focus lies in developing small hydroelectric power plants. A new market based energy law was implemented in Norway in 1991 to achieve more efficient use of electricity production by means of market forces. Since water regulation influences ice conditions in lakes and rivers, this paper focused on the implications of changes in ice conditions. In Norway, the expected changes in ice conditions are taken into account when issuing permits for water regulations and schemes for water discharge because some waterways are used as winter roads. Follow-up includes both close and long term observations and measurements. The impact of variable price on power was also discussed, with particular reference to ice conditions in cases where water discharge occurs on rivers. This paper summarized selected ice problems and how they have been handled. The paper also included a summary of anticipated climatic changes relevant to ice conditions.

  9. River ice implications related to water power production in Norway

    International Nuclear Information System (INIS)

    Asvall, R.P.

    2009-01-01

    Nearly 99 per cent of the electricity produced in Norway is based on water power. While the period of large power development is over, the current focus lies in developing small hydroelectric power plants. A new market based energy law was implemented in Norway in 1991 to achieve more efficient use of electricity production by means of market forces. Since water regulation influences ice conditions in lakes and rivers, this paper focused on the implications of changes in ice conditions. In Norway, the expected changes in ice conditions are taken into account when issuing permits for water regulations and schemes for water discharge because some waterways are used as winter roads. Follow-up includes both close and long term observations and measurements. The impact of variable price on power was also discussed, with particular reference to ice conditions in cases where water discharge occurs on rivers. This paper summarized selected ice problems and how they have been handled. The paper also included a summary of anticipated climatic changes relevant to ice conditions.

  10. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT have many potential uses including improvement of numerical weather prediction (NWP models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009. It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures.

  11. Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Afonina

    2018-02-01

    Full Text Available The plankton community of sixteen saline lakes located on Onon-Torey plain (Northeastern Mongolia during the filling phase and the raising of the water level was investigated in July 2011. Thirty-five taxa of phytoplankton and thirty-one species of zooplankton were found. For phytoplankton, blue-green algae (Merismopedia elegans, Anabaenopsis elenkinii, Arthrospora fusiformis, Spirulina major, Lyngbya sp., Oscillatoria sp. and green algae (Monoraphidium minutum, Tetrastrum komarekii, Ankyra ocellata, Oocystis sp. were dominant. For zooplankton, Filinia longiseta, Brachionus plicatilis, B. variabilis, Hexarthra mira (Rotifera, Daphnia magna, Moina brachiata, M. mongolica (Cladocera, Arctodiaptomus bacillifer, Mixodiaptomus incrassatus, Metadiaptomus asiaticus (Copepoda dominated. Mineralization, active hydrogen ratio, dissolved oxygen and water temperature were the main factors influencing the diversity, structure and distribution of plankton organisms in the steppe lakes during low water level. The RDA analysis for phytoplankton and zooplankton from different lakes was carried out for selected two groups which included lakes and a subset related species. The first group is of oligohaline and mesohaline lakes in which mostly green algae, rotifers and copepods inhabit. The second group is of mesohaline and polyhaline lakes with mainly blue-green algae, some crustaceans and rotifers inhabiting. High abundance and biomass of Spirulina major, Oscillatoria sp. and Brachionus variabilis were observed in lakes with high mineralization, pH and temperature.

  12. Factors Controlling Methane in Arctic Lakes of Southwest Greenland.

    Science.gov (United States)

    Northington, Robert M; Saros, Jasmine E

    2016-01-01

    We surveyed 15 lakes during the growing season of 2014 in Arctic lakes of southwest Greenland to determine which factors influence methane concentrations in these systems. Methane averaged 2.5 μmol L-1 in lakes, but varied a great deal across the landscape with lakes on older landscapes farther from the ice sheet margin having some of the highest values of methane reported in lakes in the northern hemisphere (125 μmol L-1). The most important factors influencing methane in Greenland lakes included ionic composition (SO4, Na, Cl) and chlorophyll a in the water column. DOC concentrations were also related to methane, but the short length of the study likely underestimated the influence and timing of DOC on methane concentrations in the region. Atmospheric methane concentrations are increasing globally, with freshwater ecosystems in northern latitudes continuing to serve as potentially large sources in the future. Much less is known about how freshwater lakes in Greenland fit in the global methane budget compared to other, more well-studied areas of the Arctic, hence our work provides essential data for a more complete view of this rapidly changing region.

  13. Deuterium and 18O variations in lakes of the Schirmacher Oasis (East Antarctica)

    International Nuclear Information System (INIS)

    Richter, W.; Strauch, G.

    1983-01-01

    As a snow and icefree rock area the Schirmacher Oasis (Dronning Maud Land) is situated on the coast of the Antartic continent between inland and shelf ice. In the area of the oasis different exogenic conditions have produced multiform types of lake basins. In the present report first results about isotope hydrological relations in the lakes of the Schirmacher Oasis are discussed. The lakes can be classified by isotope hydrological parameters into different groups. The classification depends on in- and outflow, evaporation processes, nature of inflow and location. (author)

  14. Quantifying the Impacts of Outlet Control Structures on Lake Hydrology and Ecology

    Science.gov (United States)

    Budd, B. M.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2012-12-01

    There have been limited studies of the impacts of lake level control structures on stream ecology and lake property erosion. We examine the influence of historical lake level management strategies on Higgins Lake in Michigan, which is regionally known for recreation, fisheries, and scenery. Lake control structures have potentially increased shoreline erosion and seasonally-reduced flow through the outlets, likely impacting fish habitat. Concerns over these issues spurred local land owners to seek a study on the possible hydrologic and ecological impacts of the removal or modification of the control structure. Bathymetry maps are fundamental to understanding and managing lake ecosystems. From the 1930's through the 1950's, these maps were developed for thousands of Michigan inland lakes using soundings lowered through holes cut in winter lake ice. Increased land use change and alterations of lake outlets have likely modified erosion and sedimentation rates of these lake systems. Our research includes bathymetry surveys of Higgins Lake using an Acoustic Doppler Current Profiler (ADCP) and side-scan sonar. The new higher-resolution bathymetry serves as the basis for simulating impacts of potential changes in lake management, on a verity of inpoint including shoreline position and fish habitat.

  15. Zooplankton from Lake Magelungen, Central Sweden 1960-1963

    International Nuclear Information System (INIS)

    Almquist, Elisabeth

    1970-11-01

    The investigation of the zooplankton of Lake Magelungen, Central Sweden, was carried out over a period of three years. The aim of the investigation was to illustrate the qualitative and quantitative composition of the zooplankton before the release of waste water from the Aagesta Heat and Power Station began. Vertical sampling series were collected once a month at three different stations in the lake. The highest volumes of zooplankton were obtained in the summer. The ciliates predominated when the conditions were unfavourable for other zooplankton, as in winter just below the ice. The rotifers dominated during and immediately after the spring circulation. With one exception the crustaceans reached their peak volume values in August or September. The composition of the zooplankton indicates that Lake Magelungen is highly eutrophic

  16. Zooplankton from Lake Magelungen, Central Sweden 1960-1963

    Energy Technology Data Exchange (ETDEWEB)

    Almquist, Elisabeth

    1970-11-15

    The investigation of the zooplankton of Lake Magelungen, Central Sweden, was carried out over a period of three years. The aim of the investigation was to illustrate the qualitative and quantitative composition of the zooplankton before the release of waste water from the Aagesta Heat and Power Station began. Vertical sampling series were collected once a month at three different stations in the lake. The highest volumes of zooplankton were obtained in the summer. The ciliates predominated when the conditions were unfavourable for other zooplankton, as in winter just below the ice. The rotifers dominated during and immediately after the spring circulation. With one exception the crustaceans reached their peak volume values in August or September. The composition of the zooplankton indicates that Lake Magelungen is highly eutrophic

  17. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  18. Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project

    Science.gov (United States)

    Fritz, Sherilyn C.; Baker, Paul A.; Seltzer, Geoffrey O.; Ballantyne, Ashley; Tapia, Pedro; Cheng, Hai; Edwards, R. Lawrence

    2007-11-01

    A 136-m-long drill core of sediments was recovered from tropical high-altitude Lake Titicaca, Bolivia-Peru, enabling a reconstruction of past climate that spans four cycles of regional glacial advance and retreat and that is estimated to extend continuously over the last 370,000 yr. Within the errors of the age model, the periods of regional glacial advance and retreat are concordant respectively with global glacial and interglacial stages. Periods of ice advance in the southern tropical Andes generally were periods of positive water balance, as evidenced by deeper and fresher conditions in Lake Titicaca. Conversely, reduced glaciation occurred during periods of negative water balance and shallow closed-basin conditions in the lake. The apparent coincidence of positive water balance of Lake Titicaca and glacial growth in the adjacent Andes with Northern Hemisphere ice sheet expansion implies that regional water balance and glacial mass balance are strongly influenced by global-scale temperature changes, as well as by precessional forcing of the South American summer monsoon.

  19. Contribution of supra-permafrost discharge to thermokarst lake water balances on the northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Pan, Xicai; Yu, Qihao; You, Yanhui; Chun, Kwok Pan; Shi, Xiaogang; Li, Yanping

    2017-12-01

    The seasonal hydrological mechanisms of two thermokarst lakes on the northeastern Qinghai-Tibet Plateau (QTP) were characterized by three-year intensive field observations and a water balance model. In three ice-free seasons, the supra-permafrost discharge contributed a mean ratio of over 170% of the precipitation. In the ice-cover seasons, the supra-permafrost discharge contribution varied between -20% and 22% of the water storage change. Results show that a large portion of the lake water storage change is because of the supra-permafrost discharge resulting from precipitation. Furthermore, a precipitation-subsurface runoff function is preliminarily identified in which the supra-permafrost discharge nonlinearly increased with more precipitation. Our results show that the recent lake expansion is linked with increasing supra-permafrost discharge dominated by precipitation. This study also suggests that we need to pay attention to the nonlinear increase of precipitation-controlled supra-permafrost discharge on the large lake expansion at the catchment scale in the QTP region, instead of only looking at the inputs (e.g., precipitation and river discharge) as shown in the previous studies.

  20. Simulation of hydrodynamics, water quality, and lake sturgeon habitat volumes in Lake St. Croix, Wisconsin and Minnesota, 2013

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne

    2018-01-05

    underlying mechanisms of critical Lake St. Croix metabolic processes. The CE–QUAL–W2 model tracked nitrate plus nitrite, total nitrogen, and total phosphorus throughout the year. Inflow nutrient contributions (loads), largely dominated by upstream St. Croix River loads, were the most important controls on Lake St. Croix water quality. Close to 60 percent of total phosphorus to the lake was from phosphorus derived from organic matter, and about 89 percent of phosphorus to Lake St. Croix was delivered by St. Croix River inflows. The Lake St. Croix CE–QUAL–W2 model offered potential mechanisms for the effect of external and internal loadings on the biotic response regarding the modeled algal community types of diatoms, green algae, and blue-green algae. The model also suggested the seasonal dominance of blue-green algae in all four pools of the lake.A sensitivity analysis was completed to test the total maximum daily load phosphorus-reduction scenario responses of total phosphorus and chlorophyll a. The modeling indicates that phosphorus reductions would result in similar Lake St. Croix reduced concentrations, although chlorophyll a concentrations did not decrease in the same proportional amounts as the total phosphorus concentrations had decreased. The smaller than expected reduction in algal growth rates highlighted that although inflow phosphorus loads are important, other constituents also can affect the algal response of the lake, such as changes in light penetration and the breakdown of organic matter releasing nutrients.The available habitat suitable for lake sturgeon was evaluated using the modeling results to determine the total volume of good-growth habitat, optimal growth habitat, and lethal temperature habitat. Overall, with the calibrated model, the fish habitat volume in general contained a large proportion of good-growth habitat and a sustained period of optimal growth habitat in the summer. Only brief periods of lethal oxy-thermal habitat were present in

  1. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    Science.gov (United States)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  2. Exploring the role of green and blue infrastructure in reducing temperature in Iskandar Malaysia using remote sensing approach

    International Nuclear Information System (INIS)

    Kanniah, K D; Sheikhi, A; Kang, C S

    2014-01-01

    Development of cities has led to various environmental problems as a consequence of non sustaibale town planning. One of the strategies to make cities a livable place and to achieve low levels of CO 2 emissions (low carbon cities or LCC) is the integration of the blue and green infrastructure into the development and planning of new urban areas. Iskandar Malaysia (IM) located in the southern part of Malaysia is a special economic zone that has major urban centres. The planning of these urban centres will incorporate LCC strategies to achieve a sustainable development. The role of green (plants) and blue bodies (lakes and rivers) in moderating temperature in IM have been investigated in the current study. A remotely sensed satellite imagery was used to calculate the vegetation density and land surface temperature (LST). The effect of lakes in cooling the surrounding temperature was also investigated. Results show that increasing vegetation density by 1% can decrease the LST by 0.09°C. As for the water bodies we found as the distance increased from the lake side the temperature also increased about 1.7°C and the reduction in air humidity is 9% as the distance increased to 100 meter away from the lake

  3. Millennial-scale variability in Holocene aquatic productivity from Burial Lake, Arctic Alaska

    Science.gov (United States)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Stoner, Joseph S.; Ortiz, Joseph D.; Finney, Bruce P.; Dorfman, Jason M.; Stansell, Nathan D.

    2018-05-01

    Holocene records of lacustrine primary production are commonly used to reconstruct past changes in environmental and climatic conditions. While several methods exist to infer paleoproductivity trends, few studies to date have applied multiple geochemical indices in the same core sequence from Arctic lakes to evaluate their fidelity and sensitivity to specific climate variables over long (Holocene length) timescales. In this study, we evaluate sub-century to millennial-scale fluctuations in paleoproductivity over the Holocene using geochemical (biogenic opal and sedimentary chlorin) analyses of sediments from Burial Lake in the western Brooks Range, Alaska. Large fluctuations in opal and related proxies occur at millennial timescales over the last 10,000 years. We interpret the changes in opal to result from variability in diatom productivity, which is indirectly mediated by climate primarily through changes in the duration of the ice-free growing season and the availability of limiting nutrients at this oligotrophic, tundra lake. Comparison of the opal and sedimentary chlorin record, which is correlated with TOC, shows contrasting patterns on both short (century to multi-century) and relatively long (millennial) time scales. The concentration of opal far exceeds that of TOC and variations in sediment dry bulk density, driven by changes in the accumulation of opal, are likely responsible in part for the variations in sedimentary chlorin. Further, C/N ratio values indicate a mixed algal-terrestrial source of sedimentary organic matter. This result highlights the complexity in the climatic interpretation of sedimentary chlorin as an index of whole lake production, because the signal is prone to dilution/concentration from opal and also reflects a combination of aquatic and terrestrial production. Time series analysis of the productivity records indicates the presence of a significant ∼1500-yr oscillation in opal concentration, which has been found in North Atlantic

  4. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska

    Science.gov (United States)

    Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter

    2012-01-01

    Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.

  5. Speculations on the spatial setting and temporal evolution of a fjord-style lake

    Science.gov (United States)

    Sarnthein, M.; Spötl, C.

    2012-04-01

    The Inn Valley, a classical region of Quaternary research in the Alps, is bordered by terraces that extend over almost 70 km and record an ancient lake with a lake level near 750-830 m above sea level (a.s.l.), about 250-300 m above the modern valley floor. Over large distances, the terrace sediments consist mainly of laminated "Banded Clays", above ~750 m a.s.l. overlain by glaciofluvial gravel and finally, by tills that record the Upper Würmian ice advance of Marine Isotope Stage (MIS) 2. In the (former) clay pit of Baumkirchen this boundary forms the Alpine type locality for the onset of the Upper Würmian, well supported by 14C-based age control first established by Fliri (1971). On the basis of a recently cored sediment section at Baumkirchen, the >200 m thick "Banded Clays" store a continuous, largely undisturbed, highly resolved, and widely varved climatic archive of MIS 3. Major unknowns concern the location and origin of dams that may have barred the vast and deep Inn Valley lake. We discuss potential linkages to the pattern of moraines and ice advance of MIS 4 glaciers, which was less prominent than during MIS 2, thus leading to a distinct east-west segment¬ation of the run-off systems in Tyrol. East of Imst, for example, the lake was possibly barred by both a rock sill reaching up to 830 m a.s.l. and a lateral moraine deposited by an Ötz Valley glacier. 80 km further east, a lateral moraine of a glacier advancing from the Ziller Valley may have barred the ancient Inn Valley lake to the east. The final rapid coarsening of clastic lake sediments at the end of MIS 3 is widely ascribed to major climatic deter¬ioration. However, the MIS 3-2 boundary was linked to an only modest change of global climates and accordingly, different forcings may be considered. In turn, the rapid coarsening may document a date, when the Central Alpine glaciers had already filled the basin of Imst to the west of the Inn Valley lake. This ice mass may have forced the melt

  6. Anthropogenic climate change has altered primary productivity in Lake Superior.

    Science.gov (United States)

    O'Beirne, M D; Werne, J P; Hecky, R E; Johnson, T C; Katsev, S; Reavie, E D

    2017-06-09

    Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.

  7. Lake sediment-based Late Holocene glacier reconstruction reveals medieval retreat and two-phase Little Ice Age on subantarctic South Georgia

    Science.gov (United States)

    van der Bilt, W. G. M.; Bakke, J.; Werner, J.; Paasche, O.; Rosqvist, G. N.; Vatle, S. S.

    2016-12-01

    Southern Ocean climate is rapidly changing. Yet beyond the instrumental period (± 100 years), our comprehension of climate variability in the region is restricted by a lack of high-resolution paleoclimate records. Alpine glaciers, ubiquitous on Southern Ocean islands, may provide such data as they rapidly respond to climate shifts, recording attendant changes in extent by variations in glacial erosion. Rock flour, the fine-grained fraction of this process, is suspended in meltwater streams and transfers this signal to the sediments of downstream lakes, continuously recording glacier history. Here, we use this relationship and present the first reconstruction of the Late Holocene (1250 cal. yr BP - present) glacier history of the Southern Ocean island of South Georgia, using sediments from the glacier-fed Middle Hamberg lake. Variations are resolved on multi-centennial scales due to robust chronological control. To fingerprint a glacial erosion signal, we employed a set of routinely used physical, geochemical and magnetic parameters. Using Titanium counts, validated against changes in sediment density and grain size distribution, we continuously reconstruct glacier variations over the past millennium. Refining local moraine evidence and supporting evidence from other Southern Hemisphere sites, this study shows a progressive diminishing of consecutive Late Holocene advances. These include a two-stage Little Ice Age, in agreement with other Southern Hemisphere glacier evidence. The presented record furthermore captures an unreported retreat phase behind present limits around 500 cal. yr BP.

  8. A Source Term for Wave Attenuation by Sea Ice in WAVEWATCH III (registered trademark): IC4

    Science.gov (United States)

    2017-06-07

    blue and 4 locations in the ice: 1, 2, 5, and 10 km. Notice the steepening of the high frequency face and the shift of the peak to slightly lower...Term for Wave Attenuation by Sea Ice in WAVEWATCH III®: IC4 ClarenCe O. COllins iii W. eriCk rOgers Ocean Dynamics and Prediction Branch Oceanography...Wave model Sea ice Ocean surface waves Arctic Ocean WAVEWATCH III Spectral wave modeling Source terms Wave hindcasting 73-N2K2-07-5 Naval Research

  9. Deuterium and /sup 18/O variations in lakes of the Schirmacher Oasis (East Antarctica)

    Energy Technology Data Exchange (ETDEWEB)

    Richter, W.; Strauch, G. (Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1983-05-01

    As a snow and icefree rock area the Schirmacher Oasis (Dronning Maud Land) is situated on the coast of the Antartic continent between inland and shelf ice. In the area of the oasis different exogenic conditions have produced multiform types of lake basins. In the present report first results about isotope hydrological relations in the lakes of the Schirmacher Oasis are discussed. The lakes can be classified by isotope hydrological parameters into different groups. The classification depends on in- and outflow, evaporation processes, nature of inflow and location.

  10. Thermal ice loads on dams and ancillary structures: A brief review

    International Nuclear Information System (INIS)

    Gerard, R.

    1989-01-01

    A major consideration in the design of low to medium head dams in cold regions is the thrust exerted by thermal expansion of a solid ice sheet. Such loads are also of concern in the design of gates, intakes and other ancillary structures. Such loads can be greater than 300-400 kilo Newtons per meter, and are of greatest concern when ice is unshielded by snow from temperature fluctuations. Details are presented of calculation of thermal ice loads, and field measurements of thermal ice forces. Past structural failures, field and laboratory investigations, and analyses, all confirm that thermal ice loads on wide structures such as dams, and isolated structures such as bridge piers and water intakes, can be much more significant than is suggested by the loads currently specified in various North American design guidelines for hydraulic structures. While some guidelines for thermal ice loads are excessively conservative, particularly for protected situations such as gates set between piers, in other more common situations they are dangerously low. Three useful approaches that would yield information for improving thermal ice load specification are: hindcast upper bounds on thermal ice loads by assessing the ice regime and load bearing capacity of existing structures; field measurement of thermal ice loads and stresses using modern instrumentation; and measurement and analysis of the formation and movement of lake and reservoir ice covers. 23 refs., 4 figs

  11. Glacial lakes of the Central and Patagonian Andes

    Science.gov (United States)

    Wilson, Ryan; Glasser, Neil F.; Reynolds, John M.; Harrison, Stephan; Anacona, Pablo Iribarren; Schaefer, Marius; Shannon, Sarah

    2018-03-01

    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65 km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.

  12. Late Quaternary lake-level changes constrained by radiocarbon and stable isotope studies on sediment cores from Lake Titicaca, South America

    Science.gov (United States)

    Rowe, Harold D.; Guilderson, Thomas P.; Dunbar, Robert B.; Southon, John R.; Seltzer, Geoffrey O.; Mucciarone, David A.; Fritz, Sherilyn C.; Baker, Paul A.

    2003-09-01

    developed for the Lake Titicaca sequence using different organic fractions, mobile organic sub-fractions and fractions containing mobile sub-fractions should generally be avoided in geochronology studies. Consequently, we believe humin and/or bulk decalcified ages provide the most consistent chronologies for the post-13,500 yr BP interval, and humin ages provide the most representative ages for sedimentation prior to 13,500 yr BP interval. Using the age model derived from the deep water core site and a previously published isotope-based lake-level reconstruction, we present a qualitative record of lake level in the context of several ice-core records from the western hemisphere. We find the latest Pleistocene lake-level response to changing insolation began during or just prior to the Bølling/Allerød period. Using the isotope-based lake-level reconstruction, we also find the 85-m drop in lake level that occurred during the mid-Holocene was synchronous with an increase in the variability of ice-core δ18O from a nearby icecap, but was not reflected in any of the polar ice-core records recovered from the interior of Antarctica and Greenland.

  13. Spatial distribution and temporal development of high-mountain lakes in western Austria

    Science.gov (United States)

    Merkl, Sarah; Emmer, Adam; Mergili, Martin

    2015-04-01

    Glacierized high-mountain environments are characterized by active morphodynamics, favouring the rapid appearance and disappearance of lakes. On the one hand, such lakes indicate high-mountain environmental changes such as the retreat of glaciers. On the other hand, they are sometimes susceptible to sudden drainage, leading to glacial lake outburst floods (GLOFs) putting the downstream population at risk. Whilst high-mountain lakes have been intensively studied in the Himalayas, the Pamir, the Andes or the Western Alps, this is not the case for the Eastern Alps. A particular research gap, which is attacked with the present work, concerns the western part of Austria. We consider a study area of approx. 6,140 km², covering the central Alps over most of the province of Tyrol and part of the province of Salzburg. All lakes ≥250 m² located higher than 2000 m asl are mapped from high-resolution Google Earth imagery and orthophotos. The lakes are organized into seven classes: (i) ice-dammed; near-glacial (ii) moraine-dammed and (iii) bedrock-dammed; (iv) moraine-dammed and (v) bedrock-dammed distant to the recent glaciers; (vi) landslide-dammed; (vii) anthropogenic. The temporal development of selected lakes is investigated in detail, using aerial photographs dating back to the 1950s. 1045 lakes are identified in the study area. Only eight lakes are ice-dammed (i). One third of all lakes is located in the immediate vicinity of recent glacier tongues, half of them impounded by moraine (ii), half of them by bedrock (iii). Two thirds of all lakes are impounded by features (either moraines or bedrock) shaped by LIA or Pleistocenic glaciers at some distance to the present glacier tongues (iv and v). Only one landslide-dammed lake (vi) is identified in the study area, whilst 21 lakes are of anthropogenic origin (vii). 72% of all lakes are found at 2250-2750 m asl whilst less than 2% are found above 3000 m asl. The ratio of rock-dammed lakes increases with increasing

  14. Perchlorate in Lake Water from an Operating Diamond Mine.

    Science.gov (United States)

    Smith, Lianna J D; Ptacek, Carol J; Blowes, David W; Groza, Laura G; Moncur, Michael C

    2015-07-07

    Mining-related perchlorate [ClO4(-)] in the receiving environment was investigated at the operating open-pit and underground Diavik diamond mine, Northwest Territories, Canada. Samples were collected over four years and ClO4(-) was measured in various mine waters, the 560 km(2) ultraoligotrophic receiving lake, background lake water and snow distal from the mine. Groundwaters from the underground mine had variable ClO4(-) concentrations, up to 157 μg L(-1), and were typically an order of magnitude higher than concentrations in combined mine waters prior to treatment and discharge to the lake. Snow core samples had a mean ClO4(-) concentration of 0.021 μg L(-1) (n=16). Snow and lake water Cl(-)/ClO4(-) ratios suggest evapoconcentration was not an important process affecting lake ClO4(-) concentrations. The multiyear mean ClO4(-) concentrations in the lake were 0.30 μg L(-1) (n = 114) in open water and 0.24 μg L(-1) (n = 107) under ice, much below the Canadian drinking water guideline of 6 μg L(-1). Receiving lake concentrations of ClO4(-) generally decreased year over year and ClO4(-) was not likely [biogeo]chemically attenuated within the receiving lake. The discharge of treated mine water was shown to contribute mining-related ClO4(-) to the lake and the low concentrations after 12 years of mining were attributed to the large volume of the receiving lake.

  15. Postglacial uplift of the eastern Gulf of Finland-Lake Ladoga region: models and observations

    Science.gov (United States)

    Amantov, Aleksey; Fjeldskaar, Willy; Amantova, Marina

    2015-04-01

    The eastern Gulf of Finland - Lake Ladoga region - is at the peripheral part of the Fennoscandian post-glacial uplift. We compared different modeling results for this region with observations, including our revision of geomorphological traces of paleo shorelevel. As in many parts of the general Baltic-White Sea bedrock lowland at the margin of the Fennoscandian Shield, the bedrock landscape was modified by glaciers, but it was also the major controlling factor for the history of glacial grows and decays. First-order landforms of this segment are: Lake Ladoga-Lake Ilmen lowland, Lembolovo High of the Karelic Isthmus and Neva-Gulf of Finland lowland. The range of the bedrock topography is close to 350 m. The landforms reflect different glacial behavior during stadials, with fast movement and strong erosion in northern Ladoga, but passive motion and accumulation around Lembolovo High. The differences influenced the ice sheet and deglaciation history. The shore level displacements in this area are slightly different than westwards in the Baltic area; the shoreline tilts are usually lower in southern-central part of the eastern Gulf of Finland-lake Ladoga region. For example, the shoreline tilts at 11 600 BP in the Baltic Ice Lake in the south-east range from 0.55 to 0.31 m/km. The slope of the Ancylus shoreline varies from 0.12 to 0.18 m/km, increasing to almost the double in the north-western area. Similarly, the Littorina shore level is tilted only 0.08 m/km, rising to 0.14 m/km in the north-west. We have used this data in our high resolution modeling involving glacial isostasy, hydro isostasy, sediment isostasy, and gravity field changes. The mopdeling is based on Earth rheology model with a low-viscosity asthenosphere of thickness less than 150 km and viscosity less than 7.0x10**19 Pa s above a mantle of viscosity 10**21 Pa s, and an effective elastic lithosphere thickness of 30-40 km (flexural rigidity 10**24 Nm). The specific uplift features in the area are

  16. Changing Groundwater and Lake Storage in the Americas from the Last Glacial Maximum to the Present Day

    Science.gov (United States)

    Callaghan, K. L.; Wickert, A. D.; Michael, L.; Fan, Y.; Miguez-Macho, G.; Mitrovica, J. X.; Austermann, J.; Ng, G. H. C.

    2017-12-01

    Groundwater accounts for 1.69% of the globe's water storage - nearly the same amount (1.74%) that is stored in ice caps and glaciers. The volume of water stored in this reservoir has changed over glacial-interglacial cycles as climate warms and cools, sea level rises and falls, ice sheets advance and retreat, surface topography isostatically adjusts, and patterns of moisture transport reorganize. During the last deglaciation, over the past 21000 years, all of these factors contributed to profound hydrologic change in the Americas. In North America, deglaciation generated proglacial lakes and wetlands along the isostatically-depressed margin of the retreating Laurentide Ice Sheet, along with extensive pluvial lakes in the desert southwest. In South America, changing patterns of atmospheric circulation caused regional and time-varying wetting and drying that led to fluctuations in water table levels. Understanding how groundwater levels change in response to these factors can aid our understanding of the effects of modern climate change on groundwater resources. Using a model that incorporates temporally evolving climate, topography (driven by glacial isostatic adjustment), ice extent, sea level, and spatially varying soil properties, we present our estimates of changes in total groundwater storage in the Americas over the past 21000 years. We estimate depth to water table at 500-year intervals and at a 30-arcsecond resolution. This allows a comparative assessment of changing groundwater storage volumes through time. The model has already been applied to the present day and has proven successful in estimating modern groundwater depths at a broad scale (Fan et al., 2013). We also assess changing groundwater-fed lakes, and compare model-estimated lake sizes and locations to paleorecords of these lakes. Our data- and model-integrated look back at the terminal Pleistocene provides an estimate of groundwater variability under extreme climate change. Preliminary results

  17. Distinguishing Clouds from Ice over the East Siberian Sea, Russia

    Science.gov (United States)

    2002-01-01

    As a consequence of its capability to retrieve cloud-top elevations, stereoscopic observations from the Multi-angle Imaging SpectroRadiometer (MISR) can discriminate clouds from snow and ice. The central portion of Russia's East Siberian Sea, including one of the New Siberian Islands, Novaya Sibir, are portrayed in these views from data acquired on May 28, 2002.The left-hand image is a natural color view from MISR's nadir camera. On the right is a height field retrieved using automated computer processing of data from multiple MISR cameras. Although both clouds and ice appear white in the natural color view, the stereoscopic retrievals are able to identify elevated clouds based on the geometric parallax which results when they are observed from different angles. Owing to their elevation above sea level, clouds are mapped as green and yellow areas, whereas land, sea ice, and very low clouds appear blue and purple. Purple, in particular, denotes elevations very close to sea level. The island of Novaya Sibir is located in the lower left of the images. It can be identified in the natural color view as the dark area surrounded by an expanse of fast ice. In the stereo map the island appears as a blue region indicating its elevation of less than 100 meters above sea level. Areas where the automated stereo processing failed due to lack of sufficient spatial contrast are shown in dark gray. The northern edge of the Siberian mainland can be found at the very bottom of the panels, and is located a little over 250 kilometers south of Novaya Sibir. Pack ice containing numerous fragmented ice floes surrounds the fast ice, and narrow areas of open ocean are visible.The East Siberian Sea is part of the Arctic Ocean and is ice-covered most of the year. The New Siberian Islands are almost always covered by snow and ice, and tundra vegetation is very scant. Despite continuous sunlight from the end of April until the middle of August, the ice between the island and the mainland

  18. Nutritional composition and shelflife of the lake victoria nile perch ...

    African Journals Online (AJOL)

    Nile perch, the most important commercial fish species from the Lake Victoria fishery, contributes about 67% of Kenya's total annual fish export earnings. Despite the Nile perch being an important foreign exchange earner, little information is available on its nutritional composition and shelf life on ice, information that is ...

  19. Advancing approaches for multi-year high-frequency monitoring of temporal and spatial variability in carbon cycle fluxes and drivers in freshwater lakes

    Science.gov (United States)

    Desai, A. R.; Reed, D. E.; Dugan, H. A.; Loken, L. C.; Schramm, P.; Golub, M.; Huerd, H.; Baldocchi, A. K.; Roberts, R.; Taebel, Z.; Hart, J.; Hanson, P. C.; Stanley, E. H.; Cartwright, E.

    2017-12-01

    Freshwater ecosystems are hotspots of regional to global carbon cycling. However, significant sample biases limit our ability to quantify and predict these fluxes. For lakes, scaled flux estimates suffer biased sampling toward 1) low-nutrient pristine lakes, 2) infrequent temporal sampling, 3) field campaigns limited to the growing season, and 4) replicates limited to near the center of the lake. While these biases partly reflect the realities of ecological sampling, there is a need to extend observations towards the large fraction of freshwater systems worldwide that are impaired by human activities and those facing significant interannual variability owing to climatic change. Also, for seasonally ice-covered lakes, much of the annual budget of carbon fluxes is thought to be explained by variation in the shoulder seasons of spring ice melt and fall turnover. Recent advances in automated, continuous multi-year temporal sampling coupled with rapid methods for spatial mapping of CO2 fluxes has strong potential to rectify these sampling biases. Here, we demonstrate these advances in an eutrophic seasonally-ice covered lake with an urban shoreline and agricultural watershed. Multiple years of half-hourly eddy covariance flux tower observations from two locations are coupled with frequent spatial samples of these fluxes and drivers by speedboat, floating chamber fluxes, automated buoy-based monitoring of lake nutrient and physical profiles, and ensemble of physical-ecosystem models. High primary productivity in the water column leads to an average net carbon sink during the growing season in much of the lake, but annual net carbon fluxes show the lake can act as an annual source or a sink of carbon depending the timing of spring and fall turnover. Trophic interactions and internal waves drive shorter-term variation while nutrients and biology drive seasonal variation. However, discrepancies remain among methods to quantify fluxes, requiring further investigation.

  20. Microfabric and Structures in Glacial Ice

    Science.gov (United States)

    Monz, M.; Hudleston, P. J.

    2017-12-01

    Similar to rocks in active orogens, glacial ice develops both structures and fabrics that reflect deformation. Crystallographic preferred orientation (CPO), associated with mechanical anisotropy, develops as ice deforms, and as in rock, directly reflects the conditions and mechanisms of deformation and influences the overall strength. This project aims to better constrain the rheologic properties of natural ice through microstructural analysis and to establish the relationship of microfabric to macroscale structures. The focus is on enigmatic fabric patterns found in coarse grained, "warm" (T > -10oC) ice deep in ice sheets and in valley glaciers. Deformation mechanisms that produce such patterns are poorly understood. Detailed mapping of surface structures, including bedding, foliation, and blue bands (bubble-free veins of ice), was done in the ablation zone of Storglaciären, a polythermal valley glacier in northern Sweden. Microstructural studies on samples from a transect across the ablation zone were carried out in a cold room. Crystal size was too large for use of electron backscattered diffraction to determine CPO, therefore a Rigsby universal stage, designed specifically for ice, was used. In thick and thin sections, recrystallized grains are locally variable in both size (1mm-7cm in one thin section) and shape and clearly reflect recrystallization involving highly mobile grain boundaries. Larger crystals are often branching, and appear multiple times throughout one thin section. There is a clear shape preferred orientation that is generally parallel with foliation defined by bubble alignment and concentration. Locally, there appears to be an inverse correlation between bubble concentration and smoothness of grain boundaries. Fabric in samples that have undergone prolonged shear display roughly symmetrical multimaxima patterns centered around the pole to foliation. The angular distances between maxima suggest a possible twin relationship that may have

  1. Evolution of Meltwater on the McMurdo Ice Shelf, Antarctica During Two Summer Melt Seasons

    Science.gov (United States)

    Macdonald, G. J.; Banwell, A. F.; Willis, I.; Mayer, D. P.; Hansen, E. K.; MacAyeal, D. R.

    2017-12-01

    Ice shelves surround > 50% of Antarctica's coast and their response to climate change is key to the ice sheet's future and global sea-level rise. Observations of the development and drainage of 2750 lakes prior to the collapse of the Larsen B Ice Shelf, combined with our understanding of ice-shelf flexure/fracture, suggest that surface meltwater plays a key role in ice-shelf stability, although the present state of knowledge remains limited. Here, we report results of an investigation into the seasonal evolution of meltwater on the McMurdo Ice Shelf (MIS) during the 2015/16 and 2016/17 austral summers using satellite remote sensing, complemented by ground survey. Although the MIS is relatively far south (78° S), it experiences relatively high ablation rates in the west due to adiabatically warmed winds, making it a useful example of how meltwater could evolve on more southerly ice shelves in a warming climate. We calculate the areas and depths of ponded surface meltwater on the ice shelf at different stages of the two melt seasons using a modified NDWI approach and water-depth algorithm applied to both Landsat 8 and Worldview imagery. Data from two automatic weather stations on the ice shelf are used to drive a positive degree-day model to compare our observations of surface water volumes with modelled meltwater production. Results suggest that the spatial and temporal variations in surface meltwater coverage on the ice shelf vary not only with climatic conditions but also in response to other important processes. First, a rift that widens and propagates between the two melt seasons intercepts meltwater streams, redirecting flow and facilitating ponding elsewhere. Second, some lakes from previous years remain frozen over and become pedestalled, causing streams to divert around their perimeter. Third, surface debris conditions also cause large-scale spatial variation in melt rates and the flow and storage of water.

  2. Determination of premining geochemical background and delineation of extent of sediment contamination in Blue Creek downstream from Midnite Mine, Stevens County, Washington

    Science.gov (United States)

    Church, Stan E.; Kirschner, Frederick E.; Choate, LaDonna M.; Lamothe, Paul J.; Budahn, James R.; Brown, Zoe Ann

    2008-01-01

    Geochemical and radionuclide studies of sediment recovered from eight core sites in the Blue Creek flood plain and Blue Creek delta downstream in Lake Roosevelt provided a stratigraphic geochemical record of the contamination from uranium mining at the Midnite Mine. Sediment recovered from cores in a wetland immediately downstream from the mine site as well as from sediment catchments in Blue Creek and from cores in the delta in Blue Creek cove provided sufficient data to determine the premining geochemical background for the Midnite Mine tributary drainage. These data provide a geochemical background that includes material eroded from the Midnite Mine site prior to mine development. Premining geochemical background for the Blue Creek basin has also been determined using stream-sediment samples from parts of the Blue Creek, Oyachen Creek, and Sand Creek drainage basins not immediately impacted by mining. Sediment geochemistry showed that premining uranium concentrations in the Midnite Mine tributary immediately downstream of the mine site were strongly elevated relative to the crustal abundance of uranium (2.3 ppm). Cesium-137 (137Cs) data and public records of production at the Midnite Mine site provided age control to document timelines in the sediment from the core immediately downstream from the mine site. Mining at the Midnite Mine site on the Spokane Indian Reservation between 1956 and 1981 resulted in production of more than 10 million pounds of U3O8. Contamination of the sediment by uranium during the mining period is documented from the Midnite Mine along a small tributary to the confluence of Blue Creek, in Blue Creek, and into the Blue Creek delta. During the period of active mining (1956?1981), enrichment of base metals in the sediment of Blue Creek delta was elevated by as much as 4 times the concentration of those same metals prior to mining. Cadmium concentrations were elevated by a factor of 10 and uranium by factors of 16 to 55 times premining

  3. A POSSIBLE TSUNAMI IN THE LABRADOR SEA RELATED TO THE DRAINAGE OF GLACIAL LAKE AGASSIZ ~8400 YEARS B.P.

    Directory of Open Access Journals (Sweden)

    N. Nirupama

    2005-01-01

    Full Text Available For thousands of years, the thick Laurentide Ice Sheet covered a large part of northern North America, damming northward-draining rivers. As this ice retreated, large lakes formed along its margin. Glacial Lake Agassiz was the largest of these ice-marginal lakes, covering an area of >800,000 km2 (more than twice the size of the largest lake in the modern world, the Caspian Sea before it drained catastrophically into the Labrador Sea. Even before that, Lake Agassiz had periodically released large volumes of water into the ocean via the Great Lakes-St. Lawrence and the Athabasca-Mackenzie River systems. The last and largest of these outbursts released >150,000 km3 through Hudson Bay and Hudson Strait in 6-12 months; the average flux over that period was ~5 Sv (1 Sv = 1×106 m3s-1.When a volume of water this large is discharged into a coastal sea like the Labrador Sea, it may generate a surface flood wave or a tsunami if the water mass is large enough and introduced in a short time. To our knowledge no previous calculations have been made to estimate the potential impact of a flood burst on the generation of solitary waves. Using analogies of tsunamis generated by submarine landslides and ocean earthquakes, the amplitude of a Lake Agassiz generated tsunami is estimated to have been at least 2 m. Directionality considerations, as well as the effect of the Coriolis Force in the Northern Hemisphere, suggest that the resulting tsunami probably traveled 50-100 km along the west coast of the Labrador Sea, south of Hudson Strait where the outburst entered the ocean, before being dissipated. The erosional and depositional affects of historic and prehistoric tsunamis are present in the geological record, and provide guidance in seeking evidence for the Lake Agassiz flood burst and subsequent tsunami. This record may be found along the western coast of the Labrador Sea as well as along the shores of Hudson Strait.

  4. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    Science.gov (United States)

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  5. New lakes in de-glaciating high-mountain regions - a challenge for integrative research about hazard protection and sustainable use

    Science.gov (United States)

    Haeberli, W.

    2012-12-01

    As a consequence of rapid glacier vanishing, an increasing number of smaller and larger lakes are forming in high-mountain regions worldwide. Such new lakes can be touristic landscape attractions and may also represent interesting potentials for hydropower production. However, they more and more often come into existence at the foot of very large and steep icy mountain walls, which are progressively destabilizing due to changing surface and subsurface ice conditions. The probability of far-reaching flood and debris flow catastrophes caused by impact waves from large rock/ice avalanches into lakes may still appear to be small now but steadily increases for long time periods to come. Corresponding projects related to hazard protection and sustainable use should be combined in an integrative and participatory planning process. This planning process must start soon, because the development in nature is fast and most likely accelerating. Technical tools for creating the necessary scientific knowledge basis at local to regional scales exist and can be used. The location of future new lakes in topographic bed depressions of now still glacier-covered areas can be quite safely assessed on the basis of morphological criteria or by applying ice thickness estimates using digital terrain information. Models for ice-thickness estimates couple the depth to bedrock via the basal shear stress with the surface slope and provide a (relative) bed topography which is much more robust than the (absolute) value of the calculated ice thickness. Numerical models at various levels of sophistication can be used to simulate possible future glacier changes in order to establish the probable time of lake formation and the effects of glacier shrinking on runoff seasonality and water supply. The largest uncertainties thereby relate to the large uncertainties of (absolute) ice thickness and mass/energy fluxes at the surface (climate scenarios, precipitation and albedo changes, etc.). Combined

  6. Calcium and sodium as regulators of the recovery of four Daphnia species along a gradient of metal and base cations in metal contaminated lakes in Sudbury, Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Martha Patricia Celis-Salgado

    2016-04-01

    Full Text Available Smelting of sulphur-rich metallic ores in Sudbury, Ontario, Canada, has caused acidification and metal contamination of thousands of lakes in the region. Recent reductions in smelter emissions have resulted in much ecological recovery, but the recovery of Daphnia species has been poor. To determine if Cu and Ni toxicity could explain differences in daphniid recovery among lakes, we compared results of 14 d static with renewal bioassays in waters from Blue Chalk Lake, an uncontaminated reference lake 200 km from Sudbury, and from five Sudbury lakes ranging in distance from the smelters and varying in metal and cation concentrations. We spiked Blue Chalk Lake water with Cu and Ni to levels resembling those of the Sudbury lakes and also tested the lake waters for toxicity. Survival of Daphnia pulex, D. pulicaria and D. mendotae decreased monotonically with increasing metal concentrations in the spiked Blue Chalk Lake treatments, falling from 90% in the controls to 0% at the two highest Cu and Ni levels, reflecting levels of Middle and Hannah lakes. In contrast, survival in waters collected from the actual Sudbury lakes did not monotonically track their total metal concentrations. Rather, survival fell to 0% in Clearwater Lake water, a lake with intermediate metal contamination (8.9 and 79.9 μg L–1 of Cu and Ni, respectively vs 70-100% in the other lakes. We performed an additional assay with Clearwater Lake waters increasing its Ca and Na concentrations, singly and in combination to levels that reflected the levels in Middle Lake. The survival of the four daphniid species increased from 0% up to 80-100% with added Ca and from 0% to 60-90% with added Na. Lipid-ovarian indices had a similar trend to survival for D. mendotae and D. pulicaria in Bioassay 1, varying with the cation concentrations in the lakes for the daphniids in Bioassay 2. The bioassays results imply that regional recovery patterns of daphniids in Sudbury lakes cannot be understood

  7. Sea and Freshwater Ice Concentration from VIIRS on Suomi NPP and the Future JPSS Satellites

    Directory of Open Access Journals (Sweden)

    Yinghui Liu

    2016-06-01

    Full Text Available Information on ice is important for shipping, weather forecasting, and climate monitoring. Historically, ice cover has been detected and ice concentration has been measured using relatively low-resolution space-based passive microwave data. This study presents an algorithm to detect ice and estimate ice concentration in clear-sky areas over the ocean and inland lakes and rivers using high-resolution data from the Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar Orbiting Partnership (S-NPP and on future Joint Polar Satellite System (JPSS satellites, providing spatial detail that cannot be obtained with passive microwave data. A threshold method is employed with visible and infrared observations to identify ice, then a tie-point algorithm is used to determine the representative reflectance/temperature of pure ice, estimate the ice concentration, and refine the ice cover mask. The VIIRS ice concentration is validated using observations from Landsat 8. Results show that VIIRS has an overall bias of −0.3% compared to Landsat 8 ice concentration, with a precision (uncertainty of 9.5%. Biases and precision values for different ice concentration subranges from 0% to 100% can be larger.

  8. An improved active contour model for glacial lake extraction

    Science.gov (United States)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  9. Woody vegetation, fuel and fire track the melting of the Scandinavian ice-sheet before 9500 cal yr BP

    Science.gov (United States)

    Carcaillet, Christopher; Hörnberg, Greger; Zackrisson, Olle

    2012-11-01

    New studies indicate the presence of early Holocene ice-free areas far north in Scandinavia. Post-glacial fire and vegetation were investigated based on sedimentary charcoal and pollen from two small lakes in northern Sweden. Accumulation of organic sediment started around 10,900 and 9200 cal yr BP, showing that both lake valleys were ice-free extremely early given their northerly location. Fire events started after 9600 cal yr BP and became less common around the '8.2-ka event'. Woody vegetation provided fuel that contributed to fires. The first vegetation in our pollen record consisted of Hippophae, Dryas, grasses and sedges. Subsequently broadleaved trees (Betula, Salix) increased in abundance and later Pinus, Alnus, ferns and Lycopodium characterized the vegetation. Pollen from Larix, Picea and Malus were also found. The change in vegetation composition was synchronous with the decrease in lake-water pH in the region, indicating ecosystem-scale processes; this occurred during a period of net global and regional warming. The changes in fire frequency and vegetation appear independent of regional trends in precipitation. The reconstructed fire history and vegetation support the scenario of early ice-free areas far north in Scandinavia during early Holocene warming, creating favorable conditions for woody plants and wildfires.

  10. 77 FR 2017 - Safety Zone; Ice Rescue Exercise; Green Bay, Dyckesville, WI

    Science.gov (United States)

    2012-01-13

    ... Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not concern an environmental risk to health or risk to safety that may disproportionately affect children... the Port Sector Lake has determined that this ice rescue exercise will pose hazards to the public...

  11. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    Science.gov (United States)

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  12. Volcano-ice interaction as a microbial habitat on Earth and Mars.

    Science.gov (United States)

    Cousins, Claire R; Crawford, Ian A

    2011-09-01

    Volcano-ice interaction has been a widespread geological process on Earth that continues to occur to the present day. The interaction between volcanic activity and ice can generate substantial quantities of liquid water, together with steep thermal and geochemical gradients typical of hydrothermal systems. Environments available for microbial colonization within glaciovolcanic systems are wide-ranging and include the basaltic lava edifice, subglacial caldera meltwater lakes, glacier caves, and subsurface hydrothermal systems. There is widespread evidence of putative volcano-ice interaction on Mars throughout its history and at a range of latitudes. Therefore, it is possible that life on Mars may have exploited these habitats, much in the same way as has been observed on Earth. The sedimentary and mineralogical deposits resulting from volcano-ice interaction have the potential to preserve evidence of any indigenous microbial populations. These include jökulhlaup (subglacial outflow) sedimentary deposits, hydrothermal mineral deposits, basaltic lava flows, and subglacial lacustrine deposits. Here, we briefly review the evidence for volcano-ice interactions on Mars and discuss the geomicrobiology of volcano-ice habitats on Earth. In addition, we explore the potential for the detection of these environments on Mars and any biosignatures these deposits may contain.

  13. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Afjeh, Abdollah A. [Univ. of Toledo, OH (United States); Windpower, Nautica [Nautica Windpower, Olmsted Falls, OH (United States); Marrone, Joseph [OCC COWI, Vancouver (Canada); Wagner, Thomas [Nautica Windpower, Olmsted Falls, OH (United States)

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method

  14. Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges

    International Nuclear Information System (INIS)

    Li Dewen; Li Yingkui; Ma Baoqi; Zhao, Junxiang; Dong Guocheng; Wang Liqiang

    2009-01-01

    This paper presents a preliminary study on lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, by dating four groups of beach ridges using optically stimulated luminescence (OSL). The highest/oldest beach ridge group (>100 m higher than the current lake level) is dated back to 67.9 ± 2.4 ka BP, corresponding to the early stage of the Last Glaciation (marine isotope stage (MIS) 4). This date further supports that no plateau-scale ice sheet covered the Tibetan Plateau during the Last Glaciation. The other three groups produce OSL ages of 30.4 ± 2.9 to 18.6 ± 1.7, 12.5 ± 1.6 to 9.2 ± 0.5, and 6.9 ± 0.2 ka BP respectively, most likely corresponding to cold or wet climate periods of the late stage of the Last Glaciation (MIS 2), deglaciation, and Holocene Hypsithermal. On the plateau scale, these four beach ridge groups are almost synchronous with advances or standstills of Himalayan glaciers, indicating similar climate controls across the central and southern Tibetan Plateau, and being consistent with the conclusion, obtained from nearby ice core records, that this area is affected by the South Asia monsoon. Furthermore, beach ridges are also synchronous with fluvial terraces in the northern Tibetan Plateau, implying common driving forces during their formation. Therefore, some terraces may be formed as a result of climate events rather than being of tectonic origin.

  15. Man in the Arctic, The Changing Nature of His Quest for Food and Water as Related to Snow, Ice, and Permafrost

    Science.gov (United States)

    1962-01-01

    the general dura - tion of freshwater ice approaches ten months, al- though occasionally ice remains in some of the larger lakes throughout the... Marguerite G. "Marooned in the clouds," Atlantic Monthly, CLXXXI, no. 2 (j948), 34-46. Taylor, Andrew. "Snow compaction." SIPRE Report 13 (1953), pp. xxiv

  16. Challenges in understanding, modelling, and mitigating Lake Outburst Flood Hazard: experiences from Central Asia

    Science.gov (United States)

    Mergili, Martin; Schneider, Demian; Andres, Norina; Worni, Raphael; Gruber, Fabian; Schneider, Jean F.

    2010-05-01

    Lake Outburst Floods can evolve from complex process chains like avalanches of rock or ice that produce flood waves in a lake which may overtop and eventually breach glacial, morainic, landslide, or artificial dams. Rising lake levels can lead to progressive incision and destabilization of a dam, to enhanced ground water flow (piping), or even to hydrostatic failure of ice dams which can cause sudden outflow of accumulated water. These events often have a highly destructive potential because a large amount of water is released in a short time, with a high capacity to erode loose debris, leading to a powerful debris flow with a long travel distance. The best-known example of a lake outburst flood is the Vajont event (Northern Italy, 1963), where a landslide rushed into an artificial lake which spilled over and caused a flood leading to almost 2000 fatalities. Hazards from the failure of landslide dams are often (not always) fairly manageable: most breaches occur in the first few days or weeks after the landslide event and the rapid construction of a spillway - though problematic - has solved some hazardous situations (e.g. in the case of Hattian landslide in 2005 in Pakistan). Older dams, like Usoi dam (Lake Sarez) in Tajikistan, are usually fairly stable, though landsildes into the lakes may create floodwaves overtopping and eventually weakening the dams. The analysis and the mitigation of glacial lake outburst flood (GLOF) hazard remains a challenge. A number of GLOFs resulting in fatalities and severe damage have occurred during the previous decades, particularly in the Himalayas and in the mountains of Central Asia (Pamir, Tien Shan). The source area is usually far away from the area of impact and events occur at very long intervals or as singularities, so that the population at risk is usually not prepared. Even though potentially hazardous lakes can be identified relatively easily with remote sensing and field work, modeling and predicting of GLOFs (and also

  17. Late Glacial and Holocene sedimentary evolution of Czechowskie Lake (Eastern Pomerania, North Central Poland)

    Science.gov (United States)

    Kordowski, Jarosław; Błaszkiewicz, Mirosław; Kramkowski, Mateusz; Noryśkiewicz, Agnieszka M.; Słowiński, Michał; Tyszkowski, Sebastian; Brauer, Achim; Ott, Florian

    2015-04-01

    Czechowskie Lake is located in north-central Poland in Tuchola Forest, about 100 kilometers SW away from Gdańsk. In the deepest parts of the lake there are preserved laminated sediments with an excellent Holocene climatic record. The lake has the area of 76,6 ha. Actual water level is at 109,9 m a.s.l. The average depth is 9,59 m, maximal 32 m. It occupies a large subglacial channel, reproduced within the glacifluvial sediments of the last glaciation. The lake has a history reaching back to Pommeranian phase which is proved by analysis of sedimentary succesions in the vicinity of present-day waterbody. Primarily it come to existence as an very variable ice dammed lake but after dead ice and permafrost desintegration it changed into a stable lake. In the terrestrialised part oft the lake and in its litoral zone there were curried out numerous boreholes within limnic and slope sediments. They have been analysed in respect to lithology and structure. Some of them were also investigated palynologically which along with radiocarbon datings allowed to reconstruct major phases of the water level fluctuations. The maximum infilling with the limnic and telmatic sediments reaches over 12 m. In the bottom of the lake there is a marked presence of many overdeepenings with the diameter of dozen or several dozen meters and the depth of up to 10 m with numerous, distinct throughs between them. They favoured the preservation of the lamination in the deepest parts of the lake due to waves hampering and stopping of the density circulation in the lake waterbody. The analysis of limnic sediments revealed considerable spatial and temporal variability mainly in dependance of the area of the water body and water level in time of deposition. In the lake are recorded three distinct phases of lake level decrease. The sedimentary evolution in the isolated minor lake basins showed gradual decrease of mineral and organic deposition in favour for carbonate one although in places separated by

  18. Arctic lake physical processes and regimes with implications for winter water availability and management in the National Petroleum Reserve Alaska.

    Science.gov (United States)

    Jones, Benjamin M; Arp, Christopher D; Hinkel, Kenneth M; Beck, Richard A; Schmutz, Joel A; Winston, Barry

    2009-06-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.

  19. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding

    Energy Technology Data Exchange (ETDEWEB)

    Dowdeswell, J A; Evans, S [Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER (United Kingdom)

    2004-10-01

    Radio-echo sounding (RES), utilizing a variety of radio frequencies, was developed to allow glaciologists to measure the thickness of ice sheets and glaciers. We review the nature of electromagnetic wave propagation in ice and snow, including the permittivity of ice, signal attenuation and volume scattering, along with reflection from rough and specular surfaces. The variety of instruments used in RES of polar ice sheets and temperate glaciers is discussed. The applications and insights that a knowledge of ice thickness, and the wider nature of the form and flow of ice sheets, provides are also considered. The thickest ice measured is 4.7 km in East Antarctica. The morphology of the Antarctic and Greenland ice sheets, and many of the smaller ice caps and glaciers of the polar regions, has been investigated using RES. These findings are being used in three-dimensional numerical models of the response of the cryosphere to environmental change. In addition, the distribution and character of internal and basal reflectors within ice sheets contains information on, for example, ice-sheet layering and its chrono-stratigraphic significance, and has enabled the discovery and investigation of large lakes beneath the Antarctic Ice Sheet. Today, RES from ground-based and airborne platforms remains the most effective tool for measuring ice thickness and internal character.

  20. Phenol compounds in the borehole 5G, Vostok station, after the unlocking of the subglacial lake

    Directory of Open Access Journals (Sweden)

    I. A. Alekhina

    2017-01-01

    Full Text Available The main results after the first unlocking into the subglacial Lake Vostok were as follows: the Lake had been opened and not polluted; the water pressure within the lake was not balanced by a column of the drilling liquid that resulted in unplanned rise of water in the borehole up to 340 m. The main problem during the drilling in the lake ice was to prevent a pollution of water by the drilling fluid, which filled the borehole, and thus, to avoid a compression of the fluid which could be the main source of chemical and biological pollution of not only the Lake itself, but also the Lake water samples and ice cores. The article presents results of analysis of causes for the occurrence of phenolic compounds in the central channel in the core of secondary ice, being formed by the lake water that rose into the well after the first penetration (the range of depths was 3426–3450 m. It was found that the process, running within the borehole during the drilling, can be described as the fractionation of phenolic compounds, being contained in the filling liquid, to the water phase with its subsequent freezing. We have developed methods for the determination of concentrations of phenolic compounds in the original aviation kerosene and Freon HCFC-141b: 6. mg·l−1 and 0.032 mg·l−1, respectively. To analyze the composition of phenolic compounds in the extract of real filling liquid, located at the bottom of the borehole, the method of gas chromatography-mass spectrometry (GC-MS was used. The corresponding peaks were quite well resolved and identified as phenol and its derivatives. The main components of the extract were phenol (20%, 2.5-dimethyl phenol (23,8%, 2,4,6-trimethylphenol, and other congeners of phenol. In our case, the Lake Vostok was not polluted during both, the first and second penetrations, however, the problem of human impact on these pristine and unique subglacial reservoirs remains extremely relevant. This impact includes not only

  1. Confirmation of cisco spawning in Chaumont Bay, Lake Ontario using an egg pumping device

    Science.gov (United States)

    George, Ellen M.; Stott, Wendylee; Young, Brian; Karboski, Curtis T.; Crabtree, Darran L.; Roseman, Edward; Rudstam, Lars G.

    2017-01-01

    Cisco Coregonus artedi, a historically abundant and commercially important fish in the Great Lakes, have declined drastically in the last century due to the impacts of invasive species, overfishing, and habitat degradation. Chaumont Bay, New York is believed to contain one of the last remaining spawning populations of cisco in Lake Ontario although direct evidence of spawning has remained elusive. We document cisco spawning in Chaumont Bay for the first time in decades through the use of an egg pumping device specifically developed to sample through lake ice. Forty-one eggs were identified as cisco using genetic barcoding of the mitochondrial cytochrome c oxidase I (COI) gene. Cisco eggs were associated with shallow, rocky shoals. Contemporary knowledge of spawning behavior is an important step toward the successful restoration of cisco in Lake Ontario and across the Great Lakes.

  2. Modelling the viscoplastic behavior and the heterogeneous intracrystalline deformation of columnar ice polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lebensohn, Ricardo A [Los Alamos National Laboratory; Montagnat, Maurine [LGGE (FRANCE); Mansuy, Philippe [MICHELIN (FRANCE); Duval, Paul [LGGE (FRANCE); Philip, A [LGGE (FRANCE)

    2008-01-01

    A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and used to predict the micromechanical fields that develop in columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals. The predictions of the model are also discussed in relation with the deformation of columnar sea and lake ice, and with the mechanical behavior of granular ice of glaciers and polar ice sheets, as well.

  3. Arctic lake physical processes and regimes with implications for winter water availability and management in the national petroleum reserve alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, C.D.; Hinkel, Kenneth M.; Beck, R.A.; Schmutz, J.A.; Winston, B.

    2009-01-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA. ?? 2008 Springer Science+Business Media, LLC.

  4. Achieving Textbook Multigrid Efficiency for Hydrostatic Ice Sheet Flow

    KAUST Repository

    Brown, Jed; Smith, Barry; Ahmadia, Aron

    2013-01-01

    The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today's ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton--Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches.

  5. Achieving Textbook Multigrid Efficiency for Hydrostatic Ice Sheet Flow

    KAUST Repository

    Brown, Jed

    2013-03-12

    The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today\\'s ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton--Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches.

  6. Decomposition of lake phytoplankton. 2

    International Nuclear Information System (INIS)

    Hansen, L.; Krog, G.F.; Soendergaard, M.

    1986-01-01

    The lysis process of phytoplankton was followed in 24 h incubations in three Danish lakes. By means of gel-chromatography it was shown that the dissolved carbon leaching from different algal groups differed in molecular weight composition. Three distinct molecular weight classes (>10,000; 700 to 10,000 and < 700 Daltons) leached from blue-green algae in almost equal proportion. The lysis products of spring-bloom diatoms included only the two smaller size classes, and the molecules between 700 and 10,000 Daltons dominated. Measurements of cell content during decomposition of the diatoms revealed polysaccharides and low molecular weight compounds to dominate the lysis products. No proteins were leached during the first 24 h after cell death. By incubating the dead algae in natural lake water, it was possible to detect a high bacterial affinity towards molecules between 700 and 10,000 Daltons, although the other size classes were also utilized. Bacterial transformation of small molecules to larger molecules could be demonstrated. (author)

  7. Crushing of Subglacial Lake Sediment as a Source of Bio-utilisable Gases.

    Science.gov (United States)

    Gill Olivas, B.; Telling, J.; Michaud, A. B.; Skidmore, M. L.; Priscu, J. C.; Tranter, M.

    2017-12-01

    Recent research has shown microbial ecosystems exist under glaciers and ice sheets. The sources of energy to support these ecosystems are still not fully understood, particularly beneath the Antarctic Ice Sheet, where direct access to the atmosphere and in-washed organic matter and oxidising agents does not occur. Hence, sub-ice sheet energy sources are restricted to those in subglacial environments, except for ice-margin environments. This study focuses on sediments from Subglacial Lake Whillans (SLW), the first subglacial lake to be directly and cleanly sampled. Sediment from three depths in a shallow core extracted from SLW were used to assess the possible energy contributions from mechanochemical reactions to this subglacial ecosystem. To do this, the samples were crushed under an anoxic atmosphere using a ball mill. The sediments were then transferred into serum bottles under anoxic conditions. They were wetted and the headspace gas was subsequently sampled and analysed during a 40 day incubation. Results show the release of substantial amounts of hydrogen, which could potentially serve as an abiotic source of energy to microbes, in particular, methanogenic archaea. Significant amounts of short chain hydrocarbons (including methane and ethylene), possibly from the reactivation of ancient organic carbon, were also observed. Crushed samples showed a significant concentration of hydrogen peroxide produced on contact with water, as well as significant amounts of Si radicals, showing comminution of these sediments unlocks the potential for a wide range of redox conditions and reactions to develop within glacially eroded sediment under ice. This in turn provides a previously overlooked source of nutrients and energy for microbes to utilise.

  8. Water quality in Danube Delta Lakes: An assessment using benthic macroinvertebrates community

    Directory of Open Access Journals (Sweden)

    IBRAM Orhan

    2016-12-01

    Full Text Available An assessment of the ecological status of selected lakes in the Danube Delta Biosphere Reserve was done based on temporal and spatial variation of macroinvertebrate communities during 2012 and 2013. Macroinvertebrate communities and measures of these communities were evaluated and a baseline characterization of assemblages was determined for the analyzed sites. Each year, three sampling campaigns, one for each ice-free season were organized for data collection. Macroinvertebrate samples have been collected in every lake from three different stations with the use of an Ekmann dredge. The highest taxa richness are recorded in Fortuna and Isac lakes in 2013. Total abundance followed a pattern similar to taxa number with Fortuna and Isac lakes having the highest yearly values (maximum number of individuals – 225 - per sample has been recorded in September 2013, in Isac Lake.Using saprobic index as an indicator of ecological status Isac lake was classifies as moderate and other three lakes, Merhei, Furtuna and Rosu as good ecological status. Lack of correlation between diversity indices and the saprobic values suggests that other assessment methods could be more effective and provide better information than saprobic index does at least for Danube Delta.

  9. Luminescence dating of paleolake deltas and glacial deposits in Garwood Valley, Antarctica: Implications for climate, Ross ice sheet dynamics, and paleolake duration

    Science.gov (United States)

    Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.

    2017-01-01

    The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.

  10. Physical and chemical consequences of artificially deepened thermocline in a small humic lake - a paired whole-lake climate change experiment

    Science.gov (United States)

    Forsius, M.; Saloranta, T.; Arvola, L.; Salo, S.; Verta, M.; Ala-Opas, P.; Rask, M.; Vuorenmaa, J.

    2010-05-01

    Climate change with higher air temperatures and changes in cloud cover, radiation and wind speed alters the heat balance and stratification patterns of lakes. A paired whole-lake thermocline manipulation experiment of a small (0.047 km2) shallow dystrophic lake (Halsjärvi) was carried out in southern Finland. A thermodynamic model (MyLake) was used for both predicting the impacts of climate change scenarios and for determining the manipulation target of the experiment. The model simulations assuming several climate change scenarios indicated large increases in the whole-lake monthly mean temperature (+1.4-4.4 °C in April-October for the A2 scenario), and shortening of the length of the ice covered period by 56-89 days. The thermocline manipulation resulted in large changes in the thermodynamic properties of the lake, and those were rather well consistent with the simulated future increases in the heat content during the summer-autumn season. The manipulation also resulted in changes in the oxygen stratification, and the expansion of the oxic water layer increased the spatial extent of the sediment surface oxic-anoxic interfaces. The experiment also affected several other chemical constituents; concentrations of TotN, NH4 and organic carbon showed a statistically significant decrease, likely due to both unusual hydrological conditions during the experiment period and increased decomposition and sedimentation. Changes in mercury processes and in the aquatic food web were also introduced. In comparison with the results of a similar whole-lake manipulation experiment in a deep, oligotrophic, clear-watered lake in Norway, it is evident that shallow dystrophic lakes, common in the boreal region, are more sensitive to physical perturbations. This means that projected climate change may strongly modify their physical and chemical conditions in the future.

  11. Great Lakes Daily Ice Observations at NOAA Water Level Gauge Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains daily visual ice observations taken yearly from 1 November to 30 April at NOAA/National Ocean Service water level gauge sites in the Great...

  12. Isolation and characterization of coliforms from glacial ice and water in Canada's High Arctic.

    Science.gov (United States)

    Dancer, S J; Shears, P; Platt, D J

    1997-05-01

    Ellesmere Island is the northern most member of the Canadian Arctic Archipelago with over one-third of the land mass covered by ice. A joint services expedition to the island's Blue Mountains offered a unique opportunity for microbiological studies of resident bacteria in an environment uninhabited by man. Over 100 samples of water and ice were collected from stream, lake and glacier and the filtrate cultured under canvas. Bacterial growth was harvested onto swabs for transport back to the UK and 50 coliforms chosen at random for identification and antibiotic susceptibility testing. Most of the glacial strains were capsulated, pigmented and some over 2000 years old. Genera such as Serratia, Enterobacter, Klebsiella and Yersinia were found; speciation was inconclusive and some organisms remain unidentified. Ampicillin resistance was evident in 80% of water isolates as opposed to 30% of the glacial organisms, but the isolates were generally exquisitely susceptible to antibiotics. The facility for ampicillin resistance did not appear to be transferable. Plasmid DNA was found in 33% of the glacial organisms and over 50% of the water isolates. Similar profiles were identified within and apparently between species and required plasmid restriction analysis to help establish identity. Plasmid-free Serratia spp. were subjected to genomic fingerprinting. Indistinguishable patterns were found within sets of isolates both widely spaced by distance and collection date and it was postulated that coliforms able to survive an Arctic environment had spread extensively throughout the expedition area. In conclusion, this study contributes towards knowledge of naturally occurring antibiotic resistance, confirms the presence of plasmids and genotypic data provided evidence that potentially ancient organisms from glaciers can be cultured from water samples significantly distant.

  13. Remote Sensing-Derived Bathymetry of Lake Poopó

    Directory of Open Access Journals (Sweden)

    Adalbert Arsen

    2013-12-01

    Full Text Available Located within the Altiplano at 3,686 m above sea level, Lake Poopó is remarkably shallow and very sensitive to hydrologic recharge. Progressive drying has been observed in the entire Titicaca-Poopó-Desaguadero-Salar de Coipasa (TPDS system during the last decade, causing dramatic changes to Lake Poopó’s surface and its regional water supplies. Our research aims to improve understanding of Lake Poopó water storage capacity. Thus, we propose a new method based on freely available remote sensing data to reproduce Lake Poopó bathymetry. Laser ranging altimeter ICESat (Ice, Cloud, and land Elevation Satellite is used during the lake’s lowest stages to measure vertical heights with high precision over dry land. These heights are used to estimate elevations of water contours obtained with Landsat imagery. Contour points with assigned elevation are filtered and grouped in a points cloud. Mesh gridding and interpolation function are then applied to construct 3D bathymetry. Complementary analysis of Moderate Resolution Imaging Spectroradiometer (MODIS surfaces from 2000 to 2012 combined with bathymetry gives water levels and storage evolution every 8 days.

  14. Perspective View with Landsat Overlay, Salt Lake City Olympics Venues, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This computer generated perspective image provides a northward looking 'view from space' that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling, and the nearby Snow Basin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City area ski resorts host the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and a Landsat 5 satellite image mosaic. Topographic expression is exaggerated four times.For a full-resolution, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60

  15. Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau

    Science.gov (United States)

    Biskop, S.; Maussion, F.; Krause, P.; Fink, M.

    2016-01-01

    The contrasting patterns of lake-level fluctuations across the Tibetan Plateau (TP) are indicators of differences in the water balance over the TP. However, little is known about the key hydrological factors controlling this variability. The purpose of this study is to contribute to a more quantitative understanding of these factors for four selected lakes in the southern-central part of the TP: Nam Co and Tangra Yumco (increasing water levels), and Mapam Yumco and Paiku Co (stable or slightly decreasing water levels). We present the results of an integrated approach combining hydrological modeling, atmospheric-model output and remote-sensing data. The J2000g hydrological model was adapted and extended according to the specific characteristics of closed-lake basins on the TP and driven with High Asia Refined analysis (HAR) data at 10 km resolution for the period 2001-2010. Differences in the mean annual water balances among the four basins are primarily related to higher precipitation totals and attributed runoff generation in the Nam Co and Tangra Yumco basins. Precipitation and associated runoff are the main driving forces for inter-annual lake variations. The glacier-meltwater contribution to the total basin runoff volume (between 14 and 30 % averaged over the 10-year period) plays a less important role compared to runoff generation from rainfall and snowmelt in non-glacierized land areas. Nevertheless, using a hypothetical ice-free scenario in the hydrological model, we indicate that ice-melt water constitutes an important water-supply component for Mapam Yumco and Paiku Co, in order to maintain a state close to equilibrium, whereas the water balance in the Nam Co and Tangra Yumco basins remains positive under ice-free conditions. These results highlight the benefits of linking hydrological modeling with atmospheric-model output and satellite-derived data, and the presented approach can be readily transferred to other data-scarce closed lake basins, opening new

  16. Sediment processes and mercury transport in a frozen freshwater fluvial lake (Lake St. Louis, QC, Canada).

    Science.gov (United States)

    Canário, João; Poissant, Laurier; O'Driscoll, Nelson; Vale, Carlos; Pilote, Martin; Lean, David

    2009-04-01

    An open-bottom and a closed-bottom mesocosm were developed to investigate the release of mercury from sediments to the water column in a frozen freshwater lake. The mesoscosms were deployed in a hole in the ice and particulate mercury (Hg(P)) and total dissolved mercury (TDHg) were measured in sediments and in water column vertical profiles. In addition, dissolved gaseous mercury (DGM) in water and mercury water/airflux were quantified. Concentrations of TDHg, DGM, and mercury flux were all higher in the open-bottom mesocosm than in the closed-bottom mesocosm. In this paper we focus on the molecular diffusion of mercury from the sediment in comparison with the TDHg accumulation in the water column. We conclude that the molecular diffusion and sediment resuspension play a minor role in mercury release from sediments suggesting that solute release during ebullition is an important transport process for mercury in the lake.

  17. High-resolution lake sediment archives of midcontinental atmospheric and hydroclimate variability during the Medieval Climate Anomaly and Little Ice Age

    Science.gov (United States)

    Bird, B. W.; Wilson, J. J.; Gilhooly, W., III; Steinman, B. A.; Stamps, L. G.; Ahmed, M. N.; Abbott, M. B.; Pompeani, D. P.; Hillman, A. L.; Finkenbinder, M. S.

    2017-12-01

    Hydroclimate variability in the midcontinental United States (US) during the last 2000 years is not well characterized because there are few high-resolution paleoclimate records from the region. The majority of information about late Holocene midcontinental hydroclimate variability comes from scattered lake and bog sediment archives (primarily north of 42˚N) and gridded Palmer Drought Severity Index (PDSI) data calculated from a network of tree-ring records. The density of tree-ring records is lowest in the midcontinent, however, and decreases precipitously with time. In order to address this midcontinental paleoclimate data gap, we are developing a series of new lake-sediment-based hydroclimate records spanning 85˚ to 98˚W and 38˚ to 45˚N. New results from the eastern and central portions of the study area indicate large hydroclimate changes during the last 2000 years. Specifically, the Ohio and central Mississippi River valleys were wetter during the Medieval Climate Anomaly (MCA; 950-1250 CE), but drier during the Little Ice Age (LIA; 1350-1850 CE) with an especially severe, multi-decadal drought between 1350-1450 CE. Comparison with western (west of 96˚W) drought and fire records supports the existence of a hydroclimate dipole, with opposite hydroclimate conditions west and east of 96˚W. Isotopic changes in precipitation during the MCA and LIA suggest hydroclimate anomalies during these events were associated with mean state atmospheric circulation changes that resemble modern Pacific North American Mode (PNA) variability. Midcontinental Native American populations appear to have responded to MCA and LIA hydroclimate variability, with the latter event contributing to midcontinental depopulation between 1350-1500 CE.

  18. Freshwater Microbialites of Pavilion Lake, British Columbia, Canada: A Limnological Investigation

    Science.gov (United States)

    Lim, D. S. S.; McKay, C. P.; Laval, B.; Bird, J.; Cady, S.

    2004-01-01

    Pavillion Lake is 5.7km long and an average of 0.8 km in width, and is located in Marble Canyon in the interior of British Columbia, Canada. It is a slightly alkaline, freshwater lake with a maximum-recorded depth of 65m. The basin walls of Pavilion Lake are lined with microbialite structures that are oriented perpendicularly to the shoreline, and which are found from depths of 5 meters to the bottom of the photic zone (light levels 1% of ambient; approximately 30m depth). These structures are speculated to have begun formation nearly 11,000 years ago, after the glacial retreat of the Cordilleran Ice Sheet. They are likely a distinctive assemblage of freshwater calcite microbialites, which display micromorphologies possibly related to the ancient Epiphyton and Girvanella classes of calcareous organosedimentary structures.

  19. Climate change forces new ecological states in tropical Andean lakes.

    Directory of Open Access Journals (Sweden)

    Neal Michelutti

    Full Text Available Air temperatures in the tropical Andes have risen at an accelerated rate relative to the global average over recent decades. However, the effects of climate change on Andean lakes, which are vital to sustaining regional biodiversity and serve as an important water resource to local populations, remain largely unknown. Here, we show that recent climate changes have forced alpine lakes of the equatorial Andes towards new ecological and physical states, in close synchrony to the rapid shrinkage of glaciers regionally. Using dated sediment cores from three lakes in the southern Sierra of Ecuador, we record abrupt increases in the planktonic thalassiosiroid diatom Discostella stelligera from trace abundances to dominance within the phytoplankton. This unprecedented shift occurs against the backdrop of rising temperatures, changing atmospheric pressure fields, and declining wind speeds. Ecological restructuring in these lakes is linked to warming and/or enhanced water column stratification. In contrast to seasonally ice-covered Arctic and temperate alpine counterparts, aquatic production has not increased universally with warming, and has even declined in some lakes, possibly because enhanced thermal stability impedes the re-circulation of hypolimnetic nutrients to surface waters. Our results demonstrate that these lakes have already passed important ecological thresholds, with potentially far-reaching consequences for Andean water resources.

  20. A synthesis of the basal thermal state of the Greenland Ice Sheet

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, Prasad S.; Morlighem, Mathieu; Nowicki, Sophie M .J.; Paden, John D; Price, Stephen F.; Seroussi, Helene

    2016-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  1. A synthesis of the basal thermal state of the Greenland Ice Sheet.

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D; Colgan, William T; Gogineni, S Prasad; Morlighem, Mathieu; Nowicki, Sophie M J; Paden, John D; Price, Stephen F; Seroussi, Hélène

    2016-08-10

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  2. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    Science.gov (United States)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  3. Reassessment of the Upper Fremont Glacier ice-core chronologies by synchronizing of ice-core-water isotopes to a nearby tree-ring chronology

    Science.gov (United States)

    Chellman, Nathan J.; McConnell, Joseph R.; Arienzo, Monica; Pederson, Gregory T.; Aarons, Sarah; Csank, Adam

    2017-01-01

    The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.

  4. Development of Petrov glacial-lake system (Tien Shan and outburst risk assessment

    Directory of Open Access Journals (Sweden)

    I. A. Torgoev

    2013-01-01

    Full Text Available Global climate warming causes an intensive melting and retreat of glaciers in the Tien Shan mountains. Melting water of glaciers causes overfilling of high mountain lakes. The increase of the surface and volume of the Petrov Lake accompanied with the decrease of stability of the dam represents an extremely dangerous situation that can produce a natural disaster. Failure can happen due to erosion, a buildup of water pressure, an earthquake or if a large enough portion of a glacier breaks off and massively displaces the waters in a glacial lake at its base. In case of the lake dam rupture, flooding of a disposal site of highly toxic tailing from the gold mine Kumtor is a threat. If this happens, the toxic waste containing cyanides would contaminate a large area in the Naryn (Syrdarya river basin. Even if the flooding of the disposal site does not occur, the damage after lake dam fracture will be immense due to the glacial lake outburst flood may be a devastating mudslide. In order to prevent or reduce the risk of this event we recommend performing engineering surveys for the development and implementation of the project for the controlled reduction of water level in the Blue Bay of the Petrov Lake to a safe volume.

  5. Modelling assessment of End Pit Lakes meromictic potential

    International Nuclear Information System (INIS)

    2006-11-01

    The use of End Pit Lakes have been proposed as a remediation solution for oil sands reclamation and operational waters. This report modelled the main factors controlling the occurrence of stratification in Pit Lakes in order to establish design and management guidelines for the Cumulative Environmental Management Association's End Pit Lake Sub-group. The study focused on End Pit Lake size, depth, starting lake salinity concentrations, inflow rates and inflow salinity flux, and investigated their influence on density gradients. One-dimensional modelling and limited 2-D modelling simulations were conducted to examine meromictic potential for a large range of End Pit Lake configurations and conditions. Modelling results showed that fall is the governing season for determining meromixis. The expelling of salt from saline water upon ice formation and its effect on stratification potential and the effect of fresh water loading on stratification potential during spring melt events were not observed to be dominant factors governing meromictic potential for the scenarios examined in the study. Results suggested that shallow End Pit Lakes showed a high turn-over rate with seasonal heating and cooling cycles. Moderately deep End Pit Lakes demonstrated a meromictic potential that was inversely proportional to lake size and require higher starting salinities. With a 2 or 10 million m 3 /yr inflow rate and a 5 parts per thousand starting salinity, a 50 m deep End Pit Lake achieved meromixis at all 3 size ranges considered in the study. Results also showed that the rate of influent salinity decrease was the least important of the parameters influencing meromixis. It was observed that meromixis was a temporary condition in all of the End Pit Lake scenarios envisioned due to the lack of a constant, positive salt replenishment over the long term. It was concluded that further 3-D modelling is required to represent littoral areas as well as to account for extreme winter conditions. A

  6. Thermokarst lake methanogenesis along a complete talik profile

    Directory of Open Access Journals (Sweden)

    J. K. Heslop

    2015-07-01

    Full Text Available Thermokarst (thaw lakes emit methane (CH4 to the atmosphere formed from thawed permafrost organic matter (OM, but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedoma permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH4 g dw−1 d−1; 125.9 ± 36.2 μg C–CH4 g C−1org d−1. High CH4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH4g dw−1 d−1; 59.60± 51.5 μg C–CH4 g C−1org d−1 at the bottom of the talik, but the narrow thicknesses (43 cm of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4 production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH4 production.

  7. Thermokarst lake methanogenesis along a complete talik profile

    Science.gov (United States)

    Heslop, J.K.; Walter Anthony, K.M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.; Bondurant, A.; Grosse, G.; Jones, Miriam C.

    2015-01-01

    Thermokarst (thaw) lakes emit methane (CH4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb) beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedoma permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH4 g dw−1 d−1; 125.9 ± 36.2 μg C–CH4 g C−1org d−1). High CH4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH4g dw−1 d−1; 59.60± 51.5 μg C–CH4 g C−1org d−1) at the bottom of the talik, but the narrow thicknesses (43 cm) of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH4 production.

  8. Results of bald eagle, osprey and great blue heron nest site surveys near Fort MacKay, Alberta

    International Nuclear Information System (INIS)

    Strom, K.; Balagus, P.

    1996-01-01

    As part of the environmental impact assessment process, a study was conducted to assess the occurrence of bald eagle, osprey and great blue heron on Syncrude's proposed oil sand leases near Fort MacKay. The objective of the study was to determine the relative abundance, habitat preferences and nesting occurrences of these different birds. Aerial count surveys were conducted to include coverage of the shorelines of four rivers and 22 lakes. Breeding activities of the osprey, bald eagle and great blue heron were observed in the regional study area, but not in the local study area. 14 refs., 1 tab., 4 figs

  9. Growth dynamics of tree-line and lake-shore Scots pine (Pinus sylvestris L. in the central Scandinavian Mountains during the Medieval Climate Anomaly and the early Little Ice Age

    Directory of Open Access Journals (Sweden)

    Hans W Linderholm

    2014-05-01

    Full Text Available Trees growing at their altitudinal or latitudinal distribution in Fennoscandia have been widely used to reconstruct warm season temperatures, and the region hosts some of the world’s longest tree-ring chronologies. These multi-millennial long chronologies have mainly been built from tree remains found in lakes (subfossil wood from lake-shore trees. We used a unique dataset of Scots pine tree-ring data collected from wood remains found on a mountain slope in the central Scandinavian Mountains, yielding a chronology spanning over much of the last 1200 years. This data was compared with a local subfossil wood chronology with the aim to 1 describe growth variability in two environments during the Medieval Climate Anomaly (MCA and the early Little Ice Age (LIA, and 2 investigate differences in growth characteristics during these contrasting periods. It was shown that the local tree-line during both the MCA and early LIA was almost 150 m higher that at present. Based on living pines from the two environments, tree-line pine growth was strongly associated with mid-summer temperatures, while the lake-shore trees showed an additional response to summer precipitation. During the MCA, regarded to be a period of favourable climate in the region, the tree-ring data from both environments showed strong coherency and moderate growth variability. In the early LIA, the two chronologies were less coherent, with the tree-line chronology showing more variability, suggesting different growth responses in the two environments during this period of less favourable growing conditions. Our results indicate that tree-ring width chronologies mainly based on lake-shore trees may need to be re-evaluated.

  10. Water pollution and cyanobacteria's variation of rivers surrounding southern Taihu Lake, China.

    Science.gov (United States)

    Sun, Mingyang; Huang, Linglin; Tan, Lisha; Yang, Zhe; Baig, Shams Ali; Sheng, Tiantian; Zhu, Hong; Xu, Xinhua

    2013-05-01

    The water quality and cyanobacterial variation of rivers surrounding southern Taihu Lake, China were purposively monitored from 2008 to 2010. Trophic level index (TLI) was used to evaluate the trophic levels of southern Taihu Lake. Results showed a considerable decline in the monitored data compared with 2007, and the data showed downward trends year after year. The TLI decreased from 55.6 to 51.3, which implied that southern Taihu Lake was mildly eutrophic. The water quality and cyanobacterial variation indicated a positive response to the adopted control measures in the southern Taihu Lake basin, but the intra- and inter-annual variability was still quite varied. High concentrations of nitrogen and phosphorus typically lead to algae outbreaks, however, the cyanobacteria growth may result in a decline of the concentration of nitrogen and phosphorus. Temperature and other weather conditions are also important factors for algae outbreaks; the risk of blue-green algal blooms still persists.

  11. Geophysical Investigation of a Thermokarst Lake Talik in Continuous Permafrost

    Science.gov (United States)

    Creighton, A.; Parsekian, A.; Arp, C. D.; Jones, B. M.; Babcock, E.; Bondurant, A. C.

    2016-12-01

    On the Arctic Coastal Plain (ACP) of northern Alaska, shallow thermokarst lakes cover up to 25% of the landscape. These lakes occupy depressions created by the subsidence of thawed, ice-rich permafrost. Areas of unfrozen sediment, or taliks, can form under lakes that have a mean annual bottom temperature greater than 0°C. The geometry of these taliks, as well as the processes that create them, are important for understanding interactions between surface water, groundwater, and carbon cycling. Non-invasive geophysical methods are a useful means to study talik sediments as borehole studies yield few data points, and the contrast between unfrozen and frozen sediments is an ideal geophysical target. To study talik configuration associated with an actively expanding thermokarst lake, we conducted a geophysical transect across Peatball Lake. This lake has an estimated initiation age of 1400 calendar years BP. Over the past 60 years, lake surface area has increased through thermal and mechanical shoreline erosion. A talik of previously unknown thickness likely exists below Peatball Lake. We conducted a transect of transient electromagnetic soundings across the lake extending into the surrounding terrestrial environment. Since permafrost has relatively high resistivity compared to talik sediments, the interpreted electrical structure of the subsurface likely reflects talik geometry. We also conducted nuclear magnetic resonance soundings at representative locations along the transect. These measurements can provide data on sub-lake sediment properties including water content. Together, these measurements resolve the talik structure across the lake transect and showed evidence of varying talik thicknesses from the lake edge to center. These is no evidence of a talik at the terrestrial control sites. These results can help constrain talik development models and thus provide insight into Arctic and permafrost processes in the face of a changing climate.

  12. Evaluation of stream water quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake.

    Science.gov (United States)

    Ayana, Essayas K; Worqlul, Abeyou W; Steenhuis, Tammo S

    2015-08-01

    Modeling of suspended sediment emission into freshwater lakes is challenging due to data gaps in developing countries. Existing models simulate sediment concentration at a gauging station upstream and none of these studies had modeled total suspended solids (TSS) emissions by inflowing rivers to freshwater lakes as there are no TSS measurements at the river mouth in the upper Blue Nile basin. In this study a 10year TSS time series data generated from remotely sensed MODIS/Terra images using established empirical relationship is applied to calibrate and validate a hydrology model for Lake Tana in Upper Blue Nile Basin. The result showed that at a monthly time scale TSS at the river mouth can be replicated with Nash-Sutcliffe efficiency (NS) of 0.34 for calibration and 0.21 for validation periods. Percent bias (PBIAS) and ratio of the root-mean-square error to the standard deviation of measured data (RSR) are all within range. Given the inaccessibility and costliness to measure TSS at river mouths to a lake the results found here are considered useful for suspended sediment budget studies in water bodies of the basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Ecological aspects of lake regulation in Northern Finland. Part 2. Geomorphology and vegetation of the littoral zone. Ekologiset naekoekohdat joidenkin Pohjois-Suomen jaervien saeaennoestelyssae. Osa 2. Rannan geomorfologia ja vesikasvillisuus

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, S.; Alasaarela, E. (9830800FI); Keraenen, R.; Nykaenen, M. (Oulu Univ. (Finland)); Neuvonen, I. (Kainuun Vesi- ja ympaeristoepiiri, Kajaani (Finland))

    1989-02-01

    Ecological aspects of lake regulation were studied in certain lakes in northern Finland in 1984-1987. The general aims of the project were to analyze the effects of regulation on lake ecosystems and to produce information that can be applied when assessing the possible effects of hydroelectric projects. The effects of lake regulation were easy to observe in the littoral zone of Lake Ontojaervi, the sandy shores in particular were unstable both above and below the water level. The shores were very much steeper than those of Lake Lentua, which affected the distribution of bottom types, minerogenic bottoms were more common than in the latter lake. The results from the two lakes were used to calculate a simple model to forecast the distribution of bottom types of Lake Ontojaervi before regulation. The effect of penetration by ice was also easy to recognize on the shores of Lake Ontojaervi; the surface sediment being frozen to a greater depth than in Lake Lentua. Beneath the freezing zone in ice just pressed down on the sediment. The littoral vegetation decreased markedly after regulation and was entirely absent in open places. Changes in abundance were particularly clear, with decreases in the large isoetides and helophytes and increases of small isoetides. The results from Lake Lentua were used to formulate a simple ecological model for the frequency of macrophytes.

  14. Ecosystem effects of thermal manipulation of a whole lake, Lake Breisjøen, southern Norway (THERMOS project)

    Science.gov (United States)

    Lydersen, E.; Aanes, K. J.; Andersen, S.; Andersen, T.; Brettum, P.; Baekken, T.; Lien, L.; Lindstræm, E. A.; Lævik, J. E.; Mjelde, M.; Oredalen, T. J.; Solheim, A. L.; Romstad, R.; Wright, R. F.

    2008-03-01

    We conducted a 3-year artificial deepening of the thermocline in the dimictic Lake Breisjøen, southern Norway, by means of a large submerged propeller. An adjacent lake served as untreated reference. The manipulation increased thermocline depth from 6 to 20 m, caused a significant increase in the heat content, and delayed ice-on by about 20 days. There were only minor changes in water chemistry. Concentrations of sulphate declined, perhaps due to greater reduction of sulphate at the sediment-water interface. Concentrations of particulate carbon and nitrogen decreased, perhaps due to increased sedimentation velocity. Water transparency increased. There was no significant change in concentration of phosphorus, the growth-limiting nutrient. There were few significant changes in principal biological components. Phytoplankton biomass and productivity did not change, although the chlorophyll-a concentration showed a small decrease. Phytoplankton species richness increased, and the species composition shifted. Growth of periphyton increased. There was no change in the macrophyte community. The manipulation did not affect the zooplankton biodiversity, but caused a significant shift in the relative abundance (measured as biomass) in the two major copepod species. The manipulation did not affect the individual density, but appeared to have changed the vertical distribution of zoobenthos. Fish populations were not affected. The lake is oligotrophic and clearwater and the manipulation did not change the supply of phosphorus, and thus there were only minor changes in lake chemistry and biology. Effects might be larger in eutrophic and dystrophic lakes in which internal processes are stronger.

  15. Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada)

    Science.gov (United States)

    Fritz, Michael; Wolter, Juliane; Rudaya, Natalia; Palagushkina, Olga; Nazarova, Larisa; Obu, Jaroslav; Rethemeyer, Janet; Lantuit, Hugues; Wetterich, Sebastian

    2016-09-01

    Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, δ13C), stable water isotopes (δ18O, δD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at

  16. Laurentide ice sheet meltwater routing along the Iro-Mohawk River, eastern New York, USA

    Science.gov (United States)

    Porreca, Charles; Briner, Jason P.; Kozlowski, Andrew

    2018-02-01

    The rerouting of meltwater as the configuration of ice sheets evolved during the last deglaciation is thought to have led to some of the most significant perturbations to the climate system in the late Quaternary. However, the complex pattern of ice sheet meltwater drainage off the continents, and the timing of rerouting events, remains to be fully resolved. As the Laurentide Ice Sheet (LIS) retreated north of the Adirondack Uplands of northeastern New York State during the last deglaciation, a large proglacial lake, Lake Iroquois, found a lower outlet that resulted in a significant flood event. This meltwater rerouting event, from outflow via the Iro-Mohawk River valley (southern Adirondack Mountains) to the spillway at Covey Hill (northeastern Adirondack Mountains), is hypothesized to have taken place 13.2 ka and disturbed meridional circulation in the North Atlantic Ocean. However, the timing of the rerouting event is not certain because the event has not been directly dated. With improving the history of Lake Iroquois drainage in mind, we obtained cosmogenic 10Be exposure ages on a strath terrace on Moss Island, along the Iro-Mohawk River spillway. We hypothesize that Moss Island's strath terrace became abandoned during the rerouting event. Six 10Be ages from the strath surface average 14.8 ± 1.3 ka, which predates the previously published bracketing radiocarbon ages of 13.2 ka. Several possibilities for the discrepancy exist: (1) the 10Be age accurately represents the timing of a decrease in discharge through the Iro-Mohawk River spillway; (2) the age is influenced by inheritance. The 10Be ages from glacially sculpted surfaces on Moss Island above the strath terrace predate the deglaciation of the site by 5 to 35 ky; and (3) the abandonment of the Moss Island strath terrace relates to knickpoint migration and not the final abandonment of the Iro-Mohawk River as the Lake Iroquois spillway. Further study and application of cosmogenic 10Be exposure dating in the

  17. Lake ecosystem response to rapid lateglacial climate changes in lake sediments from northern Poland

    Science.gov (United States)

    Słowiński, Michał; Zawiska, Izabela; Ott, Florian; Noryśkiewicz, Agnieszka M.; Apolinarska, Karina; Lutyńska, Monika; Michczyńska, Danuta J.; Brauer, Achim; Wulf, Sabine; Skubała, Piotr; Błaszkiewicz, Mirosław

    2013-04-01

    During the Late Glacial Period environment changes were triggered by climatic oscillations which in turn controlled processes like, for example, permafrost thawing, vegetation development and ground water circulation. These environmental changes are ideally recorded in lake sediments and thus can be reconstructed applying a multi-poxy approach. Here, we present the results from the Trzechowskie paleolake, located in the northern Polish lowlands (eastern part of the Pomeranian Lakeland). The site is situated on the outwash plain of the Wda River, which was formed during the Pomeranian phase of the Vistulian glaciation ca 16,000 14C yrs BP. The depression of the Trzechowskie lake basin formed after melting of a buried ice block during the Allerød (13903±170 cal yrs BP). We reconstructed environmental changes in the Trzechowskie paleolake and its catchment using biotic proxies (macrofossils, pollen, cladocera, diatoms, oribatidae mite) and geochemical proxies (δ18O, δ13C, loss-on-ignition (LOI), CaCO3 content). In addition, we carried out µ-XRF element core scanning. The chronology has been established by means of biostratigraphyAMS14C dating on plant macro remains, varve counting in laminated intervals and the late Allerød Laacher See Tephra isochrone. Our results showed that biogenic accumulation in the lake started during the Bølling. Development of coniferous forest during the Allerød with dominance of Pinus sylvestris lead to leaching of carbonates in the catchment due to low pH increasing the flux of Ca ions into the lake. In consequence calcite precipitating in the lake increased as evidences by increasing CaCO3 contents. Both biotic and physical proxies clearly reflect the rapid decrease in productivity at the onset of the Younger Dryas. We compare the data from the Trzechowskie paleolake with the Meerfelder Maar and Rehwiese lake records based on tephrochronological synchronization using the Laacher See Tephra. This study is a contribution to the

  18. Ciliated protozoa of two antarctic lakes: analysis by quantitative protargol staining and examination of artificial substrates

    Science.gov (United States)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Coats, D. W.; Wharton RA, J. r. (Principal Investigator)

    1999-01-01

    Planktonic and artificial substrate-associated ciliates have been identified in two perennially ice-covered antarctic lakes of the McMurdo Dry Valleys. Abundances estimated by quantitative protargol staining ranged from < 5 to 31690 cells l-1, levels that are comparable to those previously obtained using other methods. Nineteen ciliate taxa were identified from these lakes, with the most frequently encountered genera being Plagiocampa, Askenasia, Monodinium, Sphaerophrya and Vorticella. The taxonomic findings compare favorably with those of previous investigators; however four previously unreported genera were observed in both Lakes Fryxell and Hoare. The variability in the depth distributions of ciliates in Lake Fryxell is explained in terms of lake physicochemical properties and ciliate prey distributions, while factors related to temporal succession in the Lake Hoare assemblage remain unexplained. Local marine or temperate zone freshwater habitats are a more likely source than the surrounding dry valleys soils for present ciliate colonists in these lakes. Although the taxonomic uncertainties require further examination, our results suggest that ciliate populations in these antarctic lakes undergo significant fluctuations and are more diverse than was previously recognized.

  19. Blue-Green Solutions in Urban Development

    Science.gov (United States)

    Karlsson, Caroline; Kalantari, Zahra

    2017-04-01

    With the ongoing urbanisation and increasing pressure for new housing and infrastructure, the nexus of developing compact, energy-efficient and yet liveable and sustainable cities is urgent to address. In this context, blue-green spaces and related ecosystem services (ES) are critical resources that need to be integrated in policy and planning of urban. Among the ES provided by blue-green spaces, regulating ES such as water retention and purification are particularly important in urban areas, affecting water supply and quality, related cultural ES and biodiversity, as well as cities potential to adapt to climate change. Blue-green infrastructure management is considered a sustainable way to reducing negative effects of urbanisation, such as decreasing flood risks, as well as adapting to climate change for example by controlling increasing flood and drought risks. Blue-green infrastructure management can for example create multifunctional surfaces with valuable environmental and social functions and generally handle greenways and ecological networks as important ecosystem service components, for example for stormwater regulation in a sustainable urban drainage system. The Norrström drainage basin (22,000 km2) is a large demonstrator for Blue-green infrastructure management. Both urbanisation and agriculture are extensive within this basin, which includes the Swedish capital Stockholm and is part of the fertile Swedish belt. Together, the relatively high population density combined with agricultural and industrial activities in this region imply large eutrophication and pollution pressures, not least transferred through storm runoff to both inland surface waters and the coastal waters of the Baltic Sea. The ecosystems of this basin provide highly valued but also threatened services. For example, Lake Mälaren is the single main freshwater supply for the Swedish capital Stockholm, as well as a key nutrient retention system that strongly mitigates waterborne nutrient

  20. Early precursors to break-up of the Larsen Ice Shelves, Antarctica

    Science.gov (United States)

    Scambos, T. A.; Klinger, M.

    2017-12-01

    Ice flux into the embayments left behind by the collapse of the Larsen A and Larsen B ice shelves surged 2- to 6-fold after their disintegration events in 1995 and 2002. Glacier imbalance in the region since the events has been persistent, with elevation changes indicating a mass loss per year of approximately twice the rate of accumulation (Scambos et al., 2014, TCryo). The proximal cause of the disintegration events was a group of processes arising from the presence of extensive surface melt lakes and hydrofracture. However, precursor changes in the ice shelves beginning more than a decade before the disintegrations have been identified, and coincide with a trend towards reduced sea ice cover and increased foehn winds. Ice flow speeds in the Larsen A and B increased, even in the period prior to the loss of critical inboard areas of the ice shelf (which began in 1998 for the Larsen B), and elevation of the ice shelf surface decreased. Ice shelf surface lowering is interpreted as resulting from actual ice shelf thinning for this area, since field studies on both the Larsen A and B noted the upper firn of the shelf was almost completely converted to ice. Examination of satellite images spanning 1963 - 2014 shows that Larsen B shear margins and some suture zones evolved significantly prior to major ice shelf retreat. Overall, these changes suggest either increased ocean-driven basal melt or effects of increased surface meltwater on grounded glacier outflow are a cause of early shelf weakening that leads eventually to disintegration. Available ocean temperature data show that modified Weddell Deep Water, having a temperature 0.1-0.4°C above the surface freezing point, is present near the former ice fronts in some 1995-2012 profiles, but to date this has not been detected within the embayments or near the glacier grounding lines.

  1. A 900-Year Diatom and Chrysophyte Record of Spring Mixing and Summer Stratification From Varved Lake Mina, West-Central Minnesota, USA

    Science.gov (United States)

    St. Jacques, J.; Cumming, B. F.; Smol, J. P.

    2009-05-01

    A high-resolution, independent pollen-inferred paleoclimate record and direct algal seasonality data from the actual time of sediment deposition are used to interpret the high-resolution diatom and chrysophyte record of varved Lake Mina, west-central Minnesota, USA during AD 1116-2002. This direct algal seasonality information was obtained by a new technique of splitting varves into constituent winter-spring and summer lamina, and separately analyzing the siliceous algae in each layer. Analyses of integrated, continuous four-year diatom and chrysophyte samples from a sedimentary sequence show that the time period AD 1116-1478 (i.e. the Atlantic- centered Medieval Climate Anomaly (MCA)) was characterized by periods of vigorous and prolonged spring mixing, suggesting that ice-out occurred early. However, the warm summer temperatures in the MCA, particularly in a massive drought spanning AD 1300-1400, frequently caused the lake to stratify strongly, leading to nutrient depletion. During AD 1478-1870 (i.e. the Atlantic-centered Little Ice Age (LIA)), Lake Mina was characterized by weak spring circulation and increasing nutrient depletion, suggesting late ice-out conditions. Strong summer stratification and/or nutrient depletion in both time periods is shown by the occurrence of the nutrient-poor oligotrophic taxon Cyclotella pseudostelligera. The diatom and chrysophyte assemblages of the period of Euro-American settlement AD 1870-2002 show higher nutrient availability and increased spring mixing intensity, due to forest clearance and increasingly earlier ice-out (documented in regional historical records).

  2. Life Detection and Characterization of Subsurface Ice and Brine in the McMurdo Dry Valleys Using an Ultrasonic Gopher: A NASA ASTEP Project

    Science.gov (United States)

    Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.

    2003-01-01

    Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.

  3. Cathodoluminescence and Raman Spectromicroscopy of Forsterite in Tagish Lake Meteorite: Implications for Astromineralogy

    Directory of Open Access Journals (Sweden)

    Arnold Gucsik

    2016-01-01

    Full Text Available The Tagish Lake meteorite is CI/CM2 chondrite, which fell by a fireball event in January 2000. This study emphasizes the cathodoluminescence (CL and Raman spectroscopical properties of the Tagish Lake meteorite in order to classify the meteoritic forsterite and its relation to the crystallization processes in a parent body. The CL-zoning of Tagish Lake meteorite records the thermal history of chondrules and terrestrial weathering. Only the unweathered olivine is forsterite, which is CL-active. The variation of luminescence in chondrules of Tagish Lake meteorite implies chemical inhomogeneity due to low-grade thermal metamorphism. The blue emission center in forsterite due to crystal lattice defect is proposed as being caused by rapid cooling during the primary crystallization and relatively low-temperature thermal metamorphism on the parent body of Tagish Lake meteorite. This is in a good agreement with the micro-Raman spectroscopical data. A combination of cathodoluminescence and micro-Raman spectroscopies shows some potentials in study of the asteroidal processes of parent bodies in solar system.

  4. Reconstructing the evolution of Lake Bonney, Antarctica using dissolved noble gases

    International Nuclear Information System (INIS)

    Warrier, Rohit B.; Clara Castro, M.; Hall, Chris M.; Kenig, Fabien; Doran, Peter T.

    2015-01-01

    Highlights: • Estimated water ages using dissolved crustal 4 He and 40 Ar excesses in Lake Bonney (LB). • 4 He and 40 Ar excesses identify addition of subglacial discharge from Taylor Glacier. • Numerous factors capable of affecting water residence times are evaluated. • Maximum 4 He, 40 Ar ages in West LB of 250 kyrs; maximum 4 He age in East LB 27 kyrs. • Established chronology appears to correspond to regional and global climatic events. - Abstract: Lake Bonney (LB), located in Taylor valley, Antarctica, is a perennially ice-covered lake with two lobes, West Lake Bonney (WLB) and East Lake Bonney (ELB), which are separated by a narrow ridge. Numerous studies have attempted to reconstruct the evolution of LB because of its sensitivity to climatic variations and the lack of reliable millennial-scale continental records of climate in this region of Antarctica. However, these studies are limited by the availability of accurate lacustrine chronologies. Here, we attempt to better constrain the chronology of LB and thus, the evolution of past regional climate by estimating water residence times based on He, Ne and Ar concentrations and isotopic ratios in both WLB and ELB. 3 He and 4 He excesses up to two and three orders of magnitude and 35–150 times the atmospheric values are observed for WLB and ELB samples, respectively. In comparison, while measured 40 Ar/ 36 Ar ratios are atmospheric (∼295.5) in ELB, WLB samples display 40 Ar/ 36 Ar ratios of up to ∼315 reflecting addition of radiogenic 40 Ar. Both 4 He and 40 Ar excesses clearly identify the addition of subglacial discharge (SGD) from underneath Taylor Glacier into WLB at depths of 25 m and 35 m. He isotopic ratios suggest that He excesses are predominantly crustal (>93%) in origin with small mantle contributions (<7%). These crustal 4 He and 40 Ar excesses are used together with basement rock production rates of these isotopes to derive first-order approximations of water residence times for both

  5. The Lake Towuti Drilling Project: A New, 1-Million Year Record of Indo-Pacific Hydroclimate

    Science.gov (United States)

    Russell, J. M.; Bijaksana, S.; Vogel, H.; Melles, M.; Crowe, S.; Fajar, S. J.; Hasberg, A. K.; Ivory, S.; Kallmeyer, J.; Kelly, C. S.; Kirana, K. H.; Morlock, M.; Tamuntuan, G. H.; Wicaksono, S. A.

    2015-12-01

    ­The Indo-Pacific region plays an integral role in the Earth's climate system. Changes in local insolation, greenhouse gas concentrations, ice volume, and local sea level are each hypothesized to exert a dominant control on Indo-Pacific hydroclimate variations through the Pleistocene, yet existing records from the region are generally short and exhibit fundamental differences in orbital-scale patterns that limit our understanding of the regional climate responses to these global forcings. New paleoclimate records spanning multiple glacial-interglacial cycles are therefore required to document the region's hydroclimatic response to the full range of global climate boundary conditions observed during the late Quaternary. Lake Towuti is located in central Indonesia and is the only known terrestrial sedimentary archive in the region that spans multiple glacial-interglacial cycles. From May - July, 2015, the Towuti Drilling Project, consisting of nearly 40 scientists from eight countries, recovered over 1,000 meters of new sediment core from Lake Towuti. This includes cores though the entire sediment column to bedrock, which likely provide a >1-million-year records of regional hydroclimate. On-site borehole and sediment core logging data document major shifts in sediment composition, including transitions from lake clays to peats, calcareous sediments, and gravels. These data show excellent agreement with major lithological transitions recorded in seismic reflection data, and indicate large changes in lake levels and hydroclimate through the late Quaternary. Prior work on Lake Towuti indicated a dominant control by global ice volume on regional hydroclimate, a hypothesis we aim to test through the analysis of these new cores. This presentation will review existing records from the region and show the first long geochemical and sedimentological records from Lake Towuti to understand orbital-scale hydrologic change during the last ~1 million years.

  6. Modeling the Role of Zebra Mussels in the Proliferation of Blue-green Algae in Saginaw Bay, Lake Huron

    Science.gov (United States)

    Under model assumptions from Saginaw Bay 1991, selective rejection of blue-green algae by zebra mussels appears to be a necessary factor in the enhancement of blue-green algae production in the presence of zebra mussels. Enhancement also appears to depend on the increased sedime...

  7. Assessment of evolution and risks of glacier lake outbursts in the Djungarskiy Alatau, Central Asia, using Landsat imagery and glacier bed topography modelling

    Directory of Open Access Journals (Sweden)

    V. Kapitsa

    2017-10-01

    Full Text Available Changes in the abundance and area of mountain lakes in the Djungarskiy (Jetysu Alatau between 2002 and 2014 were investigated using Landsat imagery. The number of lakes increased by 6.2 % from 599 to 636 with a growth rate of 0.51 % a−1. The combined areas were 16.26 ± 0.85 to 17.35 ± 0.92 km2 respectively and the overall change was within the uncertainty of measurements. Fifty lakes, whose potential outburst can damage existing infrastructure, were identified. The glacier bed topography version 2 (GlabTop2 model was applied to simulate ice thickness and subglacial topography using glacier outlines for 2000 and SRTM DEM (Shuttle Radar Topography Mission digital elevation model as input data achieving realistic patterns of ice thickness. A total of 513 overdeepenings in the modelled glacier beds, presenting potential sites for the development of lakes, were identified with a combined area of 14.7 km2. Morphometric parameters of the modelled overdeepenings were close to those of the existing lakes. A comparison of locations of the overdeepenings and newly formed lakes in the areas de-glacierized in 2000–2014 showed that 67 % of the lakes developed at the sites of the overdeepenings. The rates of increase in areas of new lakes correlated with areas of modelled overdeepenings. Locations where hazardous lakes may develop in the future were identified. The GlabTop2 approach is shown to be a useful tool in hazard management providing data on the potential evolution of future lakes.

  8. BlueHealth: a study programme protocol for mapping and quantifying the potential benefits to public health and well-being from Europe’s blue spaces

    Science.gov (United States)

    White, Mathew P; Albin, Maria; Bell, Simon; Elliott, Lewis R; Gascón, Mireia; Gualdi, Silvio; Mancini, Laura; Nieuwenhuijsen, Mark J; Sarigiannis, Denis A; van den Bosch, Matilda; Wolf, Tanja; Wuijts, Susanne; Fleming, Lora E

    2017-01-01

    Introduction Proximity and access to water have long been central to human culture and accordingly deliver countless societal benefits. Over 200 million people live on Europe’s coastline, and aquatic environments are the top recreational destination in the region. In terms of public health, interactions with ‘blue space’ (eg, coasts, rivers, lakes) are often considered solely in terms of risk (eg, drowning, microbial pollution). Exposure to blue space can, however, promote health and well-being and prevent disease, although underlying mechanisms are poorly understood. Aims and methods The BlueHealth project aims to understand the relationships between exposure to blue space and health and well-being, to map and quantify the public health impacts of changes to both natural blue spaces and associated urban infrastructure in Europe, and to provide evidence-based information to policymakers on how to maximise health benefits associated with interventions in and around aquatic environments. To achieve these aims, an evidence base will be created through systematic reviews, analyses of secondary data sets and analyses of new data collected through a bespoke international survey and a wide range of community-level interventions. We will also explore how to deliver the benefits associated with blue spaces to those without direct access through the use of virtual reality. Scenarios will be developed that allow the evaluation of health impacts in plausible future societal contexts and changing environments. BlueHealth will develop key inputs into policymaking and land/water-use planning towards more salutogenic and sustainable uses of blue space, particularly in urban areas. Ethics and dissemination Throughout the BlueHealth project, ethics review and approval are obtained for all relevant aspects of the study by the local ethics committees prior to any work being initiated and an ethics expert has been appointed to the project advisory board. So far, ethical approval

  9. Perspective View with Landsat Overlay, Lakes Managua and Nicaragua

    Science.gov (United States)

    2002-01-01

    This perspective view shows Lakes Managua and Nicaragua near the Pacific coast of Nicaragua. Lake Managua is the 65-kilometer (40-mile)-long fresh water lake in the foreground of this south-looking view, emptying via the Tipitapa River into the much larger Lake Nicaragua in the distance. The capital city of Managua, with a population of more than 500,000, is located along the southern shore of Lake Managua, the area with the highest population density in Nicaragua.The physical setting of Lake Managua is dominated by the numerous volcanic features aligned in a northwest-southeast axis. The cone-like feature in the foreground is Momotombo, a 1,280-meter (4,199-foot)-high stratovolcano located on the northwest end of the lake. Two water-filled volcanic craters (Apoyegue and Jiloa volcanoes) reside on the Chiltepe Peninsula protruding into the lake from the west. Two volcanoes can also be seen on the island of Ometepe in Lake Nicaragua: El Maderas rising to 1,394 meters (4,573 feet) and the active El Conception at 1,610 meters (5,282 feet).This three-dimensional perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced false-color Landsat 7 satellite image. Colors are from Landsat bands 5, 4, and 2 as red, green and blue, respectively. Topographic expression is exaggerated two times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, S.D.Elevation data used in this image was acquired by the SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar

  10. Holocene evolution of aquatic bioactivity and terrestrial erosion inferred from Skorarvatn, Vestfirðir, Iceland: Where is the Little Ice Age?

    Science.gov (United States)

    Harning, D.; Geirsdottir, A.; Miller, G. H.

    2016-12-01

    Icelandic lake sediment is well suited to provide high-resolution, well-dated continuous archives of North Atlantic climate variability. We provide new insight into the Holocene climate evolution of Vestfirðir, NW Iceland, from a 10.3 ka multi-proxy lake sediment record from non-glacial lake Skorarvatn. Age control is derived from a combination of tephrochronology and 14C-dated macrofossils. Sediment samples were analyzed for both physical (MS, density) and biological (TC, TN, δ13C, δ15N, C/N, BSi) climate proxies, providing a sub-centennial record of aquatic bioactivity and terrestrial landscape stability, and hence, summer temperature. The lake basin was ice free by at least 10.3 ka yet the waning Icelandic Ice Sheet persisted in the catchment until 9.3 ka. The local Holocene Thermal Maximum (HTM), inferred from maximum aquatic bioactivity, spans 8.9 to 7.2 ka but was interrupted by significant cooling at 8.2 ka. In accordance with other Icelandic climate records documenting progressively cooler summers following the HTM, our record reveals reduced aquatic productivity and elevated terrestrial erosion toward the present. Superimposed on this 1st order trend are abrupt episodes of cooling, inferred from low aquatic bioactivity and/or enhanced landscape instability, at 6.4, 4.2, 3, 2.5 and 1.5 ka. Surprisingly, there is no clear indication of the Little Ice Age (LIA) in our record despite evidence for the local ice cap, Drangajökull, attaining maximum areal coverage at this time. Persistently low temperatures inferred from reduced aquatic productivity plateau at 2 ka whereas increasing terrestrial erosion ceases at 1 ka. Lack of a catchment erosion signal during the LIA may be the result of depleted catchment soils and/or perennially frozen ground preventing the mobilization of soil and vegetation. With the exception of the LIA, Skorarvatn's qualitative summer temperature record corresponds closely to summer sea surface temperature and sea ice records on the

  11. Outdoor blue spaces, human health and well-being: A systematic review of quantitative studies.

    Science.gov (United States)

    Gascon, Mireia; Zijlema, Wilma; Vert, Cristina; White, Mathew P; Nieuwenhuijsen, Mark J

    2017-11-01

    A growing number of quantitative studies have investigated the potential benefits of outdoor blue spaces (lakes, rivers, sea, etc) and human health, but there is not yet a systematic review synthesizing this evidence. To systematically review the current quantitative evidence on human health and well-being benefits of outdoor blue spaces. Following PRISMA guidelines for reporting systematic reviews and meta-analysis, observational and experimental quantitative studies focusing on both residential and non-residential outdoor blue space exposure were searched using specific keywords. In total 35 studies were included in the current systematic review, most of them being classified as of "good quality" (N=22). The balance of evidence suggested a positive association between greater exposure to outdoor blue spaces and both benefits to mental health and well-being (N=12 studies) and levels of physical activity (N=13 studies). The evidence of an association between outdoor blue space exposure and general health (N=6 studies), obesity (N=8 studies) and cardiovascular (N=4 studies) and related outcomes was less consistent. Although encouraging, there remains relatively few studies and a large degree of heterogeneity in terms of study design, exposure metrics and outcome measures, making synthesis difficult. Further research is needed using longitudinal research and natural experiments, preferably across a broader range of countries, to better understand the causal associations between blue spaces, health and wellbeing. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Modelling assessment of oil sands pit lakes turn-over potential

    International Nuclear Information System (INIS)

    Mackenzie, I.; Vandenberg, J.; Lauzon, N.; Takyi, A.

    2006-01-01

    Pit lakes form when surface mining operations are discontinued and dewatering is terminated. Their use as a treatment step for oil sands surface mining reclamation waters was discussed. The goal of the End Pit Lake Subgroup of the Cumulative Environmental Management Association is to establish guidelines that will enable operators to achieve acceptable water quality for these lakes. Although both biological and physical processes affect turn-over potential, this presentation focused on the size of pit lakes, their depth, starting lake salinity concentrations, inflow rates and inflow salinity flux. These parameters where selected because of their influence on density gradients and turn-over potential. One-dimensional and two-dimensional modelling simulations were performed to examine turnover potential for a large range of pit lake configurations and conditions. The pit lake scenarios chosen for this modelling study included a wide range of changes in 3 lake sizes (1, 4 and 8 km 2 ), 3 lake depths (5, 20 and 50 m), 2 lake starting salinities (1 and 5 parts per thousand), 2 inflow rates (2 and 10 million m 3 per year), 3 starting inflow salinity concentrations (1, 2 and 4 parts per thousand) and 2 rates of influent salinity decrease (6- and 28- year half-life). Simulations showed that autumn is the governing season for determining turn-over potential. For the scenarios examined in this study, the expelling of salt from saline water upon ice formation and the effect of fresh water loading during spring melt events were not found to be significant factors governing turn-over potential. This presentation reviewed the DYRESM, CE-QUAL-W2, and RMA models used in this study. The conclusions reached by each model was also reviewed along with ongoing follow-up work

  13. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Eva (Geosigma AB (Sweden))

    2011-07-15

    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  14. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    International Nuclear Information System (INIS)

    Wass, Eva

    2011-07-01

    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  15. The melt pond fraction and spectral sea ice albedo retrieval from MERIS data: validation and trends of sea ice albedo and melt pond fraction in the Arctic for years 2002-2011

    Science.gov (United States)

    Istomina, L.; Heygster, G.; Huntemann, M.; Schwarz, P.; Birnbaum, G.; Scharien, R.; Polashenski, C.; Perovich, D.; Zege, E.; Malinka, A.; Prikhach, A.; Katsev, I.

    2014-10-01

    The presence of melt ponds on the Arctic sea ice strongly affects the energy balance of the Arctic Ocean in summer. It affects albedo as well as transmittance through the sea ice, which has consequences on the heat balance and mass balance of sea ice. An algorithm to retrieve melt pond fraction and sea ice albedo (Zege et al., 2014) from the MEdium Resolution Imaging Spectrometer (MERIS) data is validated against aerial, ship borne and in situ campaign data. The result show the best correlation for landfast and multiyear ice of high ice concentrations (albedo: R = 0.92, RMS = 0.068, melt pond fraction: R = 0.6, RMS = 0.065). The correlation for lower ice concentrations, subpixel ice floes, blue ice and wet ice is lower due to complicated surface conditions and ice drift. Combining all aerial observations gives a mean albedo RMS equal to 0.089 and a mean melt pond fraction RMS equal to 0.22. The in situ melt pond fraction correlation is R = 0.72 with an RMS = 0.14. Ship cruise data might be affected by documentation of varying accuracy within the ASPeCT protocol, which is the reason for discrepancy between the satellite value and observed value: mean R = 0.21, mean RMS = 0.16. An additional dynamic spatial cloud filter for MERIS over snow and ice has been developed to assist with the validation on swath data. The case studies and trend analysis for the whole MERIS period (2002-2011) show pronounced and reasonable spatial features of melt pond fractions and sea ice albedo. The most prominent feature is the melt onset shifting towards spring (starting already in weeks 3 and 4 of June) within the multiyear ice area, north to the Queen Elizabeth Islands and North Greenland.

  16. The widespread influence of Great Lakes microseisms across the United States revealed by the 2014 polar vortex

    Science.gov (United States)

    Anthony, Robert; Ringler, Adam; Wilson, David

    2018-01-01

    During the winter of 2014, a weak polar vortex brought record cold temperatures to the north‐central (“Midwest”) United States, and the Great Lakes reached the highest extent of ice coverage (92.5%) since 1979. This event shut down the generation of seismic signals caused by wind‐driven wave action within the lakes (termed “lake microseisms”), giving an unprecedented opportunity to isolate and characterize these novel signals through comparison with nonfrozen time periods. Using seismic records at 72 broadband stations, we observe Great Lakes microseism signals at distances >300 km from the lakes. In contrast to conventional oceanic microseisms, there is no clear relationship between the frequency content of the seismic signals (observed from ~0.5–5‐s period) and the dominant swell period or resonance periods of the lakes based on their bathymetric profiles. Thus, the exact generation mechanism is not readily explained by conventional microseism theory and warrants further investigation.

  17. Impacts of changes in groundwater recharge on the isotopic composition and geochemistry of seasonally ice-covered lakes: insights for sustainable management

    Directory of Open Access Journals (Sweden)

    M. Arnoux

    2017-11-01

    Full Text Available Lakes are under increasing pressure due to widespread anthropogenic impacts related to rapid development and population growth. Accordingly, many lakes are currently undergoing a systematic decline in water quality. Recent studies have highlighted that global warming and the subsequent changes in water use may further exacerbate eutrophication in lakes. Lake evolution depends strongly on hydrologic balance, and therefore on groundwater connectivity. Groundwater also influences the sensitivity of lacustrine ecosystems to climate and environmental changes, and governs their resilience. Improved characterization of groundwater exchange with lakes is needed today for lake preservation, lake restoration, and sustainable management of lake water quality into the future. In this context, the aim of the present paper is to determine if the future evolution of the climate, the population, and the recharge could modify the geochemistry of lakes (mainly isotopic signature and quality via phosphorous load and if the isotopic monitoring of lakes could be an efficient tool to highlight the variability of the water budget and quality. Small groundwater-connected lakes were chosen to simulate changes in water balance and water quality expected under future climate change scenarios, namely representative concentration pathways (RCPs 4.5 and 8.5. Contemporary baseline conditions, including isotope mass balance and geochemical characteristics, were determined through an intensive field-based research program prior to the simulations. Results highlight that future lake geochemistry and isotopic composition trends will depend on four main parameters: location (and therefore climate conditions, lake catchment size (which impacts the intensity of the flux change, lake volume (which impacts the range of variation, and lake G index (i.e., the percentage of groundwater that makes up total lake inflows, the latter being the dominant control on water balance conditions, as

  18. Impacts of changes in groundwater recharge on the isotopic composition and geochemistry of seasonally ice-covered lakes: insights for sustainable management

    Science.gov (United States)

    Arnoux, Marie; Barbecot, Florent; Gibert-Brunet, Elisabeth; Gibson, John; Noret, Aurélie

    2017-11-01

    Lakes are under increasing pressure due to widespread anthropogenic impacts related to rapid development and population growth. Accordingly, many lakes are currently undergoing a systematic decline in water quality. Recent studies have highlighted that global warming and the subsequent changes in water use may further exacerbate eutrophication in lakes. Lake evolution depends strongly on hydrologic balance, and therefore on groundwater connectivity. Groundwater also influences the sensitivity of lacustrine ecosystems to climate and environmental changes, and governs their resilience. Improved characterization of groundwater exchange with lakes is needed today for lake preservation, lake restoration, and sustainable management of lake water quality into the future. In this context, the aim of the present paper is to determine if the future evolution of the climate, the population, and the recharge could modify the geochemistry of lakes (mainly isotopic signature and quality via phosphorous load) and if the isotopic monitoring of lakes could be an efficient tool to highlight the variability of the water budget and quality. Small groundwater-connected lakes were chosen to simulate changes in water balance and water quality expected under future climate change scenarios, namely representative concentration pathways (RCPs) 4.5 and 8.5. Contemporary baseline conditions, including isotope mass balance and geochemical characteristics, were determined through an intensive field-based research program prior to the simulations. Results highlight that future lake geochemistry and isotopic composition trends will depend on four main parameters: location (and therefore climate conditions), lake catchment size (which impacts the intensity of the flux change), lake volume (which impacts the range of variation), and lake G index (i.e., the percentage of groundwater that makes up total lake inflows), the latter being the dominant control on water balance conditions, as revealed by

  19. Glacial dispersal and flow history, East Arm area of Great Slave Lake, NWT, Canada

    Science.gov (United States)

    Sharpe, D. R.; Kjarsgaard, B. A.; Knight, R. D.; Russell, H. A. J.; Kerr, D. E.

    2017-06-01

    Little work has been completed on paleo-ice-sheet flow indicators of the Laurentide Ice Sheet, west of the Keewatin Ice Divide. Field mapping, sampling and analysis of glaciogenic sediment (∼500 sample sites) in a ∼33,000 km2 region near the East Arm of Great Slave Lake in northwestern Canada, provided a rare opportunity to improve understanding of sediment erosion and transport patterns. Glacially-eroded bedrock and sedimentary landforms record east to west flow with NW and SW divergence, mapped within a portion of the Great Slave Lake flow tract. Transported till reflects a similar divergent flow pattern based on dispersal geometries for multiple indicators (e.g., heavy minerals and lithic fragments), which are aligned with the dominant and latest ice flow direction. Glaciofluvial erosion (e.g., s-forms and till removal), transport, and deposition (mainly as esker sediment) are set within 0.3-3 km wide meltwater erosional corridors, spaced regularly at 10-15 km intervals. Transport paths and distances are comparable in till and esker sediment, however, distances appear to be greater (∼5-25 km) in some esker constituents and indicator minerals are typically more concentrated in esker sediment than in till. Corridors form a divergent array identical to the pattern of ice-flow features. The congruence of ice and meltwater flow features is interpreted to be a response to a similar ice sheet gradient, and close timing of events (late dominant glacial ice flow and meltwater flow). The similarity in glacial and glaciofluvial flow patterns has important ramifications for event reconstruction and for exploration geologists utilizing mineral and geochemical tracing methods in this region, and possibly other parts of northern Canada. The correspondence between East Arm dispersal patterns, landforms and flow indicators supports interpretation of a simple and predictable single flow divergence model. This is in contrast to previous, multi-flow models, in which fan

  20. Assessment of glacial lake development and prospects of outburst susceptibility: Chamlang South Glacier, eastern Nepal Himalaya

    Directory of Open Access Journals (Sweden)

    Damodar Lamsal

    2016-01-01

    Full Text Available Chamlang South Tsho has been identified as one of the six high-priority glacial lakes in terms of glacial lake outburst flood (GLOF danger in Nepal Himalaya, despite the fact that no detailed investigations of the lake had been hitherto undertaken. We conducted detailed mapping of the lake and its surroundings along with field surveys in October 2009 to determine the developmental history of Chamlang South Tsho and to assess its potential for GLOF. The lake expanded rapidly between 1964 (0.04 km2 and 2000 (0.86 km2 and has been stable ever since. Future lake expansion is improbable as its sides are confined by relatively stable landforms. The lake is 87-m deep with a water volume of approximately 34.9–35.6 × 106 m3. Hanging glaciers on the steep surrounding mountain slopes and prominent seepage water in the terminal moraine dam could be potential triggers for a future outburst flood. Additionally, the debris-covered dead-ice dam, which is higher than the lake water level, is narrow and low; therefore, it could be overtopped easily by surge waves. Furthermore, the pronounced difference in elevation between the lake and the base of the terminal moraine dam makes the lake susceptible for a large flood.

  1. BlueHealth: a study programme protocol for mapping and quantifying the potential benefits to public health and well-being from Europe's blue spaces.

    Science.gov (United States)

    Grellier, James; White, Mathew P; Albin, Maria; Bell, Simon; Elliott, Lewis R; Gascón, Mireia; Gualdi, Silvio; Mancini, Laura; Nieuwenhuijsen, Mark J; Sarigiannis, Denis A; van den Bosch, Matilda; Wolf, Tanja; Wuijts, Susanne; Fleming, Lora E

    2017-06-14

    Proximity and access to water have long been central to human culture and accordingly deliver countless societal benefits. Over 200 million people live on Europe's coastline, and aquatic environments are the top recreational destination in the region. In terms of public health, interactions with 'blue space' (eg, coasts, rivers, lakes) are often considered solely in terms of risk (eg, drowning, microbial pollution). Exposure to blue space can, however, promote health and well-being and prevent disease, although underlying mechanisms are poorly understood. The BlueHealth project aims to understand the relationships between exposure to blue space and health and well-being, to map and quantify the public health impacts of changes to both natural blue spaces and associated urban infrastructure in Europe, and to provide evidence-based information to policymakers on how to maximise health benefits associated with interventions in and around aquatic environments. To achieve these aims, an evidence base will be created through systematic reviews, analyses of secondary data sets and analyses of new data collected through a bespoke international survey and a wide range of community-level interventions. We will also explore how to deliver the benefits associated with blue spaces to those without direct access through the use of virtual reality. Scenarios will be developed that allow the evaluation of health impacts in plausible future societal contexts and changing environments. BlueHealth will develop key inputs into policymaking and land/water-use planning towards more salutogenic and sustainable uses of blue space, particularly in urban areas. Throughout the BlueHealth project, ethics review and approval are obtained for all relevant aspects of the study by the local ethics committees prior to any work being initiated and an ethics expert has been appointed to the project advisory board. So far, ethical approval has been obtained for the BlueHealth International Survey and

  2. Lakes near the glacier Maliy Azau on the Elbrus (Central Caucasus: dynamics and outbursts

    Directory of Open Access Journals (Sweden)

    M. D. Dokukin

    2016-01-01

    Full Text Available The lake dynamics and the current state of them were analyzed on the basis of interpretation of aerial and satellite images of different years together with results of field surveys. Areas of six lakes existing in different years near the Maliy Azau Glacier had been determined. On August 22, 2011, the maximum area of one of the lakes was equal to 25.5 thousand m2. The first outburst was caused by the landslide deformations of the moraine massif forming a part of the lake basin, while the second one was a result of degradation of the lake ice dam and the water overflow on top of it. The present‑day lake dams (terminal‑moraine ramparts and medial moraine ridges are the result of the Maliy Azau Glacier advance in 1990s. The revealed feature of the lake dynamics on the mountain Elbrus was a drop of the water level and corresponding decrease of the lake areas in winter that was related to existence of the groundwater runoff into fractured volcanic rocks. At present, moraine dams of lakes and areas of the surface water runoff from the lakes are in stable condition due to which there is no threat of a lake outburst. However, the potential threat of outburst still remains because of high seismicity and possible volcanic activity in this region.

  3. Hydrochemistry dynamics in remote mountain lakes and its relation to catchment and atmospheric features: the case study of Sabocos Tarn, Pyrenees.

    Science.gov (United States)

    Santolaria, Zoe; Arruebo, Tomas; Urieta, José Santiago; Lanaja, Francisco Javier; Pardo, Alfonso; Matesanz, José; Rodriguez-Casals, Carlos

    2015-01-01

    Increasing the understanding of high mountain lake dynamics is essential to use these remote aquatic ecosystems as proxies of global environmental changes. With this aim, at Sabocos, a Pyrenean cirque glacial lake or tarn, this study shows the main results of a morphological and catchment characterization, along with statistical analyses of its hydrochemical trends and their concomitant driving factors from 2010 to 2013. Dissolved oxygen, water temperature stratification, and its snow and ice cover composition and dynamics have been also investigated. According to morphological analyses, Sabocos can be classified as a medium-large and deep lake, having a circular contour and a long water retention time as compared to Pyrenean glacial lake average values. Sabocos hydrochemistry is mainly determined by very high alkalinity, pH and conductivity levels, and high Ca(2+), Mg(2+), and SO4(2-) content, coming from the easily weatherable limestone-dolomite bedrock. Thus, lake water is well buffered, and therefore, Sabocos tarn is non-sensitive to acidification processes. On the other hand, the main source of K(+), Na(+), and Cl(-) (sea salts) and nutrients (NH4(+), NO3(-), and phosphorous) to lake water appears to be atmospheric deposition. Primary production is phosphorous limited, and due to the N-saturation stage of the poorly developed soils of Sabocos catchment, NO3(-) is the chief component in the total nitrogen pool. External temperature seems to be the major driver regulating lake productivity, since warm temperatures boot primary production. Although precipitation might also play an important role in lake dynamics, especially regarding to those parameters influenced by the weathering of the bedrock, its influence cannot be easily assessed due to the seasonal isolation produced by the ice cover. Also, as occurs in the whole Pyrenean lake district, chemical composition of bulk deposition is highly variable due to the contribution of air masses with different origin.

  4. The Lake Petén Itzá Scientifi c Drilling Project

    Directory of Open Access Journals (Sweden)

    Daniel Ariztegui

    2006-09-01

    Full Text Available Polar ice cores provide us with high-resolution records of past climate change at high latitudes on both glacial-to-interglacial and millennial timescales. Paleoclimatologists and climate modelers have focused increasingly on the tropics, however, as a potentially important driver of global climate change because of the region’s role in controlling the Earth’s energy budget and in regulating the water vapor content of the atmosphere. Tropical climate change is often expressed most strongly as variations in precipitation, and closed-basin lakes are sensitive recorders of the balance between precipitation and evaporation. Recent advances in fl oating platformsand drilling technology now offer the paleolimnological community the opportunity to obtain long sediment records from lowland tropical lakes, as illustrated by the recent successful drilling of Lakes Bosumtwi and Malawi in Africa (Koeberl et al., 2005; Scholz et al., 2006. Tropical lakes suitable for paleoclimatic research were sought in Central America to complement the African lake drilling. Most lakes in the Neotropics are shallow, however, and these basins fell dry during the Late Glacial period because the climate in the region was more arid than today. The search for an appropriate lake to study succeeded in 1999 when a bathymetric survey of Lake Petén Itzá, northern Guatemala, revealed a maximum depth of 165 m, making itthe deepest lake in the lowlands of Central America (Fig. 1 .Although the lake was greatly reduced in volume during the Late Glacial period, the deep basin remained submerged and thus contains a continuous history of lacustrine sediment deposition. A subsequent seismic survey of Lake Petén Itzá in 2002 showed a thick sediment package overlying basement, with several subbasins containing up to 100 m of sediment (Anselmetti et al., 2006.

  5. Ice911: Developing an Effective Response to Climate Change in Earth's Cryosphere using High Albedo Materials

    Science.gov (United States)

    Field, L. A.; Wadhams, P.; Root, T.; Chetty, S.; Kammen, D. M.; Venkatesh, S.; van der Heide, D.; Baum, E.

    2012-12-01

    We are developing a localized surface albedo modification technique which shows promise for preserving ice and snow using inexpensive and environmentally benign floating materials. The approach has been developed with aims including preservation of polar and glacial ice, snow, permafrost and polar habitat,and keeping water cooler, using a localized and ecologically respectful "planetary band-aid" that can be deployed quickly and can be removed once it is no longer needed. The method has been tested at small scale using various material sets over several years, including four Winter/Spring seasons at sites including California's San Francisco Bay Area and Sierra Nevada Mountains, and a Canadian lake. The materials can passively float and in granular form can be easily deployed as a "monolayer" and/or corralled in the desired locations. They have been shown to reduce solar heat absorption in the underlying water in small test pools by nearly 200 Watts/m2 in California summer daytime conditions, and 2 to 11 degree-C reductions in water temperatures have been logged over the course of a day. The materials have a cost of roughly of $11.15/kW-hour (of reflected solar energy that would otherwise have heated the underlying water) for one day. Over a two-month summer period, the materials cost would be roughly eighteen cents/kW-hour of reflected solar energy, and work is ongoing to reduce costs further. Material deployments in a sheet form were used on a California mountain lake in Winter/Spring 2010-2011 to successfully demonstrate over a larger scale that properly engineered materials are effective in aiding snow and ice retention. Over the course of several days during the melting season, we typically observed differences of 70 cm greater snow retention under a Teslin sheet compared to the uncovered control areas. However, sheets tend to act as sails, requiring special measures to remain stable. The most recent season's experimentation saw further evolution in the

  6. Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2003-02-01

    Full Text Available Measured environmental variables from 56 lakes across the Central Canadian Treeline Region exhibited clear limnological differences among subpolar ecozones, reflecting strong latitudinal changes in biome characteristics (e.g. vegetation, permafrost, climate. Principal Components Analysis (PCA clearly separated forested sites from tundra sites based on distinct differences in limnological characteristics. Increases in major ions and related variables (e.g. dissolved inorganic carbon, DIC were higher in boreal forest sites in comparison to arctic tundra sites. The higher values recorded in the boreal forest lakes may be indirectly related to differences in climatic factors in these zones, such as the degree of permafrost development, higher precipitation and runoff, duration of ice-cover on the lakes, and thicker and better soil development. Similar to trends observed in DIC, substantially higher values for dissolved organic carbon (DOC were measured in boreal forest lakes than in arctic tundra lakes. This was likely due to higher amounts of catchment-derived DOC entering the lakes from coniferous leaf litter sources. Relative to arctic tundra lakes, boreal forest lakes had higher nutrient concentrations, particularly total nitrogen (TN, likely due to warmer conditions, a longer growing season, and higher precipitation, which would enhance nutrient cycling and primary productivity. Results suggest that modern aquatic environments at opposite sides of the central Canadian arctic treeline (i.e. boreal forest and arctic tundra exhibit distinct differences in water chemistry and physical conditions. These limnological trends may provide important information on possible future changes with additional warming.

  7. Temperature fluctuations underneath the ice in Diamond Lake, Hennepin County, Minnesota

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Fischer, T.; Mls, J.; Dědeček, Petr

    2013-01-01

    Roč. 49, č. 6 (2013), s. 3306-3313 ISSN 0043-1397 R&D Projects: GA AV ČR IAA300120905 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z30120515 Institutional support: RVO:67985831 ; RVO:67985530 Keywords : baroclinic seiches * ground water * Lacustrine ice * Lacustrine temperature * Lacustrine water * tides Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.709, year: 2013

  8. Postglacial evolution and recent siltation of the protected lake "Taferlklaussee" (Austria)

    Science.gov (United States)

    Bernsteiner, Heidi; Götz, Joachim; Salcher, Bernhard; Lang, Andreas

    2017-04-01

    Nature conservation and human interaction with the environment often provide a multifaceted area of conflict, exemplified here by an intensively used but also protected small alpine lake. The study area is located in the Salzkammergut region (Upper Austria), which is known for its major salt deposits and especially popular for its numerous lakes. The focus is on the "Taferlklaussee" (TKS), a small freshwater body filling a basin originating from glacial erosion during the last glacial maximum (LGM) and early late glacial stadials (between 16 and 20 ka). The responsible valley glacier (Aurach) was isolated from the major alpine ice flow network during the LGM and not connected to the large adjacent Salzach and Traun outlet glaciers. In historical times the area was deforested and the lake level artificially raised in AD 1716, to allow log rafting on the river Aurach that originates from the TKS. Today, the TKS is under nature conservation but highly frequented as recreational area for summer and winter sports (e.g. hiking, biking, ice-skating and curling - the regional curling club is situated directly at the lakeside). As a consequence of the multiple uses, views on future management of the study area are diverging: On the one hand, nature is meant to be left alone and any negative impacts on the environment should be avoided and on the other hand, natural siltation should be stopped as it reduces the lake area, and provokes lots of controversy. Our research is intended to create information to support the current debate about the future of the TKS by providing first-hand data on short and long-term lake evolution. We focus on two timescales of lake development: The postglacial evolution and infill history of the lake basin (origin, structure, volume and chronology of stored sediment) as well as decadal-scale and recent trends of lake siltation. We are using a bundle of direct and indirect field surveys to generate complementary data. To investigate thickness and

  9. Investigations on pelagic food webs in mountain lakes - aims and methods

    Directory of Open Access Journals (Sweden)

    Jirí NEDOMA

    1999-08-01

    Full Text Available A methodical approach for the assessment of pelagic biomass and the main carbon fluxes in remote and hardly accessible mountain lakes was elaborated and tested. Number and biomass of bacteria (BAC, autotrophic picoplankton (APP, heterotrophic nanoflagellates (HNF, ciliates (CIL, phytoplankton (PHY, zooplankton smaller than 40 μm (ZOOS and zooplankton larger than 40 μm (ZOOL were investigated regularly during two ice-free periods in 13 European mountain lakes (1st level approach – fixed samples elaborated in specialized laboratories. Carbon fluxes measured in 9 lakes included: primary production, exudation by PHY and BAC uptake of exudates, BAC production, elimination of BAC. These processes were measured in the field by specialized teams (2nd level approach. The ranges of values found in mountain lakes were evaluated and possible methodical and interpretative errors discussed. BAC were a significant component of pelagic biomass. The intercomparison between different partners showed differences in bacterial counts lower than 10%, whereas the mean cell volumes measured fluctuated by more than 40%. APP was never found in a significant quantity, except in one lake. HNF and CIL, though regularly found, were usually scarce and only occasionally significant in terms of biomass. The main components of pelagic biomass were BAC, PHY and ZOOL+ZOOS, except for acidified lakes, where zooplankton was very low. In oligotrophic mountain lakes, the percentage of extracellular production in the total primary production was considerable. Bacterial abundance and production often reached values quite comparable with the situation found in lowland mesotrophic lakes during winter.

  10. Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru

    Czech Academy of Sciences Publication Activity Database

    Emmer, Adam

    2017-01-01

    Roč. 177, DEC (2017), s. 220-234 ISSN 0277-3791 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : Andes * Documentary data * Geomorphology * glof * Lichenometry * Little Ice Age * Moraine-dammed lake * Outburst flood * South America Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.797, year: 2016

  11. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang

    2015-08-01

    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  12. Glaciation style and the geomorphological record: evidence for Younger Dryas glaciers in the eastern Lake District, northwest England

    Science.gov (United States)

    McDougall, Derek

    2013-08-01

    The Younger Dryas (c. 12,900-11,700 years ago) in Britain witnessed renewed glaciation, with the readvance of ice masses that had survived the preceding Lateglacial Interstadial as well as the formation of new glaciers. The extents of these former glaciers have been mapped by many workers over the past fifty years, usually as a basis for palaeoclimatic investigations. It has frequently been asserted that the landform record is sufficiently clear to allow accurate ice mass reconstructions at or near maximum extents. Detailed geomorphological mapping in the eastern Lake District in NW England, however, demonstrates that this confidence may not always be warranted. Whereas previous workers have interpreted the well-developed moraines that exist in some locations as evidence for an alpine-style of glaciation, with ice restricted to a small number of valleys, this study shows that the most recent glaciation to affect the area was characterised by: (i) extensive summit icefields, which supplied ice to the surrounding valleys; and (ii) a much greater volume of ice in the valleys than previously thought. The discovery that summit icefields were relatively common at this time is consistent with recent studies elsewhere in the Lake District and beyond. More significant, however, is the recognition that changing glacier-topographic interactions over both space and time appears to have had a profound impact on valley-floor glacial landform development, with the absence of clear moraines not necessarily indicating ice-free conditions at this time. This complicates glacier reconstructions based solely on the geomorphological record. Similar geomorphological complexity may be present in other areas that previously supported summit icefields, and this needs to be taken into account in glacier reconstructions.

  13. Inter- and intra-annual chemical variability during the ice-free season in lakes with different flushing rates and acid deposition histories.

    Science.gov (United States)

    Arnott, Shelley E; Dillon, Peter J; Somers, Keith; Keller, Bill

    2003-01-01

    Quantifying chemical variability in different lake types is important for the assessment of both chemical and biological responses to environmental change. For monitoring programs that emphasize a large number of lakes at the expense of frequent samples, high variability may influence how representative single samples are of the average conditions of individual lakes. Intensive temporal data from long-term research sites provide a unique opportunity to assess chemical variability in lakes with different characteristics. We compared the intra- and inter-annual variability of four acidification related variables (Gran alkalinity, pH, sulphate concentration, and total base cation concentration) in four lakes with different flushing rates and acid deposition histories. Variability was highest in lakes with high flushing rates and was not influenced by historic acid deposition in our study lakes. This has implications for the amount of effort required in monitoring programs. Lakes with high flushing rates will require more frequent sampling intervals than lakes with low flushing rates. Consideration of specific lake types should be included in the design of monitoring programs.

  14. Anaerobic Psychrophiles from Lake Zub and Lake Untersee, Antarctica

    Science.gov (United States)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Stahl, Sarah; Hoover, Richard B.

    2009-01-01

    The study of samples from Antarctica 2008 and 2009 expeditions organized and successfully conducted by Richard Hoover led to the isolation of diverse anaerobic strains with psychrotolerant and psychrophilic physiology. Due to the fact that Lake Untersee has never been subject to microbiological study, this work with the samples has significant and pioneering impact to the knowledge about the biology of this unique ecosystem. Also, the astrobiological significance for the study of these ecosystems is based on new findings of ice covered water systems on other bodies of our solar system. Anaerobic psychrotolerant strain LZ-22 was isolated from a frozen sample of green moss with soils around the rhizosphere collected near Lake Zub in Antarctica. Morphology of strain LZ-22 was observed to be motile, rod shaped and spore-forming cells with sizes 1 x 5-10 micron. This new isolate is a mesophile with the maximum temperature of growth at 40C. Strain LZ-22 is able to live on media without NaCl and in media with up to 7% (w/v) NaCl. It is catalase negative and grows only on sugars with the best growth rate being on lactose. The strain is a neutrophile and grows between pH 5 and 9.0 with the optimum at 7.8. Another two strains UL7-96mG and LU-96m7P were isolated from deep water samples of Lake Untersee. Proteolytic strain LU-96m7P had a truly psychrophilic nature and refused to grow at room temperature. Sugarlytic strain UL7-96mG was found to be psychrotolerant, but its rate of growth at 3C was very high compared with other mesophiles. Two homoacetogenic psychrophilic strains A7AC-96m and AC-DS7 were isolated and purified from samples of Lake Untersee; both of them are able to grow chemolithotrophically on H2+CO2. In the presence of lactate, these strains are able to grow only at 0-18C, and growth at 22C was observed only with yeast extract stimulation. In this paper, physiological and morphological characteristics of novel psychrophilic and psychrotolerant isolates from

  15. Trends and variability of water quality in Lake Tana, Ethiopia using MODIS-Aqua

    Science.gov (United States)

    DeLuca, N. M.; Zaitchik, B. F.; Monger, B. C.

    2017-12-01

    Determining long-term water quality trends and variability in remote inland lakes has been challenging due to a lack of continuous in situ measurements. Utilizing ocean color remote sensing techniques for these lakes is difficult due to their sizes, shapes, and optically complex waters. Lake Tana is the largest body of water in Ethiopia, and is located in the country's northwestern highlands. The lake is quite shallow, averaging at about 8 meters depth, and is characteristically turbid due to nearby land degradation and high soil erosion rates. Lake Tana is an important source of accessible water for the rapidly growing population of Ethiopia and serves as the headwaters for the Blue Nile. Therefore, understanding water quality trends and seasonal variation over the past decade is essential to better preparing for future water needs. Here we use MODIS-Aqua data spanning years 2002-2016 to investigate these trends and variability in Lake Tana, where in situ measurements are limited. Daily water quality products were first processed using SeaDAS and then aggregated by month and year for analyses. Frequent cloud cover in the June, July, and August (JJA) rainy season due to monsoon and zonal dynamics presents an obstacle for obtaining mean lake values during these months. We also performed analyses on targeted regions of Lake Tana to determine whether some of the major tributaries and their corresponding watersheds have more influence on observed trends than others.

  16. Ice Load Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Timothy J. [DNV GL, Seattle, WA (United States); Brown, Thomas [IFC Engineering, Calgary, AB (Canada); Byrne, Alex [DNV GL, Seattle, WA (United States)

    2014-10-30

    As interest and investment in offshore wind projects increase worldwide, some turbines will be installed in locations where ice of significant thickness forms on the water surface. This ice moves under the driving forces of wind, current, and thermal effects and may result in substantial forces on bottom-fixed support structures. The North and Baltic Seas in Europe have begun to see significant wind energy development and the Great Lakes of the United States and Canada may host wind energy development in the near future. Design of the support structures for these projects is best performed through the use of an integrated tool that can calculate the cumulative effects of forces due to turbine operations, wind, waves, and floating ice. The dynamic nature of ice forces requires that these forces be included in the design simulations, rather than added as static forces to simulation results. The International Electrotechnical Commission (IEC) standard[2] for offshore wind turbine design and the International Organization for Standardization (ISO) standard[3] for offshore structures provide requirements and algorithms for the calculation of forces induced by surface ice; however, currently none of the major wind turbine dynamic simulation codes provides the ability to model ice loads. The scope of work of the project described in this report includes the development of a suite of subroutines, collectively named IceFloe, that meet the requirements of the IEC and ISO standards and couples with four of the major wind turbine dynamic simulation codes. The mechanisms by which ice forces impinge on offshore structures generally include the forces required for crushing of the ice against vertical-sided structures and the forces required to fracture the ice as it rides up on conical-sided structures. Within these two broad categories, the dynamic character of the forces with respect to time is also dependent on other factors such as the velocity and thickness of the moving ice

  17. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  18. Physiological ecology of microorganisms in Subglacial Lake Whillans

    Directory of Open Access Journals (Sweden)

    Trista J Vick-Majors

    2016-10-01

    Full Text Available Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep, oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d-1 obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8% indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms

  19. The assessment of land use change impact on watersheds runoff using SWAT: case study of Urmia Lake in Iran

    Science.gov (United States)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein

    2015-04-01

    Lake Urmia, long counted among the world's largest saltwater lakes, contains only 5% of the amount of water it did just 20 years ago. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. It has been believed that land use changes in Lake Urmia basin is one of the most important factors in shrinkage of Urmia Lake in recent decades. Transforming the traditional agricultural practices (i.e., wheat) to the more water consuming practices (i.e., apple orchards) is one of the most important reasons increased agricultural water consumption in the watershed. In this study we assessed the effect of the land use changes of watershed in hydrological runoff processing in the Nazloo chai watershed, one of the most important river basins of the Urmia Lake basin. Actually the rapid and at the same time unreasonable transformations of land use in farm lands of Urmia lake sub basins, extremely has been raised the amount of blue water (surface or groundwater) consumption in watershed which leads to dramatic decrement of watershed runoff amounts. One of the most unfavorable consequences of land use change was changing the blue and green (rainwater insofar as it does not become runoff) water usage patterns in watershed, in addition to water use increment. The soil and water assessment tool (SWAT), one of the most important and reliable models which was used to model the rainfall runoff, has been used in current study. The land use maps were extracted from Landsat images archives for the most severe turning points in respect of land use change in the recent 30 years. After calibrating the model, several land use patterns of historical data were used in the model to produce the runoff. The results showed the strong relation between land use change and runoff reduction in the Lake Urmia basin.

  20. Evaluation of Agricultural Crops Water Footprint with Application of Climate Change in Urmia Lake basin

    Directory of Open Access Journals (Sweden)

    majid montaseri

    2017-02-01

    Full Text Available Introduction: The water footprint index as a complete indicator represents the actual used water in agriculture based on the climate condition, the amount of crop production, the people consumption pattern, the agriculture practices and water efficiency in any region. The water footprint in agricultural products is divided to three components, including green, blue and gray water footprint. Green water footprint is rainwater stored in soil profile and on vegetation. Blue water refers to water in rivers, lakes and aquifers which is used for irrigation purposes. Gray water footprint refers to define as the volume of contaminated water. The water footprint in arid and semiarid regions with high water requirement for plants and limited fresh water resources has considerable importance and key role in the planning and utilization of limited water resources in these regions. On the other hand, increasing the temperature and decreasing the rainfall due to climate change, are two agents which affect arid and semiarid regions. Therefore, in this research the water footprint of agriculturalcrop production in Urmia Lake basin, with application of climate change for planning, stable operating and crop pattern optimizing, was evaluated to reduce agricultural water consumption and help supplying water rights of Urmia Lake. Materials and Methods:Urmia Lake basin, as one of the main sextet basins in Iran, is located in the North West of Iran and includes large sections of West Azerbaijan, East Azerbaijan and Kurdistan areas. Thirteen major rivers are responsible to drain surface streams in Urmia Lake basin and these rivers after supplying agriculture and drinking water and residential areas in the flow path, are evacuated to the Lake. Today because of non-observance of sustainable development concept, increasing water use in different parts and climate change phenomena in Urmia Lake basin the hydrologic balance was perturbed, and Urmia Lake has been lost 90% of

  1. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery

    International Nuclear Information System (INIS)

    Fujita, Koji; Sakai, Akiko; Nuimura, Takayuki; Yamaguchi, Satoru; Sharma, Rishi R

    2009-01-01

    Changes in the area and bathymetry of Imja Glacial Lake and in the elevation of its damming moraine, Khumbu region, Nepal Himalaya are investigated. Previously reported changes in the lake area have been updated by multi-temporal ASTER images, which revealed a decreased expansion rate after 2000. A provisional expansion of the lake observed in 2004, from which some studies concluded an accelerated lake expansion due to global warming, has, from 2005, subsided to the glacier surface. Bathymetric changes for the period 1992-2002 that were first obtained for Himalayan glacial lakes suggest that the melting of debris-covered ice beneath the lake is insignificant in terms of the increase in lake volume, and that the retreat of a glacier in contact with the lake by calving is essential for the lake's expansion. Changes in the height of a damming moraine for the period 2001-2007 suggest a continuous surface lowering near the lake, though the lowering rates are smaller than those for the period 1989-1994.

  2. Great Lakes Daily Ice Observations at NOAA Water Level Gauge Sites, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains daily visual ice observations taken yearly from 1 November to 30 April at NOAA/National Ocean Service water level gauge sites in the Great...

  3. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique

    Science.gov (United States)

    Li, Jia; Li, Zhi-wei; Wu, Li-xin; Xu, Bing; Hu, Jun; Zhou, Yu-shan; Miao, Ze-lang

    2018-04-01

    We investigated the interactions of Lake Merzbacher with the Southern Inylchek Glacier (Central Tien Shan) using the Synthetic Aperture Radar (SAR) Pixel Offset-Small Baseline Subset (PO-SBAS) to derive a time series of three-dimensional (3D) glacier motion. The measurements of 3D glacier velocity were ∼17% more precise than a previous study that did not use the SBAS estimation. The velocities of the glacier were up to 58 cm/day east, 70 cm/day north, and 113 cm/day vertically. Combining these data with Landsat images indicated that movement of the glacier is sensitive to changes of Lake Merzbacher. Specifically, the entry of more lake water into the glacier during the ablation season increased englacial ablation due to thermal erosion. Moreover, ice calving begins when the lake water gradually lifts the ice dam. Calving can cause greater loss of glacier mass than normal ablation. Trying to replenish the front mass loss, the distributary accelerates and the mass loss further intensifies. A time series of the vertical velocity indicates that the glacier tongue has a huge englacial cavity. We suggest that the lake outburst is directly related to the crack of this cavity. Bursting of the lake triggers a mini-surge at the glacier tongue. The vertical velocity at the ice dam was ∼+60 cm/day before the lake outburst, and ∼-113 cm/day afterwards. After drainage of the lake, flow velocities at the distributary, do not sharply decrease because pre-drainage mass loss needs to be replenished by fast flow. Based on comparisons with previous measurements, our results indicate that the lake had an increasing influence on the glacier from 2005 to 2009. This study demonstrates that a time series of 3D glacier motion based on the PO-SBAS technique is effective for assessing the dynamics of a mountain glacial system and interactions with its glacial lake.

  4. Ice, Ice, Baby!

    Science.gov (United States)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  5. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    Science.gov (United States)

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Multi-proxy Organic Geochemical Reconstruction of Holocene Hydroclimate Near the Western Greenland Ice Sheet Margin

    Science.gov (United States)

    Cluett, A.; Thomas, E. K.

    2017-12-01

    Anthropogenic warming is projected to drive profound change to the Arctic hydrological cycle within the century, most notably in the intensification of rainfall, with potential feedbacks to the climate system and cryosphere. However, the relationship between hydroclimate and cryosphere variability is poorly constrained in the long-term due to a scarcity of high-resolution hydroclimate records from the Arctic. We analyze the stable hydrogen isotopes (dD) of leaf wax biomarkers from lacustrine sediments spanning the Holocene to 9000 cal. year B.P. from Lake Gus (67.032ºN, 52.427ºW, 300 m a.s.l.; informal name), a small lake approximately 90 km from the modern western margin of the Greenland Ice Sheet. We interpret the signal of aquatic leaf wax isotopes in the context of a survey of 100 modern lake water samples from western Greenland across an aridity gradient to better understand the combined climatological and hydrological controls on lake water dD in the study area. We compare variability of aquatic and terrestrial leaf wax isotopes to infer changes in relative moisture throughout the Holocene, and complement our leaf wax record with analysis of glycerol dialkyl glycerol tetraethers (GDGTs) and alkenones, to produce records of summer temperature. Pairing temperature and leaf wax isotope records provides a means to constrain the changing dD-temperature relationship throughout the Holocene and infer moisture source variability. In combination, these proxies produce a comprehensive hydroclimate record at approximately centennial scale to evaluate shifts in relative moisture, temperature, and moisture source, and to investigate the interaction between hydroclimate and Greenland Ice Sheet margin fluctuations through the Holocene.

  7. Early Holocene hydroclimate of Baffin Bay: Understanding the interplay between abrupt climate change events and ice sheet fluctuations

    Science.gov (United States)

    Corcoran, M. C.; Thomas, E. K.; Castañeda, I. S.; Briner, J. P.

    2017-12-01

    Understanding the causes of ice sheet fluctuations resulting in sea level rise is essential in today's warming climate. In high-latitude ice-sheet-proximal environments such as Baffin Bay, studying both the cause and the rate of ice sheet variability during past abrupt climate change events aids in predictions. Past climate reconstructions are used to understand ice sheet responses to changes in temperature and precipitation. The 9,300 and 8,200 yr BP events are examples of abrupt climate change events in the Baffin Bay region during which there were multiple re-advances of the Greenland and Laurentide ice sheets. High-resolution (decadal-scale) hydroclimate variability near the ice sheet margins during these abrupt climate change events is still unknown. We will generate a decadal-scale record of early Holocene temperature and precipitation using leaf wax hydrogen isotopes, δ2Hwax, from a lake sediment archive on Baffin Island, western Baffin Bay, to better understand abrupt climate change in this region. Shifts in temperature and moisture source result in changes in environmental water δ2H, which in turn is reflected in δ2Hwax, allowing for past hydroclimate to be determined from these compound-specific isotopes. The combination of terrestrial and aquatic δ2Hwax is used to determine soil evaporation and is ultimately used to reconstruct moisture variability. We will compare our results with a previous analysis of δ2Hwax and branched glycerol dialkyl glycerol tetraethers, a temperature and pH proxy, in lake sediment from western Greenland, eastern Baffin Bay, which indicates that cool and dry climate occurred in response to freshwater forcing events in the Labrador Sea. Reconstructing and comparing records on both the western and eastern sides of Baffin Bay during the early Holocene will allow for a spatial understanding of temperature and moisture balance changes during abrupt climate events, aiding in ice sheet modeling and predictions of future sea level

  8. Arctic deltaic lake sediments as recorders of fluvial organic matter deposition

    Directory of Open Access Journals (Sweden)

    Jorien E Vonk

    2016-08-01

    Full Text Available Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, 13C, 14C and molecular organic geochemistry (lignin, leaf waxes. High-resolution age models (137Cs, 210Pb of downcore lake sediment records (n=11 along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels. Comparison with earlier published Mackenzie River depth profiles shows that (i lake sediments reflect the riverine surface suspended load, and (ii hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale riverine fluxes and may prove instrumental in shedding light on past behaviour of arctic rivers, as well as how they respond to a changing climate.

  9. Holocene evolution of lakes in the forest-tundra biome of northern Manitoba, Canada

    Science.gov (United States)

    Hobbs, William O.; Edlund, Mark B.; Umbanhowar, Charles E.; Camill, Philip; Lynch, Jason A.; Geiss, Christoph; Stefanova, Vania

    2017-03-01

    The late-Quaternary paleoenvironmental history of the western Hudson Bay region of Subarctic Canada is poorly constrained. Here, we present a regional overview of the post-glacial history of eight lakes which span the forest-tundra biome in northern Manitoba. We show that during the penultimate drainage phase of Lake Agassiz the lake water had an estimated pH of ∼6.0, with abundant quillwort (Isöetes spp.) along the lakeshore and littoral zone and some floating green algae (Botryococcus spp. and Pediastrum sp.). Based on multiple sediment proxies, modern lake ontogeny in the region commenced at ∼7500 cal yrs BP. Pioneering diatom communities were shaped by the turbid, higher alkalinity lake waters which were influenced by base cation weathering of the surrounding till following Lake Agassiz drainage. By ∼7000 cal yrs BP, soil development and Picea spp. establish and the lakes began a slow trajectory of acidification over the remaining Holocene epoch. The natural acidification of the lakes in this region is slow, on the order of several millennia for one pH unit. Each of the study lakes exhibit relatively stable aquatic communities during the Holocene Thermal Maximum, suggesting this period is a poor analogue for modern climatic changes. During the Neoglacial, the beginning of the post-Little Ice Age period represents the most significant climatic event to impact the lakes of N. Manitoba. In the context of regional lake histories, the rate of diatom floristic change in the last 200-300 years is unprecedented, with the exception of post-glacial lake ontogeny in some of the lakes. For nearly the entire history of the lakes in this region, there is a strong linkage between landscape development and the aquatic ecosystems; however this relationship appears to become decoupled or less strong in the post-LIA period. Significant 20th century changes in the aquatic ecosystem cannot be explained wholly by changes in the terrestrial ecosystem, suggesting that future

  10. Sea ice - Multiyear cycles and white ice

    Science.gov (United States)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  11. Glaciers and ice caps outside Greenland

    Science.gov (United States)

    Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.

    2015-01-01

    Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).

  12. Lake Eĺ gygytgyn Drilling under way: State of the operation and first results

    Science.gov (United States)

    Melles, M.; Brigham-Grette, J.; Minyuk, P.; Koeberl, C.; Scientific Party, EĺGygytgyn

    2009-04-01

    Lake Eĺgygytgyn, located in central Chukotka, NE Siberia, was formed 3.6 million years ago by a meteorite impact and has never been glaciated or desiccated. This makes Lake Eĺgygytgyn a unique target of an interdisciplinary, multi-national drilling campaign, which currently is carried out as part of the International Continental Drilling Program (ICDP). Drilling operations started in Nov./Dec. 2008, when a 142 m long sediment core was retrieved from the permafrost deposits in the western lake catchment by the local drilling company Chaun Mine Geological Company (CGE). The core penetrated coarse-grained, ice-rich alluvial sediments with variable contents of fine-grained material. It will be investigated for the environmental history, including potential lake-level changes, and the permafrost characteristics, in order to learn more about the influences of catchment changes on the lake sedimentation. Besides, the hole was permanently instrumented for future ground temperature monitoring as part of the Global Terrestrial Network for Permafrost (www.gtnp.org/index_e.html). The major drilling effort will commence in Febr. 2009, when two sites in the central part of Lake Eĺgygytgyn shall be drilled down to 630 m below the lake floor. Drilling will be carried out by DOSECC, using a new GLAD 800 system that will be operated from an enclosed platform on the lake ice. Drilling objectives include replicate overlapping cores from the up to 420 m thick lake sediment fill. The cores promise to yield the longest, most continuous record of climate change in the terrestrial Arctic, extending back one million years prior to the intensification of the Northern Hemisphere Glaciation at the Pliocene/Pleistocene boundary, thus offering unique insight into the climatic and environmental history of the Arctic and its comparison with records from lower latitude marine and terrestrial sites to better understand hemispheric and global climate change. Coring shall be continued up to 300 m

  13. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  14. Response of the St. Joseph River to lake level changes during the last 12,000 years in the Lake Michigan basin

    Science.gov (United States)

    Kincare, K.A.

    2007-01-01

    The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography

  15. Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya-Karakoram region

    DEFF Research Database (Denmark)

    Linsbauer, A.; Frey, H.; Haeberli, W.

    2016-01-01

    Surface digital elevation models (DEMs) and slope-related estimates of glacier thickness enable modelling of glacier-bed topographies over large ice-covered areas. Due to the erosive power of glaciers, such bed topographies can contain numerous overdeepenings, which when exposed following glacier...... retreat may fill with water and form new lakes. In this study, the bed overdeepenings for ∼28000 glaciers (40 775km2) of the Himalaya-Karakoram region are modelled using GlabTop2 (Glacier Bed Topography model version 2), in which ice thickness is inferred from surface slope by parameterizing basal shear...... stress as a function of elevation range for each glacier. The modelled ice thicknesses are uncertain (±30%), but spatial patterns of ice thickness and bed elevation primarily depend on surface slopes as derived from the DEM and, hence, are more robust. About 16 000 overdeepenings larger than 104m2 were...

  16. Angora Fire, Lake Tahoe

    Science.gov (United States)

    2007-01-01

    On the weekend of June 23, 2007, a wildfire broke out south of Lake Tahoe, which stretches across the California-Nevada border. By June 28, the Angora Fire had burned more than 200 homes and forced some 2,000 residents to evacuate, according to The Seattle Times and the Central Valley Business Times. On June 27, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the burn scar left by the Angora fire. The burn scar is dark gray, or charcoal. Water bodies, including the southern tip of Lake Tahoe and Fallen Leaf Lake, are pale silvery blue, the silver color a result of sunlight reflecting off the surface of the water. Vegetation ranges in color from dark to bright green. Streets are light gray, and the customary pattern of meandering residential streets and cul-de-sacs appears throughout the image, including the area that burned. The burn scar shows where the fire obliterated some of the residential areas just east of Fallen Leaf Lake. According to news reports, the U.S. Forest Service had expressed optimism about containing the fire within a week of the outbreak, but a few days after the fire started, it jumped a defense, forcing the evacuation of hundreds more residents. Strong winds that had been forecast for June 27, however, did not materialize, allowing firefighters to regain ground in controlling the blaze. On June 27, authorities hoped that the fire would be completely contained by July 3. According to estimates provided in the daily report from the National Interagency Fire Center, the fire had burned 3,100 acres (about 12.5 square kilometers) and was about 55 percent contained as of June 28. Some mandatory evacuations remained in effect. NASA image by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  17. Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars

    Science.gov (United States)

    Kite, Edwin S.; Gao, Peter; Goldblatt, Colin; Mischna, Michael A.; Mayer, David P.; Yung, Yuk L.

    2017-10-01

    Lakes existed on Mars later than 3.6 billion years ago, according to sedimentary evidence for deltaic deposition. The observed fluviolacustrine deposits suggest that individual lake-forming climates persisted for at least several thousand years (assuming dilute flow). But the lake watersheds’ little-weathered soils indicate a largely dry climate history, with intermittent runoff events. Here we show that these observational constraints, although inconsistent with many previously proposed triggers for lake-forming climates, are consistent with a methane burst scenario. In this scenario, chaotic transitions in mean obliquity drive latitudinal shifts in temperature and ice loading that destabilize methane clathrate. Using numerical simulations, we find that outgassed methane can build up to atmospheric levels sufficient for lake-forming climates, if methane clathrate initially occupies more than 4% of the total volume in which it is thermodynamically stable. Such occupancy fractions are consistent with methane production by water-rock reactions due to hydrothermal circulation on early Mars. We further estimate that photochemical destruction of atmospheric methane curtails the duration of individual lake-forming climates to less than a million years, consistent with observations. We conclude that methane bursts represent a potential pathway for intermittent excursions to a warm, wet climate state on early Mars.

  18. Lake-level variations and tides in Lago Argentino, Patagonia: insights from pressure tide gauge records

    Directory of Open Access Journals (Sweden)

    Andreas Richter

    2015-08-01

    Full Text Available Based on precise pressure tide gauge observations lake-level records are derived for two sites in Lago Argentino, southern Patagonia, of 2.5 and 1 years of duration. Applying the tools of time series analysis, the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle of 1.2 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. Sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in Lago Argentino are dominated by surface seiches reaching 20 cm in amplitude. Lake tides reach a maximum amplitude of 3 mm. The comparison of the tidal signal extracted from the lake-level observations with a model composed of the contributions of body tide and ocean tidal loading indicates a phase shift of 23° which is most likely explained by an 1 hour phase lag of global ocean tide models in the region of the highly fragmented Pacific coast. The comparison of the obtained results with those of a previous study of Lago Fagnano, Tierra del Fuego, allows to relate differences in the hydrological and hydrodynamic processes between both lakes to morphological properties. This leads to a tentative prediction of the lake-level variability to be expected from other great Patagonian lakes. The presented geodetic results shall serve as a starting point for a detailed limnological investigation of these aquatic ecosystems.

  19. American Fisheries Society 136th Annual Meeting Lake Placid, NY 10-14 September, 2006

    Science.gov (United States)

    Einhouse, D.; Walsh, M.G.; Keeler, S.; Long, J.M.

    2005-01-01

    The New York Chapter of the American Fisheries Society and the New York State Department of Environmental Conservation invite you to experience the beauty of New York's famous Adirondack Park as the American Fisheries Society (AFS) convenes its 136th Annual Meeting in the legendary Olympic Village of Lake Placid, NY, 10-14 September 2006. Our meeting theme "Fish in the Balance" will explore the interrelation between fish, aquatic habitats, and man, highlighting the challenges facing aquatic resource professionals and the methods that have been employed to resolve conflicts between those that use or have an interest in our aquatic resources. As fragile as it is beautiful, the Adirondack Region is the perfect location to explore this theme. Bordered by Mirror Lake and its namesake, Lake Placid, the Village of Lake Placid has small town charm, but all of the conveniences that a big city would provide. Whether its reliving the magic of the 1980 hockey team's "Miracle on Ice" at the Lake Placid Olympic Center, getting a panoramic view of the Adirondack high peaks from the top of the 90 meter ski jumps, fishing or kayaking in adjacent Mirror Lake, hiking a mountain trail, or enjoying a quiet dinner or shopping excursion in the various shops and restaurants that line Main Street, Lake Placid has something for everyone.

  20. The hydrological and environmental evolution of shallow Lake Melincué, central Argentinean Pampas, during the last millennium

    Science.gov (United States)

    Guerra, Lucía; Piovano, Eduardo L.; Córdoba, Francisco E.; Sylvestre, Florence; Damatto, Sandra

    2015-10-01

    Lake Melincué, located in the central Pampean Plains of Argentina, is a shallow (∼4 m), subsaline lake (TDS > 2000 ppm), highly sensitive to hydrological changes. The modern shallow lake system is composed of: (a) a supralittoral area, which includes a narrow mudflat, a vegetated mudflat and wetlands subenvironments; and (b) the main water body, comprising lacustrine marginal and inner areas. The development and extension of these subenvironments are strongly conditioned upon lake surface fluctuations. Past environmental changes were reconstructed through sedimentological, physical and geochemical proxy analyses of two short sedimentary cores (∼127 cm). Well-constrained 210Pb ages profiles were modeled and radiocarbon chronologies were determined, covering a period from ∼AD 800 to the present. The analyzed sedimentary cores from Lake Melincué allowed for the reconstruction of past hydrological scenarios and associated environmental variability, ranging from extremely low lake levels during dry phases to pronounced highstands at wet periods. The paleohydrological reconstruction revealed very shallow conditions in the period between AD 806 and AD 1880, which was registered by massive deposits with low organic matter. Relatively wetter phases disrupting this dry period were represented by organic matter increases. A major wet phase was registered by AD 1454, after the end of the Medieval Climate Anomaly. A subsequent abrupt shift from this wet phase to drier conditions could be matching the transition between the end of the Medieval Climatic Anomaly and the beginning of the Little Ice Age. The occurrence of sedimentary hiatuses between AD 1492 and AD 1880 in Melincué sequence could correspond to intensive droughts during the Little Ice Age. After AD 1880, banded and laminated, autochthonous, organic matter-rich sediments registered an important lacustrine transgression and the onset of a permanent shallow lake, corresponding to the beginning of the current

  1. Organic compounds and suspended matter in the marine ice of the Eastern Antarctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2005-01-01

    Data on the composition of organic compounds in Antarctic sea ice are virtually non-existent, as most works concentrate on the structure, physical composition and biological properties of the ice. Data is needed for the study of the global carbon cycle and the estimation of background values and anthropogenic compounds. Specific features of the hydrometeorological regime near Antarctica affect the structure of the ice cover and its properties. The transportation of large volumes of snow to the ocean results in the formation of a snow sludge layer which gradually accumulates on the sea surface and freezes into young slush ice. The irregular distribution of snow at the ice surface and seawater infiltration results in the formation of ice with a specific crystalline structure and physiochemical properties. This paper discussed the dissolved and suspended lipids and hydrocarbons, as well as suspended matter (SM) concentrations in snow, sea ice and sub-ice water in coastal zones of the East Antarctic. The data was obtained during the Russian Antarctic Expedition in 2003. Variations in the concentration and distribution of the various substances suggest that they are related to ice forming conditions and to the processes that occur when ice forms, as well as in the interaction of the substances with ice, snow and sub-ice water. The SM and organic compounds are accumulated in layers characterized by intense autochthonous processes. It was noted that the zones stay biogeochemically active even under low temperature conditions. The highest concentrations of organic compounds, along with the biggest variations in their proportions have been discovered in the areas surrounded by penguin colonies near Buromsky Island and Haswell Island's Lake. The presence of significant quantities of PAHs in both pack and seasonal ice of high latitudes indicates that their formation is relatively rapid even at low temperatures. Many biochemical processes are intense under the influence of ice

  2. The endemic mollusks reveal history of the long-lived Pliocene Lake Slavonia in NW Croatia

    Science.gov (United States)

    Mandic, Oleg; Kurečić, Tomislav; Neubauer, Thomas A.; Harzhauser, Mathias

    2015-04-01

    The present investigation deals with the fossil mollusk record of the long-lived Pliocene Lake Slavonia settled in the southern Pannonian Basin. The samples originate from Vukomeričke gorice, a low hill-range situated north of the Kupa River in the area between the towns of Zagreb, Sisak and Karlovac in NW Croatia. Representing the SW margin of the Lake Slavonia the freshwater deposits alternate there with the alluvial series, providing altogether about 400-m-thick, Pliocene continental succession, known in literature by informal name Paludina beds (acc. to a junior synonym of Viviparus). The endemic fauna of the Lake Slavonia became particularly well-known in the late 19th century after Melchior Neumayr demonstrated that the gradual evolutionary change of the mollusk phenotypes toward more complex morphology represents a function of adaptation to environmental change in the paleolake. Even Charles Darwin commented that result as by far the best case which I have ever met with, showing the direct influence of the conditions of life on the organization. The deposition in the Lake Slavonia (~4.5 to ~1.8 Ma) coincides with the Pliocene Climate Optimum (PCO), but captures also the transition into the Pleistocene climate marked by the initial Ice Age pulse at 2.59 Ma. The increase of polar temperatures resulted during PCO in a significant melting of the ice caps leading to a global sea level rise tentatively getting up to 25 m higher than today. Coincidence of the climate and geodynamic settings in southeastern Europe provided conditions supporting extended settlement of lacustrine environments including Lake Slavonia, Lake Kosovo, Lake Transylvania and Lake Dacia, all characterized by explosive adaptive radiations of viviparid snails. In particular, the latter adaptive radiations resulted in the regional phylostratigraphy of Lake Slavonia Viviparus species enabling excellent stratigraphic control for the investigated deposits. Hence, based on this evidence, the

  3. Glaciolacustrine deposits formed in an ice-dammed tributary valley in the south-central Pyrenees: New evidence for late Pleistocene climate

    Science.gov (United States)

    Sancho, Carlos; Arenas, Concha; Pardo, Gonzalo; Peña-Monné, José Luis; Rhodes, Edward J.; Bartolomé, Miguel; García-Ruiz, José M.; Martí-Bono, Carlos

    2018-04-01

    Combined geomorphic features, stratigraphic characteristics and sedimentologic interpretation, coupled with optically stimulated luminescence (OSL) dates, of a glacio-fluvio-lacustrine sequence (Linás de Broto, northern Spain) provide new information to understand the palaeoenvironmental significance of dynamics of glacier systems in the south-central Pyrenees during the Last Glacial Cycle (≈130 ka to 14 ka). The Linás de Broto depositional system consisted of a proglacial lake fed primarily by meltwater streams emanating from the small Sorrosal glacier and dammed by a lateral moraine of the Ara trunk glacier. The resulting glacio-fluvio-lacustrine sequence, around 55 m thick, is divided into five lithological units consisting of braided fluvial (gravel deposits), lake margin (gravel and sand deltaic deposits) and distal lake (silt and clay laminites) facies associations. Evolution of the depositional environment reflects three phases of progradation of a high-energy braided fluvial system separated by two phases of rapid expansion of the lake. Fluvial progradation occurred during short periods of ice melting. Lake expansion concurred with ice-dam growth of the trunk glacier. The first lake expansion occurred over a time range between 55 ± 9 ka and 49 ± 11 ka, and is consistent with the age of the Viu lateral moraine (49 ± 8 ka), which marks the maximum areal extent of the Ara glacier during the Last Glacial Cycle. These dates confirm that the maximum areal extent of the glacier occurred during Marine Isotope Stages 4 and 3 in the south-central Pyrenees, thus before the Last Glacial Maximum. The evolution of the Linás de Broto depositional system during this maximum glacier extent was modulated by climate oscillations in the northern Iberian Peninsula, probably related to latitudinal shifts of the atmospheric circulation in the southern North-Atlantic Ocean, and variations in summer insolation intensity.

  4. The 24 July 2008 outburst flood at the western Zyndan glacier lake and recent regional changes in glacier lakes of the Teskey Ala-Too range, Tien Shan, Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    C. Narama

    2010-04-01

    Full Text Available On 24 July 2008, a glacier lake outburst flood (GLOF occurred at the western (w- Zyndan glacier lake in the Tong District of Ysyk-Köl Oblast, Kyrgyzstan. The flood killed three people and numerous livestock, destroyed infrastructure, and devastated potato and barley crops as well as pastures. Tuurasuu village and a downstream reservoir on the Zyndan river escaped heavy damage because the main flood was diverted toward the Tong river. RTK-GPS and satellite data (Landsat 7 ETM+, ALOS/PRISM, and ALOS/AVNIR-2 reveal that the flood reduced the lake area from 0.0422 km2 to 0.0083 km2, discharging 437 000 m3 of water. This glacier lake was not present in a Landsat 7 ETM+ image taken on 26 April 2008. It formed rapidly over just two and half months from early May to the late July, when large amounts of snow and glacier melt water became trapped in a basin in the glacier terminus area, blocked by temporary closure of the drainage channel through the terminal moraine that included much dead-ice. In the same mountain region, most other glacier-lake expansions were not particularly large during the period from 1999–2008. Although events like the w-Zyndan glacier lake outburst occur infrequently in the high Central Asian mountains, such fast developing, short-lived lakes are particularly dangerous and not easy to monitor using satellite data. Appropriate measures to protect against such lake outburst hazards in this region include educating residents on glacier hazards and monitoring techniques, providing frequently updated maps of glacier lakes, and planning and monitoring land-use, including house locations.

  5. Identifying temporal bottlenecks for the conservation of large-bodied fishes: Lake Sturgeon (Acipenser fulvescens show highly restricted movement and habitat use over-winter

    Directory of Open Access Journals (Sweden)

    Donnette Thayer

    2017-04-01

    Full Text Available The relationship between species’ size and home range size has been well studied. In practice, home range may provide a good surrogate of broad spatial coverage needed for species conservation, however, many species can show restricted movement during critical life stages, such as breeding and over-wintering. This suggests the existence of either a behavioral or habitat mediated ‘temporal bottleneck,’ where restricted or sedentary movement can make populations more susceptible to harm during specific life stages. Here, we study over-winter movement and habitat use of Lake Sturgeon (Acipenser fulvescens, the largest freshwater fish in North America. We monitored over-winter movement of 86 fish using a hydro-acoustic receiver array in the South Saskatchewan River, Canada. Overall, 20 fish remained within our study system throughout the winter. Lake Sturgeon showed strong aggregation and sedentary movement over-winter, demonstrating a temporal bottleneck. Movement was highly restricted during ice-on periods (ranging from 0.9 km/day in November and April to 0.2 km/day in mid-November to mid-March, with Lake Sturgeon seeking deeper, slower pools. We also show that Lake Sturgeon have strong aggregation behavior, where distance to conspecifics decreased (from 575 to 313 m in preparation for and during ice-on periods. Although the Lake Sturgeon we studied had access to 1100 kilometers of unfragmented riverine habitat, we show that during the over-winter period Lake Sturgeon utilized a single, deep pool (<0.1% of available habitat. The temporal discrepancy between mobile and sedentary behaviors in Lake Sturgeon suggest adaptive management is needed with more localized focus during periods of temporal bottlenecks, even for large-bodied species.

  6. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  7. Wave Height and Water Level Variability on Lakes Michigan and St Clair

    Science.gov (United States)

    2012-10-01

    Observations: http://www.ssec.wisc.edu/sose/glwx_activity.html 4. NASA Atlas of Extratropical Storm Tracks: http://data.giss.nasa.gov/stormtracks...term meteorological, ice, wave, and water level measurements. 15. SUBJECT TERMS Base flood elevation Coastal flood Extratropical storms Great...Box 1027 Detroit, MI 48231-1027 ERDC/CHL TR-12-23 ii Abstract The Great Lakes are subject to coastal flooding as a result of severe storms

  8. Ice cream structure modification by ice-binding proteins.

    Science.gov (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  10. Eulerian Method for Ice Crystal Icing

    NARCIS (Netherlands)

    Norde, Ellen; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    In this study, an ice accretion method aimed at ice crystal icing in turbofan engines is developed and demonstrated for glaciated as well as mixed-phase icing conditions. The particle trajectories are computed by an Eulerian trajectory method. The effects of heat transfer and phase change on the

  11. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    reconnaissance surveys provided a strong impetus to visit this area in 2010. The seismic methods applied in Lake Teshekpuk were able to image pockmarks, widespread shallow gas in the sediments, and the relationship among different sediment packages on the lake's bottom, but even boomer seismics did not detect permafrost beneath the northern part of the lake. By characterizing the biogeochemistry of shallow TKL with methane seeps we showed that the radical seasonal shifts in ice cover and temperature. These seasonal environmental differences result in distinct consumption and production processes of biologically-relevant compounds. The combined effects of temperature, ice-volume and other lithological factors linked to seepage from the lake are manifest in the distribution of sedimentary methane in Lake Q during icecovered and ice-free conditions. The biogeochemistry results illustrated very active methanotrophy in TKLs. Substantial effort was subsequently made to characterize the nature of methanotrophic communities in TKLs. We applied stable isotope probing approaches to genetically characterize the methanotrophs most active in utilizing methane in TKLs. Our study is the first to identify methane oxidizing organisms active in arctic TKLs, and revealing that type I methanotrophs and type II methanotrophs are abundant and active in assimilating methane in TKLs. These organisms play an important role in limiting the flux of methane from these sites. Our investigations indicate that as temperatures increase in the Arctic, oxidation rates and active methanotrophic populations will also shift. Whether these changes can offset predicted increases in methanogenesis is an important question underlying models of future methane flux and resultant climate change. Overall our findings indicate that TKLs and their ability to act as both source and sink of methane are exceedingly sensitive to environmental change.

  12. Demographic characteristics of an adfluvial bull trout population in Lake Pend Oreille, Idaho

    Science.gov (United States)

    McCubbins, Jonathan L; Hansen, Michael J.; DosSantos, Joseph M; Dux, Andrew M

    2016-01-01

    Introductions of nonnative species, habitat loss, and stream fragmentation have caused the Bull Trout Salvelinus confluentus to decline throughout much of its native distribution. Consequently, in June 1998, the Bull Trout was listed under the U.S. Endangered Species Act as threatened. The Bull Trout has existed in Lake Pend Oreille and its surrounding tributaries since the last ice age, and the lake once supported a world-renowned Bull Trout fishery. To quantify the current status of the Bull Trout population in Lake Pend Oreille, Idaho, we compared the mean age, growth, maturity, and abundance with reports in a study conducted one decade earlier. Abundance was estimated by mark–recapture for Bull Trout caught in trap nets and gill nets set in Lake Pend Oreille during ongoing suppression netting of Lake Trout S. namaycushin 2007–2008. Bull Trout sampled in 2006–2008 were used to estimate age structure, survival, growth, and maturity. Estimated Bull Trout abundance was similar to that estimated one decade earlier in Lake Pend Oreille. Bull Trout residing in Lake Pend Oreille between 2006 and 2008 were between ages 4 and 14 years; their growth was fastest between ages 1 and 2 and slowed thereafter. Male and female Bull Trout matured at a similar age, but females grew faster than males, thereby maturing at a larger size. Our findings suggest that management has effectively addressed current threats to increase the likelihood of long-term persistence of the Bull Trout population in Lake Pend Oreille.

  13. Isotope Tracer Methods for Investigations Of Nitrogen Deficiency In Castle Lake, California

    International Nuclear Information System (INIS)

    Axler, R.P.; Goldman, C.R.

    1981-01-01

    Castle Lake is a subalpine lake located in northern California. Thermal stratification is well developed soon after ice-thaw and persists until fall overturn. The epilimnion during the major portion of the growing season (mid-June to mid-September) is characterized by relatively constant temperature and depth (19±3°C, 5±2m respectively), high transparency (η = 0.21 m -1 ), low phytoplankton productivity (∼3 mg C m -3 hr -1 at midday), and low levels of dissolved inorganic nitrogen (≲5 μg N 1 -1 ) and phosphorus (≲1 μg P 1 -1 ). Nitrogen-fixing algae are not present in the water column and nutrient inputs derived from precipitation and surface inflow are generally negligible by early July

  14. Lake fish as the main contributor of internal dose to lakeshore residents in the Chernobyl contaminated area

    International Nuclear Information System (INIS)

    Travnikova, I.G.; Bazjukin, A.N.; Bruk, G.Ja.; Shutov, V.N.; Balonov, M.I.; Skuterud, L.; Mehli, H.; Strand, P.

    2004-01-01

    Two field expeditions in 1996 studied 137 Cs intake patterns and its content in the bodies of adult residents from the village Kozhany in the Bryansk region, Russia, located on the shore of a drainless peat lake in an area subjected to significant radioactive contamination after the 1986 Chernobyl accident. The 137 Cs contents in lake water and fish were two orders of magnitude greater than in local rivers and flow-through lakes, 10 years after Chernobyl radioactive contamination, and remain stable. The 137 Cs content in lake fish and a mixture of forest mushrooms was between approximately 10-20 kBq/kg, which exceeded the temporary Russian permissible levels for these products by a factor of 20-40. Consumption of lake fish gave the main contribution to internal doses (40-50%) for Kozhany village inhabitants Simple countermeasures, such as Prussian blue doses for dairy cows and pre-boiling mushrooms and fish before cooking, halved the 137 Cs internal dose to inhabitants, even 10 years after the radioactive fallout

  15. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    Science.gov (United States)

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  16. A late Holocene metal record of Andean climate and anthropogenic activity in lake sediments near Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Beal, S. A.; Kelly, M. A.; Jackson, B. P.; Stroup, J. S.; Osterberg, E. C.

    2011-12-01

    The tropical hypothesis maintains that major changes in global climate are motivated by phenomena based at tropical latitudes. Evidence for this hypothesis lies in: modern-day observations of El Niño Southern Oscillation (ENSO); East African lake sediment records of Intertropical Convergence Zone (ITCZ) position that precede high-latitude changes; and the potential for ITCZ shifts to cause major CO2 degassing from the Southern Ocean. In order to improve the understanding of these phenomena we present an ~1800 year record of atmospheric metal deposition in a lake sediment core near Quelccaya Ice Cap, Peru (13.9 °S). In June, 2010 we collected a 1.45 meter-long core from Yanacocha - a small, closed-basin tarn that has been isolated from glacial input since ~11,200 BP. The chronology for the core is based on 4 of 6 AMS 14C dates on aquatic macrofossils and one sharp Zr/Ti anomaly at 36 cm, likely derived from the 350 BP eruption of Huaynaputina. We completely digested organic-rich core samples at 1 cm resolution using HNO3, HCl, and HF in a closed-vessel microwave system, and then analyzed the digestates for 67 metals by inductively coupled plasma mass spectrometry. Here we show fluxes of lithogenic metals (Fe, Nb, Ti, and Zr) that reflect changes in wind strength and aridity, fluxes of lithogenic metal isotopes (REEs and Pb) that reflect wind direction, and enrichment factors (EFs) of metals (Ag, As, Cd, Cu, Hg, and Pb) that reflect anthropogenic activity. Five episodic peaks in lithogenic metal fluxes, centered around 1800, 1300, 900, 600, and 100 yrs BP, are thought to result from either drier or windier conditions, potentially caused by a northern ITCZ position or a more persistent El Niño state. The provenance of atmospheric deposition, evidenced by REE ratios (light REEs / heavy REEs), suggest that high lithogenic fluxes are associated with a change in wind direction, possibly caused by a change in the ENSO state, which will be explored with forthcoming Pb

  17. The Late-Glacial and Holocene Marboré Lake sequence (2612 m a.s.l., Central Pyrenees, Spain): Testing high altitude sites sensitivity to millennial scale vegetation and climate variability

    Science.gov (United States)

    Leunda, Maria; González-Sampériz, Penélope; Gil-Romera, Graciela; Aranbarri, Josu; Moreno, Ana; Oliva-Urcia, Belén; Sevilla-Callejo, Miguel; Valero-Garcés, Blas

    2017-10-01

    This paper presents the environmental, climate and vegetation changes reconstructed for the last 14.6 kyr cal BP from the Marboré Lake sedimentary sequence, the highest altitude record (2612 m a.s.l.) in the Pyrenees studied up to date. We investigate the sensitivity of this high altitude site to vegetational and climate dynamics and altitudinal shifts during the Holocene by comparing palynological spectra of the fossil sequence and pollen rain content from current moss pollsters. We hypothesize that the input of sediments in lakes at such altitude is strongly controlled by ice phenology (ice-free summer months) and that during cold periods Pollen Accumulation Rate (PAR) and Pollen Concentration (PC) reflect changes in ice-cover and thus is linked to temperature changes. Low sedimentation rates and low PC and PAR occurred during colder periods as the Younger Dryas (GS-1) and the Holocene onset (12.6-10.2 kyr cal BP), suggesting that the lake-surface remained ice-covered for most of the year during these periods. Warmer conditions are not evident until 10.2 kyr cal BP, when an abrupt increase in sedimentation rate, PC and PAR occur, pointing to a delayed onset of the Holocene temperature increase at high altitude. Well-developed pinewoods and deciduous forest dominated the mid montane belt since 9.3 kyr cal BP until mid-Holocene (5.2 kyr cal BP). A downwards shift in the deciduous forest occurred after 5.2 kyr cal BP, in agreement with the aridity trend observed at a regional and Mediterranean context. The increase of herbaceous taxa during the late-Holocene (3.5 kyr cal BP-present) reflects a general trend to reduced montane forest, as anthropogenic disturbances were not evident until 1.3 kyr cal BP when Olea proportions from lowland areas and other anthropogenic indicators clearly expand. Our study demonstrates the need to perform local experimental approaches to check the effect of ice phenology on high altitude lakes sensitivity to vegetation changes to obtain

  18. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Koji; Sakai, Akiko; Nuimura, Takayuki [Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601 (Japan); Yamaguchi, Satoru [Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Prevention, Nagaoka 940-0821 (Japan); Sharma, Rishi R [Department of Hydrology and Meteorology, Ministry of Environment, Science and Technology, Babar Mahal, Kathmandu (Nepal)

    2009-10-15

    Changes in the area and bathymetry of Imja Glacial Lake and in the elevation of its damming moraine, Khumbu region, Nepal Himalaya are investigated. Previously reported changes in the lake area have been updated by multi-temporal ASTER images, which revealed a decreased expansion rate after 2000. A provisional expansion of the lake observed in 2004, from which some studies concluded an accelerated lake expansion due to global warming, has, from 2005, subsided to the glacier surface. Bathymetric changes for the period 1992-2002 that were first obtained for Himalayan glacial lakes suggest that the melting of debris-covered ice beneath the lake is insignificant in terms of the increase in lake volume, and that the retreat of a glacier in contact with the lake by calving is essential for the lake's expansion. Changes in the height of a damming moraine for the period 2001-2007 suggest a continuous surface lowering near the lake, though the lowering rates are smaller than those for the period 1989-1994.

  19. Shifts in the source and composition of dissolved organic matter in Southwest Greenland lakes along a regional hydro-climatic gradient

    DEFF Research Database (Denmark)

    Osburn, Christopher L.; Anderson, Nicholas J.; Stedmon, Colin A.

    2018-01-01

    Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differe...

  20. Using ATM laser altimetry to constrain surface mass balance estimates and supraglacial hydrology of the Greenland Ice Sheet

    Science.gov (United States)

    Studinger, M.; Medley, B.; Manizade, S.; Linkswiler, M. A.

    2016-12-01

    Repeat airborne laser altimetry measurements can provide large-scale field observations to better quantify spatial and temporal variability of surface processes contributing to seasonal elevation change and therefore surface mass balance. As part of NASA's Operation IceBridge the Airborne Topographic Mapper (ATM) laser altimeter measured the surface elevation of the Greenland Ice Sheet during spring (March - May) and fall (September - October) of 2015. Comparison of the two surveys reveals a general trend of thinning for outlet glaciers and for the ice sheet in a manner related to elevation and latitude. In contrast, some thickening is observed on the west (but not on the east) side of the ice divide above 2200 m elevation in the southern half, below latitude 69°N.The observed magnitude and spatial patterns of the summer melt signal can be utilized as input into ice sheet models and for validating reanalysis of regional climate models such as RACMO and MAR. We use seasonal anomalies in MERRA-2 climate fields (temperature, precipitation) to understand the observed spatial signal in seasonal change. Aside from surface elevation change, runoff from meltwater pooling in supraglacial lakes and meltwater channels accounts for at least half of the total mass loss. The ability of the ATM laser altimeters to image glacial hydrological features in 3-D and determine the depth of supraglacial lakes could be used for process studies and for quantifying melt processes over large scales. The 1-meter footprint diameter of ATM laser on the surface, together with a high shot density, allows for the production of large-scale, high-resolution, geodetic quality DEMs (50 x 50 cm) suitable for fine-scale glacial hydrology research and as input to hydrological models quantifying runoff.

  1. Lake-level variation in the Lahontan basin for the past 50,000 years

    Science.gov (United States)

    Benson, L.V.; Thompson, R.S.

    1987-01-01

    Selected radiocarbon data on surficial materials from the Lahontan basin, Nevada and California, provide a chronology of lake-level variation for the past 50,000 yr. A moderate-sized lake connected three western Lahontan subbasins (the Smoke Creek-Black Rock Desert subbasin, the Pyramid Lake subbasin, and the Winnemucca Dry Lake subbasin) from about 45,000 to 16,500 yr B.P. Between 50,000 and 45,000 yr B.P., Walker Lake rose to its sill level in Adrian Valley and spilled to the Carson Desert subbasin. By 20,000 yr B.P., lake level in the western Lahontan subbasins had risen to about 1265 m above sea level, where it remained for 3500 yr. By 16,000 yr B.P., lake level in the western Lahontan subbasins had fallen to 1240 m. This recession appears synchronous with a desiccation of Walker Lake; however, whether the Walker Lake desiccation resulted from climate change or from diversion of the Walker River is not known. From about 15,000 to 13,500 yr B.P., lake level rapidly rose, so that Lake Lahontan was a single body of water by 14,000 yr B.P. The lake appears to have reached a maximum highstand altitude of 1330 m by 13,500 yr B.P., a condition that persisted until about 12,500 yr B.P., at which time lake level fell ???100 m. No data exist that indicate the level of lakes in the various subbasins between 12,000 and 10,000 yr B.P. During the Holocene, the Lahontan basin was the site of shallow lakes, with many subbasins being the site of one or more periods of desiccation. The shape of the lake-level curve for the three western subbasins indicates that past changes in the hydrologic balance (and hence climate) of the Lahontan basin were large in magnitude and took place in a rapid step-like manner. The rapid changes in lake level are hypothesized to have resulted from changes in the mean position of the jet stream, as it was forced north or south by the changing size and shape of the continental ice sheet. ?? 1987.

  2. Modeling the GLOF Hazard Process Chain at Imja Lake in the Nepal Himalaya

    Science.gov (United States)

    Lala, J.; McKinney, D. C.; Rounce, D.

    2017-12-01

    The Hindu Kush-Himalaya region contains more glacial ice than any other non-polar region on earth. Many glacial lakes in Nepal are held in place by natural moraine dams, which are inherently unstable. Avalanches or landslides entering glacial lakes can cause tsunami-like waves that can overtop the moraines and trigger glacial lake outburst floods (GLOF). Mass loss at the Imja glacier is the highest in the Mount Everest region, and contributes to the expansion of Imja Tsho, a lake with several villages downstream. A GLOF from the lake might destroy both property and human life, making an understanding of flood triggering processes beneficial for both the downstream villages and other GLOF-prone areas globally. The process chain for an avalanche-induced GLOF was modeled numerically. The volume and velocity of debris from avalanches entering various future lake extents were calculated using RAMMS. Resulting waves and downstream flooding were simulated using BASEMENT to evaluate erosion at the terminal moraine. Wave characteristics in BASEMENT were validated with empirical equations to ensure the proper transfer of momentum from the avalanche to the lake. Moraine erosion was determined for two geomorphologic scenarios: a site-specific scenario using field samples, and a worst-case scenario based on past literature. Both cases resulted in no flooding outside the river channel at downstream villages. Worst-case scenario geomorphology resulted in increased channelization of the lake outlet and some moraine erosion but no catastrophic collapse. Site-specific data yielded similar results but with even less erosion and downstream discharge. While the models confirmed that Imja Tsho is unlikely to produce a catastrophic GLOF in the near future, they also highlight the importance of continued monitoring of the lake. Furthermore, the ease and flexibility of these methods allows for their adoption by a wide range of stakeholders for modeling other high-risk lakes.

  3. A subaquatic moraine complex in overdeepened Lake Thun (Switzerland) unravelling the deglaciation history of the Aare Glacier

    Science.gov (United States)

    Fabbri, S. C.; Buechi, M. W.; Horstmeyer, H.; Hilbe, M.; Hübscher, C.; Schmelzbach, C.; Weiss, B.; Anselmetti, F. S.

    2018-05-01

    To investigate the history of the Aare Glacier and its overdeepened valley, a high-resolution multibeam bathymetric dataset and a 2D multi-channel reflection seismic dataset were acquired on perialpine Lake Thun (Switzerland). The overdeepened basin was formed by a combination of tectonically predefined weak zones and glacial erosion during several glacial cycles. In the deepest region of the basin, top of bedrock lies at ∼200 m below sea level, implying more than 750 m of overdeepening with respect to the current fluvial base level (i.e. lake level). Seismic stratigraphic analysis reveals the evolution of the basin and indicates a subaquatic moraine complex marked by high-amplitude reflections below the outermost edge of a morphologically distinct platform in the southeastern part of the lake. This stack of seven subaquatic terminal moraine crests was created by a fluctuating, "quasi-stagnant" grounded Aare Glacier during its overall recessional phase. Single packages of overridden moraine crests are seismically distuinguishable, which show a transition downstream into prograding clinoforms with foresets at the ice-distal slope. The succession of subaquatic glacial sequences (foresets and adjacent bottomsets) represent one fifth of the entire sedimentary thickness. Exact time constraints concerning the deglacial history of the Aare Glacier are very sparse. However, existing 10Be exposure ages from the accumulation area of the Aare Glacier and radiocarbon ages from a Late-Glacial lake close to the outlet of Lake Thun indicate that the formation of the subaquatic moraine complex and the associated sedimentary infill must have occurred in less than 1000 years, implying high sedimentation rates and rapid disintegration of the glacier. These new data improve our comprehension of the landforms associated with the ice-contact zone in water, the facies architecture of the sub- to proglacial units, the related depositional processes, and thus the retreat mechanisms of

  4. Radiocesium in brown trout (Salmo trutta) from a subalpine lake ecosystem after the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Brittain, J.E.; Storruste, Anders; Larsen, Elena

    1991-01-01

    After Chernobyl in April 1986, radioactive cesium has been measured in Oevre Heimdalsvatn, a Norwegian subalpine lake, situated in an area of high fallout. The lake is an important reference site and has been the subject of extensive ecosystem studies since the 1950s. Emphasis has been given to measuring long-term trends in the activity content of radioactive cesium in the brown trout (Salmo trutta) population. After ice-break in June 1986, the average total cesium activity content rose to 7000 Bq/kg wet weight. The activity content fell during 1987 and at ice-break in 1988 was 4000 Bq/kg. However, there was no further reduction during the summers of 1988 and 1989, possibly due to increased inputs from the catchment. There is considerable variation in the radiocesium activity content measured in individual fish. On the basis of the changes in cesium activity content in trout since 1986, an observed half-life for 137 Cs and 134 Cs in trout of 3.0 and 1.3 years, respectively, has been estimated. (author)

  5. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  6. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of

  7. THE OXYGEN REGIME OF A SHALLOW LAKE

    Directory of Open Access Journals (Sweden)

    Galina Zdorovennova

    2016-01-01

    Full Text Available The year-round measurement data of water temperature and dissolved oxygen content in a small boreal Lake Vendyurskoe in 2007–2013 were used to explore the hydrophysical prerequisits of anoxia and accumulation and emission of greenhouse gases. Typically, anoxia appears in the bottom layers of lakes in mid-winter and during the summer  stagnation. The thickness of the benthic anaerobic zone (dissolved oxygen concentration <2 mg·l–1 reached one meter in the end of the winter and at the peak of the summer stratification, except for the extremely hot summer of 2010, when it reached five meters. Synoptic conditions had a crucial influence on the formation and destruction of the benthic anaerobic zones in summer. The most favorable oxygen dynamics was observed during the cold summers of 2008, 2009, and 2012, when the repeated full mixings of the water column occurred under conditions of the cyclonic weather. In the winter periods, the early dates of ice season resulted in the most pronounced deficiency of oxygen.

  8. Antarctic sea ice losses drive gains in benthic carbon drawdown.

    Science.gov (United States)

    Barnes, D K A

    2015-09-21

    Climate forcing of sea-ice losses from the Arctic and West Antarctic are blueing the poles. These losses are accelerating, reducing Earth's albedo and increasing heat absorption. Subarctic forest (area expansion and increased growth) and ice-shelf losses (resulting in new phytoplankton blooms which are eaten by benthos) are the only significant described negative feedbacks acting to counteract the effects of increasing CO2 on a warming planet, together accounting for uptake of ∼10(7) tonnes of carbon per year. Most sea-ice loss to date has occurred over polar continental shelves, which are richly, but patchily, colonised by benthic animals. Most polar benthos feeds on microscopic algae (phytoplankton), which has shown increased blooms coincident with sea-ice losses. Here, growth responses of Antarctic shelf benthos to sea-ice losses and phytoplankton increases were investigated. Analysis of two decades of benthic collections showed strong increases in annual production of shelf seabed carbon in West Antarctic bryozoans. These were calculated to have nearly doubled to >2x10(5) tonnes of carbon per year since the 1980s. Annual production of bryozoans is median within wider Antarctic benthos, so upscaling to include other benthos (combined study species typically constitute ∼3% benthic biomass) suggests an increased drawdown of ∼2.9x10(6) tonnes of carbon per year. This drawdown could become sequestration because polar continental shelves are typically deeper than most modern iceberg scouring, bacterial breakdown rates are slow, and benthos is easily buried. To date, most sea-ice losses have been Arctic, so, if hyperboreal benthos shows a similar increase in drawdown, polar continental shelves would represent Earth's largest negative feedback to climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sea Ice Thickness Measurement by Ground Penetrating Radar for Ground Truth of Microwave Remote Sensing Data

    Science.gov (United States)

    Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H.

    2018-04-01

    Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR) can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately) aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  10. Holocene multi-proxy environmental reconstruction from lake Hakluytvatnet, Amsterdamøya Island, Svalbard (79.5°N)

    Science.gov (United States)

    Gjerde, Marthe; Bakke, Jostein; D'Andrea, William J.; Balascio, Nicholas L.; Bradley, Raymond S.; Vasskog, Kristian; Ólafsdóttir, Sædis; Røthe, Torgeir O.; Perren, Bianca B.; Hormes, Anne

    2018-03-01

    High resolution proxy records of past climate are sparse in the Arctic due to low organic production that restricts the use of radiocarbon dating and challenging logistics that make data collection difficult. Here, we present a new lake record from lake Hakluytvatnet at Amsterdamøya island (79.5°N), the northwesternmost island on Svalbard. Multi-proxy analyses of lake sediments in combination with geomorphological mapping reveal large environmental shifts that have taken place at Amsterdamøya during the Holocene. A robust chronology has been established for the lake sediment core through 28 AMS radiocarbon ages, and this gives an exceptionally well-constrained age control for a lake at this latitude. The Holocene was a period with large changes in the Hakluytvatnet catchment, and the onset of the Neoglacial (ca. 5 ka) marks the start of modern-day conditions in the catchment. The Neoglacial is characterized by fluctuations in the minerogenic input to the lake as well as internal productivity, and we suggest that these fluctuations are driven by atmospherically forced precipitation changes as well as sea ice extent modulating the amount of moisture that can reach Hakluytvatnet.

  11. SPICE: Sentinel-3 Performance Improvement for Ice Sheets

    Science.gov (United States)

    McMillan, M.; Escola, R.; Roca, M.; Thibaut, P.; Aublanc, J.; Shepherd, A.; Remy, F.; Benveniste, J.; Ambrózio, A.; Restano, M.

    2017-12-01

    For the past 25 years, polar-orbiting satellite radar altimeters have provided a valuable record of ice sheet elevation change and mass balance. One of the principle challenges associated with radar altimetry comes from the relatively large ground footprint of conventional pulse-limited radars, which reduces their capacity to make measurements in areas of complex topographic terrain. In recent years, progress has been made towards improving ground resolution, through the implementation of Synthetic Aperture Radar (SAR), or Delay-Doppler, techniques. In 2010, the launch of CryoSat-2 heralded the start of a new era of SAR Interferometric (SARIn) altimetry. However, because the satellite operated in SARIn and LRM mode over the ice sheets, many of the non-interferometric SAR altimeter processing techniques have been optimized for water and sea ice surfaces only. The launch of Sentinel-3, which provides full non-interferometric SAR coverage of the ice sheets, therefore presents the opportunity to further develop these SAR processing methodologies over ice sheets. Here we present results from SPICE, a 2 year study that focuses on (1) developing and evaluating Sentinel-3 SAR altimetry processing methodologies over the Polar ice sheets, and (2) investigating radar wave penetration through comparisons of Ku- and Ka-band satellite measurements. The project, which is funded by ESA's SEOM (Scientific Exploitation of Operational Missions) programme, has worked in advance of the operational phase of Sentinel-3, to emulate Sentinel-3 SAR and pseudo-LRM data from dedicated CryoSat-2 SAR acquisitions made at the Lake Vostok, Dome C and Spirit sites in East Antarctica, and from reprocessed SARIn data in Greenland. In Phase 1 of the project we have evaluated existing processing methodologies, and in Phase 2 we are investigating new evolutions to the Delay-Doppler Processing (DDP) and retracking chains. In this presentation we (1) evaluate the existing Sentinel-3 processing chain by

  12. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    Science.gov (United States)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Crowe, Sean; Fowle, David; Haffner, Douglas; King, John; Marwoto, Ristiyanti; Melles, Martin; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Wattrus, Nigel

    2014-05-01

    drying between ~33,000 and 16,000 yr BP when high-latitude ice sheets expanded and global temperatures cooled. This in combination with the observed little direct influence of precessional orbital forcing and exposure of the Sunda Shelf implies that central Indonesian hydroclimate varies strongly in response to high-latitude climate forcing: a hypothesis we aim to test across multiple glacial-interglacial cycles through scientific drilling. Indeed, numerous high-amplitude reflectors in the upper 150 m of lacustrine fill suggest repeated cycles of moisture-balance variations in the tropical Pacific. In summary drilling in Lake Towuti will help to: (1) Document the timing, frequency, and amplitude of orbital- to millennial-scale changes in surface hydrology and terrestrial temperature in the Indo-Pacific Warm Pool across multiple glacial-interglacial cycles; (2) Understand how variations in terrestrial hydrology and temperature in central Indonesia respond to changes in the mean state of the ENSO system, the monsoons, high-latitude forcing, and insolation; (3) Analyze the long-term stability and resilience of rainforest vegetation to changes in climate, greenhouse gases, and fire frequency; (4) Study the extent, biogeography, and metabolism of microbial life in the sediments of a non-sulfidic, ferrginous basin, and their relationships to carbon cycling, redox metal deposition, and the concentration of metal ore minerals; (5) Study the effects of climate-driven changes in the aquatic environment on both lacustrine microbial populations, and the geobiosphere within the lake's sediment; (6) Determine the age of Lake Towuti, and the ensuing rates of speciation of Towuti's endemic fauna and flora; (7) Identify the timing of past lake level fluctuations in Towuti, changes in hydrological connections among the Malili Lakes, and how these influenced biological colonization events, habitat stability, and modes of speciation (sympatric, allopatric). Important milestones concerning

  13. Structure of pelagic microbial assemblages in European mountain lakes during ice-free season

    Czech Academy of Sciences Publication Activity Database

    Straškrábová, Viera; Bertoni, R.; Blažo, M.; Callieri, C.; Forsström, L.; Fott, J.; Kernan, M.; Macek, Miroslav; Stuchlík, E.; Tolotti, M.

    2009-01-01

    Roč. 62, - (2009), s. 19-53 ISSN 1612-166X Grant - others:EU MOLAR(CZ) ENV4-CT95-0007; EU EMERGE(CZ) EVK1-CT-1999-00032 Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z6017912 Keywords : plankton * mountain lakes * microbial loop Subject RIV: EH - Ecology, Behaviour

  14. Correlated declines in Pacific arctic snow and sea ice cover

    Science.gov (United States)

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon

    2005-01-01

    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice

  15. Spatial variations in snowpack chemistry, isotopic composition of NO3- and nitrogen deposition from the ice sheet margin to the coast of western Greenland

    Science.gov (United States)

    Curtis, Chris J.; Kaiser, Jan; Marca, Alina; Anderson, N. John; Simpson, Gavin; Jones, Vivienne; Whiteford, Erika

    2018-01-01

    The relative roles of anthropogenic nitrogen (N) deposition and climate change in causing ecological change in remote Arctic ecosystems, especially lakes, have been the subject of debate over the last decade. Some palaeoecological studies have cited isotopic signals (δ(15N)) preserved in lake sediments as evidence linking N deposition with ecological change, but a key limitation has been the lack of co-located data on both deposition input fluxes and isotopic composition of deposited nitrate (NO3-). In Arctic lakes, including those in western Greenland, previous palaeolimnological studies have indicated a spatial variation in δ(15N) trends in lake sediments but data are lacking for deposition chemistry, input fluxes and stable isotope composition of NO3-. In the present study, snowpack chemistry, NO3- stable isotopes and net deposition fluxes for the largest ice-free region in Greenland were investigated to determine whether there are spatial gradients from the ice sheet margin to the coast linked to a gradient in precipitation. Late-season snowpack was sampled in March 2011 at eight locations within three lake catchments in each of three regions (ice sheet margin in the east, the central area near Kelly Ville and the coastal zone to the west). At the coast, snowpack accumulation averaged 181 mm snow water equivalent (SWE) compared with 36 mm SWE by the ice sheet. Coastal snowpack showed significantly greater concentrations of marine salts (Na+, Cl-, other major cations), ammonium (NH4+; regional means 1.4-2.7 µmol L-1), total and non-sea-salt sulfate (SO42-; total 1.8-7.7, non-sea-salt 1.0-1.8 µmol L-1) than the two inland regions. Nitrate (1.5-2.4 µmol L-1) showed significantly lower concentrations at the coast. Despite lower concentrations, higher precipitation at the coast results in greater net deposition for NO3- as well as NH4+ and non-sea-salt sulfate (nss-SO42-) relative to the inland regions (lowest at Kelly Ville 6, 4 and 3; highest at coast 9, 17

  16. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Science.gov (United States)

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Midwest Lake uranium discovery, Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Scott, F.

    1981-01-01

    The discovery of the Midwest Lake uranium deposit in Saskatchewan came some ten years after the start of exploration. The original mining rights were acquired on the basis of regional published, geology and proximity to the earlier discovery. Aerial radiometric surveys led to the location of a train of radioactive, glacially transported sandstone boulders and cobbles. The source of these mineralized erratics did not outcrop, and an extensive series of magnetic, electromagnetic, seismic and gravity surveys was carried out in an unsuccessful attempt to identify the source location. These surveys were followed by several programmes of diamond drilling, geochemical surveys and Pleistocene geological studies. None of these programmes or surveys encountered bedrock mineralization. When information about ore controls in the Athabasca Basin became available, a limited programme of three 300-m wildcat diamond-drill holes was proposed. The second of these holes cut weak radioactivity in a poorly cored intersection. This intersection was at an unconformity at a depth of 200 m. The programme terminated prematurely with early melting of lake ice. The first hole in the subsequent winter's follow-up drilling intersected uranium values in excess of 8%. (author)

  18. Cosmogenic 10Be Dating of Northern Quebec-Labrador Glacial Lake Shorelines and Drainage Deposits: Implications for the Final Meltwater Discharges of the Last Deglaciation

    Science.gov (United States)

    Roy, M.; Dube-Loubert, H.; Schaefer, J. M.; Hébert, S.

    2017-12-01

    The decay of the Laurentide ice sheet played an important role in the climate variability of the last deglaciation, notably through large discharges of meltwater from glacial lakes that disturbed the Atlantic meridional overturning oceanic circulation (AMOC). These former climate-forcing events are now under focus due to growing evidence showing that the present-day increase in freshwater releases from Greenland and other Arctic glaciers may potentially lead to a slowdown of the AMOC and cause important climate feedbacks. In northern Quebec and Labrador, the end of the deglaciation led to the formation of at least 10 important glacial lakes that drained into the nearby Labrador Sea where repeated meltwater discharges could have destabilized the ocean surface conditions in this key sector of the North Atlantic Ocean. Although the drainage of these ice-dammed lakes may form a good analogue for modern processes, the lack of direct constraints on the physiographic configuration and temporal evolution of these lakes limits our understanding of the timing and climate impact of these final meltwater pulses. Here we applied cosmogenic 10Be dating to raised boulder shorelines belonging to Lake Naskaupi, one of the largest glacial lakes in northern Quebec and Labrador. We reconstructed the lake extent and meltwater volume, as well as its lake-level history by systematic mapping of geomorphic features. We sampled a total of 16 boulders at 4 sites along the valley. In addition, we dated five boulders belonging to a large-scale outburst flood deposit recording the abrupt drainage of the lake. The distribution of the 21 ages shows a remarkable consistency, yielding a mean age of 7.8 ± 0.4 ka (1 outlier excluded). The ages from the shorelines are indistinguishable from those of the outburst flood deposit, suggesting that Lake Naskaupi existed for a relatively short time span. These new chronological data constrain the timing of the lake development and attendant drainage

  19. Carbon Dioxide Evasion from Boreal Lakes: Drivers, Variability and Revised Global Estimate

    Science.gov (United States)

    Hastie, A. T.; Lauerwald, R.; Weyhenmeyer, G. A.; Sobek, S.; Verpoorter, C.; Regnier, P. A. G.

    2016-12-01

    Carbon dioxide evasion (FCO2) from lakes and reservoirs is established as an important component of the global carbon (C) cycle, a fact reflected by the inclusion of these waterbodies in the most recent IPCC assessment report. In this study we developed a statistical model driven by environmental geodata, to predict CO2 partial pressure (pCO2) in boreal lakes, and to create the first high resolution map (0.5°) of boreal (50°- 70°) lake pCO2. The resulting map of pCO2 was combined with lake area (lakes >0.01km2) from the recently developed GLOWABO database (Verpoorter et al., 2014) and estimates of gas transfer velocity k, to produce the first high resolution map of boreal lake FCO2. Before training our model, the geodata as well as approximately 27,000 samples of `open water' (excluding periods of ice cover) pCO2 from the boreal region, were gridded at 0.5° resolution and log transformed where necessary. A multilinear regression was used to derive a prediction equation for log10 pCO2 as a function of log10 lake area, net primary productivity (NPP), precipitation, wind speed and soil pH (r2= 0.66), and then applied in ArcGIS to build the map of pCO2. After validation, the map of boreal lake pCO2 was used to derive a map of boreal lake FCO2. For the boreal region we estimate an average, lake area weighted, pCO2 of 930 μatm and FCO2 of 170 (121-243) Tg C yr-1. Our estimate of FCO2 will soon be updated with the incorporation of the smallest lakes (<0.01km2). Despite the current exclusion of the smallest lakes, our estimate is higher than the highest previous estimate of approximately 110 Tg C yr-1 (Aufdenkampe et al, 2011). Moreover, our empirical approach driven by environmental geodata can be used as the basis for estimating future FCO2 from boreal lakes, and their sensitivity to climate change.

  20. High-luminosity blue and blue-green gallium nitride light-emitting diodes.

    Science.gov (United States)

    Morkoç, H; Mohammad, S N

    1995-01-06

    Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AIGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where highluminosity blue and blue-green light-emitting diodes are now available in the marketplace.