Sample records for blt2-reactive oxygen species-linked

  1. Oxygen Therapy (United States)

    ... best for you. Oxygen is usually delivered through nasal prongs (an oxygen cannula) or a face mask. Oxygen equipment can attach to other medical equipment such as CPAP machines and ventilators. Oxygen therapy can help you ...

  2. Oxygen Therapy (United States)

    ... oxygen at very high altitudes (like in the mountains or in an airplane) even if you do ... an arterial blood gas (ABG) measurement. The ABG measures your oxygen level directly from your blood and ...

  3. Oxygen safety (United States)

    ... sure you have working smoke detectors and a working fire extinguisher in your home. If you move around the house with your oxygen, you may need more than one fire extinguisher in different locations. Smoking can be very dangerous. No one should smoke ...

  4. Artificial oxygen transport protein (United States)

    Dutton, P. Leslie


    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  5. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E


    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  6. Oxygen transport membrane

    DEFF Research Database (Denmark)


    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  7. Miniature oxygen resuscitator (United States)

    Johnson, G.; Teegen, J. T.; Waddell, H.


    Miniature, portable resuscitation system is used during evacuation of patients to medical facilities. A carrying case contains a modified resuscitator head, cylinder of oxygen, two-stage oxygen regulator, low pressure tube, and a mask for mouth and nose.

  8. Cryptococcus neoformans and oxygen




    Oxygen is essential to life of all organisms except for obligate anaerobic species, because it is necessary for energy generation and also for some biosynthetic pathways. However, sensitivity to low oxygen levels can vary widely in different organisms and cell types. The pathogenic yeast species Cryptococcus neoformans is known to love oxygen. In response to the lack of oxygen (hypoxia), this yeast delays budding without resigning DNA replication, which eventually results in unique cell cycle...

  9. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene


    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  10. Oxygen evolution reaction catalysis (United States)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.


    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  11. [Domiciliary oxygen therapy]. (United States)

    Abdel Kafi, S


    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist.

  12. Oxygen sensitive microwells. (United States)

    Sinkala, Elly; Eddington, David T


    Oxygen tension is critical in a number of cell pathways but is often overlooked in cell culture. One reason for this is the difficulty in modulating and assessing oxygen tensions without disturbing the culture conditions. Toward this end, a simple method to generate oxygen-sensitive microwells was developed through embossing polystyrene (PS) and platinum(ii) octaethylporphyrin ketone (PtOEPK) thin films. In addition to monitoring the oxygen tension, microwells were employed in order to isolate uniform clusters of cells in microwells. The depth and width of the microwells can be adapted to different experimental parameters easily by altering the thin film processing or embossing stamp geometries. The thin oxygen sensitive microwell substrate is also compatible with high magnification modalities such as confocal imaging. The incorporation of the oxygen sensor into the microwells produces measurements of the oxygen tension near the cell surface. The oxygen sensitive microwells were calibrated and used to monitor oxygen tensions of Madin-Darby Canine Kidney Cells (MDCKs) cultured at high and low densities as a proof of concept. Wells 500 µm in diameter seeded with an average of 330 cells exhibited an oxygen level of 12.6% whereas wells seeded with an average of 20 cells per well exhibited an oxygen level of 19.5%, a 35.7% difference. This platform represents a new tool for culturing cells in microwells in a format amenable to high magnification imaging while monitoring the oxygen state of the culture media.

  13. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung


    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  14. Integrated turbomachine oxygen plant (United States)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan


    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  15. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung


    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  16. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung


    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  17. Oxygen Dependent Biocatalytic Processes

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard

    temperature and pressure. A significant number of enzymes carrying out redox reactions (oxidoreductases) requiring molecular oxygen as an electron acceptor – those termed oxidases, monooxygenases and dioxygenases. These enzymes catalyze a range of industrially relevant reactions, such as oxidation of alcohols...... to aldehydes and ketones, oxyfunctionalization of C-H bonds, and epoxidation of C-C double bonds. Although oxygen dependent biocatalysis offers many possibilities, there are numerous chal-lenges to be overcome before an enzyme can be implemented in an industrial process. These challenges requires the combined...... is the requirement for oxygen, because the transfer of oxygen from the gas-phase (typically air) to the aqueous phase, where the reaction takes place, is notoriously slow due to the low aqueous solubility of oxygen at am-bient conditions. Therefore, vigorous agitation and aeration is required to create a large in...

  18. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia


    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  19. Home Oxygen Therapy (United States)

    ... over 90%. This system has a number of advantages. Since a concentrator essentially makes its own oxygen, there is no need for resupplies by the home care company. However, you must have a small cylinder as ...

  20. Pathology of oxygen

    National Research Council Canada - National Science Library

    Autor, Anne Pomeroy


    This volume has been designed to provide those interested in oxygen toxicity with a working knowledge of advancement in the field with the intention that the topics described in each chapter will be immediately useful...

  1. Pathology of oxygen

    National Research Council Canada - National Science Library

    Autor, Anne Pomeroy


    .... The book is divided into three general sections. The first and smallest section of the book explains the molecular and biochemical basis of our current understanding of oxygen radical toxicity as well as the means by which normal aerobic cells...

  2. Oxygen therapy - infants (United States)

    ... type of oxygen therapy. Another method is a nasal CPAP system . CPAP stands for continuous positive airway pressure. ... risk for infection. Similar problems can occur with nasal CPAP devices. Also, some CPAP devices use wide nasal ...

  3. Extracorporeal membrane oxygenation (United States)

    Extracorporeal membrane oxygenation (ECMO) is a treatment that uses a pump to circulate blood through an artificial lung back into the bloodstream of a very ill baby. This system provides heart-lung bypass support ...

  4. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch


    The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect...... the optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen...... at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...

  5. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T


    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  6. Using oxygen at home (United States)

    ... sooner to your house or neighborhood if the power goes out. Keep their phone numbers in a place where you can find them easily. Tell your family, neighbors, and friends that you use oxygen. They ...

  7. Oxygen transfer in liquids. (United States)

    Stejskal, J; Potůcek, F


    In the laboratory-type airlift tower reactor oxygen transfer from air in tap water and/or polyacrylamide solutions (Neuperm WF) was studied. In order to characterize the system, volumetric coefficient of oxygen transfer was determined by the gassing-out method. Two arrangements of the airlift tower reactor were compared, namely the reactor with and without motionless mixer. In addition, mean relative gas holdup and gas power output were determined for both arrangements.

  8. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T


    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide.......To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  9. Dissolved oxygen: Chapter 6 (United States)

    Senn, David; Downing-Kunz, Maureen; Novick, Emily


    Dissolved oxygen (DO) concentration serves as an important indicator of estuarine habitat condition, because all aquatic macro-organisms require some minimum DO level to survive and prosper. The instantaneous DO concentration, measured at a specific location in the water column, results from a balance between multiple processes that add or remove oxygen (Figure 6.1): primary production produces O2; aerobic respiration in the water column and sediments consumes O2; abiotic or microbially-mediated biogeochemical reactions utilize O2 as an oxidant (e.g., oxidation of ammonium, sulfide, and ferrous iron); O2 exchange occurs across the air:water interface in response to under- or oversaturated DO concentrations in the water column; and water currents and turbulent mixing transport DO into and out of zones in the water column. If the oxygen loss rate exceeds the oxygen production or input rate, DO concentration decreases. When DO losses exceed production or input over a prolonged enough period of time, hypoxia ((<2-3 mg/L) or anoxia can develop. Persistent hypoxia or anoxia causes stress or death in aquatic organism populations, or for organisms that can escape a hypoxic or anoxic area, the loss of habitat. In addition, sulfide, which is toxic to aquatic organisms and causes odor problems, escapes from sediments under low oxygen conditions. Low dissolved oxygen is a common aquatic ecosystem response to elevated organic

  10. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan


    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  11. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    National Research Council Canada - National Science Library

    Xia, Mengna


    ... spectroscopy and FOXY oxygen sensor simultaneously. The results show that the fitted tumor blood flow and metabolic rate of oxygen showed different responses between oxygen and carbogen interventions by applying our model...

  12. Atomic oxygen stimulated outgassing (United States)

    Linton, Roger C.; Reynolds, John M.


    The passive Long Duration Exposure Facility (LDEF) Experiment A0034, Atomic Oxygen Simulated Outgassing, consisted of two identical one-sixth tray modules, exposing selected thermal control coatings to atomic oxygen and the combined space environment on the leading edge and, for reference, to the relative wake environment on the trailing edge. Optical mirrors were included adjacent to the thermal coatings for deposition of outgassing products. Ultraviolet grade windows and metal covers were provided for additional assessment of the effects of the various environmental factors. Preliminary results indicate that orbital atomic oxygen is both a degrading and a optically restorative factor in the thermo-optical properties of selected thermal coatings. There is evidence of more severe optical degradation on collector mirrors adjacent to coatings that were exposed to the RAM-impinging atomic oxygen. This evidence of atomic oxygen stimulated outgassing is discussed in relation to alternative factors that could affect degradation. The general effects of the space environment on the experiment hardware as well as the specimens are discussed.

  13. Oxygen therapy reduces postoperative tachycardia

    DEFF Research Database (Denmark)

    Stausholm, K; Kehlet, H; Rosenberg, J


    Concomitant hypoxaemia and tachycardia in the postoperative period is unfavourable for the myocardium. Since hypoxaemia per se may be involved in the pathogenesis of postoperative tachycardia, we have studied the effect of oxygen therapy on tachycardia in 12 patients randomly allocated to blinded...... air or oxygen by facemask on the second or third day after major surgery. Inclusion criteria were arterial hypoxaemia (oxygen saturation 90 beat.min-1). Each patient responded similarly to oxygen therapy: an increase in arterial oxygen saturation and a decrease...... in heart rate (p oxygen has a positive effect on the cardiac oxygen delivery and demand balance....

  14. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    This thesis investigates the electro reduction of oxygen on platinum nanoparticles, which serve as catalyst in low temperature fuel cells. Kinetic studies on model catalysts as well as commercially used systems are presented in order to investigate the particle size effect, the particle proximity...... effect and anion adsorption on the performance of Pt based electrocatalysts. The anion adsorption is additionally studied by in situ electrochemical infrared spectroscopy during the oxygen reduction reaction (ORR). For this purpose an in situ FTIR setup in attenuated total refection (ATR) configuration....... The influence of the ion adsorption strength, which is observed in the “particle size studies” on the oxygen reduction rate on Pt/C catalysts, is further investigated under similar reaction conditions by infrared spectroscopy. The designed in situ electrochemical ATR-FTIR setup features a high level...

  15. Hyperbaric oxygen and radiotherapy

    International Nuclear Information System (INIS)

    Mayer, R.; Hamilton-Farrell, M.R.; Kleij, A.J. van der


    Background: Hyperbaric oxygen (HBO) therapy is the inhalation of 100% oxygen at a pressure of at least 1.5 atmospheres absolute (150 kPa). It uses oxygen as a drug by dissolving it in the plasma and delivering it to the tissues independent of hemoglobin. For a variety of organ systems, HBO is known to promote new vessel growth into areas with reduced oxygen tension due to poor vascularity, and therewith promotes wound healing and recovery of radiation-injured tissue. Furthermore, tumors may be sensitized to irradiation by raising intratumoral oxygen tensions. Methods: A network of hyperbaric facilities exists in Europe, and a number of clinical studies are ongoing. The intergovernmental framework COST B14 action 'Hyperbaric Oxygen Therapy' started in 1999. The main goal of the Working Group Oncology is preparation and actual implementation of prospective study protocols in the field of HBO and radiation oncology in Europe. Results: In this paper a short overview on HBO is given and the following randomized clinical studies are presented: (a) reirradiation of recurrent squamous cell carcinoma of the head and neck after HBO sensitization; (b) role of HBO in enhancing radiosensitivity on glioblastoma multiforme; (c) osseointegration in irradiated patients; adjunctive HBO to prevent implant failures; (d) the role of HBO in the treatment of late irradiation sequelae in the pelvic region. The two radiosensitization protocols (a, b) allow a time interval between HBO and subsequent irradiation of 10-20 min. Conclusion: Recruitment of centers and patients is being strongly encouraged, detailed information is given on (orig.)

  16. Cerebral oxygenation after birth

    DEFF Research Database (Denmark)

    Hessel, Trine W; Hyttel-Sorensen, Simon; Greisen, Gorm


    AIM: To compare absolute values of regional cerebral tissue oxygenation (cStO2 ) during haemodynamic transition after birth and repeatability during steady state for two commercial near-infrared spectroscopy (NIRS) devices. METHODS: In a prospective observational study, the INVOS 5100C and FORE......: The INVOS and FORE-SIGHT cStO2 estimates showed oxygenation-level-dependent difference during birth transition. The better repeatability of FORE-SIGHT could be due to the lower response to change in saturation....





    Oxygen additions are a common practice in winemaking, as oxygen has a positive effect in fermentative kinetics, biomass synthesis and improvement of color, structure and :flavor in treated wines. However, most oxygen additions are carried out heuristically through pump-over operations solely on a know-how basis, which is difficult to manage in terms of the exact quantity of oxygen transferred to the fermenting must. It is important to estímate the amount of oxygen added because...

  18. The Oxygen Cycle. (United States)

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  19. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Pedersen, D B; Eysteinsson, T


    The authors have previously reported that carbonic anhydrase inhibitors such as acetazolamide and dorzolamide raise optic nerve oxygen tension (ONPO(2)) in pigs. The purpose of the present study was to investigate whether timolol, which belongs to another group of glaucoma drugs called beta...

  20. Reactive Oxygen Species

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Dostert, Catherine; Brenner, Dirk


    oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins...

  1. Central oxygen pipeline failure

    African Journals Online (AJOL)

    2.8–6 bar). Dräger Savina®. Generates compressed air with a blower unit. It is able to ventilate without any connection to medical compressed air. If compressed, oxygen is used, whether from a wall socket or cylinder. A precise concentration is.

  2. Extracorporeal membrane oxygenation (ECMO)

    African Journals Online (AJOL)

    Extracorporeal membrane oxygenation (ECMO) is increasingly being employed in South African intensive care units for the management of patients with refractory hypoxaemia and for haemodynamic support, particularly following cardiothoracic procedures. ECMO is expensive, however, and there is a danger that this ...

  3. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Pedersen, D B; Eysteinsson, T


    The authors have previously reported that carbonic anhydrase inhibitors such as acetazolamide and dorzolamide raise optic nerve oxygen tension (ONPO(2)) in pigs. The purpose of the present study was to investigate whether timolol, which belongs to another group of glaucoma drugs called beta block...


    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana


    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  5. Oxygen Extraction from Minerals (United States)

    Muscatello, Tony


    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key

  6. Oxygen diffusion in monazite (United States)

    Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.


    We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

  7. Pulverized fuel-oxygen burner (United States)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson


    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.

  8. Oxygen Diffusion in Titanite (United States)

    Zhang, X. Y.; Cherniak, D. J.; Watson, E. B.


    Oxygen diffusion in natural and synthetic single-crystal titanite was characterized under both dry and water-present conditions. For the dry experiments, pre-polished titanite samples were packed in 18O-enriched quartz powder inside Ag-Pd capsules, along with an FMQ buffer assemblage maintained physically separate by Ag-Pd strips. The sealed Ag-Pd capsules were themselves sealed inside evacuated silica glass tubes and run at 700-1050° C and atmospheric pressure for durations ranging from 1 hour to several weeks. The hydrothermal experiments were conducted by encapsulating polished titanite crystals with 18O enriched water and running them at 700-900° C and 10-160MPa in standard cold-seal pressure vessels for durations of 1 day to several weeks. Diffusive uptake profiles of 18O were measured in all cases by nuclear reaction analysis (NRA) using the 18O (p,α ) 15N reaction. For the experiments on natural crystals, under both dry and hydrothermal conditions, two mechanisms could be recognized responsible for oxygen diffusion. The diffusion profiles showed two segments: a steep one close to the initial surface attributed to self-diffusion in the titanite lattice; and a "tail" reaching deeper into the sample attributable to diffusion in a "fast path" such as sub-grain boundaries or dislocations. For the dry experiments, the following Arrhenius relation was obtained: D{dry lattice} = 2.6×10-8exp (-275 kJmol-1/RT) m2/s Under wet conditions at PH2O = 100MPa, Oxygen diffusion conforms to the following Arrehenius relation: D{wet lattice} = 9.7× 10-13exp (-174 kJmol-1/RT) m2/s Oxygen diffusivity shows only a slight dependence on water pressure at the following conditions we explored: temperatures 800° C, PH2O = 10-160MPa, and 880° C, PH2O =10-100MPa. For diffusive anisotropy, we explored it only at hydrothermal conditions, and no diffusive anisotropy was observed. Like many other silicates, titanite shows lower activation energy for oxygen diffusion in the presence of

  9. Closed Loop Control of Oxygen Delivery and Oxygen Generation (United States)


    AFRL-SA-WP-SR-2017-0024 Closed Loop Control of Oxygen Delivery and Oxygen Generation Dr. Jay Johannigman1, Richard Branson1...for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO...TITLE AND SUBTITLE Closed Loop Control of Oxygen Delivery and Oxygen Generation 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER

  10. Cardiopulmonary resuscitation and oxygen therapy. (United States)

    Marks, S L


    Cardiopulmonary resuscitation and oxygen therapy are often necessary procedures done in veterinary practice. There are variations in CPR technique, especially in cardiac life support. Oxygen therapy can be an important adjunctive therapy in emergency and critical care medicine. The techniques used for oxygen administration differ depending on the medical problem and the animal.

  11. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay


    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  12. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    National Research Council Canada - National Science Library

    Xia, Mengna; Liu, Hanli


    Objective/Hypothesis: By monitoring global and local vascular oxygenation and tissue oxygen tension in breast tumors under HBO exposure with several different gas interventions, we wish to prove the following two hypotheses: that 1...

  13. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham


    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  14. [Medicinal gases: oxygen and heliox]. (United States)

    Rodríguez Núñez, A; Martinón Sánchez, J M; Martinón Torres, F


    All forms of respiratory support involve one essential element: The gas or gas mixture administered to the patient. Oxygen is an indispensable gas for cellular metabolism and is indicated in cases of hypoxia. Oxygen therapy aims to increase the partial pressure of oxygen in arterial blood by increasing the oxygen concentration of inspired air. In addition to its therapeutic effects, the adverse effects and drawbacks of oxygen should be known. Several methods and devices for the administration of supplementary oxygen are available. Selection of the method should be individualized according to the patient's age and disease, the required inspiratory fraction and the child's possibilities of adaptation. Helium is an inert gas that has a very low specific weight and density. These properties explain its therapeutic effects, mainly in airway obstructions due to various etiologies. Breathing the helium-oxygen mixture (heliox) reduces respiratory effort and improves gas exchange, without significant adverse effects.

  15. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    . The influence of the ion adsorption strength, which is observed in the “particle size studies” on the oxygen reduction rate on Pt/C catalysts, is further investigated under similar reaction conditions by infrared spectroscopy. The designed in situ electrochemical ATR-FTIR setup features a high level...... bands are observed on the Pt/C layer: bands arising from the functional groups of the carbon support, bands related to water and hydronium, and bands related to the sulfur anion interaction with the catalyst. The correlation of the anion absorption to the ORR current leads to the proposition that anion...

  16. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis. (United States)

    Ward, Lewis M; Kirschvink, Joseph L; Fischer, Woodward W


    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.


    Energy Technology Data Exchange (ETDEWEB)

    Luck, R. E.; Andrievsky, S. M. [Department of Astronomy, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7215 (United States); Korotin, S. N.; Kovtyukh, V. V., E-mail:, E-mail:, E-mail:, E-mail: [Department of Astronomy and Astronomical Observatory, Odessa National University, Isaac Newton Institute of Chile, Odessa Branch, Shevchenko Park, 65014 Odessa (Ukraine)


    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.


    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana


    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  19. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Arthur J. Ragauskas


    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in

  20. [Oxygen therapy in diving accidents]. (United States)

    Piepho, T; Ehrmann, U; Werner, C; Muth, C M


    Diving accidents represent a departure from the routine practice of emergency physicians. The incidence of non-fatal diving accidents is reported as 1-2 per 10,000 dives. Apart from adequate intravenous hydration, oxygen is the only medication with a proven effect in the treatment of diving accidents. After a typical diving accident, administration of oxygen at an inspired concentration (F(I)O(2) 1.0) as high as possible is recommended. Many divers bring along their own oxygen administration systems to the diving sites and these are often better suited for the treatment of diving accidents than the oxygen systems of many emergency responders. Pressure regulators supplying low constant flow oxygen, nasal prongs and inhalation masks are inappropriate. When using artificial ventilation bags with face masks, an oxygen flow of at least 15 l/min should be used. Demand regulators are simple to use and able to deliver a F(I)O2 of 1.0. Their ease of use has earned them high marks in the emergency management of diving accidents and their similarity to standard diving equipment has also aided relatively widespread acceptance. Circulation breathing systems are more technologically complex oxygen delivery systems which permit CO2 absorption and re-breathing at low oxygen flow. In contrast to the demand modules, the likelihood of mistakes during their usage is higher. In diving accidents, the administration of normobaric oxygen, already begun in the field, is the most important therapy and should not be interrupted. Presented with an inadequate supplemental oxygen supply, the inspired oxygen concentration should not be decreased, rather the duration of the oxygen administration should be reduced. Hyperbaric oxygen therapy should be the mainstay of further treatment.

  1. Obesity Decreases Perioperative Tissue Oxygenation (United States)

    Kabon, Barbara; Nagele, Angelika; Reddy, Dayakar; Eagon, Chris; Fleshman, James W.; Sessler, Daniel I.; Kurz, Andrea


    Background: Obesity is an important risk factor for surgical site infections. The incidence of surgical wound infections is directly related to tissue perfusion and oxygenation. Fat tissue mass expands without a concomitant increase in blood flow per cell, which might result in a relative hypoperfusion with decreased tissue oxygenation. Consequently, we tested the hypotheses that perioperative tissue oxygen tension is reduced in obese surgical patients. Furthermore, we compared the effect of supplemental oxygen administration on tissue oxygenation in obese and non-obese patients. Methods: Forty-six patients undergoing major abdominal surgery were assigned to one of two groups according to their body mass index (BMI): BMI < 30 kg/m2 (non-obese) and BMI ≥ 30 kg/m2 (obese). Intraoperative oxygen administration was adjusted to arterial oxygen tensions of ≈150 mmHg and ≈300 mmHg in random order. Anesthesia technique and perioperative fluid management were standardized. Subcutaneous tissue oxygen tension was measured with a polarographic electrode positioned within a subcutaneous tonometer in the lateral upper arm during surgery, in the recovery room, and on the first postoperative day. Postoperative tissue oxygen was also measured adjacent to the wound. Data were compared with unpaired two tailed t-tests and Wilcoxon rank-sum tests; P < 0.05 was considered statistically significant. Results: Intraoperative subcutaneous tissue oxygen tension was significantly less in the obese patients at baseline (36 vs. 57 mmHg, P = 0.002) and with supplemental oxygen administration (47 vs. 76 mmHg, P = 0.014). Immediate postoperative tissue oxygen tension was also significantly less in subcutaneous tissue of the upper arm (43 vs. 54 mmHg, P = 0.011) as well as near the incision (42 vs. 62 mmHg, P = 0.012) in obese patients. In contrast, tissue oxygen tension was comparable in each group on the first postoperative morning. Conclusion: Wound and tissue hypoxia were common in obese

  2. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch


    at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...... glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen......-oxygenase inhibitor, indomethacin, which indicates that prostaglandin metabolism plays a role. Laboratory studies suggest that carbonic anhydrase inhibitors might be useful for medical treatment of optic nerve and retinal ischemia, potentially in diseases such as glaucoma and diabetic retinopathy. However, clinical...

  3. Mitochondrial Respiration and Oxygen Tension. (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H


    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  4. Oxygen potentials of transuranium oxides

    International Nuclear Information System (INIS)

    Haruyoshi Otobe; Mituso Akabori; Arai Yasuo; Kazuo Minato


    The oxygen potentials of pyrochlore-type Pu 2 Zr 2 O 7+y , fluorite-type (Pu 0.5 Zr 0.5 )O 2-x and AmO 2-x have been measured by the electromotive force (EMF) method with a zirconia solid-electrolyte. The oxygen potentials of these oxides were reviewed. The phase relations, microstructure, equilibrium state of these oxides were discussed, referring to the isothermal curve of the oxygen potentials. (authors)

  5. Oxygen-reducing catalyst layer (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN


    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  6. Oxygen therapy for cystic fibrosis. (United States)

    Elphick, Heather E; Mallory, George


    The most serious complications of cystic fibrosis (CF) relate to respiratory insufficiency. Oxygen supplementation therapy has long been a standard of care for individuals with chronic lung diseases associated with hypoxemia. Physicians commonly prescribe oxygen therapy for people with CF when hypoxemia occurs. However, it is unclear if empiric evidence is available to provide indications for this therapy with its financial costs and often profound impact on lifestyle. To assess whether oxygen therapy improves the longevity or quality of life of individuals with CF. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register, comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Latest search of Group's Trials Register: 15 May 2013. Randomized or quasi-randomized controlled trials comparing oxygen, administered at any concentration, by any route, in people with documented CF for any time period. Authors independently assessed the risk of bias for included studies and extracted data. This review includes 11 published studies (172 participants); only one examined long-term oxygen therapy (28 participants). There was no statistically significant improvement in survival, lung, or cardiac health. There was an improvement in regular attendance at school or work in those receiving oxygen therapy at 6 and 12 months. Four studies examined the effect of oxygen supplementation during sleep by polysomnography. Although oxygenation improved, mild hypercapnia was noted. Participants fell asleep quicker and spent a reduced percentage of total sleep time in rapid eye movement sleep, but there were no demonstrable improvements in qualitative sleep parameters. Six studies evaluated oxygen supplementation during exercise. Again, oxygenation improved, but mild hypercapnia resulted. Participants receiving oxygen therapy were able to exercise for a

  7. Oxygen diffusion and oxygen effect in tumor tissue

    International Nuclear Information System (INIS)

    Eissa, H.M.; Hehn, G.


    The diffusion of oxygen in tumor cords of bronchus carcinoma of the lung have been studied with refined computer methods for solving the diffusion equation in axis symmetric tumor structures. In this tumor configuration we may find three different regions consisting of euoxic cells, hypoxic tumor cells and necrotic parts. In the case of oxygen supply from a capillary inside a cylinder of tumor tissue with radius 200 μm or in a tumor cord of radius 300 μm with oxygen supply by capillaries outside, we get a relation of well oxygenated cells to hypoxic cells approximately as 1:8 or as 1:1.1 respectively. Of course most of the tumor cords observed in histological slices have smaller diameters, so that an average of approximately 20% hypoxic cells can be assumed. Based on the work of Ardenne, the diffusion of oxygen and glucose in a tumor of type DS-carcinosarcom has been investigated in both intact tumor and tumor treated with ionizing radiation. We can show that a strong reoxygenation effect takes place in that the well supplied regions may increase in some tumor configurations up to a factor of four by volume. The biological consequences of the oxygen pressure determined in tumor cells are discussed in detail. The investigation of oxygen diffusion in the intercapillary tumor region should give a quantitative physical basis for considering the oxygen effect with the aim to explain the advantages of neutron therapy against conventional radiotherapy. (orig./MG) [de

  8. empirical modeling of oxygen modeling of oxygen uptake of flow

    African Journals Online (AJOL)


    the initial dissolved oxygen arge dissolved oxygen and. 5, 6] highlighted stepped chute is a prime o enhance the aeration. The velocity flows may prevent e chute caused by cavitation [7, 8]. Furthermore, that air entrainment on stepped chutes the water flow which contributes to th river quality and the preservation of aer.

  9. Oxygen uptake and baemocyanin oxygen affinity of Potamonautes ...

    African Journals Online (AJOL)


    Nov 1, 1988 ... In both respiratory media this causes a lowering in the haemocyanin oxygen affinity with a Bohr-factor of -1,05 whilst the haemocyanin- .... In another experiment the oxygen-binding properties of declotted haemolymph ..... layer optical cell for gas-reaction studies of hemoglobin. Anal. Biochem. 87: 127-134 ...

  10. Limitations of potentiometric oxygen sensors operating at low oxygen levels

    DEFF Research Database (Denmark)

    Lund, Anders; Jacobsen, Torben; Hansen, Karin Vels


    The electrochemical processes that limit the range of oxygen partial pressures in which potentiometric oxygen sensors can be used, were analysed using a theoretical and an experimental approach. Electrochemical impedance spectroscopy was performed on porous Pt/yttria stabilised zirconia (YSZ......) electrodes between 10−6 and 0.2 bar and at temperatures between 500 and 950 °C. The flow of oxide ions and electron holes through a sensor cell, with a YSZ electrolyte, were calculated under similar conditions. The oxygen permeation of the sensor cell was insignificant at an oxygen partial pressure of 10......−6 bar for an inlet flow rate higher than 2 L h−1 between 600 and 800 °C. The polarisation resistance measured between 10−6 and 10−4 bar was found to be inversely proportional to the oxygen partial pressure, nearly temperature independent and inversely proportional to the inlet gas flow rate, which shows...

  11. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims


    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  12. Mars oxygen production system design (United States)

    Cotton, Charles E.; Pillow, Linda K.; Perkinson, Robert C.; Brownlie, R. P.; Chwalowski, P.; Carmona, M. F.; Coopersmith, J. P.; Goff, J. C.; Harvey, L. L.; Kovacs, L. A.


    The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing.

  13. Measurement of forearm oxygen consumption

    DEFF Research Database (Denmark)

    Astrup, A; Simonsen, L; Bülow, J


    blood flow and decreases skeletal muscle blood flow. This facilitates mixing of superficial blood with deep venous blood. Contralateral heating increased deep venous oxygen saturation and abolished the pronounced glucose-induced increase in oxygen consumption observed in the control experiments after...

  14. Oxygen detection using evanescent fields (United States)

    Duan, Yixiang; Cao, Weenqing


    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from C. to C. does not affect the net absorption of the sensor.

  15. Armalcolite - An oxygen fugacity indicator (United States)

    Stanin, F. T.; Taylor, L. A.


    Lunar armaloclites, (Fe, Mg)Ti2O5, contain appreciable amounts of Ti(3+) (less than 1 to 17% of Ti mole fraction). This is a function of the oxygen fugacity occurring at the time of its formation, with lower fugacities being reflected in higher Ti(3+) contents. Controlled cooling-rate and isothermal experimentation on synthetic analog and natural specimens of 70017 and 74275 have been used to calibrate an oxygen geobarometer. Most lunar rocks have followed crystallization paths in oxygen fugacity/T space such that the prevailing oxygen fugacity can be represented by a curve near parallel to the I/W buffer curve. The oxygen fugacity estimates derived from Ti(3+) considerations of armalcolites range from the iron/wustite curve to about 1.5 log units below.

  16. Oxygen variability and meridional oxygen supply in the tropical North East Atlantic oxygen minimum zone (United States)

    Hahn, Johannes; Brandt, Peter; Greatbatch, Richard J.; Krahmann, Gerd; Körtzinger, Arne


    The oxygen minimum zone (OMZ) of the tropical North East Atlantic (TNEA) is located between the oxygen-rich equatorial region and the Cape Verde Frontal Zone at about 20°N in a depth range of 300 - 700 m. Its horizontal extent is predominantly defined by the North Equatorial Current and by the equatorial zonal current system ventilating the region to the north and south of the OMZ, respectively. The interior of the OMZ is characterized by a sluggish flow regime, where mesoscale eddies play a major role in the ventilation. In this study we focus on the oxygen variability in the TNEA as well as the eddy driven lateral ventilation of the TNEA OMZ across its southern boundary. During recent years an intense measurement program was executed along 23°W cutting meridionally through the TNEA OMZ. Hydrographic and velocity data has been acquired from ship sections and moorings, together covering the latitude range between 6°S and 14°N with particularly high meridional resolution of shipboard and high temporal resolution of moored observations. Based on shipboard data we derived a meridional section of oxygen variance, which reveals numerous local maxima of oxygen variability. Exemplary, strong oxygen variability is observed at the upper (300m, 5° - 12°N) and the southern boundary (400m - 700m, 5°N - 8°N) of the OMZ, whereas the interior of the OMZ is characterized by weak variability. An application of the extended Osborn-Cox model shows that the strong oxygen variability at the southern boundary is mainly generated by mesoscale eddies. The strong variability at the upper boundary is generated by mesoscale eddies as well as microscale turbulence. We apply two methods to estimate the meridional oxygen flux: 1) a flux gradient parameterization and 2) a correlation of oxygen and velocity mooring time series. From the analysis of the 5°N mooring data we find a northward oxygen flux directed towards the OMZ at its core depth, that is mainly due to variability of

  17. Effect of oxygen concentration on singlet oxygen luminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Longchao; Lin, Lisheng; Li, Yirong; Lin, Huiyun; Qiu, Zhihai [MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Gu, Ying [Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853 (China); Li, Buhong, E-mail: [MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China)


    Singlet oxygen ({sup 1}O{sub 2}) is a major phototoxic component in photodynamic therapy (PDT) and its generation is dependent on the availability of tissue oxygen. To examine the effect of oxygen concentration on {sup 1}O{sub 2} detection, two hydrophilic photosensitizer (PS), rose bengal (RB) and meso-metra (N-methyl-4-pyridyl) porphine tetra tosylate (TMPyP) were used as model PS. Irradiation was carried out using 523 nm under hypoxic (2%, 13%), normoxic (21%) and hyperoxic (65%) conditions. The spectral and spatial resolved {sup 1}O{sub 2} luminescence was measured by near-infrared (NIR) photomultiplier tube (PMT) and camera, respectively. Upon the irradiation, the emission signal mainly consisted of background scattering light, PS fluorescence and phosphorescence, and {sup 1}O{sub 2} luminescence. The PS phosphorescence was evidently dependent on the oxygen concentration and PS type, which resulted in the change of emission profile of {sup 1}O{sub 2} luminescence. This change was further demonstrated on {sup 1}O{sub 2} luminescence image. The present study suggests that the low oxygen concentration could affect {sup 1}O{sub 2} luminescence detection. - Highlights: • Both spectral and spatial resolved {sup 1}O{sub 2} luminescence measurements were performed. • Effect of oxygen concentration on {sup 1}O{sub 2} generation was quantitatively evaluated. • Low oxygen concentration could affect {sup 1}O{sub 2} luminescence detection.

  18. Integration of oxygen membranes for oxygen production in cement plants

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Søgaard, Martin; Hjuler, Klaus


    The present paper describes the integration of oxygen membranes in cement plants both from an energy, exergy and economic point of view. Different configurations for oxygen enrichment of the tertiary air for combustion in the pre-calciner and full oxy-fuel combustion in both pre-calciner and kiln...... a concentrated CO2 source that can be used for enhanced oil recovery, in combination with biomass gasification and electrolysis for synthesis gas production, or possibly sequestered. The cases with oxygen enriched air provide very promising economic figures of merit with discounted payback periods slightly...

  19. Monitoring Cerebral Oxygenation in Neonates: An Update (United States)

    Dix, Laura Marie Louise; van Bel, Frank; Lemmers, Petra Maria Anna


    Cerebral oxygenation is not always reflected by systemic arterial oxygenation. Therefore, regional cerebral oxygen saturation (rScO2) monitoring with near-infrared spectroscopy (NIRS) is of added value in neonatal intensive care. rScO2 represents oxygen supply to the brain, while cerebral fractional tissue oxygen extraction, which is the ratio between rScO2 and systemic arterial oxygen saturation, reflects cerebral oxygen utilization. The balance between oxygen supply and utilization provides insight in neonatal cerebral (patho-)physiology. This review highlights the potential and limitations of cerebral oxygenation monitoring with NIRS in the neonatal intensive care unit. PMID:28352624

  20. Oxygen labelled CO2

    International Nuclear Information System (INIS)

    Schuster, K.-D.; Heller, H.


    Tests were carried out as to whether additional information concerning pulmonary gas exchange could be obtained from the application of oxygen labelled carbon dioxide. Single breath experiments were performed on two healthy subjects with 0.1 percent C 16 O 18 O and 2.8 percent C 18 O 2 in the inspiratory gas. Breath-hold time was varied between 0.5-20s in different experiments. The 18 O-concentration of the end-expired gas bi-exponentially decreased with increasing breath-hold time. The high and low rate constants 4s -1 and 0.12s -1 for C 18 O 2 and 2.5s -1 and 0.87s -1 for C 16 O 18 O were derived, respectively. These results, together with model calculations, suggest: 1) the rapid disappearance of C 18 O 2 from the alveolar space is primarily limited by diffusion, so that this isotopic species can be applied to quantify pulmonary diffusing conditions; 2) the lower disappearance rate of C 16 O 18 O is caused by a lower equilibration kinetics in blood, so that this isotopic species offers a possibility to study carbonic anhydrase activity of the red cells in vivo; 3) the slow phase of label decay is influenced by both alveolar dead space and carbonic anhydrase activity of the pulmonary tissues. Pathological dead spaces are expected to be sensitively detectable by C 16 O 18 O as well as by C 18 O 2 . (author). 4 refs.; 4 figs

  1. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana


    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  2. Oxygenates vs. synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Klier; Richard G. Herman; Alessandra Beretta; Maria A. Burcham; Qun Sun; Yeping Cai; Biswanath Roy


    Methanol synthesis from H{sub 2}/CO has been carried out at 7.6 MPa over zirconia-supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO{sub 2} were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO{sub 2} addition, water injection, reaction temperature, and H{sub 2}/C0 ratio have been investigated. Both CO{sub 2} addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether. Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO{sub 2} via the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface. The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr{sub 2}O{sub 3} catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr{sub 2}O{sub 3} catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H{sub 2}/CO synthesis gas mixtures. While the conversion of CO to C{sub 2+} oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C{sub 1}-C{sub 3} alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double

  3. Oxygen diffusion in cuprate superconductors

    International Nuclear Information System (INIS)

    Routbort, J.L.; Rothman, S.J.


    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7- δ, YBa 2 Cu 4 O 8 , and the Bi 2 Sr 2 Ca n-1 Cu n O 2+4 (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible

  4. Oxygen treatment of cluster headache

    DEFF Research Database (Denmark)

    Petersen, Anja S; Barloese, Mads C J; Jensen, Rigmor H


    PURPOSE: Our aim was to review the existing literature to document oxygen's therapeutic effect on cluster headache. METHOD: A PubMed search resulted in 28 hits, and from these and their references we found in total 11 relevant studies. We included six studies that investigated the efficacy......, but not a prophylactic effect. Despite the fact that only a few high-quality RCT studies are available, oxygen treatment is close to an ideal treatment because it is effective and safe. However, sufferers of cluster headache do not always have access to oxygen because of logistic and financial concerns....

  5. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims


    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared

  6. Oxygenates to hike gasoline price

    International Nuclear Information System (INIS)



    This paper reports that cost of achieving required US gasoline formulations this winter in Environmental Protection Agency carbon monoxide (CO) nonattainment areas could reach 3-5 cents/gal, an Energy Information Administration analysis has found. EIA says new winter demand for gasoline blending oxygenates such as methyl tertiary butyl ether (MTBE) or ethanol created by 190 amendments to the Clean Air Act (CAA) will exceed US oxygenate production by 140,000-220,000 b/d. The shortfall must be made up from inventory or imports. EIA estimates the cost of providing incremental oxygenate to meet expected gasoline blending demand likely will result in a price premium of about 20 cents/gal of MTBE equivalent over traditional gasoline blend octane value. That cost likely will be added to the price of oxygenated gasoline

  7. [Oxygen therapy in wound treatment]. (United States)

    Baffie, Aurélie; Gérard, Maud; Varlin, Valérie; Fromantin, Isabelle; Perceau, Géraldine


    The observation of a device delivering oxygen locally on twelve patients with chronic wounds for which conventional treatments have had little or no effect, aims to assess the benefit of the local use of oxygen on complex wounds. The main benefits observed are the obtaining of high quality tissue formation and a notable reduction in pain. These encouraging initial results merit being backed up by a comparative clinical study.

  8. A theory of atmospheric oxygen. (United States)

    Laakso, T A; Schrag, D P


    Geological records of atmospheric oxygen suggest that pO 2 was less than 0.001% of present atmospheric levels (PAL) during the Archean, increasing abruptly to a Proterozoic value between 0.1% and 10% PAL, and rising quickly to modern levels in the Phanerozoic. Using a simple model of the biogeochemical cycles of carbon, oxygen, sulfur, hydrogen, iron, and phosphorous, we demonstrate that there are three stable states for atmospheric oxygen, roughly corresponding to levels observed in the geological record. These stable states arise from a series of specific positive and negative feedbacks, requiring a large geochemical perturbation to the redox state to transition from one to another. In particular, we show that a very low oxygen level in the Archean (i.e., 10 -7 PAL) is consistent with the presence of oxygenic photosynthesis and a robust organic carbon cycle. We show that the Snowball Earth glaciations, which immediately precede both transitions, provide an appropriate transient increase in atmospheric oxygen to drive the atmosphere either from its Archean state to its Proterozoic state, or from its Proterozoic state to its Phanerozoic state. This hypothesis provides a mechanistic explanation for the apparent synchronicity of the Proterozoic Snowball Earth events with both the Great Oxidation Event, and the Neoproterozoic oxidation. © 2017 John Wiley & Sons Ltd.

  9. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims


    the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  10. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    National Research Council Canada - National Science Library

    Xia, Mengna


    The goals of the study in the first stage are 1) to develop a mathematic model by which we can derive tumor blood flow and metabolic rate of oxygen from hemoglobin concentration during interventions, 2...

  11. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue


    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  12. Oxygenation measurements in head and neck cancers during hyperbaric oxygenation

    International Nuclear Information System (INIS)

    Becker, A.; Kuhnt, T.; Dunst, J.; Liedtke, H.; Krivokuca, A.; Bloching, M.


    Background: Tumor hypoxia has proven prognostic impact in head and neck cancers and is associated with poor response to radiotherapy. Hyperbaric oxygenation (HBO) offers an approach to overcome hypoxia. We have performed pO 2 measurements in selected patients with head and neck cancers under HBO to determine in how far changes in the oxygenation occur and whether a possible improvement of oxygenation parameters is maintained after HBO. Patients and Methods: Seven patients (five male, two female, age 51-63 years) with squamous cell cancers of the head and neck were investigated (six primaries, one local recurrence). The median pO 2 prior to HBO was determined with the Eppendorf histograph. Sites of measurement were enlarged cervical lymph nodes (n = 5), the primary tumor (n = 1) and local recurrence (n = 1). Patients then underwent HBO (100% O 2 at 240 kPa for 30 minutes) and the continuous changes in the oxygenation during HBO were determined with a Licox probe. Patients had HBO for 30 minutes (n = 6) to 40 minutes (n = 1). HBO was continued because the pO 2 had not reached a steady state after 30 minutes. After decompression, patients ventilated pure oxygen under normobaric conditions and the course of the pO 2 was further measured over about 15 minutes. Results: Prior to HBO, the median tumor pO 2 in the Eppendorf histography was 8.6 ± 5.4 mm Hg (range 3-19 mm Hg) and the pO 2 measured with the Licox probe was 17.3 ± 25.5 mm Hg (range 0-73 mm Hg). The pO 2 increased significantly during HBO to 550 ± 333 mm Hg (range 85-984 mm Hg, p = 0.018). All patients showed a marked increase irrespective of the oxygenation prior to HBO. The maximum pO 2 in the tumor was reached after 10-33 minutes (mean 17 minutes). After leaving the hyperbaric chamber, the pO 2 was 282 ± 196 mm Hg. All patients maintained an elevated pO 2 for further 5-25 minutes (138 ± 128 mm Hg, range 42-334 mm Hg, p = 0.028 vs the pO 2 prior to HBO). Conclusions: Hyperbaric oxygenation resulted in a

  13. Impurities of oxygen in silicon

    International Nuclear Information System (INIS)

    Gomes, V.M.S.


    The electronic structure of oxygen complex defects in silicon, using molecular cluster model with saturation by watson sphere into the formalism of Xα multiple scattering method is studied. A systematic study of the simulation of perfect silicon crystal and an analysis of the increasing of atom number in the clusters are done to choose the suitable cluster for the calculations. The divacancy in three charge states (Si:V 2 + , Si:V 2 0 , Si:V 2 - ), of the oxygen pair (Si:O 2 ) and the oxygen-vacancy pair (Si:O.V) neighbours in the silicon lattice, is studied. Distortions for the symmetry were included in the Si:V 2 + and Si:O 2 systems. The behavior of defect levels related to the cluster size of Si:V 2 0 and Si:O 2 systems, the insulated oxygen impurity of silicon in interstitial position (Si:O i ), and the complexes involving four oxygen atoms are analysed. (M.C.K.) [pt

  14. Make Liquid Oxygen in Your Class (United States)

    French, M. M. J.; Hibbert, Michael


    Oxygen is one of the component gases of air at room temperature, making up around 20% of the atmosphere. But can oxygen be liquified? This article details a method for making small amounts of liquid oxygen in the classroom if there is no access to a cylinder of compressed oxygen gas, and two methods for identifying the fact that it is liquid…

  15. Hyperbaric oxygen and perfluorochemicals in radiotherapy

    International Nuclear Information System (INIS)

    Fischer, J.J.


    Malignant tumors are thought to contain radioresistant hypoxic cells which limit curability with radiation therapy. Attempts to improve tumor oxygenation by breathing oxygen under increased pressure have been only marginally successful. To improve oxygenation, the partial pressure must be increased throughout the capillary bed and must remain elevated as oxygen is consumed. Theoretical calculations predict that the combination of perfluorochemical micelles and hyperbaric oxygen could provide the necessary amount of oxygen at sufficiently high partial pressure to meet these requirements. Fluosol-DA (Alpha Therapeutic Corporation) and hyperbaric oxygen significantly reduce the hypoxic fraction in experimental rodent tumors

  16. Oxidation af oxygen i hvidvin


    Hyldgaard, Patrick Boll; Barr, Nathan Hugh; Dam, Marc John Bordier; Madsen, René Møller; Nørr, Maria Nicoline; Rasmussen, Jeannie Bøg


    This project focuses on developing a model to describe the effect of exposing white wine to oxygen. The model that is used in the project describes the diffusion of oxygen through a bottle of white wine and the reaction between oxygen and ethanol in white wine. The system of this phenomenon and our mathematical model is as follows: d[O2]/dt = DO2 *d2[O2]/dx2 − k[O2][EtOH] d[EtOH]/dt = DEtOH *d2[EtOH]/dx2 − k[O2][EtOH] The process of limiting the real world mechanism in white wine to the oxyge...

  17. Photoacoustic Imaging in Oxygen Detection

    Directory of Open Access Journals (Sweden)

    Fei Cao


    Full Text Available Oxygen level, including blood oxygen saturation (sO2 and tissue oxygen partial pressure (pO2, are crucial physiological parameters in life science. This paper reviews the importance of these two parameters and the detection methods for them, focusing on the application of photoacoustic imaging in this scenario. sO2 is traditionally detected with optical spectra-based methods, and has recently been proven uniquely efficient by using photoacoustic methods. pO2, on the other hand, is typically detected by PET, MRI, or pure optical approaches, yet with limited spatial resolution, imaging frame rate, or penetration depth. Great potential has also been demonstrated by employing photoacoustic imaging to overcome the existing limitations of the aforementioned techniques.

  18. Extracorporeal membrane oxygenation (ECMO) | Richards ...

    African Journals Online (AJOL)

    Extracorporeal membrane oxygenation (ECMO) is increasingly being employed in South African intensive care units for the management of patients with refractory hypoxaemia and for haemodynamic support, particularly following cardiothoracic procedures. ECMO is expensive, however, and there is a danger that this ...

  19. Glow discharge in singlet oxygen

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsyn, D.V.; Yuryshev, N.N.; Kochetov, I.V.; Napartovich, A.P.


    Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O 2 ( 1 Δ g ). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O 2 ( 1 Δ g ) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high O 2 ( 1 Δ g ) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O 2 ( 1 Δ g ) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data

  20. Biotechnological sulphide removal with oxygen

    NARCIS (Netherlands)

    Buisman, C.


    This thesis deals with the development of a new process for biotechnological sulphide removal from wastewater, in which it is attempted to convert sulphide into elemental sulphur by colourless sulphur bacteria. The toxicity, corrosive properties, unpleasant odor and high oxygen demand of sulphide

  1. Oxygen - A Four Billion Year History

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    The air we breathe is twenty-one percent oxygen, an amount higher than on any other known world. While we may take our air for granted, Earth was not always an oxygenated planet. How did it become this way? Oxygen is the most current account of the history of atmospheric oxygen on Earth. Donald...... of fields, including geology, paleontology, geochemistry, biochemistry, animal physiology, and microbiology, to explain why our oxygenated Earth became the ideal place for life. Describing which processes, both biological and geological, act to control oxygen levels in the atmosphere, Canfield traces...... the records of oxygen concentrations through time. Readers learn about the great oxidation event, the tipping point 2.3 billion years ago when the oxygen content of the Earth increased dramatically, and Canfield examines how oxygenation created a favorable environment for the evolution of large animals. He...

  2. The Sheppard Oxygen Mask: Efficient oxygen enrichment in the ...

    African Journals Online (AJOL)


    63 Patients were studied in the post-anaesthesia care unit (PACU) and divided into three groups. Group-V received-oxygen enriched air via standard venturi masks at 8L/min fresh gas flow (FGF);. Groups S4 and S8 breathed via SOM's at FGF of 4 and 8L/min. Inspired (Fi) and expired (FE) gases, as well as blood gas ten-.

  3. Pediatric Oxygen Therapy: A Clinical Update. (United States)

    Haque, Anwarul; Rizvi, Munaza; Arif, Fehmina


    Oxygen therapy is a life-saving, medical intervention in the management of hospitalized children. The goal of oxygen therapy is to prevent or treat tissue hypoxia. Oxygen should be prescribed according to the principles of drug prescription, however, use of oxygen in clinical practice is often inappropriate without knowledge of its potential risks and benefits. This article summarizes practical aspects of clinical use of oxygen in terms of indication, administration, and monitoring, weaning, discontinuation and oxygen toxicity to rationalize therapy and achieve maximum benefits.

  4. Catalyst containing oxygen transport membrane (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie


    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  5. Oxygen transfer in slurry bioreactors. (United States)

    Kawase, Y; Moo-Young, M


    The oxygen transfer in bioreactors with slurries having a yield stress was investigated. The volumetric mass transfer coefficients in a 40-L bubble column with simulated fermentation broths, the Theological properties of which were represented by the Casson model, were measured. Experimental data were compared with a theoretical correlation developed on the basis of a combination of Higbie's penetration theory and Kolmogoroff's theory of isotropic turbulence. Comparisons between the proposed correlation and data for the simulated broths show good agreement. The mass transfer data for actual mycelial fermentation broths reported previously by the authors were re-examined. Their Theological data was correlated by the Bingham plastic model. The oxygen transfer rate data in the mycelial fermentation broths fit the predictions of the proposed theoretical correlation.

  6. High-Pressure Oxygen Concentrator, Phase I (United States)

    National Aeronautics and Space Administration — NASA desires to generate and store gases including oxygen and nitrogen at sub-critical conditions as a part of its lunar and spacecraft atmospheric systems. Oxygen...

  7. In-Situ Resource Utilization: Oxygen Production (United States)

    National Aeronautics and Space Administration — The leading option for extracting oxygen from the Mars atmospheric carbon dioxide is to use a solid oxide electrolyzer, which removes one oxygen atom from the CO2...

  8. High-Pressure Oxygen Concentrator, Phase II (United States)

    National Aeronautics and Space Administration — NASA desires to generate and store gases including oxygen and nitrogen at sub-critical conditions as a part of its lunar and spacecraft atmospheric systems. Oxygen...

  9. Oxygen-Methane Thruster, Phase I (United States)

    National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster will...

  10. Efficiency of oxygen delivery through different oxygen entrainment devices during sedation under low oxygen flow rate: a bench study. (United States)

    Hsu, Wei-Chih; Orr, Joe; Lin, Shih-Pin; Yu, Lu; Tsou, Mei-Yung; Westenskow, Dwayne R; Ting, Chien-Kun


    Sedative anesthetic procedures outside the operating room may depend on cylinders as oxygen source. Cylinders have limited storage capacity and a low oxygen flow rate improves the durability. We conducted the bench study to evaluate the fraction of inspired oxygen (FiO 2 ) in different oxygen entrainment devices under low oxygen flow rate. The purpose of the bench study was to provide information to choose appropriate oxygen entrainment devices in non-operating room sedative anesthetic procedures. We utilized a manikin head-test lung-ventilator model and evaluated eight oxygen entrainment devices, including four nasal cannulas, two oral bite blocks, and two masks. Two different minute volumes that defined as the normal ventilation and the hypoventilation group were evaluated. Three pneuflow resistors were placed in turn in the mouth represented ratio of the nasal/oral breathing. Each condition was sampled 70 times after a 3 min ventilation period. Most devices had few drop in FiO 2 according to the increased oral breathing ratio in normal ventilation. Most devices had obvious drop in FiO 2 related to the increased oral breathing ratio in hypoventilation. Oxygen reservoir units had little effect for accumulating oxygen in normal ventilation. In the hypoventilation group, oxygen reservoir units helped oxygen retention in local area and maintained a higher oxygen concentration. There were multiple factors lead to different oxygen fraction that we measured, such as different devices, respiratory patterns, and oxygen reservoir units. The result of our bench study provided some information for anesthesiologist to choose appropriate oxygen entrainment devices in various sedative anesthetic procedures.

  11. Oxygen requirement of separated hybrid catfish eggs (United States)

    Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...

  12. Measurement of biological oxygen demand sandy beaches

    African Journals Online (AJOL)

    Measurements of biological oxygen demand in a sandy beach using conventional in situ techniques are compared with laboratory measurements of interstitial oxygen changes in intact cores. Oxygen uptake as measured in the laboratory was approximately three times that measured in the field despite the fact that the.

  13. 21 CFR 868.5580 - Oxygen mask. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device...

  14. Immunomodulatory effect of oxygen and pressure

    NARCIS (Netherlands)

    van den Blink, B.; van der Kleij, A. J.; Versteeg, H. H.; Peppelenbosch, M. P.


    The immunomodulatory effect of hyperbaric oxygen, involving altered cytokine release by macrophages. is well described. Importantly, however, it is not known what the relative contribution is of the hyperbaric environment of the cells vs. increased oxygen tension on these hyperbaric oxygen-dependent

  15. Biochemical Oxygen Demand and Dissolved Oxygen. Training Module (United States)

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…

  16. The determination of oxygen in molybdenum and tungsten monocrystals taking into account the surface oxygen contribution

    International Nuclear Information System (INIS)

    Aleksandrov, V.D.; Egiazarov, B.G.; Polyakova, I.S.; Sel'dyakov, Yu.P.; Chernyavskij, V.T.


    The method has been developed for determining oxygen content in molybdenum and tungsten usign the neutron activation analysis. The sensitivity is 1.6X10 -5 and 1.3x10 -3 wt.% for molybdenum and tungsten, respectively. The density of oxygen distribution in surface layers has been experimentally evaluated. It is shown that the oxygen presence in a surface layer of molybdenum and tungsten does not impede oxygen determination in the bulk of the sample, when the oxygen content is >5x10 -5 wt.%. If oxygen content is -3 wt.%, the presence of oxygen in the surface layer should be taken into account

  17. Oxygen - A Four Billion Year History

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    The air we breathe is twenty-one percent oxygen, an amount higher than on any other known world. While we may take our air for granted, Earth was not always an oxygenated planet. How did it become this way? Oxygen is the most current account of the history of atmospheric oxygen on Earth. Donald...... Canfield--one of the world's leading authorities on geochemistry, earth history, and the early oceans--covers this vast history, emphasizing its relationship to the evolution of life and the evolving chemistry of the Earth. With an accessible and colorful first-person narrative, he draws from a variety...... the records of oxygen concentrations through time. Readers learn about the great oxidation event, the tipping point 2.3 billion years ago when the oxygen content of the Earth increased dramatically, and Canfield examines how oxygenation created a favorable environment for the evolution of large animals. He...

  18. Oxygen and Cell Fate Decisions (United States)


    Compernolle, V., Brusselmans, K., Acker, T., Hoet, P., Tjwa, M., Beck, H., Plaisance, S., Dor, Y., Keshet, E., Lupu , F. et al. 2002. Loss of HIF- 2α and...oxygen in the fi rst trimester of pregnancy . Human Reprod. Update, 12:137–44. Jauniaux, E., Watson, A. and Burton, G. 2001. Evaluation of...tissues during early pregnancy . Obstet. Gynecol., 80:283–5. Rubin, P., Elbadawi, N.A., Thomson, R.A. and Cooper, R.A. 1977. Bone marrow regeneration

  19. A Cabin Air Separator for EVA Oxygen (United States)

    Graf, John C.


    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  20. Active oxygen doctors the evidence (United States)

    Castelló, Ana; Francès, Francesc; Corella, Dolores; Verdú, Fernando


    Investigation at the scene of a crime begins with the search for clues. In the case of bloodstains, the most frequently used reagents are luminol and reduced phenolphthalein (or phenolphthalin that is also known as the Kastle-Meyer colour test). The limitations of these reagents have been studied and are well known. Household cleaning products have evolved with the times, and new products with active oxygen are currently widely used, as they are considered to be highly efficient at removing all kinds of stains on a wide range of surfaces. In this study, we investigated the possible effects of these new cleaning products on latent bloodstains that may be left at a scene of a crime. To do so, various fabrics were stained with blood and then washed using cleaning agents containing active oxygen. The results of reduced phenolphthalein, luminol and human haemoglobin tests on the washed fabrics were negative. The conclusion is that these new products alter blood to such an extent that it can no longer be detected by currently accepted methods employed in criminal investigations. This inability to locate bloodstains means that highly important evidence (e.g. a DNA profile) may be lost. Consequently, it is important that investigators are aware of this problem so as to compensate for it.

  1. Hyperbaric oxygen and wound healing

    Directory of Open Access Journals (Sweden)

    Sourabh Bhutani


    Full Text Available Hyperbaric oxygen therapy (HBOT is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier′s gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon.

  2. Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation (United States)


    NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.

  3. Electron scattering by molecular oxygen

    International Nuclear Information System (INIS)

    Duddy, P.E.


    Collisions of electrons with molecules is one of the fundamental processes which occur both in atomic and molecular physics and also in chemistry. These collisions are vital in determining the energy balance and transport properties of electrons in gases and plasmas at low temperatures. There are many important applications for the basic understanding of these collision processes. For example, the study of planetary atmospheres and the interstellar medium involves electron collisions with both molecules and molecular ions. In particular, two of the major cooling mechanisms of electrons in the Earth's ionosphere are (i) the fine structure changing transitions of oxygen atoms by electron impact and (ii) the resonant electron-impact vibrational excitation of N 2 . Other applications include magnetohydrodynamic power generation and laser physics. A molecule, by definition, will contain more than one nucleus and consequently the effect of nuclear motion in the molecule leads to many extra processes in electron scattering by molecules which cannot occur in electron-atom scattering. As for atoms, both elastic and inelastic scattering occur, but in the case of inelastic electron scattering by molecules, the target molecule is excited to a different state by the process. The excitation may be one, or some combination, of rotational, vibrational and electronic transitions. Other reactions which may occur include dissociation of the molecule into its constituent atoms or ionisation. Another difficulty arises when considering the interactions between the electron and the molecule, This interaction, which considerably complicates the calculation, is non-spherical and various methods have been developed over the years to represent this interaction. This thesis considers electron scattering by molecular oxygen in the low energy range i.e. 0-15eV. These collisions are of considerable interest in atmospheric physics and chemistry where the electron impact excitation of O 2 has

  4. Attenuation of Scattered Thermal Energy Atomic Oxygen (United States)

    Banks, Bruce A.; Seroka, Katelyn T.; McPhate, Jason B.; Miller, Sharon K.


    The attenuation of scattered thermal energy atomic oxygen is relevant to the potential damage that can occur within a spacecraft which sweeps through atomic oxygen in low Earth orbit (LEO). Although there can be significant oxidation and resulting degradation of polymers and some metals on the external surfaces of spacecraft, there are often openings on a spacecraft such as telescope apertures, vents, and microwave cavities that can allow atomic oxygen to enter and scatter internally to the spacecraft. Atomic oxygen that enters a spacecraft can thermally accommodate and scatter to ultimately react or recombine on surfaces. The atomic oxygen that does enter a spacecraft can be scavenged by use of high erosion yield polymers to reduce its reaction on critical surfaces and materials. Polyoxymethylene and polyethylene can be used as effective atomic oxygen scavenging polymers.

  5. Analysis of fuel oxygenates in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.C.; Berg, M.; Haderlein, S.B. [Swiss Federal Inst. for Environmental Science and Technology (EAWAG) (Switzerland); Swiss Federal Inst. of Technology (ETH), Duebendorf (Switzerland); Duong, Hong-Anh [Vietnam National Univ.,Hanoi (Viet Nam). Center for Environmental Chemistry


    This paper presents an overview of currently available analytical methods for fuel oxygenates such as methyl tert-butyl ether and ethanol and highlights the advantages and disadvantages of the different methods. The occurrence of fuel oxygenates in water and air is explored, and sampling and enrichment of oxygenates in water are described covering water sampling, direct aqueous injection into a chromatographic column, headspace analysis, purge and trap enrichment, and solid phase microextraction. Methods for sampling and enrichment of oxygenates in air, separation of fuel oxygenates, preparation of standards and calibration, and detection using flame ionisation and photoionisation detection, mass spectrometry, atomic emission detection, and Fourier transform infrared spectroscopy are examined. Environmentally relevant physiochemical parameters of fuel oxygenates are tabulated, and injection and enrichment techniques for water analysis are compared.

  6. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  7. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel; Revsbech, Niels Peter; Canfield, Donald Eugene


    Molecular oxygen (O2) is the second most abundant gas in the Earth's atmosphere, but in many natural environments, its concentration is reduced to low or even undetectable levels. Although low-oxygen-adapted organisms define the ecology of low-oxygen environments, their capabilities are not fully...... known. These capabilities also provide a framework for reconstructing a critical period in the history of life, because low, but not negligible, atmospheric oxygen levels could have persisted before the "Great Oxidation" of the Earth's surface about 2.3 to 2.4 billion years ago. Here, we show...... that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history...

  8. Oxygen isotopes implanted in the LDEF spacecraft (United States)

    Saxton, J. M.; Lyon, I. C.; Chatzitheodoridis, E.; Vanlierde, P.; Gilmour, J. D.; Turner, G.


    Secondary ion mass spectrometry was used to study oxygen implanted in the surface of copper from the Long Duration Exposure Facility (LDEF). Oxidation that occurred in orbit shows a characteristic oxygen isotope composition, depleted in O-18. The measured depletion is comparable to the predicted depletion (45 percent) based on a model of the gravitational separation of the oxygen isotopes. The anomalous oxygen was contained within 10nm of the surface. Tray E10 was calculated to have received 5.14 x 10(exp 21) atoms of oxygen cm(sup -2) during the LDEF mission and so there is sufficient anomalous implanted oxygen present in the surface to obtain a reliable isotopic profile.

  9. Plant respiration under low oxygen

    Directory of Open Access Journals (Sweden)

    Guillermo Toro


    Full Text Available Respiration is an oxidative process controlled by three pathways: glycolysis, the tricarboxylic acid (TCA cycle, and oxidative phosphorylation (OXPHOS. Respiratory metabolism is ubiquitous in all organisms, but with differences among each other. For example in plants, because their high plasticity, respiration involves metabolic pathways with unique characteristics. In this way, in order to avoid states of low energy availability, plants exhibit great flexibility to bypass conventional steps of glycolysis, TCA cycle, and OXPHOS. To understand the energetic link between these alternative pathways, it is important to know the growth, maintenance, and ion uptake components of the respiration in plants. Changes in these components have been reported when plants are subjected to stress, such as oxygen deficiency. This review analyzes the current knowledge on the metabolic and functional aspects of plant respiration, its components and its response to environmental changes.

  10. On the pulmonary toxicity of oxygen. 5. Electronic structure and the paramagnetic property of oxygen. (United States)

    Shanklin, D Radford


    Oxygen uptake by the pulmonary circulation is a chemical reaction. The physicochemical attributes of oxygen are critical when studying pulmonary oxygen toxicity. Extent of lung injury depends on the percentage of oxygen in an oxygen-nitrogen mix in polybaric circumstances (Shanklin, 1969). Further change in extent of lesion follows when other gases are used in the inhalant mix instead of nitrogen (Shanklin and Lester, 1972), with oxygen at 21-100% of the mix. Comparative subatmospheric oxygen levels down to 3% in hydrogen, helium, nitrogen, argon, or sulfur hexafluoride, were run with and without ventilatory distress by the Farber (1937) model, bilateral cervical vagotomy (BCV). This yielded coherent results indicating a need to consider molecular characteristics at the atomic level. Molecular mass and size, gas viscosity, and thermal conductivity yielded no obvious correlates to lung injury. Saturation of the outer electron shells of the diluents fit the empiric data, prospectively an interaction between oxygen and nitrogen from their electronegativity and closely approximate molecular mass, size, and shape. The lesion is essentially eliminated at 7% oxygen in nitrogen. At 3% oxygen, the least lesion is found with N(2), H(2), and SF(6), all gases with incomplete outer electron shells, allowing for transient, possibly polarized, covalent bonding with oxygen as the significant minority component in the mix. Argon and helium do not interfere with oxygen. With 3% oxygen in argon without BCV, the experiments ran so long (>70hours) they were terminated once the point had been made. 3% oxygen in argon after BCV yielded a mean survival more than twice that of BCV in air, indicating a remarkable degree of nitrogen interference with oxygen in the respiratory medium of terrestrial animal life. Argon displayed other advantages for the lung compared to nitrogen. Hydrogen, nitrogen, and oxygen are diatomic molecules, a feature which does relate to the extent of lung injury, but

  11. Determination of oxygen in liquid sodium

    International Nuclear Information System (INIS)

    Torre, M. de la; Lapena, J.; Galindo, F.; Couchoud, M.; Celis, B. de; Lopez-Araquistain, J.L.


    The behaviour is analysed of a device for 'in-line' sampling and vacuum distillation. With this procedure 95 results were obtained for the solubility of oxygen in liquid sodium at temperatures between 125 0 and 300 0 C. The correlation between the concentration of oxygen in a saturation state and the corresponding temperature is represented by: 1g C = 6,17 - 2398/T, where C expressed ppm of oxygen by weight and T is the saturation temperature in 0 K. Reference is also made to the first results obtained with the electrochemical oxygen meter and the system for taking and recording data. (author)

  12. Comparison of airline passenger oxygen systems. (United States)

    Byrne, N J


    The principal sources of oxygen for inflight passenger use, scheduled and unscheduled, are examined. Present practices of assessment of the passenger's "fitness to fly" are described. Three partner airlines, British Airways, U.S. Air, and Qantas, catering for more than 8000 oxygen requests annually, are compared. Analysis of customer use suggests that medical oxygen requests are frequently not clinically justified. The growth in demand, for both scheduled and unscheduled use of an expensive resource, supports the need for a "recommended best practice" among carriers. Passengers with respiratory disorders who will most benefit from inflight oxygen are vulnerable either to hypoxia or asthma.

  13. Alarm points for fixed oxygen monitors

    International Nuclear Information System (INIS)

    Miller, G.C.


    Oxygen concentration monitors were installed in a vault where numerous pipes carried inert cryogens and gases to the Mirror Fusion Test Facility (MFTF-B) experimental vessel at Lawrence Livermore National Laboratory (LLNL). The problems associated with oxygen-monitoring systems and the reasons why such monitors were installed were reviewed. As a result of this review, the MFTF-B monitors were set to sound an evacuation alarm when the oxygen concentration fell below 18%. We chose the 18% alarm criterion to minimize false alarms and to allow time for personnel to escape in an oxygen-deficient environment

  14. Identification of an Archean marine oxygen oasis

    Energy Technology Data Exchange (ETDEWEB)

    Riding, Dr Robert E [University of Tennessee (UT); Fralick, Dr Philip [Lakehead University, Canada; Liang, Liyuan [ORNL


    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insoluble Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.


    Bradner, H.; Gordon, H.S.


    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  16. Workshop on Oxygen in the Terrestrial Planets (United States)


    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  17. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor


    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  18. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang


    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  19. Increased sediment oxygen flux in lakes and reservoirs: The impact of hypolimnetic oxygenation (United States)

    Bierlein, Kevin A.; Rezvani, Maryam; Socolofsky, Scott A.; Bryant, Lee D.; Wüest, Alfred; Little, John C.


    Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems.

  20. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriëtte; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michaël A.; Spronk, Peter E.


    Objective: The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design: Prospective observational controlled study. Setting: Nonacademic university-affiliated

  1. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture (United States)

    Li, Xuechun; Li, Dian; Wang, Younian


    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  2. Oxygen permeation through oxygen ion oxide-noble metal dual phase composites

    NARCIS (Netherlands)

    Chen, C.S.; Chen, C.S.; Kruidhof, H.; Bouwmeester, Henricus J.M.; Verweij, H.; Burggraaf, Anthonie; Burggraaf, A.J.


    Oxygen permeation behaviour of three composites, yttria-stabilized zirconia-palladium, erbia-stabilized bismuth oxidenoble metal (silver, gold) was studied. Oxygen permeation measurements were performed under controlled oxygen pressure gradients at elevated temperatures. Air was supplied at one side

  3. Oxygen and life on earth: an anesthesiologist's views on oxygen evolution, discovery, sensing, and utilization. (United States)

    Lindahl, Sten G E


    The advent of oxygenic photosynthesis and the accumulation of oxygen in our atmosphere opened up new possibilities for the development of life on Earth. The availability of oxygen, the most capable electron acceptor on our planet, allowed the development of highly efficient energy production from oxidative phosphorylation, which shaped the evolutionary development of aerobic life forms from the first multicellular organisms to the vertebrates.

  4. Measuring microvascular and mitochondrial oxygen tension: novel techniques for studying tissue oxygenation

    NARCIS (Netherlands)

    Mik, E.G.


    This thesis describes the implementation of novel approaches for measuring tissue oxygenation based on oxygen-dependent quenching of the triplet-state lifetime of porphyrins. Ultimately we created a tool for assessment of mitochondrial oxygen tension in vivo. The first measurements indicate much

  5. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)


    pressure distribution under adapted conditions of light and darkness.. Method: A simple eight-layered mathematical model for intraretinal oxygen partial pressure distribution was developed using Fick's law of diffusion, Michaelis-Menten kinetics, and oxygen delivery in the inner retina. The system of non-linear differential ...

  6. Measurement of biological oxygen demand sandy beaches

    African Journals Online (AJOL)

    are mainly variations of the "dark and light bottle" technique either in situ ... cores or areas of substrate restrict the supply of oxygen to diffusion only. In areas where large movements of the water table take place in the substrate oxygen is supplied primarily by water movement and to a much lesser extent by diffusion. It is thus ...

  7. Oxygen consumption of Callianassa kraussi Stebbing ...

    African Journals Online (AJOL)

    Oxygen consumption experiments were performed on the thalassinid prawn, Callianassa kraussi Stabbing, using an open flow system coupled to a Radiometer electrode and a continuous recorder. The effect of starvation, sex, body size, salinity, temperature, seasons and reduced oxygen tensions on the respiratory rates of ...

  8. 46 CFR 197.326 - Oxygen safety. (United States)


    ... 46 Shipping 7 2010-10-01 2010-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with...

  9. Cutting feedwater oxygen concentrations by catalysis

    International Nuclear Information System (INIS)



    Designed to reduce oxygen concentrations in water storage and makeup systems from fully aerated conditions of 8000ppb to 10ppb in a single pass, the Westinghouse catalytic oxygen removal system (CORS) is a proven alternative to other methods of deoxygenation. (author)

  10. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)


    This minimum pressure may fall below the critical level of oxygen partial pressure and affect the retinal function. In order to restore normal retinal function, extreme hyperoxia may assist to make the choroid capable of supplying oxygen to the whole retina during total retinal artery occlusion. Keywords: Mathematical modeling ...

  11. Modeling Oxygen Transport in the Human Placenta (United States)

    Serov, Alexander; Filoche, Marcel; Salafia, Carolyn; Grebenkov, Denis

    Efficient functioning of the human placenta is crucial for the favorable pregnancy outcome. We construct a 3D model of oxygen transport in the placenta based on its histological cross-sections. The model accounts for both diffusion and convention of oxygen in the intervillous space and allows one to estimate oxygen uptake of a placentone. We demonstrate the existence of an optimal villi density maximizing the uptake and explain it as a trade-off between the incoming oxygen flow and the absorbing villous surface. Calculations performed for arbitrary shapes of fetal villi show that only two geometrical characteristics - villi density and the effective villi radius - are required to predict fetal oxygen uptake. Two combinations of physiological parameters that determine oxygen uptake are also identified: maximal oxygen inflow of a placentone and the Damköhler number. An automatic image analysis method is developed and applied to 22 healthy placental cross-sections demonstrating that villi density of a healthy human placenta lies within 10% of the optimal value, while overall geometry efficiency is rather low (around 30-40%). In a perspective, the model can constitute the base of a reliable tool of post partum oxygen exchange efficiency assessment in the human placenta. Also affiliated with Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.

  12. Bifunctional electrocatalyst for oxygen/air electrodes

    International Nuclear Information System (INIS)

    Sasikala, N.; Ramya, K.; Dhathathreyan, K.S.


    Highlights: • Nano-Silver powder was prepared by chemical method. • Ag catalyst was characterized by SEM and XRD studies. • Ag was investigated as bi-functional electrocatalyst for oxygen/air electrodes. • Ag shows good electrochemical activity towards OER and ORR reactions. - Abstract: Nano-Silver powder has been studied as bi-functional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline medium. Ag nano-powder has been prepared by a simple wet chemical method with Silver nitrate as precursor and Glucose as reducing agent. X-ray Diffraction and Scanning Electron Microscopy studies were carried out to characterize the Silver catalyst. Electrochemical oxygen evolution characterization shows anodic peak typically at the range between 0.350 and 0.514 V Vs Hg/HgO corresponding to Silver oxidation followed by the onset of oxygen evolution at 0.706 V. Oxygen reduction reaction studies carried out using Rotating Disc Electrode (RDE) confirm the four electron reaction mechanism. Ag catalyst shows promising characteristics for oxygen evolution and oxygen reduction

  13. Improved Zirconia Oxygen-Separation Cell (United States)

    Walsh, John V.; Zwissler, James G.


    Cell structure distributes feed gas more evenly for more efficent oxygen production. Multilayer cell structure containing passages, channels, tubes, and pores help distribute pressure evenly over zirconia electrolytic membrane. Resulting more uniform pressure distribution expected to improve efficiency of oxygen production.

  14. Mathematical analysis of corneal oxygenation | Avtar | International ...

    African Journals Online (AJOL)

    Purpose: To develop a quasi steady state model for the time course concentration profile describing the oxygen diffusion and consumption in a multilayered corneal tissue and investigate the effect of various model parameters on the oxygen concentration for open and closed eyes. Method: A simple mathematical model for ...

  15. Response behaviour of oxygen sensing solid electrolytes

    NARCIS (Netherlands)

    Winnubst, Aloysius J.A.; Scharenborg, A.H.A.; Burggraaf, A.J.


    The response time (t r) after a step change in oxygen partial pressure was investigated for some solid electrolytes used in Nernst type oxygen sensors. The electrolyte as well as the (porous) electrode material affect the value oft r. Stabilized Bi2O3 materials exhibit slower response rates (largert

  16. Prevention of oxygen toxicity in divers

    Energy Technology Data Exchange (ETDEWEB)



    This report summarises the findings of a project investigating the conversion of xanthine dehydrogenase to xanthine oxidase in cultured cells exposed to hypoxia, and examines the effects of reoxygenating the hypoxic cells. The role of xanthine oxidase in the production of oxygen free radicals leading to tissue damage due to oxygen toxicity after reperfusion of hypoxic and ischaemic tissues is discussed. (UK)

  17. Solar Energy Systems for Lunar Oxygen Generation (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.


    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  18. Ergonomic evaluation of pilot oxygen mask designs

    NARCIS (Netherlands)

    Lee, W.; Yang, Xiaopeng; Jung, Daehan; Park, Seikwon; Kim, Heeeun; You, Heecheon


    A revised pilot oxygen mask design was developed for better fit to the Korean Air Force pilots’ faces. The present study compared an existing pilot oxygen mask and a prototype of the revised mask design with 88 Korean Air Force pilots in terms of subjective discomfort, facial contact pressure,

  19. Oxygen isotopic anomaly and solar nebular photochemistry

    International Nuclear Information System (INIS)

    Kitamura, Y.; Shimizu, M.


    At the cool periphery of the solar nebula, oxygen could photochemically be formed from water. The mixing of 17 O and 18 O enriched by the self-shielding effect of 16 O 2 to the dust grain melted by the shock waves there would explain the oxygen isotopic anomaly in the high-temperature mineral of the carbonaceous meteorites. (Auth.)

  20. Ventilation During Bronchoscopy: the Oxygen Injector Technique ...

    African Journals Online (AJOL)

    Ventilation During Bronchoscopy: the Oxygen Injector Technique. HMC Kean. Abstract. The Sanders oxygen injector technique of bronchoscopic ventilation is discussed and the principle underlying the method is explained. A short study confirmed the effectiveness and safety of the technique, and the advantages over other ...

  1. Modelling and detecting tumour oxygenation levels.

    Directory of Open Access Journals (Sweden)

    Anne C Skeldon

    Full Text Available Tumours that are low in oxygen (hypoxic tend to be more aggressive and respond less well to treatment. Knowing the spatial distribution of oxygen within a tumour could therefore play an important role in treatment planning, enabling treatment to be targeted in such a way that higher doses of radiation are given to the more radioresistant tissue. Mapping the spatial distribution of oxygen in vivo is difficult. Radioactive tracers that are sensitive to different levels of oxygen are under development and in the early stages of clinical use. The concentration of these tracer chemicals can be detected via positron emission tomography resulting in a time dependent concentration profile known as a tissue activity curve (TAC. Pharmaco-kinetic models have then been used to deduce oxygen concentration from TACs. Some such models have included the fact that the spatial distribution of oxygen is often highly inhomogeneous and some have not. We show that the oxygen distribution has little impact on the form of a TAC; it is only the mean oxygen concentration that matters. This has significant consequences both in terms of the computational power needed, and in the amount of information that can be deduced from TACs.

  2. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)


    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  3. Reactive oxygen species in periodontitis

    Directory of Open Access Journals (Sweden)

    Parveen Dahiya


    Full Text Available Recent epidemiological studies reveal that more than two-third of the world′s population suffers from one of the chronic forms of periodontal disease. The primary etiological agent of this inflammatory disease is a polymicrobial complex, predominantly Gram negative anaerobic or facultative bacteria within the sub-gingival biofilm. These bacterial species initiate the production of various cytokines such as interleukin-8 and TNF-α, further causing an increase in number and activity of polymorphonucleocytes (PMN along with these cytokines, PMNs also produce reactive oxygen species (ROS superoxide via the respiratory burst mechanism as the part of the defence response to infection. ROS just like the interleukins have deleterious effects on tissue cells when produced in excess. To counter the harmful effects of ROS, human body has its own defence mechanisms to eliminate them as soon as they are formed. The aim of this review is to focus on the role of different free radicals, ROS, and antioxidants in the pathophysiology of periodontal tissue destruction.

  4. Cerebral oxygenation in preterm infants. (United States)

    Fyfe, Karinna L; Yiallourou, Stephanie R; Wong, Flora Y; Odoi, Alexsandria; Walker, Adrian M; Horne, Rosemary S C


    Prone sleeping is a major risk factor for sudden infant death syndrome (SIDS) and preterm infants are at significantly increased risk. In term infants, prone sleeping is associated with reduced mean arterial pressure (MAP) and cerebral tissue oxygenation index (TOI). However, little is known about the effects of sleeping position on TOI and MAP in preterm infants. We aimed to examine TOI and MAP in preterm infants after term-equivalent age, during the period of greatest SIDS risk. Thirty-five preterm and 17 term infants underwent daytime polysomnography, including measurement of TOI (NIRO-200 spectrophotometer, Hamamatsu Photonics KK, Japan) and MAP (Finapress Medical Systems, Amsterdam, Netherlands) at 2 to 4 weeks, 2 to 3 months, and 5 to 6 months postterm age. Infants slept prone and supine in active and quiet sleep. The effects of sleep state and position were determined by using 2-way repeated measures analysis of variance and of preterm birth by using 2-way analysis of variance. In preterm infants, TOI was significantly lower when prone compared with supine in both sleep states at all ages (P preterm compared with term infants at 2 to 4 weeks, in both positions (P preterm infants in the prone position at 2 to 3 months (P position in preterm infants and is lower compared with age-matched term infants, predominantly in the prone position when MAP is also reduced. This may contribute to their increased SIDS risk. Copyright © 2014 by the American Academy of Pediatrics.

  5. Evolution of factors affecting placental oxygen transfer

    DEFF Research Database (Denmark)

    Carter, A M


    A review is given of the factors determining placental oxygen transfer and the oxygen supply to the fetus. In the case of continuous variables, such as the rate of placental blood flow, it is not possible to trace evolutionary trends. Discontinuous variables, for which we can define character...... states, are more amenable to analysis. This is exemplified by factors contributing, respectively, to blood oxygen affinity and placental diffusing capacity. Comparative genomics has given fresh insight into the evolution of the beta-globin gene complex. In higher primates, duplication of an embryonic...... gene yielded HBG-T2, a gene that is expressed in the fetus and confers high oxygen affinity on its haemoglobin. A separate event in ruminants involved duplication of an adult gene, again resulting in a fetally expressed variant (HBB-T3) that conveys high oxygen affinity. In rodents and lagomorphs...

  6. Microbial oceanography of anoxic oxygen minimum zones

    DEFF Research Database (Denmark)

    Ulloa, Osvaldo; Canfield, Donald E; DeLong, Edward F


    Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N(2)) and nitrous...... dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous...... environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two "end points" represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs...

  7. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas


    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  8. Relationship Between Cerebral Oxygenation and Hemodynamic and Oxygen Transport Parameters in Surgery for Acquired Heart Diseases

    Directory of Open Access Journals (Sweden)

    A. I. Lenkin


    Full Text Available Objective: to evaluate the relationship between cerebral oxygenation and hemodynamic and oxygen transport parameters in surgical correction of concomitant acquired heart diseases. Subjects and methods. Informed consent was received from 40 patients who required surgery because of concomitant (two or more acquired heart defects. During procedure, perioperative monitoring of oxygen transport and cerebral oxygenation was performed with the aid of PiCCO2 monitor (Pulsion Medical Systems, Germany and a Fore-Sight cerebral oximeter (CASMED, USA. Anesthesia was maintained with propofol and fen-tanyl, by monitoring the depth of anesthesia. Early postoperative intensive therapy was based on the protocol for early targeted correction of hemodynamic disorders. Oxygen transport and cerebral oxygenation parameters were estimated intraopera-tively and within 24 postoperative hours. A statistical analysis including evaluation of Spearman correlations was performed with the aid of SPSS 15.0. Results. During perfusion, there was a relationship between cerebral oximetry values and hemat-ocrit levels, and oxygen partial pressure in the venous blood. Furthermore, a negative correlation between cerebral oximetry values and blood lactate levels was found 30 minutes after initiation of extracorporeal circulation (EC. During the study, there was a positive correlation between cerebral oxygenation and values of cardiac index, central venous saturation, and oxygen delivery index. There was a negative relationship between cerebral oxygenation and extravascular lung water at the beginning of surgery and a correlation between cerebral oximetry values and oxygenation index by the end of the first 24 postoperative hours. Conclusion. The cerebral oxygenation values correlate -with the main determinants of oxygen transport during EC and after cardiac surgical procedures. Cerebral oximetry may be used in early targeted therapy for the surgical correction of acquired combined

  9. The Presence of Oxygen in Wound Healing. (United States)

    Kimmel, Howard M; Grant, Anthony; Ditata, James


    Oxygen must be tightly governed in all phases of wound healing to produce viable granulation tissue. This idea of tight regulation has yet to be disputed; however, the role of oxygen at the cellular and molecular levels still is not fully understood as it pertains to its place in healing wounds. In an attempt to better understand the dynamics of oxygen on living tissue and its potential role as a therapy in wound healing, a substantial literature review of the role of oxygen in wound healing was performed and the following key points were extrapolated: 1) During energy metabolism, oxygen is needed for mitochondrial cytochrome oxidase as it produces high-energy phosphates that are needed for many cellular functions, 2) oxygen is also involved in the hydroxylation of proline and lysine into procollagen, which leads to collagen maturation, 3) in angiogenesis, hypoxia is required to start the process of wound healing, but it has been shown that if oxygen is administered it can accelerate and sustain vessel growth, 4) the antimicrobial action of oxygen occurs when nicotinamide adenine dinucleotide phosphate (NADPH)-linked oxygenase acts as a catalyst for the production of reactive oxygen species (ROS), a superoxide ion which kills bacteria, and 5) the level of evidence is moderate for the use of hyperbaric oxygen therapy (HBOT) for diabetic foot ulcers, crush injuries, and soft-tissue infections. The authors hypothesized that HBOT would be beneficial to arterial insufficiency wounds and other ailments, but at this time further study is needed before HBOT would be indicated.

  10. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries. (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook


    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Oxygen and animal evolution: Did a rise of atmospheric oxygen trigger the origin of animals?

    DEFF Research Database (Denmark)

    Mills, Daniel Brady; Canfield, Donald Eugene


    thought to have been maintained prior to their origination. Furthermore, it is increasingly argued that the earliest animals, which likely lived in low oxygen environments, played an active role in constructing the well-oxygenated conditions typical of the modern oceans. Therefore, while oxygen is still......Recent studies challenge the classical view that the origin of animal life was primarily controlled by atmospheric oxygen levels. For example, some modern sponges, representing early-branching animals, can live under 200 times less oxygen than currently present in the atmosphere - levels commonly...... relevant to understanding early animal evolution, the relationships between the two might be less straightforward than previously thought....


    Energy Technology Data Exchange (ETDEWEB)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen


    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this

  13. Oxygen-depleted zones inside reproductive structures of Brassicaceae: implications for oxygen control of seed development (United States)

    Porterfield, D. M.; Kuang, A.; Smith, P. J.; Crispi, M. L.; Musgrave, M. E.


    Growth of Arabidopsis thaliana (L.) Heynh. in decreasing oxygen partial pressures revealed a linear decrease in seed production below 15 kPa, with a complete absence of seed production at 2.5 kPa oxygen. This control of plant reproduction by oxygen had previously been attributed to an oxygen effect on the partitioning between vegetative and reproductive growth. However, plants grown in a series of decreasing oxygen concentrations produced progressively smaller embryos that had stopped developing at progressively younger stages, suggesting instead that their growth is limited by oxygen. Internal oxygen concentrations of buds, pistils, and developing siliques of Brassica rapa L. and siliques of Arabidopsis were measured using a small-diameter glass electrode that was moved into the structures using a micromanipulator. Oxygen partial pressures were found to be lowest in the developing perianth (11.1 kPa) and pistils (15.2 kPa) of the unopened buds. Pollination reduced oxygen concentration inside the pistils by 3 kPa after just 24 h. Inside Brassica silique locules, partial pressures of oxygen averaged 12.2 kPa in darkness, and increased linearly with increasing light levels to 16.2 kPa. Measurements inside Arabidopsis siliques averaged 6.1 kPa in the dark and rose to 12.2 kPa with light. Hypoxia in these microenvironments is postulated to be the point of control of plant reproduction by oxygen.

  14. Autoignition characteristics of oxygenated gasolines

    KAUST Repository

    Lee, Changyoul


    Gasoline anti-knock quality, defined by the research and motor octane numbers (RON and MON), is important for increasing spark ignition (SI) engine efficiency. Gasoline knock resistance can be increased using a number of blending components. For over two decades, ethanol has become a popular anti-knock blending agent with gasoline fuels due to its production from bio-derived resources. This work explores the oxidation behavior of two oxygenated certification gasoline fuels and the variation of fuel reactivity with molecular composition. Ignition delay times of Haltermann (RON = 91) and Coryton (RON = 97.5) gasolines have been measured in a high-pressure shock tube and in a rapid compression machine at three pressures of 10, 20 and 40 bar, at equivalence ratios of φ = 0.45, 0.9 and 1.8, and in the temperature range of 650–1250 K. The results indicate that the effects of fuel octane number and fuel composition on ignition characteristics are strongest in the intermediate temperature (negative temperature coefficient) region. To simulate the reactivity of these gasolines, three kinds of surrogates, consisting of three, four and eight components, are proposed and compared with the gasoline ignition delay times. It is shown that more complex surrogate mixtures are needed to emulate the reactivity of gasoline with higher octane sensitivity (S = RON–MON). Detailed kinetic analyses are performed to illustrate the dependence of gasoline ignition delay times on fuel composition and, in particular, on ethanol content.

  15. Low Oxygen Response Mechanisms in Green Organisms

    Directory of Open Access Journals (Sweden)

    Pierdomenico Perata


    Full Text Available Low oxygen stress often occurs during the life of green organisms, mostly due to the environmental conditions affecting oxygen availability. Both plants and algae respond to low oxygen by resetting their metabolism. The shift from mitochondrial respiration to fermentation is the hallmark of anaerobic metabolism in most organisms. This involves a modified carbohydrate metabolism coupled with glycolysis and fermentation. For a coordinated response to low oxygen, plants exploit various molecular mechanisms to sense when oxygen is either absent or in limited amounts. In Arabidopsis thaliana, a direct oxygen sensing system has recently been discovered, where a conserved N-terminal motif on some ethylene responsive factors (ERFs, targets the fate of the protein under normoxia/hypoxia. In Oryza sativa, this same group of ERFs drives physiological and anatomical modifications that vary in relation to the genotype studied. The microalga Chlamydomonas reinhardtii responses to low oxygen seem to have evolved independently of higher plants, posing questions on how the fermentative metabolism is modulated. In this review, we summarize the most recent findings related to these topics, highlighting promising developments for the future.

  16. Oxygen tension level and human viral infections

    Energy Technology Data Exchange (ETDEWEB)

    Morinet, Frédéric, E-mail: [Centre des Innovations Thérapeutiques en Oncologie et Hématologie (CITOH), CHU Saint-Louis, Paris (France); Université Denis Diderot, Sorbonne Paris Cité Paris, Paris (France); Casetti, Luana [Institut Cochin INSERM U1016, Paris (France); François, Jean-Hugues; Capron, Claude [Institut Cochin INSERM U1016, Paris (France); Laboratoire d' Hématologie, Hôpital Ambroise Paré, Boulogne (France); Université de Versailles Saint-Quentin en Yvelynes, Versailles (France); Pillet, Sylvie [Laboratoire de Bactériologie-Virologie-Hygiène, CHU de Saint-Etienne, Saint-Etienne (France); Université de Lyon et Université de Saint-Etienne, Jean Monnet, GIMAP EA3064, F-42023 Saint-Etienne, Lyon (France)


    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.

  17. Lithium-Oxygen Batteries: At a Crossroads?

    DEFF Research Database (Denmark)

    Vegge, Tejs; García Lastra, Juan Maria; Siegel, Donald Jason


    In this current opinion, we critically review and discuss some of the most important recent findings in the field of rechargeable lithium-oxygen batteries. We discuss recent discoveries like the evolution of reactive singlet oxygen and the use of organic additives to bypass reactive LiO2 reaction...... intermediates, and their possible implications on the potential for commercialization of lithium-oxygen batteries. Finally, we perform a critical assessment of lithium-superoxide batteries and the reversibility of lithium-hydroxide batteries....

  18. Atomic Oxygen Cleaning of Unpainted Plaster Sculptures (United States)

    Banks, Bruce A.; Miller, Sharon K.


    Atomic oxygen erosion of polymers has been found to be a threat to spacecraft in low Earth orbit. As a result ground facilities have been developed to identify coatings to protect polymers such as used for solar array blankets. As a result of extensive laboratory testing, it was discovered that soot and other organic contamination on paintings could be readily removed by atomic oxygen interactions with minimal damage to the artwork. No method, other than dusting, has been found to be effective in the cleaning of unpainted plaster sculptures This presentation discusses the atomic oxygen interaction processes and how effective they are for cleaning soot damaged unpainted plaster sculptures.

  19. Fluorescence quenching of plastic scintillators in oxygen (United States)

    Horstmann, D.; Holm, U.


    The plastic scintillators SCSN-38, SCSN-81T, 3HF in polystyrene and a PMMA based Polivar scintillator show a loss in light yield when operated in air or oxygen. Both the fluorescence of the base material polystyrene or the PMMA admixture naphtalene as well as that of the dyes is reduced. The quenching ratio is proportional to the partial pressure of the surrounding oxygen. The maximum overall quenching amounts to 11.1% for SCSN-38 in one atmosphere of oxygen when excited with light of 262 nm.

  20. Fluorescence quenching of plastic scintillators in oxygen

    International Nuclear Information System (INIS)

    Horstmann, D.; Holm, U.


    The plastic scintillators SCSN-38, SCSN-81T, 3HF in polystyrene and a PMMA based Polivar scintillator show a loss in light yield when operated in air or oxygen. Both the fluorescence of the base material polystyrene or the PMMA admixture naphtalene as well as that of the dyes is reduced. The quenching ratio is proportional to the partial pressure of the surrounding oxygen. The maximum overall quenching amounts to 11.1 % for SCSN-38 in one atmosphere of oxygen when excited with light of 262 nm. (Author)

  1. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes. (United States)

    Opitz, N; Lübbers, D W


    As the preceding considerations concerning the physical and technical features of oxygen optodes have demonstrated, fluorescence-based optochemical oxygen sensors possess certain advantages and peculiarities compared to conventionally applied electrochemical sensors such as polarographic oxygen electrodes. First, in contrast to oxygen electrodes, oxygen measurements with oxygen optodes do not suffer from distortions caused by the reference electrodes. In addition, because of the polarographic process, platinum electrodes continuously consume oxygen, which falsifies the results, especially when small sample volumes or long-term measurements, or both, are involved, whereas the sensor layer of oxygen optodes must only be equilibrated. Moreover, the surface of the platinum wire has to be catalytically clean in order to obtain a plateau of the polarogram and, consequently, to achieve a low rest current at zero PO2. Unfortunately, the demand for catalytically clean platinum surfaces turns out to be rather critical, since surface contamination occurs even with membranized electrodes, resulting in the well-known phenomenon of "electrode poisoning." The question of the specificity of oxygen electrodes also must be considered. In this context, CO2 and halothane may interfere with oxygen measurements, whereas fluorescence quenching is unaffected by CO2 and halothane affects the measurements only slightly, depending on the special indicator used. Furthermore, because of the flow dependence, oxygen measurements with the oxygen electrode show a distinct "stirring effect" caused by the turbulence in front of the electrode, which disturbs the diffusion field. Because of the completely different physical principle of fluorescence optical sensors, such influences are not observed with oxygen optodes. In addition, isolation and shielding of electrical circuits found in electrodes are not necessary for optodes. Furthermore, the sensitivity of oxygen optodes can be tuned to the desired

  2. The oxygen sensing signal cascade under the influence of reactive oxygen species (United States)

    Acker, Helmut


    Structural and functional integrity of organ function profoundly depends on a regular oxygen and glucose supply. Any disturbance of this supply becomes life threatening and may result in severe loss of organ function. Particular reductions in oxygen availability (hypoxia) caused by respiratory or blood circulation irregularities cannot be tolerated for longer periods due to an insufficient energy supply by anaerobic glycolysis. Complex cellular oxygen sensing systems have evolved to tightly regulate oxygen homeostasis. In response to variations in oxygen partial pressure (PO2), these systems induce adaptive and protective mechanisms to avoid or at least minimize tissue damage. These various responses might be based on a range of oxygen sensing signal cascades including an isoform of the neutrophil NADPH oxidase, different electron carrier units of the mitochondrial chain such as a specialized mitochondrial, low PO2 affinity cytochrome c oxidase (aa3) and a subfamily of 2-oxoglutarate dependent dioxygenases termed HIF (hypoxia inducible factor) prolyl-hydroxylase and HIF asparaginyl hydroxylase called factor-inhibiting HIF (FIH-1). Thus, specific oxygen sensing cascades involving reactive oxygen species as second messengers may by means of their different oxygen sensitivities, cell-specific and subcellular localization help to tailor various adaptive responses according to differences in tissue oxygen availability. PMID:16321790

  3. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors (United States)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David


    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  4. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand. (United States)

    McGuire, B J; Secomb, T W


    Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.

  5. Oxygen therapy multicentric study--a nationwide audit to oxygen therapy procedures in internal medicine wards. (United States)

    Neves, J T; Lobão, M J


    Oxygen therapy is a common and important treatment in Internal Medicine wards, however, several studies report that it isn't provided accordingly with the best of care. The goal of this work is to evaluate oxygen therapy procedures in Portuguese Internal Medicine wards, comparing them to the standards established by the British Thoracic Society (BTS) in its consensus statement "BTS guideline for emergency oxygen use in adult patients". Between September 3rd and 23rd 2010, each one of the 24 enrolled hospitals audited the oxygen therapy procedures for one randomly chosen day. All Internal Medicine inpatients under oxygen therapy or with oxygen prescription were included. Data was collected regarding oxygen prescription, administration and monitoring. Of the 1549 inpatients, 773 met inclusion criteria. There was an oxygen prescription in 93,4%. Most prescriptions were by a fixed dose (82,4%), but only 11,6% of those stated all the required parameters. Absence of oxygen therapy duration and monitoring were the most frequent errors. Oxygen was administered to only 77,0% of the patients with fixed dose prescriptions. FiO(2) or flow rate and the delivery device were the same as prescribed in 70,9 and 89,2% of the patients, respectively. Out of the 127 patients with oxygen therapy prescriptions by target SatO(2) range, 82,7% were on the prescribed SatO(2) objective range. Several errors were found in oxygen therapy procedures, particularly regarding fixed dose prescriptions, jeopardizing the patients. Although recommended by BTS, oxygen therapy prescriptions by target SatO(2) range are still a minority. Copyright © 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  6. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.


    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  7. Next Generation Life Support (NGLS): Variable Oxygen Regulator (United States)

    National Aeronautics and Space Administration — The objective of the Variable Oxygen Regulator Element is to develop an oxygen-rated, contaminant-tolerant oxygen regulator to control suit pressure with a...

  8. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology

    NARCIS (Netherlands)

    Evans, Roger G.; Ince, Can; Joles, Jaap A.; Smith, David W.; May, Clive N.; O'Connor, Paul M.; Gardiner, Bruce S.


    Renal blood flow, local tissue perfusion and blood oxygen content are the major determinants of oxygen delivery to kidney tissue. Arterial pressure and segmental vascular resistance influence kidney oxygen consumption through effects on glomerular filtration rate and sodium reabsorption. Diffusive

  9. Evaluation of an Oxygen Concentrator for Use at High Altitude

    National Research Council Canada - National Science Library

    Forte, Vincent


    Supplying medical oxygen at high altitude sites is a major logistical problem. Oxygen concentrators based on molecular sieve technology provide an almost inexhaustible source of medical grade oxygen at a relatively low cost...

  10. A Low-Power Medical Oxygen Generator, Phase II (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. The commercial medical oxygen generators based on...

  11. A Low-Power Medical Oxygen Generator, Phase I (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. The commercial medical oxygen generators based on...

  12. A Compact Medical Oxygen Generator for Spacecraft, Phase I (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. Commercial medical oxygen generators are pressure...

  13. A Solar Powered, Ceramic Oxygen Concentrator (United States)

    National Aeronautics and Space Administration — Childhood pneumonia, which is treated with oxygen therapy, is a leading cause of death in children. Many children in developing countries lack access to medical...

  14. Monitoring Cancer Oxygenation Changes Induced by Ultrasound

    National Research Council Canada - National Science Library

    Piao, Daqing


    ...) The oxygenation changes can be detected by optical measurements. Preliminary studies with 5 tumor-bearing rats demonstrate that ultrasonic vibrations can either generate significant effects (early stage tumors...

  15. Life Support Systems: Oxygen Generation and Recovery (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an...

  16. Interaction of oxygen with zirconia surface

    International Nuclear Information System (INIS)

    Ivankiv, L.I.; Ketsman, I.V.


    The influence of surface heat treatment, electron (50-800) eV irradiation and UV (180-300) nM illumination of adsorption system on the state of oxygen adsorbed on zirconia surface have been investigated. On the basis of experimental results obtained by investigation of photon emission accompanying oxygen adsorption (AL) and TPD data existence of adsorption sites on the surface is suggested on which irreversible dissociative adsorption of oxygen occurs. These very sites are associated with emission processes Conclusion is made that the only type of adsorption sites connected with anion vacancy is present on zirconia surface and this is its charge state that determines the state of adsorbed oxygen. One of the important mechanisms by which the electron and UV photon excitation affects the adsorption interaction is the change of the charge state of the adsorption site

  17. Efficient oxygen electrocatalysis on special active sites

    DEFF Research Database (Denmark)

    Halck, Niels Bendtsen

    Oxygen electrocatalysis will be pivotal in future independent of fossil fuels. Renewable energy production will rely heavily on oxygen electrocatalysis as a method for storing energy from intermittent energy sources such as the wind and sun in the form of chemical bonds and to release the energy...... throughout this thesis to understand these local structure effects and their influence on surface reactions. The concept of these special active sites is used to explain how oxygen evolution reaction (OER) catalysts can have activities beyond the limits of what was previously thought possible. The concept...... functional theory calculation provides an insight into the how the activity is increased at these special active sites and proposes a modified reaction mechanism for the oxygen evolution reaction on these sites. Another type of special active site can explain the production of hydrogen peroxide on nickel...

  18. Biocatalysts for selective introduction of oxygen

    DEFF Research Database (Denmark)

    Leak, D. J.; Sheldon, R. A.; Woodley, John


    are presented, and the scope and limitations concerning their applicability for the selective introduction of oxygen are discussed. Key issues include catalytic activity, productivity, cloning and expression, as well as process engineering aspects. Various bottlenecks are identified for the different...

  19. Oxygen-Methane Thruster, Phase II (United States)

    National Aeronautics and Space Administration — Two main innovations will be developed in the Phase II effort that are fundamentally associated with our gaseous oxygen/gaseous methane RCS thruster. The first...

  20. Bartolome Island, Galapagos Stable Oxygen Calibration Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17'S, 90 deg 33' W. Champion Island: 1 deg, 15'S, 90 deg, 05' W. Urvina Bay (Isabela...

  1. Isotopic Composition of Oxygen in Lunar Zircons (United States)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.


    The recent discovery of heavy oxygen in zircons from the Jack Hills conglomerates Wilde et al. and Mojzsis et al. was interpreted as an indication of presence of liquid water on the surface of Early Earth. The distribution of ages of Jack Hills zircons and lunar zircons appears to be very similar and therefore analysis of oxygen in the lunar grains may provide a reference frame for further study of the early history of the Earth as well as give additional information regarding processes that operated on the Moon. In the present study we have analysed the oxygen isotopic composition of zircon grains from three lunar samples using the Swedish Museum of Natural History CAMECA 1270 ion microprobe. The samples were selected as likely tests for variations in lunar oxygen isotopic composition. Additional information is included in the original extended abstract.

  2. Semiconductors and semimetals oxygen in silicon

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Shimura, Fumio


    This volume reviews the latest understanding of the behavior and roles of oxygen in silicon, which will carry the field into the ULSI era from the experimental and theoretical points of view. The fourteen chapters, written by recognized authorities representing industrial and academic institutions, cover thoroughly the oxygen related phenomena from the crystal growth to device fabrication processes, as well as indispensable diagnostic techniques for oxygen.Key Features* Comprehensive study of the behavior of oxygen in silicon* Discusses silicon crystals for VLSI and ULSI applications* Thorough coverage from crystal growth to device fabrication* Edited by technical experts in the field* Written by recognized authorities from industrial and academic institutions* Useful to graduate students, scientists in other disciplines, and active participants in the arena of silicon-based microelectronics research* 297 original line drawings

  3. 29 CFR 1910.104 - Oxygen. (United States)


    ... supplier or his agent for the purpose of storing oxygen and refilling portable containers, trailers, mobile... suitable safety relief devices. (v) Reliability. All safety relief devices shall be so designed or located...

  4. Production of Lunar Oxygen Through Vacuum Pyrolysis

    National Research Council Canada - National Science Library

    Matchett, John


    .... The vacuum pyrolysis method of oxygen production from lunar regolith presents a viable option for in situ propellant production because of its simple operation involving limited resources from earth...

  5. Oxygen Delivery to the Brain before and after Birth (United States)

    Jones, M. Douglas; Rosenberg, Adam A.; Simmons, Michael A.; Molteni, Richard A.; Koehler, Raymond C.; Traystman, Richard J.


    We studied the relationship between cerebral oxygen consumption and cerebral oxygen delivery (cerebral blood flow× arterial oxygen content) in fetal, newborn, and adult sheep. Relative to the amount of oxygen consumed, cerebral oxygen delivery in the fetus exceeds that in the lamb and adult by 70 percent. This may represent a protective advantage for the fetus or simply a necessary adaptation to the low arterial oxygen pressure in the intrauterine environment.

  6. Phosphorous–vacancy–oxygen defects in silicon

    KAUST Repository

    Wang, Hao


    Electronic structure calculations employing the hybrid functional approach are used to gain fundamental insight in the interaction of phosphorous with oxygen interstitials and vacancies in silicon. It recently has been proposed, based on a binding energy analysis, that phosphorous–vacancy–oxygen defects may form. In the present study we investigate the stability of this defect as a function of the Fermi energy for the possible charge states. Spin polarization is found to be essential for the charge neutral defect.

  7. Paleoenvironmental reconstruction of a Neoarchean oxygen oasis


    Eroğlu, Sümeyya


    The Neoarchean-Paleoproterozoic Transvaal Supergroup in South Africa contains the Campbellrand-Malmani carbonate platform (CMCP), which was deposited in shallow seawater between ~2.58 to 2.50 billion years ago, about 200 million years before the rise of atmospheric oxygen (Great Oxidation Event - GOE). The platform is a prominent candidate for (isotope-) geochemical mapping to investigate the appearance of very small amounts of free oxygen that accumulated in shallow seawater preceding the GO...

  8. Oxygen requirements of the earliest animals

    DEFF Research Database (Denmark)

    Mills, Daniel Brady; Ward, Lewis M.; Jones, CarriAyne


    appearance of metazoans in the fossil record, the oxygen requirements of basal animals remain unclear. Here we show that modern demosponges, serving as analogs for early animals, can survive under low-oxygen conditions of 0.5-4.0% present atmospheric levels. Because the last common ancestor of metazoans...... of the atmosphere and oceans. Instead, other ecological and developmental processes are needed to adequately explain the origin and earliest evolution of animal life on Earth....

  9. Enhancing Activity for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Busch, Michael; Halck, Niels Bendtsen


    Electrochemical production of hydrogen, facilitated in electrolyzers, holds great promise for energy storage and solar fuel production. A bottleneck in the process is the catalysis of the oxygen evolution reaction, involving the transfer of four electrons. The challenge is that the binding energies...... that the oxygen evolution reaction overpotential decreases by 100–300 mV for manganese oxides and 100 mV for cobalt oxides....

  10. The origin and evolution of oxygenic photosynthesis (United States)

    Blankenship, R. E.; Hartman, H.


    The evolutionary developments that led to the ability of photosynthetic organisms to oxidize water to molecular oxygen are discussed. Two major changes from a more primitive non-oxygen-evolving reaction center are required: a charge-accumulating system and a reaction center pigment with a greater oxidizing potential. Intermediate stages are proposed in which hydrogen peroxide was oxidized by the reaction center, and an intermediate pigment, similar to chlorophyll d, was present.

  11. Rosacea, Reactive Oxygen Species, and Azelaic Acid


    Jones, David A.


    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro...



    Подгорный, И. П.


    Medical gas oxygen is one of the most popular medicines. Its production is the major branch of the pharmaceutical industry. Provision of its high quality in the process of obtaining is an actual problem for companies of cryogenic oxygen production. For this purpose a concrete enterprise necessary to implement a quality assurance system in the production of medicinal products (QAS). The main component of the QAS is good manufacturing practice (Good Manufacturing Practice, GMP). It is shown how...

  13. Modified Apollo cryogenic oxygen tank design (United States)

    Vanleuven, K.


    Assessment of the Apollo 13 mission indicated that some design changes to be incorporated into Apollo cryogenic oxygen storage tanks. These changes broadly fit into three categories. They were: (1) deletion of the fluid equilibration motors and redesign of heater assembly, (2) material changes for internal tank wiring and density sensor, and (3) the addition of a heater assembly temperature sensor. Development of a cryogenic oxygen tank incorporating these changes is presented.

  14. Yttrium doped BSCF membranes for oxygen separation

    DEFF Research Database (Denmark)

    Haworth, P.; Smart, S.; Glasscock, Julie


    (x = 0.2) for iron resulted in a non-cubic crystal structure that did not exhibit oxygen permeation. The yttrium partial substitution in BSCFY discs (1.2 mm thick) delivered best results for x = 0.025, as oxygen fluxes reached 2.05 ml cm−2 min−1 at 900 °C, an increase of 160% as compared to a blank...

  15. Oxygen tension affects lubricin expression in chondrocytes. (United States)

    Hatta, Taku; Kishimoto, Koshi N; Okuno, Hiroshi; Itoi, Eiji


    We assessed the effects of oxygen tension on lubricin expression in bovine chondrocytes and cartilage explants and a role for hypoxia-inducible transcription factor (HIF)-1α in regulating lubricin expression was investigated using a murine chondroprogenitor cell line, ATDC5, and bovine chondrocytes isolated from superficial and middle/deep zones of femoral cartilage. ATDC5 cells and bovine chondrocytes were cultured in micromass under different oxygen tensions (21%, 5%, and 1%). ATDC5 cells and middle/deep zone chondrocytes that initially had low lubricin expression levels were also cultured with or without transforming growth factor (TGF)-β1. Quantitative reverse transcription (RT)-PCR was used to determine lubricin and chondrogenic marker gene mRNA levels and immunohistochemistry was used to assess lubricin protein expression. Explant cartilage plugs cultured under different oxygen tensions were also subjected to immunohistological analysis for lubricin. HIF-1α gene silencing was achieved by electroporatic transfer into ATDC5 cells. A low oxygen tension reduced lubricin gene expression levels in bovine superficial chondrocytes, TGF-β1-treated middle/deep zone chondrocytes, and TGF-β1-treated ATDC5 cells. Lubricin expression in explant cartilage was also suppressed under hypoxia. HIF-1α gene silencing in ATDC5 cells attenuated the lubricin expression response to the oxygen tension. These results corroborate with previous studies that the oxygen tension regulates lubricin gene expression and suggest that HIF-1α plays an important role in this regulation. The normal distribution of lubricin in articular cartilage may be due to the hypoxic oxygen environment of cartilage as it is an avascular tissue. An oxygen tension gradient may be a key factor for engineering cartilage tissue with a layered morphology.

  16. Oxygen dependency of germinating Brassica seeds (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.


    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  17. Behaviour of oxygen in liquid sodium

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la


    In this work, the vacuum distillation method has been used for the determination of oxygen concentration in liquid sodium. During this investigation, more than 800 analyses have been made and a fluctuation of between 15 and 20$ has been noted in the results. The performance of a cold trap to remove oxygen from sodium has been studied and the corresponding mass transfer coefficient evaluated. The value of this coefficient was in good agreement with those achieved by other workers. (Authors) 69 refs

  18. Adipose tissue oxygenation: Effects on metabolic function


    Hodson, Leanne


    With the increasing prevalence of obesity there is a concomitant increase in white adipose tissue dysfunction, with the tissue moving toward a proinflammatory phenotype. Adipose tissue hypoxia has been proposed as a key underlying mechanism triggering tissue dysfunction but data from human, in vivo studies, to support this hypothesis is limited. Human adipose tissue oxygenation has been investigated by direct assessment of tissue oxygen tension (pO2) or by expression of hypoxia-sensitive gene...

  19. Production of an Accelerated Oxygen-14 Beam

    International Nuclear Information System (INIS)

    Powell, James; O'Neil, James P.; Cerny, Joseph


    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was Carbon-11 and beams of intensity more than 108 ions/sec have been utilized for experiments. Development of Oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 seconds and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of Oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, Oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an Oxygen-14 beam have been performed

  20. Pervasive oxygenation along late Archaean ocean margins (United States)

    Kendall, Brian; Reinhard, Christopher T.; Lyons, Timothy W.; Kaufman, Alan J.; Poulton, Simon W.; Anbar, Ariel D.


    The photosynthetic production of oxygen in the oceans is thought to have begun by 2.7 billion years ago, several hundred million years before appreciable accumulation of oxygen in the atmosphere. However, the abundance and distribution of dissolved oxygen in the late Archaean oceans is poorly constrained. Here we present geochemical profiles from 2.6- to 2.5-billion-year-old black shales from the Campbellrand-Malmani carbonate platform in South Africa. We find a high abundance of rhenium and a low abundance of molybdenum, which, together with the speciation of sedimentary iron, points to the presence of dissolved oxygen in the bottom waters on the platform slope. The water depth on the slope probably reached several hundred metres, implying the export of O2 below the photic zone. Our data also indicate that the mildly oxygenated surface ocean gave way to an anoxic deep ocean. We therefore suggest that the production of oxygen in the surface ocean was vigorous at this time, but was not sufficient to fully consume the deep-sea reductants. On the basis of our results and observations from the Hamersley basin in Western Australia, we conclude that the productive regions along ocean margins during the late Archaean eon were sites of substantial O2 accumulation, at least 100million years before the first significant increase in atmospheric O2 concentration.

  1. Production of an accelerated oxygen-14 beam

    International Nuclear Information System (INIS)

    Powell, J.; O'Neil, J.P.; Cerny, Joseph


    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an oxygen-14 beam have been performed

  2. Renal oxidative stress, oxygenation, and hypertension. (United States)

    Palm, Fredrik; Nordquist, Lina


    Hypertension is closely associated with progressive kidney dysfunction, manifested as glomerulosclerosis, interstitial fibrosis, proteinuria, and eventually declining glomerular filtration. The postulated mechanism for development of glomerulosclerosis is barotrauma caused by increased capillary pressure, but the reason for development of interstitial fibrosis and the subsequently reduced kidney function is less clear. However, it has been hypothesized that tissue hypoxia induces fibrogenesis and progressive renal failure. This is very interesting, since recent reports highlight several different mechanisms resulting in altered oxygen handling and availability in the hypertensive kidney. Such mechanisms include decreased renal blood flow due to increased vascular tone induced by ANG II that limits oxygen delivery and increases oxidative stress, resulting in increased mitochondrial oxygen usage, increased oxygen usage for tubular electrolyte transport, and shunting of oxygen from arterial to venous blood in preglomerular vessels. It has been shown in several studies that interventions to prevent oxidative stress and to restore kidney tissue oxygenation prevent progression of kidney dysfunction. Furthermore, inhibition of ANG II activity, by either blocking ANG II type 1 receptors or angiotensin-converting enzyme, or by preventing oxidative stress by administration of antioxidants also results in improved blood pressure control. Therefore, it seems likely that tissue hypoxia in the hypertensive kidney contributes to progression of kidney damage, and perhaps also persistence the high blood pressure.

  3. Oxygen negative glow: reactive species and emissivity

    International Nuclear Information System (INIS)

    Sahli, Khaled


    This research thesis addresses the study of a specific type of oxygen plasma created by electron beams (1 keV, 20 mA/cm 2 ), negative glow of a luminescent discharge in abnormal regime. The objective is to test the qualities of this plasma as source of two 'active' species of oxygen (singlet molecular oxygen and atomic oxygen) which are useful in applications. The experiment mainly bears on the use of VUV (120 to 150 nm) absorption spectroscopy measurements of concentrations of these both species, and on the recording of plasma emissivity space profiles in the visible region (450 to 850 nm). It appears that low concentrations of singlet oxygen definitely exclude this type of discharge for iodine laser applications. On the contrary, concentrations measured for atomic oxygen show it is a good candidate for the oxidation of large surfaces by sheets of beams. The satisfying comparison of emissivity results with a published model confirm the prevailing role of fast electrons, and gives evidence of an important effect of temperature: temperature can reach 1000 K, and this is in agreement with the presented measurement [fr


    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.


    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.

  5. Oxygenated fuels mandate: marketers ponder additive strategy

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.V.


    When Colorado created its mandatory oxygenated fuels program to combat cold-weather carbon monoxide pollution it did more than just take a giant step toward a cleaner environment. It created a training ground where refiners and producers of oxygenated fuel additives can sharpen their marketing skills for the time when other states and metropolitan areas also might decide to go the oxygenated fuels route. The Colorado oxygenated fuels program was a major reason why officials from more than a dozen states and cities, as well as scores of representatives from concerned companies, were attracted to last month's Conference on New Fuels for Cleaner Air, held in Arlington, VA. Although no one went away with definitive answers to all their questions it became apparent that the Colorado oxygenated fuels market will develop into a one-on-one battle between ethanol and MTBE (methyl tert-butyl ether). The oxygen level of the fuel set by Colorado's new program probably gives MTBE the edge. The advantages of using MTBE are discussed.

  6. Non-self-sustained electric discharge in oxygen gas mixtures: singlet delta oxygen production

    CERN Document Server

    Ionin, A A; Kotkov, A A; Kochetov, I V; Napartovich, A P; Seleznev, L V; Sinitsyn, D V; Hager, G D


    The possibility of obtaining a high specific input energy in an electron-beam sustained discharge ignited in oxygen gas mixtures O sub 2 : Ar : CO (or H sub 2) at the total gas pressures of 10-100 Torr was experimentally demonstrated. The specific input energy per molecular component exceeded approx 6 kJ l sup - sup 1 atm sup - sup 1 (150 kJ mol sup - sup 1) as a small amount of carbon monoxide was added into a gas mixture of oxygen and argon. It was theoretically demonstrated that one might expect to obtain a singlet delta oxygen yield of 25% exceeding its threshold value needed for an oxygen-iodine laser operation at room temperature, when maintaining a non-self-sustained discharge in oxygen gas mixtures with molecular additives CO, H sub 2 or D sub 2. The efficiency of singlet delta oxygen production can be as high as 40%.

  7. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.


    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.


    Energy Technology Data Exchange (ETDEWEB)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson


    Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance

  9. Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors 2. Propionibacterium shermanii broths. (United States)

    Galaction, Anca-Irina; Cascaval, Dan; Turnea, Marius; Folescu, Elena


    The previous works on simulated broths are continued and developed for Propionibacterium shermanii broths. The obtained results indicated the considerable increase of kLa in presence of n-dodecane as oxygen-vector and the existence of a certain value of hydrocarbon concentration that corresponds to the maximum mass transfer rate of oxygen. The magnitude of the positive effect of the oxygen-vector strongly depends on operational conditions of the bioreactor, on broth characteristics and on P. shermanii concentration.

  10. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds: Biofilms and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    James, Garth A. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Ge Zhao, Alice [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Usui, Marcia [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Underwood, Robert A. [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Nguyen, Hung [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; Beyenal, Haluk [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; deLancey Pulcini, Elinor [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Agostinho Hunt, Alessandra [Department of Microbiology and Molecular Genetics, 5180 Biomedical and Physical Sciences, Michigan State University, East Lansing Michigan; Bernstein, Hans C. [Pacific Northwest National Laboratory, Chemical and Biological Signature Science, Richland Washington; Fleckman, Philip [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Olerud, John [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Williamson, Kerry S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Franklin, Michael J. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Stewart, Philip S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana


    Polymicrobial biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo in a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within both euthanized and live mouse wounds had steep gradients that reached minima ranging from 19 to 61% oxygen partial pressure, compared to atmospheric oxygen levels. The oxygen gradients in the mouse wounds were similar to those observed for clinical isolates cultured in vitro and for human ex vivo scabs. No oxygen gradients were observed for heat-killed scabs, suggesting that active metabolism by the viable bacteria contributed to the reduced oxygen partial pressure of the wounds. To characterize the metabolic activities of the bacteria in the mouse wounds, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that the metabolic activities of bacteria in biofilms act as oxygen sinks in chronic wounds and that the depletion of oxygen contributes to the

  11. Spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Hrubý, Jan; Špalek, Otomar; Čenský, Miroslav; Kodymová, Jarmila


    Roč. 100, č. 4 (2010), s. 779-791 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : spray generator of singlet oxygen * singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  12. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals.

    Directory of Open Access Journals (Sweden)

    Olof Birna Olafsdottir

    Full Text Available To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals.Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1. Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min and then again room air (10 minutes recovery.Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001 and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001. The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001. The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001 and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001.Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye.

  13. A model for oxygen conservation associated with titration during pediatric oxygen therapy.

    Directory of Open Access Journals (Sweden)

    Grace Wu

    Full Text Available Continuous oxygen treatment is essential for managing children with hypoxemia, but access to oxygen in low-resource countries remains problematic. Given the high burden of pneumonia in these countries and the fact that flow can be gradually reduced as therapy progresses, oxygen conservation through routine titration warrants exploration.To determine the amount of oxygen saved via titration during oxygen therapy for children with hypoxemic pneumonia.Based on published clinical data, we developed a model of oxygen flow rates needed to manage hypoxemia, assuming recommended flow rate at start of therapy, and comparing total oxygen used with routine titration every 3 minutes or once every 24 hours versus no titration.Titration every 3 minutes or every 24 hours provided oxygen savings estimated at 11.7% ± 5.1% and 8.1% ± 5.1% (average ± standard error of the mean, n = 3, respectively. For every 100 patients, 44 or 30 kiloliters would be saved-equivalent to 733 or 500 hours at 1 liter per minute.Ongoing titration can conserve oxygen, even performed once-daily. While clinical validation is necessary, these findings could provide incentive for the routine use of pulse oximeters for patient management, as well as further development of automated systems.

  14. Effect of oxygen on tachycardia and arterial oxygen saturation during colonoscopy

    DEFF Research Database (Denmark)

    Holm, C; Christensen, M; Schulze, S


    OBJECTIVE: To evaluate the effect of supplementary oxygen on heart rate and arterial oxygen saturation during colonoscopy. DESIGN: Controlled study. SETTING: Two university hospitals, Denmark. SUBJECTS: 40 patients having colonoscopy. INTERVENTIONS: 20 patients were given supplementary oxygen...... colonoscopy. RESULTS: There were no differences in the incidence of tachycardia or mean heart rate during endoscopy between the two groups, and no patient developed symptomatic cardiac arrhythmias or hypotensive episodes. 10 patients in the room air compared with none in the oxygen treatment group (p = 0...

  15. A model for oxygen conservation associated with titration during pediatric oxygen therapy. (United States)

    Wu, Grace; Wollen, Alec; Himley, Stephen; Austin, Glenn; Delarosa, Jaclyn; Izadnegahdar, Rasa; Ginsburg, Amy Sarah; Zehrung, Darin


    Continuous oxygen treatment is essential for managing children with hypoxemia, but access to oxygen in low-resource countries remains problematic. Given the high burden of pneumonia in these countries and the fact that flow can be gradually reduced as therapy progresses, oxygen conservation through routine titration warrants exploration. To determine the amount of oxygen saved via titration during oxygen therapy for children with hypoxemic pneumonia. Based on published clinical data, we developed a model of oxygen flow rates needed to manage hypoxemia, assuming recommended flow rate at start of therapy, and comparing total oxygen used with routine titration every 3 minutes or once every 24 hours versus no titration. Titration every 3 minutes or every 24 hours provided oxygen savings estimated at 11.7% ± 5.1% and 8.1% ± 5.1% (average ± standard error of the mean, n = 3), respectively. For every 100 patients, 44 or 30 kiloliters would be saved-equivalent to 733 or 500 hours at 1 liter per minute. Ongoing titration can conserve oxygen, even performed once-daily. While clinical validation is necessary, these findings could provide incentive for the routine use of pulse oximeters for patient management, as well as further development of automated systems.

  16. Module for Oxygenating Water without Generating Bubbles (United States)

    Gonzalez-Martin, Anuncia; Sidik, Reyimjan; Kim, Jinseong


    A module that dissolves oxygen in water at concentrations approaching saturation, without generating bubbles of oxygen gas, has been developed as a prototype of improved oxygenators for water-disinfection and water-purification systems that utilize photocatalyzed redox reactions. Depending on the specific nature of a water-treatment system, it is desirable to prevent the formation of bubbles for one or more reasons: (1) Bubbles can remove some organic contaminants from the liquid phase to the gas phase, thereby introducing a gas-treatment problem that complicates the overall water-treatment problem; and/or (2) in some systems (e.g., those that must function in microgravity or in any orientation in normal Earth gravity), bubbles can interfere with the flow of the liquid phase. The present oxygenation module (see Figure 1) is a modified version of a commercial module that contains >100 hollow polypropylene fibers with a nominal pore size of 0.05 m and a total surface area of 0.5 m2. The module was originally designed for oxygenation in a bioreactor, with no water flowing around or inside the tubes. The modification, made to enable the use of the module to oxygenate flowing water, consisted mainly in the encapsulation of the fibers in a tube of Tygon polyvinyl chloride (PVC) with an inside diameter of 1 in. (approx.=25 mm). In operation, water is pumped along the insides of the hollow fibers and oxygen gas is supplied to the space outside the hollow tubes inside the PVC tube. In tests, the pressure drops of water and oxygen in the module were found to be close to zero at water-flow rates ranging up to 320 mL/min and oxygen-flow rates up to 27 mL/min. Under all test conditions, no bubbles were observed at the water outlet. In some tests, flow rates were chosen to obtain dissolved-oxygen concentrations between 25 and 31 parts per million (ppm) . approaching the saturation level of approx.=35 ppm at a temperature of 20 C and pressure of 1 atm (approx.=0.1 MPa). As one

  17. Oxygen production System Models for Lunar ISRU (United States)

    Santiago-Maldonado, Edgardo


    In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible; by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass' for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction. The ISRU program is currently developing system models of, the , abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume.of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.

  18. Oxygen Compatibility Testing of Composite Materials (United States)

    Engel, Carl D.; Watkins, Casey N.


    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  19. Initial results from the Herschel Oxygen Project (United States)

    Goldsmith, Paul; Encrenaz, Pierre; Liseau, R.; Bell, T. A.; Bergin, T.; Black, J.; Benz, A.; Caselli, P.; Caux, E.; Falgarone, E.; Gerin, M.; Goicoechea, J. R.; Hjalmarson, A.; Hollenbach, D.; Kaufman, M.; Larsson, B.; Le Bourlot, J.; Le Petit, F.; Li, D.; Lis, D.; Melnick, G.; Neufeld, D.; Pagani, L.; Roueff, E.; Sandqvist, A.; Snell, R.; Vastel, C.; van Dishoek, E.; Viti, S.; van der Tak, F.

    Initial Results from the Herschel Oxygen Project (HOP) Oxygen is the third most abundant element in the cosmos, but can be found in many forms. In the gas phase, oxygen can be ionized, atomic, or in molecular form, and it is also incorporated into grains. The molecular form is expected to dominate in cold, well-shielded regions, and in such molecular clouds, oxygen can be found in key species including carbon monoxide and water. Gas phase chemistry models predict molecular oxygen (O2) to be almost as abundant as CO. A number of searches for rotational transitions of O2 have been carried out. These include ground-based searches for the isotopologue 16O18O and searches for 16O2 in galaxies with red shift sufficient to move the line away from terrestrial atmospheric absorption. Searches for Galactic 16O2 carried out with the SWAS and Odin spacecraft have yielded upper limits on the abundance of molecular oxygen typically 1 to 2 orders of magnitude below those predicted by gas-phase models. There has been a statistical detection of O2 in one source, again at a low abundance. A variety of new models have been proposed to explain this low abundance, which involve grain surface and photo effects. To address this important problem in astro-chemistry and molecular cloud structure, we have developed the Open Time Key Project HOP (Herschel Oxygen Project), which exploits the high angular resolution and sensitivity of the HIFI instrument on Herschel to observe 3 rotational transitions of O2 in a broad sample of molecular clouds. We report on the status of HOP and present early results available from Priority Science Phase and Science Definition Phase observations.

  20. Oxygen diffusion in single crystal barium titanate. (United States)

    Kessel, Markus; De Souza, Roger A; Martin, Manfred


    Oxygen diffusion in cubic, nominally undoped, (100) oriented BaTiO3 single crystals has been studied by means of (18)O2/(16)O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experiments were carried out as a function of temperature 973 < T/K < 1173, at an oxygen activity of aO2 = 0.200, and as a function of oxygen activity 0.009 < aO2 < 0.900 at T = 1073 K. The oxygen isotope profiles comprise two parts: slow diffusion through a space-charge zone at the surface depleted of oxygen vacancies followed by faster diffusion in a homogeneous bulk phase. The entire isotope profile can be described by a single solution to the diffusion equation involving only three fitting parameters: the surface exchange coefficient ks*, the space-charge potential Φ0 and the bulk diffusion coefficient D*(∞). Analysis of the temperature and oxygen activity dependencies of D*(∞) and Φ0 yields a consistent picture of both the bulk and the interfacial defect chemistry of BaTiO3. Values of the oxygen vacancy diffusion coefficient DV extracted from measured D*(∞) data are compared with literature data; consequently a global expression for the vacancy diffusivity in BaTiO3 for the temperature range 466 < T/K < 1273 is obtained, with an activation enthalpy of vacancy migration, ΔHmig,V = (0.70 ± 0.04) eV.

  1. The role of oxygen in quinternary superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, D.R.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics


    The oxygen composition of the new generation of high temperature superconductors (HTSC) has been found to play a crucial role in determining the superconductivity of these materials. However, measurement of the oxygen stoichiometry in such samples has proven difficult due to the small scattering cross section of oxygen, a light element, which has caused the oxygen scattering signal to be overwhelmed by the far larger signals generated off the heavier elements present in the HTSC samples. It is for this reason that previous ion beam analysis of oxide crystals has often either made no attempt to determine the oxygen content or has used O({alpha},{alpha})O resonances such as that at {approx} 3.05 MeV to probe the crystal. This work continues tests of a new technique for probing oxygen which overcomes the problem of an insignificant O BS signal by exploiting the large nuclear resonance found to occur in the O(p,p)O cross-section near an energy of 3.5 MeV in order to produce a significant oxygen edge in the H{sup +} BS spectrum obtained for the HTSC sample. The use of a H{sup +} beam is preferable to a He{sup 2+} beam for such work due to its enhanced sensitivity to light elements. The quinternary superconductor used for this investigation was a good quality pure Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} (BISCO, 2212) crystal. The size of this crystal was 5x5xl mm{sup 3} with the [001] face perpendicular to the surface. Measurements were performed using the University of Melbourne nuclear microprobe. The sample was mounted on an aluminium target holder using a carbon base adhesive which provided good electrical contact and it was oriented inside the target chamber by means of a four axis precision eucentric goniometer. 6 refs., 3 figs.

  2. Production of an accelerated oxygen-14 beam

    CERN Document Server

    Powell, J; Cerny, J


    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 sup 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has bee...

  3. Narcosis studies and oxygen poisoning of mice (United States)


    The research for a mechanism by which narcotic gases alter metabolism is reported. Possible sites of action by narcotic and anesthetic gases in isolated electron transport particles were explored. Using the relative activities of the NADH-oxygen, NADH-ferricyanide, succinate-cytochrome C and succinate-NAD oxidoreductase systems as parameters, the relative potency of volatile anesthetics were tested. Testing the relative ability of human subjects to contract and repay an oxygen debt while in the narcotic versus alert state, it was found that narcosis induced by 33% nitrous oxide increased the size of the oxygen debt contracted and the amount of oxygen required to repay it during recovery. Mice acclimatized to sea level (760 mm Hg), 5000 feet (632 mm Hg) or 15,000 feet 437 mm Hg) for from one to eight weeks were found to be more susceptible to convulsion and death as a function of altitude acclimatization when tested in hyperoxic environments. There were no reasonable explanations for the connection between hypoxia and oxygen poisoning but several practical implications for persons living at altitude are discussed.

  4. Metabolic Prosthesis for Oxygenation of Ischemic Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias [ORNL


    This communication discloses new ideas and preliminary results on the development of a "metabolic prosthesis" for local oxygenation of ischemic tissue under physiological neutral conditions. We report for the first time the selective electrolysis of physiological saline by repetitively pulsed charge-limited electrolysis for the production of oxygen and suppression of free chlorine. For example, using 800 A amplitude current pulses and <200 sec pulse durations, we demonstrated prompt oxygen production and delayed chlorine production at the surface of a shiny 0.85 mm diameter spherical platinum electrode. The data, interpreted in terms of the ionic structure of the electric double layer, suggest a strategy for in situ production of metabolic oxygen via a new class of "smart" prosthetic implants for dealing with ischemic disease such as diabetic retinopathy. We also present data indicating that drift of the local pH of the oxygenated environment can be held constant using a feedback-controlled three electrode electrolysis system that chooses anode and cathode pair based on pH data provided by local microsensors. The work is discussed in the context of diabetic retinopathy since surgical techniques for multielectrode prosthetic implants aimed at retinal degenerative diseases have been developed.

  5. Co and Cu ZSM-5 zeolites for the direct production of oxygenates from methane and oxygen

    NARCIS (Netherlands)

    Beznis, N.


    The direct partial oxidation of methane to oxygenates still remains one of the greatest challenges in catalysis. Metal-containing zeolites hold great potential for the direct partial oxidation of methane to oxygenates. The nature of the active sites in these materials is, however, still a matter of

  6. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension

    NARCIS (Netherlands)

    Papazova, Diana A.; Friederich-Persson, Malou; Joles, Jaap A.; Verhaar, Marianne C.


    Hypoxia is an acknowledged pathway to renal injury and ischemia-reperfusion (I/R) and is known to reduce renal oxygen tension (PO2). We hypothesized that renal I/R increases oxidative damage and induces mitochondrial uncoupling, resulting in increased oxygen consumption and hence kidney

  7. Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior

    DEFF Research Database (Denmark)

    Li, Jiying; Crowe, Sean Andrew; Miklesh, David


    , suggesting that temporal variability in deeply oxygenated sediments may be greater than previously acknowledged. The oxygen uptake rates (4.4–7.7 mmol m−2 d−1, average 6.1 mmol m−2 d−1) and carbon mineralization efficiency (∼ 90% of deposited carbon) were similar to those in marine hemipelagic and pelagic...

  8. Rapid hydrogen and oxygen atom transfer by a high-valent nickel-oxygen species

    NARCIS (Netherlands)

    Corona, Teresa; Draksharapu, Apparao; Padamati, Sandeep K; Gamba, Ilaria; Martin-Diaconescu, Vlad; Acuña-Parés, Ferran; Browne, Wesley R; Company, Anna


    Terminal high-valent metal-oxygen species are key reaction intermediates in the catalytic cycle of both enzymes (e.g., oxygenases) and synthetic oxidation catalysts. While tremendous efforts have been directed towards the characterization of the biologically relevant terminal manganese-oxygen and

  9. Introduction to simulation of upper atmosphere oxygen satellite exposed to atomic oxygen in low Earth orbit (United States)

    Peplinski, D. R.; Arnold, G. S.; Borson, E. N.


    A brief review of atmospheric composition in low Earth orbit is presented. The flux of ambient atomic oxygen incident on a surface orbiting in this environment is described. Estimates are presented of the fluence of atomic oxygen to which satellite surfaces in various orbits are exposed.

  10. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriette; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michael A.; Spronk, Peter E.


    Objective:  The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design:  Prospective observational controlled study. Setting:  Nonacademic university-affiliated

  11. Effect of epidural blockade and oxygen therapy on changes in subcutaneous oxygen tension after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, U; Erichsen, C J


    The effect of oxygen therapy (37% by face mask) and epidural local anesthetic blockade (9 ml 0.5% bupivacaine at Th9-11 level) on wound oxygenation was evaluated in eight otherwise healthy patients undergoing elective colorectal resection. The patients were monitored continuously for subcutaneous...... without epidural blockade and 15 (10-20) min with blockade (P surgery....

  12. Beyond the top of the volcano? - A unified approach to electrocatalytic oxygen reduction and oxygen evolution

    DEFF Research Database (Denmark)

    Busch, Michael; Halck, Niels Bendtsen; Kramm, Ulrike I.


    We study the oxygen reduction (ORR) and the oxygen evolution reaction (OER) and based on previous obtained mechanistic insight we provide a unified general analysis of the two reactions simultaneously. The analysis shows that control over at least two independent binding energies is required...

  13. Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution

    Czech Academy of Sciences Publication Activity Database

    Busch, M.; Halck, N. B.; Kramm, U. I.; Siehrostami, S.; Krtil, Petr; Rossmeisl, J.


    Roč. 29, NOV 2016 (2016), s. 126-135 ISSN 2211-2855 Institutional support: RVO:61388955 Keywords : hydrogen evolution * catalytic-activity * Electrocatalysis * Oxygen reduction * Oxygen evolution * Volcano * Density functional theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.343, year: 2016

  14. Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones

    DEFF Research Database (Denmark)

    Tiano, Laura; Garcia-Robledo, Emilio; Dalsgaard, Tage


    Highly sensitive STOX O-2 sensors were used for determination of in situ O-2 distribution in the eastern tropical north and south Pacific oxygen minimum zones (ETN/SP OMZs), as well as for laboratory determination of O-2 uptake rates of water masses at various depths within these OMZs. Oxygen was...

  15. An oxygen slow-releasing material and its application in water remediation as oxygen supplier. (United States)

    Zhou, Yanbo; Fang, Xingbin; Zhang, Zhiqing; Hu, Yonghua; Lu, Jun


    In this study, an oxygen slow-releasing material (OSRM) consisting of calcium peroxide (CaO 2 ), stearic acid (SA) and quartz sand was used to improve oxygen supply during bioremediation. The oxygen-releasing rates of CaO 2 powder and OSRM with different SA contents were investigated. The efficacy of OSRM as an oxygen supplier was assessed by water remediation experiments using activated sludge. Results showed that CaO 2 powder was effectively embedded by SA under anhydrous conditions. The oxygen-releasing rate decreased with increasing SA contents. Moreover, the OSRM exhibited higher oxygen-releasing capacity, and more effective pH control ability than CaO 2 powder. The water remediation experiments showed better removal of COD and [Formula: see text] with OSRM as the oxygen supplier. These results provided detailed information when CaO 2 was applied as the oxygen supplier in water remediation, which can serve as references for field application of bioremediation.

  16. Pharmaceutical preparation of oxygen-15 labelled molecular oxygen and carbon monoxide gasses in a hospital setting.

    NARCIS (Netherlands)

    Luurtsema, Geert; Boellaard, Ronald; Greuter, Henri; Rijbroek, Abraham; Takkenkamp, Kevin; de Geest, Frank; Buijs, Fred; Hendrikse, NH; Franssen, Eric; van Lingen, Arthur; Lammertsma, Adriaan A.

    BACKGROUND: Clinical positron emission tomography (PET) requires safe and effective PET radiopharmaceuticals. Tracers used for measuring oxygen consumption and blood volume are [(15)O]O(2) and [(15)O]CO, respectively. In general, these oxygen-15 labelled tracers are produced using a cyclotron that

  17. A theoretical model for the effects of reduced hemoglobin-oxygen affinity on tumor oxygenation

    International Nuclear Information System (INIS)

    Kavanagh, Brian D.; Secomb, Timothy W.; Hsu, Richard; Lin, P.-S.; Venitz, Jurgen; Dewhirst, Mark W.


    Purpose: To develop a theoretical model for oxygen delivery to tumors, and to use the model to simulate the effects of changing the affinity of hemoglobin for oxygen on tumor oxygenation. Methods and Materials: Hemoglobin affinity is expressed in terms of P 50 , the partial pressure of oxygen (Po 2 ) at half saturation. Effects of changing P 50 on arterial Po 2 are predicted using an effective vessel approach to describe diffusive oxygen transport in the lungs, assuming fixed systemic oxygen demand and fixed blood flow rate. The decline in oxygen content of blood as it flows through normal tissue before entering the tumor region is assumed fixed. The hypoxic fraction of the tumor region is predicted using a three-dimensional simulation of diffusion from a network of vessels whose geometry is derived from observations of tumor microvasculature in the rat. Results: In air-breathing rats, predicted hypoxic fraction decreases with moderate increases in P 50 , but increases with further increases of P 50 , in agreement with previous experimental results. In rats breathing hyperoxic gases, and in humans breathing either normoxic or hyperoxic gases, increased P 50 is predicted to improve tumor oxygenation. Conclusions: The results support the administration of synthetic agents to increase P 50 during radiation treatment of tumors

  18. Iron and the oxygen paradox in ischemic hearts

    NARCIS (Netherlands)

    A. Voogd (Arthur)


    textabstractReintroduction of oxygen into ischemic tissue causes the formation of reactive oxygen species among which the oxygen radicals. This contributes to the tissue injwy that becomes apparent upon reperfusion. The phenomenon is known as the oxygen paradox. It is known that iron enhances the

  19. Oxygen production by urban trees in the United States (United States)

    David J. Nowak; Robert Hoehn; Daniel E. Crane


    Urban forests in the coterminous United States are estimated to produce ≈61 million metric tons (67 million tons) of oxygen annually, enough oxygen to offset the annual oxygen consumption of approximately two-thirds of the U.S. opulation. Although oxygen production is often cited as a significant benefit of trees, this benefit is relatively insignificant and...

  20. 21 CFR 868.1730 - Oxygen uptake computer. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  1. Holographic monitoring of spatial distributions of singlet oxygen in water (United States)

    Belashov, A. V.; Bel'tyukova, D. M.; Vasyutinskii, O. S.; Petrov, N. V.; Semenova, I. V.; Chupov, A. S.


    A method for monitoring spatial distributions of singlet oxygen in biological media has been developed. Singlet oxygen was generated using Radachlorin® photosensitizer, while thermal disturbances caused by nonradiative deactivation of singlet oxygen were detected by the holographic interferometry technique. Processing of interferograms yields temperature maps that characterize the deactivation process and show the distribution of singlet oxygen species.

  2. Long-term domiciliary oxygen therapy – the Johannesburg hospital ...

    African Journals Online (AJOL)

    Objectives. To assess the clinical and demographic characteristics of patients attending an oxygen clinic, to assess the relevance of the current clinical criteria determining the need for domiciliary oxygen, to assess the cost-effectiveness of an oxygen clinic and to assess compliance with the oxygen prescription. Design.

  3. Plasma-Oxygen Interaction During Thin Films Deposition by Laser ...

    African Journals Online (AJOL)

    In this contribution we study the effect of the oxygen pressure on the plasma dynamics during the ablation of oxides materials into an oxygen gas. The study was done using fast imaging and ion probe techniques. Both techniques revealed that a threshold oxygen pressure is needed to initiate the plume oxygen interaction.

  4. 21 CFR 868.5440 - Portable oxygen generator. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...

  5. Kinetics of oxygen species in an electrically driven singlet oxygen generator (United States)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.


    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  6. Oxygen dynamics around buried lesser sandeels Ammodytes tobianus (Linnaeus 1785): mode of ventilation and oxygen requirements

    DEFF Research Database (Denmark)

    Behrens, Jane W; Stahl, Henrik J; Steffensen, John F


    The oxygen environment around buried sandeels (Ammodytes tobianus) was monitored by planar optodes. The oxygen penetration depth at the sediment interface was only a few mm. Thus fish, typically buried at 1-4 cm depth, were generally in anoxic sediment. However, they induced an advective transport...... down along the body, referred to as ;plume ventilation'. Yet, within approximately 30 min the oxic plume was replenished by oxygen-depleted water from the gills. The potential for cutaneous respiration by the buried fish was thus of no quantitative importance. Calculations derived by three independent...... methods (each with N=3) revealed that the oxygen uptake of sandeel buried for 6-7 h was 40-50% of previous estimates on resting respirometry of non-buried fish, indicating lower O(2) requirements during burial on a diurnal timescale. Buried fish exposed to decreasing oxygen tensions gradually approached...

  7. Lunar mining of oxygen using fluorine (United States)

    Burt, Donald M.


    An important aspect of lunar mining will be the extraction of volatiles, particularly oxygen, from lunar rocks. Thermodynamic data show that oxygen could readily be recovered by fluorination of abundant lunar anorthite, CaAl2Si2O8. Fluorine is the most reactive element, and the only reagent able to extract 100 percent of the oxygen from any mineral, yet it can safely be stored or reacted in nickel or iron containers. The general fluorination reaction, mineral + 2F2 = mixed fluorides = O2, has been used for more than 30 years at a laboratory scale by stable-isotope geochemists. For anorthite, metallic Al and Si may be recovered from the mixed fluorides by Na-reduction, and CaO via exchange with Na2O; the resulting NaF may be recycled into F2 and Na by electrolysis, using lanthanide-doped CaF2 as the inert anode.

  8. Late Archean Surface Ocean Oxygenation (Invited) (United States)

    Kendall, B.; Reinhard, C.; Lyons, T. W.; Kaufman, A. J.; Anbar, A. D.


    Oxygenic photosynthesis must have evolved by 2.45-2.32 Ga, when atmospheric oxygen abundances first rose above 0.001% present atmospheric level (Great Oxidation Event; GOE). Biomarker evidence for a time lag between the evolution of cyanobacterial oxygenic photosynthesis and the GOE continues to be debated. Geochemical signatures from sedimentary rocks (redox-sensitive trace metal abundances, sedimentary Fe geochemistry, and S isotopes) represent an alternative tool for tracing the history of Earth surface oxygenation. Integrated high-resolution chemostratigraphic profiles through the 2.5 Ga Mt. McRae Shale (Pilbara Craton, Western Australia) suggest a ‘whiff’ of oxygen in the surface environment at least 50 M.y. prior to the GOE. However, the geochemical data from the Mt. McRae Shale does not uniquely constrain the presence or extent of Late Archean ocean oxygenation. Here, we present high-resolution chemostratigraphic profiles from 2.6-2.5 Ga black shales (upper Campbellrand Subgroup, Kaapvaal Craton, South Africa) that provide the earliest direct evidence for an oxygenated ocean water column. On the slope beneath the Campbellrand - Malmani carbonate platform (Nauga Formation), a mildly oxygenated water column (highly reactive iron to total iron ratios [FeHR/FeT] ≤ 0.4) was underlain by oxidizing sediments (low Re and Mo abundances) or mildly reducing sediments (high Re but low Mo abundances). After drowning of the carbonate platform (Klein Naute Formation), the local bottom waters became anoxic (FeHR/FeT > 0.4) and intermittently sulphidic (pyrite iron to highly reactive iron ratios [FePY/FeHR] > 0.8), conducive to enrichment of both Re and Mo in sediments, followed by anoxic and Fe2+-rich (ferruginous) conditions (high FeT, FePY/FeHR near 0). Widespread surface ocean oxygenation is suggested by Re enrichment in the broadly correlative Klein Naute Formation and Mt. McRae Shale, deposited ~1000 km apart in the Griqualand West and Hamersley basins

  9. No oxygen delivery limitation in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gjedde, Albert; Keiding, Susanne; Vilstrup, Hendrik


    Hepatic encephalopathy is a condition of reduced brain functioning in which both blood flow and brain energy metabolism declined. It is not known whether blood flow or metabolism is the primary limiting factor of brain function in this condition. We used calculations of mitochondrial oxygen tension...... declined in all gray matter regions of the brain in patients with HE but not significantly in patients with CL. Analysis of flow-metabolism coupling indicated that blood flow declined in HE as a consequence of reduced brain energy metabolism implied by the calculation of increased mitochondrial oxygen...... tensions that patients with HE were unable to utilize. We ascribe the inability to use the delivered oxygen of patients with HE to a specific inhibition associated with oxidative metabolism in mitochondria....

  10. Major events in Neogene oxygen isotopic records

    International Nuclear Information System (INIS)

    Kennett, J.P.; Hodell, D.A.


    Changes in oxygen isotopic ratios of foraminiferal calcite during the cainozoic have been one of the primary tools for investigating the history of Arctic and Antarctic glaciation, although interpretations of the oxygen isotopic record differ markedly. The ambiguity in interpretation results mainly from the partitioning of temperature from ice volume effects in delta 18 O changes. Oxygen isotopic records for the Cainozoic show an increase in delta 18 O values towards the present, reflecting gradual cooling and increased glaciation of the Earth's climate since the late Cretaceous. A variety of core material from the South Atlantic and South-west Pacific oceans are investigated. This composite data represents one of the most complete available with which to evaluate the evolution of glaciation during the Neogene. Expansion of ice shelves in Antarctica undoubtedly accompanied the increased glaciation of the northern hemisphere, since eustatic sea-level lowering would positively reinforce ice growth on Antarctica

  11. Oxygen-induced doping on reduced PEDOT. (United States)

    Mitraka, E; Jafari, M J; Vagin, M; Liu, X; Fahlman, M; Ederth, T; Berggren, M; Jonsson, M P; Crispin, X


    The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) has shown promise as air electrode in renewable energy technologies like metal-air batteries and fuel cells. PEDOT is based on atomic elements of high abundance and is synthesized at low temperature from solution. The mechanism of oxygen reduction reaction (ORR) over chemically polymerized PEDOT:Cl still remains controversial with eventual role of transition metal impurities. However, regardless of the mechanistic route, we here demonstrate yet another key active role of PEDOT in the ORR mechanism. Our study demonstrates the decoupling of conductivity (intrinsic property) from electrocatalysis (as an extrinsic phenomenon) yielding the evidence of doping of the polymer by oxygen during ORR. Hence, the PEDOT electrode is electrochemically reduced (undoped) in the voltage range of ORR regime, but O 2 keeps it conducting; ensuring PEDOT to act as an electrode for the ORR. The interaction of oxygen with the polymer electrode is investigated with a battery of spectroscopic techniques.

  12. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng


    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  13. Imaging of oxygen in microreactors and microfluidic systems (United States)

    Sun, Shiwen; Ungerböck, Birgit; Mayr, Torsten


    This review gives an overview on the state-of-the-art of oxygen imaging in microfluidics. Oxygen imaging using optical oxygen sensors based on luminescence is a versatile and powerful tool for obtaining profoundly space-resolved information of oxygen in microreactors and microfluidic systems. We briefly introduce the principle of oxygen imaging and present techniques of oxygen imaging applied in microreactors and microfluidic devices, including selection criteria and demands of sensing material and basic set-up for a 2D oxygen sensing system. A detailed review of oxygen imaging in microreactors and microfluidic systems is given on different applications in oxygen gradient monitoring, cell culturing, single-cell analysis and chemical reactions. Finally, we discuss challenges and trends of oxygen imaging in microfluidic systems.

  14. Oxygen Tension in the Aqueous Humor of Human Eyes under Different Oxygenation Conditions

    Directory of Open Access Journals (Sweden)

    Farideh Sharifipour


    Full Text Available Purpose: To measure oxygen tension in the aqueous humor of human eyes under different oxygenation conditions. Methods: This prospective comparative interventional case series consisted of two parts. In the first part, 120 consecutive patients scheduled for cataract surgery were randomized into group I (control group in which surgery was performed under local anesthesia inhaling 21% oxygen; group II in whom general anesthesia using 50% oxygen was employed; and group III receiving general anesthesia with 100% oxygen. After aspirating 0.2 ml aqueous humor under sterile conditions, the aqueous sample and a simultaneously drawn arterial blood sample were immediately analyzed using a blood gas analyzer. In part II the same procedures were performed in 10 patients after fitting a contact lens and patching the eye for 20 minutes (group IV and in 10 patients after transcorneal delivery of oxygen at a flow rate of 5 L/min (group V. Results: Mean aqueous PO2 in groups I, II and III was 112.3±6.2, 141.1±20.4, and 170.1±27 mmHg, respectively (P values <0.001 and mean arterial PO2 was 85.7±7.9, 184.6±46, and 379.1±75.9 mmHg, respectively (P values <0.001. Aqueous PO2 was 77.2±9.2 mmHg in group IV and 152.3±10.9 mmHg in group V (P values <0.001. There was a significant correlation between aqueous and blood PO2 (r=0.537, P<0.001. The contribution of atmospheric oxygen to aqueous PO2 was 23.7%. Conclusion: Aqueous oxygen tension is mostly dependent on the systemic circulation and in part on the atmosphere. Increasing inspiratory oxygen and transcorneal oxygen delivery both increase aqueous PO2 levels.

  15. Engineering the oxygen coordination in digital superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Seyoung [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Andersen, Tassie K. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Hong, Hawoong [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Rosenberg, Richard A. [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Marks, Laurence D. [Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Fong, Dillon D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA


    The oxygen sublattice in the complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, demonstrating a new strategy for achieving unique electronic properties in the transition metal oxides.

  16. Oxygen control in makeup water for PWRs

    International Nuclear Information System (INIS)

    Silaghy, F.


    This study describes the oxygen control program and improvements to the make-up water system components of PWR nuclear plants with the ultimate goal of reducing corrosion related problems in the steam generators and other secondary system components. A PWR plant that has a vacuum degasifier has been selected to establish the basis for the program. Following the investigation of the make-up water system components, the report presents instrumentation developed for the program. Recommendations are provided for improvements to the various make-up water system components to lower the dissolved oxygen levels. 5 refs., 23 figs., 3 tabs

  17. Study of corrosion resistance graphite in oxygen

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Odejchuk, N.P.; Petel'guzov, I.A.; Ryzhov, V.P.; Yakovlev, V.K.


    The paper presents the results of the corrosion resistance of MPG, ARV and GSP graphite grades in oxygen at temperatures of 400, 600 and 800 o C. The oxidation kinetics of graphites is defined. It is shown, that interaction process of graphites with oxygen is characterized by a decrease of sample weights. The description of installation for carrying out of tests and a technique of carrying out of tests and researches is resulted. It is shown that the best corrosion resistance in the investigated temperature range has GSP graphite with density of 1.8-1.9 g/cm 3 of NSC KIPT production.

  18. Rosacea, reactive oxygen species, and azelaic Acid. (United States)

    Jones, David A


    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea.

  19. Tissue oxygen tension in the stria vascularis. (United States)

    Nagahara, K; Miyake, Y; Aoyama, T; Ogino, F


    Tissue oxygen tension in the stria vascularis was successfully measured in cats using the polarographic technique. A correlation study using the differential coefficient between oxygen tension in the stria vascularis and systemic blood pressure proved that vascular autoregulation is present in the mean systemic blood pressure range between 40 and 80 mmHg. The anatomical findings and the response patterns to different gas inhalations indicated that the type of vascular regulation present is more closely related to chemical control than to auto-regulation.

  20. The indium-oxygen system, ch. 5

    International Nuclear Information System (INIS)

    Dillen, A.J. van


    This chapter is divided into three sections: 1) a survey of the literature concerning the indiumoxygen system, 2) the adsorption of oxygen at pure and partially oxidized indium surfaces in the temperature range 20-180degC, and 3) the oxidation of indium at temperatures above 180degC. The oxygen uptake is determined volumetrically and gravimetrically. The influence of the melting point is considered and the results are compared with data from the literature. The oxide layer is amorphous at lower temperatures but above 350degC, crystallisation of In 2 O 3 takes place

  1. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones I: Oxygen consumption rates and critical oxygen partial pressures (United States)

    Trueblood, Lloyd A.; Seibel, Brad A.


    Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91μmolg-1h-1 at 10°C and 12.62μmolg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.

  2. Enhancing the oxygen supply to whole-cell oxygenase bioconversions.


    Fish, S.


    The aim of this work was to investigate the effect of oxygen limitation on whole-cell oxygenases, and to determine how the physiochemical properties of oils affect their ability to enhance the oxygen transfer rate. Whole-cell oxygenase biocatalysts require oxygen as a substrate for the reaction and for the electron transport chain. The productivity of these bioconversions is therefore influenced by the maximum oxygen transfer rate of the fermenter. Organic solvents are commonly used in oxygen...

  3. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory


    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....

  4. The impact of the Danish Oxygen Register on adherence to guidelines for long-term oxygen therapy in COPD patients

    DEFF Research Database (Denmark)

    Ringbaek, Thomas J; Lange, Peter


    To evaluate the impact of The Danish Oxygen Register on COPD patients' treatment modalities, survival, and adherence to guidelines for long-term oxygen therapy (LTOT).......To evaluate the impact of The Danish Oxygen Register on COPD patients' treatment modalities, survival, and adherence to guidelines for long-term oxygen therapy (LTOT)....

  5. Benthic foraminifera from the Arabian Sea oxygen minimum zone: towards a paleo-oxygenation proxy. (United States)

    Clemence, Caulle; Meryem, Mojtahid; Karoliina, Koho; Andy, Gooday; Gert-Jan, Reichart; Gerhard, Schmiedl; Frans, Jorissen


    Benthic foraminifera from the Arabian Sea oxygen minimum zone: towards a paleo-oxygenation proxy. C. Caulle1, M. Mojtahid1, K. Koho2,3, A. Gooday4, G. J. Reichart2,3, G. Schmiedl5, F. Jorissen1 1UMR CNRS 6112 LPG-BIAF, University of Angers, 2 bd Lavoisier, 49045 Angers Cedex 2Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Budapestlaan 4, 3584 CD Utrecht, The Netherlands 3Royal Netherland Institute for Sea Research (Royal NIOZ), Landsdiep 4, 1797 SZ 't Horntje (Texel) 4Southampton Oceanography Centre, Empress Dock, European Way, Southampton SO14 3ZH, UK 5Department of Geosciences, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany The thermohaline circulation oxygenates the deep ocean sediment and therefore enables aerobic life on the sea-floor. In the past, interruption of this deep water formation occurred several times causing hypoxic to anoxic conditions on the sea-floor leading to major ecological turnover. A better understanding of the interaction between climate and bottom water oxygenation is therefore essential in order to predict future oceanic responses. Presently, permanent (stable over decadal timescale) low-oxygen conditions occur naturally at mid-water depths in the northern Indian Ocean (Arabian Sea). Oxygen Minimum Zones (OMZ) are key areas to understand the hypoxic-anoxic events and their impact on the benthic ecosystem. In this context, a good knowledge of the ecology and life cycle adaptations of the benthic foraminiferal assemblages living in these low oxygen areas is essential. A series of multicores were recovered from three transects showing an oxygen gradient across the OMZ: the Murray Ridge, the Oman margin and the Indian margin. The stations located at the same depths showed slightly different oxygen concentrations and large differences in organic matter content. These differences are mainly related to the geographic location in the Arabian Sea. We investigated at these stations live and dead benthic

  6. Oxygen saturations of medical inpatients in a Malawian hospital: cross-sectional study of oxygen supply and demand

    Directory of Open Access Journals (Sweden)

    Hywel Gethin Tudur Evans


    Full Text Available Oxygen is a World Health Organization listed essential drug, yet provision of oxygen in developing countries often fails to meet demand. The aim of this study was to evaluate the need for supplementary oxygen against oxygen delivery capacity at a large teaching hospital in Malawi. A cross-sectional study of all adult medical inpatients and assessment of oxygen provision over a 24-hour period was conducted. 144 patients were included in the study, 14 of whom met local and international criteria for oxygen therapy (oxygen saturations of <90%. Four were receiving oxygen. Of the 8 oxygen concentrators available, only 4 were functional. In conclusion, we identified a need for oxygen that was greater than the supply.

  7. Oxygen saturations of medical inpatients in a Malawian hospital: cross-sectional study of oxygen supply and demand

    Directory of Open Access Journals (Sweden)

    Hywel-Gethin Tudur Evans


    Full Text Available Normal 0 false false false EN-GB JA X-NONE Oxygen is a World Health Organisation listed essential drug yet provision of oxygen in developing countries often fails to meet demand.  The aim of this study was to evaluate the need for supplementary oxygen against oxygen delivery capacity at a large teaching hospital in Malawi.  A cross‐sectional study of all adult medical inpatients and assessment of oxygen provision over a 24‐hour period was conducted.    144 patients were included in the study, 14 of whom met local and international criteria for oxygen therapy (oxygen saturations of <90%.  Four were receiving oxygen.  Of the 8 oxygen concentrators available, only 4 were functional.  In conclusion, we identified a need for oxygen that was greater than the supply.

  8. Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs)


    A.A. Masrur Ahmed


    The objective of this study is to develop a feed forward neural network (FFNN) model and a radial basis function neural network (RBFNN) model to predict the dissolved oxygen from biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in the Surma River, Bangladesh. The neural network model was developed using experimental data which were collected during a three year long study. The input combinations were prepared based on the correlation coefficient with dissolved oxygen. Performa...

  9. Measurement of dissolved oxygen during red wines tank aging with chips and micro-oxygenation. (United States)

    Nevares, I; del Alamo, M


    Nowadays, micro-oxygenation is a very important technique used in aging wines in order to improve their characteristics. The techniques of wine tank aging imply the use of small doses of oxygen and the addition of wood pieces of oak to the wine. Considering the low dissolved oxygen (DO) levels used by micro-oxygenation technique it is necessary to choose the appropriate measurement principle to apply the precise oxygen dosage in wine at any time, in order to assure its correct assimilation. This knowledge will allow the oenologist to control and run the wine aging correctly. This work is a thorough revision of DO measurement main technologies applied to oenology. It describes the strengths and weaknesses of each of them, and draws a comparison of their workings in wine measurement. Both, the traditional systems by electrochemical probes, and the newest photoluminescence-based probes have been used. These probes adapted to red wines ageing study are then compared. This paper also details the first results of the dissolved oxygen content evolution in red wines during a traditional and alternative tank aging. Samples have been treated by three different ageing systems: oak barrels, stainless-steel tanks with small oak wood pieces (chips) and with bigger oak pieces (staves) with low micro-oxygenation levels. French and American oak barrels manufactured by the same cooperage have been used.

  10. Influence of oxygen partial pressure on defect concentrations and on oxygen diffusion in UO2+x

    International Nuclear Information System (INIS)

    Pizzi, Elisabetta


    The hyper-stoichiometric uranium dioxide (UO 2+x ) is stable over a wide range of temperature and compositions. Such variations of composition and the eventual presence of doping elements or impurities lead to a variation of anionic and electronic defect concentrations. Moreover, many properties of this material are affected by its composition modifications, in particular their atomic transport properties. Firstly we developed a point defect model to evaluate the dependence of the electronic and oxygen defect concentrations upon temperature, equilibrium oxygen partial pressure and impurity content. The physical constants of the model, in particular the equilibrium constants of the defect formation reactions were determined from deviation from stoichiometry and electrical conductivity measurements of literature. This work enabled us to interpret our measures of conductivity, oxygen chemical and self- diffusion coefficients. From a quantitative standpoint, the analysis of our experimental results allows to evaluate the oxygen interstitial diffusion coefficient but also its formation energy. Moreover, an estimate of oxygen di-interstitial formation energy is also provided. Presence of oxygen clusters leads oxygen self- and chemical diffusion to decrease. X-ray Absorption Spectroscopy characterization shows the presence of the same defect in the entire deviation from stoichiometry studied, confirming the approach used to develop the model. (author) [fr

  11. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production. (United States)

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L


    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Recombination and detachment in oxygen discharges: the role of metastable oxygen molecules

    International Nuclear Information System (INIS)

    Gudmundsson, J T


    A global (volume averaged) model of oxygen discharges is used to study the transition from a recombination dominated discharge to a detachment dominated discharge. The model includes the metastable oxygen molecules O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ) and the three Herzberg states O 2 (A 3 Σ u + , A' 3 Δ u , c 1 Σ u - ). Dissociative attachment of the oxygen molecule in the ground state O 2 ( 3 Σ g - ) and the metastable oxygen molecule O 2 (a 1 Δ g ) are the dominating channels for creation of the negative oxygen ion O - . At high pressures, dissociative attachment of the Herzberg states contributes significantly to the creation of the negative oxygen ion, O - . The detachment by a collision of the metastable oxygen molecule O 2 (b 1 Σ g + ) with the oxygen ion, O - , is a significant loss process for the O - at pressures above 10 mTorr. Its contribution to the loss is more significant at a lower applied power, but at the higher pressures it is always significant. Detachment by collision with O( 3 P) is also an important loss mechanism for O - . We find that ion-ion recombination is the dominating loss process for negative ions in oxygen discharges at low pressures and calculate the critical pressure where the contributions of recombination reactions and detachment reactions are equal. This critical pressure depends on the applied power, increases with applied power and is in the range 5-14 mTorr in the pressure and power range investigated

  13. Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products. (United States)

    Bernatchez, Stéphanie F; Tucker, Joseph; Chiffoleau, Gwenael


    Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed.

  14. Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve

    Directory of Open Access Journals (Sweden)

    Julie-Ann Collins


    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content, saturation (SO2 and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin–oxygen dissociation curve, a graphical representation of the relationship between oxygen satur­ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the SO2 in blood from patients with normal pH and SO2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (SpO2 is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (SaO2 as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable SpO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  15. Interaction of oxygen vacancies in yttrium germanates

    KAUST Repository

    Wang, Hao


    Forming a good Ge/dielectric interface is important to improve the electron mobility of a Ge metal oxide semiconductor field-effect transistor. A thin yttrium germanate capping layer can improve the properties of the Ge/GeO 2 system. We employ electronic structure calculations to investigate the effect of oxygen vacancies in yttrium-doped GeO 2 and the yttrium germanates Y 2Ge 2O 7 and Y 2GeO 5. The calculated densities of states indicate that dangling bonds from oxygen vacancies introduce in-gap states, but the system remains insulating. However, yttrium-doped GeO 2 becomes metallic under oxygen deficiency. Y-doped GeO 2, Y 2Ge 2O 7 and Y 2GeO 5 are calculated to be oxygen substoichiometric under low Fermi energy conditions. The use of yttrium germanates is proposed as a way to effectively passivate the Ge/dielectric interface. This journal is © 2012 the Owner Societies.

  16. STS-84 oxygen generator for Mir installation (United States)


    McDonnell Douglas-SPACEHAB technicians oversee the move of a Russian-made oxygen generator to a SPACEHAB Double Module, at rear, in the SPACEHAB Payload Processing Facility. In foreground, from left, are Marc Tuttle, Dan Porter and Mike Vawter. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttles scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff.

  17. Transcutaneous oxygen tension in imminent foot gangrene

    DEFF Research Database (Denmark)

    Tønnesen, K H


    Transcutaneous oxygen tension at 44 degree C and maximal isotope clearance (90m Tc-pretechnetate + histramine) just proximal to the 1st toe and systolic toe blood pressure (strain gauge) were studied on a tilt table in patients with various degrees of obstructive arteriosclerotic disease. In legs...

  18. Zaria Universal Oxygenator Holder Phase I

    African Journals Online (AJOL)

    was used to design the holder circular main frame [Figure 3]. Another sheet measuring 2 cm (width) × 0.6 ... A metallic device with a circular main frame which holds the oxygenator within its circumference centrally .... economy but also undermines the development of the health industry in terms of manpower development ...

  19. Intraoperative transfusion threshold and tissue oxygenation

    DEFF Research Database (Denmark)

    Nielsen, K; Dahl, B; Johansson, P I


    Transfusion with allogeneic red blood cells (RBCs) may be needed to maintain oxygen delivery during major surgery, but the appropriate haemoglobin (Hb) concentration threshold has not been well established. We hypothesised that a higher level of Hb would be associated with improved subcutaneous...

  20. Oxygen free radicals in rheumatoid arthritis

    NARCIS (Netherlands)

    P. Biemond (Pieter)


    textabstractCurrent knowledge strongly suggests that oxygen free radicals are involved in the pathogenesis of RA. Additional information about the mechanism of free radical attack is necessary in order to find out if interaction with the mechanism of free radical damage can be used in the treatment

  1. A high reliability oxygen deficiency monitoring system

    International Nuclear Information System (INIS)

    Parry, R.; Claborn, G.; Haas, A.; Landis, R.; Page, W.; Smith, J.


    The escalating use of cryogens at national laboratories in general and accelerators in particular, along with the increased emphasis placed on personnel safety, mandates the development and installation of oxygen monitoring systems to insure personnel safety in the event of a cryogenic leak. Numerous vendors offer oxygen deficiency monitoring systems but fail to provide important features and/or flexibility. This paper describes a unique oxygen monitoring system developed for the Magnet Test Laboratory (MTL) at the Superconducting Super Collider Laboratory (SSCL). Features include: high reliability, oxygen cell redundancy, sensor longevity, simple calibration, multiple trip points, offending sensor audio and visual indication, global alarms for building evacuation, local and remote analog readout, event and analog data logging, EMAIL event notification, phone line voice status system, and multi-drop communications network capability for reduced cable runs. Of particular importance is the distributed topology of the system which allows it to operate in a stand-alone configuration or to communicate with a host computer. This flexibility makes it ideal for small applications such as a small room containing a cryogenic dewar, as well as larger systems which monitor many offices and labs in several buildings

  2. Formation and Detoxification of Reactive Oxygen Species (United States)

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra


    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…

  3. Oxygen isotope fractionation in double carbonates. (United States)

    Zheng, Yong-Fei; Böttcher, Michael E


    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates.

  4. Singlet oxygen-mediated protein oxidation

    DEFF Research Database (Denmark)

    Wright, Adam; Bubb, William A; Hawkins, Clare Louise


    Singlet oxygen (1O2) is generated by a number of enzymes as well as by UV or visible light in the presence of a sensitizer and has been proposed as a damaging agent in a number of pathologies including cataract, sunburn, and skin cancers. Proteins, and Cys, Met, Trp, Tyr and His side chains in pa...

  5. Ammonia producing engine utilizing oxygen separation (United States)

    Easley, Jr., William Lanier; Coleman, Gerald Nelson [Petersborough, GB; Robel, Wade James [Peoria, IL


    A power system is provided having a power source, a first power source section with a first intake passage and a first exhaust passage, a second power source section with a second intake passage and a second exhaust passage, and an oxygen separator. The second intake passage may be fluidly isolated from the first intake passage.

  6. Apparatus for combining oxygen and hydrogen

    International Nuclear Information System (INIS)

    Betz, E.C.


    An apparatus is described for catalytically combining hydrogen and oxygen which includes two concentric catalyst chambers arranged so that the outer chamber surrounds the inner chamber and the gas stream passes radially through the outer catalyst chamber. 10 claims, 2 figures

  7. Producing Liquid Oxygen in the Classroom (United States)

    Williams, David; Warden, Nicole; Wharton, Barry


    A number of organisations have provided instructions on how to produce small quantities of liquid oxygen in the classroom using liquid nitrogen and a copper condensation coil (Lister 1995 "Classic Chemistry Demonstrations" (London: Royal Society of Chemistry) pp 61-2, French and Hibbert 2010 "Phys. Educ." 45 221-2). The method…

  8. Use of Oxygen Therapies in Wound Healing

    DEFF Research Database (Denmark)

    Gottrup, Finn; Dissemond, Joachim; Baines, Carol


    Among other things wound healing requires restoration of macro-And microcirculation as essential conditions for healing.1,2 One of the most 'immediate' requirements is oxygen, which is critically important for reconstruction of new vessels and connective tissue and to enable competent resistance...

  9. Continuous oxygen therapy for hypoxic pulmonary disease

    DEFF Research Database (Denmark)

    Ringbaek, Thomas J


    Continuous oxygen therapy (COT) has become widely accepted in the last 20 years in patients with continuous hypoxemia. This review focuses on guidelines for COT, adherence to these guidelines, and the effect of COT on survival, hospitalization, and quality of life. Guidelines for COT are mainly...

  10. Mathematical Modelling of Intraretinal Oxygen Partial Pressure ...

    African Journals Online (AJOL)

    Purpose: The aim of our present work is to develop a simple steady state model for intraretinal oxygen partial pressure distribution and to investigate the effect of various model parameters on the partial pressure distribution under adapted conditions of light and darkness.. Method: A simple eight-layered mathematical model ...

  11. On Atomistic Models for Molecular Oxygen

    DEFF Research Database (Denmark)

    Javanainen, Matti; Vattulainen, Ilpo; Monticelli, Luca


    Molecular oxygen (O2) is key to all life on earth, as it is constantly cycled via photosynthesis and cellular respiration. Substantial scientific effort has been devoted to understanding every part of this cycle. Classical molecular dynamics (MD) simulations have been used to study some of the key...

  12. Oxygen radical microscopy in living plant tissues

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Møller, Ian Max; Schulz, Alexander

    Reactive oxygen species (ROS) play a crucial role in a wide variety of processes. Initiation of many different cellular pathways, crosstalk between cells, developmental signalling in planta, programmed cell death and hypersensitive response in connection with plant-pathogen interactions are among...

  13. Novel Membranes and Processes for Oxygen Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haiqing


    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions

  14. Oxygen Therapy: MedlinePlus Health Topic (United States)

    ... Genetics See, Play and Learn No links available Research Clinical Trials Journal Articles Resources Find an Expert For You Patient Handouts ... Oxygen Therapy (Mayo Foundation for Medical Education and Research) Also ... Journal Articles References and abstracts from MEDLINE/PubMed (National Library ...

  15. Nasal pulse oximetry overestimates oxygen saturation

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, M H


    Ten surgical patients were monitored with nasal and finger pulse oximetry (Nellcor N-200) for five study periods with alternating mouth and nasal breathing and switching of cables and sensors. Nasal pulse oximetry was found to overestimate arterial oxygen saturation by 4.7 (SD 1.4%) (bias...

  16. Oxygenation of saturated and unsaturated hydrocarbons with ...

    Indian Academy of Sciences (India)


    Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate catalyzed by manganese(III) tetra-arylporphyrins, to study the axial ligation of imidazole. REZA TAYEBEE. Department of Chemistry, Sabzevar Teacher Training University, Sabzevar, Iran 397 e-mail: MS received 4 June ...

  17. System Controls and Measures Oxygen Fugacity (United States)

    Williams, R. J.


    System developed at Johnson Space Center controls and measures oxygen fugacity in high-temperature chemical research. A ceramic-electrolyte cell is the sensing element. All hardware needed to control gas flow and temperature and to measure cell electromotive force is included. An analytic balance allows in situ thermogravimetric sample analysis.

  18. Oxygen activity measurements in simulated converter matte

    CSIR Research Space (South Africa)

    Tshilombo, KG


    Full Text Available , FeS and Ni3S2) when in contact with silica saturated SiO2-FeO slags, and silica and (initially) magnetite saturated SiO2-FeO-Fe3O4 slags. The measurements were performed on laboratory scale at 1250°C, using an oxygen probe consisting of an Mg...

  19. Champion Island, Galapagos Stable Oxygen Calibration Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17 min S, 90 deg 33 min W. Champion Island: 1 deg, 15 min S, 90 deg, 05 min W. Urvina...

  20. Steady state oxygen reduction and cyclic voltammetry

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Karlberg, Gustav; Jaramillo, Thomas


    The catalytic activity of Pt and Pt3Ni for the oxygen reduction reaction is investigated by applying a Sabatier model based on density functional calculations. We investigate the role of adsorbed OH on the activity, by comparing cyclic voltammetry obtained from theory with previously published...

  1. Lifetime of the internal reference oxygen sensor

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels


    The internal reference oxygen sensor (IROS) based on a binary mixture of metal and its stoichiometric oxide is subject to leaks that result in consumption of the binary mixture. An IROS loses the functionality when the binary mixture is exhausted. Among the possible leak sources the electronic leak...

  2. Redox signaling in acute oxygen sensing

    Directory of Open Access Journals (Sweden)

    Lin Gao


    Full Text Available Acute oxygen (O2 sensing is essential for individuals to survive under hypoxic conditions. The carotid body (CB is the main peripheral chemoreceptor, which contains excitable and O2-sensitive glomus cells with O2-regulated ion channels. Upon exposure to acute hypoxia, inhibition of K+ channels is the signal that triggers cell depolarization, transmitter release and activation of sensory fibers that stimulate the brainstem respiratory center to produce hyperventilation. The molecular mechanisms underlying O2 sensing by glomus cells have, however, remained elusive. Here we discuss recent data demonstrating that ablation of mitochondrial Ndufs2 gene selectively abolishes sensitivity of glomus cells to hypoxia, maintaining responsiveness to hypercapnia or hypoglycemia. These data suggest that reactive oxygen species and NADH generated in mitochondrial complex I during hypoxia are signaling molecules that modulate membrane K+ channels. We propose that the structural substrates for acute O2 sensing in CB glomus cells are “O2-sensing microdomains” formed by mitochondria and neighboring K+ channels in the plasma membrane. Keywords: Hypoxia, Acute oxygen sensing, Peripheral chemoreceptors, Carotid body, Adrenal medulla, Mitochondrial complex I, Reactive oxygen species (ROS, Pyridine nucleotides

  3. Oxygen/hydrogen component technology status. (United States)

    Fulton, D. L.; Lauffer, J. R.; Smith, G. R.; Zachary, A. T.


    The advanced technology applicable to oxygen/hydrogen systems for auxiliary propulsion systems and other high energy upper stage applications is being developed. Turbopump, propellant conditioner (gas generator and heat exchanger), thruster, igniter, valve, and flow controller components are being evaluated. A brief description of turbopump, conditioner, valve, and thruster experimental programs is presented. Design and hot-firing test data are discussed.

  4. Modeling Fish Growth in Low Dissolved Oxygen (United States)

    Neilan, Rachael Miller


    This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…

  5. Small Scale Variations in Carbon Oxygen Ratio

    International Nuclear Information System (INIS)

    Valkovic, Vladivoj; Sudac, Davorin; Nad, Karlo; Obhodas, Jasmina


    The aim of the research reported here is the development of a methodology for the measurement of small scale variations in chemical elements concentrations, in particular of carbon - oxygen ratio. Knowledge of the C/O ratio is of importance to many problems in various fields. Here we single out the application in obtaining important information about the oil fields. The most fundamental reservoir parameters - oil, gas and water content - are critical factors in determining how each oil field should be developed. It is well established that carbon to oxygen ratio log yields accurate and repeatable data that can be used to identify and monitor reserves depletion. Recent improvements in neutron generator and gamma detector technologies resulted in small devices which allowed through-tubing measurements. Although the ratio of carbon and oxygen yields is a measure of the amount of oil around the tool it should be realized that a carbon signal can originate from several sources including the borehole, the cement behind the casing, the formation rock and the formation fluid. In order to evaluate these contributions individually we are proposing the modification of the neutron generator by insertion of segmented associated alpha particle detector. From the measurement of time of flight spectra (alpha particle detector - start signal; gamma ray detector - stop signal) it would be possible to determine the location of gamma ray producing voxel and in such a way to determine radial variations in several chemical elements concentrations, in particular of carbon to oxygen ratio. (authors)

  6. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti


    through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...

  7. 46 CFR 197.452 - Oxygen cleaning. (United States)


    ... 46 Shipping 7 2010-10-01 2010-10-01 false Oxygen cleaning. 197.452 Section 197.452 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Periodic Tests and Inspections of Diving Equipment § 197...

  8. Reactive oxygen species and the cardiovascular system

    NARCIS (Netherlands)

    Y.J.H.J. Taverne (Yannick); A.J.J.C. Bogers (Ad); D.J.G.M. Duncker (Dirk); D. Merkus (Daphne)


    textabstractEver since the discovery of free radicals, many hypotheses on the deleterious actions of reactive oxygen species (ROS) have been proposed. However, increasing evidence advocates the necessity of ROS for cellular homeostasis. ROS are generated as inherent by-products of aerobic metabolism

  9. Hydrogen-oxygen powered internal combustion engine (United States)

    Cameron, H.; Morgan, N.


    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  10. Development of Oxygen-Carrying Compounds (United States)


    lth-ugh nc suggestion w:.s nude th t the oxygen in tiu compounds night be carried reversibly they c.ppeared worth investig. ting. The - llylamine...revolution every nine- teen minutes. The accompanying diagram ehovs the machine in its first form. The driv~ and Rear reduction mechanism of this

  11. Isotopic evidence for oxygenated Mesoarchaean shallow oceans (United States)

    Eickmann, Benjamin; Hofmann, Axel; Wille, Martin; Bui, Thi Hao; Wing, Boswell A.; Schoenberg, Ronny


    Mass-independent fractionation of sulfur isotopes (MIF-S) in Archaean sediments results from photochemical processing of atmospheric sulfur species in an oxygen-depleted atmosphere. Geological preservation of MIF-S provides evidence for microbial sulfate reduction (MSR) in low-sulfate Paleoarchaean (3.8-3.2 billion years ago (Ga)) and Neoarchaean (2.8-2.5 Ga) oceans, but the significance of MSR in Mesoarchaean (3.2-2.8 Ga) oceans is less clear. Here we present multiple sulfur and iron isotope data of early diagenetic pyrites from 2.97-Gyr-old stromatolitic dolomites deposited in a tidal flat environment of the Nsuze Group, Pongola Supergroup, South Africa. We identified consistently negative Δ33S values in pyrite, which indicates photochemical reactions under anoxic atmospheric conditions, but large mass-dependent sulfur isotope fractionations of 30‰ in δ34S, identifying active MSR. Negative pyrite δ56Fe values (-1.31 to -0.88‰) record Fe oxidation in oxygen-bearing shallow oceans coupled with biogenic Fe reduction during diagenesis, consistent with the onset of local Fe cycling in oxygen oases 3.0 Ga. We therefore suggest the presence of oxygenated near-shore shallow-marine environments with ≥5 μM sulfate at this time, in spite of the clear presence of an overall reduced Mesoarchaean atmosphere.

  12. Zaria Universal Oxygenator Holder phase I

    Directory of Open Access Journals (Sweden)

    Sunday Adoga Edaigbini


    Full Text Available Introduction: The conduct of cardiopulmonary bypass surgery requires the use of equipment and devices like the oxygenator. The oxygenator comes in different makes and each manufacturer customizes the carrier or ′holder′ of this device specific to their design. Aim: This paper presents an innovation designed to overcome the need to purchase a different holder for every oxygenator thereby cutting the cost. Materials and Methods: A sheet of iron measuring 1.9 cm (width × 0.1 cm (thickness was used to design the holder circular main frame. Another sheet measuring 2 cm (width × 0.6 cm (thickness × 24 cm (length was used to construct a V-shaped handle with the arms of the V attached to the main frame 7 cm apart. At the narrow base of the handle is a latch requiring two 13-gauge screws to attach the holder to the heart-lung machine. Within the circumference of the main frame are four T-shaped side arms which grip the oxygenator; located at 2, 5, 7 and 11 O′clock positions. The stem of the T consist of a 0.6 cm (thickness × 13 cm (length rod drilled through the main frame. The cross of the T consists of variable lengths of the same sheet as the mainframe attached to the stem by a screw mechanism. At the base of the T, is attached a circular handle (4 cm in diameter made of 0.4 cm iron rod. Result: An oxygenator holder which weighs 1.75 kg with a total length of 54 cm (the diameter of the mainframe is 30 cm. Its advantages include (i affordability, (ii materials are locally accessible, (iii versatility (iv reproducibility. The disadvantages include, (i it requires some time to fit, (ii caution is required in fitting the oxygenator to avoid breakage, (iii a spanner is required to lock the latch. Conclusion: The concept of a universal holder is pertinent, especially in resource poor environments to avoid purchasing a new holder whenever the usual oxygenator common to the centre is unavailable. This device is amenable to further modifications to

  13. Mechanism of singlet oxygen deactivation in an electric discharge oxygen - iodine laser (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Pershin, A. A.; Torbin, A. P.; Heaven, M. C.


    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O2(a 1Δ) + O3(ν) → 2O2 + O on the removal rate of O2(a 1Δ) in an electric-discharge-driven oxygen - iodine laser. This reaction has been shown to be a major channel of O2(a 1Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O2(a 1Δ) in the discharge region of the generator.

  14. Mobility profiles of patients with home oxygen therapy. (United States)

    Díaz Lobato, Salvador; Mayoralas Alises, Sagrario


    Home oxygen therapy has been classically based on the use of compressed oxygen cylinders and portable oxygen (O(2)) concentrators. In the last few years, we have witnessed the advent of portable oxygen therapy equipment and liquid oxygen systems and even more recently portable O(2) concentrators. This equipment allows for greater patient mobility, which generates new issues that we must understand and approach adequately. One of these is selecting the best oxygen source for each patient. In doing so, it is necessary to compare the patient mobility profile with the mobility allowed by the O(2) sources in order to determine the degree of correlation between the two. Proper indication for home oxygen therapy, the selection of the right source and the titration of the oxygen flow are three components which we must face when deciding to prescribe home oxygen therapy. The patient must also cooperate with correct O(2) use. Copyright © 2011 SEPAR. Published by Elsevier Espana. All rights reserved.

  15. Oxygen Sensing Based on the Yellowing of Newspaper. (United States)

    Yu, Jingjing; Qin, Xingcai; Xian, Xiaojun; Tao, Nongjian


    Newspaper is known to turn yellow over time. We show here that this yellowing process is sensitive to oxygen when exposed to UV light, leading to oxygen sensing. Oxygen sensing is critical to many applications, including industrial process control and breath analysis, but the existing oxygen sensors have limitations, especially for breath analysis that operates at 100% humidity. The UV irradiation also triggers fluorescence emission from newspaper, and the fluorescence intensity depends on oxygen concentration, providing an additional oxygen sensing method. Newspaper is stable in ambient air, and reactive to oxygen only with UV activation, which overcomes the instability issue of a typical colorimetric sensor in ambient air. The newspaper oxygen sensor works in 100% relative humidity air, containing various interferents. These unique properties of newspaper promise low cost and reliable oxygen sensing applications.

  16. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy (United States)

    Eshaq, Randa S.; Wright, William S.; Harris, Norman R.


    Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C. PMID:24936440

  17. Oxygen chemistry of shocked interstellar clouds. III - Sulfur and oxygen species in dense clouds (United States)

    Leen, T. M.; Graff, M. M.


    The chemical evolution of oxygen and sulfur species in shocked dense clouds is studied. Reaction rate constants for several important neutral reactions are examined, and revised values are suggested. The one-fluid magnetohydrodynamic shock structure and postshock chemical evolution are calculated for shocks of velocity v(s) = 10 km/s through clouds of initial number density n(0) = 100,000/cu cm and of molecule/atom ratios H2/H = 10, 1000, and 100,000 with most sulfur contained initially in molecules SO2 and SO. Abundances of SO2, SO, CS, and OCS remain near their preshock values, except in clouds containing substantial amounts of atomic hydrogen, where significant destruction of sulfur-oxygen species occurs. Abundances of shock-enhanced molecules HS and H2O are sensitive to the molecule/atom ratio. Nonthermal oxygen-hydrogen chemistry has a minor effect on oxygen-sulfur molecules in the case H2/H = 10.

  18. Atmospheric odd oxygen production due to the photodissociation of ordinary and isotopic molecular oxygen (United States)

    Omidvar, K.; Frederick, J. E.


    Line-by-line calculations are performed to determine the contributions of the Schumann-Runge bands of ordinary and isotopic oxygen to the photodissociation of these molecules at different altitudes. The contributions to the dissociation rates of the satellite lines and of the first and higher vibrational states of the initial molecular states are found to be insignificant. At 70 km, (O-16)(O-18) is found to produce 10 times as much odd oxygen as would be produced if the isotope did not have selective absorption, and 6 percent of the odd oxygen produced is due to this isotope. It is noted that the excess odd oxygen produced is not enough to explain the excess quantity of ozone observed in the atmosphere, which cannot be accounted for in photochemical models. Comparison with previous results is made.

  19. Oxygen status during haemodialysis. The Cord-Group

    DEFF Research Database (Denmark)

    Nielsen, A L; Jensen, H Æ; Hegbrant, J


    Hypoxia during haemodialysis, mainly acetate, has been reported several times. In our study we have monitored oxygen status during 258 bicarbonate haemodialyses. A significant drop below 80 mmHg in mean oxygen tension occurred. Mean oxygen saturation reflected this drop but did not reach levels...... below 90%. The mean oxygen concentration was on the whole critical low, though slightly increasing during each haemodialysis session due to ultrafiltration. It is concluded that both hypoxia and hypoxaemia do occur during bicarbonate haemodialysis. To a group of patients generally having limited cardiac...... reserves, a poor oxygen status is a potentially serious complication to haemodialysis. Monitoring oxygen status is thus advisable....

  20. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma


    Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T2-prepared Blood Imaging of Oxygen Saturation (T2-BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis......, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal...... sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy (R(2 )= 0.64, p infrared spectroscopy oxygen saturation...

  1. A new oxygen prescription produces real improvements in therapeutic oxygen use


    Rudge, James; Odedra, Sunita; Harrison, Danielle


    In the UK, safe use and administration of oxygen therapy was unsatisfactory prior to the implementation of national guidelines in 2008. Each year since then the British Thoracic Society (BTS) has conducted a national audit that has demonstrated a slow but steady improvement in oxygen use across four key standards. Sandwell and West Birmingham NHS Hospitals Trust has participated in this audit process but has failed to show consistent improvements. The aim of this quality improvement project w...

  2. Modulation of oxygen-dependent and oxygen-independent metabolism of neutrophilic granulocytes by quantum points. (United States)

    Pleskova, S N; Mikheeva, E R


    Inhibition of neutrophilic granulocyte metabolism under the effect of semiconductor quantum points was demonstrated. The status of the oxidative system was evaluated by the NBT test, nonoxidative status by the lysosomal cationic test. It was found that quantum points in a dose of 0.1 mg/ml irrespective of their core and composition of coating significantly inhibited oxygen-dependent and oxygen-independent metabolism of neutrophilic granulocytes.

  3. Centrifugal spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Špalek, Otomar; Hrubý, Jan; Čenský, Miroslav; Jirásek, Vít; Kodymová, Jarmila


    Roč. 100, č. 4 (2010), s. 793-802 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : centrifugal generator of singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  4. Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes

    Energy Technology Data Exchange (ETDEWEB)

    Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)


    Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

  5. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    International Nuclear Information System (INIS)

    Azyazov, V.N.; Torbin, A.P.; Pershin, A.A.; Mikheyev, P.A.; Heaven, M.C.


    Highlights: • Vibrational excitation of O 3 increases the rate constant for O 3 + O 2 (a) → 2O 2 (X) + O. • Vibrationally excited O 3 is produced by the O + O 2 (X) + M → O 3 + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O 3 . • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O 3 (υ) formed in O + O 2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O 2 (a 1 Δ), oxygen atom removal and ozone formation. It is shown that the process O 3 (υ ⩾ 2) + O 2 (a 1 Δ) → 2O 2 + O is the main O 2 (a 1 Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O 2 (a 1 Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  6. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle. (United States)

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S


    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Preparation of unsymmetrically labeled oxygen molecules and their use of elucidate oxygen metabolism

    International Nuclear Information System (INIS)

    Appelman, E.H.; Ogura, T.; Kitagawa, T.; Varotis, C.; Yong Zhang; Babcock, G.T.


    A novel technique has been developed to synthesize in large quantities an O 2 molecule that is unsymmetrically labeled with the oxygen isotopes oxygen-16 and oxygen-18. This unusual molecule, 16 O 18 O, has been utilized as a unique spectroscopic probe of the mechanism of metabolism in living organisms. Preparation of this molecule requires prior synthesis of the exotic precursor hypofluorous acid, HOF, and an improved method for synthesizing this precursor has recently been developed that permits the preparation of essentially unlimited quantities of the labeled oxygen. This, in turn, has made it practical to use this oxygen in Raman-spectroscopic studies of the mechanism by which O 2 is reduced by the enzyme cytochrome oxidase, a key step in the metabolic utilization of oxygen by living organisms. The results indicate that the interaction of O 2 with the iron of the enzyme may be represented: Fe 2+ + O 2 → Fe 2+ -O 2 → Fe 3+ -OOH - → Fe 4+ = O → Fe 3+ -OH -

  8. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials. (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei


    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  9. Microfluidic Wound Bandage: Localized Oxygen Modulation of Collagen Maturation (United States)

    Lo, Joe F.; Brennan, Martin; Merchant, Zameer; Chen, Lin; Guo, Shujuan; Eddington, David T.; DiPietro, Luisa A.


    Restoring tissue oxygenation has the potential to improve poorly healing wounds with impaired microvasculature. Compared to more established wound therapy using hyperbaric oxygen chambers, topical oxygen therapy has lower cost and better patient comfort, although topical devices have provided inconsistent results. To provide controlled topical oxygen while minimizing moisture loss, a major issue for topical oxygen, we’ve devised a novel wound bandage based on microfluidic diffusion delivery of oxygen. In addition to modulating oxygen from 0–100% in 60s rise time, the microfluidic oxygen bandage provides a conformal seal around the wound. When 100% oxygen is delivered, it penetrates wound tissues as measured in agar phantom and in vivo wounds. Using this microfluidic bandage, we applied the oxygen modulation to 8 mm excisional wounds prepared on diabetic mice. Treatment with the microfluidic bandage demonstrated improved collagen maturity in the wound bed, although only marginal differences were observed in total collagen, microvasculature, and external closure rates. Our results show that proper topical oxygen can improve wound parameters underneath the surface. Because of the ease of fabrication, the oxygen bandage represents an economical yet practical method for oxygen wound research. PMID:23438079

  10. Oxygen sensitivity of various anaerobic bacteria. (United States)

    Loesche, W J


    Anaerobes differ in their sensitivity to oxygen, as two patterns were recognizable in the organisms included in this study. Strict anaerobes were species incapable of agar surface growth at pO(2) levels greater than 0.5%. Species that were found to be strict anaerobes were Treponema macrodentium, Treponema denticola, Treponema oralis n. sp., Clostridium haemolyticum, Selenomonas ruminatium, Butyrivibrio fibrisolvens, Succinivibrio dextrinosolvens, and Lachnospira multiparus. Moderate anaerobes would include those species capable of growth in the presence of oxygen levels as high as 2 to 8%. The moderate anaerobes could be exposed to room atmosphere for 60 to 90 min without appreciable loss of viability. Species considered as moderate anaerobes were Bacteroides fragilis, B. melaninogenicus, B. oralis, Fusobacteria nucleatum, Clostridium novyi type A, and Peptostreptococcus elsdenii. The recognition of at least two general types of anaerobes would seem to have practical import in regard to the primary isolation of anaerobes from source material.

  11. The Interaction between Graphene and Oxygen Atom

    Directory of Open Access Journals (Sweden)

    Hao Yifan


    Full Text Available Based on the density function theory (DFT method, the interaction between the graphene and oxygen atom is simulated by the B3LYP functional with the 6-31G basis set. Due to the symmetry of graphene (C54H18, D6h, a representative patch is put forward to represent the whole graphene to simplify the description. The representative patch on the surface is considered to gain the potential energy surface (PES. By the calculation of the PES, four possible stable isomers of the C54H18-O radical can be obtained. Meanwhile, the structures and energies of the four possible stable isomers, are further investigated thermodynamically, kinetically, and chemically. According to the transition states, the possible reaction mechanism between the graphene and oxygen atom is given.

  12. [Hyperbaric oxygen therapy in cerebral circulatory insufficiency]. (United States)

    Chacornac, R; Martin, Y N; Fournier-Jenoudet, M T; Deleuze, R


    From a study bearing upon 26 patients suffering from a cerebral circulatory insufficiency induced by a stenosis or a thrombosis, the writers analyse the part played by Hyperbare Oxygen in the neurologic evolution. The defining of the efficacy criteria enabled them to determine whenever this part was prevalent and obvious (that's to say in 20 p. 100 of the cases). However, in the other cases it was hard to decide whether Hyperbare Oxygen played any part. Only functional lesions are liable to benefit from this therapy which seems mainly useful to cover the period of circulatory adaptation at a time when supply circulations may come into play. The difficulty to appreciate the importance of supply circulations urges on to treat this type of patients early enough in a systematic way and all the more so as they are young.

  13. The oxygen effect in E. coli cells

    International Nuclear Information System (INIS)

    Myasnik, M.N.; Skvortsov, V.G.; Sokolov, V.A.


    In experiments on E. coli strains deficient in some stages of DNA repair from radiation damages, it was demonstrated that the value of the oxygen effect, under optimal conditions for manifestation thereof, decreases in the following order: E. coli WP2 (the wild type) → E. coli WP2 exr - and E. coli B → E. coli WP2 uvr A6 → E. coli WP2 rec Al and E. coli WP2 hcr - exr - . It was detected that 0.14 M NaCl solution sensitizes the anoxic cells of some E. coli strains to the effect of γ-radiation. It was established that mutation of the uvr A-gene increases sharply the sensitivity of cells to iradiation under the anoxic conditions in the presence of NaCl, the reverse'' oxygen effect being observed

  14. Engineering the oxygen coordination in digital superlattices (United States)

    Cook, Seyoung; Andersen, Tassie K.; Hong, Hawoong; Rosenberg, Richard A.; Marks, Laurence D.; Fong, Dillon D.


    The oxygen sublattice in complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using synchrotron X-ray scattering in combination with soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, with higher Co oxidation states increasing the valence band maximum. This work demonstrates a new strategy for engineering unique electronic structures in the transition metal oxides using short-period superlattices.

  15. Oxygen Isotope Systematics of Almahata Sitta (United States)

    Kita, N. T.; Goodrich, C. A.; Herrin, J. S.; Shaddad, M. H.; Jenniskens, P.


    The Almahata Sitta (hereafter "AHS") meteorite was derived from an impact of asteroid 2008TC3 on Earth and is classified as an anomalous polymict ureilite. More than 600 meteorite fragments have been recovered from the strewnfield. Previous reports indicate that these fragments consist mainly of ureilitic materials with textures and compositions, while some fragments are found to be chondrites of a wide range of chemical classes. Bulk oxygen three isotope analyses of ureilitic fragments from AHS fall close to the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line similar to ureilites. In order to further compare AHS with known ureilites, we performed high precision SIMS (Secondary Ion Mass Spectrometer) oxygen isotope analyses of some AHS samples

  16. Excess Oxygen Defects in Layered Cuprates (United States)

    Lightfoot, P.; Pei, S. Y.; Jorgensen, J. D.; Manthiram, A.; Tang, X. X.; Goodenough, J. B.


    Neutron powder diffraction has been used to study the oxygen defect chemistry of two non-superconducting layered cuprates, La{sub 1. 25}Dy{sub 0.75}Cu{sub 3.75}F{sub 0.5}, having a T{sup {asterisk}}- related structure, and La{sub 1.85}Sr{sub 1.15}Cu{sub 2}O{sub 6.25}, having a structure related to that of the newly discovered double-layer superconductor La{sub 2-x}Sr{sub x}CaCu{sub 2}O{sub 6}. The role played by oxygen defects in determining the superconducting properties of layered cuprates is discussed.

  17. Anton syndrome during oxygen-ozone therapy. (United States)

    Avcı, Sema; Büyükcam, Fatih; Demir, Ömer Faruk; Özkan, Seda


    Ozone (O₃) gas is a molecule that consists of 3 oxygen atoms, found out in the mid-19th century [1]. Ozone gas preserves humans from detrimental influences of ultraviolet radiation [1]. In spite of harmful effects of O₃ gas, investigators think that it has excessive curative effects [1]. Nowadays, O₃ therapy is used for many fields of medicine in precise therapeutic doses [1] and [2]. It is known that O₃ therapy is helpful in dental procedures, cerebrovascular diseases, tinnitus, acquired immunodeficiency syndrome, hypercholesterolemia, sensorial hypoacusis, senile dementia, multiple sclerosis, irradiation sensitive tumors, herpes simplex and herpes zoster virus infections, muscular hypertonia, and chronic otitis media, etc.[2]. The complications and disadvantages of O₃ therapy could be observed in the future. Herein, we presented a case of ischemic stroke after an oxygen-O₃ therapy, which is called also Anton syndrome.

  18. Integral Field Spectroscopy Surveys: Oxygen Abundance Gradients (United States)

    Sánchez, S. F.; Sánchez-Menguiano, L.


    We present here the recent results on our understanding of oxygen abundance gradients derived using Integral Field Spectroscopic surveys. In particular we analyzed more than 2124 datacubes corresponding to individual objects observed by the CALIFA (˜ 734 objects) and the public data by MaNGA (˜ 1390 objects), deriving the oxygen abundance gradient for each galaxy. We confirm previous results that indicate that the shape of this gradient is very similar for all galaxies with masses above 109.5M⊙, presenting in average a very similar slope of ˜ -0.04 dex within 0.5-2.0 re, with a possible drop in the inner regions (r109.5M⊙) the gradient seems to be flatter than for more massive ones. All these results agree with an inside-out growth of massive galaxies and indicate that low mass ones may still be growing in an outside in phase.

  19. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator. (United States)

    Burn, Felice; Ciocan, Sorin; Carmona, Natalia Mendez; Berner, Marion; Sourdon, Joevin; Carrel, Thierry P; Tevaearai Stahel, Hendrik T; Longnus, Sarah L


    Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (circuits, such as small animal extracorporeal circulation and ex vivo organ perfusion. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems (United States)

    Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie


    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to

  1. Mechanical ventilation during extracorporeal membrane oxygenation


    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol


    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported re...

  2. Reactive oxygen species enhance insulin sensitivity


    Loh, Kim; Deng, Haiyang; Fukushima, Atsushi; Cai, Xiaochu; Boivin, Benoit; Galic, Sandra; Bruce, Clinton; Shields, Benjamin J.; Skiba, Beata; Ooms, Lisa M.; Stepto, Nigel; Wu, Ben; Mitchell, Christina A.; Tonks, Nicholas K.; Watt, Matthew J.


    Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione ...

  3. Hot oxygen atoms: Their generation and chemistry

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.


    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta 2 O 5 and V 2 O 5 . Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O( 3 P) with cis- and trans-butenes were investigated

  4. Do recruitment maneuvers simply improve oxygenation?


    Valenza, Franco


    Recruitment maneuvers have been the subject of intense investigation. Their role in the acute care setting is debated given the lack of information on their influence on clinical outcomes. Oxygenation improvement is often a striking effect, together with changes of respiratory mechanics. However, hemodynamic compromise is frequently associated with the maneuver, sometimes even barotrauma. Another possible downside is bacterial translocation secondary to lung overdistention, as suggested by ex...

  5. Study of argon-oxygen flowing afterglow (United States)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.


    The reaction kinetics in argon-oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon-oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  6. Singlet - oxygen therapy. 'MIT-S' apparatus

    International Nuclear Information System (INIS)

    Samosyuk, I.Z.; Chukhraev, N.V.; Pisanko, O.I.


    The described method is based on using singlet-oxygen mixture with antioxiding properties. This mixture is produced by photochemical sensibilization of air or water vapour in MIT-S apparatus. Technical parameters of MIT-S are presented. The method is used for therapy of different organs, for prophylactics, treatment and rehabilitation of a series of diseases (bronchial asthma, cardio-vascular, neurologic, sugar diabet, immune diseases)

  7. Oxygen reperfusion damage in an insect.

    Directory of Open Access Journals (Sweden)

    John R B Lighton

    Full Text Available The deleterious effects of anoxia followed by reperfusion with oxygen in higher animals including mammals are well known. A convenient and genetically well characterized small-animal model that exhibits reproducible, quantifiable oxygen reperfusion damage is currently lacking. Here we describe the dynamics of whole-organism metabolic recovery from anoxia in an insect, Drosophila melanogaster, and report that damage caused by oxygen reperfusion can be quantified in a novel but straightforward way. We monitored CO(2 emission (an index of mitochondrial activity and water vapor output (an index of neuromuscular control of the spiracles, which are valves between the outside air and the insect's tracheal system during entry into, and recovery from, rapid-onset anoxia exposure with durations ranging from 7.5 to 120 minutes. Anoxia caused a brief peak of CO(2 output followed by knock-out. Mitochondrial respiration ceased and the spiracle constrictor muscles relaxed, but then re-contracted, presumably powered by anaerobic processes. Reperfusion to sustained normoxia caused a bimodal re-activation of mitochondrial respiration, and in the case of the spiracle constrictor muscles, slow inactivation followed by re-activation. After long anoxia durations, both the bimodality of mitochondrial reactivation and the recovery of spiracular control were impaired. Repeated reperfusion followed by episodes of anoxia depressed mitochondrial respiratory flux rates and damaged the integrity of the spiracular control system in a dose-dependent fashion. This is the first time that physiological evidence of oxygen reperfusion damage has been described in an insect or any invertebrate. We suggest that some of the traditional approaches of insect respiratory biology, such as quantifying respiratory water loss, may facilitate using D. melanogaster as a convenient, well-characterized experimental model for studying the underlying biology and mechanisms of ischemia and

  8. Constraints on oxygen fugacity within metal capsules (United States)

    Faul, Ulrich H.; Cline, Christopher J., II; Berry, Andrew; Jackson, Ian; Garapić, Gordana


    Experiments were conducted with olivine encapsulated or wrapped in five different metals (Pt, Ni, Ni_{70}Fe_{30} , Fe, and Re) to determine the oxygen fugacity in the interior of large capsules used for deformation and seismic property experiments. Temperature (1200°C ), pressure (300 MPa), and duration (24 h) were chosen to represent the most common conditions in these experiments. The oxygen fugacity was determined by analysing the Fe content of initially pure Pt particles that were mixed with the olivine powder prior to the experiments. Oxygen fugacities in the more oxidizing metal containers are substantially below their respective metal-oxide buffers, with the fO_2 of sol-gel olivine in Ni about 2.5 orders of magnitude below Ni-NiO. Analysis of olivine and metal blebs reveals three different length-, and hence diffusive time scales: (1) Fe loss to the capsule over ˜ 100 μm, (2) fO_2 gradients at the sample-capsule interface up to 2 mm into the sample, and (3) constant interior fO_2 values with an ordering corresponding to the capsule material. The inferred diffusive processes are: Fe diffusion in olivine with a diffusivity ˜ 10^{-14} m^2/s , diffusion possibly of oxygen along grain boundaries with a diffusivity ˜ 10^{-12} m^2/s , and diffusion possibly involving pre-existing defects with a diffusivity ˜ 10^{-10} m^2/s . The latter, fast adjustment to changing fO_2 may consist of a rearrangement of pre-existing defects, representing a metastable equilibrium, analogous to decoration of pre-existing defects by hydrogen. Full adjustment to the external fO_2 requires atomic diffusion.

  9. Radial oxygen gradients over rat cortex arterioles


    Galler, Michael


    Purpose: We present the results of the visualisation of radial oxygen gradients in rats’ cortices and their use in neurocritical management. Methods: PO2 maps of the cortex of 10 wistar rats were obtained with a camera (SensiMOD, PCO, Kehlheim, Germany). Those pictures were analyzed and edited by a custom-made software. We chose a vessel for examination. A matrix, designed to evaluate the cortical O2 partial pressure, was placed vertically to the artery and afterwards multiple regio...

  10. High-power generator of singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila


    Roč. 36, č. 10 (2013), s. 1755-1763 ISSN 0930-7516 Grant - others:Laser Science and Technology Centre(IN) LASTEC/FE/RKT/54/10-11 Institutional research plan: CEZ:AV0Z10100523 Keywords : high-pressure singlet oxygen generator * spray generator * centrifugal separation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.175, year: 2013

  11. Oxygen isotopic fractionation during bacterial sulfate reduction (United States)

    Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.


    Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (δ18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The δ18OSO4 , in concert with the sulfur isotope composition of sulfate (δ34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present δ18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that δ18OSO4 shows little isotopic change (kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

  12. Production and Consumption of Reactive Oxygen Species by Fullerenes (United States)

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  13. Variations of dissolved oxygen in Mandovi and Zuari estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; SenGupta, R.

    and bottom water very low concentration. The stations at the freshwater end showed relatively higher oxygen concentration than the stations at the sea-end. Plots of oxygen against salinity showed peaks at the extreme ends (freshwater and seawater). Another...

  14. Human respiratory considerations for civil transport aircraft oxygen system. (United States)


    This report is intended to acquaint personnel involved in the design, inspection, and maintenance of civil transport oxygen systems with the human respiratory requirements and oxygen system design considerations necessary to effect an interface and p...

  15. Determination of Biological Oxygen Demand Rate Constant and ...

    African Journals Online (AJOL)

    Determination of Biological Oxygen Demand Rate Constant and Ultimate Biological Oxygen Demand for Liquid Waste Generated from Student Cafeteria at Jimma University: A Tool for Development of Scientific Criteria to Protect Aquatic Health in the Region.

  16. In Situ Oxygen Production from Lunar and Martian Regolith Project (United States)

    National Aeronautics and Space Administration — In situ oxygen production is of immense importance to NASA in the support of the NASA initiative to sustain man's permanent presence in space. The oxygen produced...

  17. Synthesis of fluorinated organic compounds using oxygen difluoride (United States)

    Toy, M. S.


    Oxygen difluoride synthesis is a much simpler, higher-yield procedure than reactions originally followed to synthesize various fluorinated organic compounds. Extreme care is taken in working with oxygen difluoride as its reactions present severe explosion hazard.

  18. Hyperbaric oxygen diving affects exhaled molecular profiles in men

    NARCIS (Netherlands)

    van Ooij, P. J. A. M.; van Hulst, R. A.; Kulik, W.; Brinkman, P.; Houtkooper, A.; Sterk, P. J.


    Exhaled breath contains volatile organic compounds (VOCs) that are associated with respiratory pathophysiology. We hypothesized that hyperbaric oxygen exposure (hyperoxia) generates a distinguishable VOC pattern. This study aimed to test this hypothesis in oxygen-breathing divers. VOCs in exhaled

  19. The effect of oxygenated water in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Yvonne S. Handajani


    Full Text Available Aim To examine those claims, i.e the effects of oxygenated water on hypertension and Diabetes Mellitus (DM.Methods In this clinical trial, 108 subjects of Diabetes Mellitus were recruited. Each group was divided randomly into 2 subgroups. One subgroup was given oxygenated water and the other subgroup was given non-oxygenated water for 2 period of intervention, 45 days and 90 days. Measured variables were, blood sugar and malondialdehyde (MDA.Results The study showed that oxygenated water could reduce post-prandial glucose in DM subjects. DM subjects with normal nutritional states, also had greater tendency of MDA reduction after consuming oxygenated water for 45 days. Most of subjects felt healthier after consuming oxygenated water.Conclusion The consumption of oxygenated water could improve the healing process for patients with diabetes mellitus. (Med J Indones 2009; 18: 102-7Key words: oxygenated water, diabetes mellitus, MDA, free radicals

  20. Influence of reactive oxygen species on the sterilization of microbes (United States)

    The influence of reactive oxygen species on living cells, including various microbes, is discussed. A sterilization experiment with bacterial endospores reveals that an argoneoxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby indicating that oxygen radic...

  1. Medical Oxygen Concentrator for Microgravity Operation, Phase I (United States)

    National Aeronautics and Space Administration — We have all seen people carrying portable oxygen tanks or concentrators to provide critical life support respiratory oxygen. Heavy, bulky, and for O2 concentrators,...

  2. BOND: Bayesian Oxygen and Nitrogen abundance Determinations (United States)

    Vale Asari, N.; Stasinska, G.; Morisset, C.; Cid Fernandes, R.


    BOND determines oxygen and nitrogen abundances in giant H II regions by comparison with a large grid of photoionization models. The grid spans a wide range in O/H, N/O and ionization parameter U, and covers different starburst ages and nebular geometries. Unlike other statistical methods, BOND relies on the [Ar III]/[Ne III] emission line ratio to break the oxygen abundance bimodality. By doing so, it can measure oxygen and nitrogen abundances without assuming any a priori relation between N/O and O/H. BOND takes into account changes in the hardness of the ionizing radiation field, which can come about due to the ageing of H II regions or the stochastically sampling of the IMF. The emission line ratio He I/Hβ, in addition to commonly used strong lines, constrains the hardness of the ionizing radiation field. BOND relies on the emission line ratios [O III]/Hβ, [O II]/Hβ and [N II]/Hβ, [Ar III]/Hβ, [Ne III]/Hβ, He I/Hβ as its input parameters, while its output values are the measurements and uncertainties for O/H and N/O.

  3. Bimodular high temperature planar oxygen gas sensor (United States)

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Puxian; Lei, Yu


    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  4. Senescence, Stress, and Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Ivan Jajic


    Full Text Available Generation of reactive oxygen species (ROS is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H2O2 causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H2O2 such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (1O2 has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment.

  5. Senescence, Stress, and Reactive Oxygen Species (United States)

    Jajic, Ivan; Sarna, Tadeusz; Strzalka, Kazimierz


    Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H2O2 causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H2O2 such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (1O2) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment. PMID:27135335

  6. Porous phosphorescent coordination polymers for oxygen sensing. (United States)

    Xie, Zhigang; Ma, Liqing; deKrafft, Kathryn E; Jin, Athena; Lin, Wenbin


    Phosphorescent cyclometalated iridium tris(2-phenylpyridine) derivatives were designed and incorporated into coordination polymers as tricarboxylate bridging ligands. Three different crystalline coordination polymers were synthesized using a solvothermal technique and were characterized using a variety of methods, including single-crystal X-ray diffraction, PXRD, TGA, IR spectroscopy, gas adsorption measurements, and luminescence measurements. The coordination polymer built from Ir[3-(2-pyridyl)benzoate](3), 1, was found to be highly porous with a nitrogen BET surface area of 764 m(2)/g, whereas the coordination polymers built from Ir[4-(2-pyridyl)benzoate](3), 2 and 3, were nonporous. The (3)MLCT phosphorescence of each of the three coordination polymers was quenched in the presence of O(2). However, only 1 showed quick and reversible luminescence quenching by oxygen, whereas 2 and 3 exhibited gradual and irreversible luminescence quenching by oxygen. The high permanent porosity of 1 allows for rapid diffusion of oxygen through the open channels, leading to efficient and reversible quenching of the (3)MLCT phosphorescence. This work highlights the opportunity of designing highly porous and luminescent coordination polymers for sensing other important analytes.

  7. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun


    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  8. Modelling oxygen transfer using dynamic alpha factors. (United States)

    Jiang, Lu-Man; Garrido-Baserba, Manel; Nolasco, Daniel; Al-Omari, Ahmed; DeClippeleir, Haydee; Murthy, Sudhir; Rosso, Diego


    Due to the importance of wastewater aeration in meeting treatment requirements and due to its elevated energy intensity, it is important to describe the real nature of an aeration system to improve design and specification, performance prediction, energy consumption, and process sustainability. Because organic loadings drive aeration efficiency to its lowest value when the oxygen demand (energy) is the highest, the implications of considering their dynamic nature on energy costs are of utmost importance. A dynamic model aimed at identifying conservation opportunities is presented. The model developed describes the correlation between the COD concentration and the α factor in activated sludge. Using the proposed model, the aeration efficiency is calculated as a function of the organic loading (i.e. COD). This results in predictions of oxygen transfer values that are more realistic than the traditional method of assuming constant α values. The model was applied to two water resource recovery facilities, and was calibrated and validated with time-sensitive databases. Our improved aeration model structure increases the quality of prediction of field data through the recognition of the dynamic nature of the alpha factor (α) as a function of the applied oxygen demand. For the cases presented herein, the model prediction of airflow improved by 20-35% when dynamic α is used. The proposed model offers a quantitative tool for the prediction of energy demand and for minimizing aeration design uncertainty. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Electron transfer pathways in microbial oxygen biocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Freguia, Stefano, E-mail: [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan); Tsujimura, Seiya, E-mail: [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan); Kano, Kenji, E-mail: [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan)


    The ability of some bacteria to enhance the rate of cathodic oxygen reduction to water has been recently discovered, opening the way to an entirely renewable and environmentally friendly concept of biocathode. In this study we reveal that several mechanisms may induce catalytic effects by bacteria. These comprise mechanisms that are putatively beneficial to the bacteria as well as mechanisms which are merely side effects, including quinone autoxidation and direct O{sub 2} reduction by heme compounds. Here we showed that 1 muM of ACNQ is able to generate a significant catalytic wave for oxygen reduction, with onset at approximately 0 V vs. SHE. Similarly, adsorption of hemin on a carbon surface catalyses O{sub 2} reduction to H{sub 2}O{sub 2} with an onset of +0.2 V vs. SHE. To evaluate the catalytic pathways of live cells on cathodic oxygen reduction, two species of electrochemically active bacteria were selected as pure cultures, namely Acinetobacter calcoaceticus and Shewanella putrefaciens. The former appears to exploit a self-excreted redox compound with redox characteristics matching those of pyrroloquinoline quinone (PQQ) for extracellular electron transfer. The latter appears to utilise outer membrane-bound redox compounds. Interaction of quinones and cytochromes with the membrane-bound electron transfer chain is yet to be proven.

  10. Electron transfer pathways in microbial oxygen biocathodes

    International Nuclear Information System (INIS)

    Freguia, Stefano; Tsujimura, Seiya; Kano, Kenji


    The ability of some bacteria to enhance the rate of cathodic oxygen reduction to water has been recently discovered, opening the way to an entirely renewable and environmentally friendly concept of biocathode. In this study we reveal that several mechanisms may induce catalytic effects by bacteria. These comprise mechanisms that are putatively beneficial to the bacteria as well as mechanisms which are merely side effects, including quinone autoxidation and direct O 2 reduction by heme compounds. Here we showed that 1 μM of ACNQ is able to generate a significant catalytic wave for oxygen reduction, with onset at approximately 0 V vs. SHE. Similarly, adsorption of hemin on a carbon surface catalyses O 2 reduction to H 2 O 2 with an onset of +0.2 V vs. SHE. To evaluate the catalytic pathways of live cells on cathodic oxygen reduction, two species of electrochemically active bacteria were selected as pure cultures, namely Acinetobacter calcoaceticus and Shewanella putrefaciens. The former appears to exploit a self-excreted redox compound with redox characteristics matching those of pyrroloquinoline quinone (PQQ) for extracellular electron transfer. The latter appears to utilise outer membrane-bound redox compounds. Interaction of quinones and cytochromes with the membrane-bound electron transfer chain is yet to be proven.

  11. Oxygen Compatibility Assessment of Components and Systems (United States)

    Stoltzfus, Joel; Sparks, Kyle


    Fire hazards are inherent in oxygen systems and a storied history of fires in rocket engine propulsion components exists. To detect and mitigate these fire hazards requires careful, detailed, and thorough analyses applied during the design process. The oxygen compatibility assessment (OCA) process designed by NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) can be used to determine the presence of fire hazards in oxygen systems and the likelihood of a fire. This process may be used as both a design guide and during the approval process to ensure proper design features and material selection. The procedure for performing an OCA is a structured step-by-step process to determine the most severe operating conditions; assess the flammability of the system materials at the use conditions; evaluate the presence and efficacy of ignition mechanisms; assess the potential for a fire to breach the system; and determine the reaction effect (the potential loss of life, mission, and system functionality as the result of a fire). This process should be performed for each component in a system. The results of each component assessment, and the overall system assessment, should be recorded in a report that can be used in the short term to communicate hazards and their mitigation and to aid in system/component development and, in the long term, to solve anomalies that occur during engine testing and operation.

  12. Cool oxygen plasma oxidation of the organic matter of coal

    Energy Technology Data Exchange (ETDEWEB)

    Korobetskii, I.A.; Nazimov, S.A.; Romanchuk, V.V. [COAL-C Ltd., Kemerovo (Russian Federation)


    Oxidation of the sapropelitic coals has been carried out by cool oxygen plasma. The changes in concentration of oxygen- and hydrogen-containing groups of organic matter were observed by photoacoustic FTIR-spectroscopy during the cool oxygen plasma oxidation (COPO). The accumulation of oxygen-containing bands, such as C-O and O-H, during COPO was shown. The complete elimination of aromatic and aliphatic structure occurred in first two hours of oxidation. (orig.)

  13. Rational use of oxygen in medical disease and anesthesia

    DEFF Research Database (Denmark)

    Meyhoff, Christian S; Staehr, Anne K; Rasmussen, Lars S


    Supplemental oxygen is often administered during anesthesia and in critical illness to treat hypoxia, but high oxygen concentrations are also given for a number of other reasons such as prevention of surgical site infection (SSI). The decision to use supplemental oxygen is, however, controversial......, because of large heterogeneity in the reported results and emerging reports of side-effects. The aim of this article is to review the recent findings regarding benefits and harms of oxygen therapy in anesthesia and acute medical conditions....

  14. Oxygen Sensing by Protozoans: How They Catch Their Breath


    West, Christopher M.; Blader, Ira J.


    Cells must know the local levels of available oxygen and either alter their activities or relocate to more favorable environments. Prolyl 4-hydroxylases are emerging as universal cellular oxygen sensors. In animals, these oxygen sensors respond to decreased oxygen availability by up-regulating hypoxia-inducible transcription factors. In protists, the prolyl 4-hydroxylases appear to activate E3-SCF ubiquitin ligase complexes potentially to turn over their proteomes. Intracellular parasites res...

  15. Plant-mediated Sediment Oxygenation in Coastal Wetlands (United States)

    Koop-Jakobsen, K.


    Belowground sediment oxygenation by wetland plants is an important mechanism controlling many microbial processes and chemical fluxes in coastal wetlands. Although transport of oxygen via the arenthyma tissue and subsequent oxygen loss across root surfaces is well-documented for Spartina grasses, only few studies have measured the oxygenation of sediment surrounding roots and rhizomes. In this study, the degree of sediment oxygenation in Spartina anglica rhizospheres was assessed in situ using a novel multifiber optode system inserting 100 oxygen sensing fiber optodes directly into the rhizosphere. Two closely located, but morphologically different, S. anglica populations growing in permeable sandy sediment and tidal flat deposit, respectively, were investigated. No oxygen was detected inside the rhizospheres at any depth in either location indicating that plant-mediated sediment oxygenation in S. anglica had a limited impact on the bulk anoxic sediment. This was substantiated by planar optode studies showing that sediment oxygenation was confined to the immediate vicinity of the root tips of adventitious root and root hairs stretching only up to 1.5mm away from the roots surface in permeable sandy sediment and 0.4mm in tidal flat deposit, which had a substantially higher oxygen demand. This contrasts previous studies estimating that more than half of the S. anglica rhizosphere volume may be oxygenated, and thereby suggests a high variability in the degree of sediment oxygenation among different S. anglica populations. Furthermore, there may be a significant difference in the degree of sediment oxygenation among different Spartina species; our recent in situ investigation of oxygen profiles in a Spartina alterniflora-dominated marsh suggested that oxygen leakage here may keep the bulk sediment at low oxygen concentration ranging from 0.5-4μM.

  16. [Recent technical advances in portable oxygen delivery systems]. (United States)

    Machida, K; Kawabe, Y; Mori, M; Haga, T


    According to a Japanese national survey (June 30, 1990), the number of patients receiving home oxygen therapy (HOT) has been greater than 18,000 since March 1985, when HOT was first covered by health insurance. The oxygen concentrator, especially the molecular sieve type, is the most common method of delivery (more than 90%). In April 1988, the portable oxygen cylinder was acknowledged by health insurance, and the liquid oxygen supply system in April 1990. Three types of portable oxygen delivery systems are available; oxygen cyclinder, liquid oxygen system, and oxygen concentrator (membrane type), of which the oxygen cylinder is most commonly used. In our hospital, portable oxygen supply systems were used in 80% of 168 HOT cases in 1990, and the use of 400 L aluminum oxygen cylinders at a flow rate of 1-2 L/min has been most popular. There is an strong desire from patients for lighter portable oxygen supply system of longer duration. In 19 patients with chronic respiratory failure, we evaluated a newly designed demand oxygen delivery system (DODS), which weighs 2.4 kg including the DOD device (TER-20 Teijin), 1.1 L oxygen cylinder made of ultressor, nasal cannula, and carrier. Arterial blood gases at rest (room air) were PaO2 61.9 +/- 6.3 torr, PaCO2 63.8 +/- 9.4 torr and pH 7.40 +/- 0.04. A crossover trial was performed under three conditions; breathing room air with no weight, and pulse oxygen flow and continuous oxygen flow each carrying 2.4 kg of weight. Both 6 minute walking (E1) and walking on a slow speed treadmill (E2) were studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Effect of PKCbeta on retinal oxygenation response in experimental diabetes.


    Luan, H.; Leitges, M.; Gupta, R.; Pacheco, D.; Seidner, A.; Liggett, J.; Ito, Y.; Kowluru, R.; Berkowitz, B.


    PURPOSE: To test the hypotheses that, in mice, breathing carbogen (95% O(2)-5% CO(2)) oxygenates the retina better than breathing 100% oxygen, the superior hemiretinal oxygenation response to carbogen inhalation is subnormal early in diabetes, and diabetes-induced elevation of retinal protein kinase C (PKC)-beta contributes to this pathophysiology. METHODS: Retinal oxygenation response (DeltaPO(2)) was measured using functional magnetic resonance imaging (MRI) and either carbogen or 100% oxyg...

  18. Oxygen dependence of respiration in rat spinotrapezius muscle in situ


    Golub, Aleksander S.; Pittman, Roland N.


    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po...

  19. Effects of Southern Hemispheric Wind Changes on Global Oxygen and the Pacific Oxygen Minimum Zone (United States)

    Getzlaff, J.; Dietze, H.; Oschlies, A.


    We use a coupled ocean biogeochemistry-circulation model to compare the impact of changes in southern hemispheric winds with that of warming induced buoyancy fluxes on dissolved oxygen. Changes in the southern hemispheric wind fields, which are in line with an observed shift of the southern annual mode, are a combination of a strengthening and poleward shift of the southern westerlies. We differentiate between effects caused by a strengthening of the westerlies and effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our results confirm that the Southern Ocean plays an important role for the marine oxygen supply: a strengthening of the southern westerlies, that leads to an increase of the water formation rates of the oxygen rich deep and intermediate water masses, can counteract part of the warming-induced decline in marine oxygen levels. The wind driven intensification of the Southern Ocean meridional overturning circulation drives an increase of the global oxygen supply. Furthermore the results show that the shift of the boundary between westerlies and trades results in an increase of subantarctic mode water and an anti-correlated decrease of deep water formation and reduces the oceanic oxygen supply. In addition we find that the increased meridional extension of the southern trade winds, results in a strengthening and southward shift of the subtropical wind stress curl. This alters the subtropical gyre circulation (intensification and southward shift) and with it decreases the water mass transport into the oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-to-westerlies boundary is as important for the future evolution of the suboxic volume as direct warming-induced changes.

  20. Effects of motexafin gadolinium on tumor oxygenation and cellular oxygen consumption

    International Nuclear Information System (INIS)

    Donnelly, E.T.; Liu, Y.; Rockwell, S.; Magda, D.


    Full text: Recent work in our laboratory showed that motexafin gadolinium (MGd, Xcytrin), a drug currently in Phase III clinical trials as an adjuvant to radiation therapy, modulates the oxygen tensions in EMT6 tumors. The median pO 2 increased from the control value of 1.5±0.4 mmHg to 7.4 ± 3.8 mmHg six hours after treatment with 40 μmol/kg MGd and the percentage of severely hypoxic readings in the tumors ( 7 plateau phase EMT6 cells in 3 mL Dulbecco's Modified Eagle's Medium supplemented with 10% dialyzed fetal bovine serum, which contains no ascorbic acid. In the absence of ascorbic acid, 100 μM MGd did not alter the cellular oxygen consumption rate for EMT6 cells significantly. Marked inhibition of cellular oxygen consumption was observed when cells were incubated with 100 μM MGd in medium supplemented with equimolar ascorbic acid (a 31.5% decrease in consumption was observed after 6 hours of treatment). The 5% mannitol vehicle solution with equimolar ascorbic acid had no discernible effect on cellular oxygen consumption. Ascorbic acid may facilitate cellular uptake of MGd via the intermediate formation of a MGd-oxalate complex. These studies suggest that changes in cellular oxygen consumption could contribute to the changes in tumor oxygenation seen after administration of MGd. These experiments were supported by Pharmacyclics and training grant T32CA09085 from the NIH (E.T.D.). We thank Dr. Raymond Russell for allowing us to use his oxygen electrode apparatus

  1. Comparison of pulseoximetry oxygen saturation and arterial oxygen saturation in open heart intensive care unit

    Directory of Open Access Journals (Sweden)

    Alireza Mahoori


    Full Text Available Background: Pulseoximetry is widely used in the critical care setting, currently used to guide therapeutic interventions. Few studies have evaluated the accuracy of SPO2 (puls-eoximetry oxygen saturation in intensive care unit after cardiac surgery. Our objective was to compare pulseoximetry with arterial oxygen saturation (SaO2 during clinical routine in such patients, and to examine the effect of mild acidosis on this relationship.Methods: In an observational prospective study 80 patients were evaluated in intensive care unit after cardiac surgery. SPO2 was recorded and compared with SaO2 obtained by blood gas analysis. One or serial arterial blood gas analyses (ABGs were performed via a radial artery line while a reliable pulseoximeter signal was present. One hundred thirty seven samples were collected and for each blood gas analyses, SaO2 and SPO2 we recorded.Results: O2 saturation as a marker of peripheral perfusion was measured by Pulseoxim-etry (SPO2. The mean difference between arterial oxygen saturation and pulseoximetry oxygen saturation was 0.12%±1.6%. A total of 137 paired readings demonstrated good correlation (r=0.754; P<0.0001 between changes in SPO2 and those in SaO2 in samples with normal hemoglobin. Also in forty seven samples with mild acidosis, paired readings demonstrated good correlation (r=0.799; P<0.0001 and the mean difference between SaO2 and SPO2 was 0.05%±1.5%.Conclusion: Data showed that in patients with stable hemodynamic and good signal quality, changes in pulseoximetry oxygen saturation reliably predict equivalent changes in arterial oxygen saturation. Mild acidosis doesn’t alter the relation between SPO2 and SaO2 to any clinically important extent. In conclusion, the pulse oximeter is useful to monitor oxygen saturation in patients with stable hemodynamic.

  2. Fentanyl uptake by the scimed membrane oxygenator. (United States)

    Rosen, D; Rosen, K; Davidson, B; Broadman, L


    With the initiation of cardiopulmonary bypass (CPB), using a membrane oxygenator, the drop in circulating fentanyl concentration is greater than can be attributed to dilution alone. This study examined the Scimed brand (2A-800) membrane oxygenator as a site of fentanyl binding. Initial experiments used an assembled CPB circuit. Subsequent dissection and analysis of the oxygenator revealed that the silicone-based membrane sheets were the primary site of fentanyl binding. The silicone-containing waterproof wrapper was also responsible for 1% to 2% of fentanyl binding. Binding of fentanyl to the Scimed membrane oxygenator occurs at a rapid rate and continues until the membrane has taken up 130 ng/cm2 of membrane surface area. The interaction is complete by 15 to 30 minutes if suprasaturated concentrations are used. Samples of membrane material with a surface area of 1 cm2 were also studied. Isolated membrane squares in a nonmoving prime solution required two hours for saturation at the same fentanyl concentrations as the intact membrane with circulating prime. Introduction of motion to the priming solution accelerated the rate of fentanyl binding by the isolated membrane squares to a rate similar to the intact membrane. Motion also provided results similar to those previously reported using different analysis techniques. Therefore, this method of studying fentanyl-membrane interactions using samples of membrane and tritiated fentanyl is a valid model for the intact membrane oxygenator in the assembled bypass circuit. In addition to solution movement, fentanyl concentration of the priming solution was also found to affect the rate of fentanyl uptake. When fentanyl concentrations were used which were insufficient to achieve saturation of the membrane (10 ng/mL and 20 ng/mL), the rate of uptake was slowed. Binding of all available fentanyl under these conditions occurred within three hours. There is potential modification of this interaction by several clinically

  3. Formation and properties of metal–oxygen atomic chains

    NARCIS (Netherlands)

    Thijssen, W.H.A.; Strange, M.; aan de Brugh, J.M.J.; van Ruitenbeek, J.M.


    Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in the chain, which facilitates the creation of longer

  4. Oxygen therapies and their effects on wound healing

    NARCIS (Netherlands)

    de Smet, Gijs H. J.; Kroese, Leonard F.; Menon, Anand G.; Jeekel, Johannes; van Pelt, Antoon W. J.; Kleinrensink, Gert-Jan; Lange, Johan F.

    Oxygen is an important factor for wound healing. Although several different therapies investigated the use of oxygen to aid wound healing, the results of these studies are not unequivocal. This systematic review summarizes the clinical and experimental studies regarding different oxygen therapies

  5. Rooting Responses of Three Oak Species to Low Oxygen Stress (United States)

    Karel A. Jacobs; James D. MacDonald; Alison M. Berry; Laurence R. Costello


    Rooting characteristics were compared in blue (Q. douglasii), valley (Q. lobata), and cork oak (Q. suber) seedlings under hypoxic (low oxygen) conditions. A 50 percent reduction in root growth occurred in all species at an oxygen level of 4 percent, or an oxygen diffusion rate of 0.3 mg cm-2...

  6. Oxygen sensitivity of krypton and Lyman-alpha hygrometers

    NARCIS (Netherlands)

    Dijk, van A.; Kohsiek, W.; Bruin, de H.A.R.


    The oxygen sensitivity of krypton and Lyman-¿ hygrometers is studied. Using a dewpoint generator and a controlled nitrogen/oxygen flow the extinction coefficients of five hygrometers associated with the third-order Taylor expansion of the Lambert¿Beer law around reference conditions for oxygen and

  7. Is oxygen supplementation necessary for patients under spinal ...

    African Journals Online (AJOL)

    Background: Oxygen supplementation is given routinely to patients undergoing surgery under spinal anaesthesia, the basic aim being to prevent oxygen desaturation and hypoxemia. Objective: This study aimed to find out the incidence of hypoxemia under spinal anaesthesia and determine if oxygen supplementation is ...

  8. Is Oxygen Supplementation Necessary for Patients under Spinal ...

    African Journals Online (AJOL)


    ABSTRACT. Background: Oxygen supplementation is given routinely to patients undergoing surgery under spinal anaesthesia, the basic aim being to prevent oxygen desaturation and hypoxemia. Objective: This study aimed to find out the incidence of hypoxemia under spinal anaesthesia and determine if oxygen ...

  9. Optical detection of singlet oxygen from single cells

    DEFF Research Database (Denmark)

    Snyder, John; Skovsen, Esben; Lambert, John D. C.


    The lowest excited electronic state of molecular oxygen, singlet molecular oxygen, O2(a 1g), is a reactive species involved in many chemical and biological processes. To better understand the roles played by singlet oxygen in biological systems, particularly at the sub-cellular level, optical tools...

  10. Calcium, Copper Protein And Oxygen Affinity In Haemocyanins Of ...

    African Journals Online (AJOL)

    ... to buffer the decrease in extracellular pH during aestivation is likely responsible for the high oxygen affinity of haemocyanin (43.0% increase) from aestivating snails through co-operative oxygen binding. Key Words: Aestivation, snail, Achatina achatina, inorganic ions, haemocyanin, absorption spectra, oxygen affinity.

  11. plasma-oxygen interaction during thin films deposition by laser ...

    African Journals Online (AJOL)


    Jun 30, 2012 ... ABSTRACT. In this contribution we study the effect of the oxygen pressure on the plasma dynamics during the ablation of oxides materials into an oxygen gas. The study was done using fast imaging and ion probe techniques. Both techniques revealed that a threshold oxygen pressure is needed to initiate ...


    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  13. Mathematical modeling of dissolved oxygen in fish ponds ...

    African Journals Online (AJOL)

    Mathematical modeling of dissolved oxygen in fish ponds. WJS Mwegoha, ME Kaseva, SMM Sabai. Abstract. A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide and chemical oxygen demand (COD) on Dissolved Oxygen (DO) in fish ponds. The effects ...

  14. Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record. (United States)

    Hannisdal, Bjarte; Haaga, Kristian Agasøster; Reitan, Trond; Diego, David; Liow, Lee Hsiang


    Common species shape the world around us, and changes in their commonness signify large-scale shifts in ecosystem structure and function. However, our understanding of long-term ecosystem response to environmental forcing in the deep past is centred on species richness, neglecting the disproportional impact of common species. Here, we use common and widespread species of planktonic foraminifera in deep-sea sediments to track changes in observed global occupancy (proportion of sampled sites at which a species is present and observed) through the turbulent climatic history of the last 65 Myr. Our approach is sensitive to relative changes in global abundance of the species set and robust to factors that bias richness estimators. Using three independent methods for detecting causality, we show that the observed global occupancy of planktonic foraminifera has been dynamically coupled to past oceanographic changes captured in deep-ocean temperature reconstructions. The causal inference does not imply a direct mechanism, but is consistent with an indirect, time-delayed causal linkage. Given the strong quantitative evidence that a dynamical coupling exists, we hypothesize that mixotrophy (symbiont hosting) may be an ecological factor linking the global abundance of planktonic foraminifera to long-term climate changes via the relative extent of oligotrophic oceans. © 2017 The Authors.

  15. The oxycoal process with cryogenic oxygen supply (United States)

    Kather, Alfons; Scheffknecht, Günter


    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  16. Nitric Oxide is Required for Homeostasis of Oxygen and Reactive Oxygen Species in Barley Roots under Aerobic Conditions

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Kruger, Nicholas J


    Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation...... of mitochondrial metabolism under most conditions, root tissues often suffer oxygen deprivation during normal development due to the lack of an endogenous supply and isolation from atmospheric oxygen. Since changes in oxygen concentration have multiple effects on metabolism and energy production (Geigenberger......, 2003), tight control of oxygen consumption and homeostasis is likely to be particularly important in underground tissues such as roots. Nitric oxide (NO) is involved in many plant processes (Mur et al., 2013) and, under hypoxia, there is good evidence that nitric oxide (NO) contributes to the recycling...

  17. Incorporation of oxygen into abscisic acid and phaseic acid for molecular oxygen

    International Nuclear Information System (INIS)

    Creelman, R.A.; Zeevaart, J.A.D.


    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumariu. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18 O 2 and 80% N 2 indicates that one atom of 18 O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18 O 2 indicates that one atom of 18 O is presented in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-streesed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggest that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. 17 references, 2 figures, 1 tables

  18. Singlet Oxygen Generation as a Major Cause for Parasitic Reactions during Cycling of Aprotic Lithium-Oxygen Batteries


    Mahne, Nika; Schafzahl, Bettina; Leypold, Christian; Leypold, Mario; Grumm, Sandra; Leitgeb, Anita; Strohmeier, Gernot A.; Wilkening, Martin; Fontaine, Olivier; Kramer, Denis; Slugovc, Christian; Borisov, Sergey M.; Freunberger, Stefan A.


    Non-aqueous metal-oxygen batteries depend critically on the reversible formation/decomposition of metal oxides on cycling. Irreversible parasitic reactions cause poor rechargeability, efficiency, and cycle life and have predominantly been ascribed to the reactivity of reduced oxygen species with cell components. These species, however, cannot fully explain the side reactions. Here we show that singlet oxygen forms at the cathode of a lithium-oxygen cell during discharge and from the onset of ...

  19. Diffusion coefficients of oxygen and hemoglobin as obtained simultaneously from photometric determination of the oxygenation of layers of hemoglobin solutions

    NARCIS (Netherlands)

    Spaan, J. A.; Kreuzer, F.; van Wely, F. K.


    The oxygenation of layers of deoxygenated hemoglobin solutions after a sudden exposure to a gas containing oxygen at a partial pressure P1 has been studied by a photometric method. Layer thicknesses varied between 50 and 250 micron, hemoglobin concentrations between 0.1 and 0.34kg/l, and oxygen

  20. Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Rasmussen, Peter; Siebenmann, Christoph


    INTRODUCTION: Frontal lobe oxygenation (Sc O2 ) is assessed by spatially resolved near-infrared spectroscopy (SR-NIRS) although it seems influenced by extra-cerebral oxygenation. We aimed to quantify the impact of extra-cerebral oxygenation on two SR-NIRS derived Sc O2 . METHODS: Multiple...

  1. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy. (United States)

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma; Hendrikse, Jeroen; Groenendaal, Floris; van Bel, Frank; Benders, Manon Jnl; Petersen, Esben T


    Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T 2 -prepared Blood Imaging of Oxygen Saturation (T 2 -BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T 2 -prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R 2  = 0.64, p infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R 2  = 0.71, 0.50, 0.65; p infrared spectroscopy and T 2 -prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.

  2. Oxygenation measurement by multi-wavelength oxygen-dependent phosphorescence and delayed fluorescence: catchment depth and application in intact heart

    NARCIS (Netherlands)

    Balestra, Gianmarco M.; Aalders, Maurice C. G.; Specht, Patricia A. C.; Ince, Can; Mik, Egbert G.


    Oxygen delivery and metabolism represent key factors for organ function in health and disease. We describe the optical key characteristics of a technique to comprehensively measure oxygen tension (PO(2)) in myocardium, using oxygen-dependent quenching of phosphorescence and delayed fluorescence of

  3. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.


    1. The solubility of oxygen in water increases with decreasing temperature. This has led to a general perception of cold, high mountain streams as more oxygen rich than warmer lowland streams, and that macroinvertebrates inhabiting high altitude streams have had no need to adapt to critical oxygen...... conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...

  4. Placental Gas Exchange and the Oxygen Supply to the Fetus

    DEFF Research Database (Denmark)

    Carter, Anthony M


    The oxygen supply of the fetus depends on the blood oxygen content and flow rate in the uterine and umbilical arteries and the diffusing capacity of the placenta. Oxygen consumption by the placenta is a significant factor and a potential limitation on availability to the fetus. The relevance...... anaerobic conditions and even the fetus is adapted to a low oxygen environment. Nevertheless, there is a reserve capacity, and during acute hypoxia the fetus can counter a 50% reduction in oxygen delivery by increasing fractional extraction. During sustained hypoxia, on the other hand, fetal growth...

  5. Osmotic phenomena in application for hyperbaric oxygen treatment. (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G


    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  6. Fluorinated methacrylamide chitosan sequesters reactive oxygen species to relieve oxidative stress while delivering oxygen. (United States)

    Patil, Pritam S; Leipzig, Nic D


    Antioxidants play an important role in regulating overabundant reactive oxygen species (ROS) in wound healing to reduce oxidative stress and inflammation. In this work, we demonstrate for the first time that functionalization of methacrylamide chitosan (MAC) with aliphatic pentadecafluoro chains, to synthesize pentadecafluoro-octanoyl methacrylamide chitosan (MACF), enhances the antioxidant capacity of the MAC base hydrogel material, while being able to deliver oxygen for future enhanced wound healing applications. As such, MACF was shown to sequester more nitric oxide (p oxygen. MACF's beneficial antioxidant capacity was further confirmed in in vitro cell culture experiments using human dermal fibroblasts stressed with 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2368-2374, 2017. © 2017 Wiley Periodicals, Inc.

  7. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Jensen, Marlene Mark; Contreras, Sergio


    on the global N-cycle. We examined the effect of oxygen (O2) on anammox, NH3 oxidation and NO3 2 reduction in 15N-labeling experiments with varying O2 concentrations (0–25 mmol L21) in the Namibian and Peruvian OMZs. Our results show that O2 is a major controlling factor for anammox activity in OMZ waters...... of ocean de-oxygenation on oceanic N-cycling.......Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ,0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact...

  8. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes

    DEFF Research Database (Denmark)

    Antonovic, Laura; Lindblom, Emely; Dasu, Alexandru


    The effect of carbon ion radiotherapy on hypoxic tumors has recently been questioned because of low linear energy transfer (LET) values in the spread-out Bragg peak (SOBP). The aim of this study was to investigate the role of hypoxia and local oxygenation changes (LOCs) in fractionated carbon ion...... radiotherapy. Three-dimensional tumors with hypoxic subvolumes were simulated assuming interfraction LOCs. Different fractionations were applied using a clinically relevant treatment plan with a known LET distribution. The surviving fraction was calculated, taking oxygen tension, dose and LET into account...... to LOCs did not compensate for the increase in total dose required for tumor control. In conclusion, our results suggest that hypoxia can influence the outcome of carbon ion radiotherapy because of the non-negligible oxygen effect at the low LETs in the SOBP. However, if LOCs occur, a relatively high...

  9. Oxygen consumption in EPDM irradiated under different oxygen pressures and at different LET

    International Nuclear Information System (INIS)

    Dely, N.; Ngono-Ravache, Y.; Ramillon, J.-M.; Balanzat, E.


    We conceived a novel set-up for measuring the radiochemical yields of oxygen consumption in polymers. The measurement is based on a sampling of the gas mixture with a mass spectrometer, before and after irradiation. We irradiated an ethylene, propylene and 1,4-hexadiene terpolymer (EPDM) with 1 MeV electron and 10.75 MeV/A carbon beams. Samples were irradiated under oxygen within a wide range of pressure (5-200 mbar). The yields under C irradiation are four times smaller than the yields under electron irradiation. This shows that radiooxidation is very sensitive to the linear energy transfer of the projectiles and hence to the heterogeneity of the energy deposition. The oxygen consumption yields do not vary significantly in the range of pressure investigated; even at 5 mbar, the kinetics is still governed by the bimolecular recombination of peroxy radicals

  10. A review of dissolved oxygen and biochemical oxygen demand models for large rivers

    International Nuclear Information System (INIS)

    Haider, H.; Al, W.


    Development and modifications of mathematical models for Dissolved Oxygen (DO) are reviewed in this paper. The field and laboratory methods to estimate the kinetics of Carbonaceous Biochemical Oxygen Demand (CBOD) and Nitrogenous Biochemical Oxygen Demand (NBOD) are also presented. This review also includes recent approaches of BOD and DO modeling beside the conventional ones along with their applicability to the natural rivers. The most frequently available public domain computer models and their applications in real life projects are also briefly covered. The literature survey reveals that currently there is more emphasis on solution techniques rather than understanding the mechanisms and processes that control DO in large rivers. The DO modeling software contains inbuilt coefficients and parameters that may not reflect the specific conditions under study. It is therefore important that the selected mathematical and computer models must incorporate the relevant processes specific to the river under study and be within the available resources in term of data collection. (author)

  11. Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts. (United States)

    Yang, Chunzhen; Fontaine, Olivier; Tarascon, Jean-Marie; Grimaud, Alexis


    Owing to the transient nature of the intermediates formed during the oxygen evolution reaction (OER) on the surface of transition metal oxides, their nature remains largely elusive by the means of simple techniques. The use of chemical probes is proposed, which, owing to their specific affinities towards different oxygen species, unravel the role played by these species on the OER mechanism. For that, tetraalkylammonium (TAA) cations, previously known for their surfactant properties, are introduced, which interact with the active oxygen sites and modify the hydrogen bond network on the surface of OER catalysts. Combining chemical probes with isotopic and pH-dependent measurements, it is further demonstrated that the introduction of iron into amorphous Ni oxyhydroxide films used as model catalysts deeply modifies the proton exchange properties, and therefore the OER mechanism and activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2 (United States)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan


    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  13. Ebullitive methane emissions from oxygenated wetland streams (United States)

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.


    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  14. Ebullitive methane emissions from oxygenated wetland streams. (United States)

    Crawford, John T; Stanley, Emily H; Spawn, Seth A; Finlay, Jacques C; Loken, Luke C; Striegl, Robert G


    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr(-1) ; over 6400 km(2) ) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle. © 2014 John Wiley & Sons Ltd.

  15. Preservative spleen surgery and hyperbaric oxygen therapy. (United States)

    Paulo, Isabel Cristina Andreatta Lemos; Paulo, Danilo Nagib Salomão; Cintra, Luiz Cálice; Santos, Maria Carmem Silva; Rodrigues, Hildegardo; Ferrari, Thiago Antunes; Azevedo, Tiago Caetano V de; Silva, Alcino Lázaro da


    To assess functional and morphological aspects of spleen auto-implants and of the splenic inferior pole of rats, post-operatively treated or not with hyperbaric oxygen, as well as the survival of these animals, were studied. Seventy-eight male Wistar rats, weighing between 192 and 283 g ( 238,3 +/- 9,6g), were randomly distributed into three groups: Group 1--(n=20), spleen manipulation; group 2--(n=36), spleen auto-implantation; group 3--(n= 22), subtotal splenectomy preserving the inferior pole. Each group was subdivided as follows: subgroup a, not submitted to hyperbaric oxygen therapy: 1a(n=10), 2a(n=21), 3a(n= 13); subgroup b, submitted to the therapy: 1b(n=10), 2b(n=15), 3b(n=9). Blood was collected pre-operatively and 11 days after surgery, for the estimation of lipids and immunoglobulins and the counting of platelets and Howell-Jolly corpuscles. The spleen and remains were taken for histological study. The number of surviving animals was significantly higher in groups 1(p 2. The macro and microscopic appearance in subgroup 2b were more viable than in subgroup 2a, and that of group 3 more viable than in group 2. The survival of the animals carrying their whole spleen or its inferior pole was more frequent than that of the auto-implanted animals. Functionality and viability of the whole spleen or of its inferior pole, were better than in the auto-implanted animals. Hyperbaric oxygen-therapy contributed to increased survival frequency of auto-implanted animals, and to improve the functionality and viability of the auto-implants and the function of the inferior splenic pole, and did not interfere in animals carrying their whole spleen.

  16. Optoacoustic measurements of human placenta and umbilical blood oxygenation (United States)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.


    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  17. Oxygen transfer rates and requirements in oxidative biocatalysis

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; Rehn, Gustav; Woodley, John M.


    Biocatalytic oxidation reactions offer several important benefits such as regio- and stereoselectivity, avoiding the use of toxic metal based catalysts and replacing oxidizing reagents by allowing the use of oxygen. In this contribution the oxygen requirements are analysed for different process s...... without oxygen supply being limiting. Also, membrane contactors can provide a feasible oxygen supply method when bubble-less aeration is desired. However, in order to support high productivity the oxygen flux using air may be insufficient, thus requiring the use of oxygen....... scenarios, considering different biocatalyst formats and variation of the desired productivity. Also, the applicability of two different oxygen supply methods (bubbling and membrane aeration) is considered. The results indicate that growing cells could be used to reach productivities up to 3.5 g L-1h-1...

  18. Testing metals and alloys for use in oxygen systems (United States)

    Stoltzfus, Joel M.


    When oxygen is present in high concentrations or large quantities, as in oxygen-based life-support systems, the likelihood of combustion and the probable intensity of a conflagration increase, together with the severity of the damage caused. Even stainless steel will burn vigorously when ignited in a 1000-psi oxygen environment. The hazards involved in the use of oxygen increase with system operation at the elevated temperatures typical of propulsion systems. Fires in oxygen systems are generally catastrophic, causing a threat to life in manned vehicles. When mechanical components of a mechanism generate friction heat in the presence of oxygen, many commonly used metal alloys ignite and burn. Attention is presently given to frictional heating, particle impact, and flame propagation tests conducted in oxygen environments.

  19. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  20. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies


    Sgouralis, Ioannis; Kett, Michelle M.; Ow, Connie P. C.; Abdelkader, Amany; Layton, Anita T.; Gardiner, Bruce S.; Smith, David W.; Lankadeva, Yugeesh R.; Evans, Roger G.


    Oxygen tension (Po2) of urine in the bladder could be used to monitor risk of acute kidney injury if it varies with medullary Po2. Therefore, we examined this relationship and characterized oxygen diffusion across walls of the ureter and bladder in anesthetized rabbits. A computational model was then developed to predict medullary Po2 from bladder urine Po2. Both intravenous infusion of [Phe2,Ile3,Orn8]-vasopressin and infusion of NG-nitro-l-arginine reduced urinary Po2 and medullary Po2 (8–1...

  1. How Plants Do It: Light, Oxygen, Action!

    Energy Technology Data Exchange (ETDEWEB)

    Yachandra, Vittal (University of California, Berkeley)


    Plants have been doing it with ease for millions of years, and yet science has yet to fully comprehend how: Photosynthesis. It's a fundamental process of all plant life on Earth, using the simple and abundant ingredients of water and light to create food and enrich the planet's atmosphere with life-giving oxygen. In this talk, Professor Yachandra discusses how understanding the process of photosynthesis holds the key to a whole new level of mastery of how energy is produced, with enormous implications for the economy and the environment.

  2. Vacuum ultraviolet spectra from highly ionized oxygen

    International Nuclear Information System (INIS)

    Sjoedin, R.; Pihl, J.; Hallin, R.; Lindskog, J.; Marelius, A.; Sharma, K.


    Transitions in Li-like, He-like and H-like oxygen have been observed in the wavelength region 350-1150 A. A number of lines assigned as transitions in the doubly excited quartet system of O VI are reported. Lifetimes for the 4f 3 F term in O VII, 4f 2 F, 4d 2 D, 4p 2 P terms and for the 2s4f 4 F term in O VI have been measured to 13+-6 ps, 48+-3 ps, 29+-4 ps, 73+-8 ps and 47+-4 ps respectively. (Auth.)

  3. Hydrogen/oxygen auxiliary propulsion technology (United States)

    Reed, Brian D.; Schneider, Steven J.


    This paper provides a survey of hydogen/oxygen (H/O) auxiliary propulsion system (APS) concepts and low thrust H/O rocket technology. A review of H/O APS studies performed for the Space Shuttle, Space Tug, Space Station Freedom, and Advanced Manned Launch System programs is given. The survey also includes a review of low thrust H/O rocket technology programs, covering liquid H/O and gaseous H/O thrusters, ranging from 6600 N to 440 mN thrust. Ignition concepts for H/O thrusters and high-temperature, oxidation-resistant chamber materials are also reviewed.

  4. Catalysts for electrochemical generation of oxygen (United States)

    Hagans, P.; Yeager, E.


    Several aspects of the electrolytic evolution of oxygen for use in life support systems are analyzed including kinetic studies of various metal and nonmetal electrode materials, the formation of underpotential films on electrodes, and electrode surface morphology and the use of single crystal metals. In order to investigate the role of surface morphology to electrochemical reactions, a low energy electron diffraction and an Auger electron spectrometer are combined with an electrochemical thin-layer cell allowing initial characterization of the surface, reaction run, and then a comparative surface analysis.

  5. Single Photon Double Ionization of Atomic Oxygen (United States)

    Wickramarathna, Madhushani; Gorczyca, Thomas; Ballance, Connor; Stolte, Wayne


    Single photon double ionization cross sections are calculated using an R-matrix with pseudostates (RMPS) method which was recently applied by Gorczyca et al. for the double photoionization of helium. With the convergence of these theoretical calculations for the simple case of helium, we extend this methodology to consider the more complex case of oxygen double photoionization. We compare our calculated results with recent measurements at the Advanced Light Source, as well as earlier experimental measurements. Our RMPS results agree well, qualitatively, with the experimental measurements, but there exist outstanding discrepancies to be addressed. This project is supported by NASA APRA award NNX17AD41G.

  6. Oxygen- and capacity-limited thermal tolerance

    DEFF Research Database (Denmark)

    Jutfelt, Fredrik; Norin, Tommy; Ern, Rasmus


    The Commentary by Pörtner, Bock and Mark (Pörtner et al., 2017) elaborates on the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis. Journal of Experimental Biology Commentaries allow for personal and controversial views, yet the journal also mandates that ‘opinion and fact must...... be clearly distinguishable’ ( comms). We contend that Pörtner et al. (2017) do not meet this requirement, and that they present a biased account of the OCLTT hypothesis. We raise two main points: (1) Pörtner et al. (2017) do not do justice to the growing number...

  7. Sensitivity of microstructure fibers to gaseous oxygen

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Mrázek, Jan; Hayer, Miloš; Podrazký, Ondřej; Kaňka, Jiří; Kašík, Ivan


    Roč. 28, 5/6 (2008), s. 876-881 ISSN 0928-4931. [Journees Maghreb-Europe sur les Materiaux et Leurs Applications aux Dispositifs et Capteurs MADICA 2006 /5./. Mahdia, 30.10.2006-01.11.2006] R&D Projects: GA ČR GA102/05/0956 Institutional research plan: CEZ:AV0Z20670512 Keywords : detection * fibre optic sensors * oxygen * sol-gel processing * aerogels Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.812, year: 2008

  8. Cathode architectures for alkali metal / oxygen batteries (United States)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil


    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  9. [Relationship among the Oxygen Concentration, Reactive Oxygen Species and the Biological Characteristics of Mouse Bone Marrow Hematopoietic Stem Cells]. (United States)

    Ren, Si-Hua; He, Yu-Xin; Ma, Yi-Ran; Jin, Jing-Chun; Kang, Dan


    To investigate the effects of oxygen concentration and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and to analyzed the relationship among the oxygen concentration, ROS and the biological characteristics of mouse HSC through simulation of oxygen environment experienced by PB HSC during transplantation. The detection of reactive oxygen species (ROS), in vitro amplification, directional differentiation (BFU-E, CFU-GM, CFU-Mix), homing of adhesion molecules (CXCR4, CD44, VLA4, VLA5, P-selectin), migration rate, CFU-S of NOD/SCID mice irradiated with sublethal dose were performed to study the effect of oxgen concentration and reactive oxygen species on the biological characteristics of mouse BM-HSC and the relationship among them. The oxygen concentrations lower than normal oxygen concentration (especially hypoxic oxygen environment) could reduce ROS level and amplify more Lin(-) c-kit(+) Sca-1(+) BM HSC, which was more helpful to the growth of various colonies (BFU-E, CFU-GM, CFU-Mix) and to maintain the migratory ability of HSC, thus promoting CFU-S growth significantly after the transplantation of HSC in NOD/SCID mice irradiated by a sublethal dose. BM HSC exposed to oxygen environments of normal, inconstant oxygen level and strenuously thanging of oxygen concentration could result in higher level of ROS, at the same time, the above-mentioned features and functional indicators were relatively lower. The ROS levels of BM HSC in PB HSCT are closely related to the concentrations and stability of oxygen surrounding the cells. High oxygen concentration results in an high level of ROS, which is not helpful to maintain the biological characteristics of BM HSC. Before transplantation and in vitro amplification, the application of antioxidancs and constant oxygen level environments may be beneficial for transplantation of BMMSC.

  10. Impact of intermittent apnea on myocardial tissue oxygenation--a study using oxygenation-sensitive cardiovascular magnetic resonance.

    Directory of Open Access Journals (Sweden)

    Dominik P Guensch

    Full Text Available BACKGROUND: Carbon dioxide (CO(2 is a recognized vasodilator of myocardial blood vessels that leads to changes in myocardial oxygenation through the recruitment of the coronary flow reserve. Yet, it is unknown whether changes of carbon dioxide induced by breathing maneuvers can be used to modify coronary blood flow and thus myocardial oxygenation. Oxygenation-sensitive cardiovascular magnetic resonance (CMR using the blood oxygen level-dependent (BOLD effect allows for non-invasive monitoring of changes of myocardial tissue oxygenation. We hypothesized that mild hypercapnia induced by long breath-holds leads to changes in myocardial oxygenation that can be detected by oxygenation-sensitive CMR. METHODS AND RESULTS: In nine anaesthetized and ventilated pigs, 60s breath-holds were induced. Left ventricular myocardial and blood pool oxygenation changes, as monitored by oxygenation-sensitive CMR using a T2*-weighted steady-state-free-precession (SSFP sequence at 1.5T, were compared to changes of blood gas levels obtained immediately prior to and after the breath-hold. Long breath-holds resulted in an increase of paCO(2, accompanied by a decrease of paO(2 and pH. There was a significant decrease of blood pressure, while heart rate did not change. A decrease in the left ventricular blood pool oxygenation was observed, which was similar to drop in SaO(2. Oxygenation in the myocardial tissue however, was maintained throughout the period. Changes in myocardial oxygenation were strongly correlated with the change in paCO(2 during the breath-hold (r = 0.90, p = 0.010. CONCLUSION: Despite a drop in blood oxygen levels, myocardial oxygenation is maintained throughout long breath-holds and is linearly correlated with the parallel increase of arterial CO(2, a known coronary vasodilator. Breathing maneuvers in combination with oxygenation-sensitive CMR may be useful as a diagnostic test for coronary artery function.

  11. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen (United States)

    Graf, John; Taylor, Dale; Martinez, James


    More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2

  12. Brain-Dead Donors on Extracorporeal Membrane Oxygenation. (United States)

    Bronchard, Régis; Durand, Louise; Legeai, Camille; Cohen, Johana; Guerrini, Patrice; Bastien, Olivier


    To describe donors after brain death with ongoing extracorporeal membrane oxygenation and to analyze the outcome of organs transplanted from these donors. Retrospective analysis of the national information system run by the French Biomedicine Agency (CRISTAL database). National registry data of all donors after brain death in France and their organ recipients between 2007 and 2013. Donors after brain death and their organ recipients. None. During the study period, there were 22,270 brain-dead patients diagnosed in France, of whom 161 with extracorporeal membrane oxygenation. Among these patients, 64 donors on extracorporeal membrane oxygenation and 10,805 donors without extracorporeal membrane oxygenation had at least one organ retrieved. Donors on extracorporeal membrane oxygenation were significantly younger and had more severe intensive care medical conditions (hemodynamic, biological, renal, and liver insults) than donors without extracorporeal membrane oxygenation. One hundred nine kidneys, 37 livers, seven hearts, and one lung were successfully transplanted from donors on extracorporeal membrane oxygenation. We found no significant difference in 1-year kidney graft survival (p = 0.24) and function between recipients from donors on extracorporeal membrane oxygenation (92.7% [85.9-96.3%]) and matching recipients from donors without extracorporeal membrane oxygenation (95.4% [93.0-97.0%]). We also found no significant difference in 1-year liver recipient survival (p = 0.91): 86.5% (70.5-94.1) from donors on extracorporeal membrane oxygenation versus 80.7% (79.8-81.6) from donors without extracorporeal membrane oxygenation. Brain-dead patients with ongoing extracorporeal membrane oxygenation have more severe medical conditions than those without extracorporeal membrane oxygenation. However, kidney graft survival and function were no different than usual. Brain-dead patients with ongoing extracorporeal membrane oxygenation are suitable for organ procurement.

  13. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    Directory of Open Access Journals (Sweden)

    Laurent Chazalviel


    Full Text Available Normobaric oxygen (NBO and hyperbaric oxygen (HBO are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO 2 = 1 atmospheres absolute (ATA = 0.1 MPa and HBO (pO 2 = 2.5 ATA = 0.25 MPa through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support of the brain parenchyma requires oxygen partial pressure higher than 1 ATA.

  14. Instabilities in a capacitively coupled oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Küllig, C., E-mail:; Wegner, Th., E-mail:; Meichsner, J., E-mail: [Institute of Physics, University of Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany)


    Periodic fluctuations in the frequency range from 0.3 to 3 kHz were experimentally investigated in capacitively coupled radio frequency (13.56 MHz) oxygen plasma. The Gaussian beam microwave interferometry directly provides the line integrated electron density fluctuations. A system of two Langmuir probes measured the floating potential spatially (axial, radial) and temporally resolved. Hence, the floating potential fluctuation development is mapped within the discharge volume and provides a kind of discharge breathing and no wave propagation. Finally, it was measured the optical emission pattern of atomic oxygen during the fluctuation as well as the RF phase resolved optical emission intensity at selected phase position of the fluctuation by an intensified charge-coupled device camera. The deduced excitation rate pattern reveals the RF sheath dynamics and electron heating mechanisms, which is changing between low and high electronegativity during a fluctuation cycle. A perturbation calculation was taken into account using a global model with 15 elementary collision processes in the balance equations for the charged plasma species (O{sub 2}{sup +}, e, O{sup −}, O{sub 2}{sup −}) and a harmonic perturbation. The calculated frequencies agree with the experimentally observed frequencies. Whereby, the electron attachment/detachment processes are important for the generation of this instability.

  15. 7-oxygenated Derivatives of Dehydroepiandrosterone and Obesity

    Directory of Open Access Journals (Sweden)

    B. Sedláčková


    Full Text Available 7-hydroxy/oxo derivatives of dehydroepiandrosterone are potential regulators of the local cortisol activity due to their competition in the cortisolcortisone balance mediated by 11β-hydroxysteroid dehydrogenase. 7-hydroxydehydroepiandrosterone is marketed as anti-obesity medication, though no clinical study aimed at the benefit of administering 7-oxygenated derivatives of dehydroepiandrosterone has appeared until now. We tried to show whether there exist differences in levels of circulating 7-hydroxy/oxo-dehydroepiandrosterone derivatives between lean and obese boys and girls. From a cohort of adolescents investigated within the frame of anti-obesity programme 10 obese boys and 10 obese girls were compared with age-matched lean boys and girls in their anthropometric data, and concentrations of both epimers of 7-hydroxydehydroepiandrosterone and 7-oxo-dehydroepiandrosterone were determined by the RIA method. The basal levels of 7α-hydroxy-dehydroepiandrosterone were significantly higher in obese boys than in lean boys but not in girls. The association was found for anthropometric parameters and 7α-hydroxy-dehydroepiandrosterone, however again only in boys and not in girls. Higher levels of 7α-hydroxydehydroepiandrosterone its positive association with anthropometric data in obese boys may serve as a sign that, at least in boys, 7-oxygenated 5-ene-steroids may take part in regulating the hormonal signal for fat formation or distribution.

  16. Imaging of neurosphere oxygenation with phosphorescent probes. (United States)

    Dmitriev, Ruslan I; Zhdanov, Alexander V; Nolan, Yvonne M; Papkovsky, Dmitri B


    Multicellular spheroids are useful models of mammalian tissue for studies of cell proliferation, differentiation, replacement therapies and drug action. Having a size of 100-500 μm they mimic in vivo micro-environment and characteristic gradients of O2, pH and nutrients. We describe the use of cell-penetrating O2 probes based on phosphorescent Pt-porphyrins to perform high-resolution 2D and 3D mapping of O2 in spheroid structures by live cell fluorescence imaging technique. Optimised procedures for preparation of neurospheres from cortical neural cells isolated from embryonic rat brain, their staining with the phosphorescent O2 probes NanO2 and MM2 and subsequent analysis of oxygenation on different live cell imaging platforms, including widefield and confocal phosphorescence lifetime imaging microscopy (PLIM), conventional confocal and two-photon ratiometric intensity based O2 detection are presented. This is followed by a series of physiological experiments in which oxygenation patterns of the neurospheres are correlated with culturing conditions (atmospheric hypoxia and hyperoxia, size, growth factors), distribution of stem cells, mature neurons and astrocytes, HIF-2α stabilisation and responses to metabolic stimulation. The O2 imaging method allows multiplexing with many conventional fluorescent probes to perform multi-parametric imaging analysis of cells in 3D microenvironment. It can be applied to other types of spheroids and 3D tissue models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Oxygen isotope studies of ordinary chondrites (United States)

    Clayton, Robert N.; Mayeda, Toshiko K.; Olsen, Edward J.; Goswami, J. N.


    Several stages in the evolution of ordinary chondritic meteorites are recorded in the oxygen isotopic composition of the meteorites and their separable components (chondrules, fragments, clasts, and matrix). The whole-rock isotopic compositions reflect the iron-group of the meteorite (H, L, or LL). Isotopic uniformity of H3 to H6 and L3 to L6 are consistent with closed-system metamorphism within each parent body. LL3 chondrites differ slightly from LL4 to LL6, implying a small degree of open-system aqueous alteration and carbon reduction. On the scale of individual chondrules, the meteorites are isotopically heterogeneous, allowing recognition of the solar-nebular processes of chondrule formation. Chondrules for all classes of ordinary chondrites are derived from a common population, which was separate from the population of chondrules in carbonaceous or enstatite chondrites. Chondrules define an isotopic mixing line dominated by exchange between (O - 16)-rich and (O - 16)-poor reservoirs. The oxygen isotopic compositions of chondrites serve as 'fingerprints' for identification of genetic association with other meteorite types (achondrites and iron) and for recognition of source materials in meteoritic breccias.

  18. Hyperbaric oxygen effects on sports injuries. (United States)

    Barata, Pedro; Cervaens, Mariana; Resende, Rita; Camacho, Oscar; Marques, Frankim


    In the last decade, competitive sports have taken on a whole new meaning, where intensity has increased together with the incidence of injuries to the athletes. Therefore, there is a strong need to develop better and faster treatments that allow the injured athlete to return to competition faster than with the normal course of rehabilitation, with a low risk of re-injury. Hyperbaric therapies are methods used to treat diseases or injuries using pressures higher than local atmospheric pressure inside a hyperbaric chamber. Within hyperbaric therapies, hyperbaric oxygen therapy (HBO) is the administration of pure oxygen (100%) at pressures greater than atmospheric pressure, i.e. more than 1 atmosphere absolute (ATA), for therapeutic reasons. The application of HBO for the treatment of sports injuries has recently been suggested in the scientific literature as a modality of therapy either as a primary or an adjunct treatment. Although results have proven to be promising in terms of using HBO as a treatment modality in sports-related injuries, these studies have been limited due to the small sample size, lack of blinding and randomization problems. HBO seems to be promising in the recovery of injuries for high-performance athletes; however, there is a need for larger samples, randomized, controlled, double-blinded clinical trials combined with studies using animal models so that its effects and mechanisms can be identified to confirm that it is a safe and effective therapy for the treatment of sports injuries.

  19. Biochar activated by oxygen plasma for supercapacitors (United States)

    Gupta, Rakesh Kumar; Dubey, Mukul; Kharel, Parashu; Gu, Zhengrong; Fan, Qi Hua


    Biochar, also known as black carbon, is a byproduct of biomass pyrolysis. As a low-cost, environmental-friendly material, biochar has the potential to replace more expensive synthesized carbon nanomaterials (e.g. carbon nanotubes) for use in future supercapacitors. To achieve high capacitance, biochar requires proper activation. A conventional approach involves mixing biochar with a strong base and baking at a high temperature. However, this process is time consuming and energy inefficient (requiring temperatures >900 °C). This work demonstrates a low-temperature (<150 °C) plasma treatment that efficiently activates a yellow pine biochar. Particularly, the effects of oxygen plasma on the biochar microstructure and supercapacitor characteristics are studied. Significant enhancement of the capacitance is achieved: 171.4 F g-1 for a 5-min oxygen plasma activation, in comparison to 99.5 F g-1 for a conventional chemical activation and 60.4 F g-1 for untreated biochar. This enhancement of the charge storage capacity is attributed to the creation of a broad distribution in pore size and a larger surface area. The plasma activation mechanisms in terms of the evolution of the biochar surface and microstructure are further discussed.

  20. Dilute Oxygen Combustion Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, H.M.; Riley, M.F.; Kobayashi, H.


    A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions

  1. Dilute oxygen combustion. Phase I report

    Energy Technology Data Exchange (ETDEWEB)



    A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NO{sub x}) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NO{sub x} through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NO{sub x} production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature ({approximately}1366 K) oxidant (7-27% O{sub 2} vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d{sup +} scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d{sup +} scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW ({approximately}0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric

  2. Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt (United States)

    Gerlach, T.M.


    Volcanic gases collected during episode 1 of the Puu Oo eruption along the east rift zone of Kilauea Volcano, Hawaii, have uniform C-O-H-S-Cl-F compositions that are sharply depleted in CO2. The CO2-poor gases are typical of Type II volcanic gases (gerlach and Graeber, 1985) and were emitted from evolved magma stored for a prolonged period of time in the east rift zone after releasing CO2-rich gases during an earlier period of temporary residence in the summit magma chamber. The samples are remarkably free of contamination by atmospheric gases and meteoric water. Thermodynamic evaluation of the analytical data shows that the episode 1 gases have equilibrium compositions appropriate for temperatures between 935 and 1032??C. Open- and closed-system equilibrium models of species distributions for the episode 1 gases show unequivocally that coexisting lavas buffered the gas oxygen fugacities during cooling. These models indicate that the fO2 buffering process occurs by transfer of oxygen from the major species in the gas phase (H2O, CO2, SO2) to the lava during cooling and that the transfer of oxygen also controls the fugacities of several minor and trace species (H2, CO, H2S, S2, Cl2, F2), in addition to O2 during cooling. Gas/lava exchanges of other components are apparently insignificant and exert little influence, compared to oxygen exchange, during cooling. Oxygen transfer during cooling is variable, presumably reflecting short-term fluctuations in gas flow rates. Higher flow rates restrict the time available for gas/lava oxygen transfer and result in gases with higher equilibrium temperatures. Lower flow rates favor fO2-constrained equilibration by oxygen transfer down to lower temperatures. Thus, the chemical equilibrium preserved in these gases is a heterogeneous equilibrium constrained by oxygen fugacity, and the equilibrium temperatures implied by the compositions of the gases reflect the temperatures at which gas/lava oxygen exchange ceased. This conclusion

  3. Scavenging of oxygen vacancies at modulation-doped oxide interfaces: Evidence from oxygen isotope tracing

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Döbeli, M.; Pomjakushina, E.


    , the mechanisms underlying the extreme mobility enhancement remain elusive. Herein, we used 18O isotope exchanged SrTi18O3 as substrates to create 2DEG at room temperature with and without the LSMO buffer layer. By mapping the oxygen profile across the interface between STO18 and disordered LaAlO3 or yttria...

  4. Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen Coulometric titration

    NARCIS (Netherlands)

    Lankhorst, M.H.R.; Lankhorst, Martijn H.R.; Bouwmeester, Henricus J.M.


    Oxygen coulometric titration has been applied to measure chemical diffusion in La0.8Sr0.2CoO3-δ between 700 and 1000°C. The transient current response to a potentiostatic step has been transformed from the time domain to the frequency domain. The equivalent circuit used to fit the resulting

  5. Oxygen chemistry of shocked interstellar clouds. III. Sulfur and oxygen species in dense clouds

    International Nuclear Information System (INIS)

    Leen, T.M.; Graff, M.M.


    The chemical evolution of oxygen and sulfur species in shocked dense clouds is studied. Reaction rate constants for several important neutral reactions are examined, and revised values are suggested. The one-fluid magnetohydrodynamic shock structure and postshock chemical evolution are calculated for shocks of velocity v(s) = 10 km/s through clouds of initial number density n(0) = 100,000/cu cm and of molecule/atom ratios H 2 /H = 10, 1000, and 100,000 with most sulfur contained initially in molecules SO 2 and SO. Abundances of SO 2 , SO, CS, and OCS remain near their preshock values, except in clouds containing substantial amounts of atomic hydrogen, where significant destruction of sulfur-oxygen species occurs. Abundances of shock-enhanced molecules HS and H 2 O are sensitive to the molecule/atom ratio. Nonthermal oxygen-hydrogen chemistry has a minor effect on oxygen-sulfur molecules in the case H 2 /H = 10. 23 references

  6. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond. (United States)

    Chang, Thomas M S


    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymer membrane. Extensions into oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics.

  7. Oxygen Evolution at Hematite Surfaces: The Impact of Structure and Oxygen Vacancies on Lowering the Overpotential

    NARCIS (Netherlands)

    Zhang, X.; Klaver, P.; van Santen, R.; van de Sanden, M. C. M.; Bieberle, A.


    Simulations of the oxygen evolution reaction (OER) are essential for understanding the limitations of water splitting. Most research has focused so far on the OER at flat metal oxide surfaces. The structure sensitivity of the OER has, however, recently been highlighted as a promising research

  8. Oxygen exchange with water alters the oxygen isotopic signature of nitrate in soil ecosystems.

    NARCIS (Netherlands)

    Kool, D.M.; Wrage, N.; Oenema, O.; Kessel, van C.; Groenigen, van J.W.


    Combined oxygen (O) and nitrogen (N) stable isotope analyses are commonly used in the source determination of nitrate . The source and fate of are studied based on distinct O and N isotopic signatures (d18O and d15N) of various sources and isotopic effects during transformation processes, which

  9. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery. (United States)

    Kheir, John N; Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; Black, Katherine J; Lee, Robert W; Wilking, James N; Graham, Adam C; Bell, David C; McGowan, Francis X


    Self-assembling, concentrated, lipid-based oxygen microparticles (LOMs) have been developed to administer oxygen gas when injected intravenously, preventing organ injury and death from systemic hypoxemia in animal models. Distinct from blood substitutes, LOMs are a one-way oxygen carrier designed to rescue patients who experience life-threatening hypoxemia, as caused by airway obstruction or severe lung injury. Here, we describe methods to manufacture large quantities of LOMs using an in-line, recycling, high-shear homogenizer, which can create up to 4 liters of microparticle emulsion in 10 minutes, with particles containing a median diameter of 0.93 microns and 60 volume% of gas phase. Using this process, we screen 30 combinations of commonly used excipients for their ability to form stable LOMs. LOMs composed of DSPC and cholesterol in a 1:1 molar ratio are stable for a 100 day observation period, and the number of particles exceeding 10 microns in diameter does not increase over time. When mixed with blood in vitro, LOMs fully oxygenate blood within 3.95 seconds of contact, and do not cause hemolysis or complement activation. LOMs can be manufactured in bulk by high shear homogenization, and appear to have a stability and size profile which merit further testing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; J. Stephen Herring


    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable

  11. Oxygen therapy for interstitial lung disease: a systematic review

    Directory of Open Access Journals (Sweden)

    Emily C. Bell


    Full Text Available This review aims to establish the impact of oxygen therapy on dyspnoea, health-related quality of life (HRQoL, exercise capacity and mortality in interstitial lung disease (ILD. We included studies that compared oxygen therapy to no oxygen therapy in adults with ILD. No limitations were placed on study design or intervention type. Two reviewers independently evaluated studies for inclusion, assessed risk of bias and extracted data. The primary outcome was dyspnoea. Eight studies evaluated the acute effects of oxygen (n=1509. There was no effect of oxygen therapy on modified Borg dyspnoea score at end exercise (mean difference (MD −0.06 units, 95% CI −0.24–0.13; two studies, n=27. However, effects on exercise outcomes consistently favoured oxygen therapy. One study showed reduction in dyspnoea at rest with oxygen in patients who were acutely unwell (MD visual analogue scale 30 mm versus 48 mm, p<0.05; n=10. Four studies of long-term oxygen therapy (n=2670 had high risk of bias and no inferences could be drawn. This systematic review showed no effects of oxygen therapy on dyspnoea during exercise in ILD, although exercise capacity was increased. Future trials should evaluate whether acute improvements in exercise capacity with oxygen can be translated into improved physical activity and HRQoL.

  12. Modeling Corneal Oxygen with Scleral Gas Permeable Lens Wear. (United States)

    Compañ, Vicente; Aguilella-Arzo, Marcel; Edrington, Timothy B; Weissman, Barry A


    The main goal of this current work is to use an updated calculation paradigm, and updated boundary conditions, to provide theoretical guidelines to assist the clinician whose goal is to improve his or her scleral gas permeable (GP) contact lens wearing patients' anterior corneal oxygen supply. Our model uses a variable value of corneal oxygen consumption developed through Monod equations that disallows negative oxygen tensions within the stroma to predict oxygen tension at the anterior corneal surface of scleral GP contact lens wearing eyes, and to describe oxygen tension and flux profiles, for various boundary conditions, through the lens, tears, and cornea. We use several updated tissue and boundary parameters in our model. Tear exchange with GP scleral lenses is considered nonexistent in this model. The majority of current scleral GP contact lenses should produce some levels of corneal hypoxia under open eye conditions. Only lenses producing the thinnest of tear vaults should result in anterior corneal surface oxygen tensions greater than a presumed critical oxygen tension of 100 mmHg. We also find that corneal oxygen tension and flux are each more sensitive to modification in tear vault than to changes in lens oxygen permeability, within the ranges of current clinical manipulation. Our study suggests that clinicians would be prudent to prescribe scleral GP lenses manufactured from higher oxygen permeability materials and especially to fit without excessive corneal clearance.

  13. The relation between oxygen saturation level and retionopathy of prematurity

    Directory of Open Access Journals (Sweden)

    Mohammad Gharavi Fard


    Full Text Available Introduction: Oxygen therapy used for preterm infant disease might be associated with oxygen toxicity or oxidative stress. The exact oxygen concentration to control and maintain the arterial oxygen saturation balance is not certainly clear. We aimed to compare the efficacy of higher or lower oxygen saturations on the development of severe retinopathy of prematurity which is a major cause of blindness in preterm neonates. Methods: PubMed was searched for obtaining the relevant articles. A total of seven articles were included after studying the titles, abstracts, and the full text of retrieved articles at initial search. Inclusion criteria were all the English language human clinical randomized controlled trials with no time limitation, which studied the efficacy of low versus high oxygen saturation measured by pulse oximetry in preterm infants.Result: It can be suggested that lower limits of oxygen saturations have higher efficacy at postmesetural age of ≤28 weeks in preterm neonates. This relation has been demonstrated in five large clinical trials including three Boost trials, COT, and Support.Discussion: Applying higher concentrations of oxygen supplementations at mesentural age ≥32 weeks reduced the development of retinopathy of prematurity. Lower concentrations of oxygen saturation decreased the incidence and the development of retinopathy of prematurity in preterm neonates while applied soon after the birth.Conclusions: Targeting levels of oxygen saturation in the low or high range should be performed cautiously with attention to the postmesentural age in preterm infants at the time of starting the procedures.

  14. A 99 percent purity molecular sieve oxygen generator (United States)

    Miller, G. W.


    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  15. The Contribution of Singlet Oxygen to Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Arnold N. Onyango


    Full Text Available Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR, and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses.

  16. Solar-powered oxygen delivery: proof of concept. (United States)

    Turnbull, H; Conroy, A; Opoka, R O; Namasopo, S; Kain, K C; Hawkes, M


    A resource-limited paediatric hospital in Uganda. Pneumonia is a leading cause of child mortality worldwide. Access to life-saving oxygen therapy is limited in many areas. We designed and implemented a solar-powered oxygen delivery system for the treatment of paediatric pneumonia. Proof-of-concept pilot study. A solar-powered oxygen delivery system was designed and piloted in a cohort of children with hypoxaemic illness. The system consisted of 25 × 80 W photovoltaic solar panels (daily output 7.5 kWh [range 3.8-9.7kWh]), 8 × 220 Ah batteries and a 300 W oxygen concentrator (output up to 5 l/min oxygen at 88% [±2%] purity). A series of 28 patients with hypoxaemia were treated with solar-powered oxygen. Immediate improvement in peripheral blood oxygen saturation was documented (median change +12% [range 5-15%], P oxygen and hospital discharge were respectively 7.5 h, 9.8 h, 44 h and 4 days. Solar energy can be used to concentrate oxygen from ambient air and oxygenate children with respiratory distress and hypoxaemia in a resource-limited setting.

  17. Providing oxygen to children in hospitals: a realist review. (United States)

    Graham, Hamish; Tosif, Shidan; Gray, Amy; Qazi, Shamim; Campbell, Harry; Peel, David; McPake, Barbara; Duke, Trevor


    To identify and describe interventions to improve oxygen therapy in hospitals in low-resource settings, and to determine the factors that contribute to success and failure in different contexts. Using realist review methods, we scanned the literature and contacted experts in the field to identify possible mechanistic theories of how interventions to improve oxygen therapy systems might work. Then we systematically searched online databases for evaluations of improved oxygen systems in hospitals in low- or middle-income countries. We extracted data on the effectiveness, processes and underlying theory of selected projects, and used these data to test the candidate theories and identify the features of successful projects. We included 20 improved oxygen therapy projects (45 papers) from 15 countries. These used various approaches to improving oxygen therapy, and reported clinical, quality of care and technical outcomes. Four effectiveness studies demonstrated positive clinical outcomes for childhood pneumonia, with large variation between programmes and hospitals. We identified factors that help or hinder success, and proposed a practical framework depicting the key requirements for hospitals to effectively provide oxygen therapy to children. To improve clinical outcomes, oxygen improvement programmes must achieve good access to oxygen and good use of oxygen, which should be facilitated by a broad quality improvement capacity, by a strong managerial and policy support and multidisciplinary teamwork. Our findings can inform practitioners and policy-makers about how to improve oxygen therapy in low-resource settings, and may be relevant for other interventions involving the introduction of health technologies.

  18. Experimental and thermodynamic study of the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems

    International Nuclear Information System (INIS)

    Jourdan, J.


    This work is a contribution to the development of innovative concepts for fuel cladding in pressurized water nuclear reactors. This concept implies the insertion of rare earth (erbium and gadolinium) in the zirconium fuel cladding. The determination of phase equilibria in the systems is essential prior to the implementation of such a promising solution. This study consisted in an experimental determination of the erbium-zirconium phase diagram. For this, we used many different techniques in order to obtain diagram data such as solubility limits, solidus, liquidus or invariant temperatures. These data allowed us to present a new diagram, very different from the previous one available in the literature. We also assessed the diagram using the CALPHAD approach. In the gadolinium-zirconium system, we determined experimentally the solubility limits. Those limits had never been determined before, and the values we obtained showed a very good agreement with the experimental and assessed versions of the diagram. Because these alloys are subjected to oxygen diffusion throughout their life, we focused our attention on the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems. The first system has been investigated experimentally. The alloys fabrication has been performed using powder metallurgy. In order to obtain pure raw materials, we fabricated powder from erbium and zirconium bulk metals using hydrogen absorption/desorption. The characterisation of the ternary pellets allowed the determination of two ternary isothermal sections at 800 and 1100 C. For the gadolinium-oxygen-zirconium system, we calculated the phase equilibria at temperatures ranging from 800 to 1100 C, using a homemade database compiled from literature assessments of the oxygen-zirconium, gadolinium-zirconium and gadolinia-zirconia systems. Finally, we determined the mechanical properties, in connexion with the microstructure, of industrial quality alloys in order to identify the influence of

  19. Enhanced oxygen delivery induced by perfluorocarbon emulsions in capillary tube oxygenators. (United States)

    Vaslef, S N; Goldstick, T K


    Previous studies showed that a new generation of perfluorocarbon (PFC) emulsions increased tissue PO2 in the cat retina to a degree that could not be explained by the small increase in arterial O2 content seen after the infusion of low doses of 1 g PFC/kg body weight. It seems that increased O2 delivery at the tissue level after PFC infusion is caused by a local effect in the microcirculation. The authors studies this effect in vitro at steady state in a closed loop circuit, consisting of one of two types of capillary tube oxygenators, deoxygenator(s), a reservoir bag filled with anticoagulated bovine blood or saline (control), and a roller pump, to see if the addition of PFC would have an effect on the PO2 difference (delta PO2) across the capillary tube membrane oxygenator at a blood flow rate of 3 l/min. Perfluorocarbon was added in three incremental doses, each giving about 0.7 vol% of PFC. The delta PO2 across the oxygenator was measured before and after each dose. The mean percent increases in delta PO2 in blood for two types of oxygenators were 19.2 +/- 8% (mean +/- SD, n = 6, P = 0.002) and 9.9 +/- 4% (n = 3, P = 0.05), respectively, whereas the mean percent change in delta PO2 in saline was -4.9 +/- 2% (n = 2, P = 0.2). Inlet PO2s to the oxygenator were only minimally increased. The authors conclude that O2 delivery was significantly enhanced after injection of PFC in blood in this capillary tube model. A near wall excess of PFC particles may account for the augmentation of O2 diffusion in this model.

  20. The demographics and economics of long-term oxygen therapy. (United States)

    Dunne, P J


    Home oxygen therapy represents a scientifically validated and universally accepted therapeutic regimen for the treatment of chronic hypoxemia secondary to COPD. The clinical benefits of home oxygen, including a decrease in morbidity and often a concomitant increase in the quality of life have been repeatedly confirmed through rigorous worldwide trials, studies, and investigations. However, since home oxygen is an expensive treatment modality, important questions continue to be raised about the overall cost-benefit of the intervention. Such scrutiny is expected to continue, especially in the United States, as the entire issue of health care cost-containment remains atop the domestic political agenda. Providers of home oxygen therapy have traditionally realized quite favorable reimbursement for home oxygen equipment, especially for those patient-customers covered under the Medicare program. However, recent Medicare reimbursement reductions of more than 30% have raised serious questions about the ability of home oxygen providers, especially those with annual revenues less than $1 million, to sustain their historical high level of support services to home oxygen patient-customers. Of particular concern is the economic hardship of supplying portable oxygen, especially for those patient-customers with unusually high ambulatory needs. The use of oxygen-conserving devices is viewed by some as one strategy to better control the costs of supplying portable oxygen, although there are those who still question whether or not oxygen-conserving devices can effectively forestall arterial oxygen desaturation across the entire spectrum of ambulation. Given the evidence now being reported that compliance in using home oxygen as prescribed may well be much lower than originally believed, the time is probably right to revisit the role played by home oxygen providers in determining continuing need through the performance of periodic reassessments. Such reassessments, if designed

  1. Are there ecological implications for the proposed energetic restrictions on photosynthetic oxygen evolution at high oxygen concentrations? (United States)

    Raven, J A; Larkum, A W D


    It has recently been shown that, in subthylakoid particles prepared using detergent, there is inhibition of oxygen production reactions in photosynthesis by thermodynamic feedback from oxygen build-up, with 50% inhibition at 230 kPa partial pressure of oxygen. This article presents a comprehensive analysis of laboratory data on the effects of high oxygen partial pressures on photosynthesis, and on photo-lithotrophic and chemo-organotrophic growth, of oxygen-producing organisms. The article also contains an analysis of the extent to which high oxygen concentrations occur at the site of photosystem II (PSII) activity under natural conditions today and in the past. The conclusion is that the oxygen concentrations found in nature are very unlikely to reach that needed to cause 50% inhibition of the photosynthetic oxygen production reaction in subthylakoid particles, but that it is just possible that a small part of the inhibition of photosynthesis and of photo-lithotrophic growth by oxygen can be attributed to inhibition of oxygen production by PSII.

  2. Noninvasive near-infrared hemoglobin spectroscopy for in vivo monitoring of tumor oxygenation and response to oxygen modifiers (United States)

    Hull, Edward L.; Foster, Thomas H.


    The shift in optical absorption of hemoglobin upon binding of oxygen provides a basis for near-infrared monitoring of hemoglobin oxygen saturation, which is an important indicator of tissue oxygenation. Tumor oxygenation has long been studied, because hypoxic cells exhibit resistance to ionizing radiation therapy. The ability to measure noninvasively the oxygenation status of tumors and their response to oxygen modifiers is important in research and clinical settings. We have implemented a steady-state diffuse reflectance method of optical spectroscopy in scattering systems based on the theory of Farrell et al. (Med. Phys., 1992). In scattering phantoms containing erythrocytes, the method recovers the hemoglobin absorption spectrum (650 - 820 nm) and accurately monitors hemoglobin oxygen saturation. We have implemented a probe that individually positions several detection fibers normal to the surface of subcutaneous rodent tumors. Near-infrared absorption spectra reconstructed from diffuse reflectance measurements indicate a hemoglobin oxygen saturation of approximately 50% in R3230AC rat mammary adenocarcinomas when the anesthetized animal breathes room air. Administration of carbogen (95% oxygen, 5% carbon dioxide) via a nose cone produces a rapid and readily detectable increase in the saturation to 75% with no increase in tumor blood volume. Several methods of determining hemoglobin oxygen saturation from absorption spectra obtained by diffuse reflectance spectroscopy are compared, including singular value decomposition, which provides the ability to reconstruct the non-hemoglobin absorbing background without a priori knowledge of its structure or absolute magnitude.

  3. Preliminary Study of Oxygen-Enhanced Longitudinal Relaxation in MRI: A Potential Novel Biomarker of Oxygenation Changes in Solid Tumors

    International Nuclear Information System (INIS)

    O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan


    Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R 1 ). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R 1 while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced ΔR 1 . Results: ΔR 1 showed significant increases of 0.021 to 0.058 s -1 in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the ΔR 1 curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.

  4. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...... amount of charge-transfer is beneficial for high two-photon absorption cross sections but iscounter-productive for singlet oxygen generation. The design principles obtained from the studies in lipophilic solvents were applied to synthesize water-soluble twophoton singlet oxygen sensitizers......The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...

  5. Effect of oxygen treatment on heart rate after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg-Adamsen, S; Lie, C; Bernhard, A


    BACKGROUND: Cardiac complications are common during the postoperative period and may be associated with hypoxemia and tachycardia. Preliminary studies in high-risk patients after operation have shown a possible beneficial effect of oxygen therapy on arterial oxygen saturation and heart rate....... METHODS: The authors studied the effect of oxygen therapy on arterial oxygen saturation and heart rate in 100 consecutive unselected patients randomly and double blindly allocated to receive air or oxygen therapy between the first and fourth day after major abdominal surgery. RESULTS: The median arterial...... oxygen saturation rate increased significantly from 96% to 99% (P heart rate decreased significantly from 85 beats/min to 81 beats/min (P heart rate occurred...

  6. Monitoring bioremediation of weathered diesel NAPL using oxygen depletion profiles

    International Nuclear Information System (INIS)

    Davis, G.B.; Johnston, C.D.; Patterson, B.M.; Barber, C.; Bennett, M.


    Semicontinuous logging of oxygen concentrations at multiple depths has been used to evaluate the progress of an in situ bioremediation trial at a site contaminated by weathered diesel nonaqueous-phase liquid (NAPL). The evaluation trial consisted of periodic addition of nutrients and aeration of a 100-m 2 trial plot. During the bioremediation trial, aeration was stopped periodically, and decreases in dissolved and gaseous oxygen concentrations were monitored using data loggers attached to in situ oxygen sensors placed at multiple depths above and within a thin NAPL-contaminated zone. Oxygen usage rate coefficients were determined by fitting zero- and first-order rate equations to the oxygen depletion curves. For nutrient-amended sites within the trial plot, estimates of oxygen usage rate coefficients were significantly higher than estimates from unamended sites. These rates also converted to NPL degradation rates, comparable to those achieved in previous studies, despite the high concentrations and weathered state of the NAPL at this test site

  7. Oxygen binding properties of non-mammalian nerve globins

    DEFF Research Database (Denmark)

    Hundahl, Christian; Fago, Angela; Dewilde, Sylvia


    Oxygen-binding globins occur in the nervous systems of both invertebrates and vertebrates. While the function of invertebrate nerve haemoglobins as oxygen stores that extend neural excitability under hypoxia has been convincingly demonstrated, the physiological role of vertebrate neuroglobins...... is less well understood. Here we provide a detailed analysis of the oxygenation characteristics of nerve haemoglobins from an annelid (Aphrodite aculeata), a nemertean (Cerebratulus lacteus) and a bivalve (Spisula solidissima) and of neuroglobin from zebrafish (Danio rerio). The functional differences...... temperatures investigated and exhibited large enthalpies of oxygenation, the hexacoordinate globins showed reverse Bohr effects (at least at low temperature) and approximately twofold lower oxygenation enthalpies. Only S. solidissima nerve haemoglobin showed apparent cooperativity in oxygen binding, suggesting...

  8. Solid oxide fuel cell cathode with oxygen-reducing layer

    Energy Technology Data Exchange (ETDEWEB)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis


    The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous film or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.

  9. The development of zirconia membrane oxygen separation technology

    International Nuclear Information System (INIS)

    Chiacchi, F.T.; Badwal, S.P.S.; Velizko, V.


    The oxygen separation technology based on ceramic membranes constructed from stabilised zirconia is currently under development for applications ranging from oxygen generation or air enrichment for medical use to control of oxygen concentration or oxygen removal from gas streams and enclosures for semiconductor, food packaging and process control instrumentation industries. The technology is based on a rugged tubular design with extensive thermal cycling capability. Several single and three tube devices have been operated for periods up to 5000h. An eight tube module, as a building block for larger scale oxygen production or removal devices, has been constructed and is being evaluated. In this paper, the construction of the device, oxygen generating capacity, life time tests and performance of the ceramic membrane device under development at CSIRO will be discussed. Copyright (2000) The Australian Ceramic Society

  10. Asthma and hemoglobinopathy: when is supplemental oxygen required? (United States)

    Joseph, Leon; Brickner-Braun, Inbal; Pinshow, Berry; Goldberg, Shmuel; Miskin, Hagit; Picard, Elie


    Asthma is the most common reason for referral to the emergency department in childhood. In severe attacks, supplemental O2 is given when oxygen saturation level is asthma attack. Simultaneously, P(a)O2 was normal. A diagnosis of abnormal hemoglobin with decreased oxygen affinity (hemoglobin Seattle) was made on hemoglobin electrophoresis and genetic analysis. To ascertain when supplemental oxygen was needed, an oxygen dissociation curve was plotted using the tonometer technique, and it was found that an S(p)O2 of 70% is parallel to a P(a)O2 of 60 mmHg. Plotting an oxygen dissociation curve is a simple reproducible method to determine when supplemental oxygen is required for a child with a hemoglobinopathy. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  11. E-cigarette use in patients receiving home oxygen therapy. (United States)

    Lacasse, Yves; Légaré, Martin; Maltais, François


    Current smokers who are prescribed home oxygen may not benefit from the therapy. In addition to being an obvious fire hazard, there is some evidence that the physiological mechanisms by which home oxygen is believed to operate are inhibited by smoking. Although their effectiveness is yet to be demonstrated, electronic cigarettes (e-cigarettes) are often regarded as an aid to smoking cessation. However, several burn accidents in e-cigarette smokers receiving home oxygen therapy have also been reported, leading Health Canada to release a warning of fire risk to oxygen therapy patients from e-cigarettes. It is the authors' position that patients receiving oxygen should definitely not use e-cigarettes. The authors provide suggestions for addressing the delicate issue of home oxygen therapy in current cigarette and⁄or e-cigarette smokers.

  12. E-Cigarette Use in Patients Receiving Home Oxygen Therapy

    Directory of Open Access Journals (Sweden)

    Yves Lacasse


    Full Text Available Current smokers who are prescribed home oxygen may not benefit from the therapy. In addition to being an obvious fire hazard, there is some evidence that the physiological mechanisms by which home oxygen is believed to operate are inhibited by smoking. Although their effectiveness is yet to be demonstrated, electronic cigarettes (e-cigarettes are often regarded as an aid to smoking cessation. However, several burn accidents in e-cigarette smokers receiving home oxygen therapy have also been reported, leading Health Canada to release a warning of fire risk to oxygen therapy patients from e-cigarettes. It is the authors’ position that patients receiving oxygen should definitely not use e-cigarettes. The authors provide suggestions for addressing the delicate issue of home oxygen therapy in current cigarette and/or e-cigarette smokers.

  13. Oxygen titration strategies in chronic neonatal lung disease. (United States)

    Primhak, Robert


    The history of oxygen therapy in neonatology has been littered with error. Controversies remain in a number of areas of oxygen therapy, including targets and strategies in supplemental oxygen therapy in Chronic Neonatal Lung Disease (CNLD). This article reviews some of these controversies, and makes some recommendations based on the available evidence. In graduates of neonatal units who are left with CNLD, oxygen saturation should be kept above 93-95%, with levels below 90% being avoided as far as possible. Titration of oxygen should be done using oximetry recordings which include periods of different activities. Weaning of oxygen supplementation should only be done based on satisfactory recordings during a trial of a lower flow. There is insufficient evidence to say whether weaning for increasing hours a day or stepwise weaning to a continuous lower flow is a better method. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous

    Directory of Open Access Journals (Sweden)

    Thijs T. Wingelaar


    Full Text Available In Special Operations Forces (SOF closed-circuit rebreathers with 100% oxygen are commonly utilized for covert diving operations. Exposure to high partial pressures of oxygen (PO2 could cause damage to the central nervous system (CNS and pulmonary system. Longer exposure time and higher PO2 leads to faster development of more serious pathology. Exposure to a PO2 above 1.4 ATA can cause CNS toxicity, leading to a wide range of neurologic complaints including convulsions. Pulmonary oxygen toxicity develops over time when exposed to a PO2 above 0.5 ATA and can lead to inflammation and fibrosis of lung tissue. Oxygen can also be toxic for the ocular system and may have systemic effects on the inflammatory system. Moreover, some of the effects of oxygen toxicity are irreversible. This paper describes the pathophysiology, epidemiology, signs and symptoms, risk factors and prediction models of oxygen toxicity, and their limitations on SOF diving.

  15. Effect of oxygen on dislocation multiplication in silicon crystals (United States)

    Fukushima, Wataru; Harada, Hirofumi; Miyamura, Yoshiji; Imai, Masato; Nakano, Satoshi; Kakimoto, Koichi


    This paper aims to clarify the effect of oxygen on dislocation multiplication in silicon single crystals grown by the Czochralski and floating zone methods using numerical analysis. The analysis is based on the Alexander-Haasen-Sumino model and involves oxygen diffusion from the bulk to the dislocation cores during the annealing process in a furnace. The results show that after the annealing process, the dislocation density in silicon single crystals decreases as a function of oxygen concentration. This decrease can be explained by considering the unlocking stress caused by interstitial oxygen atoms. When the oxygen concentration is 7.5 × 1017 cm-3, the total stress is about 2 MPa and the unlocking stress is less than 1 MPa. As the oxygen concentration increases, the unlocking stress also increases; however, the dislocation velocity decreases.

  16. Microprobe and oxygen fugacity study of armalcolite (United States)

    Friel, J. J.


    The stability of synthetic armalcolite was determined as a function of oxygen fugacity with particular regard to the oxidation state of iron and titanium. The equilibrium pseudobrookite (armalcolite) composition was measured at 1200 C under various conditions of oxidation typical of the lunar environment. These data, when compared with published descriptions of mare basalts, provide information about the conditions of crystallization of armalcolite-bearing lunar rocks. Some information about the crystal chemistry of armalcolite was obtained from X-ray diffraction and electron microprobe analyses of synthetic armalcolite and Zr-armalcolite. Further data were gathered from a comparison of the Mossbauer spectra of a phase pure stoichiometric armalcolite and one containing appreciable amounts of trivalent titanium.

  17. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    properties to the widely discussed gold catalysts. Literature results were summarized for alcohol oxidation, epoxidation, amine oxidation, phenol hydroxylation, silane and sulfide oxidation, (side-chain) oxidation of alkyl aromatic compounds, hydroquinone oxidation and cyclohexane oxidation. It was found...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... contact while leaching could be excluded. The silver catalyst was most active when calcined over a short time at 500 °C potentially due to the formation of silver-oxygen species. Removal of these species might be a deactivation mechanism as was suggested by X-ray absorption spectroscopy (XAS) analysis...

  18. Hydrogen and oxygen production with nuclear heat

    International Nuclear Information System (INIS)

    Barnert, H.


    After some remarks on the necessity of producing secondary energy sources for the heat market, the thermodynamic fundamentals of the processes for producing hydrogen and oxygen from water on the basis of nuclear thermal energy are briefly explained. These processes are summarized as one class of the 'thermochemical cycle process' for the conversion of thermal into chemical energy. A number of thermochemical cycle processes are described. The results of the design work so far are illustrated by the example of the 'sulphuric acid hybrid process'. The nuclear heat source of the thermochemical cycle process is the high-temperature reactor. Statements concerning rentability are briefly commented upon, and the research and development efforts and expenditure required are sketched. (orig.) 891 GG/orig. 892 MB [de

  19. Oxygen enhancement ratio for negative pi mesons

    International Nuclear Information System (INIS)

    Hall, E.J.; Astor, M.


    Experiments were performed at the Los Alamos Meson Physics Facility (LAMPF) to determine the oxygen enhancement ratio (OER) for the clinically used beam of negative pi mesons. V79 Chinese hamster cells, cultured in vitro, were used as the biological test system; hypoxia was produced by metabolic depletion as a result of sealing 2 million cells in 1 ml glass ampules. The Bragg peak of the pion depth dose curve was spread out to cover 10 cm by using a dynamic range shifter. Cells were irradiated at the center of the spead out Bragg peak, where the dose/rate was 0.1 Gy/min over a 6 x 6 cm field. The OER obtained was 2.2, compared with 3.8 obtained for γ rays under the same conditions

  20. Bipolar zinc/oxygen battery development

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schlatter, C. [Swiss Federal Inst. of Technology, Lausanne (Switzerland)


    A bipolar electrically rechargeable Zn/O{sub 2} battery has been developed. Reticulated copper foam served as substrate for the zinc deposit on the anodic side, and La{sub 0.6}Ca{sub 0.4}CoO{sub 3}-catalyzed bifunctional oxygen electrodes were used on the cathodic side of the cells. The 100 cm{sup 2} unit cell had an open circuit voltage of 1,4 V(O{sub 2}) in moderately alkaline electrolyte. The open circuit voltage and the peak power measured for a stack containing seven cells were ca. 10V and 90W, respectively. The current-potential behaviour was determined as a function of the number of bipolar cells, and the maximum discharge capacity was determined at different discharge rates. (author) 4 figs., 1 ref.