WorldWideScience

Sample records for blowup particle beams

  1. Controlled Transverse Blow-up of Highenergy Proton Beams for Aperture Measurements and Loss Maps

    CERN Document Server

    Hӧfle, W; Redaelli, S; Schmidt, R; Valuch, D; Wollmann, D; Zerlauth, M

    2012-01-01

    A technique was developed to blow-up transversely in a controlled way high energy proton beams in the LHC. The technique is based on band limited white noise excitation that is injected into the transverse damper feedback loop. The injected signal can be gated to selectively blow-up individual trains of bunches. The speed of transverse blow-up can be precisely controlled. This opens the possibility to perform safely and efficiently aperture measurements and loss maps with high intensity bunch trains well above stored beam energies that are considered to be safe. In particular, lengthy procedures for measurements at top energy, otherwise requiring multiple fills of individual bunches, can be avoided. In this paper, the method is presented and results from beam measurements are discussed and compared with alternative blowup methods.

  2. PSB beam longitudinal blow-up by phase modulation with the digital LLRF prototype system

    CERN Document Server

    Angoletta, M E; Butterworth, A; Findlay, A; Jaussi, M; Leinonen, P; Molendijk, J; Sanchez-Quesada, J

    2014-01-01

    The PSB will be upgraded to a new, Digital Low-Level RF (DLLRF) system in 2014 at the injectors’ restart after LS1. This DLLRF is an evolution of that successfully deployed in LEIR and comprises new hardware, software and implementation strategies. Machine development studies have been carried out in the PSB over recent years with the existing LEIR-style hardware installed in PSB ring four. These studies have allowed testing approaches and validating implementation strategies. This note focuses on a series of MDs carried out during the 2011 run where a new implementation of the longitudinal beam blow-up obtained by phase modulation was tested. Test results and effects on the beam are show for a CNGS-type beam. Finally, an overview is given of the final longitudinal blow-up implementation planned with the new hardware, which will be operationally deployed in 2014.

  3. Simple countermeasures against the TM110-beam-blowup-mode in biperiodic structures

    International Nuclear Information System (INIS)

    Euteneuer, H.; Herminghaus, H.; Schoeler, H.

    1984-01-01

    The two fundamental methods of fighting beam blow-up in rf-accelerating-structures are staggered detuning and selective Q-spoiling of their higher order modes. Biperiodic structures offer a very simple way of applying the latter technique of the most dangerous TM 110 -like blowup mode at 1.7 times the accelerating frequency: letting this mode propagate but giving a large gap to the TM 110 -passband. This gap must be positive for electric coupling (f(phi=0) =1.7c. With asymmetric coupling elements between the cavities of a structure, one has a simple tool for staggered detuning: a change of the relative orientation of these elements spreads the resonance frequencies not only of the TM 110 -mode, but of at least all dipole modes. (orig.)

  4. Vertical blow-up in a low-current, stored, laser-cooled ion beam

    CERN Document Server

    Madsen, N; Siegfried, L E; Hangst, J S; Nielsen, J

    2003-01-01

    Using a novel technique for real-time transverse beam profile diagnostics of a stored ion beam, we have observed the transverse size of a stored, laser-cooled ion beam. Earlier we observed that the density of the beam is independent of the beam current. At very low currents we observe an abrupt change in this behavior: the vertical beam size increases suddenly by about an order of magnitude. This observation implies a sudden change in the indirect vertical cooling mediated by intrabeam scattering. Our results have serious implications for the ultimate beam quality attainable by laser- cooling. (12 refs).

  5. Low-current, vertical blowup in a stored laser-cooled ion beam

    CERN Document Server

    Madsen, N; Nielsen, S; Siegfried, L E; Hangst, J S

    2001-01-01

    Using a novel technique for real-time transverse beam profile diagnostics of a stored ion beam, we have observed the transverse size of a stored laser-cooled ion beam. Earlier we observed that the density of the beam is independent of the beam current. At very low currents, we observe an abrupt change in this behavior: The vertical beam size increases suddenly by about an order of magnitude. This observation implies a sudden change in the indirect vertical cooling mediated by intrabeam scattering. Our results have serious implications for the ultimate beam quality attainable by laser cooling. (11 refs).

  6. PARTICLE BEAMS: Frontier course

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Driven by the quest for higher energies and optimal physics conditions, the behaviour of particle beams in accelerators and storage rings is the subject of increasing attention. Thus the second course organized jointly by the US and CERN Accelerator Schools looked towards the frontiers of particle beam knowledge. The programme held at South Padre Island, Texas, from 23-29 October attracted 125 participants including some 35 from Europe

  7. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  8. Particle beams and plasmas

    International Nuclear Information System (INIS)

    Hofmann, A.; Messerschmid, E.; Lawson, J.D.

    1976-01-01

    These lectures present a survey of some of the concepts of plasma physics and look at some situations familiar to particle-accelerator physicists from the point of view of a plasma physicist, with the intention of helping to link together the two fields. At the outset, basic plasma concepts are presented, including definitions of a plasma, characteristic parameters, magnetic pressure and confinement. This is followed by a brief discussion on plasma kinetic theory, non-equilibrium plasma, and the temperature of moving plasmas. Examples deal with beams in the CERN Intersecting Storage Rings as well as with non-steady beams in cyclic accelerators and microwave tubes. In the final chapters, time-varying systems are considered: waves in free space and the effect of cylinder bounds, wave motion in cold stationary plasmas, and waves in plasmas with well-defined streams. The treatment throughout is informal, with emphasis on the essential physical properties of continuous beams in accelerators and storage rings in relation to the corresponding problems in plasma physics and microwave tubes. (Author)

  9. Neutral particle beam intensity controller

    Science.gov (United States)

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  10. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  11. Solitary waves in particle beams

    International Nuclear Information System (INIS)

    Bisognano, J.J.

    1996-01-01

    Since space charge waves on a particle beam exhibit both dispersive and nonlinear character, solitary waves or solitons are possible. Dispersive, nonlinear wave propagation in high current beams is found to be similar to ion-acoustic waves in plasmas with an analogy between Debye screening and beam pipe shielding. Exact longitudinal solitary wave propagation is found for potentials associated with certain transverse distributions which fill the beam pipe. For weak dispersion, the waves satisfy the Korteweg-deVries (KdV) equation, but for strong dispersion they exhibit breaking. More physically realizable distributions which do not fill the beam pipe are investigated and shown to also satisfy a KdV equation for weak dispersion if averaging over rapid transverse motion is physically justified. Scaling laws are presented to explore likely parameter regimes where these phenomena may be observed experimentally

  12. Heavy charged-particle beam dosimetry

    International Nuclear Information System (INIS)

    Lyman, J.T.

    1982-06-01

    A computational description of the physical properties and the beam composition of a heavy charged-particle beam is presented. The results with this beam model has been compared with numerous sets of experimental data and it appears to provide an adequate representation of the major features of a heavy charged-particle beam. Knowledge of the beam composition aids in the identification of regions of the beam where special dosimetry problems may be encountered

  13. Sandia's Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1979-01-01

    Sandia's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators, with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. Recent developments in the program are described. Traditionally, two requirements of ICF reactor operation have been the most difficult to satisfy in conceptual designs. Adequate standoff of critical components from damaging pellet emissions must be assured, and the shot repetition rate must be consistent with the desired reactor power level at reasonable pellet gains. Progress in power compression, beam focusing and transport, first-wall protection schemes, and net-energy-gain target design shows how these requirements can be met

  14. Charged particle dynamics in axisymmetric nonconservative beams

    International Nuclear Information System (INIS)

    Radchenko, V.I.; Nikonov, O.I.

    1998-01-01

    Many of ion-beam technologies lead to the requirement of cross-section minimization of a particle beam in the object region acted upon, or to the problem of minimization of charged particle beam emittance (the growth rate of emittance) for a specified segment of the beam formation. In this paper we study the above problem for axisymmetric beams representing a nonconservative system of charged particles. It is shown that under certain assumptions the beam in question can be described by appropriate equations that possess an explicit solution. The latter allows one to study the influence of particle density distribution at the starting point on the future beam evolution. The results are based on approaches developed in J.D. Lawson (1977); V.I. Radchenko, G.D. Ved'manov (1995); O.I. Nikonov (1994). (orig.)

  15. Single Gradientless Light Beam Drags Particles as Tractor Beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, Cheng-Wei; Wang, Haifeng

    2011-01-01

    is the strong nonparaxiality of the light beam, which contributes to the pulling force owing to momentum conservation. The nonparaxiality of the Bessel beam can be manipulated to possess a dragging force along both the radial longitudinal directions, i.e., a "tractor beam" with stable trajectories is achieved......Usually a light beam pushes a particle when the photons act upon it. We investigate the optical forces by nonparaxial gradientless beams and find that the forces can drag suitable particles all the way towards the light source. The major criterion of realizing the backward dragging force...

  16. The basis of the particle beam therapy

    International Nuclear Information System (INIS)

    Katoh, Hiroyuki

    2015-01-01

    The particle beam therapy has the excellent physical and biological characteristics that are very different from the X-ray used mainly in conventional radiotherapy. Therefore, the particle therapy can treat loco-regional lesions more strongly with less toxicity than conventional radiotherapy. In recent years in Japan, we can use proton and carbon ion as a particle beam therapy. In this article, we describe the overview of the basis, the advantage and weak points about the particle beam therapy, and the differences between proton and carbon ion therapy. (author)

  17. New beam-based and direct magnetic waveform measurements of the BTx.KFA10(20) vertical recombination kickers and induced emittance blow-up simulations at 1.4 and 2 GeV

    CERN Document Server

    Forte, Vincenzo; Borburgh, Jan; Sermeus, Luc; CERN. Geneva. ATS Department

    2018-01-01

    In the framework of the LHC Injectors Upgrade (LIU) project [1], this document summarises a new reconstruction methodology for the measurement of the magnetic waveforms of the vertical re-combination kickers BT1.KFA10, BT4.KFA10 and BT2.KFA20, from data collected during several Machine Development (MD) sessions. The reconstruction has been performed in order to verify the LIU specification of the recombination kickers, which is required for a clean transfer of the longer bunches coming from the PSB after the upgrade. A beam-based methodology was developed to measure the transient magnetics dynamics of the kicker where the bunch length is comparable to the rise and/or fall times. These measurements represent a valuable way to reconstruct the mag-netic waveform of the kickers where removing them to make direct probe measurements is time consuming. A benchmarking of the beam-based measurements with field probe measurements is presented, together with realistic simulations of the vertical emittance blow-up at 1...

  18. Collected abstracts on particle beam diagnostic systems

    International Nuclear Information System (INIS)

    Hickok, R.L.

    1979-01-01

    This report contains a compilation of abstracts on work related to particle beam diagnostics for high temperature plasmas. The abstracts were gathered in early 1978 and represent the status of the various programs as of that date. It is not suggested that this is a comprehensive list of all the work that is going on in the development of particle beam diagnostics, but it does provide a representative view of the work in this field. For example, no abstracts were received from the U.S.S.R. even though they have considerable activity in particle beam diagnostics

  19. Quantum mechanics of charged particle beam optics

    CERN Document Server

    Khan, Sameen Ahmed

    2018-01-01

    Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.

  20. Plasma diagnostic techniques using particle beam probes

    International Nuclear Information System (INIS)

    Jennings, W.C.

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques

  1. Plasma diagnostic techniques using particle beam probes

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  2. Intense particle beam and multiple applications

    International Nuclear Information System (INIS)

    Ueda, M.; Machida, M.

    1988-01-01

    The Multiple Application Intense Particle Beam project is an experiment in which an injector of high energy neutral or ionized particles will be used to diagnose high density and high temperature plasmas. The acceleration of the particles will be carried out feeding a diode with a high voltage pulse produced by a Marx generator. Other apllications of intense particle beam generated by this injector that could be explored in the future include: heating and stabilization of compact toroids, treatment of metallic surfaces and ion implantation. (author) [pt

  3. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab

  4. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  5. Radial particle distributions in PARMILA simulation beams

    International Nuclear Information System (INIS)

    Boicourt, G.P.

    1984-03-01

    The estimation of beam spill in particle accelerators is becoming of greater importance as higher current designs are being funded. To the present, no numerical method for predicting beam-spill has been available. In this paper, we present an approach to the loss-estimation problem that uses probability distributions fitted to particle-simulation beams. The properties of the PARMILA code's radial particle distribution are discussed, and a broad class of probability distributions are examined to check their ability to fit it. The possibility that the PARMILA distribution is a mixture is discussed, and a fitting distribution consisting of a mixture of two generalized gamma distributions is found. An efficient algorithm to accomplish the fit is presented. Examples of the relative prediction of beam spill are given. 26 references, 18 figures, 1 table

  6. Electron beam driven disordering in small particles

    International Nuclear Information System (INIS)

    Vanfleet, R.R.; Mochel, J.

    1997-01-01

    Small metal particles in the range of a few nanometers in diameter are seen to progressively disorder when the 100 keV electron beam of a Scanning Transmission Electron Microscope (STEM) is held stationary on the particle. The diffraction pattern of the individual particle is seen to progress from an initial array of indexable diffraction spots to a mixture of diffraction spots and amorphous-like rings and finally to rings with no persistent diffraction spots. After the electron beam is removed, the particles will recrystallize after minutes or hours. Only particles below a critical size are seen to fully disorder. The authors have observed this in platinum, palladium, rhodium, and iridium and based on the model of disordering process believe it is a universal effect. It has also been observed with a platinum ruthenium alloy. They discuss the mechanism of this disordering and the structure of the resulting disordering particle for the case of platinum clusters

  7. Particle beam fusion progress report January 1979 through June 1979

    International Nuclear Information System (INIS)

    1980-10-01

    The following chapters are included: (1) fusion target studies, (2) target experiments, (3) particle beam source development, (4) particle beam experiments, (5) pulsed power research and development, (6) pulsed fusion applications, and (7) electron beam fusion accelerator project

  8. Frontiers of particle beam physics

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-11-01

    First, a review is given of various highly-developed techniques for particle handling which are, nevertheless, being vigorously advanced at the present time. These include soft superconductor radio frequency cavities, hard superconductor magnets, cooling rings for ions and anti-protons, and damping rings for electrons. Second, attention is focused upon novel devices for particle generation, acceleration, and focusing. These include relativistic klystrons and free electron laser power sources, binary power multipliers, photocathodes, switched-power linacs, plasma beat-wave accelerators, plasma wake-field accelerators, plasma lenses, plasma adiabatic focusers and plasma compensators. 12 refs

  9. Optimal transport of particle beams

    International Nuclear Information System (INIS)

    Allen, C.K.; Reiser, M.

    1997-01-01

    The transport and matching problem for a low energy transport system is approached from a control theoretical viewpoint. We develop a model for a beam transport and matching section based on a multistage control network. To this model we apply the principles of optimal control to formulate techniques aiding in the design of the transport and matching section. Both nonlinear programming and dynamic programming techniques are used in the optimization. These techniques are implemented in a computer-aided design program called SPOT. Examples are presented to demonstrate the procedure and outline the results. (orig.)

  10. Carbon Fiber Damage in Particle Beam

    CERN Document Server

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  11. Engineering aspects of particle beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  12. Stability of Periodically Focused Intense Particle Beams

    International Nuclear Information System (INIS)

    Pakter, R.; Rizzato, F. B.

    2001-01-01

    A stability analysis of periodically focused intense particle beams based on the beam envelope equation is performed. We show that (i) the scenario, as the focusing field increases, is not the existence of a single threshold above which stable matched (equilibrium) solutions are absent, as generally believed, but the existence of successive regions of stability interrupted by gaps of instability; (ii) the beam can be focused to tighter radii using new stable matched solutions found for focusing field strengths greater than the previous threshold. Self-consistent simulations validate the findings

  13. Beam profile effects on NPB [neutral particle beam] performance

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-03-01

    A comparison of neutral particle beam brightness for various neutral beam profiles indicates that the widely used assumption of a Gaussian profile may be misleading for collisional neutralizers. An analysis of available experimental evidence shows that lower peaks and higher tails, compared to a Gaussian beam profile, are observed out of collisional neutralizers, which implies that peak brightness is over estimated, and for a given NPB platform-to-target range, the beam current (power), dwell time or some combination of such engagement parameters would have to be altered to maintain a fixed dose on target. Based on the present analysis, this factor is nominally about 2.4 but may actually be as low as 1.8 or as high as 8. This is an important consideration in estimating NPB constellation performance in SDI engagement contexts. 2 refs., 6 figs

  14. Blowup for flat slow manifolds

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2017-01-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a......) the regularization of piecewise smooth systems by tanh, (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b)....

  15. Blowup for flat slow manifolds

    Science.gov (United States)

    Kristiansen, K. U.

    2017-05-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a) the regularization of piecewise smooth systems by \\tanh , (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b).

  16. Heavy Particle Beams in Tumor Radiotherapy

    International Nuclear Information System (INIS)

    Ayad, M.

    1999-01-01

    Using heavy particles beam in the tumor radiotherapy is advantageous to the conventional radiation with photons and electrons. One of the advantages of the heavy charged particle is the energy deposition processes which give a well defined range in tissue, a Bragg peak of ionization in the depth-dose distribution and slow scattering, while the dose to the surrounding healthy tissue in the vicinity is minimized. These processes can show the relation between the heavy particle and the conventional radiation is illustrated with respect to the depth dose and the relative dose. The usage of neutrons (Thermal or epithermal) in therapy necessitates implementation of capture material leading to the production of heavy charged particles (a-particles) as a result of the nuclear interaction in between. Experimentally it is found that 80% of the absorbed dose is mainly due to the presence of capture material

  17. High gradient lens for charged particle beam

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  18. Pulsed power accelerators for particle beam fusion

    Science.gov (United States)

    Martin, T. H.; Barr, G. W.; Vandevender, J. P.; White, R. A.; Johnson, D. L.

    1980-05-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-1 (PBFA-1). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion is discussed.

  19. Pulsed power accelerators for particle beam fusion

    International Nuclear Information System (INIS)

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed

  20. Blow-up: A Free Lunch?

    Directory of Open Access Journals (Sweden)

    Jan Koenderink

    2012-02-01

    Full Text Available We consider operations that change the size of images, either shrinks or blow-ups. Image processing offers numerous possibilities, put at everyone's disposal with such computer programs as Adobe Photoshop. We consider a different class of operations, aimed at immediate visual awareness, rather than pixel arrays. We demonstrate cases of blow-ups that do not sacrifice apparent resolution. This apparent information gain is due to “amodal occlusion.”

  1. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  2. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  3. Vacuum chamber for containing particle beams

    Science.gov (United States)

    Harvey, A.

    1985-11-26

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

  4. Particle beam fusion progress report, January-June 1980

    International Nuclear Information System (INIS)

    1981-05-01

    An overview and technical summaries are given for research progress in each of the following general areas: (1) fusion target studies; (2) target experiments; (3) particle beam source theory; (4) diagnostics development; (5) particle beam experiments; (6) pulsed power research and development; (7) pulse power application; and (8) Electron Beam Fusion Accelerator project

  5. Manipulation of dielectric particles with nondiffracting parabolic beams.

    Science.gov (United States)

    Ortiz-Ambriz, Antonio; Gutiérrez-Vega, Julio C; Petrov, Dmitri

    2014-12-01

    The trapping and manipulation of microscopic particles embedded in the structure of nondiffracting parabolic beams is reported. The particles acquire orbital angular momentum and exhibit an open trajectory following the parabolic fringes of the beam. We observe an asymmetry in the terminal velocity of the particles caused by the counteracting gradient and scattering forces.

  6. Nonlinear interaction of colliding beams in particle storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, J C; Month, M

    1979-01-01

    When two beams of high energy particles moving in opposite directions are brought into collision, a large amount of energy is available for the production of new particles. However to obtain a sufficiently high event rate for rare processes, such as the production of the intermediate vector boson (Z/sub 0/ and W/sup + -/), large beam currents are also required. Under this circumstance, the high charge density of one beam results in a classical electromagnetic interaction on the particles in the other beam. This very nonlinear space charge force, caled the beam-beam force, limits the total circulating charge and, thereby, the ultimate performance of the colliding ring system. The basic nature of the beam-beam force is discussed, indicating how it is quite different in the case of continuous beams, which cross each other at an angle as compared to the case of bunched beams which collide head-on. Some experimental observations on the beam-beam interaction in proton-proton and electron-positron beams are then reviewed and interpreted. An important aspect of the beam-beam problem in storage rings is to determine at what point in the analysis of the particle dynamics is it relevant to bring in the concepts of stochasticity, slow diffusion, and resonance overlap. These ideas are briefly discussed.

  7. SPIDER beam dump as diagnostic of the particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E. [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Dalla Palma, M.; Brombin, M.; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  8. Charged-particle beam: a safety mandate

    International Nuclear Information System (INIS)

    Young, K.C.

    1983-01-01

    The Advanced Test Accelerator (ATA) is a recent development in the field of charged particle beam research at Lawrence Livermore National Laboratory. With this experimental apparatus, researchers will characterize intense pulses of electron beams propagated through air. Inherent with the ATA concept was the potential for exposure to hazards, such as high radiation levels and hostile breathing atmospheres. The need for a comprehensive safety program was mandated; a formal system safety program was implemented during the project's conceptual phase. A project staff position was created for a safety analyst who would act as a liaison between the project staff and the safety department. Additionally, the safety analyst would be responsible for compiling various hazards analyses reports, which formed the basis of th project's Safety Analysis Report. Recommendations for safety features from the hazards analysis reports were incorporated as necessary at appropriate phases in project development rather than adding features afterwards. The safety program established for the ATA project faciliated in controlling losses and in achieving a low-level of acceptable risk

  9. Improved Longitudinal Blow-up and Shaving in the Booster

    CERN Document Server

    Hancock, S

    2013-01-01

    The low-intensity proton beam for p-Pb collisions in the LHC did not come back in the Booster at the beginning of 2013 anything like it had been set up at the end of 2012. In particular there were unexplained intensity fluctuations of ±100%. Although the root cause of the drift in performance was never established, its investigation revealed long-standing issues in the longitudinal plane which, when corrected, allowed single-bunch beams to be delivered with unprecedented reproducibility and control of both intensity and longitudinal emittance. The new approach was adopted for the ion run and subsequently for MDs at higher intensities, where it made possible a robust control of intensity at constant 6D phase space volume. Post-LS1, it may even provide a platform upon which to build a more exotic controlled longitudinal blow-up to generate higher intensity bunches with a flattened line density.

  10. Charged particle beam monitoring by means of synchrotron radiation

    International Nuclear Information System (INIS)

    Panasyuk, V.S.; Anevskij, S.I.

    1984-01-01

    Optical methods for monitoring the number of accelerated electrons and electron energy by means of beam synchrotron radiation (SR) as well as peculiarities of SR characteristics of beams with a small radius of the orbit are considered. Optical methods for charged particle beam monitoring are shown to ensure operative and precise monitoring the number of particles and particle energy. SR sources with large axial dimensions of an electron beam have specific spectral angular and polarization characteristics. If electron angular distribution at deflection from the median plane is noticeably wider than angular distribution of SR of a certain electron, relative SR characteristics of these soUrces are calculated with high accuracy

  11. Iconic representation of particle beams using personal computers

    International Nuclear Information System (INIS)

    Dasgupta, S.; Sarkar, D.; Mallik, C.

    1992-01-01

    The idea of representing the character of a charged particle beam by means of its emittance ellipses, is essentially a mathematical one. For quick understanding of the beam character in a more user-friendly way, unit beam cells with particles having a uniform nature, have been pictured by suitably shaped 3-D solids. The X and Y direction momenta at particular cell areas of the particle beam combine together to give a proportionate orientation to the solid in the pseudo 3-D world of the graphic screen, creating a physical picture of the particle beam. This is expected to facilitate the comprehension of total characteristics of a beam in cases of online control of transport lines and their designs, when interfaced with various ray-tracing programs. The implementation is done in an IBM-PC environment. (author)

  12. Plasma focusing and diagnosis of high energy particle beams

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1990-09-01

    Various novel concepts of focusing and diagnosis of high energy charged particle beams, based on the interaction between the relativistic particle beam and the plasma, are reviewed. This includes overdense thin plasma lenses, and (underdense) adiabatic plasma lens, and two beam size monitor concepts. In addition, we introduce another mechanism for measuring flat beams based on the impulse received by heavy ions in an underdense plasma. Theoretical investigations show promise of focusing and diagnosing beams down to sizes where conventional methods are not possible to provide. 21 refs

  13. Blow-up : A free lunch?

    NARCIS (Netherlands)

    Koenderink, J.J.; Richards, W.; Van Doorn, A.J.

    2012-01-01

    We consider operations that change the size of images, either shrinks or blow-ups. Image processing offers numerous possibilities, put at everyone’s disposal with such computer programs as Adobe Photoshop. We consider a different class of operations, aimed at immediate visual awareness, rather than

  14. Determination of beam intensity and position in a particle accelerator

    CERN Document Server

    Kasprowicz, G

    2011-01-01

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC). The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam position monitors...

  15. Determination of Beam Intensity and Position in a Particle Accelerator

    CERN Document Server

    Kasprowicz, Grzegorz; Raich, Uli

    2011-10-04

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN†, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC)‡. The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam posi...

  16. Interaction of Macro-particles with LHC proton beam

    CERN Document Server

    Zimmermann, F; Xagkoni, A

    2010-01-01

    We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermalinsulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macroparticles are solved numerically to determine the time spent by such “dust” particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.

  17. Method of measuring a profile of the density of charged particles in a particle beam

    International Nuclear Information System (INIS)

    Hyman, L.G.; Jankowski, D.J.

    1975-01-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam

  18. Particle beam fusion progress report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Pulsed Power Sciences Center

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm{sup 2} on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.

  19. Particle beam fusion progress report for 1989

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm 2 on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall

  20. Frontiers of particle beams: Intensity limitations

    International Nuclear Information System (INIS)

    Dienes, M.; Month, M.; Turner, S.

    1992-01-01

    The present volume is the proceedings of the latest of these joint schools, held on Hilton Head Island, South Carolina, in 1990. This course dealt with intensity limitations and was centered on a series of lectures which could be divided into the following main categories: Self and environmental fields, Coherent instabilities and their simulation, Beam-beam interaction, Other multiparticle effects, Beam source limitations, Engineering limitations. (orig.)

  1. Beam generations of three kinds of charged particles

    International Nuclear Information System (INIS)

    Niu, K.; Mulser, P.; Drska, L.

    1991-01-01

    Analyses are given for beam generations of three kinds of charged particles: electrons, light ions, and heavy ions. The electron beam oscillates in a dense plasma irradiated by a strong laser light. When the frequency of laser light is high and its intensity ia large, the acceleration of oscillating electrons becomes large and the electrons radiate electromagnetic waves. As the reaction, the electrons feel a damping force, whose effect on oscillating electron motion is investigated first. Second, the electron beam induces the strong electromagnetic field by its self-induced electric current density when the electron number density is high. The induced electric field reduces the oscillation motion and deforms the beam. In the case of a light ion beam, the electrostatic field, induced by the beam charge, as well as the electromagnetic field, induced by the beam current, affects the beam motion. The total energy of the magnetic field surrounding the beam is rather small in comparison with its kinetic energy. In the case of heavy ion beams the beam charge at the leading edge is much smaller in comparison with the case of light ion beams when the heavy ion beam propagates in the background plasma. Thus, the induced electrostatic and electromagnetic fields do not much affect the beam propagation. (author)

  2. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  3. Optical trapping and manipulation of Mie particles with Airy beam

    International Nuclear Information System (INIS)

    Zhao, Ziyu; Zang, Weiping; Tian, Jianguo

    2016-01-01

    In this paper we calculate the radiation forces and moving trajectories of Mie particles induced by 1D Airy beams using the plane wave spectrum method and arbitrary beam theory. Numerical results show that both the transverse and the longitudinal radiation forces are deeply dependent on the relative refractive index, radii and positions of the scattering particles illuminated by the Airy beam. Due to the radiation forces, Mie particles with different radii and initial positions can be dragged into the nearest main intensity lobes, and move along parabolic trajectories in the direction of the Poynting vector. At the ends of these trajectories, in the presence of Brownian force, the trapped scattering particles show irregular Brownian movement near their equilibrium positions. This characteristic property of Airy beams enables optical sorting to be used more easily in the colloidal and biological sciences. (paper)

  4. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  5. Smith-Purcell Radiation in View of Particle Beam Diagnostics

    CERN Document Server

    Kube, G

    2003-01-01

    The development of the next generation high quality electron beams which are necessary for future high luminosity linear colliders and short wavelengths free electron lasers requires sensitive and non-destructive beam diagnostic techniques. In this context Smith-Purcell radiation which is generated when a charged particle beam passes close to the surface of a periodic structure (diffraction grating) is under discussion as a compact and inexpensive beam profile monitor. In order to study the basic emission process of Smith-Purcell radiation also in view of possible applications for particle beam diagnostics, experimental studies were performed at the Mainz Microtron MAMI in the visible spectral region with a microfocused 855 MeV electron beam. The radiation was separated from background components, as diffracted synchrotron radiation and transition radiation generated by electrons scratching the grating surface, by exploiting their specific emission characteristics. These are the narrow emission cone in the ...

  6. Interactive design environment transportation channel of relativistic charged particle beams

    Science.gov (United States)

    Osadchuk, I. O.; Averyanov, G. P.; Budkin, V. A.

    2017-01-01

    Considered a modern implementation of a computer environment for the design of channels of transportation of high-energy charged particle beams. The environment includes a software package for the simulation of the dynamics of charged particles in the channel, operating means for changing parameters of the channel, the elements channel optimization and processing of the output characteristics of the beam with the graphical output the main output parameters.

  7. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    2011-01-01

    -effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  8. Characterisation of electron beams from laser-driven particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  9. Simultaneous and non-simultaneous blow-up and uniform blow-up profiles for reaction-diffusion system

    Directory of Open Access Journals (Sweden)

    Zhengqiu Ling

    2012-11-01

    Full Text Available This article concerns the blow-up solutions of a reaction-diffusion system with nonlocal sources, subject to the homogeneous Dirichlet boundary conditions. The criteria used to identify simultaneous and non-simultaneous blow-up of solutions by using the parameters p and q in the model are proposed. Also, the uniform blow-up profiles in the interior domain are established.

  10. Particle-core model for transverse dynamics of beam halo

    Directory of Open Access Journals (Sweden)

    T. P. Wangler

    1998-12-01

    Full Text Available The transverse motion of beam halo particles is described by a particle-core model which uses the space-charge field of a continuous cylindrical oscillating beam core in a uniform linear focusing channel to provide the force that drives particles to large amplitudes. The model predicts a maximum amplitude for the resonantly-driven particles as a function of the initial mismatch. We have calculated these amplitude limits and have estimated the growth times for extended-halo formation as a function of both the space-charge tune-depression ratio and a mismatch parameter. We also present formulas for the scaling of the maximum amplitudes as a function of the beam parameters. The model results are compared with multiparticle simulations and we find very good agreement for a variety of initial particle distributions.

  11. Single-particle beam dynamics in Boomerang

    International Nuclear Information System (INIS)

    Jackson, Alan; Nishimura, Hiroshi

    2003-01-01

    We describe simulations of the beam dynamics in the storage ring (Boomerang), a 3-GeV third-generation light source being designed for the Australian Synchrotron Project[1]. The simulations were performed with the code Goemon[2]. They form the basis for design specifications for storage ring components (apertures, alignment tolerances, magnet quality, etc.), and for determining performance characteristics such as coupling and beam lifetime

  12. Systems and methods of varying charged particle beam spot size

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  13. Signal amplification and Pierce's instability in convergent particle beams

    International Nuclear Information System (INIS)

    Gnavi, G.; Gratton, F.T.

    1988-01-01

    Relativistic electron beams flowing between cylindrical and spherical electrodes (or solid angles sections of electrodes with these geometries) are studied. The beams are focused through the axis in the cylindrical case or through the center when spherical electrodes are considered. It is assumed that the external electrode is part of a device which accelerates the particles, the inner electrode is passive and removes the beams from the system. Electrons move by inertia in the interelectrode space, neutralized by an ion background. Properties of radial, small amplitude, perturbations are analyzed theoretically. Previous analyses of counterstreaming beams indicated that convergence modifies considerably the oscillations spectrum. Here, results on the amplification of signals when a beam is modulated at the external electrode are reported. Then, conditions for the instability of a beam when it flows through grounded electrodes (Pierce's instability of only one beam) are examined

  14. Particle beam and crabbing and deflecting structure

    Science.gov (United States)

    Delayen, Jean [Yorktown, VA

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  15. Particle reflection and TFTR neutral beam diagnostics

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O'Connor, T.E.; Newman, R.A.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-04-01

    Determination of two critical neutral beam parameters, power and divergence, are affected by the reflection of a fraction of the incident energy from the surface of the measuring calorimeter. On the TFTR Neutral Beam Test Stand, greater than 30% of the incident power directed at the target chamber calorimeter was unaccounted for. Most of this loss is believed due to reflection from the surface of the flat calorimeter, which was struck at a near grazing incidence (12 degrees). Beamline calorimeters, of a ''V''-shape design, while retaining the beam power, also suffer from reflection effects. Reflection, in this latter case, artificially peaks the power toward the apex of the ''V'', complicating the fitting technique, and increasing the power density on axis by 10 to 20%; an effect of import to future beamline designers. Agreement is found between measured and expected divergence values, even with 24% of the incident energy reflected

  16. Particle reflection and TFTR neutral beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O`Connor, T.E.; Newman, R.A.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-04-01

    Determination of two critical neutral beam parameters, power and divergence, are affected by the reflection of a fraction of the incident energy from the surface of the measuring calorimeter. On the TFTR Neutral Beam Test Stand, greater than 30% of the incident power directed at the target chamber calorimeter was unaccounted for. Most of this loss is believed due to reflection from the surface of the flat calorimeter, which was struck at a near grazing incidence (12{degrees}). Beamline calorimeters, of a ``V``-shape design, while retaining the beam power, also suffer from reflection effects. Reflection, in this latter case, artificially peaks the power toward the apex of the ``V``, complicating the fitting technique, and increasing the power density on axis by 10 to 20%; an effect of import to future beamline designers. Agreement is found between measured and expected divergence values, even with 24% of the incident energy reflected.

  17. Particle reflection and TFTR neutral beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O' Connor, T.E.; Newman, R.A.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-04-01

    Determination of two critical neutral beam parameters, power and divergence, are affected by the reflection of a fraction of the incident energy from the surface of the measuring calorimeter. On the TFTR Neutral Beam Test Stand, greater than 30% of the incident power directed at the target chamber calorimeter was unaccounted for. Most of this loss is believed due to reflection from the surface of the flat calorimeter, which was struck at a near grazing incidence (12{degrees}). Beamline calorimeters, of a V''-shape design, while retaining the beam power, also suffer from reflection effects. Reflection, in this latter case, artificially peaks the power toward the apex of the V'', complicating the fitting technique, and increasing the power density on axis by 10 to 20%; an effect of import to future beamline designers. Agreement is found between measured and expected divergence values, even with 24% of the incident energy reflected.

  18. Beams '96. Proceedings of the 11th international conference on high power particle beams. Vol. II

    International Nuclear Information System (INIS)

    Jungwirth, K.; Ullschmied, J.

    1996-01-01

    The scientific programme of the conference carved the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: radiation sources, Z-pinches, accelerate related topics, astrophysics, ICF, ION Beam Physics, ION DIODES, ION RINGS, Beam plasma systems, diagnostic and others. This volumes contains 160 contributions, out which 133 have been input to INIS

  19. Blow-up in nonlinear Schroedinger equations. II. Similarity structure of the blow-up singularity

    DEFF Research Database (Denmark)

    Rypdal, K.; Juul Rasmussen, Jens

    1986-01-01

    invariance and generalizations of the latter. This generalized "quasi-invariance" reveals the nature of the blow-up singularity and resolves an old controversy. Most of the previous work has been done on the cubic nonlinearity. We generalize the results to an arbitrary power nonlinearity....

  20. Beam Instabilities in Circular Particle Accelerators

    CERN Document Server

    AUTHOR|(CDS)2067185

    2017-01-01

    The theory of impedance-induced bunched-beam coherent instabilities is reviewed following Laclare's formalism, adding the effect of an electronic damper in the transverse plane. Both single-bunch and coupled-bunch instabilities are discussed, both low-intensity and high-intensity regimes are analysed, both longitudinal and transverse planes are studied, and both short-bunch and long-bunch regimes are considered. Observables and mitigation measures are also examined.

  1. Transverse particle dynamics in a Bessel beam

    Czech Academy of Sciences Publication Activity Database

    Milne, G.; Dholakia, K.; McGloin, D.; Volke-Sepulveda, K.; Zemánek, Pavel

    2007-01-01

    Roč. 15, č. 21 (2007), s. 13972-13987 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LC06007; GA MPO(CZ) FT-TA2/059 EU Projects: European Commission(XE) 508952 - ATOM3D Institutional research plan: CEZ:AV0Z20650511 Keywords : optical tweezers or optical manipulation * laser trapping * laser beam shaping Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.709, year: 2007

  2. A Note on the Blow-up Pattern for a Parabolic Equation

    OpenAIRE

    Kohda, Atsuhito; Suzuki, Takashi

    1999-01-01

    We consider here some conditions on initial value for parabolic problem which guarantee the blow-up of a solution. Then we study the behaviour of blow-up solution near blow-up time, that is blow-up patterns.

  3. Literature in focus: Particle beams from theory to practice

    CERN Multimedia

    2003-01-01

    Wednesday 1st October 16 h00 - Central Library CERN's Frank Zimmermann and DESY's Michiko G. Minty had their book 'Measurement and control of charged particle beams' published a few months ago by Springer. Frank Zimmermann, a young but already well established accelerator physicist, was awarded the European Accelerator Prize by the Interdivisional Group on Accelerators of the European Physical Society last year. Mr. Zimmermann was particularly cited for his significant contribution to the understanding of fast ion and electron cloud instabilities. The book is the first comprehensive and systematic review of all methods used for the measurement, correction, and control of the beam dynamics of modern particle accelerators and is intended for graduate students starting research or work in the field of beam physics. Specific techniques and methods for relativistic beams are illustrated by examples from operational accelerators, like CERN, DESY, SLAC, KEK, LBNL, and FNAL. Problems and solutions enhance the book...

  4. CAS course on Intensity Limitations in Particle Beams at CERN

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) recently organised a specialised course on Intensity Limitations in Particle Beams, at CERN from 2 to 11 November, 2015.     Many accelerators and storage rings, whether intended for particle physics experiments, synchrotron light sources or industrial applications, require beams of high brightness and the highest possible intensities. A good understanding of the possible limitations is required to achieve the desired performance. This course covered the interaction of beams with their surroundings and with other beams, as well as further collective effects. The lectures on the effects and possible mitigations were complemented by tutorials. The course was very successful, with 66 students representing 14 nationalities attending. Most participants came from European counties, but also from Armenia, China and Russia. Feedback from the participants was positive, reflecting the standard of the lectures and teaching. In addition to the academic pro...

  5. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  6. Beams '96. Proceedings of the 11th international conference on high power particle beams. Vol. I

    International Nuclear Information System (INIS)

    Jungwirth, K.; Ullschmied, J.

    1996-01-01

    The Proceedings contain the full texts of 60 orals and 243 poster papers presented at the Conference. The scientific programme of the conference covered the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: electron beams, beam-plasma systems, high-power microwaves (62), imploding liners, z-pinches, plasma foci (53), pulsed power technology and its applications (53), ion beams and ICF (41), industrial applications of electron and ion beams (36), radiation sources (23), diagnostics (14), and others (21). (J.U.)

  7. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.

    1991-01-01

    An imaging position sensitive, particle beam detector is described which is minimally invasive, operates over a wide dynamic range (>10 7 ), and exhibits high spatial resolution. The detector images secondary electrons or ions produced when an energetic particle beam passes through a thin foil. These secondary electrons or ions are transported onto a two dimensional imaging detector using stigmatic ion optics. The detector has been employed as a tuning aid for the Ion Microtomography (IMT) system at Sandia National Laboratories and its performance in this application will be discussed

  8. Off-line system for particle beam diagnostics

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Komolov, L.N.; Yudin, V.K.

    1979-01-01

    An off-line system in the CAMAC standard for beam diagnostics with the help of proportional chambers and the NTA-512B analyzer is described. The maximum number of wires in the system is 512. The accuracy of beam profile presentation is increased by selection of single-wire operations. The inquire time of one proportional chamber constitutes 15-20 μs and is comparable to the analyzer recording cycle. As a result, six chambers can detect 3000 particles per one accelerator cycle at the beam extraction duration of 400 ms. The system can be connected to a computer

  9. Engineering aspects of particle-beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  10. Electrostatic plasma lens for focusing negatively charged particle beams.

    Science.gov (United States)

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  11. Modern map methods in particle beam physics

    CERN Document Server

    Berz, Martin

    1999-01-01

    Advances in Imaging & Electron Physics merges two long-running serials--Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

  12. Sausage mode of a pinched charged particle beam

    International Nuclear Information System (INIS)

    Lee, E.P.

    1981-01-01

    The axisymmetric oscillations of a self-pinched charged particle beam are analyzed using a dispersion relation derived from a 3/2 dimensional model. This calculation includes the effects of rounded profiles, finite conductivity, a steady return current, and phase mix damping among particle orbits. However, only the lowest order radial mode of distortion is treated, and this is done in an approximate fashion

  13. Damping of coherent oscillations in intense ion beams

    International Nuclear Information System (INIS)

    Karpov, Ivan

    2017-01-01

    Transverse decoherence of a displaced ion bunch is an important phenomenon in synchrotrons and storage rings. An offset can be caused by an injection error after the bunch-to-bucket transfer between synchrotrons or by an externally generated kick. Decoherence results in a transverse emittance blowup, which can cause particle losses and a beam quality degradation. To prevent the beam blowup, a transverse feedback system (TFS) can be used. The damping time should be shorter than the characteristic decoherence time, which can be strongly affected by the interplay of different intensity effects (e.g., space charge and impedances). This thesis describes the development of the analytical models that explain decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. The pulsed response function including intensity effects was derived from the model for beam transfer functions. For a coasting beam, the two- dimensional model shows that space charge slows down and above intensity threshold suppresses decoherence. These predictions were confirmed by particle tracking simulations with self-consistent space charge fields. Additionally, halo buildup and losses during decoherence were observed in simulations. These effects were successfully interpreted using a non self-consistent particle-core model. The two-dimensional model was extended to the bunched beams. The simulation results reproduce the analytical predictions. The intensity threshold of decoherence suppression is higher in comparison to a coasting beam, image charges can restore decoherence. In the present work dedicated experiments were performed in the SIS18 synchrotron at GSI Darmstadt and the results were compared with simulations and analytical predictions. The contribution of nonlinearities and image charges is negligible while chromaticity and space charge dominate decoherence. To study the damping efficiency of TFS, a comprehensive TFS module was

  14. Charged particle beams for radiobiology at RARAF

    International Nuclear Information System (INIS)

    Colvett, R.D.; Rohrig, N.; Marino, S.A.

    1977-01-01

    (1) The extent to which the internal structure of a molecule might affect the separation of its constituent atoms after the molecule dissociates was investigated. Scattered intensity vs. lateral distance is shown (at 46 cm) for beams of 1.25-MeV monatomic deuterons, 2.5-MeV diatomic deuterons, and 3.75-MeV triatomic deuterons. It was found that the three species of ions have essentially indistinguishable scattering parameters; i.e., molecular effects are negligible. (2) Representative LET spectra are shown for deuterons of 2.2, 1.9, and 1.7 MeV and 3 He of 6.2 MeV. 3 figures

  15. Longitudinal collective echoes in coasting particle beams

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Khateeb

    2003-01-01

    Full Text Available Longitudinal ballistic and collective beam echoes with diffusion effects are investigated theoretically. In the presence of the space-charge impedance, the collective echo amplitude is obtained as a closed form expression. In contrast to the ballistic case, the collective echo amplitude consists of one maximum at time t_{echo}. The echo amplitude grows up and damps down with a rate proportional to the Landau damping rate of space-charge waves. The effect of weak diffusion is found to modify the ballistic and the collective echo amplitudes in the same manner. This effect of diffusion was confirmed using a “noiseless,” grid-based simulation code. As a first application the amount of numerical diffusion in our simulation code was determined using the echo effect.

  16. Particle beam dynamics simulations using the POOMA framework

    International Nuclear Information System (INIS)

    Humphrey, W.; Ryne, R.; Cleland, T.; Cummings, J.; Habib, S.; Mark, G.; Ji Qiang

    1998-01-01

    A program for simulation of the dynamics of high intensity charged particle beams in linear particle accelerators has been developed in C++ using the POOMA Framework, for use on serial and parallel architectures. The code models the trajectories of charged particles through a sequence of different accelerator beamline elements such as drift chambers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell algorithm is used to solve the Poisson equation that models the Coulomb interactions of the particles. The code employs an object-oriented design with software abstractions for the particle beam, accelerator beamline, and beamline elements, using C++ templates to efficiently support both 2D and 3D capabilities in the same code base. The POOMA Framework, which encapsulates much of the effort required for parallel execution, provides particle and field classes, particle-field interaction capabilities, and parallel FFT algorithms. The performance of this application running serially and in parallel is compared to an existing HPF implementation, with the POOMA version seen to run four times faster than the HPF code

  17. Determination of Beam Intensity and Position in a Particle Accelerator

    CERN Document Server

    Kasprowicz, Grzegorz

    2010-01-01

    The Proton Synchrotron accelerator (PS), installed at CERN, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC). The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajec- tory and orbit measurement system of the PS dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam position monitors (BPMs) and an analogue signal processing chain to acquire the trajectory of one single particle bunch out of many, over two consecutive turns at a maximum rate of once every 5ms. The BPMs were in good condition, however the electronics was aging and ...

  18. Development of diagnostic beams for alpha particle measurement on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Sasao, M.; Taniike, A.; Nomura, I.; Wada, M.; Yamaoka, H.; Sato, M.

    1995-08-01

    The feasibility of alpha particle measurement using a high energy diagnostic beam in combination with a neutral particle analyzer is examined for a burning plasma on ITER. In order to measure them in the energy range of 0.5 - 3.5 MeV, the required beam energy is around 1 MeV for a {sup 3}He{sup 0} beam and 3 MeV for a {sup 6}Li{sup 0} beam with the beam current density of around 1 mA/cm{sup 2} for both cases. Among the various methods to produce such a high energy neutral beam, the acceleration of negative ions is most favorable. Recent results of relatively small-scale experiments on these negative ion sources show that the required current density is now realistic. Some technical problems how to scale-up the ion sources to be used on an ITER-size experiment are also studied on these experiments. (author).

  19. Pulling cylindrical particles using a soft-nonparaxial tractor beam

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Ding, Weiqiang; Wang, Maoyan

    2017-01-01

    In order to pull objects towards the light source a single tractor beam inevitably needs to be strongly nonparaxial. This stringent requirement makes such a tractor beam somewhat hypothetical. Here we reveal that the cylindrical shape of dielectric particles can effectively mitigate...... the nonparaxiality requirements, reducing the incidence angle of the partial plane waves of the light beam down to 45 degrees and even to 30 degrees for respectively dipole and dipole-quadrupole objects. The optical pulling force attributed to the interaction of magnetic dipole and magnetic quadrupole moments...... of dielectric cylinders occurs due to the TE rather than TM polarization. Therefore, the polarization state of the incident beam can be utilized as an external control for switching between the pushing and pulling forces. The results have application values towards optical micromanipulation, transportation...

  20. Heterotic Mini-landscape in blow-up

    CERN Document Server

    Bizet, Nana Geraldine Cabo

    2013-01-01

    Localization properties of fields in compact extra dimensions are crucial ingredients for string model building, particularly in the framework of orbifold compactifications. Realistic models often require a slight deviation from the orbifold point, that can be analyzed using field theoretic methods considering (singlet) fields with nontrivial vacuum expectation values. Some of these fields correspond to blow-up modes that represent the resolution of orbifold singularities. Improving on previous analyses we give here an explicit example of the blow-up of a model from the heterotic Mini-landscape. An exact identification of the blow-up modes at various fixed points and fixed tori with orbifold twisted fields is given. We match the massless spectra and identify the blow-up modes as non-universal axions of compactified string theory. We stress the important role of the Green-Schwarz anomaly polynomial for the description of the resolution of orbifold singularities.

  1. An Expert System For Tuning Particle-Beam Accelerators

    Science.gov (United States)

    Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.

    1989-03-01

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.

  2. DART: a simulation code for charged particle beams

    International Nuclear Information System (INIS)

    White, R.C.; Barr, W.L.; Moir, R.W.

    1988-01-01

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs

  3. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  4. Dynamics and transport of laser-accelerated particle beams

    International Nuclear Information System (INIS)

    Becker, Stefan

    2010-01-01

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  5. Enhanced creation of high energy particles in colliding laser beams

    OpenAIRE

    Kuchiev, Michael; Ingham, Julian

    2015-01-01

    The creation of particles by two colliding strong laser beams is considered. It is found that the electron-positron pairs created in the laser field via the Schwinger mechanism may recollide after one or several oscillations in the field. Their collision can take place at high energy, which the pair gains from the field. As a result, high energy gamma quanta can be created by inelastic scattering or annihilation of the pair. Moreover, heavy particles such as muon pairs may also be created via...

  6. Open boundaries for particle beams within fit-simulations

    Energy Technology Data Exchange (ETDEWEB)

    Balk, M.C. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany)]. E-mail: balk@temf.tu-darmstadt.de; Schuhmann, R. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany); Weiland, T. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr. 8, 64289 Darmstadt (Germany)

    2006-03-01

    A method is proposed to simulate open boundary conditions for charged particle beams with vparticles are represented by a line current. Further, the simulated field components at the boundary of the calculation domain have to be modified for an undisturbed transmission of the space-charge field. This can be realised by a 'scattered field' formulation. The method is verified by several calculations.

  7. Open boundaries for particle beams within fit-simulations

    International Nuclear Information System (INIS)

    Balk, M.C.; Schuhmann, R.; Weiland, T.

    2006-01-01

    A method is proposed to simulate open boundary conditions for charged particle beams with v< c in time domain or frequency domain within the Finite Integration Technique (FIT). Inside the calculation domain the moving charged particles are represented by a line current. Further, the simulated field components at the boundary of the calculation domain have to be modified for an undisturbed transmission of the space-charge field. This can be realised by a 'scattered field' formulation. The method is verified by several calculations

  8. Use of high power particle beams in fusion research

    International Nuclear Information System (INIS)

    Schilling, G.

    1974-01-01

    Particle beams charged and neutral, with energies from 1 to several hundred keV and currents from 0.1 to several hundreds of amperes, pulsed for a few msec to DC, are being used or their use planned for controlled thermonuclear fusion research. Applications include the heating and fueling of plasmas in present experimental devices toward reactor conditions, the ignition, fueling, and control of future fusion power reactors, the production of high-flux 14 MeV neutrons for reactor wall material radiation damage studies, sustaining a fusion engineering reactor device to study wall materials, and direct simulation of charged and neutral particle bombardment of reactor walls

  9. Plasma-parameter measurements using neutral-particle-beam attenuation

    International Nuclear Information System (INIS)

    Foote, J.H.; Molvik, A.W.; Turner, W.C.

    1982-01-01

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane

  10. Charged particle beam propagation studies at the Naval Research Laboratory

    International Nuclear Information System (INIS)

    Meger, R.A.; Hubbard, R.F.; Antoniades, J.A.; Fernsler, R.F.; Lampe, M.; Murphy, D.P.; Myers, M.C.; Pechacek, R.E.; Peyser, T.A.; Santos, J.; Slinker, S.P.

    1993-01-01

    The Plasma Physics Division of the Naval Research Laboratory has been performing research into the propagation of high current electron beams for 20 years. Recent efforts have focused on the stabilization of the resistive hose instability. Experiments have utilized the SuperIBEX e-beam generator (5-MeV, 100-kA, 40-ns pulse) and a 2-m diameter, 5-m long propagation chamber. Full density air propagation experiments have successfully demonstrated techniques to control the hose instability allowing stable 5-m transport of 1-2 cm radius, 10-20 kA total current beams. Analytic theory and particle simulations have been used to both guide and interpret the experimental results. This paper will provide background on the program and summarize the achievements of the NRL propagation program up to this point. Further details can be found in other papers presented in this conference

  11. DART: A simulation code for charged particle beams

    International Nuclear Information System (INIS)

    White, R.C.; Barr, W.L.; Moir, R.W.

    1989-01-01

    This paper presents a recently modified version of the 2-D code, DART, which can simulate the behavior of a beam of charged particles whose trajectories are determined by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation includes space charge, secondary electrons, and the ionization of neutral gas. A beam can contain up to nine superimposed beamlets of different energy and species. The calculation of energy conversion efficiency and the method of specifying the electrode geometry are described. Basic procedures for using the code are given, and sample input and output fields are shown. 7 refs., 18 figs

  12. Laser-driven particle and photon beams and some applications

    International Nuclear Information System (INIS)

    Ledingham, K W D; Galster, W

    2010-01-01

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10 12 V m -1 with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  13. Laser-driven particle and photon beams and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Ledingham, K W D; Galster, W, E-mail: K.Ledingham@phys.strath.ac.u [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2010-04-15

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10{sup 12} V m{sup -1} with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  14. Comparison of laser and neutral particle beam discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1989-09-01

    The relative ability of lasers and neutral particle beams (NPBs) to discriminate reentry vehicle (RV) and anti-satellite (ASAT) decoys is pivotal in assessing their relative worth as strategic defenses. This report evaluates their ability and assesses their relative contributions, concluding that NPBs can typically discriminate about 100 times as many objects as can lasers, and do so with significantly greater certainty. 7 refs., 2 figs.

  15. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    Channell, P.J.

    1986-01-01

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  16. Laser-accelerated proton beams as a new particle source

    International Nuclear Information System (INIS)

    Nuernberg, Frank

    2010-01-01

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10 12 W/cm 2 ) prior to the main pulse (∝ns), an optimum pre-plasma density scale length of 60 μm is generated leading to an enhancement of the maximum proton energy (∝25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 μm foil irradiated with an intensity of 10 19 W/cm 2 onto a 60 μm spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and plasma physics group of the Technische Universitat

  17. Laser-accelerated proton beams as a new particle source

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberg, Frank

    2010-11-15

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10{sup 12} W/cm{sup 2}) prior to the main pulse ({proportional_to}ns), an optimum pre-plasma density scale length of 60 {mu}m is generated leading to an enhancement of the maximum proton energy ({proportional_to}25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 {mu}m foil irradiated with an intensity of 10{sup 19} W/cm{sup 2} onto a 60 {mu}m spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and

  18. Stochastic effects in real and simulated charged particle beams

    Directory of Open Access Journals (Sweden)

    Jürgen Struckmeier

    2000-03-01

    Full Text Available The Vlasov equation embodies the smooth field approximation of the self-consistent equation of motion for charged particle beams. This framework is fundamentally altered if we include the fluctuating forces that originate from the actual charge granularity. We thereby perform the transition from a reversible description to a statistical mechanics description covering also the irreversible aspects of beam dynamics. Taking into account contributions from fluctuating forces is mandatory if we want to describe effects such as intrabeam scattering or temperature balancing within beams. Furthermore, the appearance of “discreteness errors” in computer simulations of beams can be modeled as “exact” beam dynamics that are being modified by fluctuating “error forces.” It will be shown that the related emittance increase depends on two distinct quantities: the magnitude of the fluctuating forces embodied in a friction coefficient, γ, and the correlation time dependent average temperature anisotropy. These analytical results are verified by various computer simulations.

  19. Erosion tests of materials by energetic particle beams

    International Nuclear Information System (INIS)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed

  20. Analysis of charged particle induced reactions for beam monitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Surendra Babu, K. [IOP, Academia Sinica, Taipe, Taiwan (China); Lee, Young-Ouk [Nuclear Data Evaluation Laboratory, Korea Atomic Energy Research Institute (Korea, Republic of); Mukherjee, S., E-mail: smukherjee_msuphy@yahoo.co.in [Department of Physics, Faculty of Science, M.S. University of Baroda, Vadodara 390 002 (India)

    2012-07-15

    The reaction cross sections for different residual nuclides produced in the charged particle (p, d, {sup 3}He and {alpha}) induced reactions were calculated and compared with the existing experimental data which are important for beam monitoring and medical diagnostic applications. A detailed literature compilation and comparison were made on the available data sets for the above reactions. These calculations were carried out using the statistical model code TALYS up to 100 MeV, which contains Kalbach's latest systematic for the emission of complex particles and complex particle-induced reactions. All optical model calculations were performed by ECIS-03, which is built into TALYS. The level density, optical model potential parameters were adjusted to get the better description of experimental data. Various pre-equilibrium models were used in the present calculations with default parameters.

  1. Analysis of ABCD-like law for charged-particle beam transport with transversal divergence

    International Nuclear Information System (INIS)

    Chen Baoxin; Zhang Aiju; Sun Biehe

    2004-01-01

    It is shown that the propagation of charged-particle beam can be made in complete analogy with the transmission of ellipse-Gaussian light beam in paraxial approximation. Based on this similarity, the ABCD-like law for charged-particle beam transport with transversal divergence is developed by means of the complex curvature radius of charged-particle beam in which its real part shows the beam characteristics of convergent and divergent and its imaginary part shows the beam radius. From this, charged-particle beam as a whole is thought of as a single ellipse Gaussian light-like beam whose emittance plays the role of wave-length. In particular, this analogy gives an insight that it is hopeful to attain possible coherent charged-particle beam in favorable accelerator environment. (authors)

  2. Particle beam digital phase control system for COSY

    International Nuclear Information System (INIS)

    Schnase, A.

    1994-02-01

    Particle accelerators require that the orbit of the charged particles in the vacuum chamber is controlled to fulfil narrow limits. This is done by magnetic deflection systems and exactly adjusted rf-acceleration. Up to now the necessary control-functions were realised with analogue parts. This work describes a digital phase control system that works in real time and is used with the proton accelerator COSY. The physical design of the accelerator sets the accuracy-specifications of the revolution frequency (<1 Hz in the whole range from 400 kHz to 1.6 MHz), the phase-difference (<0.01 ), the signal-to-noise-ratio (<-60 dBc) and the update rate (<1 μs) of the parameters. In a typical operation the beam is first bunched and synchronised to the reference oscillator. After that the beam influences the rf-system with the help of charge detectors and now the rf-systems will be synchronised with the bunched beam. This control-loop is modelled and simulated with PSPICE. (orig.)

  3. On Particle Production for High Energy Neutrino Beams

    CERN Document Server

    Bonesini, M; Marchionni, A; Pietropaolo, F

    2001-01-01

    Analytical formulae for the calculation of secondary particle yields in p-A interactions are given. These formulae can be of great practical importance for fast calculations of neutrino fluxes and for designing new neutrino beam-lines. The formulae are based on a parameterization of the inclusive invariant cross sections for secondary particle production measured in p-Be interactions. Data collected in different energy ranges and kinematic regions are used. The accuracy of the fit to the data with the empirical formulae adopted is within the experimental uncertainties. Prescriptions to extrapolate this parameterization to finite targets and to targets of different materials are given. The results obtained are then used as an input for the simulation of neutrino beams. We show that our approach describes well the main characteristics of measured neutrino spectra at CERN. Thus it may be used in fast simulations aiming at the optimisation of the long-baseline neutrino beams at CERN and FNAL. In particular we wil...

  4. Particle confinement by a radially polarized laser Bessel beam

    Science.gov (United States)

    Laredo, Gilad; Kimura, Wayne D.; Schächter, Levi

    2017-03-01

    The stable trajectory of a charged particle in an external guiding field is an essential condition for its acceleration or for forcing it to generate radiation. Examples of possible guiding devices include a solenoidal magnetic field or permanent periodic magnet in klystrons, a wiggler in free-electron lasers, the lattice of any accelerator, and finally the crystal lattice for the case of channeling radiation. We demonstrate that the trajectory of a point-charge in a radially polarized laser Bessel beam may be stable similarly to the case of a positron that bounces back and forth in the potential well generated by two adjacent atomic planes. While in the case of channeling radiation, the transverse motion is controlled by a harmonic oscillator equation, for a Bessel beam the transverse motion is controlled by the Mathieu equation. Some characteristics of the motion are presented.

  5. G4beamline Particle Tracking in Matter Dominated Beam Lines

    Energy Technology Data Exchange (ETDEWEB)

    T.J. Roberts, K.B. Beard, S. Ahmed, D. Huang, D.M. Kaplan

    2011-03-01

    The G4beamline program is a useful and steadily improving tool to quickly and easily model beam lines and experimental equipment without user programming. It has both graphical and command-line user interfaces. Unlike most accelerator physics codes, it easily handles a wide range of materials and fields, being particularly well suited for the study of muon and neutrino facilities. As it is based on the Geant4 toolkit, G4beamline includes most of what is known about the interactions of particles with matter. We are continuing the development of G4beamline to facilitate its use by a larger set of beam line and accelerator developers. A major new feature is the calculation of space-charge effects. G4beamline is open source and freely available at http://g4beamline.muonsinc.com

  6. Charged beam dynamics, particle accelerators and free electron lasers

    CERN Document Server

    Dattoli, Giuseppe; Sabia, Elio; Artioli, Marcello

    2017-01-01

    Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It is intended as a reference manual for the different aspects of FEL devices, explaining how to design both a FEL device and the accelerator providing the driving beam. It covers both theoretical and experimental aspects, allowing researchers to attempt a first design of a FEL device in different operating conditions. It provides an analysis of what is already available, what is needed, and what the challenges are to determine new progress in this field. All chapters contain complements and exercises that are designed in such a way that the reader will gradually acquire self-confidence with the matter treated in the book.

  7. Analysis of shielding charged particle beams by thin conductors

    Directory of Open Access Journals (Sweden)

    Robert Gluckstern

    2001-02-01

    Full Text Available We present an analysis of shielding of electromagnetic fields excited by beams of charged particles surrounded by thin conducting layers or metal stripes inside an external structure of finite length. The ability of shielding by a layer thinner than the skin depth is explained and expressions for the impedance are derived. A previous result showing preferential penetration through the shielding layer at the resonant frequencies of the surrounding structure is verified and extended to include finite resistivity of the outer structure. Integration over the spectrum of the beam bunch shows that penetration is (nearly independent of the quality factors of the resonances. The transition of these results to those for a geometry of infinite length requires numerical evaluation.

  8. BOA, Beam Optics Analyzer A Particle-In-Cell Code

    International Nuclear Information System (INIS)

    Bui, Thuc

    2007-01-01

    The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.

  9. Laser-Accelerated Proton Beams as a New Particle Source

    OpenAIRE

    Nürnberg, Frank

    2010-01-01

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. Today's high power, ultrashort pulse laser systems are capable of achieving laser intensities up to 10^21 W/cm^2. When focused onto thin foil targets, extremely high field gradients of the order of TV/m are produced on the rear side of the target resulting in the acceleration of protons to multi-MeV energies with an exponential spectrum including up to 10^13 particles. This a...

  10. Blow-Ups in Generalized Kähler Geometry

    Science.gov (United States)

    van der Leer Durán, J. L.

    2018-02-01

    We study blow-ups in generalized Kähler geometry. The natural candidates for submanifolds to be blown-up are those which are generalized Poisson submanifolds for one of the two generalized complex structures and can be blown up in a generalized complex manner. We show that the bi-Hermitian structure underlying the generalized Kähler pair lifts to a degenerate bi-Hermitian structure on this blow-up. Then, using a deformation procedure based on potentials in Kähler geometry, we identify two concrete situations in which one can deform the degenerate structure on the blow-up into a non-degenerate one. We end with a study of generalized Kähler Lie groups and give a concrete example on {(S^1)^n × (S^3)^m}, for n + m even.

  11. Gradient blow-up in generalized Burgers and Boussinesq equations

    Science.gov (United States)

    Yushkov, E. V.; Korpusov, M. O.

    2017-12-01

    We study the influence of gradient non-linearity on the global solubility of initial-boundary value problems for a generalized Burgers equation and an improved Boussinesq equation which are used for describing one-dimensional wave processes in dissipative and dispersive media. For a large class of initial data, we obtain sufficient conditions for global insolubility and a bound for blow-up times. Using the Boussinesq equation as an example, we suggest a modification of the method of non-linear capacity which is convenient from a practical point of view and enables us to estimate the blow-up rate. We use the method of contraction mappings to study the possibility of instantaneous blow-up and short-time existence of solutions.

  12. Finite Time Blowup in a Realistic Food-Chain Model

    KAUST Repository

    Parshad, Rana

    2013-05-19

    We investigate a realistic three-species food-chain model, with generalist top predator. The model based on a modified version of the Leslie-Gower scheme incorporates mutual interference in all the three populations and generalizes several other known models in the ecological literature. We show that the model exhibits finite time blowup in certain parameter range and for large enough initial data. This result implies that finite time blowup is possible in a large class of such three-species food-chain models. We propose a modification to the model and prove that the modified model has globally existing classical solutions, as well as a global attractor. We reconstruct the attractor using nonlinear time series analysis and show that it pssesses rich dynamics, including chaos in certain parameter regime, whilst avoiding blowup in any parameter regime. We also provide estimates on its fractal dimension as well as provide numerical simulations to visualise the spatiotemporal chaos.

  13. The luminosity of particle beams from thick accretion discs

    International Nuclear Information System (INIS)

    Narayan, R.; Nityananda, R.; Wiita, P.J.

    1983-01-01

    The interaction of the radiation produced in the funnels of thick, highly luminous accretion discs with the walls of these funnels is investigated. Some processes not considered in an earlier discussion have been included. The turbulent mixing of the surface layer with deeper regions acts to reduce the luminosity associated with outflowing matter. The modification of the radiation field by the moving walls is also important. It is found, for the specific funnel geometry studied, corresponding to a radiation luminosity of 8.5 times the Eddington limit Lsub(E), that up to 1.5 Lsub(E) can be carried away as a particle beam, even for an optically thin funnel. This particle luminosity is sensitive to the sound velocity and the mixing efficiency in the walls. (author)

  14. 3D Simulations of Space Charge Effects in Particle Beams

    International Nuclear Information System (INIS)

    Adelmann, A.

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 10 9 protons/cm 3 ) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  15. Model for diffusion of a narrow beam of charged particles

    International Nuclear Information System (INIS)

    Eisenhauer, C.

    1980-01-01

    A simple analytic expression is presented to describe the three-dimensioned spatial distribution of flux or energy deposition by a narrow beam of charged particles. In this expression distances are expressed in terms of a scaling parameter that is proportional to the mean square scattering angle in a single collision. Finite ranges are expressed in terms of the continuous-slowing-down range. Track-length distributions for one-velocity particles and energy deposition for electrons are discussed. Comparisons with rigorous Monte Carlo calculations show that departures from the analytic expression can be expressed as a slowly varying function of order unity. This function can be used as a basis for interpolation over a wide range of source energies and materials

  16. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  17. Particle-beam-fusion progress report, July 1979 through December 1979

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The following chapters are included in this semi-annual progress report: (1) fusion target studies, (2) target experiments, (3) particle-beam source developments, (4) particle beam experiments, (5) pulsed power, (6) pulsed power applications, and (7) electron beam fusion accelerator project. (MOW)

  18. Particle-beam-fusion progress report, July 1979 through December 1979

    International Nuclear Information System (INIS)

    1981-01-01

    The following chapters are included in this semi-annual progress report: (1) fusion target studies, (2) target experiments, (3) particle-beam source developments, (4) particle beam experiments, (5) pulsed power, (6) pulsed power applications, and (7) electron beam fusion accelerator project

  19. Dosimetric consequences of pencil beam width variations in scanned beam particle therapy

    International Nuclear Information System (INIS)

    Chanrion, M A; Ammazzalorso, F; Wittig, A; Engenhart-Cabillic, R; Jelen, U

    2013-01-01

    Scanned ion beam delivery enables the highest degree of target dose conformation attainable in external beam radiotherapy. Nominal pencil beam widths (spot sizes) are recorded during treatment planning system commissioning. Due to changes in the beam-line optics, the actual spot sizes may differ from these commissioning values, leading to differences between planned and delivered dose. The purpose of this study was to analyse the dosimetric consequences of spot size variations in particle therapy treatment plans. For 12 patients with skull base tumours and 12 patients with prostate carcinoma, scanned-beam carbon ion and proton treatment plans were prepared and recomputed simulating spot size changes of (1) ±10% to simulate the typical magnitude of fluctuations, (2) ±25% representing the worst-case scenario and (3) ±50% as a part of a risk analysis in case of fault conditions. The primary effect of the spot size variation was a dose deterioration affecting the target edge: loss of target coverage and broadening of the lateral penumbra (increased spot size) or overdosage and contraction of the lateral penumbra (reduced spot size). For changes ⩽25%, the resulting planning target volume mean 95%-isodose line coverage (CI-95%) deterioration was ranging from negligible to moderate. In some cases changes in the dose to adjoining critical structures were observed. (paper)

  20. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  1. Chaos and the continuum limit in charged particle beams

    Directory of Open Access Journals (Sweden)

    Henry E. Kandrup

    2004-01-01

    Full Text Available We investigate the validity of the Vlasov-Poisson equations for calculating properties of systems of N charged particles governed by time-independent Hamiltonians. Through numerical experiments we verify that there is a smooth convergence toward a continuum limit as N→∞ and the particle charge q→0 such that the system charge Q=qN remains fixed. However, in real systems N and q are always finite, and the assumption of the continuum limit must be questioned. We demonstrate that Langevin simulations can be used to assess the importance of discreteness effects, i.e., granularity, in systems for which the physical particle number N is too large to enable orbit integrations based on direct summation of interparticle forces. We then consider a beam bunch in thermal equilibrium and apply Langevin techniques to assess whether the continuum limit can be safely applied to this system. In the process we show, especially for systems supporting a sizable population of chaotic orbits that roam globally through phase space, that for the continuum limit to be valid, N must sometimes be surprisingly large. Otherwise the influence of granularity on particle orbits cannot be ignored.

  2. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  3. Particle beam fusion. Progress report, April 1978-December 1978

    International Nuclear Information System (INIS)

    1979-12-01

    During this period substantial improvements in the theoretical basis for particle beam fusion as well as the execution of critical experiments were instrumental in further definition of the optimum route to our goals of demonstrating scientific and practical feasibility. The major emphasis in the program continues to be focused primarily on issues of power concentration and energy deposition of intense particle beams in solid targets. This utilization of program resources is directed toward conducting significant target implosion and thermonuclear burn experiments using EBFA-I (1 MJ) in the 1981-1983 time period. This step, using EBFA-I, will then set the stage for net energy gain experiments to follow on EBFA-II (> 2 MJ) after 1985. Current program emphasis and activities differ substantially from those stressed in the laser approaches to inertial confinement fusion. Here the critical issues relate to delivering the needed power densities and energies to appropriate targets and to insure that the coupling of energy is efficient and matches target requirements

  4. Particle beam fusion. Progress report, April 1978-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    During this period substantial improvements in the theoretical basis for particle beam fusion as well as the execution of critical experiments were instrumental in further definition of the optimum route to our goals of demonstrating scientific and practical feasibility. The major emphasis in the program continues to be focused primarily on issues of power concentration and energy deposition of intense particle beams in solid targets. This utilization of program resources is directed toward conducting significant target implosion and thermonuclear burn experiments using EBFA-I (1 MJ) in the 1981-1983 time period. This step, using EBFA-I, will then set the stage for net energy gain experiments to follow on EBFA-II (> 2 MJ) after 1985. Current program emphasis and activities differ substantially from those stressed in the laser approaches to inertial confinement fusion. Here the critical issues relate to delivering the needed power densities and energies to appropriate targets and to insure that the coupling of energy is efficient and matches target requirements.

  5. Strong-strong beam-beam simulation on parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2004-08-02

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

  6. Strong-strong beam-beam simulation on parallel computer

    International Nuclear Information System (INIS)

    Qiang, Ji

    2004-01-01

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders

  7. Diaphragm flange and method for lowering particle beam impedance at connected beam tubes of a particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Biallas, George Herman

    2017-07-04

    A diaphragm flange for connecting the tubes in a particle accelerator while minimizing beamline impedance. The diaphragm flange includes an outer flange and a thin diaphragm integral with the outer flange. Bolt holes in the outer flange provide a means for bolting the diaphragm flange to an adjacent flange or beam tube having a mating bolt-hole pattern. The diaphragm flange includes a first surface for connection to the tube of a particle accelerator beamline and a second surface for connection to a CF flange. The second surface includes a recessed surface therein and a knife-edge on the recessed surface. The diaphragm includes a thickness that enables flexing of the integral diaphragm during assembly of beamline components. The knife-edge enables compression of a soft metal gasket to provide a leak-tight seal.

  8. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A.D. [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1993-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  9. Electromagnetic instability of a beam of charged particles in a dense plasma

    International Nuclear Information System (INIS)

    Gordeev, A.V.; Rudakov, L.I.

    1982-01-01

    We investigate magnetic-field generation due to filamentation of a beam of charged particles propagating in a dense plasma under conditions of strong current neutralization. The filamentation mechanism is determined by inductive or dissipative magnetic-field accumulation which leads to an inertialess restructuring of the equilibrium of the charged-particle beam. The characteristic generation times of a magnetic field that leads to a substantial increase of the angular spread of the particles are indicated for typical beam and laser experiments

  10. Charged particle therapy with mini-segmented beams

    Directory of Open Access Journals (Sweden)

    F. Avraham eDilmanian

    2015-12-01

    Full Text Available One of the fundamental attributes of proton therapy and carbon ion therapy is the ability of these charged particles to spare tissue distal to the targeted tumor. This significantly reduces normal tissue toxicity and has the potential to translate to a wider therapeutic index. Although, in general, particle therapy also reduces dose to the proximal tissues, particularly in the vicinity of the target, dose to the skin and to other very superficial tissues tends to be higher than that of megavoltage x-rays. The methods presented here, namely Interleaved carbon minibeams and Radiosurgery with arrays of proton and light ion minibeams, both utilize beams segmented into arrays of parallel minibeams of about 0.3 mm incident beam size. These minibeam arrays spare tissues, as demonstrated by synchrotron x-ray experiments. An additional feature of particle minibeams is their gradual broadening due to multiple Coulomb scattering as they penetrate tissues. In the case of interleaved carbon minibeams, which do not broaden much, two arrays of planar carbon minibeams that remain parallel at target depth, are aimed at the target from 90º angles and made to interleave at the target to produce a solid radiation field within the target. As a result the surrounding tissues are exposed only to individual carbon minibeam arrays and are therefore spared. The method was used in four-directional geometry at the NASA Space Radiation Laboratory to ablate a 6.5-mm target in a rabbit brain at a single exposure with 40 Gy physical absorbed dose. Contrast-enhanced magnetic resonance imaging and histology six month later showed very focal target necrosis with nearly no damage to the surrounding brain. As for minibeams of protons and light ions, for which the minibeam broadening is substantial, measurements at MD Anderson Cancer Center in Houston, Texas, and Monte Carlo simulations showed that the broadening minibeams will merge with their neighbors at a certain tissue depth

  11. Blowup in the complex Ginzburg-Landau equation

    NARCIS (Netherlands)

    Schans, Martin van der

    2013-01-01

    In this thesis, we study the stability of a finite-time blowup solution of a partial di erential equation (PDE). Partial di erential equations can be used to model phenomena in a wide range of applications. Examples of well known partial di erential equations are: the heat equation which models heat

  12. Periodicity and blowup in a two-species cooperating model

    DEFF Research Database (Denmark)

    Lin, Zhigui; Liu, Jiahong; Pedersen, Michael

    2011-01-01

    for the same system are then given. It is shown that periodic solutions exist if the intra-specific competitions are strong whereas blowup solutions exist under certain conditions if the intra-specific competitions are weak. Numerical simulations and a brief discussion are also presented in the last section....

  13. Energy distribution of projectile fragment particles in heavy ion therapeutic beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsufuji, Naruhiro; Tomura, Hiromi; Futami, Yasuyuki [National Inst. of Radiological Sciences, Chiba (Japan)] [and others

    1998-03-01

    Production of fragment particles in a patient`s body is one of important problems for heavy charged particle therapy. It is required to know the yield and the energy spectrum for each fragment element - so called `beam quality` to understand the effect of therapeutic beam precisely. In this study, fragment particles produced by practical therapeutic beam of HIMAC were investigated with using tissue-equivalent material and a detector complex. From the results, fragment particles were well identified by difference of their atomic numbers and the beam quality was derived. Responses of the detectors in this energy region were also researched. (author)

  14. Beam dynamics calculations and particle tracking using massively parallel processors

    International Nuclear Information System (INIS)

    Ryne, R.D.; Habib, S.

    1995-01-01

    During the past decade massively parallel processors (MPPs) have slowly gained acceptance within the scientific community. At present these machines typically contain a few hundred to one thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The potential performance of these machines is illustrated by the fact that a month long job on a high end workstation might require only a few hours on an MPP. The acceptance of MPPs has been slow for a variety of reasons. For example, some algorithms are not easily parallelizable. Also, in the past these machines were difficult to program. But in recent years the development of Fortran-like languages such as CM Fortran and High Performance Fortran have made MPPs much easier to use. In the following we will describe how MPPs can be used for beam dynamics calculations and long term particle tracking

  15. Power and particle balance during neutral beam injection in TFTR

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Budny, R.V.; Hill, K.W.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Ramsey, A.T.

    1991-05-01

    Detailed boundary plasma measurements on TFTR have been made during a NBI power scan in the range P tot = 1MW--20MW in the L-mode regime. The behavior of the plasma density left-angle n e right-angle, radiated power P rad , carbon and deuterium fluxes Γ C , Γ D , and Ζ eff can be summarized as, left-angle n e right-angle ∝ P tot 1/2 , P rad , Γ C , Γ D ∝ P tot , and Ζ eff ∼ constant. It is shown that central fuelling by the neutral beams plays a minor role in the particle balance of the discharge. More important is the NBI role in the power balance. The TFTR data during NBI originate primarily at the graphite limiter

  16. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    Science.gov (United States)

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  17. Superconducting quantum interference monitor of charged particle beam current

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Mikheev, M.S.

    1981-01-01

    Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru

  18. Optical force exerted on a Rayleigh particle by a vector arbitrary-order Bessel beam

    International Nuclear Information System (INIS)

    Yang, Ruiping; Li, Renxian

    2016-01-01

    An analytical description of optical force on a Rayleigh particle by a vector Bessel beam is investigated. Linearly, radially, azimuthally, and circularly polarized Bessel beams are considered. The radial, azimuthal, and axial forces by a vector Bessel beam are numerically simulated. The effect of polarization, order of beams, and half-cone angle to the optical force are mainly discussed. For Bessel beams of larger half-cone angle, the non-paraxiality of beams plays an important role in optical forces. Numerical calculations show that optical forces, especially azimuthal forces, are very sensitive to the polarization of beams. - Highlights: • Optical force exerted on a Rayleigh particle by a vector Bessel beam is analytically derived. • Radial, azimuthal, and axial forces are numerically analyzed. • The effect of polarization, order of beam, and non-paraxiality is analyzed.

  19. Summary test results of the particle-beam diagnostics for the Advanced Photon Source (APS) subsystems

    International Nuclear Information System (INIS)

    Lumpkin, A.; Wang, X.; Sellyey, W.; Patterson, D.; Kahana, E.

    1994-01-01

    During the first half of 1994, a number of the diagnostic systems for measurement of the charged-particle beam parameters throughout the subsystems of the Advanced Photon Source (APS) have been installed and tested. The particle beams eventually will involve 450-MeV to 7-GeV positrons and with different pulse formats. The first test and commissionin results for beam profiles, beam position monitors, loss rate monitors, current monitors, and synchrotron radiation photon monitors hve been obtained using 200- to 350-MeV electron beams injected into the subsystems. Data presented are principally from the transport lines and the positron accumulator ring

  20. Study of the one-way speed of light anisotropy with particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Wojtsekhowski, Bogdan B. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-04-01

    Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.

  1. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  2. Treatment facilities, human resource development, and future prospect of particle beam therapy

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi

    2015-01-01

    The number of particle beam therapy facilities is increasing globally. Among the countries practicing particle beam therapy, Japan is one of the leading countries in the field with four operating carbon-ion therapy facilities and ten operating proton therapy facilities. With the increasing number of particle beam therapy facilities, the human resource development is becoming extremely important, and there has been many such efforts including the Gunma University Program for Cultivating Global Leaders in Heavy Ion Therapeutics and Engineering, which aimed to educate and train the radiation oncologists, medical physicists, accelerator engineers, and radiation biologists to become global leaders in the field of particle beam therapy. In the future, the benefit and effectiveness of particle beam therapy should be discussed and elucidated objectively in a framework of comprehensive cancer care. (author)

  3. Scattering of an ion beam by charged fine particles with Coulomb force

    International Nuclear Information System (INIS)

    Amemiya, H.; Nakamura, Y.

    2002-01-01

    Fine particles satisfying critical limits act as Coulomb forces and scatter charged particles like beams due to the long-range force. Otherwise, fine particles behave as tiny probes. The energy loss and broadening rates of an ion beam by particles having Coulomb fields are investigated where the Coulomb logarithm is taken as a variable. Dependence of the energy loss and broadening on the plasma density, dust charge and beam energy is obtained. A method for measuring the dust surface charge is also given

  4. Blowup Analysis for a Nonlocal Diffusion Equation with Reaction and Absorption

    Directory of Open Access Journals (Sweden)

    Yulan Wang

    2012-01-01

    Full Text Available We investigate a nonlocal reaction diffusion equation with absorption under Neumann boundary. We obtain optimal conditions on the exponents of the reaction and absorption terms for the existence of solutions blowing up in finite time, or for the global existence and boundedness of all solutions. For the blowup solutions, we also study the blowup rate estimates and the localization of blowup set. Moreover, we show some numerical experiments which illustrate our results.

  5. Asymptotic properties of blow-up solutions in reaction-diffusion equations with nonlocal boundary flux

    Science.gov (United States)

    Liu, Bingchen; Dong, Mengzhen; Li, Fengjie

    2018-04-01

    This paper deals with a reaction-diffusion problem with coupled nonlinear inner sources and nonlocal boundary flux. Firstly, we propose the critical exponents on nonsimultaneous blow-up under some conditions on the initial data. Secondly, we combine the scaling technique and the Green's identity method to determine four kinds of simultaneous blow-up rates. Thirdly, the lower and the upper bounds of blow-up time are derived by using Sobolev-type differential inequalities.

  6. Numerical study of blow-up in the Davey-Stewartson system

    KAUST Repository

    Klein, Christian

    2013-03-01

    Nonlinear dispersive partial differential equations such as the nonlinear Schrödinger equations can have solutions that blow up. We numerically study the long time behavior and potential blow-up of solutions to the focusing Davey-Stewartson II equation by analyzing perturbations of the lump and the Ozawa solutions. It is shown in this way that both are unstable to blow-up and dispersion, and that blow-up in the Ozawa solution is generic.

  7. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  8. Characteristics of particle beam acceleration on KUMS tandem electrostatic accelerator 5SDH-2

    OpenAIRE

    谷池, 晃; 古山, 雄一; 北村, 晃

    2006-01-01

    The KUMS tandem electrostatic accelerator, 5SDH-2, was installed in 1996. Ten years have passed since it installed and we obtain some data for accelerator operations. We report the particle beam characteristics such as relation between beam species and switcher magnet current, and dependence of ion charge fraction on stripper gas thickness. We also try to generate nitrogen ion beams, and low energy ion beams.

  9. Heavy ion particle beam interaction with a hot ionized target

    International Nuclear Information System (INIS)

    Dei-Cas, R.; Bardy, J.; Beuve, M.A.; Laget, J.P.; Menier, A.; Renaud, M.

    1983-03-01

    The present status of the experimental facility consisting of a heavy ion beam travelling through a laser created plasma target is described. Some aspects such as laser-tandem coupling, beam performances, constraints on the plasma parameter ranges, plasma and beam diagnostics are analyzed

  10. Transient beam losses in the LHC injection kickers from micron scale dust particles

    CERN Document Server

    Goddard, B; Baer, T; Barnes, M J; Cerutti, F; Ferrari, A; Garrel, N; Gerardin, A; Guinchard, M; Lechner, A; Masi, A; Mertens, V; Morón Ballester, R; Redaelli, S; Uythoven, J; Vlachoudis, V; Zimmermann, F

    2012-01-01

    Transient beam losses on a time scale of a few ms have been observed in the LHC injection kickers, occurring mainly shortly after beam injection with a strong correlation in time to the kicker pulsing. The beam losses, which have at times affected LHC availability, are attributed to micron scale ceramic dust particles detached from the alumina beam pipe and accelerated into the beam. The beam related observations are described, together with laboratory measurements of beam pipe contamination and kicker vibration, simulations of electric field in the beam pipe and the basic dynamic model. Energy deposition simulations modelling the beam losses are presented and compared to measurement. Extrapolations to future LHC operation at higher intensities and energies are made, and prospects for mitigation are discussed.

  11. Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code

    CERN Document Server

    Stancari, Giulio; Redaelli, Stefano

    2014-01-01

    Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The design of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.

  12. Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport

    Science.gov (United States)

    Phadte, D.; Patidar, C. B.; Pal, M. K.

    2017-04-01

    A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.

  13. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y.

    2004-10-28

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.

  14. Modulation of lens cell adhesion molecules by particle beams

    Science.gov (United States)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  15. Analysis of particle species evolution in neutral beam injection lines

    International Nuclear Information System (INIS)

    Kim, J.; Haselton, H.H.

    1978-07-01

    Analytic solutions to the rate equations describing the species evolution of a multispecies positive ion beam of hydrogen due to charge exchange and molecular dissociation are derived as a function of the background gas (H 2 ) line density in the neutralizing gas cell and in the drift tube. Using the solutions, calculations are presented for the relative abundance of each species as a function of the gas cell thickness, the reionization loss rates in the drift tube, and the neutral beam power as a function of the beam energy and the species composition of the original ion beam

  16. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  17. Manufacture of electrostatic septum for extracting particle beam

    International Nuclear Information System (INIS)

    Tokumoto, Shuichi

    1979-01-01

    In the main ring of National Laboratory for High Energy Physics, fast and slow extractions of accelerated proton beam are carried out by using electrostatic septa. The electrostatic septum is an apparatus to deflect beam by an electrostatic field, basically composed of a couple of parallel plate electrodes installed in a vacuum chamber. The electrostatic septum is required to satisfy the following two conditions: it must be very thin and flat to reduce the loss of extracted beam, and sufficiently high electric field must be generated to deflect beam in a limited length. The structure and manufacture of electrostatic septa are described. The manufacturing is explained by dividing a septum into an anode and a cathode, terminals introducing high voltage, a vacuum chamber, and high voltage circuit. The performance is also described on the experiments for no-beam condition and beam extraction. Beam extraction has been carried out over 1500 hours thus far, the average beam intensity being 1 x 10 12 ppp, and extraction efficiency more than 90%. There have been no serious failure to affect the performance nor metal wire breakage. They have satisfied their purposes, being used for both fast and slow extractions. Presently, lengthening of the electrostatic field region is being planned to increase the length of the septa to 1.5 m per unit. (Wakatsuki, Y.)

  18. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    that the surface roughness increases after ion beam irradiation. Keywords. Composite materials; ion beam irradiation; dielectric properties; X-ray diffraction. 1. Introduction. Various metal fillers were incorporated in polymers to pro- duce novel functionalized composites, which have found extensive applications, such as ...

  19. Remarks on the Blow-Up Solutions for the Critical Gross-Pitaevskii Equation

    Directory of Open Access Journals (Sweden)

    Xiaoguang Li

    2013-01-01

    Full Text Available This paper is concerned with the blow-up solutions of the critical Gross-Pitaevskii equation, which models the Bose-Einstein condensate. The existence and qualitative properties of the minimal blow-up solutions are obtained.

  20. Transition between extinction and blow-up in a generalized Fisher–KPP model

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Bermejo, Benito, E-mail: benito.hernandez@urjc.es [Departamento de Física, Universidad Rey Juan Carlos, Calle Tulipán S/N, 28933, Móstoles, Madrid (Spain); Sánchez-Valdés, Ariel [Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, Calle Tulipán S/N, 28933, Móstoles, Madrid (Spain)

    2014-05-01

    Stationary solutions of the Fisher–KPP equation with general nonlinear diffusion and arbitrary reactional kinetic orders terms are characterized. Such stationary (separatrix-like) solutions disjoint the blow-up solutions from those showing extinction. In addition a criterion for general parameter values is presented, which allows determining the blow-up or vanishing character of the solutions.

  1. A formula for the Chern classes of symplectic blow-ups

    NARCIS (Netherlands)

    Geiges, H.; Pasquotto, F.

    2007-01-01

    It is shown that the formula for the Chern classes (in the Chow ring) of blow-ups of algebraic varieties, due to Porteous and Lascu-Scott, also holds (in the singular cohomology ring) for blow-ups of symplectic and complex manifolds. This was used by the second author in her solution of the

  2. Blow-Up of Solutions for a Class of Sixth Order Nonlinear Strongly Damped Wave Equation

    Directory of Open Access Journals (Sweden)

    Huafei Di

    2014-01-01

    Full Text Available We consider the blow-up phenomenon of sixth order nonlinear strongly damped wave equation. By using the concavity method, we prove a finite time blow-up result under assumptions on the nonlinear term and the initial data.

  3. Global existence and finite time blow-up for a parabolic system on hyperbolic space

    Science.gov (United States)

    Wu, Hui; Yang, Xiaoping

    2018-01-01

    In this paper, we study the global existence and finite time blow-up of positive solutions for a parabolic system on hyperbolic space. Using the heat semigroup and constructing subsolutions and supersolutions, we obtain the Fujita type results. In the case of a critical exponent, the critical exponent is not a blow-up exponent.

  4. Using the particle beam optics lab. (PBO LABtm) for beamline design and analysis

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Martono, H.; Moore, J.M.; Lampel, M.C.; Brown, N.A.

    1999-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) represents a new approach to providing software for particle beam optics modeling. The PBO Lab includes four key elements: a graphic user interface shell; a graphic beamline construction kit for users to interactively and visually construct optical beam lines; a knowledge database on the physics and technology of optical elements, and various charged particle optics computational engines. A first-order matrix code, including a space charge model, can be used to produce scaled images of beamlines together with overlays of single trajectories and beam envelopes. The qualitative results of graphically sliding beamline components, or adjusting bend angles, can be explored interactively. Quantitative computational engines currently include the third-order TRANSPORT code and the multi-particle ray tracing program TURTLE. The use of the PBO Lab for designing and analyzing a second order achromatic bend is illustrated with the Windows 95/NT version of the software. (authors)

  5. Choice of theoretical model for beam scattering at accelerator output foil for particle energy determination

    International Nuclear Information System (INIS)

    Balagyra, V.S.; Ryabka, P.M.

    1999-01-01

    For measuring the charged particle energy calculations of mean square angles of electron beam multiple Coulomb scattering at output combined accelerator target were undertaken according to seven theoretical models. Mollier method showed the best agreement with experiments

  6. Remarks on the differential algebraic approach to particle beam optics by M. Berz

    Energy Technology Data Exchange (ETDEWEB)

    Garczynski, V.

    1992-12-31

    The underlying mathematical structure of the differential algebraic approach of M. Berz to particle beam optics is isomorphic to the familiar truncated polynomial algebra. Concrete examples of derivations in this algebra, consistent with the truncation operation, are given.

  7. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  8. The δf algorithm for beam dynamics

    International Nuclear Information System (INIS)

    Koga, J.; Tajima, T.

    1993-05-01

    An algorithm is developed to study particle dynamics of beams including collective interaction with high accuracy and low noise. Particle dynamics with collective interactions is treated through particle simulation, where the main or average distribution f 0 and the deviation away from it δf are separately followed. The main distribution f 0 is handled by an analytic equilibrium solution and the perturbation away from it δf is followed by the method of characteristics. We call this the δf algorithm. We specifically model a synchrotron collider which includes the collision section where collective effects of collisions are simulated by this δf algorithm and the rest of the collider where single particle dynamics are treated by simple harmonic transport. The most important target of this simulation is to understand and predict the long-time behavior of the beam luminosity and lifetime. The δf method allows the study the effect of small perturbations over long timescales on beam lifetime by eliminating the numerical noise problem inherent in Particle-in-Cell techniques. In the δf code using the reference parameters of the SSC (Superconducting Super Collider), beam blow-up near resonances and oscillations in the tune shift, Δν, far from resonances are observed. In studying long timescale particle diffusion in the phase space of the beams away from resonances, the δf code performance is compared with a tracking code which does not incorporate collective interaction

  9. Method and system for automatically correcting aberrations of a beam of charged particles

    International Nuclear Information System (INIS)

    1975-01-01

    The location of a beam of charged particles within a deflection field is determined by its orthogonal deflection voltages. With the location of the beam in the field, correction currents are supplied to a focus coil and to each of a pair of stigmator coils to correct for change of focal length and astigmatism due to the beam being deflected away from the center of its deflection field

  10. Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant

    Science.gov (United States)

    Jiang, Jie; Wu, Hao; Zheng, Songmu

    2018-04-01

    We investigate blow-up properties for the initial-boundary value problem of a Keller-Segel model with consumption of chemoattractant when the spatial dimension is three. Through a kinetic reformulation of the Keller-Segel system, we first derive some higher-order estimates and obtain certain blow-up criteria for the local classical solutions. These blow-up criteria generalize the results in [4,5] from the whole space R3 to the case of bounded smooth domain Ω ⊂R3. Lower global blow-up estimate on ‖ n ‖ L∞ (Ω) is also obtained based on our higher-order estimates. Moreover, we prove local non-degeneracy for blow-up points.

  11. Characterisation of gunshot residue particles using self-consistent ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.J. [University of Surrey Ion Beam Centre, Guildford, GU2 7XH (United Kingdom)], E-mail: m.bailey@surrey.ac.uk; Jeynes, C. [University of Surrey Ion Beam Centre, Guildford, GU2 7XH (United Kingdom)

    2009-06-15

    Individual particles of gunshot residue were studied with particle-induced X-ray emission and backscattering spectrometry using a 2.5 MeV H{sup +} beam focussed to {approx}4 {mu}m and self-consistent fitting of the data. The geometry of these spherical particles was considered in order to accurately fit the corresponding particle spectrum and therefore to quantify the trace element composition of these particles. The demonstrable self-consistency of this method allows the compositions of most residue particles to be determined unambiguously and with a higher sensitivity to trace elements than conventional methods.

  12. Impact of beam ions on α-particle measurements by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Egedal, J.; Bindslev, H.; Budny, R.V.

    2005-01-01

    Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask the measureme......Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask...... and the alpha-particles are calculated. Our investigations show that the CTS measurements of alpha-particles will not be masked by the presence of the beam ions in H-mode plasmas. In lower density reversed shear plasmas, only a part of the CTS alpha-particle spectrum will be perturbed....

  13. Determination of nuclear moments in experiments on charged particle beams

    International Nuclear Information System (INIS)

    Hrynkiewicz, A.Z.

    Nuclear magnetic moment measurements by in-beam perturbed angular correlation method are discussed, with special emphasis on the use of transient fields. Measurements on states in several sd and dsup(5/2) nuclei are reported [fr

  14. Electrostatic quadrupole array for focusing parallel beams of charged particles

    International Nuclear Information System (INIS)

    Brodowski, J.

    1982-01-01

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators

  15. Parallel Computation of Persistent Homology using the Blowup Complex

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Ryan [Stanford Univ., CA (United States); Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-04-27

    We describe a parallel algorithm that computes persistent homology, an algebraic descriptor of a filtered topological space. Our algorithm is distinguished by operating on a spatial decomposition of the domain, as opposed to a decomposition with respect to the filtration. We rely on a classical construction, called the Mayer--Vietoris blowup complex, to glue global topological information about a space from its disjoint subsets. We introduce an efficient algorithm to perform this gluing operation, which may be of independent interest, and describe how to process the domain hierarchically. We report on a set of experiments that help assess the strengths and identify the limitations of our method.

  16. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    International Nuclear Information System (INIS)

    Barnard, J.J.; Lund, S.M.

    2008-01-01

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  17. Dose contributions from large-angle scattered particles in therapeutic carbon beams

    International Nuclear Information System (INIS)

    Kusano, Yohsuke; Kanai, Tatsuaki; Kase, Yuki; Matsufuji, Naruhiro; Komori, Masataka; Kanematsu, Nobuyuki; Ito, Atsushi; Uchida, Hirohisa

    2007-01-01

    In carbon therapy, doses at center of spread-out Bragg peaks depend on field size. For a small field of 5x5 cm 2 , the central dose reduces to 96% of the central dose for the open field in case of 400 MeV/n carbon beam. Assuming the broad beam injected to the water phantom is made up of many pencil beams, the transverse dose distribution can be reconstructed by summing the dose distribution of the pencil beams. We estimated dose profiles of this pencil beam through measurements of dose distributions of broad uniform beams blocked half of the irradiation fields. The dose at a distance of a few cm from the edge of the irradiation field reaches up to a few percent of the central dose. From radiation quality measurements of this penumbra, the large-angle scattered particles were found to be secondary fragments which have lower LET than primary carbon beams. Carbon ions break up in beam modifying devices or in water phantom through nuclear interaction with target nuclei. The angular distributions of these fragmented nuclei are much broader than those of primary carbon particles. The transverse dose distribution of the pencil beam can be approximated by a function of the three-Gaussian form. For a simplest case of mono-energetic beam, contributions of the Gaussian components which have large mean deviations become larger as the depth in the water phantom increases

  18. Advances in 4D treatment planning for scanned particle beam therapy - report of dedicated workshops

    NARCIS (Netherlands)

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-01-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle

  19. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  20. Some fundamental aspects of fluctuations and coherence in charged-particle beams in storage rings

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1984-01-01

    A conceptual survey and exposition is presented of some fundamental aspects of fluctuations and coherence, as well as the interplay between the two, in coasting charged-particle beams - both continuous and bunched - in storage rings. A detailed study is given of the spectral properties of the incoherent phase-space Schottky fluctuations, their propagation as waves in the beam, and the analytic complex coherent beam electromagnetic response or transfer function. The modification or distortion of these by collective interactions is examined in terms of simple regeneration mechanisms. Collective or coherent forces in the beam-storage-ring system are described by defining suitable impedance functions or propagators, and a brief discussion of the coherent collective modes and their stability is provided, including a general and rigorous description of the Nyquist stability criterion. The nature of the critical fluctuations near an instability threshold is explored. The concept of Landau damping and its connection with phase-mixing within the beam is outlined. The important connection between the incoherent fluctuations and the beam response, namely the Fluctuation-Dissipation relation, is revealed. A brief discussion is given of the information degrees of freedom, and effective temperature of the fluctuation signals. Appendices provide a short resume of some general aspects of various interactions in a charged-particle beam-environment system in a storage ring and a general introduction to kinetic theory as applied to particle beams. (orig.)

  1. Self-consistent particle distribution of a bunched beam in RF field

    CERN Document Server

    Batygin, Y K

    2002-01-01

    An analytical solution for the self-consistent particle equilibrium distribution in an RF field with transverse focusing is found. The solution is attained in the approximation of a high brightness beam. The distribution function in phase space is determined as a stationary function of the energy integral. Equipartitioning of the beam distribution between degrees of freedom follows directly from the choice of the stationary distribution function. Analytical expressions for r-z equilibrium beam profile and maximum beam current in RF field are obtained.

  2. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam.

    Science.gov (United States)

    Redding, Brandon; Pan, Yong-Le

    2015-06-15

    Optical trapping of airborne particles is emerging as an essential tool in applications ranging from online characterization of living cells and aerosols to particle transport and delivery. However, existing optical trapping techniques using a single laser beam can trap only transparent particles (via the radiative pressure force) or absorbing particles (via the photophoretic force), but not particles of either type-limiting the utility of trapping-enabled aerosol characterization techniques. Here, we present the first optical trapping technique capable of trapping both transparent and absorbing particles with arbitrary morphology using a single shaped laser beam. Such a general-purpose optical trapping mechanism could enable new applications such as trapping-enabled aerosol characterization with high specificity.

  3. Biomedical applications of medium energy particle beams at LAMPF

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1978-01-01

    At LAMPF an 800-MeV proton accelerator is used to produce intense beams of secondary protons, pi mesons, and muons which are being employed in several areas of biomedical research. The primary proton beam is used to produce short-lived radioisotopes of clinical interest. Carefully tailored secondary proton beams are used to obtain density reconstructions of samples with a dose much less than that required by x-ray CT scanners. The elemental composition of tissue samples is being determined non-destructively with muonic x-ray analysis. Finally, an extensive program, with physical, biological, and clinical components, is underway to evaluate negative pi mesons for use in cancer radiotherapy. The techniques used in these experiments and recent results are described

  4. Perturbational blowup solutions to the compressible Euler equations with damping.

    Science.gov (United States)

    Cheung, Ka Luen

    2016-01-01

    The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.

  5. Focused transport of intense charged particle beams. Final technical report FY/93

    International Nuclear Information System (INIS)

    1997-01-01

    Many recent developments in accelerator technology have increased the need for a better understanding of the physics of intense-beam transport. Of particular interest to the work described here is the appearance, as beam intensities are increased, of a class of nonlinear phenomena which involve the collective interaction of the beam particles. Beam intensity, used as a measure of the importance of space-charge collective behavior, depends on the ratio of current to emittance. The nonlinear beam dynamics, and any resulting emittance growth, which are characteristic of the intense-beam regime, can therefore occur even at low currents in any accelerator system with sufficiently high intensity, especially in the low beta section. Furthermore, since emittance of a beam is difficult to reduce, the ultimate achievement of necessary beam luminosities requires the consideration of possible causes of longitudinal and transverse emittance growth at every stage of the beam lifetime. The research program described here has addressed the fundamental physics which comes into play during the transport, acceleration and focusing of intense beams. Because of the long term and ongoing nature of the research program discussed here, this report is divided into two sections. The first section constitutes a long term revue of the accomplishments which have resulted from the research effort reported, especially in pioneering the use of particle-in-cell (PIC) computer simulation techniques for simulation of the dynamics of space-charge-dominated beams in particle accelerators. The following section emphasizes, in more detail, the accomplishments of the FY 92/93 period immediately prior to the termination of this particular avenue of support. 41 refs

  6. Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations

    Science.gov (United States)

    Novruzov, Emil

    2017-11-01

    This paper is concerned with blow-up phenomena for the nonlinear dispersive wave equation on the real line, ut -uxxt +[ f (u) ] x -[ f (u) ] xxx +[ g (u) + f″/(u) 2 ux2 ] x = 0 that includes the Camassa-Holm equation as well as the hyperelastic-rod wave equation (f (u) = ku2 / 2 and g (u) = (3 - k) u2 / 2) as special cases. We establish some a local-in-space blow-up criterion (i.e., a criterion involving only the properties of the data u0 in a neighborhood of a single point) simplifying and precising earlier blow-up criteria for this equation.

  7. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning

    International Nuclear Information System (INIS)

    Li Yongjie; Yao Dezhong; Yao, Jonathan; Chen Wufan

    2005-01-01

    Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated

  8. Beam instabilities in race track microtrons

    International Nuclear Information System (INIS)

    Euteneuer, H.; Herminghaus, H.; Klein, R.

    1982-01-01

    Several limitations of the benefits of the race track microtron (RTM) as an economic cw electron accelerator are discussed. For beam blowup some final results of our investigations for the Mainz Microtron are given. The other two effects presented more generally are beam diffusion by imperfections of the optical elements of a RTM and the deterioration of transverse phase space by synchrotron radiation

  9. Non-perturbative measurement of low-intensity charged particle beams

    Science.gov (United States)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  10. Particle-beam accelerators for radiotherapy and radioisotopes

    Science.gov (United States)

    Boyd, T. J., Jr.; Crandall, K. R.; Hamm, R. W.; Hansborough, L. D.; Hoeberling, R. F.; Jameson, R. A.; Knapp, E. A.; Mueller, D. W.; Potter, J. M.; Stokes, R. H.

    The philosophy used in developing the PIGMI (pion generator for medical irradiation) technology was that the parameters chosen for physics research machines are not necessarily the right ones for a dedicated therapy or radioisotope machine. In particular, the beam current and energy can be optimized, and the design should emphasize minimum size, simplicity and reliability of operation, and economy in capital and operating costs. A major part of achieving these goals lay in raising the operating frequency and voltage gradient of the accelerator, which shrinks the diameter and length of the components. Several other technical innovations resulted in major system improvements. One of these is a radically new type of accelerator structure named the radio frequency quadrupole accelerator. This allowed the elimination of the large, complicated ion source used in previous ion accelerators, and a very high quality accelerated beam. Also, by using advanced permanent magnet materials to make the focusing elements, the system becomes much simpler. Other improvements are described.

  11. Spill control and intensity monitoring for the Bevatron--Bevalac external particle beams

    International Nuclear Information System (INIS)

    Barale, J.J.; Crebbin, K.C.

    1975-03-01

    Time-intensity modulation in beam spill can be of primary concern in some experiments. The major source of this beam structure is from main-guide field-magnet power supply ripple. If the time constants are appropriate, then final control of beam structure can be accomplished by closed loop control of the intensity of beam spill. The response characteristics of the feedback system will determine the final structure. At high beam fluxes signal to noise ratio of beam detectors, in the feedback loop, can be improved by at least four orders of magnitude by using photomultiplier tubes and a water Cherenkov counter in place of the normal secondary emission monitor. At beam fluxes below 10 10 particles per second (PPS), a plastic scintillator and photomultiplier tube are used in the feedback system. A plastic scintillator and photomultiplier are also used in the beam as intensity monitors. At intensities below about 10 7 PPS standard counting techniques are used. For intensities between 10 6 to 110 9 PPS, the photomultiplier is used as a current source driving an integrating circuit which is then calibrated to read the number of particles per pulse. (U.S.)

  12. Proton and heavy ion beam (charged particle therapy)

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki

    2003-01-01

    There are distinguished therapeutic irradiation facilities of proton and heavy ion beam in Japan. The beam, due to its physical properties, is advantageous for focusing on the lesion in the body and for reducing the exposure dose to normal tissues, relative to X-ray. This makes it possible to irradiate the target lesion with the higher dose. The present review describes physical properties of the beam, equipments for the therapeutic irradiation, the respiratory-gated irradiation system, the layer-stacking irradiation system, therapy planning, and future prospect of the therapy. More than 1,400 patients have received the therapy in National Institute of Radiological Sciences (NIRS) and given a good clinical outcome. The targets are cancers of the head and neck, lung, liver, uterine and prostate, and osteosarcoma. The therapy of osteosarcoma is particularly important, which bringing about the high cure rate. Severe adverse effects are not seen with exception for the digestive tract ulcer. Many attempts like the respiratory-gated and layer-stacking systems and to shorten the therapy period to within 1 week are in progress. (N.I.)

  13. Geometrized equations of nonelectrostatic and relativistic charged-particle beams

    International Nuclear Information System (INIS)

    Syrovoi, V.A.

    1982-01-01

    Geometrized equations are formulated for a dense laminar beam in a coordinate frame fixed to a priori unknown trajectories or current tubes. The metric-tensor elements g/sub i/k of the frame are to be determined, together with the hydrodynamic variables that describe the flow. The formulation of the Cauchy problem is considered for the case when all the necessary information is specified on the emitting surface. It is shown that when account is taken of its own magnetic field, a two-dimensional relativistic beam cannot be described by using geometrized concepts if the beam starts out from an equipotential surface on which the thermionic emission conditions are satisfied. A similar statement holds for all stream velocities in the three-dimensional case, if the angle between the magnetic field strength vector and the emitter differs from 0 or 90 0 . The tensor-analysis and differential-geometry results used in the paper can be found in the papers cited by Borisov and Syrovoi [Izv. AN SSSR, Mekh. Zhidk. Gaz., No. 2, 137 (1977)

  14. particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams

    International Nuclear Information System (INIS)

    Chen Deming; Wang Min

    1990-01-01

    The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency

  15. CERN Accelerator School: Intensity Limitations in Particle Beams | 2-11 November

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s specialised course on Intensity Limitations in Particle Beams, to be held at CERN between 2 and 11 November 2015.   This course will mainly be of interest to staff in accelerator laboratories, university departments and companies manufacturing accelerator equipment. Many accelerators and storage rings, whether intended for particle physics experiments, synchrotron light sources or industrial applications, require beams of high brightness and the highest possible intensities. A good understanding of the possible limitations is required to achieve the desired performance. The programme for this course will cover the interaction of beams with their surroundings, with other beams and further collective effects. Lectures on the effects and possible mitigations will be complemented by tutorials. Further information can be found at: http://cas.web.cern.ch/cas/Intensity-Limitations-2015/IL-advert.html   http:/...

  16. PIC (Particle-in-Cell) simulation study on the beam extraction of intense ECR ion source

    International Nuclear Information System (INIS)

    Yang Yao; Zhang Wenhui; Ma Hongyi; Wu Qi; Fang Xing; Liu Zhanwen; Zhao Hongwei; Yao Ze'en

    2012-01-01

    Electromagnetic particle tracking program MAGIC was used to perform the simulation of beam extraction from high current ECR (Electron Cyclotron Resonance) ion source in this paper. The process of beam particles collision with residual gas was included in the simulation and the spatial distribution patterns of secondary electrons and slow ions from residual gas ionization were shown. Issues of radial space charge self-field, current density distribution and beam emittance were discussed. Simulation results illustrated that beam emittance grows quickly (about 3 times) in the extraction space, the space charge self-field would be neutralized partially by secondary electrons, which makes emittance down. Simulation figures also show that slow ions accumulation is an important contributing factor of negative bias electrode ignition, and this problem was described in the paper. (authors)

  17. A high rate transition radiation detector for particle identification in a hadron beam

    International Nuclear Information System (INIS)

    Errede, D.; Sheaff, M.; Fenker, H.; Mantsch, P.

    1989-08-01

    A Transition Radiation Detector (TRD) was built for the purpose of tagging beam particles in a high rate (∼2 MHz) 250 GeV/c hadron beam during data taking for Experiment 769 at Fermilab. The availability of a good ''tool kit'', including a Monte Carlo program which could reliably predict the detector performance, made it possible to design and build the TRD in approximately one year. Pion or proton samples, each with a small contamination due to the other, could be selected with high efficiency by making cuts on the number of planes of the TRD registering hits for each incident beam particle. The detector is expected to work well to separate kaons from pions in the 500 GeV/c negative beam for E791. 15 refs., 8 figs., 1 tab

  18. AFLP analysis of rice transformed with maize DNA by particle beam

    International Nuclear Information System (INIS)

    Ji Shengdong; Chen Peng; Wang Jiachuan; Yuan Zhao; Yue Chunhui; Wang Zhifeng

    2009-01-01

    Many stable heritable rice lines were obtained via five years agricultural selection, which were derived from rice (oryza stative Japonica) Yujing-6 transgened with large fraction DNA of Zhengdan-14 (zea mays L.) by particle beam method. 18 pairs optimum selective primers were got by screening from 64 pairs AFLP selective primers via experiment on two mutant lines, which could amplify many DNA fingerprints and also could amplify polymorphic bands and target bands, both in this two mutant lines. Then the two mutant lines and two controls were analyzed with AFLP, the results showed that many polymorphic bands (such as novel bands, target bands, missing bands) were found in mutant lines. The discrepancy in DNA level indicated that rice, transgened with large fraction DNA of Zhengdan-14 by particle beam, might be inserted maize DNA and inherited steadily in some degree. It also indicated that it was possible to cultivate novel rice variety transformed with wide DNA by particle beam. (authors)

  19. On the adge field effect of a quadrupole mass spectrometer on a charged particle beam

    International Nuclear Information System (INIS)

    Usacheva, T.V.; Kuz'min, A.F.

    1982-01-01

    Functional parameter dependences of charged particle beam transport in the edge field of a quadrupole mass spectrometer on the parameters of the spectrometer and the potential are presented, making an assumption of linear potential change in the direction parallel to the spectrometer electrodes. Obtained are: inequality, convenient for the passage through the edge field of ion beams with point source vertex and axis of symmetry, parallel to the spectrometer electrodes; inequality, giving the upper bound of maximal ion approach to the spectrometer electrodes in the edge field; inequality, estimating the maximum value of charged particle velocity on a plane, being perpendicular to the spectrometer electrodes at the particle passage through the edge field. The inequalities obtained have been determined the relationships among the ion beam, the spectrometer and the edge field parameters

  20. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers

    International Nuclear Information System (INIS)

    Fowler, W.B.

    1989-01-01

    Proton beams, from the 1GeV Cosmotron accelerator at Brookhaven, were used in the 1950s to produce strange particles. One big leap forward technologically was the development of the diffusion cloud chamber which made detecting particle tracks more accurate and sensitive. A large co-operative team worked on its development. By the mid 1950s enough tracks had been observed to show the associated production of strange particles. It was the same Brookhaven workers who developed the eighty-inch hydrogen bubble chamber which took the first photograph of the long predicted omega minus particle at the end of the decade. (UK)

  1. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

    2010-06-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  2. Quantum aspects of charged-particle beam optics

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sameen Ahmed, E-mail: rohelakhan@yahoo.com [Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Sultanate of Oman (Oman)

    2016-06-10

    The classical treatments have been successful in designing numerous charged-particle devices. It is natural to develop a quantum prescription, since all systems are fundamentally quantum mechanical in nature. The quantum theory leads to new insights accompanied with wavelength-dependent contributions. The action of a magnetic quadrupole is derived from the Dirac equation.

  3. Particle Beam Tests of the Calorimetric Electron Telescope

    CERN Document Server

    Tamura, Tadahisa

    The Calorimetric Electron Telescope (CALET) is a new mission addressing outstanding astrophysics questions including the nature of dark matter, the sources of high-energy particles and photons, and the details of particle acceleration and transport in the galaxy by measuring the high-energy spectra of electrons, nuclei, and gamma-rays. It will launch on HTV-5 (H-II Transfer Vehicle 5) in 2014 for installation on the Japanese Experiment Module–Exposed Facility (JEM-EF) of the International Space Station. The CALET collaboration is led by JAXA and includes researchers from Japan, the U.S. and Italy. The CALET Main Telescope uses a plastic scintillator charge detector followed by a 30 radiation-length (X0) deep particle calorimeter divided into a 3 X0 imaging calorimeter, with scintillating optical fibers interleaved with thin tungsten sheets, and a 27 X0 fully-active total-absorption calorimeter made of lead tungstate scintillators. CALET prototypes were tested at the CERN (European Laboratory for Particle Ph...

  4. A fast wire scanner, used to measure the transverse density distribution of beams circulating in an accelerator or storage ring.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.

  5. Wave-Particle Interactions on Relativistic Electron Beams.

    Science.gov (United States)

    1980-05-16

    block nuebstj C-, S_ i l iN .... . .6l I~A.S i~In V )d... D D 1473 EDO ,o,, OF 1 NOv i IS 02SOLTE . S/NC 007-014-CL601 , -T ASIeStC4-UIrYl CLAS’.IFICA...differential equation and per- nits the electron orbits to turn in the wave frame, corresponding as one advances along the beam in the direction of...state helical orbits are included. If perturbed, these orbits oscillate about equilibrium, so that substantial gain enhancement can occur if the

  6. Matrix formulation of the particle motion in crystalline beams

    International Nuclear Information System (INIS)

    Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

    1994-01-01

    To investigate the properties of Crystalline Beams in their ground state, the equations of motion of a single ion and the envelope equations are derived. It is possible to express the status of motion with a set of transfer matrices associated to each of the magnet elements of the storage ring. By inspection of the eigenvalues of the total transfer matrix one then determines the onset of crystalline structures and the stability limits. An analytical approach is also possible, based on the estimate of the shifting of the frequencies of oscillation, betatron and longitudinal, and on the approaching of a major half-integral stopband resonance driven by the space charge

  7. Stopping power and scattering angle calculations of charged particle beams through thin foils

    International Nuclear Information System (INIS)

    Nassiri, A.

    1991-03-01

    It is important to understand the effects of introducing foils into the path of charged particle beams. In the APS linac system, the intention is to insert thin foils before and after the positron generating target to protect the accelerating structures immediately before and after the target. Electron beams that pass through a dense material lose energy in collisions with the atomic electrons. The scattering path of electrons is much less straight than that of heavier particles (mu, pi meson, K meson, proton, etc.). After a short distance electrons tend to diffuse into the material, rather than proceeding in a rectilinear path

  8. System of coefficients for charged-particle beam linear transformation by a magnetic dipole element

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1979-01-01

    A new technique for consideration of dipole magnet ion-optical effect has been developed to study the problems of commutation and monochromatization of a charged particle beam. In a new form obtained are systematized coefficients of linear transformation (CLT) of the charged particle beam for radial and axial motions in a magnetic dipole element (MDE) including a dipole magnet and two gaps without magnetic field. Given is a method of graphic determination of MDE parameters and main CLT. The new form of coefficients and conditions of the transformations feasibility considerably facilitates the choice and calculation of dipole elements

  9. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  10. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    CERN Document Server

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  11. Optical method for mapping the transverse phase space of a charged particle beam

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Shkvarunets, A.G.; O'Shea, P.G.

    2002-01-01

    We are developing an all optical method to map the transverse phase space map of a charged particle beam. Our technique employs OTR interferometry (OTRI) in combination with a scanning pinhole to make local orthogonal (x,y) divergence and trajectory angle measurements as function of position within the transverse profile of the beam. The localized data allows a reconstruction of the horizontal and vertical phase spaces of the beam. We have also demonstrated how single and multiple pinholes can in principle be used to make such measurements simultaneously

  12. Proton beam shaped by “particle lens” formed by laser-driven hot electrons

    International Nuclear Information System (INIS)

    Zhai, S. H.; Shen, B. F.; Wang, W. P.; Zhang, H.; Zhang, L. G.; Huang, S.; Xu, Z. Z.; He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q.; Zhang, B. H.

    2016-01-01

    Two-dimensional tailoring of a proton beam is realized by a “particle lens” in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a “fountain-like” pattern when these hot electrons diffuse after propagating a distance.

  13. Blow-up Criteria of Classical Solutions of Three-Dimensional Compressible Magnetohydrodynamic Equations

    Science.gov (United States)

    Liu, Xin

    2018-03-01

    In this paper we consider the isentropic compressible magnetohydrodynamic equations in three space dimensions, and establish a blow-up criterion of classical solutions, which depends on the gradient of the velocity and magnetic field.

  14. Space dimension can prevent the blow-up of solutions for parabolic problems

    Directory of Open Access Journals (Sweden)

    Alkis S. Tersenov

    2007-11-01

    Full Text Available In the present paper, we investigate the preventive role of space dimension for semilinear parabolic problems. Conditions guaranteeing the absence of the blow-up of the solutions are formulated.

  15. A blow-up result for a viscoelastic system in $R^n

    Directory of Open Access Journals (Sweden)

    Salim A. Messaoudi

    2007-08-01

    Full Text Available In this paper we consider a coupled system of nonlinear viscoelastic equations. Under suitable conditions on the initial data and the relaxation functions, we prove a finite-time blow-up result.

  16. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Directory of Open Access Journals (Sweden)

    Boytsov A. Yu.

    2018-01-01

    Full Text Available Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  17. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Science.gov (United States)

    Boytsov, A. Yu.; Bulychev, A. A.

    2018-04-01

    Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  18. On lower bounds for possible blow-up solutions to the periodic Navier-Stokes equation

    International Nuclear Information System (INIS)

    Cortissoz, Jean C.; Montero, Julio A.; Pinilla, Carlos E.

    2014-01-01

    We show a new lower bound on the H .3/2 (T 3 ) norm of a possible blow-up solution to the Navier-Stokes equation, and also comment on the extension of this result to the whole space. This estimate can be seen as a natural limiting result for Leray's blow-up estimates in L p (R 3 ), 3 .5/2 (T 3 ), and give the corresponding extension to the case of the whole space

  19. Rf-synchronized imaging for particle and photon beam characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1993-07-01

    The usefulness of imaging electro-optics for rf-driven accelerators can be enhanced by synchronizing the instruments to the system fundamental frequency or an appropriate subharmonic. This step allows one to obtain micropulse bunch length and phase during a series of linac bunches or storage ring passes. Several examples now exist of the use of synchroscan and dual-sweep streak cameras and/or image dissector tubes to access micropulse scale phenomena (10 to 30 ps) during linac and storage ring operations in the US, Japan, and Europe. As space permits, selections will be presented from the list of phase stability phenomena on photoelectric injectors, micropulse length during a macropulse, micropulse elongation effects, transverse Wakefield effects within a micropulse, and submicropulse phenomena on a stored beam. Potential applications to the subsystems of the Advanced Photon Source (APS) will be briefly addressed.

  20. The Columbia University Sub-micron Charged Particle Beam.

    Science.gov (United States)

    Randers-Pehrson, Gerhard; Johnson, Gary W; Marino, Stephen A; Xu, Yanping; Dymnikov, Alexander D; Brenner, David J

    2009-10-11

    A lens system consisting of two electrostatic quadrupole triplets has been designed and constructed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The lens system has been used to focus 6-MeV (4)He ions to a beam spot in air with a diameter of 0.8 µm. The quadrupole electrodes can withstand voltages high enough to focus (4)He ions up to 10 MeV and protons up to 5 MeV. The quadrupole triplet design is novel in that alignment is made through precise construction and the relative strengths of the quadrupoles are accomplished by the lengths of the elements, so that the magnitudes of the voltages required for focusing are nearly identical. The insulating sections between electrodes have had ion implantation to improve the voltage stability of the lens. The lens design employs Russian symmetry for the quadrupole elements.

  1. 'Crystal Collimator' Measurement of CESR particle-beam Source Size

    International Nuclear Information System (INIS)

    Finkelstein, K.D.; Bazarov, Ivan; White, Jeffrey; Revesz, Peter

    2004-01-01

    We have measured electron and positron beam source size at CHESS when the Cornell Electron Storage Ring (CESR) is run dedicated for the production of synchrotron radiation. Horizontal source size at several beamlines is expected to shrink by a factor of two but synchrotron (visible) light measurements only provide the vertical size. Therefore a 'crystal collimator' using two Bragg reflection in dispersive (+,+) orientation has been built to image the horizontal (vertical) source by passing x-rays parallel to within 5 microradians to an imaging screen and camera. With the 'crystal collimator' we observe rms sizes of 1.2 mm horizontal by 0.28 mm vertical, in good agreement with the 1.27 mm size calculated from lattice functions, and 0.26 mm observed using a synchrotron light interferometer

  2. Discrimination of Charged Particles in a Neutral Beam Line by Using a Solid Scintillation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Kwan; Ko, Jewou; Liu, Dong [Jeju National University, Jeju (Korea, Republic of)

    2017-01-15

    In the past several decades, many studies have been conducted to search for non-baryonic dark matter, such as weakly interactive massive particles (WIMPs). In the search for WIMPs, charged particles incident on the detector are background particles because WIMPs are neutral. Charged particles originate from various sources, such as cosmic rays and laboratory materials surrounding the main detector. Therefore, a veto that discriminates charged particles can improve the particle detection efficiency of the entire experiment for detecting WIMPs. Here, we investigate in the thickness range of 1 mm to 5 mm, the optimal thickness of a polystyrene scintillator as a charged particle veto detector. We found that 3-mm-thick polystyrene provides the best performance to veto charged particles and the charged-particle background in the search for the WIMP signal. Furthermore, we fabricated 3-mm-thick and 5-mm-thick polystyrene charged particle veto detectors that will be used in an underground laboratory in the search for WIMP dark matter. After exposing those detectors are the actual beam line, we compared the rate of charged particles measured using those detectors and the rate simulated through a Monte Carlo simulation.

  3. An angular multigrid method for computing mono-energetic particle beams in Flatland

    Science.gov (United States)

    Börgers, Christoph; MacLachlan, Scott

    2010-04-01

    Beams of microscopic particles penetrating scattering background matter play an important role in several applications. The parameter choices made here are motivated by the problem of electron-beam cancer therapy planning. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of such a problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation—six if no dimension-reducing assumptions other than time independence are made. If grid-based methods are to be practical for these problems, it is therefore necessary to develop very fast solvers for the discretized problems. For beams of mono-energetic particles interacting with a passive background, but not with each other, in two space dimensions, the first author proposed such a solver, based on angular domain decomposition, some time ago. Here, we propose and test an angular multigrid algorithm for the same model problem. Our numerical experiments show rapid, grid-independent convergence. For high-resolution calculations, our method is substantially more efficient than the angular domain decomposition method. In addition, unlike angular domain decomposition, the angular multigrid method works well even when the angular diffusion coefficient is fairly large.

  4. Damage evaluation in metal structures subjected to high energy deposition due to particle beams

    CERN Document Server

    Peroni, L; Dallocchio, A

    2011-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV pro...

  5. Particle trapping and beam transport issues in laser driven accelerators

    Science.gov (United States)

    Gwenael, Fubiani; Wim, Leemans; Eric, Esarey

    2000-10-01

    The LWFA and colliding pulses [1][2] sheme are capable of producing very compact electron bunches where the longitudinal size is much smaller than the transverse size. In this case, even if the electrons are relativistic, space charge force can affect the longitudinal and transverse bunch properties [3][4]. In the Self-modulated regime and the colliding pulse sheme, electrons are trapped from the background plasma and rapidly accelerated. We present theoretical studies of the generation and transport of electron bunches in LWFAs. The space charge effect induced in the bunch is modelled assuming the bunch is ellipsoid like. Beam transport in vacuum, comparison between gaussian and waterbag distribution, comparison between envelope model and PIC simulation will be discussed. This work is supported by the Director, Office of Science, Office of High Energy & Nuclear Physics, High Energy Physics Division, of the U.S Department of Energy, under Contract No. DE-AC03-76SF00098 [1]E.Esarey et al.,IEEE Trans. Plasma Sci. PS-24,252 (1996); W.P. Leemans et al, ibidem, 331. [2]D. Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996); E.Esarey et al., Phys. Rev. Lett. 79, 2682 (1997); C.B Schroeder et al., Phys. Rev. E59, 6037 (1999) [3]DESY M87-161 (1987); DESY M88-013 (1988) [4] R.W. Garnett and T.P Wangler, IEEE Part. Acce. Conf. (1991)

  6. Fusion reactor development using high power particle beams

    International Nuclear Information System (INIS)

    Ohara, Y.

    1990-01-01

    The present paper outlines major applications of the ion source/accelerator to fusion research and also addresses the present status and future plans for accelerator development. Applications of ion sources/accelerators for fusion research are discussed first, focusing on plasma heating, plasma current drive, plasma current profile control, and plasma diagnostics. The present status and future plan of ion sources/accelerators development are then described focusing on the features of existing and future tokamak equipment. Positive-ion-based NBI systems of 100 keV class have contributed to obtaining high temperature plasmas whose parameters are close to the fusion break-even condition. For the next tokamak fusion devices, a MeV class high power neutral beam injector, which will be used to obtain a steady state burning plasma, is considered to become the primary heating and current drive system. Development of such a system is a key to realize nuclear fusion reactor. It will be entirely indebted to the development of a MeV class high current negative deuterium ion source/accelerator. (N.K.)

  7. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.

  8. Numerical studies of emittance exchange in 2-D charged-particle beams

    International Nuclear Information System (INIS)

    Guy, F.W.

    1986-01-01

    We describe results obtained from a two-dimensional particle-following computer code that simulates a continuous, nonrelativistic, elliptical charged-particle beam with linear continuous focusing. Emittances and focusing strengths can be different in the two transverse directions. The results can be applied, for example, for a quadrupole transport system in a smooth approximation to a real beam with unequal emittances in the two planes. The code was used to study emittance changes caused by kinetic-energy exchange between transverse directions and by shifts in charge distributions. Simulation results for space-charge-dominated beams agree well with analytic formulas. From simulation results, an empirical formula was developed for a ''partition parameter'' (the ratio of kinetic energies in the two directions) as a function of initial conditions and beamline length. Quantitative emittance changes for each transverse direction can be predicted by using this parameter. Simulation results also agree with Hofmann's generalized differential equation relating emittance and field energy

  9. Magnet Lattice Design for the Transmission of Power Using Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Daniel; /North Carolina State U. /SLAC

    2012-08-24

    As the amount of electricity generated by renewable energy sources continues to increase, the current method of power transmission will not serve as an adequate method for transmitting power over very long distances. A new method for transmitting power is proposed using particle beams in a storage ring. Particle beams offer an incredibly energy efficient alternative to transmission lines in transmitting power over very long distances. A thorough investigation of the magnet lattice design for this storage ring is presented. The design demonstrates the ability to design a ring with stable orbits over a 381.733 km circumference. Double bend achromats and FODO cells are implemented to achieve appropriate {beta} functions and dispersion functions for 9-11 GeV electron beams.

  10. 100 years of Elementary Particles [Beam Line, vol. 27, issue 1, Spring 1997

    Science.gov (United States)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K. H.; Trimble, Virginia

    1997-04-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.

  11. 100 years of elementary particles [Beam Line, vol. 27, number 1, Spring 1997

    International Nuclear Information System (INIS)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-01-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe

  12. 100 years of elementary particles [Beam Line, vol. 27, issue 1, Spring 1997

    Energy Technology Data Exchange (ETDEWEB)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-04-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.

  13. HIGH-INTENSITY EFFECTS IN THE LONGITUDINAL MOTION OF STORED PARTICLE BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1973-02-01

    A brief review is given of the various self-field phenomena associated with the longitudinal motion of particles in storage rings. Although there are some high-intensity phenomena for which the coupling of longitudinal and transverse motion is essential, such as, for example, the headtail effect; the great majority of high-intensity phenomena primarily involve either longitudinal or transverse degrees of freedom. In this review, we restrict our attention to phenomena which are essentially longitudinal in nature. It is convenient to consider separately the behavior of unbunched (coasting) and bunched (external RF system in operation) beams. Detailed experimental information on coasting beams has been obtained on the ISR, on the (old) CERN electron model CESAR, and on electron ring accelerators. All high-energy electron storage rings have bunched beams and, of course, so do synchrotrons, so that there are a large number of sources of experimental information about the longitudinal motion of bunched beams.

  14. Two-stream instability analysis for propagating charged particle beams with a velocity tilt

    Directory of Open Access Journals (Sweden)

    D. V. Rose

    2007-03-01

    Full Text Available The linear growth of the two-stream instability for a charged-particle beam that is longitudinally compressing as it propagates through a background plasma (due to an applied velocity tilt is examined. Detailed, 1D particle-in-cell (PIC simulations are carried out to examine the growth of the wave packet produced by a small amplitude density perturbation in the background plasma. Recent analytic and numerical work by Startsev and Davidson [Phys. Plasmas 13, 062108 (2006PHPAEN1070-664X10.1063/1.2212807] predicted reduced linear growth rates, which are indeed observed in the PIC simulations. Here, small-signal asymptotic gain factors are determined in a semianalytic analysis and compared with the simulation results in the appropriate limits. Nonlinear effects in the PIC simulations, including wave breaking and particle trapping, are found to limit the linear growth phase of the instability for both compressing and noncompressing beams.

  15. The effect of a single blade limiter on energetic neutral beam particles in Doublet III

    International Nuclear Information System (INIS)

    Petrie, T.W.; Armentrout, C.; Burrell, K.H.; Hino, T.; Kahn, C.; Kim, J.; Lohr, J.; Rottler, L.; Schissel, D.; St John, H.

    1984-01-01

    Energetic beam ion collisions with the main limiter can be a significant power loss process under certain operating conditions in Doublet III. Futhermore, these collisions may cause measurable damage to the limiter itself. Under low current and low toroidal field conditions (e.g., Isub(p) = 290 kA and Bsub(T) = 6.3 kG), 20-38% of the inferred absorbed beam power may be deposited directly on the ion drift side of the limiter by the beam ions. However, for higher plasma current and toroidal fields (e.g., Isub(p) = 480 kA and Bsub(t) = 15 kG), the fraction of inferred absorbed beam power deposited on the limiter is reduced to < 10%. Monte Carlo code simulations show that this loss of beam power is primarily a result of the large poloidal and toroidal gyro-orbits of the energetic beam ions. Other factors which may enhance beam ion losses to the limiter are (1) large separation distances between the primary limiter and the (outboard) vacuum vessel wall, and (2) plasma density buildup near the plasma edge during high gas puff operation. In addition, our data suggests enhanced plasma density and recycling near the limiter. This localized density can cause appreciable premature ionizations of the incoming beam neutrals and thus reduce the effective plasma heating of the beamline which is immediately upcurrent of the limiter. The prematurely-ionized beam particles from this adjacent beamline are responsible for much of the damage to the ion drift side of the limiter. We have found that under certain operating conditions (1) the direct beam heating of the limiter is 50% greater and (2) the stored plasma energy is 10% less when the beamline immediately upcurrent of the limiter heats the plasma. Thus, the relative positions of the limiters to the beamlines are important in designing future tokamaks. (orig.)

  16. Opening and construction of facilities in succession for particle beam therapy of cancer

    International Nuclear Information System (INIS)

    Nakano, Takashi; Yamamoto, Kazutaka; Hishikawa, Yoshio; Totoki, Tadahide; Hoshino, Junichi; Aoki, Takashi; Yoshiyuki, Takeshi; Hirabayashi, Masayuki; Nakamura, Fumito

    2011-01-01

    This feature article describes the current state of practical particle beam therapy of cancer, its future prospect, recent opening/construction of its facilities and manufacturers' view with following 9 topics presented by relevant experts. Gunma University (topic 1) started the carbon ion therapy from Mar., 2010, and has treated more than 100 cancer patients to aim the treatment of about 600 patients/year after several years. Fukui Prefectural Hospital Proton Therapy Center (topic 2) started from this March with proton beams for patients with its therapeutic standard, in cooperation with insurance companies and hotels for patients' convenience. Medipolis Proton Therapy and Research Center (Kagoshima Pref.) (topic 3) started this year with proton beams for 13 patients hitherto with reference protocol of Hyogo Ion Beam Medical Center. A new stereotactic irradiation system of proton beams for breast cancer has been developed. Construction of Saga Heavy Ion Medical Accelerator in Tosu (Saga Pref.) (topic 4) began this year to be completed in 2013. Aizawa Hospital (Nagano Pref.) (topic 5) plans to introduce the small-sized proton accelerator-gantry system (Sumitomo Heavy Ind., Ltd.) aiming the practice in 2013. Association for Nuclear Technology in Medicine (topic 6) reports the trends of current and future construction inside/outside Japan. Manufacturers comment their respective business: high-speed scanning irradiation system, next generation handling system of patient and particle beam therapy information system by Toshiba (topic 7); designation of the whole heavy ion beam therapy system (with NIRS), proton beam (as in topic 5) and system of BNCT (boron neutron-capture therapy) (Kyoto Univ.) by Sumitomo Heavy Ind., Ltd. (topic 8); and small-size proton therapeutic machine with 4D tracing capability for patient's movement (Hokkaido Univ.) and with spot-scanning irradiation technique by Hitachi (topic 9). (author)

  17. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. 2011 Elsevier B.V. All rights reserved.

  18. A first characterization of the NIO1 particle beam by means of a diagnostic calorimeter

    Science.gov (United States)

    Pimazzoni, A.; Cavenago, M.; Cervaro, V.; Fasolo, D.; Serianni, G.; Tollin, M.; Veltri, P.

    2017-08-01

    Powerful neutral beam injectors (NBI) are required as heating and current drive systems for tokamaks like ITER. The development of negative ion sources and accelerators (40 A; 1 MeV D- beam) in particular, is a crucial point and many issues still require a better understanding. In this framework, the experiment NIO1 (9 beamlets of 15 mA H- each, 60 kV) operated at Consorzio RFX started operation in 2014[1]. Both its RF negative ion source (up to 2.5 kW) and its beamline are equipped with many diagnostics [2]. For the early tests on the extraction system, oxygen has been used as well as hydrogen due to its higher electronegativity, which allows reaching currents large enough to test the beam diagnostics even without caesium injection. In particular a 1D-CFC (carbon-fibre-carbon composite) tile is used as a calorimeter to determine the beam power deposition by observing the rear surface of the tile with an infra-red camera; the same design is applied as for STRIKE [3], one of the diagnostics of SPIDER (the ITER-like ion source prototype [4]) whose facility is currently under construction at Consorzio RFX. From this diagnostic it is also possible to assess the beam divergence and thus the beam optics. The present contribution describes the characterization of the NIO1 particle beam by means of temperature and current measurements with different source and accelerator parameters.

  19. Particle-in-Cell Simulations of the VENUS Ion Beam Transport System

    CERN Document Server

    Todd, Damon; Leitner, Daniela; Lyneis, Claude; Qiang, Ji

    2005-01-01

    The next-generation superconducting ECR ion source VENUS serves as the prototype injector ion source for the linac driver of the proposed Rare Isotope Accelerator (RIA). The high-intensity heavy ion beams required by the RIA driver linac present significant challenges for the design and simulation of an ECR extraction and low energy ion beam transport system. Extraction and beam formation take place in a strong (up to 3T) axial magnetic field, which leads to significantly different focusing properties for the different ion masses and charge states of the extracted beam. Typically, beam simulations must take into account the contributions of up to 30 different charge states and ion masses. Two three-dimensional, particle-in-cell codes developed for other purposes, IMPACT and WARP, have been adapted in order to model intense, multi-species DC beams. A discussion of the differences of these codes and the advantages of each in the simulation of the low energy beam transport system of an ECR ion source is given. D...

  20. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection.

    Science.gov (United States)

    Patterson, N; Adams, D P; Hodges, V C; Vasile, M J; Michael, J R; Kotula, P G

    2008-06-11

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si(3)N(4) and W/Si(3)N(4) to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations.

  1. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.

    Science.gov (United States)

    Christen, Wolfgang; Rademann, Klaus; Even, Uzi

    2010-10-28

    Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.

  2. Cylindrical particle manipulation and negative spinning using a nonparaxial Hermite-Gaussian light-sheet beam

    Science.gov (United States)

    Mitri, F. G.

    2016-10-01

    Based on the angular spectrum decomposition method (ASDM), a nonparaxial solution for the Hermite-Gaussian (HG m ) light-sheet beam of any order m is derived. The beam-shape coefficients (BSCs) are expressed in a compact form and computed using the standard Simpson’s rule for numerical integration. Subsequently, the analysis is extended to evaluate the longitudinal and transverse radiation forces as well as the spin torque on an absorptive dielectric cylindrical particle in 2D without any restriction to a specific range of frequencies. The dynamics of the cylindrical particle are also examined based on Newton’s second law of motion. The numerical results show that a Rayleigh or Mie cylindrical particle can be trapped, pulled or propelled in the optical field depending on its initial position in the cross-sectional plane of the HG m light-sheet. Moreover, negative or positive axial spin torques can arise depending on the choice of the non-dimensional size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the location of the absorptive cylinder in the beam. This means that the HG m light-sheet beam can induce clockwise or anti-clockwise rotations depending on its shift from the center of the cylinder. In addition, individual vortex behavior can arise in the cross-sectional plane of wave propagation. The present analysis presents an analytical model to predict the optical radiation forces and torque induced by a HG m light-sheet beam on an absorptive cylinder for applications in optical light-sheet tweezers, optical micro-machines, particle manipulation and opto-fluidics to name a few areas of research.

  3. An Electron Miniaccelerator on the Basis of Tesla Transformer for Nondestructive Testing of Charged Particle Beams

    International Nuclear Information System (INIS)

    Akimov, V.E.; Bulatov, A.V.; Logatchev, P.V.; Kazarezov, I.V.; Korepanov, A.A.; Malyutin, D.A.; Starostenko, A.A.

    2006-01-01

    An electron miniaccelerator on the basis of Tesla-transformer for nondestructive testing of charged particle beams with operating voltage 120...200 kV, half-wave duration 4 mks and diagnostic beam current within few mA is described. The primary circuit is switched by IGBT. The gun control and filament circuit power supply (impregnated cathode with 1.2 mm diameter) are realized through high frequency isolated transformer. The accelerating tube is made of sectional welded metal ceramics insulator (ceramic 22HS with diameter 95/85 mm). The accelerator test results are presented

  4. Technical review of the Sandia Laboratories' Particle Beam Fusion Program

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-18

    This report considers the technical aspects of Sandia Laboratories' Particle Beam Fusion Program and examines the program's initial goals, the progress made to date towards reaching those goals, and the future plans or methods of reaching those original or modified goals. A summary of Sandia Laboratories' effort, which seeks to demonstrate that high voltage pulsed power generated high-current electron or light ion beams can be used to ignite a deuterium or tritium pellet, is provided. A brief review and assessment of the Sandia Pulse Power Program is given. Several critical issues and summaries of the committee members' opinions are discussed.

  5. EFFECT OF PARTICLE SIZE AND PACKING RATIO OF PID ON VIBRATION AMPLITUDE OF BEAM

    Directory of Open Access Journals (Sweden)

    P.S. Kachare

    2013-06-01

    Full Text Available Everything in the universe that has mass possesses stiffness and intrinsic damping. Owing to the stiffness property, mass will vibrate when excited and its intrinsic damping property will act to stop the vibration. The particle impact damper (PID is a very interesting damper that affects impact and friction effects of particles by means of energy dissipation. PID is a means for achieving high structural damping by using a particle-filled enclosure attached to a structure. The particles absorb the kinetic energy of the structure and convert it into heat through inelastic collisions between the particles themselves and between the particles and the walls of the enclosure. In this work, PID is measured for a cantilever mild steel beam with an enclosure attached to its free end; copper particles are used in this study. The PID is found to be highly nonlinear. The most useful observation is that for a very small weight penalty (about 7% to 8 %, the maximum damped amplitude of vibration at resonance with a PID, is about 9 to 10 times smaller than that without a PID. It is for more than that of with only intrinsic material damping of a majority of structural metals. A satisfactory comparison of damping with and without particles through experimentation is observed. The effect of the size of the particles on the damping performance of the beam and the effective packing ratio can be identified. It is also shown that as the packing ratio changes, the contributions of the phenomena of impact and friction towards damping also change. It is encouraging that despite its deceptive simplicity, the model captures the essential physics of PID.

  6. Modeling and Visualizing the Particle Beam in the Rare Isotope Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Christopher [Argonne National Lab., IL (United States); Erdelyi, Bela [Argonne National Lab., IL (United States); Northern Illinois Univ. (United States)

    2006-01-01

    Argonne National Laboratory is actively pursuing research and design for a Rare Isotope Accelerator (RIA) facility that will aid basic research in nuclear physics by creating beams of unstable isotopes. Such a facility has been labeled as a high priority by the joint Department of Energy and National Science Foundation Nuclear Science Advisory Committee because it will allow more study on the nature of nucleonic matter, the origin of the elements, the Standard Model, and nuclear medicine. An important part of this research is computer simulations that model the behavior of the particle beam, specifically in the Fragment Separator. The Fragment Separator selects isotopes based on their trajectory in electromagnetic fields and then uses absorbers to separate particles with a certain mass and charge from the rest of the beam. This project focused on the development of a multivariate, correlated Gaussian distribution to model the distribution of particles in the beam as well as visualizations and analysis to view how this distribution changed when passing through an absorber. The distribution was developed in the COSY INFINITY programming language. The user inputs a covariance matrix and a vector of means for the six phase space variables, and the program outputs a vector of correlated, Gaussian random variables. A variety of random test cases were conducted in two, three and six variables. In each case, the expectation values, variances and covariances were calculated and they converged to the input values. The output of the absorber code is a large data set that stores all of the variables for each particle in the distribution. It is impossible to analyze such a large data set by hand, so visualizations and summary statistics had to be developed. The first visualization is a three-dimensional graph that shows the number of each isotope present after each slice of the absorber. A second graph plots any of the six phase space variables against any of the others to see

  7. Treatment of Orbital Roof Blow-Up Fracture Using a Superior Blepharoplasty Incision.

    Science.gov (United States)

    Matsuzaki, Kyoichi; Enomoto, Sayaka; Aoki, Tomoko

    2015-06-01

    In orbital roof blow-up fractures, reduction can be achieved easily using an approach from the anterior cranial fossa but the procedure is highly invasive. In contrast, an orbital approach using a superior blepharoplasty incision is minimally invasive. However, if bone fragments are adhered to the dura mater, there is a risk of dura mater injury when fragments are moved for reduction. In blow-in fractures, reduction is performed by pushing the bone fragments against the anterior cranial fossa. In contrast, the procedure is difficult for blow-up fractures because bone fragments must be pulled out into the orbit through the anterior cranial fossa. Orbital blow-up fractures are often associated with intracranial injuries and frequently treated by an approach from the anterior cranial fossa. There has not yet been a report that discusses whether reduction of bone fragments should be performed in blow-up fracture without intracranial injury. In this report, we describe two cases of orbital roof blow-up fracture that did not require treatment for intracranial injury and that were treated using an orbital approach. The treatment involved only the release of orbital fat entrapped between bone fragments and did not involve reduction. The treatment outcomes were good in both cases.

  8. Beam-beam effects in high energy e+e- storage rings: resonant amplification of vertical dimensions for flat beams

    International Nuclear Information System (INIS)

    Bambade, P.

    1984-06-01

    In this thesis, we present a phenomenological study of the beam-beam effect in e + e - storage rings. We are in particular interested in the blow-up of the vertical dimension observed in this kind of accelerator. A detailed analysis of the electromagnetic field generated by the very flat bunches stored, and seen by the counter-rotating particles shows that two-dimensional non-linear resonances, which couple vertical and horizontal betatron oscillations, play a very important role. Moreover, the ''weak beam-strong beam'' approximation holds rather well in the case of very flat bunches. Perturbative analysis enables us to predict the effects from the strongest coupling resonance: 20sub(x)-20sub(y) = integer. We find that mainly the tails of the vertical distribution are affected, and we give a criterion concerning the optimal distance to this resonance in the case of a storage ring such as LEP. Finally, the results and in particular the validity of the single resonance approximation are checked through a numerical simulation [fr

  9. New Density Estimation Methods for Charged Particle Beams With Applications to Microbunching Instability

    Energy Technology Data Exchange (ETDEWEB)

    Balsa Terzic, Gabriele Bassi

    2011-07-01

    In this paper we discuss representations of charge particle densities in particle-in-cell (PIC) simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2d code of Bassi, designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform (TFCT); and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into Bassi's CSR code, and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.

  10. Temporal behavior of neutral particle fluxes in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.; Grisham, L.R.; Kugel, H.W.; Medley, S.S.; O' Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1989-09-01

    Data from an E {parallel} B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs.

  11. Temporal behavior of neutral particle fluxes in TFTR [Tokamak Fusion Test Reactor] neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.

    1989-09-01

    Data from an E parallel B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs

  12. Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    CERN Document Server

    Baszczyk, Mateusz Karol; Calabrese, Roberto; Cardinale, Roberta; Carniti, Paolo; Cassina, Lorenzo; Cavallero, Giovanni; Cojocariu, Lucian Nicolae; Cotta Ramusino, Angelo; D'Ambrosio, Carmelo; Dorosz, Piotr Andrzej; Easo, Sajan; Eisenhardt, Stephan; Fiorini, Massimiliano; Frei, Christoph; Gambetta, Silvia; Gibson, Valerie; Gotti, Claudio; Harnew, Neville; He, Jibo; Keizer, Floris; Kucewicz, Wojciech; Maciuc, Florin; Maino, Matteo; Malaguti, Roberto; Matteuzzi, Clara; Mccann, Michael Andrew; Morris, Adam; Muheim, Franz; Papanestis, Antonis; Pessina, Gianluigi; Petrolini, Alessandro; Piedigrossi, Didier; Pistone, Alessandro; Placinta, Vlad-Mihai; Sigurdsson, Saevar; Simi, Gabriele; Smith, Jackson William; Spradlin, Patrick; Tomassetti, Luca; Wotton, Stephen

    2016-01-01

    The LHCb detector will be upgraded to use the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov (RICH) detectors are one of the key components of the LHCb detector for particle identification. In this paper, we describe the setup and the results of the first tests in a particle beam carried out to assess prototypes of the upgraded optoelectronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.

  13. Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    CERN Document Server

    Baszczyk, M.K.

    2017-01-16

    The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.

  14. Ion desorption induced by charged particle beams: mechanisms and mass spectroscopy

    International Nuclear Information System (INIS)

    Silveira, E.F. da; Schweikert, E.A.

    1988-01-01

    Surface analysis, through desorption, induced by fast particles, is presented and discussed. The stopping of projectils is essentially made by collisions with the target electrons. The desorbed particles are generally emmited with kinetic energy from 0.1 to 20 eV. Mass, charge, velocity and emission angle give information about the surface components, its structure as well as beam-solid interaction processes. Time-of-flight mass spectroscopy of desorbed ions, determine the mass of organic macromolecules and biomolecules. (A.C.A.S.) [pt

  15. SU-E-T-626: Practical Method to Implement Arc Therapy Using Scanned Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Eley, J; Mehta, M; Molitoris, J; Langner, U; Langen, K [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: The purpose of this study was to propose a method to implement arc therapy that is compatible with existing particle therapy systems having gantries and pencil-beam scanning capacities. Furthermore, we sought to demonstrate expected benefits of this method for selected clival chordoma patients. Methods: We propose that a desired particle arc treatment plan can be discretized into a finite number of fixed beams and that only one (or a subset) of these beams be delivered in any single treatment fraction; the target should receive uniform dose during each fraction. For 3 clival-chordoma patients, robust-optimized, scanned proton beams were simulated to deliver 78 Gy (RBE) to clinical target volumes (CTVs), using either a single-field plan with a posterior-anterior (PA) beam or a discrete-arc plan with 16 beams that were equally spaced throughout a 360-degree axial arc. Dose-volume metrics were compared with emphasis on the brainstem, since risk of radiation necrosis there can often restrict application of tumoricidal doses for chordomas. Results: The mean volume of brainstem receiving a dose of 60 Gy (RBE) or higher (V60Gy) was 10.3±0.9 cm{sup 3} for the single-field plan and 4.7±1.8 cm{sup 3} for the discrete-arc plan, a reduction of 55% in favor of arcs. The mean dose to the brainstem was also reduced using arcs, by 18%, while the maximum dose was nearly identical for both methods. For the whole brain, V60Gy was reduced by 23%, in favor of arcs. Mean dose to the CTVs were nearly identical for both strategies, within 0.3%. Conclusion: Discrete arc treatments can be implemented using existing scanned particle-beam facilities. Aside from the physical advantages, the biological uncertainties of particle therapy, particularly high in the distal edge, can be reduced by arc therapy via rotational smearing, which may be of benefit for tumors near the brainstem.

  16. Beam-Based Error Identification and Correction Methods for Particle Accelerators

    CERN Document Server

    AUTHOR|(SzGeCERN)692826; Tomas, Rogelio; Nilsson, Thomas

    2014-06-10

    Modern particle accelerators have tight tolerances on the acceptable deviation from their desired machine parameters. The control of the parameters is of crucial importance for safe machine operation and performance. This thesis focuses on beam-based methods and algorithms to identify and correct errors in particle accelerators. The optics measurements and corrections of the Large Hadron Collider (LHC), which resulted in an unprecedented low β-beat for a hadron collider is described. The transverse coupling is another parameter which is of importance to control. Improvement in the reconstruction of the coupling from turn-by-turn data has resulted in a significant decrease of the measurement uncertainty. An automatic coupling correction method, which is based on the injected beam oscillations, has been successfully used in normal operation of the LHC. Furthermore, a new method to measure and correct chromatic coupling that was applied to the LHC, is described. It resulted in a decrease of the chromatic coupli...

  17. A proportional-plus-integral controller for a particle beam weapon

    Science.gov (United States)

    Moose, W. J.

    1984-12-01

    The goal of this thesis is to design a proportional-plus-integral (PI) controller, for use with the Meer filter, to control a particle beam weapon. The device used to measure the beam produces a low signal rate, the Meer filter is used to produce an estimate of the beam position. A type-1, proportional-plus-integral controller is designed using LOG assumptions and dynamic programming to solve the cost function. A sensitivity analysis is performed to determine the system sensitivity to different parameters. A performance analysis is also performed to demonstrate the system robustness to unmodelled errors. The results of these analyses are compared to a type-0, proportional gain controller. In addition the PI controllers ability to regulate to a non-zero setpoint is demonstrated.

  18. Longitudinal holes in debunched particle beams in storage rings, perpetuated by space-charge forces

    CERN Document Server

    Koscielniak, Shane Rupert; Lindroos, M

    2001-01-01

    Stationary, self-consistent, and localized longitudinal density perturbations on an unbunched charged-particle beam, which are solutions of the nonlinearized Vlasov-Poisson equation, have recently received some attention. In particular, we address the case that space charge is the dominant longitudinal impedance and the storage ring operates below transition energy so that the negative mass instability is not an explanation for persistent beam structure. Under the customary assumption of a bell-shaped steady-state distribution, about which the expansion is made, the usual wave theory of Keil and Schnell (1969) for perturbations on unbunched beams predicts that self-sustaining perturbations are possible only (below transition) if the impedance is inductive (or resistive) or if the bell shape is inverted. Space charge gives a capacitive impedance. Nevertheless, we report numerous experimental measurements made at the CERN Proton Synchrotron Booster that plainly show the longevity of holelike structures in coast...

  19. Local solvability and solution blow-up of one-dimensional equations of the Yajima-Oikawa-Satsuma type

    Science.gov (United States)

    Panin, A. A.; Shlyapugin, G. I.

    2017-11-01

    We consider one-dimensional equations of the type of the Yajima-Oikawa-Satsuma ion acoustic wave equation and prove the local solvability. Using the test function method, we obtain sufficient conditions for solution blow-up and estimate the blow-up time.

  20. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    International Nuclear Information System (INIS)

    Deibele, C.E.

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction

  1. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described.

  2. Characterisation of Medipix3 Silicon Detectors in a Charged-Particle Beam

    CERN Document Server

    Akiba, K.; Aoude, R.Tourinho; van Beuzekom, M.; Buytaert, J.; Collins, P.; Dosil Suárez, A.; Dumps, R.; Gallas, A.; Hombach, C.; Hynds, D.; John, M.; Leflat, A.; Li, Y.; Pérez-Trigo, E.; Plackett, R.; Reid, M.M.; Rodríguez Pérez, P.; Schindler, H.; Tsopelas, P.; Vázquez Sierra, C.; Velthuis, J.J.; Wysokiński, M.

    2016-01-21

    While designed primarily for X-ray imaging applications, the Medipix3 ASIC can also be used for charged-particle tracking. In this work, results from a beam test at the CERN SPS with irradiated and non-irradiated sensors are presented and shown to be in agreement with simulation, demonstrating the suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.

  3. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    International Nuclear Information System (INIS)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described

  4. A high luminosity superconducting mini collider for Phi meson production and particle beam physics

    International Nuclear Information System (INIS)

    Pellegrini, C.; Robin, D.; Cline, D.; Kolonko, J.; Anderson, C.; Barletta, W.; Chargin, A.; Cornacchia, M.; Dalbacka, G.; Halbach, K.; Lueng, E.; Kimball, F.; Madura, D.; Patterson, L.

    1991-01-01

    A 510MeV electron-positron collider has been proposed at UCLA to study particle beam physics and Phi-Meson physics, at luminosities larger than 10 32 cm -2 s -1 . The collider consists of a single compact superconducting storage ring (SMC), with bending field of 4 T and a current larger than 1 A. The authors discuss the main characteristics of this system and its major technical components: superconducting dipoles, RF, vacuum, injection

  5. Production of α-particle emitting 211At using 45 MeV α-beam

    Science.gov (United States)

    Kim, Gyehong; Chun, Kwonsoo; Park, Sung Ho; Kim, Byungil

    2014-06-01

    Among the α-particle emitting radionuclides, 211At is considered to be a promising radionuclide for targeted cancer therapy due to its decay properties. The range of alpha particles produced by the decay of 211At are less than 70 µm in water with a linear energy transfer between 100 and 130 keV µm-1, which are about the maximum relative biological effectiveness for heavy ions. It is important to note that at the present time, only a few of cyclotrons routinely produce 211At. The direct production method is based on the nuclear reactions 209Bi(α,2n)211At. Production of the radionuclide 211At was carried out using the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). To ensure high beam current, the α-beam was extracted with an initial energy of 45 MeV, which was degraded to obtain the appropriate α-beam energy. The calculations of beam energy degradation were performed utilizing the MCNPX. Alumina-baked targets were prepared by heating the bismuth metal powder onto a circular cavity in a furnace. When using an Eα, av of 29.17 MeV, the very small contribution of 210At confirms the right choice of the irradiation energy to obtain a pure production of 211At isotope.

  6. Blowup Phenomenon of Solutions for the IBVP of the Compressible Euler Equations in Spherical Symmetry.

    Science.gov (United States)

    Cheung, Ka Luen; Wong, Sen

    2016-01-01

    The blowup phenomenon of solutions is investigated for the initial-boundary value problem (IBVP) of the N-dimensional Euler equations with spherical symmetry. We first show that there are only trivial solutions when the velocity is of the form c(t)|x| (α-1) x + b(t)(x/|x|) for any value of α ≠ 1 or any positive integer N ≠ 1. Then, we show that blowup phenomenon occurs when α = N = 1 and [Formula: see text]. As a corollary, the blowup properties of solutions with velocity of the form [Formula: see text] are obtained. Our analysis includes both the isentropic case (γ > 1) and the isothermal case (γ = 1).

  7. Study of Thermo-Mechanical Effects Induced in Solids by High Energy Particle Beams: Analytical and Numerical Methods

    CERN Document Server

    Dallocchio, Alessandro; Kurtyka, T; Bertarelli, A

    2008-01-01

    Requirements of modern nuclear physics entail big efforts in the field of particle accelerator technology in order to build powerful machines providing particle beams at higher and higher energies; in this context, the Large Hadron Collider represents the future for particle physics. The LHC stores 360 MJ for each circulating beam; this large amount of energy is potentially destructive for accelerator equipments having direct interaction with particles; the need to handle high thermal loads bestows strategic importance to the study of thermo-mechanical problems in accelerator devices. The aim of this work is the study of thermo-mechanical effects induced in solids by high energy particle beams. Development of facilities devoted to the experimental test of accelerator equipments in real working conditions presents several technical difficulties and high cost; the importance of developing reliable methods and accurate models that could be efficiently applied during the design phase of the most critical particle...

  8. QBeRT: an innovative instrument for qualification of particle beam in real-time

    Science.gov (United States)

    Gallo, G.; Lo Presti, D.; Bonanno, D. L.; Longhitano, F.; Bongiovanni, D. G.; Reito, S.; Randazzo, N.; Leonora, E.; Sipala, V.; Tommasino, F.

    2016-11-01

    This paper describes an innovative beam diagnostic and monitoring system composed of a position sensitive detector and a residual range detector, based on scintillating optical fiber and on an innovative read-out strategy and reconstruction algorithm. The position sensitive detector consists of four layers of pre-aligned and juxtaposed scintillating fibres arranged to form two identical overlying and orthogonal planes. The 500 μm square section fibres are optically coupled to two Silicon Photomultiplier arrays using a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare. The residual range detector is a stack of sixty parallel layers of the same fibres used in the position detector, each of which is optically coupled to a channel of Silicon Photomultiplier array by wavelength shifting fibres. The sensitive area of the two detectors is 9 × 9 cm2. After being fully characterized at CATANA proton therapy facility, the performance of the prototypes was tested during last year also at TIFPA proton irradiation facility. The unique feature of these detectors is the possibility to work in imaging conditions (e.g. a particle at a time up to 106 particles per second) and in therapy conditions up to 109 particles per second. The combined use of the two detectors, in imaging conditions, as an example of application, allows the particle radiography of an object. In therapy conditions, in particular, the system measures the position, the profiles, the energy and the fluence of the beam.

  9. Blow-up of solutions to the rotation b-family system modeling equatorial water waves

    Directory of Open Access Journals (Sweden)

    Min Zhu

    2018-03-01

    Full Text Available We consider the blow-up mechanism to the periodic generalized rotation b-family system (R-b-family system. This model can be derived from the f-plane governing equations for the geographical water waves with a constant underlying current in the equatorial water waves with effect of the Coriolis force. When b=2, it is a rotation two-component Camassa-Holm (R2CH system. We consider the periodic R2CH system when linear dispersion is absent (which model is called r2CH system and derive two finite-time blow-up results.

  10. The method of non-local transformations: Applications to blow-up problems

    Science.gov (United States)

    Polyanin, A. D.; Shingareva, I. K.

    2017-12-01

    The method for numerical integration of Cauchy problems for ODEs with blow-up solutions is described. It is based on introducing a new non-local variable that reduces a single nth-order ODE to a system of first-order coupled ODEs. This method leads to problems whose solutions are presented in parametric form and do not have blowing-up singular points; therefore the standard fixed-step numerical methods can be applied. The efficiency of the proposed method is illustrated with two test problems. It is shown that the first Painlevé equation with suitable initial conditions have non-monotonic blow-up solutions.

  11. Blow-up in nonlinear Schroedinger equations. I. A general review

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Rypdal, K.

    1986-01-01

    The general properties of a class of nonlinear Schroedinger equations: iut + p:∇∇u + f(|u|2)u = 0 are reviewed. Conditions for existence, uniqueness, and stability of solitary wave solutions are presented, along with conditions for blow-up and global existence for the Cauchy problem.......The general properties of a class of nonlinear Schroedinger equations: iut + p:∇∇u + f(|u|2)u = 0 are reviewed. Conditions for existence, uniqueness, and stability of solitary wave solutions are presented, along with conditions for blow-up and global existence for the Cauchy problem....

  12. Blow-Up Analysis for a Quasilinear Degenerate Parabolic Equation with Strongly Nonlinear Source

    Directory of Open Access Journals (Sweden)

    Pan Zheng

    2012-01-01

    Full Text Available We investigate the blow-up properties of the positive solution of the Cauchy problem for a quasilinear degenerate parabolic equation with strongly nonlinear source ut=div(|∇um|p−2∇ul+uq,  (x,t∈RN×(0,T, where N≥1, p>2 , and m, l,  q>1, and give a secondary critical exponent on the decay asymptotic behavior of an initial value at infinity for the existence and nonexistence of global solutions of the Cauchy problem. Moreover, under some suitable conditions we prove single-point blow-up for a large class of radial decreasing solutions.

  13. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    Science.gov (United States)

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  14. Deflection of GeV particle beams by channeling in bent crystal planes of constant curvature

    International Nuclear Information System (INIS)

    Forster, J.S.; Hatton, H.; Toone, R.J.

    1989-01-01

    The deflection of charged particle beams moving within the (110) planes of a 43 mm long silicon crystal has been observed for momenta from 60 to 200 GeV/c. The crystal was bent by a 10.8 μm thick coating of ZnO along the central 26 mm of the crystal. Measurements were made with the crystal at room temperature, where a total deflection of 32.5 mrad was observed, and with the crystal cooled to -145 o C, where a 30.9 mrad deflection was observed. The ratio of the number of particles that dechannel upon entering the bend to the number of initially channeled particles compares well with calculations based on the continuum model. (author)

  15. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat, ,; R.ubel, O.; Weber, G,; Hamann, B.

    2010-05-21

    Numerical simulations of laser-plasma wakefield (particle) accelerators model the acceleration of electrons trapped in plasma oscillations (wakes) left behind when an intense laser pulse propagates through the plasma. The goal of these simulations is to better understand the process involved in plasma wake generation and how electrons are trapped and accelerated by the wake. Understanding of such accelerators, and their development, offer high accelerating gradients, potentially reducing size and cost of new accelerators. One operating regime of interest is where a trapped subset of electrons loads the wake and forms an isolated group of accelerated particles with low spread in momentum and position, desirable characteristics for many applications. The electrons trapped in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up to a gigaelectronvolt per centimeter. High-energy electron accelerators power intense X-ray radiation to terahertz sources, and are used in many applications including medical radiotherapy and imaging. To extract information from the simulation about the quality of the beam, a typical approach is to examine plots of the entire dataset, visually determining the adequate parameters necessary to select a subset of particles, which is then further analyzed. This procedure requires laborious examination of massive data sets over many time steps using several plots, a routine that is unfeasible for large data collections. Demand for automated analysis is growing along with the volume and size of simulations. Current 2D LWFA simulation datasets are typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The increase in the number of datasets and dataset sizes leads to a need for automatic routines to recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis. Because of the growth in dataset size, the application of machine learning techniques for

  16. Improvement of extraction efficiency from a compact synchrotron for proton beam therapy by applying particle tracking analysis

    International Nuclear Information System (INIS)

    Ebina, Futaro; Umezawa, Masumi; Hiramoto, Kazuo

    2013-01-01

    Various types of synchrotrons are used for particle beam therapy. In particle beam therapy, especially in proton beam therapy, downsizing of the accelerator system is a major concern. A compact synchrotron dedicated for proton beam therapy is presented. The synchrotron is horizontally weakly focusing and consists of 4 H-type zerogradient dipole magnets and 4 quadrupole magnets. The circumference of the ring is a little shorter than 18 m, and the energies are up to 230MeV. Beam extraction from the synchrotron is performed by RF-driven slow extraction technology. Two sextupole magnets set in adjacent straight sections form a horizontal separatrix which is fixed during the beam extraction. Horizontal RF voltage excites betatron oscillation of the circulating beam, and protons exceeding the separatrix are extracted by an electrostatic deflector and a horizontal septum dipole magnet. To achieve adequately high extraction efficiency, the relationship between the extraction efficiency and the horizontal chromaticity of the ring is analyzed by particle tracking simulation. The horizontal chromaticity with maximum extraction efficiency is half of the theoretical value because of the distortion of the horizontal separatrix for the extraction. With this chromaticity, the spiral-step of the extracted particle is independent of the momentum deviation of the particle, and the separatrix across the electrostatic septum electrodes is superpositioned.

  17. Particle Beam Application Present Status and Future Prospects 4.Evolution of Particle Beam Technique 4.2 Ion Beams for Medical Applications

    Science.gov (United States)

    Yamada, Satoru

    More than 1,000 patients have been treated with carbon ions emerged from a medical synchrotron HIMAC. The treated patients had tumors in head and neck area, lung, liver, prostate, uterus, and other parts of body. Clinical studies show excellent results and the side effects are kept at extremely low levels. This paper describes a brief history of radiation therapy developed during the 20th Century, provides an outline of the theoretical background of radiation therapy, and shows the recent results of carbon therapy performed at National Institute of Radiological Sciences, NIRS. The paper describes other facilities for charged particle therapy developed in this country and in other parts of the world.

  18. A new method of measurement of trace elements by using particle beams

    International Nuclear Information System (INIS)

    Matsumoto, Shinji

    1982-01-01

    A new method of measurement of light elements by using the particle beam from an accelerator was developed. This paper reports on the results of analyses of N-15 and O-18. The tandem accelerator of University of Tokyo was used to accelerate proton beam. The energy of protons was determined from the excitation curves of elastic scattering by N-15, O-18 and O-16. The scattering by O-16 was background count. Therefore, The measurement was made at the energy of small background and large true counting. Biological samples were examined. The linearity of counts with the concentration of N-15 and O-18 was confirmed. The cells which contain glycine (O-18, 71.8 percent) and methionine (N-15, 95 percent) were analyzed. The peaks of N-15 and O-18 were well separated from teh peaks by N-14 and O-16. The natural amounts of N-15 in adenine and O-18 in glucose were also measured. The resonance reaction method of measurement by using particle beam was developed. (Kato, T.)

  19. Evaluation of a pencil-beam dose calculation technique for charged particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Petti, P.L. [Univ. of California, San Francisco, CA (United States)

    1996-07-15

    The purpose of this article is to evaluate a pencil-beam dose calculation algorithm for protons and heavier charged particles in complex patient geometries defined by computed tomography (CT) data and to compare isodose distributions calculated with the new technique to those calculated with conventional algorithms in selected patients with skull-base tumors. Monte Carlo calculations were performed to evaluate the pencil-beam algorithm in patient geometries for a modulated 150-MeV proton beam. A modified version of a Monte Carlo code described in a previous publication (18) was used for these comparisons. Tissue densities were inferred from patient CT data on a voxel-by-voxel basis, and calculations were performed with and without tissue compensators. A dose calculation module using the new algorithm was written, and treatment plans using the new algorithm were compared to plans using standard ray-tracing techniques for 10 patients with clival chordoma and three patients with nasopharyngeal carcinoma were treated with helium ions at Lawrence Berkeley National Laboratory (LBL). Pencil beam calculations agreed well with Monte Carlo calculations in the patient geometries. 23 refs., 5 figs.

  20. BEAMR: An interactive graphic computer program for design of charged particle beam transport systems

    Science.gov (United States)

    Leonard, R. F.; Giamati, C. C.

    1973-01-01

    A computer program for a PDP-15 is presented which calculates, to first order, the characteristics of charged-particle beam as it is transported through a sequence of focusing and bending magnets. The maximum dimensions of the beam envelope normal to the transport system axis are continuously plotted on an oscilloscope as a function of distance along the axis. Provision is made to iterate the calculation by changing the types of magnets, their positions, and their field strengths. The program is especially useful for transport system design studies because of the ease and rapidity of altering parameters from panel switches. A typical calculation for a system with eight elements is completed in less than 10 seconds. An IBM 7094 version containing more-detailed printed output but no oscilloscope display is also presented.

  1. Progresses in the studies of adiabatic splitting of charged particle beams by crossing nonlinear resonances

    Directory of Open Access Journals (Sweden)

    A. Franchi

    2009-01-01

    Full Text Available The multiturn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by nonlinear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.

  2. Coherent production of {epsilon}{sup +} particles in crystal using proton beam from SSC

    Energy Technology Data Exchange (ETDEWEB)

    Okorokov, V.V.; Dubin, A.Yu. [ITER, Moscow, (Russian Federation)

    1995-05-01

    The unique possibilities of the SSC can be ideally used for a new generation of coherent generation experiments with relativistic protons which require 20 Tev energy of the incident beam. The availability of 20 Tev proton beam at SSC allows new experiments on coherent production of {var_epsilon}{sup +} particle by relativistic proton in crystal. Experiment carried out at low energies can now be extended with protons in very narrow energy region (resonance energy, which easy can be calculated) using the new accelerator facilities at SSC. We propose to study coherent production via the Coulomb field of the cristal atoms to excite the transition p + {gamma}{implies} {var_epsilon} {sup +} (1189).

  3. Electromagnetic Weible Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T perpendi c ular b /T parallelb >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r w . The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T perpendi c ularb /T parallelb ) Weibel >> (T perpendi c ularb /T parallelb ) Harris ) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability

  4. Advances in 4D treatment planning for scanned particle beam therapy - report of dedicated workshops.

    Science.gov (United States)

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-12-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle therapy delivery and development. The first workshop resulted in a summary of recommendations for the treatment of mobile targets, along with a list of requirements to apply these guidelines clinically. The increased interest in the treatment of mobile tumors led to a continuously growing number of attendees: the 2012 edition counted more than 60 participants from 20 institutions and commercial vendors. The focus of research discussions among workshop participants progressively moved from 4D treatment planning to complete 4D treatments, aiming at effective and safe treatment delivery. Current research perspectives on 4D treatments include all critical aspects of time resolved delivery, such as in-room imaging, motion detection, beam application, and quality assurance techniques. This was motivated by the start of first clinical treatments of hepato cellular tumors with a scanned particle beam, relying on gating or abdominal compression for motion mitigation. Up to date research activities emphasize significant efforts in investigating advanced motion mitigation techniques, with a specific interest in the development of dedicated tools for experimental validation. Potential improvements will be made possible in the near future through 4D optimized treatment plans that require upgrades of the currently established therapy control systems for time resolved delivery. But since also these novel optimization techniques rely on the validity of the 4DCT, research focusing on alternative 4D imaging technique, such as MRI based 4DCT generation will continue.

  5. Blow-Up and Global Existence for a Quasilinear Parabolic System

    Directory of Open Access Journals (Sweden)

    Chunchen Wu

    2014-01-01

    Full Text Available The problem of solutions to a class of quasilinear coupling parabolic system was studied. By constructing weak upper-solutions and weak lower-solutions, we obtain the global existence and blow-up of solutions under appropriate conditions.

  6. Blow-up of solutions for the sixth-order thin film equation with ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, a sixth-order parabolic thin film equation with the initial boundary condi- tion is considered. By using the improved energy estimate method and by constructing second-order elliptic problem, a blow-up result for certain solution with positive initial energy is established, which is an improve over the ...

  7. SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M; Jiang, S; Shao, Y; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) due to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to address range

  8. Determination of absorbed dose in a proton beam for purposes of charged-particle radiation therapy

    International Nuclear Information System (INIS)

    Verhey, L.J.; Koehler, A.M.; McDonald, J.C.; Goitein, M.; Ma, I.C.; Schneider, R.J.; Wagner, M.

    1979-01-01

    Four methods are described by which absorbed dose has been measured in a proton beam extracted from the 160-MeV Harvard cyclotron. The standard dosimetry, used to determine doses for patient treatments, is based upon an absolute measurement of particle flux using a Faraday cup. Measurements have also been made using a parallel-plate ionization chamber; a thimble ionization chamber carying a 60 Co calibration traceable to NBS; and a tissue-equivalent calorimeter. The calorimeter, which provides an independent check of the dosimetry, agreed with the standard dosimetry at five widely different depths within a range from 0.8 to 2.6%

  9. Chaos and collective relaxation in galaxies and charged-particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Courtlandt; /Fermilab /Northern Illinois U.; Kandrup, Henry E.; /Florida U.; Kishek, Rami A.; O' Shea, Patrick G.; Reiser, Martin; /Maryland U.; Sideris, Ioannis V.; /Florida U. /Northern Illinois U.

    2003-01-01

    Both galaxies and charged particle beams can exhibit collective relaxation on surprisingly short time scales. This can be attributed to the effects of chaos, often triggered by resonances caused by time-dependences in the bulk potential, which act almost identically for attractive gravitational and repulsive electrostatic forces. These similarities suggest that many physical processes at work in galaxies, albeit not subject to direct controlled experiments, can be tested indirectly using facilities such as the University of Maryland Electron Ring (UMER) currently nearing completion.

  10. Design of focussing and guide structures for charged particle beams using rare earth cobalt permanent magnets

    International Nuclear Information System (INIS)

    Halbach, K.

    1981-06-01

    A number of different methods can be used to describe the magnetic properties of oriented Rare Earth Cobalt (REC) material. It will be shown how these different methods of description lead to different ways to think about, and to execute, the design of magnets that are useful for focusing and guiding charged particle beams. It will also be domonstrated that in some of these magnets, the REC material is used in a somewhat unusual way, requiring magnetics properties of the material that are usually not considered to be of great practical importance

  11. Extension of the Child-Langmuir law to a beam of particles having an initial velocity

    International Nuclear Information System (INIS)

    Geller, R.

    1965-01-01

    A DC ion current of 50 mA/cm 2 has been obtained with approximately 100 volts extraction from the plasma created by the CIRCE device, and a still stronger electron current was obtained with a still lower extraction. These results are an order of magnitude higher than the ordinary characteristics. In the neutral plasma beam produced in the CIRCE device, the ions have mainly longitudinal energy whereas the electron energy is transverse. This situation makes the charge separation easier. In the present paper one tries to explain partially the result on a basis of current increase due to the initial velocity of the particles. (author) [fr

  12. Test-beam results on particle identification with aerogel used as RICH radiator

    CERN Document Server

    Alemi, M; Braem, André; Calvi, M; Chesi, Enrico Guido; Joram, C; Liko, D; Matteuzzi, C; Negri, P; Neufeld, N; Paganoni, M; Séguinot, Jacques; Voillat, D; Weilhammer, Peter; Ypsilantis, Thomas

    2001-01-01

    We present the results obtained by exposing samples of silica aerogel of different thickness and optical properties to pion and proton beams with momenta between 6 and 10 GeV/c in the PS testbeam facility at CERN. Two large diameter pad hybrid photodiodes with 2048 channels, produced at CERN, have been used as photon detectors. Separate Cherenkov rings produced by the different particles were reconstructed obtaining pion/proton separation over the whole momentum range. The number of photoelectrons was measured as a function of aerogel thickness and was found to be in agreement with Monte Carlo expectations. (5 refs).

  13. Some applications of particle-in-cell codes to problems of high intensity beams

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B.

    1986-04-01

    The technique of using the ''particle-in-cell'' method was developed in the field of plasma physics. Borrowed for problems of intense beams, it becomes an especially powerful tool because such problems frequently use single species ''plasmas'' and so pose a less severe requirement on the computer. Several problems are examined in which the PIC code method has been useful. The first is the classical Pierce gun in a transient or short pulse mode. Here the transverse beam optics are strongly affected by the time dependence of the current. The second is a study of high power klystrons searching for the source of an instability. The third is the high power rf source called the ''lasertron'' which is under development at SLAC. The interesting new development for the lasertron simulation is the introduction of a double gap output cavity for improved efficiency. The lasertron and klystron simulations are steady state solutions to rf problems with high-Q cavities. In order to limit the computation to a realistic time, these simulations use an external equivalent circuit which can communicate with the beam tunnel through ports placed at the locations of the rf cavities. Applications for electron beams generally require using a fully relativistic electromagnetic code such as MASK. In some applications, the computation can be speeded up by limiting the solution of the fields to the electrostatic conditions. This can be especially helpful if the degree of precision required demands very large numbers of macroparticles. An example of such an application is shown for a problem involving emittance growth for a high intensity beam for heavy ion fusion.

  14. Some applications of particle-in-cell codes to problems of high intensity beams

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1986-04-01

    The technique of using the ''particle-in-cell'' method was developed in the field of plasma physics. Borrowed for problems of intense beams, it becomes an especially powerful tool because such problems frequently use single species ''plasmas'' and so pose a less severe requirement on the computer. Several problems are examined in which the PIC code method has been useful. The first is the classical Pierce gun in a transient or short pulse mode. Here the transverse beam optics are strongly affected by the time dependence of the current. The second is a study of high power klystrons searching for the source of an instability. The third is the high power rf source called the ''lasertron'' which is under development at SLAC. The interesting new development for the lasertron simulation is the introduction of a double gap output cavity for improved efficiency. The lasertron and klystron simulations are steady state solutions to rf problems with high-Q cavities. In order to limit the computation to a realistic time, these simulations use an external equivalent circuit which can communicate with the beam tunnel through ports placed at the locations of the rf cavities. Applications for electron beams generally require using a fully relativistic electromagnetic code such as MASK. In some applications, the computation can be speeded up by limiting the solution of the fields to the electrostatic conditions. This can be especially helpful if the degree of precision required demands very large numbers of macroparticles. An example of such an application is shown for a problem involving emittance growth for a high intensity beam for heavy ion fusion

  15. Electro-Optic Sampling of Transient Electric Fields from Charged Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, Michael James [Rochester U.

    2000-01-01

    The passage of a relativistic charged particle beam bunch through a structure is accompanied by transient electromagnetic fields. By causality, these fields must be behind the bunch, and are called "wakefields." The wakefields act back on the beam, and cause instabilities such as the beam break-up instability, and the headtail instability, which limit the luminosity of linear colliders. The wakefields are particularly important for short bunches with high charge. A great deal of effort is devoted to analytical and numerical calculations of wakefields, and wakefield effects. Experimental numbers are needed. In this thesis, we present measurements of the transient electric fields induced by a short high-charge electron bunch passing through a 6-way vacuum cross. These measurements are performed in the time domain using electro-optic sampling with a time resolution of approximately 5 picoseconds. With different orientations of the electro-optic crystal, we have measured different vector components of the electric field. The Fourier transform of the time-domain data yields the product of the beam impedance with the excitation spectrum of the bunch. Since the bunch length is known from streak camera measurements, the k loss factor is directly obtained. There is reasonably good agreement between the experimental k loss factor with calculations from the code MAFIA. To our knowledge, this is the first direct measurement of the k loss factor for bunch lengths shorter than one millimeter ( nns). We also present results of magnetic bunch compression (using a dipole chicane) of a high-charge photoinjector beam for two different UV laser pulse lengths on the pholocalhode. Al best compression, a 13.87 nC bunch was compressed to 0.66 mm (2.19 ps) rms, or a peak current of 3 kA. Other results from the photoinjeclor are given, and the laser system for pholocalhode excitation and electro-optic sampling is described.

  16. Design of MgB2 superconducting dipole magnet for particle beam transport in accelerators

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.; Zangenberg, N.; Baurichter, A.

    2006-01-01

    . The existing markets of superconducting technology is within highly specialized scientific areas such as magnetic confinement in fusion energy, sample environment in neutron scattering and large scale acceleratorssuch as the Large Hadron Collider(LHC) at Cern, or in the nuclear magnetic resonance (NMR...... for the collaborating company Danfysik A/S, which has a strongtradition in building resistive magnets for particle accelerators[4]. A technology transfer project was formulated at the end of 2005 with the purpose to collect the knowledge about the MgB2 superconductor gained in the STVF program and in the European...... in a dipole magnet for guiding particle beams in a small scale accelerator is examined with the purpose to build lighter and smaller than the present resistive magnets. Here the criticalcurrent density of primarily MgB2 will be compared with current density determined by specifications similar to the Tevatron...

  17. SELF-CONSISTENT LANGEVIN SIMULATION OF COULOMB COLLISIONS IN CHARGED-PARTICLE BEAMS

    International Nuclear Information System (INIS)

    QIANG, J.; RYNE, R.; HABIB, S.

    2000-01-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the FR-iction and diffusion coefficients are computed FR-om first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators

  18. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    International Nuclear Information System (INIS)

    Zhu, Benpeng; Xu, Jiong; Yang, Xiaofei; Li, Ying; Lee, Changyang; Zhou, Qifa; Shung, K. Kirk; Wang, Tian; Xiong, Ke; Shiiba, Michihisa; Takeuchi, Shinichi

    2016-01-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d 33 = 270 pC/N and k t = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50 MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  19. Characterization of the Teotihuacan mural painting: application of the external particle beam as non destructive technique

    International Nuclear Information System (INIS)

    Martinez, C.; Manzanilla, L.; Ruvalcaba, J.L.; Ontalba, M.A.

    2005-01-01

    The characterization of technical indicators contained in the painting mural should follow a minim methodology from their discovery in the archaeological excavations until their analysis in the laboratory, with the purpose of rescuing diagnostic elements that mark the stages of socio cultural development in the towns. With this spirit it was carried out the present study analyzing some fragments of the Teotihuacan mural painting. The analysis consisted on applying some of the analytical techniques with particle beams used for archaeometry like the Proton induced X-ray emission (PIXE) and the particle elastic backscattering (RBS), due to it is treated of complementary techniques, very sensitive, of multielemental character, but mainly because its are non destructive analytical techniques. (Author)

  20. Self-consistent langevin simulation of coulomb collisions in charged-particle beams

    CERN Document Server

    Qiang, J; Ryne, Robert D

    2000-01-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the FR-iction and diffusion coefficients are computed FR-om first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators.

  1. Pair production of exotic particles at pp(p-barp) colliding beams

    International Nuclear Information System (INIS)

    Borisov, G.V.; Pirogov, Yu.F.; Rudakov, K.R.

    1986-01-01

    A complete set of differential cross sections has been obtained in Born approximation for pair production of exotic particles with various spins J=0, 1/2, 1 and quantum numbers (colored and colorless) both in qq-bar and gg-collisions. The connection of the unitarity of vector boson processes with gauge invariance, factorization properties of non-Abelian gauge amplitudes and the presence of kinematic zeros is used. Besides, the problem of admissibility of massless limit for these processes is being discussed. The yield of exotic particle pairs at pp(p-barp) colliding beams in TeV energy range have been calculated and limits for the accessible mass range have been found

  2. Improving the particle beam characteristics resulting from laser ion acceleration at ultra high intensity through target manipulation - Numerical modeling

    Science.gov (United States)

    Tatomirescu, Dragos; d'Humieres, Emmanuel; Vizman, Daniel

    2017-12-01

    The necessity to produce superior quality ion and electron beams has been a hot research field due to the advances in laser science in the past decade. This work focuses on the parametric study of different target density profiles in order to determine their effect on the spatial distribution of the accelerated particle beam, the particle maximum energy, and the electromagnetic field characteristics. For the scope of this study, the laser pulse parameters were kept constant, while varying the target parameters. The study continues the work published in [1] and focuses on further studying the effects of target curvature coupled with a cone laser focusing structure. The results show increased particle beam focusing and a significant enhancement in particle maximum energy.

  3. Beam halo studies using a three-dimensional particle-core model

    Directory of Open Access Journals (Sweden)

    Ji Qiang

    2000-06-01

    Full Text Available In this paper we present a study of beam halo based on a three-dimensional particle-core model of an ellipsoidal bunched beam in a constant focusing channel including the effects of nonlinear rf focusing. For an initially mismatched beam, three linear envelope modes—a high frequency mode, a low frequency mode, and a quadrupole mode—are identified for an azimuthally symmetric bunched beam. The high frequency mode has three components all in phase; the low frequency mode has the transverse components in phase and the longitudinal component 180° out of phase; the quadrupole mode has no longitudinal component, and the two transverse components in the mode are 180° out of phase. We also study the case of an ellipsoidal bunched beam without azimuthal symmetry and find that the high frequency mode and the low frequency mode are still present but the quadrupole mode is replaced by a new mode with transverse components 180° out of phase and a nonzero longitudinal component. Previous studies, which generally addressed the situation where the longitudinal-to-transverse focusing strength is roughly 0.6 or less, conclude that the oscillation of the high frequency mode is predominantly transverse, and that of the low frequency mode is predominantly longitudinal. In this paper we present a systematic study of the features of the modes as a function of the longitudinal-to-transverse focusing strength ratio. We find that, when the ratio is greater than unity, the high frequency mode may contain a significant longitudinal component. Thus, excitation of the high frequency mode in this situation can be responsible for the formation of longitudinal beam halo. Furthermore, while previous studies have observed halo amplitudes roughly 2–3 times the matched beam edge, for the present parameters we observe much larger amplitudes (5 times or more. This is due to the fact that the longitudinal-to-transverse focusing ratio used here is greater than that of previous

  4. Theoretical framework for a dynamic cone-beam reconstruction algorithm based on a dynamic particle model.

    Science.gov (United States)

    Grangeat, Pierre; Koenig, Anne; Rodet, Thomas; Bonnet, Stéphane

    2002-08-07

    Dynamic cone-beam reconstruction algorithms are required to reconstruct three-dimensional (3D) image sequences on dynamic 3D CT combining multi-row two-dimensional (2D) detectors and sub-second scanners. The speed-up of the rotating gantry allows one to improve the temporal resolution of the image sequence, but at the same time, it implies increase in the dose delivered during a given time period to keep constant the signal-to-noise ratio associated with each frame. The alternative solution proposed in this paper is to process data acquisition on several half-turns in order to reduce the dose delivered per rotation with the same signal-to-noise ratio. In order to compensate for time evolution and motion artefacts, we propose to use a dynamic particle model to describe the object evolution during the scan. In this article, we first introduce the dynamic particle model and the dynamic CT acquisition model. Then, we explain the principle of the proposed dynamic cone-beam reconstruction algorithm. Lastly, we present preliminary results on simulated data.

  5. High-gradient microelectromechanical system quadrupole electromagnets for particle beam focusing and steering

    Directory of Open Access Journals (Sweden)

    Jere Harrison

    2015-02-01

    Full Text Available Recent advancements in microelectromechanical system (MEMS fabrication techniques have enabled the batch-fabrication of quadrupole MEMS electromagnets producing 100 mT-scale field across sub-mm gaps with the potential for transformational advances in the field of compact high performance charged particle focusing and steering optics. The footprint of these in-vacuum focusing and steering optics can be as small as 3  mm×3  mm×0.5  mm. The low electromagnet impedance (58  mΩ, 32 nH per pole facilitates power-efficient operation and continuous or low duty cycle operation, and the individually controlled electromagnets allow combined dipole-quadrupole fields. Here we report on an experiment where these miniature devices have been used to focus and steer a 34 keV electron beam from a DC photogun, demonstrating the first application of magnetic MEMS to particle beam focusing.

  6. Screening of a dust particle charge in a humid air plasma created by an electron beam

    Science.gov (United States)

    Filippov, A. V.; Derbenev, I. N.; Kurkin, S. A.

    2018-01-01

    A kinetic model has been developed for charged particle reactions in a humid air plasma produced by a fast electron beam. The model includes over 550 reactions with electrons, 33 positive ion species and 14 negative ion species. The model has been tested by solving 48 non-steady state equations for number densities of charged particles in humid air electron beam plasma, and by comparing with the available experimental data. The system of 48 steady state equations has been solved by iterative method in order to define the main ion species of the humid air plasma. A reduced kinetic model has been developed to describe the processes with the main ions and electrons. Screening constants have been calculated on the basis of the reduced system by means of Leverrier–Fadeev method. The dependencies of screening constants on gas ionization rates have been found for the rates from 10 to 1018 cm‑3s‑1 and the fraction of water molecules from 0 to 2%. The analysis of the constants has revealed that one of them is close to the inverse Debye length, and the other constants are defined by the inverse diffusion lengths passed by ions in the characteristic times of the attachment, recombination, and ion conversion. Pure imaginary screening constants appear at low rates of gas ionization.

  7. Proposed particle-beam characterizations for the APS undulator test line

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Borland, M.; Milton, S.

    1993-09-01

    A research and development effort is underway at the Advanced Photon Source (APS) to use an rf gun as a low-emittance electron source for injection into the 100- to 650-MeV linac subsystem and subsequently to an undulator test area. This configuration would combine the acceleration capability of the 200-MeV S-band electron linac and the in-line 450-MeV positron linac that normally provide positrons to the positron accumulator ring (PAR). A transport line that bypasses the PAR will bring the electrons to the undulator test area. Characterization techniques will be discussed for the electron beam with a normalized, rms emittance of <10 {pi} mm mrad (1{sigma}) at micropulse charges of up to 350 pC and micropulse durations of {approximately}5 ps (FWHM). Tests proposed include measurement of particle beam transport effects (at one-tenth the storage ring beam rigidity) caused by small undulator field errors as well as operations intended to produce coherent, short wavelength radiation (<200 nm).

  8. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap.

    Science.gov (United States)

    Cotterell, Michael I; Mason, Bernard J; Carruthers, Antonia E; Walker, Jim S; Orr-Ewing, Andrew J; Reid, Jonathan P

    2014-02-07

    A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the Bessel beam, using either a probe beam at 405 nm or 633 nm. The vapour pressures of glycerol and 1,2,6-hexanetriol particles were determined to be 7.5 ± 2.6 mPa and 0.20 ± 0.02 mPa respectively. The lower volatility of hexanetriol allowed better definition of the trapping environment relative humidity profile over the measurement time period, thus higher precision measurements were obtained compared to those for glycerol. The size evolution of a hexanetriol particle, as well as its refractive index at wavelengths 532 nm and 405 nm, were determined by modelling its position along the Bessel beam propagation length while collecting phase functions with the 405 nm probe beam. Measurements of the hygroscopic growth of sodium chloride and ammonium sulfate have been performed on particles as small as 350 nm in radius, with growth curves well described by widely used equilibrium state models. These are the smallest particles for which single-particle hygroscopicity has been measured and represent the first measurements of hygroscopicity on fine mode and near-accumulation mode aerosols, the size regimes bearing the most atmospheric relevance in terms of loading, light extinction and scattering. Finally, the technique is contrasted with other single particle and ensemble methods, and limitations are assessed.

  9. Technical Note: Use of a beam width probe in an Aerosol Mass Spectrometer to monitor particle collection efficiency in the field

    OpenAIRE

    Salcedo, D.; Onasch, T. B.; Canagaratna, M. R.; Dzepina, K.; Huffman, J. A.; Jayne, J. T.; Worsnop, D. R.; Kolb, C. E.; Weimer, S.; Drewnick, F.; Allan, J. D.; Delia, A. E.; Jimenez, J. L.

    2007-01-01

    International audience; Two Aerodyne Aerosol Mass Spectrometers (Q-AMS) were deployed in Mexico City, during the Mexico City Metropolitan Area field study (MCMA-2003) from 29 March?4 May 2003 to investigate particle concentrations, sources, and processes. We report the use of a particle beam width probe (BWP) in the field to quantify potential losses of particles due to beam broadening inside the AMS caused by particle shape (nonsphericity) and particle size. Data from this probe show that no...

  10. Electromagnetic scattering by multiple dielectric particles under the illumination of unpolarized high-order Bessel vortex beam

    Science.gov (United States)

    Yu, Mei Ping; Han, Yi Ping; Cui, Zhi Wei; Chen, An Tao

    2017-07-01

    This study investigates the electromagnetic scattering of a high-order Bessel vortex beam by multiple dielectric particles of arbitrary shape based on the surface integral equation (SIE) method. In Cartesian coordinates, the mathematical formulas are given for characterizing the electromagnetic field components of an arbitrarily incident high-order Bessel vortex beam. By using the SIE, a numerical scheme is formulated to find solutions for characterizing the electromagnetic scattering by multiple homogeneous particles of arbitrary shape and a home-made FORTRAN program is written. The presented theoretical derivations as well as the home-made program are validated by comparing to the scattering results of a Zero-Order Bessel Beam by the Generalized Lorenz-Mie theory. From our simulations, the beam's order, half-cone angles, and the ways of particles' arrangement have a great influence upon the differential scattering cross section (DSCS) for multiple particles. Furthermore, for a better understanding of the scattering characteristic in three dimension (3-D) space, the 3-D distribution of the DSCS for different cases is presented. It is anticipated that these results can be helpful to understand the scattering mechanisms of a high-order Bessel vortex beam on multiple dielectric particles of arbitrary shape.

  11. Measurement of charged particle yields from therapeutic beams in view of the design of an innovative hadrontherapy dose monitor

    CERN Document Server

    Battistoni, G; Bini, F; Collamati, F; Collini, F; De Lucia, E; Durante, M; Faccini, R; Ferroni, F; Frallicciardi, P M; La Tessa, C; Marafini, M; Mattei, I; Miraglia, F; Morganti, S; Ortega, P G; Patera, V; Piersanti, L; Pinci, D; Russomando, A; Sarti, A; Schuy, C; Sciubba, A; Senzacqua, M; Solfaroli Camillocci, E; Vanstalle, M; Voena, C

    2015-01-01

    Particle Therapy (PT) is an emerging technique, which makes use of charged particles to efficiently cure different kinds of solid tumors. The high precision in the hadrons dose deposition requires an accurate monitoring to prevent the risk of under-dosage of the cancer region or of over-dosage of healthy tissues. Monitoring techniques are currently being developed and are based on the detection of particles produced by the beam interaction into the target, in particular: charged particles, result of target and/or projectile fragmentation, prompt photons coming from nucleus de-excitation and back-to-back γ s, produced in the positron annihilation from β + emitters created in the beam interaction with the target. It has been showed that the hadron beam dose release peak can be spatially correlated with the emission pattern of these secondary particles. Here we report about secondary particles production (charged fragments and prompt γ s) performed at different beam and energies that have a particular relevan...

  12. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    International Nuclear Information System (INIS)

    Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)

  13. Nonlinear δf particle simulations of collective excitations and energy-anisotropy instabilities in high-intensity bunched beams

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2007-06-01

    Full Text Available Collective effects with strong coupling between the longitudinal and transverse dynamics are of fundamental importance for applications of high-intensity bunched beams. The self-consistent Vlasov-Maxwell equations are applied to high-intensity finite-length charge bunches, and a generalized δf particle simulation algorithm is developed for bunched beams with or without energy anisotropy. The nonlinear δf method exhibits minimal noise and accuracy problems in comparison with standard particle-in-cell simulations. Systematic studies are carried out under conditions corresponding to strong 3D nonlinear space-charge forces in the beam frame. For charge bunches with isotropic energy, finite bunch-length effects are clearly evident by the fact that the spectra for an infinitely long coasting beam and a nearly spherical charge bunch have strong similarities, whereas the spectra have distinctly different features when the bunch length is varied between these two limiting cases. For bunched beams with anisotropic energy, there exists no exact kinetic equilibrium because the particle dynamics do not conserve transverse energy and longitudinal energy separately. A reference state in approximate dynamic equilibrium has been constructed theoretically, and a quasi-steady state has been established in the simulations for the anisotropic case. Collective excitations relative to the reference state have been simulated using the generalized δf algorithm. In particular, the electrostatic Harris instability driven by strong energy anisotropy is investigated for a finite-length charge bunch. The observed growth rates are larger than those obtained for infinitely long coasting beams. However, the growth rate decreases for increasing bunch length to a value similar to the case of a long coasting beam. For long bunches, the instability is axially localized symmetrically relative to the beam center, and the characteristic wavelength in the longitudinal direction is

  14. Condition for a single bunch high frequency fast blow-up

    International Nuclear Information System (INIS)

    Wang, J.M.; Pellegrini, C.

    1980-01-01

    We study the longitudinal stability of a single particle bunch in a storage ring using Vlasov equation. We show that the Vlasov equation has solutions corresponding to a fast, microwave instability if a condition on the beam current, qualitatively similar to the stability condition for a coasting beam, is satisfied. This condition can be used to define a threshold current, and to discuss its dependence on the longitudinal coupling impedance

  15. Dosimetry and monitoring of thin X-ray beam produced by linear particle accelerator, for application in radiography

    International Nuclear Information System (INIS)

    Campos, J.C.F. de.

    1986-01-01

    The dosimetry and monitoring characteristics of thin X-ray beams, and the application of 4MeV linear particle accelerator to radiosurgery are studied. An addition collimation system, consisted of 3 lead collimators, which allows to obtain thin beams of 6,10 and 15 mm of diameter, was fabricated. The stereo taxic system, together with modifications in dispositives, provide the accuracy required in volum-targed location. The dosimetric informations were determined with silicon detector inserted into water simulator. The isodose curves for each beam, and total isodoses simulating the treatment were established using radiographic emulsions in conditions which reproduce real circunstances of pacient irradiation. (M.C.K.) [pt

  16. Proposed parameters for a circular particle accelerator for proton beam therapy obtained by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Gustavo L.; Campos, Tarcísio P.R., E-mail: gustavo.lobato@ifmg.edu.br, E-mail: tprcampos@pq.cnpq.br, E-mail: gustavo.lobato@ifmg.edu.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    This paper brings to light optimized proposal for a circular particle accelerator for proton beam therapy purposes (named as ACPT). The methodology applied is based on computational metaheuristics based on genetic algorithms (GA) were used to obtain optimized parameters of the equipment. Some fundamental concepts in the metaheuristics developed in Matlab® software will be presented. Four parameters were considered for the proposed modeling for the equipment, being: potential difference, magnetic field, length and radius of the resonant cavity. As result, this article showed optimized parameters for two ACPT, one of them used for ocular radiation therapy, as well some parameters that will allow teletherapy, called in order ACPT - 65 and ACPT - 250, obtained through metaheuristics based in GA. (author)

  17. Single-particle And Collective Effects Of Cubic Nonlinearity In The Beam Dynamics Of Proton Synchrotrons

    CERN Document Server

    Tran Hy, J

    1998-01-01

    This thesis describes some new studies of the effects of cubic nonlinearities arising from image-charge forces and octupole magnets on the transverse beam dynamics of proton synchrotrons and storage rings, and also a study of the damping of coherent oscillations using a feed-back damper. In the latter case, various corrective algorithms were modeled using linear one-turn maps. Kicks of fixed amplitude but appropriate sign were shown to provide linear damping and no coherent tune shift, though the rate predicted analytically was somewhat higher than that observed in simulations. This algorithm gave much faster damping (for equal power) than conventional proportional kicks, which damp exponentially. Two single-particle effects of the image-change force were investigated: distortion of the momentum dispersion function and amplitude dependence of the betatron tunes (resulting in tune spread). The former is calculated using transfer maps and the method of undetermined coefficients, the latter by solving the cubic ...

  18. Fifteen symposia on microdosimetry: implications for modern particle-beam cancer radiotherapy

    CERN Document Server

    Wambersie, A; Gueulette, J; Pihet, P

    2015-01-01

    The objective of microdosimetry was, and still is, to identify physical descriptions of the initial physical processes of ionising radiation interacting with biological matter which correlate with observed radiobiological effects with a view to improve the understanding of radiobiological mechanisms and effects. The introduction of therapy with particles starting with fast neutrons followed by negative pions, protons and light ions necessitated the application of biological weighting factors for absorbed dose in order to account for differences of the relative biological effectiveness (RBE). Dedicated radiobiological experiments in therapy beams with mammalian cells and with laboratory animals provided sets of RBE values which are used to evaluate empirical ‘clinical RBE values’. The combination of such experiments with microdosimetric measurements in identical conditions offered the possibility to establish semi-empirical relationships between microdosimetric parameters and results of RBE studies.

  19. Proposed parameters for a circular particle accelerator for proton beam therapy obtained by genetic algorithm

    International Nuclear Information System (INIS)

    Campos, Gustavo L.; Campos, Tarcísio P.R.

    2017-01-01

    This paper brings to light optimized proposal for a circular particle accelerator for proton beam therapy purposes (named as ACPT). The methodology applied is based on computational metaheuristics based on genetic algorithms (GA) were used to obtain optimized parameters of the equipment. Some fundamental concepts in the metaheuristics developed in Matlab® software will be presented. Four parameters were considered for the proposed modeling for the equipment, being: potential difference, magnetic field, length and radius of the resonant cavity. As result, this article showed optimized parameters for two ACPT, one of them used for ocular radiation therapy, as well some parameters that will allow teletherapy, called in order ACPT - 65 and ACPT - 250, obtained through metaheuristics based in GA. (author)

  20. Cloud a particle beam facility to investigate the influence of cosmic rays on clouds

    CERN Document Server

    Kirkby, Jasper

    2001-01-01

    Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

  1. Focused ion beam milling of nanocavities in single colloidal particles and self-assembled opals

    International Nuclear Information System (INIS)

    Woldering, Leon A; Otter, A M; Husken, Bart H; Vos, Willem L

    2006-01-01

    We present a new method of realizing single nanocavities in individual colloidal particles on the surface of silicon dioxide artificial opals using a focused ion beam milling technique. We show that both the radius and the position of the nanocavity can be controlled with nanometre precision, to radii as small as 40 nm. The relation between the defect size and the milling time has been established. We confirmed that milling not only occurs on the surface of the spheres, but into and through them as well. We also show that an array of nanocavities can be fashioned. Structurally modified colloids have interesting potential applications in nanolithography, as well as in chemical sensing and solar cells, and as photonic crystal cavities

  2. A Multimedia Tutorial for Charged-Particle Beam Dynamics. Final report

    International Nuclear Information System (INIS)

    Silbar, Richard R.

    1999-01-01

    In September 1995 WhistleSoft, Inc., began developing a computer-based multimedia tutorial for charged-particle beam dynamics under Phase II of a Small Business Innovative Research grant from the U.S. Department of Energy. In Phase I of this project (see its Final Report) we had developed several prototype multimedia modules using an authoring system on NeXTStep computers. Such a platform was never our intended target, and when we began Phase II we decided to make the change immediately to develop our tutorial modules for the Windows and Macintosh microcomputer market. This Report details our progress and accomplishments. It also gives a flavor of the look and feel of the presently available and upcoming modules

  3. Exact, rotational, infinite energy, blowup solutions to the 3-dimensional Euler equations

    International Nuclear Information System (INIS)

    Yuen, Manwai

    2011-01-01

    In this Letter, we construct a new class of blowup or global solutions with elementary functions to the 3-dimensional compressible or incompressible Euler and Navier-Stokes equations. And the corresponding blowup or global solutions for the incompressible Euler and Naiver-Stokes equations are also given. Our constructed solutions are similar to the famous Arnold-Beltrami-Childress (ABC) flow. The obtained solutions with infinite energy can exhibit the interesting behaviors locally. Furthermore, due to divu → =0 for the solutions, the solutions also work for the 3-dimensional incompressible Euler and Navier-Stokes equations. -- Highlights: → We construct a new class of solutions to the 3D compressible or incompressible Euler and Navier-Stokes equations. → The constructed solutions are similar to the famous Arnold-Beltrami-Childress flow. → The solutions with infinite energy can exhibit the interesting behaviors locally.

  4. Blow-up analysis for a system of heat equations coupled through a nonlinear boundary condition

    DEFF Research Database (Denmark)

    Pedersen, M.; Lin, Zhigui

    2001-01-01

    Consider the system of heat equations uit - Δui = 0 (i = 1 , . . . , k, uk+i := u1) in Ω x (0, T) coupled through nonlinear boundary conditions ∂ui/∂η = up1i+1 on ∂Ω x [0, T). The upper and lower bounds of the blow-up rate is derived. © 2000 Elsevier Science Ltd. All rights reserved.......Consider the system of heat equations uit - Δui = 0 (i = 1 , . . . , k, uk+i := u1) in Ω x (0, T) coupled through nonlinear boundary conditions ∂ui/∂η = up1i+1 on ∂Ω x [0, T). The upper and lower bounds of the blow-up rate is derived. © 2000 Elsevier Science Ltd. All rights reserved....

  5. LHC MD 1087: Controlled Longitudinal Emittance Blow-up with Short Bunches

    CERN Document Server

    Timko, Helga; Esteban Muller, Juan; Jaussi, Michael; Lasheen, Alexandre; Shaposhnikova, Elena; CERN. Geneva. ATS Department

    2017-01-01

    The aim of the MD was to study the controlled longitudinal emittance blow-up applied during the ramp with bunches that are slightly shorter than operational. Earlier MDs in 2015 have shown that with a short target bunch length, the blow-up is less controlled and a bifurcation of bunch lengths occurs. The presented measurements show that the bifurcation is independent of the presence of the bunch length feedback, pointing towards an intensity-dependent phenomenon, originating from a synchrotron frequency shift with intensity. Accurate measurements of synchrotron frequency shift with intensity are presented as well. The measurements took place between 22nd August 2016, 19:00 and 23rd August 2016, 04:00.

  6. SIMPLIFIED CHARGED PARTICLE BEAM TRANSPORT MODELING USING COMMONLY AVAILABLE COMMERCIAL SOFTWARE

    Energy Technology Data Exchange (ETDEWEB)

    D. Douglas; K. Beard; J. Eldred; P. Evtushenko; A. Jenkins; W. Moore; L. Osborne; D. Sexton; C. Tennant

    2007-06-18

    Particle beam modeling in accelerators has been the focus of considerable effort since the 1950s. Many generations of tools have resulted from this process, each leveraging both prior experience and increases in computer power. However, continuing innovation in accelerator technology results in systems that are not well described by existing tools, so the software development process is on-going. We discuss a novel response to this situation, which was encountered when Jefferson Lab began operation of its energy-recovering linacs. These machines were not readily described with legacy soft-ware; therefore a model was built using Microsoft Excel. This interactive simulation can query data from the accelerator, use it to compute machine parameters, analyze difference orbit data, and evaluate beam properties. It can also derive new accelerator tunings and rapidly evaluate the impact of changes in machine configuration. As it is spreadsheet-based, it can be easily user-modified in response to changing requirements. Examples for the JLab IR Upgrade FEL are presented.

  7. Artificial intelligence research in particle accelerator control systems for beam line tuning

    Energy Technology Data Exchange (ETDEWEB)

    Pieck, Martin [Los Alamos National Laboratory

    2008-01-01

    Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

  8. Plasma opening switch development for the Particle Beam Fusion Accelerator II (PBFA II)

    International Nuclear Information System (INIS)

    Stinnett, R.W.; McDaniel, D.H.; Rochau, G.E.

    1987-01-01

    The authors conducted plasma opening switch (POS) experiments on Sandia National Laboratories' new Particle Beam Fusin Accelerator II (PBFA II) (12 MV, 100 TW, 50 ns), on the Supermite accelerator (2 MV, 2 TW, 50 ns) and on the Naval Research Laboratory's Gamble II accelerator (1.8 MV, 1.6 TW, 70 ns). The POS systems on the PBFA II and Supermite accelerators use a newly developed flashboard plasma source to provide the plasma necessary to conduct the large (> 1 MA) currents produced byu these accelerators. In the Supermite experiments, the plasma opening switch conducted currents up to 1 MA before opening in less than 10 ns into an electron beam load. These experiments achieved significant voltage gain relative to the voltage across a matched load. In experiments on Gamble II, power gains of up to 1.7 were achieved using a POS in a strongly coaxial geometry (r/sub outer//r/sub inner/ = 2) with a large magnetic field at the cathode. The POS system on PBFA II is unique because of its size and voltage. This POS system is designed to conduct over 6 MA before opening. In present experiments it has conducted currents of 4-5 MA for over 50 ns

  9. Influence of incoherent scattering on stochastic deflection of high-energy negative particle beams in bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kirillin, I.V. [Akhiezer Institute for Theoretical Physics, National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkov (Ukraine); Shul' ga, N.F. [Akhiezer Institute for Theoretical Physics, National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkov (Ukraine); V.N. Karazin Kharkov National University, Kharkov (Ukraine); Bandiera, L. [INFN Sezione di Ferrara, Ferrara (Italy); Guidi, V.; Mazzolari, A. [INFN Sezione di Ferrara, Ferrara (Italy); Universita degli Studi di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy)

    2017-02-15

    An investigation on stochastic deflection of high-energy negatively charged particles in a bent crystal was carried out. On the basis of analytical calculation and numerical simulation it was shown that there is a maximum angle at which most of the beam is deflected. The existence of a maximum, which is taken in the correspondence of the optimal radius of curvature, is a novelty with respect to the case of positively charged particles, for which the deflection angle can be freely increased by increasing the crystal length. This difference has to be ascribed to the stronger contribution of incoherent scattering affecting the dynamics of negative particles that move closer to atomic nuclei and electrons. We therefore identified the ideal parameters for the exploitation of axial confinement for negatively charged particle beam manipulation in future high-energy accelerators, e.g., ILC or muon colliders. (orig.)

  10. Blow-up analysis for a system of heat equations coupled through a nonlinear boundary condition

    DEFF Research Database (Denmark)

    Pedersen, M.; Lin, Zhigui

    2001-01-01

    Consider the system of heat equations uit - Δui = 0 (i = 1 , . . . , k, uk+i := u1) in Ω x (0, T) coupled through nonlinear boundary conditions ∂ui/∂η = up1i+1 on ∂Ω x [0, T). The upper and lower bounds of the blow-up rate is derived. © 2000 Elsevier Science Ltd. All rights reserved....

  11. Blow-up Estimates of the Positive Solution of a Parabolic System

    DEFF Research Database (Denmark)

    Pedersen, Michael; Zhigui, Lin

    1999-01-01

    This paper establishes the blowup estimates for the systems: $u_t-\\Delta u=0,$ $v_t-\\Delta v=0$ in $B_R\\times (0,T)$, $B_R\\subset\\Bbb R^n$, with the nonlinear boundary conditions $\\frac{\\partial u}{\\partial \\eta}=u^{m_1}v^{n_1}$ and $\\frac{\\partial v}{\\partial \\eta}=u^{m_2}v^{n_2}$ on $S_R\\times (0...

  12. Blow-up Estimates of the Positive Solution of a Parabolic System

    DEFF Research Database (Denmark)

    Pedersen, Michael; Zhigui, Lin

    2001-01-01

    This paper establishes the blow-up estimates for the systems u(t) - Deltau = 0, v(t) - Deltav = 0 in B-R x (0, T), B-R subset of R-n, with the nonlinear boundary conditions partial derivativeu/partial derivativen = u(m1)v(n1) and partial derivativev/partial derivativen = u(m2)v(n2) on S-R x (0, T...

  13. A note on Burgers' equation with time delay: Instability via finite-time blow-up

    International Nuclear Information System (INIS)

    Jordan, P.M.

    2008-01-01

    Burgers' equation with time delay is considered. Using the Cole-Hopf transformation, the exact solution of this nonlinear partial differential equation (PDE) is determined in the context of a (seemingly) well-posed initial-boundary value problem (IBVP) involving homogeneous Dirichlet data. The solution obtained, however, is shown to exhibit a delay-induced instability, suffering blow-up in finite-time

  14. Classification of minimal mass blow-up solutions for an L2 critical inhomogeneous NLS

    NARCIS (Netherlands)

    Combet, V.; Genoud, S.F.

    2016-01-01

    We establish the classification of minimal mass blow-up solutions of the L2 critical inhomogeneous nonlinear Schrödinger equation i?tu+?u+|x|?b|u|4?2bNu=0, thereby extending the celebrated result of Merle (Duke Math J 69(2):427–454, 1993) from the classic case b=0 to the case 0

  15. Some problems on non-linear semigroups and the blow-up of integral solutions

    International Nuclear Information System (INIS)

    Pavel, N.H.

    1983-07-01

    After some introductory remarks, this highly mathematical document considers a unifying approach in the theory of non-linear semigroups. Then a brief survey is given on blow-up of mild solutions from the semilinear case. Finally, the global behavior of solutions to non-linear evolution equations is addressed; it is found that classical results on the behavior of the maximal solution u as t up-arrow tsub(max) hold also for integral solutions

  16. Universal structure of blow-up in 1D conservation laws

    OpenAIRE

    Mailybaev, Alexei A.

    2011-01-01

    We discuss universality properties of blow-up of a classical (smooth) solutions of conservation laws in one space dimension. It is shown that the renormalized wave profile tends to a universal function, which is independent both of initial conditions and of the form of a conservation law. This property is explained in terms of the renormalization group theory. A solitary wave appears in logarithmic coordinates of the Fourier space as a counterpart of this universality. Universality is demonst...

  17. Development of a new ridge filter with honeycomb geometry for a pencil beam scanning system in particle radiotherapy

    Science.gov (United States)

    Tansho, R.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    A ridge filter (RGF), a beam energy modulation device, is usually used for particle radiotherapy with a pencil beam scanning system. The conventional RGF has a one-dimensional (1D) periodic laterally stepped structure in orthogonal plane with a central beam direction. The energy of a beam passing through the different thicknesses of the stepped RGF is modulated. Although the lateral pencil beam size is required to cover the several stepped RGF units to modulate its energy as designed, the current trend is to decrease lateral beam size to improve the scanning system. As a result, the beam size becomes smaller than the size of the individual RGF unit. The aim of this study was to develop a new RGF with two-dimensional (2D) honeycomb geometry to simultaneously achieve both a decrease in lateral beam size and the desired energy modulation. The conventional 1D-RGF and the 2D-RGF with honeycomb geometry were both designed so that the Bragg peak size of a 79 MeV/u carbon ion pencil beam in water was 1 mm RMS in the beam direction. To validate the design of the 2D-RGF, we calculated depth dose distributions in water using a simplified Monte Carlo method. In the calculations, we decreased the lateral pencil beam size at the entrance of the RGF and investigated the threshold of lateral beam size with which the pencil beam can reproduce the desired Bragg peak size for each type of RGF. In addition, we calculated lateral dose distributions in air downstream from the RGF and evaluated the inhomogeneity of the lateral dose distributions. Using the 2D-RGF, the threshold of lateral beam size with which the pencil beam can reproduce the desired Bragg peak size was smaller than that using the 1D-RGF. Moreover, the distance from the RGF at which the lateral dose distribution becomes uniform was shorter using the 2D-RGF than that using the 1D-RGF. These results indicate that when the periodic length of both RGFs is the same, the 2D-RGF allows use of a pencil beam with smaller lateral

  18. Development of RFQ particle dynamics simulation tools and validation with beam tests

    Energy Technology Data Exchange (ETDEWEB)

    Maus, Johannes M.

    2010-07-01

    Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the two term simplification was shown as well as the limitation of these approaches. The main work of this thesis was the implementation and analysis of a multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a multigrid Poisson solver are the ability of a Gauss-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauss-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. As a charge density, a homogeneously charged ball and cylinder were used to represent the bunched and unbunched beam and placed inside a quadruple channel. The solver showed a good performance. Next, the performance of the solver to calculate the external potentials (and fields) of RFQs was analyzed. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The MAFF RFQ was designed to accelerate very neutron-rich fission fragments for various experiments. The machine was assembled in Frankfurt and a beam test stand was built. As a part of this thesis the shunt impedance of the structure was

  19. Beyond blow-up in excitatory integrate and fire neuronal networks: Refractory period and spontaneous activity.

    Science.gov (United States)

    Cáceres, María J; Perthame, Benoît

    2014-06-07

    The Network Noisy Leaky Integrate and Fire equation is among the simplest model allowing for a self-consistent description of neural networks and gives a rule to determine the probability to find a neuron at the potential v. However, its mathematical structure is still poorly understood and, concerning its solutions, very few results are available. In the midst of them, a recent result shows blow-up in finite time for fully excitatory networks. The intuitive explanation is that each firing neuron induces a discharge of the others; thus increases the activity and consequently the discharge rate of the full network. In order to better understand the details of the phenomena and show that the equation is more complex and fruitful than expected, we analyze further the model. We extend the finite time blow-up result to the case when neurons, after firing, enter a refractory state for a given period of time. We also show that spontaneous activity may occur when, additionally, randomness is included on the firing potential VF in regimes where blow-up occurs for a fixed value of VF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Attempted density blowup in a freely cooling dilute granular gas: hydrodynamics versus molecular dynamics.

    Science.gov (United States)

    Puglisi, Andrea; Assaf, Michael; Fouxon, Itzhak; Meerson, Baruch

    2008-02-01

    It has been recently shown [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon, Phys. Fluids 19, 093303 (2007)] that, in the framework of ideal granular hydrodynamics (IGHD), an initially smooth hydrodynamic flow of a granular gas can produce an infinite gas density in a finite time. Exact solutions that exhibit this property have been derived. Close to the singularity, the granular gas pressure is finite and almost constant. We report molecular dynamics (MD) simulations of a freely cooling gas of nearly elastically colliding hard disks, aimed at identifying the "attempted" density blowup regime. The initial conditions of the simulated flow mimic those of one particular solution of the IGHD equations that exhibits the density blowup. We measure the hydrodynamic fields in the MD simulations and compare them with predictions from the ideal theory. We find a remarkable quantitative agreement between the two over an extended time interval, proving the existence of the attempted blowup regime. As the attempted singularity is approached, the hydrodynamic fields, as observed in the MD simulations, deviate from the predictions of the ideal solution. To investigate the mechanism of breakdown of the ideal theory near the singularity, we extend the hydrodynamic theory by accounting separately for the gradient-dependent transport and for finite density corrections.

  1. Use of a Wien filter for mass and velocity analysis of charged soot particles in a nozzle beam

    Energy Technology Data Exchange (ETDEWEB)

    Homann, K.H.; Traube, J.

    1987-08-01

    A simple Wien filter in combination with an energy-discriminating detector was used to determine mass and velocity distributions of positively and negatively charged particles in a nozzle beam. The particles were sampled from different heights in a 26.7 hPa flat, premixed C/sub 2/H/sub 2//O/sub 2/ flame. The method allows the measurement of mass distributions of particles with different velocities in the beam, of velocity distributions of particles with different masses, and of over-all-mass and velocity distributions, examples of which are given. There is a velocity slip of the large species during expansion of the flow. Particles with larger mass reach a lower final velocity in the beam. The velocity distributions are non-gaussian displaying a long tail to lower velocities. The growth of positively charged soot particles from an average mass of about 1 . 10/sup 3/ u to 1 . 10/sup 4/ u takes place over a distance of 4 mm in the flame.

  2. Trapping of quantum particles and light beams by switchable potential wells

    Science.gov (United States)

    Sonkin, Eduard; Malomed, Boris A.; Granot, Er'El; Marchewka, Avi

    2010-09-01

    We consider basic dynamical effects in settings based on a pair of local potential traps that may be effectively switched on and off, or suddenly displaced, by means of appropriate control mechanisms, such as scanning tunneling microscopy or photo-switchable quantum dots. The same models, based on the linear Schrödinger equation with time-dependent trapping potentials, apply to the description of optical planar systems designed for the switching of trapped light beams. The analysis is carried out in the analytical form, using exact solutions of the Schrödinger equation. The first dynamical problem considered in this work is the retention of a particle released from a trap which was suddenly turned off, while another local trap was switched on at a distance—immediately or with a delay. In this case, we demonstrate that the maximum of the retention rate is achieved at a specific finite value of the strength of the new trap, and at a finite value of the temporal delay, depending on the distance between the two traps. Another problem is retrapping of the bound particle when the addition of the second trap transforms the single-well setting into a double-well potential (DWP). In that case, we find probabilities for the retrapping into the ground or first excited state of the DWP. We also analyze effects entailed by the application of a kick to a bound particle, the most interesting one being a kick-induced transition between the DWP’s ground and excited states. In the latter case, the largest transition probability is achieved at a particular strength of the kick.

  3. Neutron and alpha particle energy spectrum and angular distribution effects from beam--plasma D-T fusion

    International Nuclear Information System (INIS)

    Lessor, D.L.

    1975-04-01

    The following five topics are discussed: (1) origin of energy spread in fusion neutrons, (2) magnitude of neutron energy spread from beam--plasma fusions, (3) techniques for calculation of fusion product particle spectra, (4) neutron spectra from fusion in isotropic plasmas, and (5) calculation of fusion neutron energy and angle distributions. (U.S.)

  4. Micronuclei in human peripheral blood lymphocytes exposed to mixed beams of X-rays and alpha particles

    Czech Academy of Sciences Publication Activity Database

    Staaf, E.; Brehwens, K.; Haghdoost, S.; Nievaart, S.; Pachnerová Brabcová, Kateřina; Czub, J.; Braziewicz, J.; Wojcik, A.

    2012-01-01

    Roč. 51, č. 3 (2012), s. 283-293 ISSN 0301-634X Institutional research plan: CEZ:AV0Z10480505 Keywords : Micronuclei * LET * Combined exposure * Mixed beams * Alpha particles * X-rays Subject RIV: BO - Biophysics Impact factor: 1.754, year: 2012

  5. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  6. WE-FG-BRB-02: Spatial Mapping of the RBE of Scanned Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Grosshans, D. [The University of Texas MD Anderson Cancer Center (United States)

    2016-06-15

    The physical pattern of energy deposition and the enhanced relative biological effectiveness (RBE) of protons and carbon ions compared to photons offer unique and not fully understood or exploited opportunities to improve the efficacy of radiation therapy. Variations in RBE within a pristine or spread out Bragg peak and between particle types may be exploited to enhance cell killing in target regions without a corresponding increase in damage to normal tissue structures. In addition, the decreased sensitivity of hypoxic tumors to photon-based therapies may be partially overcome through the use of more densely ionizing radiations. These and other differences between particle and photon beams may be used to generate biologically optimized treatments that reduce normal tissue complications. In this symposium, speakers will examine the impact of the RBE of charged particles on measurable biological endpoints, treatment plan optimization, and the prediction or retrospective assessment of treatment outcomes. In particular, an AAPM task group was formed to critically examine the evidence for a spatially-variant RBE in proton therapy. Current knowledge of proton RBE variation with respect to dose, biological endpoint, and physics parameters will be reviewed. Further, the clinical relevance of these variations will be discussed. Recent work focused on improving simulations of radiation physics and biological response in proton and carbon ion therapy will also be presented. Finally, relevant biology research and areas of research needs will be highlighted, including the dependence of RBE on genetic factors including status of DNA repair pathways, the sensitivity of cancer stem-like cells to charged particles, the role of charged particles in hypoxic tumors, and the importance of fractionation effects. In addition to the physical advantages of protons and more massive ions over photons, the future application of biologically optimized treatment plans and their potential to

  7. Particles fluidized bed receiver/reactor tests with quartz sand particles using a 100-kWth beam-down solar concentrating system at Miyazaki

    Science.gov (United States)

    Kodama, Tatsuya; Gokon, Nobuyuki; Cho, Hyun Seok; Matsubara, Koji; Kaneko, Hiroshi; Senuma, Kazuya; Itoh, Sumie; Yokota, Shin-nosuke

    2017-06-01

    A window-type, solar fluidized bed receiver with quartz sand particles was tested by a 100-kWth novel beam-down solar concentrating system at Miyazaki, Japan. A compound parabolic concentrator (CPC) was placed above the quartz window of the receiver to increase the concentration of the solar fluxes from the beam-down solar concentrating system. The solar tests were performed in the middle of December, 2015. The central bed temperature of the receiver was reached around 960-1100° C. It was found that only 20 Ndm3/min of air flow rate was enough to create the uniform fluidization of the particles at the given temperature range. It was predicted that if the central bed temperature could have been higher than 1100°C if solar receiver test had conducted in other seasons than winter. The next solar campaign of the receiver test will be carried out in October, 2016.

  8. End-of-Fill Diffusion and Halo Population Measurements with Physics Beams at 6.5 TeV

    CERN Document Server

    Valentino, Gianluca; Gorzawski, Arkadiusz; Redaelli, Stefano; Trad, Georges; Wagner, Joschka; Xu, Chen; CERN. Geneva. ATS Department

    2017-01-01

    Beam halo measurements at 6.5 TeV in the LHC were conducted with a full physics beam via collimator scrapings in end-of-fill MDs carried out in May and July 2016. From the time evolution of the beam losses in a collimator scan, it is possible to extract information on the halo diffusion and population. In the first MD, six scans were performed with two collimators in the vertical and horizontal planes in B1 and B2 respectively. The scans were done with squeezed colliding beams, with and without a gentle continuous transverse blow-up with the ADT (transverse damper) on a non-colliding bunch train. In the second MD, four scans were performed with the same collimators with squeezed colliding beams. The beam losses observed with the standard ionization chamber BLMs are compared to the diamond BLMs, and parametric fits of the diffusion model are applied to temporal loss patterns from colliding and non-colliding bunch trains. The results presented in this note also include the particle escape times and frequency an...

  9. Tertiary particle production and target optimization of the H2 beam line in the SPS North Area

    CERN Document Server

    Tellander, Felix

    2016-01-01

    H2 beam line of SPS North Area is a high energy, high resolution and multipurpose particle beam line. It is able to transport secondary hadron and pure electron beams with momenta between 10 and 400 GeV/c to be exploited by several different experiments. In this work, tertiary particle production from a secondary target placed in the line is studied. The introduction of this “filter” target enhances the middle to low momentum hadron (20 - 60 GeV/c) and electron production. In this work, a systematic Monte Carlo simulation study using a GEANT 4 based package, G4beamline, has been performed in order to investigate the tertiary particle production from several different targets. More specifically, Cu, W and polyethylene targets with different thicknesses have been studied. The proton over pi+ ratio is of particular interest, as well as the optimal electron production for several momenta. The present work will act as a reference to be used by the future test-beam users of the line as an indication of the expe...

  10. Steering of sub-GeV charged particle beams by use of reflections in thin crystal targets

    CERN Document Server

    Bellucci, S; Chirkov, P N; Giannini, G; Maisheev, V A; Yazynin, I A

    2012-01-01

    The phenomenon of deflection of a charged particle beam due to channeling in a bent crystal has been well investigated and successfully applied for beam extraction at high-energy accelerators, for energies about 10 GeV and higher. However, it is of a big practical interest to consider the task of bending and extracting charged particles with energies below 1 GeV, for example, for production of ultrastable beams of low emittance for medical and biological applications. However, for low energy, i.e. below 1 GeV, the bent crystal channeling is not efficient. That motivates us to consider in this article an other crystal technique, based on thin straight crystal targets, as elements for the extraction and collimation of the circulating beam in an accelerator ring. The main advantages of reflection in straight crystals, in comparison with bent crystal channeling, consist in the small length of straight crystals along the beam, that reduces the amount of nuclear interactions and improves the background.

  11. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  12. Simulating tokamak PFC performance using simultaneous dual beam particle loading with pulsed heat loading

    Science.gov (United States)

    Sinclair, Gregory; Gonderman, Sean; Tripathi, Jitendra; Ray, Tyler; Hassanein, Ahmed

    2017-10-01

    The performance of plasma facing components (PFCs) in a fusion device are expected to change due to high flux particle loading during operation. Tungsten (W) is a promising PFC candidate material, due to its high melting point, high thermal conductivity, and low tritium retention. However, ion irradiation of D and He have each shown to diminish the thermal strength of W. This work investigates the synergistic effect between ion species, using dual beam irradiation, on the thermal response of W during ELM-like pulsed heat loading. Experiments studied three different loading conditions: laser, laser + He+, and laser + He+ + D+. 100 eV He+ and D+ exposures used a flux of 3.0-3.5 x 1020 m-2 s-1. ELM-like loading was applied using a pulsed Nd:YAG laser at an energy density of 0.38-1.51 MJ m-2 (3600 1 ms pulses at 1 Hz). SEM imaging revealed that laser + He+ loading at 0.76 MJ m-2 caused surface melting, inhibiting fuzz formation. Increasing the laser fluence decreased grain size and increased surface pore density. Thermally-enhanced migration of trapped gases appear to reflect resultant molten morphology. This work was supported by the National Science Foundation PIRE project.

  13. Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy

    Science.gov (United States)

    Hofmann, Ingo; Meyer-ter-Vehn, Jürgen; Yan, Xueqing; Al-Omari, Husam

    2012-07-01

    The application of laser accelerated protons or ions for particle therapy has to cope with relatively large energy and angular spreads as well as possibly significant random fluctuations. We suggest a method for combined focusing and energy selection, which is an effective alternative to the commonly considered dispersive energy selection by magnetic dipoles. Our method is based on the chromatic effect of a magnetic solenoid (or any other energy dependent focusing device) in combination with an aperture to select a certain energy width defined by the aperture radius. It is applied to an initial 6D phase space distribution of protons following the simulation output from a Radiation Pressure Acceleration model. Analytical formula for the selection aperture and chromatic emittance are confirmed by simulation results using the TRACEWIN code. The energy selection is supported by properly placed scattering targets to remove the imprint of the chromatic effect on the beam and to enable well-controlled and shot-to-shot reproducible energy and transverse density profiles.

  14. Particle Identification with Cherenkov detectors in the 2011 CALICE Tungsten Analog Hadronic Calorimeter Test Beam at the CERN SPS

    CERN Document Server

    Dannheim, D; Klempt, W; Lucaci Timoce, A; van der Kraaij, E

    2013-01-01

    In 2011 the CALICE Tungsten Analog Hadronic Calorimeter prototype (W-AHCAL) was exposed to mixed beams of electrons, pions, kaons and protons with momenta from 10 to 300 GeV in the CERN SPS H8 beam line. The selection of pion, kaon and proton samples is based on the information obtained from two Cherenkov threshold counters. This note presents the strategy for the particle identification, as well as the calibration, operation and analysis of the Cherenkov counters. Efficiency and sample-purity estimates are given for the data selected for the W-AHCAL data analysis.

  15. Equilibrium and stability of off-axis periodically focused particle beams

    International Nuclear Information System (INIS)

    Moraes, J.S.; Pakter, R.; Rizzato, F.B.

    2004-01-01

    A general equation for the centroid motion of free, continuous, intense beams propagating off axis in solenoidal periodic focusing fields is derived. The centroid equation is found to be independent of the specific beam distribution and may exhibit unstable solutions. A new Vlasov equilibrium for off-axis beam propagation is also obtained. The properties of the equilibrium and the relevance of centroid motion to beam confinement are discussed

  16. DIPAC 2005 7. European workshop on beam diagnostics and instrumentation for particle accelerators

    International Nuclear Information System (INIS)

    2005-01-01

    Accelerators can not be improved without the development of adequate beam instruments and diagnostic tools. This year this statement is particularly right: a lot of contributions are dedicated to beam monitoring and to the design of new beam monitors based on original technologies. This document gathers about 100 contributions

  17. DIPAC 2005 7. European workshop on beam diagnostics and instrumentation for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Accelerators can not be improved without the development of adequate beam instruments and diagnostic tools. This year this statement is particularly right: a lot of contributions are dedicated to beam monitoring and to the design of new beam monitors based on original technologies. This document gathers about 100 contributions.

  18. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Progress report, July 1993--August 1994

    International Nuclear Information System (INIS)

    Dragt, A.J.; Gluckstern, R.L.

    1994-08-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: the computation of charged particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates. Substantial progress in research has been made during the past year. These achievements are summarized in the following report

  19. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles

    Science.gov (United States)

    2012-01-01

    Background Little is known about the cellular effects of exposure to mixed beams of high and low linear energy transfer radiation. So far, the effects of combined exposures have mainly been assessed with clonogenic survival or cytogenetic methods, and the results are contradictory. The gamma-H2AX assay has up to now not been applied in this context, and it is a promising tool for investigating the early cellular response to mixed beam irradiation. Purpose To determine the dose response and repair kinetics of gamma-H2AX ionizing radiation-induced foci in VH10 human fibroblasts exposed to mixed beams of 241Am alpha particles and X-rays. Results VH10 human fibroblasts were irradiated with each radiation type individually or both in combination at 37°C. Foci were scored for repair kinetics 0.5, 1, 3 and 24 h after irradiation (one dose per irradiation type), and for dose response at the 1 h time point. The dose response effect of mixed beam was additive, and the relative biological effectiveness for alpha particles (as compared to X-rays) was of 0.76 ± 0.52 for the total number of foci, and 2.54 ± 1.11 for large foci. The repair kinetics for total number of foci in cells exposed to mixed beam irradiation was intermediate to that of cells exposed to alpha particles and X-rays. However, for mixed beam-irradiated cells the frequency and area of large foci were initially lower than predicted and increased during the first 3 hours of repair (while the predicted number and area did not). Conclusions The repair kinetics of large foci after mixed beam exposure was significantly different from predicted based on the effect of the single dose components. The formation of large foci was delayed and they did not reach their maximum area until 1 h after irradiation. We hypothesize that the presence of low X-ray-induced damage engages the DNA repair machinery leading to a delayed DNA damage response to the more complex DNA damage induced by alpha particles. PMID:23121736

  20. On the blow-up problem for the axisymmetric 3D Euler equations

    International Nuclear Information System (INIS)

    Chae, Dongho

    2008-01-01

    In this paper we study the finite time blow-up problem for the axisymmetric 3D incompressible Euler equations with swirl. The evolution equations for the deformation tensor and the vorticity are reduced considerably in this case. Under the assumption of local minima for the pressure on the axis of symmetry with respect to the radial variations we show that the solution blows up in finite time. If we further assume that the second radial derivative vanishes on the axis, then the system reduces to the form of Constantin–Lax–Majda equations and can be integrated explicitly

  1. Global existence and blowup for free boundary problems of coupled reaction-diffusion systems

    Directory of Open Access Journals (Sweden)

    Jianping Sun

    2014-05-01

    Full Text Available This article concerns a free boundary problem for a reaction-diffusion system modeling the cooperative interaction of two diffusion biological species in one space dimension. First we show the existence and uniqueness of a local classical solution, then we study the asymptotic behavior of the free boundary problem. Our results show that the free boundary problem admits a global solution if the inter-specific competitions are strong, while, if the inter-specific competitions are weak, there exist the blowup solution and a global fast solution.

  2. Asymptotic analysis of reaction-diffusion-advection problems: Fronts with periodic motion and blow-up

    Science.gov (United States)

    Nefedov, Nikolay

    2017-02-01

    This is an extended variant of the paper presented at MURPHYS-HSFS 2016 conference in Barcelona. We discuss further development of the asymptotic method of differential inequalities to investigate existence and stability of sharp internal layers (fronts) for nonlinear singularly perturbed periodic parabolic problems and initial boundary value problems with blow-up of fronts for reaction-diffusion-advection equations. In particular, we consider periodic solutions with internal layer in the case of balanced reaction. For the initial boundary value problems we prove the existence of fronts and give their asymptotic approximation including the new case of blowing-up fronts. This case we illustrate by the generalised Burgers equation.

  3. On blow-up of solutions of the Kuramoto-Sivashinsky equation

    International Nuclear Information System (INIS)

    Pokhozhaev, S I

    2008-01-01

    The problem of the absence of global solutions of initial-boundary value problems for the Kuramoto-Sivashinsky equation is considered. Sufficient conditions for the absence of global solutions of the problems under consideration are obtained both for bounded and unbounded domains. These conditions imply a priori the blow-up of the solution of the corresponding initial-boundary value problem. The proof uses a generalization of the method of non-linear capacity based on the choice of asymptotically optimal test functions. Bibliography: 20 titles.

  4. Critical Blow-Up and Global Existence for Discrete Nonlinear p-Laplacian Parabolic Equations

    Directory of Open Access Journals (Sweden)

    Soon-Yeong Chung

    2014-01-01

    Full Text Available The goal of this paper is to investigate the blow-up and the global existence of the solutions to the discrete p-Laplacian parabolic equation utx,t=Δp,wux,t+λux,tp-2ux,t, x,t∈S×0,∞, ux,t=0, x,t∈∂S×0,∞, ux,0=u0, depending on the parameters p>1 and λ>0. Besides, we provide several types of the comparison principles to this equation, which play a key role in the proof of the main theorems. In addition, we finally give some numerical examples which exploit the main results.

  5. Construction of a Blow-Up Solution for the Complex Ginzburg-Landau Equation in a Critical Case

    Science.gov (United States)

    Nouaili, Nejla; Zaag, Hatem

    2017-12-01

    We construct a solution for the Complex Ginzburg-Landau equation in a critical case which blows up in finite time T only at one blow-up point. We also give a sharp description of its profile. The proof relies on the reduction of the problem to a finite dimensional one, and the use of index theory to conclude. The interpretation of the parameters of the finite dimension problem in terms of the blow-up point and time allows us to prove the stability of the constructed solution.

  6. A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kwok, Y.C.; Eijkel, J.C.T.

    2003-01-01

    A microfabricated capillary electrophoresis device for velocity measurements of flowing particles is presented. It consists of a 1 x 128 planar waveguide beam splitter monolithically integrated with an electrically insulated fluidic channel network for fluorescence excitation at multiple points....... Stray light rejection structures are included in order to suppress unwanted light between the detection regions. The emission pattern of particles passing the detection region was collected by a photomultiplier tube that was placed in close proximity to the channel, thereby avoiding the use of transfer...... optics. The integrated planar waveguide beam splitter was, furthermore, permanently connected to the light source by a glued-on optical fiber, to achieve a robust and alignment-free operation of the system. The velocity was measured using a Fourier transformation with a Shah function, since the response...

  7. Study of chemically synthesized ZnO nano particles under a bio template using radioactive ion beam

    CERN Multimedia

    This is a project proposal to study nano sized semiconductor ZnO system, useful in biology and medicinal purposes, using radioactive ion beam from ISOLDE. Doping of the nano particles with Cu, Cd and Ga ions (in their variable valancy states) are expected to impart changes in the electrical structure and properties in the said system under study. The morphological changes, chemical environment, micro structure, electrical and optical properties of the nano size particles of ZnO system (developed under a bio template of folic acid) after the interaction with radioactive ion beam will be studied. The provision of perturbed angular correlation (PAC) study with respect to the changes in chemical environment, where ever possible will be attempted.

  8. Development of a PIXE (Particle Induced X-ray Emission) analysis device using an extracted proton beam

    International Nuclear Information System (INIS)

    Saidi, A.

    1989-01-01

    The experimental device described allows the extention of the PIXE (Particle Induced X-ray Emission) method to the analysis, by means of proton beams, of solid or liquid samples, which can not be analyzed under vacuum conditions. The homogeneity of the surfaces to be analysed and elements (in the atmosphere) which absorb X-rays must be taken into account. Liquid samples do not need special care. The results show that: at high energies, the extracted beam sensibility is of the same order of magnitude as those obtained under vacuum; at low energies, the performance under vacuum conditions is better. The particles energy losses, at the exit membrane and in the outer atmosphere, decrease the X-rays production efficiency [fr

  9. Investigation of the effects of intense pulsed particle beams on the durability of metal-to-plastic interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Somuri V.; Renk, Timothy J.; Provencio, Paula Polyak; Petersen, Donald W. (University of Alabama, Birmingham, AL); Petersen, Thomas D. (University of California, San Diego, CA); Buchheit, Thomas Edward; McNulty, Donald E. (DePuy Orthopaedic, Inc., Warsaw, IN); Engelko, Vladimir (D. V. Efremov Scientific Research Institute of the Electrophysical Apparatus, St. Petersburg, Russia)

    2005-02-01

    We have investigated the potential for intense particle beam surface modification to improve the mechanical properties of materials commonly used in the human body for contact surfaces in, for example, hip and knee implants. The materials studied include Ultra-High Molecular Weight Polyethylene (UHMWPE), Ti-6Al-4Al (titanium alloy), and Co-Cr-Mo alloy. Samples in flat form were exposed to both ion and electron beams (UHMWPE), and to ion beam treatment (metals). Post-analysis indicated a degradation in bulk properties of the UHMWPE, except in the case of the lightest ion fluence tested. A surface-alloyed Hf/Ti layer on the Ti-6Al-4V is found to improve surface wear durability, and have favorable biocompatibility. A promising nanolaminate ceramic coating is applied to the Co-Cr-Mo to improve surface hardness.

  10. Design and characterization of a 64 channels ASIC front-end electronics for high-flux particle beam detectors

    Science.gov (United States)

    Fausti, F.; Mazza, G.; Attili, A.; Mazinani, M. Fadavi; Giordanengo, S.; Lavagno, M.; Manganaro, L.; Marchetto, F.; Monaco, V.; Sacchi, R.; Vignati, A.; Cirio, R.

    2017-09-01

    A new wide-input range 64-channels current-to-frequency converter ASIC has been developed and characterized for applications in beam monitoring of therapeutic particle beams. This chip, named TERA09, has been designed to extend the input current range, compared to the previous versions of the chip, for dealing with high-flux pulsed beams. A particular care was devoted in achieving a good conversion linearity over a wide bipolar input current range. Using a charge quantum of 200 fC, a linearity within ±2% for an input current range between 3 nA and 12 μA is obtained for individual channels, with a gain spread among the channels of about 3%. By connecting all the 64 channels of the chip to a common input, the current range can be increased 64 times preserving a linearity within ±3% in the range between and 20 μA and 750 μA.

  11. Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization

    Science.gov (United States)

    Khatir, Samir; Dekemele, Kevin; Loccufier, Mia; Khatir, Tawfiq; Abdel Wahab, Magd

    2018-02-01

    In this paper, a technique is presented for the detection and localization of an open crack in beam-like structures using experimentally measured natural frequencies and the Particle Swarm Optimization (PSO) method. The technique considers the variation in local flexibility near the crack. The natural frequencies of a cracked beam are determined experimentally and numerically using the Finite Element Method (FEM). The optimization algorithm is programmed in MATLAB. The algorithm is used to estimate the location and severity of a crack by minimizing the differences between measured and calculated frequencies. The method is verified using experimentally measured data on a cantilever steel beam. The Fourier transform is adopted to improve the frequency resolution. The results demonstrate the good accuracy of the proposed technique.

  12. Longitudinal emittance blow-up and production of future LHC beams

    CERN Document Server

    Albright, S; Shaposhnikova, E

    2017-01-01

    During Long Shutdown 2 the RF systems of the PSB willbe replaced with broadband Finemet systems, there will alsobe an energy increase and many other modifications. Thisnote summarises studies that were done to investigate how tomeet the emittance requirements for the LIU-PSB baselineand a possible use of the broadband cavities to improve thecapture process.The LIU-PSB baseline requires longitudinal emittanceblow-up to 3 eVs with 205 ns bunch length at extraction. Thecurrent ferrite RF systems were used, with phase modulationof a high harmonic, to produce 2.8 eVs bunches with 220ns bunch length, as this is the largest that can currentlybe transferred to the PS. Larger emittances were possible,demonstrating the ability to reach the LIU-PSB baseline inthe future, which is confirmed in simulation.The broadband impedance of the Finemet was exploitedto allow RF voltage to be supplied on three harmonics (h=1,h=2, h=3), as opposed to the usual 2. For high intensitybeams this lead to an improved capture efficiency for...

  13. Cold-fluid theory of equilibrium and stability of a high-intensity periodically twisted ellipse-shaped charged-particle beam

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2006-03-01

    Full Text Available It is shown that there exists an exact paraxial cold-fluid equilibrium of a high-intensity, space-charge-dominated charged-particle beam with a periodically twisted elliptic cross section in a nonaxisymmetric periodic magnetic field. Generalized envelope equations, which determine the beam envelopes, ellipse orientation, density, and internal flow velocity profiles, are derived. Nonrelativistic and relativistic examples of such beam equilibria are presented. The equilibrium and stability of such beams are demonstrated by self-consistent particle-in-cell (PIC simulations.

  14. Design of MgB{sub 2} superconducting dipole magnet for particle beam transport in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, A.B.; Givel, J.C.; Andersen, N.H. [Risoe National Lab., Materials Research Dept., Roskilde (Denmark); Zangenberg, N.; Baurichter, A. [Danfysik A/S, Jyllinge (Denmark)

    2006-11-15

    A comprehensive analysis of the innovation potential of superconductivity at Risoe was performed in February 2004 by the main author of this report. Several suggestions for new products and new markets were formulated by the superconductivity group and examined by the innovation staff at Risoe. The existing markets of superconducting technology is within highly specialized scientific areas such as magnetic confinement in fusion energy, sample environment in neutron scattering and large scale accelerators such as the Large Hadron Collider(LHC) at Cern, or in the nuclear magnetic resonance (NMR) community using MR-imaging scanners in medicine and phase identification in organic chemistry. Only the NMR applications can be categorized as a highly profitable and commercial market today. The superconductivity group of Risoe formulated and presented the gearless superconducting wind turbine multipole generator as the most promising new concept, but further initiatives were stopped due to unclear patent possibilities. The experience of the innovation review was used in the STVF framework program 'New superconductors: mechanisms, processes and products' to identify potential new product for the collaborating company Danfysik A/S, which has a strong tradition in building resistive magnets for particle accelerators. A technology transfer project was formulated at the end of 2005 with the purpose to collect the knowledge about the MgB2 superconductor gained in the STVF program and in the European Framework Program 6 project HIPERMAG. It was presented at the Risoe innovation seminar January 2006, and recently a collaboration between Risoe and Danfysik A/S was initialized. The present report aims to outline a potential superconducting product within the STVF program. The use of the MgB{sub 2} superconductors in a dipole magnet for guiding particle beams in a small scale accelerator is examined with the purpose to build lighter and smaller than the present resistive

  15. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2009-11-01

    Full Text Available Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel—both in terms of low-order rms (envelope properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including the following: the Kapchinskij-Vladimirskij (KV equilibrium, continuous-focusing equilibria with specific detailed examples, and various nonequilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of standard accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear focusing, single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for noncontinuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulations that more precisely probe intrinsic stability properties and machine performance.

  16. Generation of Initial Kinetic Distributions for Simulation of Long-Pulse Charged Particle Beams with High Space-Charge intensity

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Steven M.; Kikuchi, Takashi; Davidson, Ronald C.

    2007-04-03

    Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel--both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  17. Generation of initial Vlasov distributions for simulation of charged particle beams with high space-charge intensity

    Energy Technology Data Exchange (ETDEWEB)

    Lund, S M; Kikuchi, T; Davidson, R C

    2007-04-12

    Self-consistent Vlasov simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel, both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of distributions commonly in use as initial Vlasov distributions in simulations of beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  18. Role of cathode identity in liquid chromatography particle beam glow discharge mass spectrometry

    Science.gov (United States)

    Krishna, M. V. Balarama; Marcus, R. K.

    2008-06-01

    A detailed evaluation of the role of cathode identity on the analytical and spectral characteristics of various organic, organometallic and metal analytes using liquid chromatography-particle beam/glow discharge mass spectrometry (LC-PB/GDMS) has been carried out. A d.c. discharge, operating with argon as the support gas, was used throughout this work. In this study, Cu which has a relatively high sputtering rate, Ni which has moderate sputtering rate and Ta which has very low sputtering rate, are taken as cathode materials to study the ionization, fragmentation, and analytical characteristics of organic (caffeine, epigallocatechin gallate, peptide as representative compounds), organometallic (selenomethionine, triethyl lead chloride as representative compounds) and metal (Fe, La, Cs and Pb) species. A range of discharge gas pressures (26.6-106.4 Pa) and currents (0.2-1.5 mA) were investigated with the test cathodes to determine their influence on the spectral composition and overall analytical response for the various test species. Calibration plots were obtained for all of the species for each of the three cathodes to determine the respective limits of detection. Relative detection limits in the range of 0.02 to 15 ng mL - 1 (0.002-1.5 ng, absolute) for the test species were found to be in the order of Cu > Ni > Ta; which follows the order of the sputtering characteristics of the respective cathodes. These studies rendered information about the respective discharge parameters' role in choosing the most appropriate cathode identity in PB-GDMS for application in the areas of organic, organometallic and inorganic species analysis.

  19. PREFACE: 1st Conference on Light and Particle Beams in Materials Science 2013 (LPBMS2013)

    Science.gov (United States)

    Kumai, Reiji; Murakami, Youichi

    2014-04-01

    From 29-31 August 2013, the 1st International Conference on Light and Particle Beams in Materials Science, LPBMS 2013, took place in the Tsukuba International Congress Center in the city of Tsukuba, Japan. The conference was a continuation of the international series Synchrotron Radiation in Materials Science (SRMS), which started in 1994. The last one, SRMS-7, was held in Oxford UK 11-14 July 2010, where the International Advisory Committee (IAC) recommended the conference be enlarged to incorporate Materials Research from Neutron, Muon, and Slow Positron Sources, as well as the science emerging from Synchrotron Light Sources. The conference brought together contributions from academics and industrial researchers with a diverse background and experience from the physics, chemistry and engineering communities. The topics covered in the LPBMS2013 include strongly correlated electron systems, magnetism and magnetic materials, soft matter, interface and surface defects, catalysts, biomaterials, and ceramics. In the 3-day scientific program, the conference consisted of 9 plenary talks, 33 invited talks, 20 oral presentations, and 126 poster presentations. We are pleased to publish the proceedings of the LPBMS2013 in this volume of Journal of Physics: Conference Series. This volume contains 58 papers representing the work that was presented and discussed at the conference. We hope that this volume will promote further development of this interdisciplinary materials research emerging from synchrotron light, neutron, muon, and slow positron sciences. Finally, we would like to thank the International Advisory Committee (Chair: Professor G N Greaves), sponsors, all the participants and contributors for making possible this international meeting of researchers. Reiji Kumai & Youichi Murakami Conference photograph Details of the program and organizing committees are available in the pdf

  20. Addendum: Measurement of charged particle yields from PMMA irradiated by a 220 MeV/u 12C beam

    Science.gov (United States)

    Mattei, I.; Battistoni, G.; Collini, F.; De Lucia, E.; Durante, M.; Fiore, S.; La Tessa, C.; Mancini-Terracciano, C.; Marafini, M.; Mirabelli, R.; Muraro, S.; Paramatti, R.; Piersanti, L.; Rucinski, A.; Russomando, A.; Sarti, A.; Schuy, C.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Valle, S. M.; Vanstalle, M.; Patera, V.

    2017-11-01

    In this paper we report the re-analysis of the data published in Piersanti et al (2014 Phys. Med. Biol. 59 1857) documenting the charged secondary particles production induced by the interaction of a 220 MeV/u 12C ion beam impinging on a polymethyl methacrylate (PMMA) target, measured in 2012 at the GSI facility in Darmstadt (Germany). This re-analysis takes into account the inhomogeneous light response of the LYSO crystal in the experimental setup measured in a subsequent experiment (2014) performed in the Heidelberg Ion-Beam Therapy Center. A better description of the detector and re-calculation of the geometrical efficiencies have been implemented as well, based on an improved approach that accounts also for the energy dependence of the emission spectrum. The new analysis has little effect on the total secondary charged flux, but has an impact on the production yield and emission velocity distributions of the different particle species (protons, deuterons and tritons) at different angles with respect to the beam direction (60^\\circ and 90^\\circ ). All these observables indeed depend on the particle identification algorithms and hence on the LYSO detector energy response. The results of the data re-analysis presented here are intended to supersede and replace the results published in Piersanti et al (2014 Phys. Med. Biol. 59 1857).

  1. Technical Note: Use of a beam width probe in an Aerosol Mass Spectrometer to monitor particle collection efficiency in the field

    Directory of Open Access Journals (Sweden)

    D. Salcedo

    2007-01-01

    Full Text Available Two Aerodyne Aerosol Mass Spectrometers (Q-AMS were deployed in Mexico City, during the Mexico City Metropolitan Area field study (MCMA-2003 from 29 March–4 May 2003 to investigate particle concentrations, sources, and processes. We report the use of a particle beam width probe (BWP in the field to quantify potential losses of particles due to beam broadening inside the AMS caused by particle shape (nonsphericity and particle size. Data from this probe show that no significant mass of particles was lost due to excessive beam broadening; i.e. the shape- and size-related collection efficiency (Es of the AMS during this campaign was approximately one. Comparison of the BWP data from MCMA-2003 with other campaigns shows that the same conclusion holds for several other urban, rural and remotes sites. This means that the aerodynamic lens in the AMS is capable of efficiently focusing ambient particles into a well defined beam and onto the AMS vaporizer for particles sampled in a wide variety of environments. All the species measured by the AMS during MCMA-2003 have similar attenuation profiles which suggests that the particles that dominate the mass concentration were internally mixed most of the time. Only for the smaller particles (especially below 300 nm, organic and inorganic species show different attenuation versus particle size which is likely due to partial external mixing of these components. Changes observed in the focusing of the particle beam in time can be attributed, in part, to changes in particle shape (i.e. due to relative humidity and size of the particles sampled. However, the relationships between composition, atmospheric conditions, and particle shape and size appear to be very complex and are not yet completely understood.

  2. Alpha particle diagnostic beam line system to generate an intense Li0 beam with an ORNL SITEX source

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.; Tsai, C.C.; Whealton, J.H.

    1985-01-01

    The Oak Ridge National Laboratory (ORNL) SITEX (Surface Ionization with Transverse Extraction) negative ion source utilizes a 100-V/20-A reflex arc discharge in a 1300-gauss magnetic field to generate Cs+ ions and H+ or D+ ions, depending on the beam required. A shaped molybdenum plate is placed directly behind the arc column. Cesium coverage on this plate is used to minimize the surface work function, which requires two-thirds of a monolayer coverage. Cesium coverage ia adjusted both by cesium flow control into the arc discharge chamber and by temperature control of the converter using gaseous-helium cooling channels in the converter plate. Normal converter operational temperatures are 300 0 to 500 0 C H - /D - beams are generated at the biased converter surface (-150 V with respect to the anode) by Cs + sputtering of absorbed hydrogen or deuterium and by the reflection-conversion mechanism of H + /D + ions which strike the converter surface at 150 eV. The negative ions are accelerated through the 150-V plasma sheath at the converter surface and are focused by the converter geometry and magnetic field so as to pass through the exit aperture with minimum angular divergence. The ion optics of the SITEX accelerator has been calculated using the ORNL 3-D optics code and results in a divergence perpendicular to the slot of theta/sub perpendicular rms/ = 0.35 0 and parallel to the slot of theta/sub parallel rms/ = 0.18 0 . This beam divergence should be adequate for injection into a radio frequency quadrupole (RFQ) for further acceleration

  3. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m{sup 3} or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 {mu}g/cm{sup 2} of material which corresponds to about 10{mu}g/m{sup 3} of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5{mu}m. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs.

  4. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    International Nuclear Information System (INIS)

    Cohen, D.

    1996-01-01

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m 3 or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 μg/cm 2 of material which corresponds to about 10μg/m 3 of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5μm. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs

  5. Transversal effects of the space charge in an electrified particle beam (the proton synchrotron Saturne) (1963)

    International Nuclear Information System (INIS)

    Faure, J.; Gouttefangeas, M.; Levy-Mandel, R.; Vienet, R.; Lago, B.; Loeb, J.

    1963-01-01

    This is a study of the repulsive electrostatic forces existing inside a proton beam focused by the magnetic field of a circular accelerator. The general equation that rules the variation of beam density versus time can be rewritten by a fairly simple reasoning, A numerical method to solve this equation is then developed. The next step is then to find an optimum beam, a gaussian distribution of density being proposed allowing to find an analytical solution to the problem. (authors) [fr

  6. Analysis of particle species evolution in neutral-beam injection lines

    International Nuclear Information System (INIS)

    Kim, J.; Haselton, H.H.

    1979-01-01

    Analytic solutions to the rate equations describing the species evolution of a multispecies positive ion beam of hydrogen due to charge exchange and molecular dissociation are derived as a function of the background gas (H 2 ) line density in the neutralizing gas cell and in the drift tube. Using the solutions, calculations are presented for the relative abundance of each species as a function of the gas-cell thickness, the reionization loss in the drift tube, and the neutral-beam power as a function of the beam energy and the species composition of the original ion beam

  7. Blow-up in multidimensional aggregation equations with mildly singular interaction kernels

    International Nuclear Information System (INIS)

    Bertozzi, Andrea L; Laurent, Thomas; Carrillo, José A

    2009-01-01

    We consider the multidimensional aggregation equation u t − ∇· (u∇K * u) = 0 in which the radially symmetric attractive interaction kernel has a mild singularity at the origin (Lipschitz or better). In the case of bounded initial data, finite time singularity has been proved for kernels with a Lipschitz point at the origin (Bertozzi and Laurent 2007 Commun. Math. Sci. 274 717–35), whereas for C 2 kernels there is no finite-time blow-up. We prove, under mild monotonicity assumptions on the kernel K, that the Osgood condition for well-posedness of the ODE characteristics determines global in time well-posedness of the PDE with compactly supported bounded nonnegative initial data. When the Osgood condition is violated, we present a new proof of finite time blow-up that extends previous results, requiring radially symmetric data, to general bounded, compactly supported nonnegative initial data without symmetry. We also present a new analysis of radially symmetric solutions under less strict monotonicity conditions. Finally, we conclude with a discussion of similarity solutions for the case K(x) = |x| and some open problems

  8. Finite time blow-up of solutions for a nonlinear system of fractional differential equations

    Directory of Open Access Journals (Sweden)

    Abdelaziz Mennouni

    2017-06-01

    Full Text Available In this article we study the blow-up in finite time of solutions for the Cauchy problem of fractional ordinary equations $$\\displaylines{ u_{t} +a_1\\,^{c}D_{0_{+}}^{\\alpha_1} u +a_2\\,^{c}D_{0_{+}}^{\\alpha_2} u+\\dots +a_{n}\\,^{c}D_{0_{+}}^{\\alpha_n} u =\\int_0^{t} \\frac{(t-s^{-\\gamma_1}}{ \\Gamma(1-\\gamma_1 }f(u(s,v(sds,\\cr v_{t} +b_1\\,^{c}D_{0_{+}}^{\\beta_1} v+ b_2\\,^{c}D_{0_{+}}^{\\beta_2} v+\\dots +b_{n}\\,^{c}D_{0_{+}}^{\\beta_n} v = \\int_0^{t} \\frac{(t-s^{-\\gamma_2}}{ \\Gamma(1-\\gamma_2 }g(u(s,v(sds, }$$ for t>0, where the derivatives are Caputo fractional derivatives of order $\\alpha_i, \\beta_i$, and f and g are two continuously differentiable functions with polynomial growth. First, we prove the existence and uniqueness of local solutions for the above system supplemented with initial conditions, then we establish that they blow-up in finite time.

  9. TRANSPORT: a computer program for designing charged particle beam transport systems

    International Nuclear Information System (INIS)

    Brown, K.L.; Rothacker, F.; Carey, D.C.; Iselin, C.

    1977-05-01

    TRANSPORT is a first- and second-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. It has been in existence in various evolutionary versions since 1963. The present version, described in the manual given, includes both first- and second-order fitting capabilities. TRANSPORT will step through the beam line, element by element, calculating the properties of the beam or other quantities, described below, where requested. Therefore one of the first elements is a specification of the phase space region occupied by the beam entering the system. Magnets and intervening spaces and other elements then follow in the sequence in which they occur in the beam line. Specifications of calculations to be done or of configurations other than normal are placed in the same sequence, at the point where their effect is to be made

  10. 3D Nondestructive Visualization and Evaluation of TRISO Particles Distribution in HTGR Fuel Pebbles Using Cone-Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Gongyi Yu

    2017-01-01

    Full Text Available A nonuniform distribution of tristructural isotropic (TRISO particles within a high-temperature gas-cooled reactor (HTGR pebble may lead to excessive thermal gradients and nonuniform thermal expansion during operation. If the particles are closely clustered, local hotspots may form, leading to excessive stresses on particle layers and an increased probability of particle failure. Although X-ray digital radiography (DR is currently used to evaluate the TRISO distributions in pebbles, X-ray DR projection images are two-dimensional in nature, which would potentially miss some details for 3D evaluation. This paper proposes a method of 3D visualization and evaluation of the TRISO distribution in HTGR pebbles using cone-beam computed tomography (CBCT: first, a pebble is scanned on our high-resolution CBCT, and 2D cross-sectional images are reconstructed; secondly, all cross-sectional images are restructured to form the 3D model of the pebble; then, volume rendering is applied to segment and display the TRISO particles in 3D for visualization and distribution evaluation. For method validation, several pebbles were scanned and the 3D distributions of the TRISO particles within the pebbles were produced. Experiment results show that the proposed method provides more 3D than DR, which will facilitate pebble fabrication research and production quality control.

  11. Brezis-Gallouet-Wainger Type Inequalities and Blow-Up Criteria for Navier-Stokes Equations in Unbounded Domains

    Science.gov (United States)

    Nakao, Kohei; Taniuchi, Yasushi

    2017-12-01

    We shall find the weakest norm that satisfies the Brezis-Gallouet-Wainger type inequality, under some conditions. As an application of the Brezis-Gallouet-Wainger type inequality, we shall establish Beale-Kato-Majda type blow-up criteria of smooth solutions to the 3-D Navier-Stokes equations in unbounded domains.

  12. Blow-up results for systems of nonlinear Klein-Gordon equations with arbitrary positive initial energy

    Directory of Open Access Journals (Sweden)

    Shun-Tang Wu

    2012-06-01

    Full Text Available The initial boundary value problem for a system of nonlinear Klein-Gordon equations in a bounded domain is considered. We prove the existence of local solutions by using a successive approximation method. Then, we show blow-up results with arbitrary positive initial energy by a concavity method. Also estimates for the lifespan of solutions are given.

  13. Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals

    Science.gov (United States)

    Yu, Hao; Wang, Wei; Zheng, Sining

    2018-02-01

    This paper considers the two-species chemotaxis system with two chemicals in a smooth bounded domain Ω\\subset{R}2 , subject to the non-flux boundary condition, and χ, ξ, α, β, γ, δ>0 . We obtain a blow-up criterion that if m_1m_2-2π(\\frac{m_1}χβ+\\frac{m_2}ξδ)>0 , then there exist finite time blow-up solutions to the system with m_1:=\\int_Ω u_0(x)dx and m_2:=\\int_Ω w_0(x)dx . When χ=ξ= β=δ=1 , the blow-up criterion becomes m_1m_2-2π(m_1+m_2)>0 , and the global boundedness of solutions is furthermore established with α=γ=1 under the condition that \\max\\{m_1, m_2\\}current results for finite time blow-up with \\min\\{m_1, m_2\\}>4π and global boundedness with \\max\\{m_1, m_2\\}Education Department grant (LYB201601) and the Fundamental Research Funds for the Central Universities (DUT16LK24).

  14. Fourier optics along a hybrid optical fiber for Bessel-like beam generation and its applications in multiple-particle trapping.

    Science.gov (United States)

    Kim, Jongki; Jeong, Yoonseob; Lee, Sejin; Ha, Woosung; Shin, Jeon-Soo; Oh, Kyunghwan

    2012-02-15

    Highly efficient Bessel-like beam generation was achieved based on a new all-fiber method that implements Fourier transformation of a micro annular aperture along a concatenated composite optical fiber. The beam showed unique characteristics of tilted washboard optical potential in the transverse plane and sustained a nondiffracting length over 400 μm along the axial direction. Optical trapping of multiple dielectric particles and living Jurkat cells were successfully demonstrated along the axial direction of the beam in the water.

  15. Beam-Induced Multipactoring and Electron-Cloud Effects in Particle Accelerators

    CERN Document Server

    Caspers, Friedhelm; Scandale, Walter; Zimmermann, F

    2009-01-01

    In the beam pipe of high-energy proton or positron accelerators an “electron cloud” can be generated by a variety of processes, e.g. by residual-gas ionization, by photoemission from synchrotron radiation, and, most importantly, by secondary emission via a beam-induced multipactoring process. The electron cloud commonly leads to a degradation of the beam vacuum by several orders of magnitude, to fast beam instabilities, to beam-size increases, and to fast or slow beam losses. At the Large Hadron Collider (LHC), the cloud electrons could also give rise to an additional heat load inside cold superconducting magnets. In addition to the direct heat deposition from incoherently moving electrons, a potential “magnetron effect” has been conjectured, where electrons would radiate coherently when moving in a strong magnetic field under the simultaneous influence of a beam-induced electric “wake” field that may become resonant with the cyclotron frequency. Electron-cloud effects are already being observed w...

  16. Tertiary particle production and target optimization of the H2 beam line in the SPS North Area

    CERN Document Server

    AUTHOR|(CDS)2079540; Tellander, Felix; CERN. Geneva. ATS Department

    2016-01-01

    In this note, the tertiary particle yield from secondary targets of different materials placed at the ‘filter’ position of the H2 beam line of SPS North Area are presented. The production is studied for secondary beams of different momenta in the range of 50-250 GeV/c. More specifically, we studied six different targets: two copper cylinders with a radius of 40 mm and lengths of 100 and 300 mm, one solid tungsten cylinder with a radius of 40 mm and a length of 150 mm and three polyethylene cylinders with radius of 40 mm and lengths of 550, 700 and 1000 mm. Eight different momenta of the secondary beam (50, 60, 70, 100, 120, 150, 200 and 250 GeV/c) as well as two different physics lists (QGSP_BIC and FTFP_BERT) have been extensively studied. The purpose of this study is (a) to optimize (using the appropriate filter target) the particle production from the secondary targets as demanded by the experiments (b) investigate the proton production (with respect to the pion production) in the produced tertiary bea...

  17. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    International Nuclear Information System (INIS)

    Carey, D.C.; Brown, K.L.; Rothacker, F.

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command

  18. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C. [Fermi National Accelerator Lab., Batavia, IL (United States); Brown, K.L.; Rothacker, F. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command.

  19. Physics and radiobiology of heavy charged particles in relation to the use of ion beams for therapy

    International Nuclear Information System (INIS)

    Kraft, G.; Haberer, T.; Schardt, D.; Scholz, M.

    1993-07-01

    Heavy charged particles are the most advanced tool of an external subcutane radiotherapy of deep seated tumors. Small angular- and lateral-scattering and the increase of the energy deposition with penetration depth are the physical basis for a more efficient tumor targeting. High biological efficiency in the tumor is the prerequisite for a successful treatment of tumors radioresistant against sparsely ionizing radiation. The possibility to perform target conform irradiation and to control the achieved/actual distribution using PET techniques guarantees that biological highly efficient stepping particles can be restricted to the tumor volume only. Although the physical and radiobiological properties of ion beams are very favourable for therapy, the necessity to produce these particles in an accelerator restricts a general application of heavy ions up to now. Presently the heavy ion accelerator SIS at GSI is the only source of heavy ion beams, sufficient in energy and intensity for therapy. A therapy unit is in preparation at GSI, the status of this project is given at the end of the paper. (orig.)

  20. Response analysis of TLD-300 dosimeters in heavy-particle beams

    International Nuclear Information System (INIS)

    Loncol, Th.; Hamal, M.; Vynckier, S.; Scalliet, P.; Denis, J.M.; Wambersie, A.

    1996-01-01

    In vivo dosimetry is recommended as part of the quality control procedure for treatment verification in radiation therapy. Using thermoluminescence, such controls are planned in the p(65)+Be neutron and 85 MeV proton beams produced at the cyclotron at Louvain-La-Neuve and dedicated to therapy applications. A preliminary study of the peak 3 (150 deg. C) and peak 5 (250 deg. C) response of CaF 2 :Tm (TLD-300) to neutron and proton beams aimed to analyse the effect of different radiation qualities on the dosimetric behaviour of the detector irradiated in phantom. To broaden the range of investigation, the study was extended to an experimental C-12 heavy ion beam (95 MeV/nucleon). The peak 3 and 5 sensitivities in the neutron beam, compared to Co-60, varied little with depth. A major change of peak 5 sensitivity was observed for samples positioned under five leaves of the multi-leaf collimator. While peak 3 sensitivity was constant with depth in the unmodulated proton beam, peak 5 sensitivity increased by 15%. Near the Bragg peak, peak 3 showed the highest decrease of sensitivity. In the modulated proton beam, the sensitivity values were not significantly smaller than those measured in the unmodulated beam far from the Bragg peak region. The ratio of the heights of peak 3 and peak 5 decreased by 70% from the Co-60 reference radiation to the C-12 heavy-ion beam. This parameter was strongly correlated with the change of radiation quality. (author)

  1. The beam-kicker system of the synchrotron Saturne. Magnetic field and particle orbit computations. Experimental results (1963)

    International Nuclear Information System (INIS)

    Gouttefangeas, M.; Katz, A.; Rastoix, G.

    1963-01-01

    In this report is briefly described the beam-kicker system of the synchrotron Saturne. An analysis of its operation based on the sampling method is given, as well as two methods for computing toe magnetic field produced by a set of endless conductors in the neighbourhood of a conducting shield where eddy currents are circulating. The first method leads to the resolution of a bi-dimensional Laplace equation with first kind boundary conditions (Dirichlet problem); the second one translates to electromagnetism the electrical images method currently used in electrostatics and yields the magnetic field as the sum of a triple series expansion in the general case of a set of conductors located in a parallelepipedal box. Finally are given the results obtained in computing on IBM 7090 the perturbation of the particle motion due to the beam-kicker. These results are compared with the experimental data. (authors) [fr

  2. Parallel Finite Element Particle-In-Cell Code for Simulations of Space-charge Dominated Beam-Cavity Interactions

    International Nuclear Information System (INIS)

    Candel, A.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.

    2007-01-01

    Over the past years, SLAC's Advanced Computations Department (ACD) has developed the parallel finite element (FE) particle-in-cell code Pic3P (Pic2P) for simulations of beam-cavity interactions dominated by space-charge effects. As opposed to standard space-charge dominated beam transport codes, which are based on the electrostatic approximation, Pic3P (Pic2P) includes space-charge, retardation and boundary effects as it self-consistently solves the complete set of Maxwell-Lorentz equations using higher-order FE methods on conformal meshes. Use of efficient, large-scale parallel processing allows for the modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of the next-generation of accelerator facilities. Applications to the Linac Coherent Light Source (LCLS) RF gun are presented

  3. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets

    International Nuclear Information System (INIS)

    Gerbershagen, Alexander; Meer, David; Schippers, Jacobus Maarten; Seidel, Mike

    2016-01-01

    A first order design of the beam optics of a superconducting proton therapy gantry beam is presented. The possibilities of superconducting magnets with respect to the beam optics such as strong fields, large apertures and superposition of different multipole fields have been exploited for novel concepts in a gantry. Since various techniques used in existing gantries have been used in our first design steps, some examples of the existing superconducting gantry designs are described and the necessary requirements of such a gantry are explained. The study of a gantry beam optics design is based on superconducting combined function magnets. The simulations have been performed in first order with the conventional beam transport codes. The superposition of strong dipole and quadrupole fields generated by superconducting magnets enables the introduction of locally achromatic bending sections without increasing the gantry size. A rigorous implementation of such beam optics concepts into the proposed gantry design dramatically increases the momentum acceptance compared to gantries with normal conducting magnets. In our design this large acceptance has been exploited by the implementation of a degrader within the gantry and a potential possibility to use the same magnetic field for all energies used in a treatment, so that the superconducting magnets do not have to vary their fields during a treatment. This also enables very fast beam energy changes, which is beneficial for spreading the Bragg peak over the thickness of the tumor. The results show an improvement of its momentum acceptance. Large momentum acceptance in the gantry creates a possibility to implement faster dose application techniques.

  4. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Gerbershagen, Alexander; Meer, David; Schippers, Jacobus Maarten; Seidel, Mike [Paul Scherrer Institut (PSI), Villigen (Switzerland)

    2016-11-01

    A first order design of the beam optics of a superconducting proton therapy gantry beam is presented. The possibilities of superconducting magnets with respect to the beam optics such as strong fields, large apertures and superposition of different multipole fields have been exploited for novel concepts in a gantry. Since various techniques used in existing gantries have been used in our first design steps, some examples of the existing superconducting gantry designs are described and the necessary requirements of such a gantry are explained. The study of a gantry beam optics design is based on superconducting combined function magnets. The simulations have been performed in first order with the conventional beam transport codes. The superposition of strong dipole and quadrupole fields generated by superconducting magnets enables the introduction of locally achromatic bending sections without increasing the gantry size. A rigorous implementation of such beam optics concepts into the proposed gantry design dramatically increases the momentum acceptance compared to gantries with normal conducting magnets. In our design this large acceptance has been exploited by the implementation of a degrader within the gantry and a potential possibility to use the same magnetic field for all energies used in a treatment, so that the superconducting magnets do not have to vary their fields during a treatment. This also enables very fast beam energy changes, which is beneficial for spreading the Bragg peak over the thickness of the tumor. The results show an improvement of its momentum acceptance. Large momentum acceptance in the gantry creates a possibility to implement faster dose application techniques.

  5. Optimization of the Hewlett-Packard particle-beam liquid chromatography-mass spectrometry interface by statistical experimental design.

    Science.gov (United States)

    Huang, S K; Garza, N R

    1995-06-01

    Optimization of both sensitivity and ionization softness for the Hewlett-Packard particle-beam liquid chromatography-mass spectrometry interface has been achieved by using a statistical experimental design with response surface modeling. Conditions for both optimized sensitivity and ionization softness were found to occur at 55-lb/in.(2) nebulizer flow, 35°C desolvation chamber temperature with approximately 45% organic modifier in the presence of 0.02-F ammonium acetate and a liquid chromatography flow rate of 0.2 mL/min.

  6. Interaction of a 29 MeV 3He particle beam with a Cl4C vapour target

    International Nuclear Information System (INIS)

    Lleo Morilla, A.

    1963-01-01

    The interactions of a 29 MeV 3 H e particles beam on a Cl 4 C vapour target have been studied using the photographic method. differential cross-sections for the Cl( 3 He, 3 He)Cl elastic scattering and 1 2C( 3 He, α) 1 1C pick-up reaction are shown; the corresponding angular distributions in the centre-of-mass system have been compared with the predictions of optical model and A.B.M. theories. (Author) 21 refs

  7. Radiation and biophysical studies on cells and viruses. Progress report 1 July 1977--30 June 1978. [Particle beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Arthur; Ansevin, Allen T.; Corry, Peter M.

    1978-08-01

    Studies on genetic structure included arrangement of interphase and mitotic chromosomes, nucleoproteins, and DNA. Studies on analysis of sensitive sites by particle beam irradiation included location of cellular sites for mutation induction and cell transformation. Studies on radiation damage and repair and radiation as an investigative tool included damage to nuclear proteins and other model systems; detection and quantitation of cell surface antigens; interaction of hyperthermia and irradiation; radioinduced cell transformation alkaline elution studies of damage and repair; and low dose, low LET lethality. (HLW)

  8. Development of a magnetic beam guiding system for tumor-specific radiotherapy using heavy, charged particles

    International Nuclear Information System (INIS)

    Haberer, T.

    1994-06-01

    An active, magnetic beam guiding system was developed and tested for the purpose of enhanced and tumor-specific irradiation of irregularly shaped target volumina. Combining intensity-controlled wobbling in rapidly changing magnetic fields with the heavy-ion synchrotron's capacity of fast energy variation achieved a new technique allowing good range modulation. This technique allows the calculated dose distribution to be exactly matched to target contours, and at the same time guarantees best possible quality of the radiation beam, since there is no need for use of mechanical beam shaping members. The components of the scanning system and a specifically designed instrumentation and control concept for this configuration were integrated into the synchrotron's control system, so that there is now a system available offering free selection of beam characteristics combined with energy variation along with the pulsed operation of the accelerator. The system was tested at the biophysical measuring unit of the GSI implementing an elaborated irradiation method at this unit equipped with tools for physico-technical irradiation planning and performance. Methods were designed and tested for optimizing the beam path within a given contour, the optimization taking into account the effects of transmission functions of the scanner components on the results of radiation treatments. (orig.) [de

  9. Evolution PDEs with nonstandard growth conditions existence, uniqueness, localization, blow-up

    CERN Document Server

    Antontsev, Stanislav

    2015-01-01

    This monograph offers the reader a treatment of the theory of evolution PDEs with nonstandard growth conditions. This class includes parabolic and hyperbolic equations with variable or anisotropic nonlinear structure. We develop methods for the study of such equations and present a detailed account of recent results. An overview of other approaches to the study of PDEs of this kind is provided. The presentation is focused on the issues of existence and uniqueness of solutions in appropriate function spaces, and on the study of the specific qualitative properties of solutions, such as localization in space and time, extinction in a finite time and blow-up, or nonexistence of global in time solutions. Special attention is paid to the study of the properties intrinsic to solutions of equations with nonstandard growth.

  10. Finite-time blow-up in a quasilinear system of chemotaxis

    Science.gov (United States)

    Cieślak, Tomasz; Winkler, Michael

    2008-05-01

    We consider an elliptic-parabolic system of the Keller-Segel type which involves nonlinear diffusion. We find a critical exponent of the nonlinearity in the diffusion, measuring the strength of diffusion at points of high (population) densities, which distinguishes between finite-time blow-up and global-in-time existence of uniformly bounded solutions. This critical exponent depends on the space dimension n >= 1, where apart from the physically relevant cases n = 2 and n = 3 also the result obtained in the one-dimensional setting might be of mathematical interest: here, namely, finite-time explosion of solutions occurs although the Lyapunov functional associated with the system is bounded from below. Additionally this one-dimensional case is an example to show that L∞ estimates of solutions to non-uniformly parabolic drift-diffusion equations cannot be expected even when boundedness of the gradient of the drift term is presupposed.

  11. Blowup for biharmonic Schrödinger equation with critical nonlinearity

    Science.gov (United States)

    Phan, Thanh Viet

    2018-04-01

    We consider the minimizers for the biharmonic nonlinear Schrödinger functional E_a(u)=\\int \\limits _{R^d} |Δ u(x)|^2 dx + \\int \\limits _{R^d} V(x) |u(x)|^2 dx - a \\int \\limits _{R^d} |u(x)|q dx with the mass constraint \\int |u|^2=1. We focus on the special power q=2(1+4/d), which makes the nonlinear term \\int |u|^q scales similarly to the biharmonic term \\int |Δ u|^2. Our main results are the existence and blowup behavior of the minimizers when a tends to a critical value a^*, which is the optimal constant in a Gagliardo-Nirenberg interpolation inequality.

  12. Regularizations of two-fold bifurcations in planar piecewise smooth systems using blowup

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Hogan, S. J.

    2015-01-01

    We use blowup to study the regularization of codimension one two-fold singularities in planar piecewise smooth (PWS) dynamical systems. We focus on singular canards, pseudo-equlibria and limit cycles that can occur in the PWS system. Using the regularization of Sotomayor and Teixeira [30], we show...... rigorously how singular canards can persist and how the bifurcation of pseudo-equilibria is related to bifurcations of equilibria in the regularized system. We also show that PWS limit cycles are connected to Hopf bifurcations of the regularization. In addition, we show how regularization can create another...... as locally unique families of periodic orbits of the regularization and connect them, when possible, to limit cycles of the PWS system. We illustrate our analysis with numerical simulations and show how the regularized system can undergo a canard explosion phenomenon...

  13. On propagation of paraxial beam of charged particles in external electromagnetic field

    CERN Document Server

    Naumov, N D

    2001-01-01

    The task on motion of a curvilinear bunch of relativistic charged particles in the orthogonal nonhomogeneous magnetic field is considered. The above task is solved through the method of low-angle approximation for the curvilinear bunch of relativistic particles. The motion trajectory and kinetic equation are determined on the basis of solving the paraxial equation for the curvilinear bunches. It is established, that the characteristic property of the particle motion near the bunch axis, when the bunch axis represents the cycloid fragment, consists in the fact, that its trajectory does not depend on the initial energy

  14. Dosimetry and narrow X-ray beams, produced by particle linear accelerator for use in radiosurgery

    International Nuclear Information System (INIS)

    Campos, J.C.F.; Vizeu, D.M.

    1987-01-01

    The principal characteristics of dosimetry and narrow X-ray beams(4Mv) monitoring are investigated for use in estereotatic radiosurgery. An additional collimator system and a estereotatic system (Leksell type) are presented. Dosimetric parameters like tissue-air ratio, peak scatter factor, isodose curves are studied. (M.A.C.) [pt

  15. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction

    International Nuclear Information System (INIS)

    Plank, Harald

    2015-01-01

    During the last decade, focused ion beam processing has been developed from traditionally used Ga + liquid ion sources towards higher resolution gas field ion sources (He + and Ne + ). Process simulations not only improve the fundamental understanding of the relevant ion–matter interactions, but also enable a certain predictive power to accelerate advances. The historic ‘gold’ standard in ion–solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818–23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne + beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications. (viewpoint)

  16. Particle and momentum confinement in tokamak plasmas with unbalanced neutral beam injection and strong rotation

    International Nuclear Information System (INIS)

    Malik, M.A.

    1988-01-01

    There is a self-consistent theory of the effects of neutral beam injection on impurity transport in tokamak plasmas. The theory predicts that co-injection drives impurities outward and that counter-injection enhances the normally inward flow of impurities. The theory was applied to carry out a detailed analysis of the large experimental database from the PLT and the ISX-B tokamaks. The theory was found to generally model the experimental data quite well. It is, therefore, concluded that neutral beam co-injection can drive impurities outward to achieve clean central plasmas and a cool radiating edge. Theoretical predictions for future thermonuclear reactors such as INTOR, TIBER II, and ITER indicated that neutral beam driven flow reversal might be an effective impurity control method if the rate of beam momentum deposited per plasma ion is adequate. The external momentum drag, which is a pivotal concept in impurity flow reversal theory, is correctly predicted by the gyroviscous theory of momentum confinement. The theory was applied to analyze experimental data from the PLT and the PDX tokamaks with exact experimental conditions. The theory was found to be in excellent agreement with experiment over a wide range of parameters. It is, therefore, possible to formulate the impurity transport theory from first principles, without resort to empiricism

  17. Self-consistent Vlasov-Maxwell description of the longitudinal dynamics of intense charged particle beams

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    2004-02-01

    Full Text Available This paper describes a self-consistent kinetic model for the longitudinal dynamics of a long, coasting beam propagating in straight (linear geometry in the z direction in the smooth-focusing approximation. Starting with the three-dimensional Vlasov-Maxwell equations, and integrating over the phase-space (x_{⊥},p_{⊥} transverse to beam propagation, a closed system of equations is obtained for the nonlinear evolution of the longitudinal distribution function F_{b}(z,p_{z},t and average axial electric field ⟨E_{z}^{s}⟩(z,t. The primary assumptions in the present analysis are that the dependence on axial momentum p_{z} of the distribution function f_{b}(x,p,t is factorable, and that the transverse beam dynamics remains relatively quiescent (absence of transverse instability or beam mismatch. The analysis is carried out correct to order k_{z}^{2}r_{w}^{2} assuming slow axial spatial variations with k_{z}^{2}r_{w}^{2}≪1, where k_{z}∼∂/∂z is the inverse length scale of axial variation in the line density λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t, and r_{w} is the radius of the conducting wall (assumed perfectly conducting. A closed expression for the average longitudinal electric field ⟨E_{z}^{s}⟩(z,t in terms of geometric factors, the line density λ_{b}, and its derivatives ∂λ_{b}/∂z,… is obtained for the class of bell-shaped density profiles n_{b}(r,z,t=(λ_{b}/πr_{b}^{2}f(r/r_{b}, where the shape function f(r/r_{b} has the form specified by f(r/r_{b}=(n+1(1-r^{2}/r_{b}^{2}^{n} for 0≤rbeam intensities (proportional to λ_{b} ranging from low-intensity, emittance-dominated beams, to very-high-intensity, low-emittance beams.

  18. Characterization and Antimicrobial Property of Poly(Acrylic Acid Nanogel Containing Silver Particle Prepared by Electron Beam

    Directory of Open Access Journals (Sweden)

    Jong-Bae Choi

    2013-05-01

    Full Text Available In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid (PAAc and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels. The nanoparticles were characterized by scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA. The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect.

  19. The WebCam vs. the Particle Beam: A CRaTER Visualization of the Effects of Radiation

    Science.gov (United States)

    Case, A. W.; Gross, N. A.; Spence, H. E.

    2008-12-01

    The term "radiation" can cause significant anxiety to a general audience in part because of the associated health risks, but also because of lack of a conceptual framework about the nature of radiation. A visual depiction of radiation may go a long way towards providing just such a framework. The CRaTER Team had an opportunity to create just such a video. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) is a radiation instrument that will fly on the Lunar Reconnaissance Orbiter (LRO) and is designed to determine the effects of energetic particles on living tissue. In order to calibrate CRaTER and characterize its reaction to various radiation environments, the CRaTER team has used particle beam facilities include the Proton Radiation Therapy Facility at Massachusetts General Hospital (MGH). During one of the sessions at MGH, the team placed an off the shelf web camera into the beam and recorded the visual effects. This video recording was used as the basis for an edited video describing what was done and the results. The hope is that this video will provide a general audience with a visual framework for the nature and effects of radiation

  20. A high-speed beam of lithium droplets for collecting diverted energy and particles in ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Werley, K.A.

    1989-01-01

    A high-speed (160m/s) beam (0.14 x 0.86m) of liquid-lithium droplets passing through the divertor region(s) below (and above) the main plasma has the potential to replace and out-perform ''conventional'' solid divertor plates in both heat and particle removal. In addition to superior heat-collection properties, the lithium beam would: remove impurities; require low power to circulate the lithium; exhibit low-recycle divertor operation compatible with lower-hybrid current drive, H-mode plasma confinement, and no flow reversal in the edge plasma; be insensitive to plasma shifts; and finally protect solid structures from the plasma thermal energy for those disruptions that deposit energy preferentially into the divertor while simultaneously being rapidly re-established after a major disruption. Scoping calculations identifying the beam configuration and the droplet dynamics, including formation, MHD effects, gravitational effects, thermal response and hydrodynamics, are presented. Limitations and uncertainties are also discussed. 20 refs., 6 figs., 3 tabs

  1. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Fattori, G., E-mail: giovanni.fattori@psi.ch [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Seregni, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pella, A. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Riboldi, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Capasso, L. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Donetti, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Ciocca, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Giordanengo, S. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Pullia, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Baroni, G. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy)

    2016-08-11

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  2. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    International Nuclear Information System (INIS)

    Geesaman, D.F.

    1993-01-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere

  3. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

    1993-11-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

  4. Analytical theory and nonlinear δf perturbative simulations of temperature anisotropy instability in intense charged particle beams

    Directory of Open Access Journals (Sweden)

    Edward A. Startsev

    2003-08-01

    Full Text Available In plasmas with strongly anisotropic distribution functions (T_{∥b}/T_{⊥b}≪1 a Harris-like collective instability may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Such anisotropies develop naturally in accelerators and may lead to a deterioration of beam quality. This paper extends previous numerical studies [E. A. Startsev, R. C. Davidson, and H. Qin, Phys. Plasmas 9, 3138 (2002] of the stability properties of intense non-neutral charged particle beams with large temperature anisotropy (T_{⊥b}≫T_{∥b} to allow for nonaxisymmetric perturbations with ∂/∂θ≠0. The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined. The simulation results clearly show that moderately intense beams with s_{b}=ω[over ^]_{pb}^{2}/2γ_{b}^{2}ω_{β⊥}^{2}≳0.5 are linearly unstable to short-wavelength perturbations with k_{z}^{2}r_{b}^{2}≳1, provided the ratio of longitudinal and transverse temperatures is smaller than some threshold value. Here, ω[over ^]_{pb}^{2}=4πn[over ^]_{b}e_{b}^{2}/γ_{b}m_{b} is the relativistic plasma frequency squared, and ω_{β⊥} is the betatron frequency associated with the applied smooth-focusing field. A theoretical model is developed based on the Vlasov-Maxwell equations which describes the essential features of the linear stages of instability. Both the simulations and the analytical theory predict that the dipole mode (azimuthal mode number m=1 is the most unstable mode. In the nonlinear stage, tails develop in the longitudinal momentum distribution function, and the kinetic instability saturates due to resonant wave-particle interactions.

  5. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams.

    Science.gov (United States)

    Patel, Darshana; Bronk, Lawrence; Guan, Fada; Peeler, Christopher R; Brons, Stephan; Dokic, Ivana; Abdollahi, Amir; Rittmüller, Claudia; Jäkel, Oliver; Grosshans, David; Mohan, Radhe; Titt, Uwe

    2017-11-01

    Accurate modeling of the relative biological effectiveness (RBE) of particle beams requires increased systematic in vitro studies with human cell lines with care towards minimizing uncertainties in biologic assays as well as physical parameters. In this study, we describe a novel high-throughput experimental setup and an optimized parameterization of the Monte Carlo (MC) simulation technique that is universally applicable for accurate determination of RBE of clinical ion beams. Clonogenic cell-survival measurements on a human lung cancer cell line (H460) are presented using proton irradiation. Experiments were performed at the Heidelberg Ion Therapy Center (HIT) with support from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg, Germany using a mono-energetic horizontal proton beam. A custom-made variable range selector was designed for the horizontal beam line using the Geant4 MC toolkit. This unique setup enabled a high-throughput clonogenic assay investigation of multiple, well defined dose and linear energy transfer (LETs) per irradiation for human lung cancer cells (H460) cultured in a 96-well plate. Sensitivity studies based on application of different physics lists in conjunction with different electromagnetic constructors and production threshold values to the MC simulations were undertaken for accurate assessment of the calculated dose and the dose-averaged LET (LET d ). These studies were extended to helium and carbon ion beams. Sensitivity analysis of the MC parameterization revealed substantial dependence of the dose and LET d values on both the choice of physics list and the production threshold values. While the dose and LET d calculations using FTFP_BERT_LIV, FTFP_BERT_EMZ, FTFP_BERT_PEN and QGSP_BIC_EMY physics lists agree well with each other for all three ions, they show large differences when compared to the FTFP_BERT physics list with the default electromagnetic constructor. For carbon ions, the dose corresponding to the largest LET d

  6. Effect Of The LEBT Solenoid Magnetic Field On The Beam Generation For Particle Tracking

    CERN Document Server

    Yarmohammadi Satri, M; CERN. Geneva. ATS Department

    2013-01-01

    Linac4 is a 160 MeV H- linear accelerator which will replace the 50 MeV proton Linac2 for upgrade of the LHC injectors with higher intensity and eventually an increase of the LHC luminosity. Linac4 structure is a source, a 45 keV low energy beam transport line (LEBT) with two solenoids, a 3 MeV Radiofrequency Quadrupole (RFQ), a Medium Energy Beam Transport line (MEBT), a 50 Mev DTL, a 100 Mev CCDTL and PIMS up to 160 Mev. We use Travel v4.07 and PathManager code for simulation. Firstly, we need to a file as a source and defining the beginning point (last point in tracking back) of simulation. We recognise the starting point base on the solenoid magnetic property of LEBT.

  7. In-beam evaluation of a medium-size Resistive-Plate WELL gaseous particle detector

    CERN Document Server

    Moleri, L.

    2016-09-27

    In-beam evaluation of a fully-equipped medium-size 30$\\times$30 cm$^2$ Resistive Plate WELL (RPWELL) detector is presented. It consists here of a single element gas-avalanche multiplier with Semitron ESD225 resistive plate, 1 cm$^2$ readout pads and APV25/SRS electronics. Similarly to previous results with small detector prototypes, stable operation at high detection efficiency (>98%) and low average pad multiplicity (~1.2) were recorded with 150 GeV muon and high-rate pion beams, in Ne/(5%CH$_4$), Ar/(5%CH$_4$) and Ar/(7%CO$_2$). This is an important step towards the realization of robust detectors suitable for applications requiring large-area coverage; among them Digital Hadron Calorimetry.

  8. Studies of the ATLAS hadronic Calorimeter response to different particles at Test Beams

    CERN Document Server

    Zakareishvili, Tamar; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super Proton Synchrotron (SPS) accelerator at CERN. Data were collected with beams of muons, electrons and hadrons at various incident energies and impact angles. The muons data allow to study the dependence of the response on the incident point and angle in the cell. The electron data are used to determine the linearity of the electron energy measurement. The hadron data will allow to tune the calorimeter response to pions and kaons modelling to improve the reconstruction of the jet energies. The results of the ongoing data analysis are discussed in the presentation.

  9. Coupled PIXE and RBS using a 6MeV 4He2+ external beam: A new experimental device for particle detection and dose monitoring

    International Nuclear Information System (INIS)

    Mathis, F.; Moignard, B.; Pichon, L.; Dubreuil, O.; Salomon, J.

    2005-01-01

    AGLAE (Accelerateur Grand Louvre d'Analyses Elementaire), the IBA facility of the 'Centre de Recherche et de Restauration des Musees de France' (C2RMF) has been equipped for several years with an external micro-beam line, in order to perform ion beam analysis on materials relevant to cultural heritage. This beam line is undergoing constant improvement. Recently, a new extraction nozzle for the external beam of the accelerator has been designed in order to obtain simultaneously from the same spot: - detection of the X-ray emission by two detectors, for low and high energies; - detection of the backscattered particles for a backscattering angle between 170 and 175 deg., thanks to an annular surface barrier detector included in the nozzle; - particle current monitoring by intermittent beam deflection on a reference material included in the system. This technical development has been induced by the study of artificial patinas on archaeological copper-alloy objects and the attempt to characterize them with a 6MeV 4 He 2+ beam, an unusual beam for this type of investigation. A detailed description of the new device and some results on an application of the use of high-energy alpha beam in PIXE and RBS made on a Roman strigil are presented here

  10. Silicon telescope for prototype sensor characterisation using particle beam and cosmic rays

    CERN Multimedia

    Fu, Jinlin

    2016-01-01

    We present the design and the performance of a silicon strip telescope that we have built and recently used as reference tracking system for prototype sensor characterisation. The telescope was operated on beam at the CERN SPS and also using cosmic rays in the laboratory. We will describe the data acquisition system, based on a custom electronic board that we have developed, and the online monitoring system to control the quality of the data in real time.

  11. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    CERN Document Server

    De Melo Mendonca, T M

    2014-01-01

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  12. Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm

    Science.gov (United States)

    Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang

    2017-12-01

    Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.

  13. SU-F-J-202: Secondary Radiation Measurements for Charged Particle Therapy Monitoring: Fragmentation of Therapeutic He, C and O Ion Beams Impinging On a PMMA Target

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, A; Mancini-Terracciano, C; Paramatti, R; Pinci, D; Russomando, A; Voena, C [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Rome, Rome (Italy); Battistoni, G; Muraro, S [Istituto Nazionale di Fisica Nucleare - Sezione di Milano, Milano, Milano (Italy); Collamati, F; Faccini, R; Camillocci, E Solfaroli [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Italy, Dipartiment, Rome, Rome (Italy); Collini, F [Istituto Nazionale di Fisica Nucleare - Sezione di Pisa, Pisa, Pisa (Italy); De Lucia, E; Piersanti, L; Toppi, M [Laboratori Nazionali di Frascati, Frascati (rome), Rome (Italy); Frallicciardi, P [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Rome, Rome (Italy); Marafini, M [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Museo Storico dell, Rome, Rome (Italy); Patera, V; Sciubba, A; Traini, G [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Dipartimento di Sc, Rome, Rome (Italy); and others

    2016-06-15

    Purpose: In Charged Particle Therapy (CPT), besides protons, there has been recently a growing interest in 4He, 12C and 16O beams. The secondary radiation produced in the interaction of those beams with a patient could be potentially used for on-line monitoring of range uncertainties in order to fully exploit the advantages of those light ions resulting from increased Radio Biological Effectiveness, reduced multiple scattering and Oxygen Enhancement Ratio. The study and precise characterization of secondary radiation (beta+, prompt gamma, charged fragments) is the cornerstone of any R&D activity aiming for online monitoring development and purpose of the analysis presented here. Methods: We present the measurements of the secondary radiation generated by He, C and O beams impinging on a beam stopping PMMA target. The data has been collected at the Heidelberg Ionbeam Therapy center (HIT), where several millions of collisions were recorded at different energies, relevant for therapeutical applications. Results: The experimental setup, as well as the analysis strategies will be reviewed. The detected particle fluxes as a function of the primary beam energy and the emission angle with respect to the beam direction will be presented and compared to the results of other available measurements. In addition, the energy spectra and emission shapes of charged secondary particles will be shown and discussed in the context of the primary beam range monitoring technique that is being developed by the ARPG collaboration, within the INSIDE project funded by the Italian research ministry. The implications for dose monitoring applications will be discussed, in the context of the current (or planned) state-of- the-art detector solutions. Conclusion: The characterization of the radiation produced by 12C, 4He and 16O beams fully supports the feasibility of on-line range monitoring in the clinical practice of CPT by means of secondary particles detection.

  14. NRABASE 2.0. Charged-particle nuclear reaction data for ion beam analysis

    International Nuclear Information System (INIS)

    Gurbich, A.F.

    1997-01-01

    For 30 targets between H-1 and Ag-109, differential cross sections for reactions induced by protons, deuterons, He-3 and alpha particles are given in tabular and graphical form. The data were compiled from original experimental references. The database was developed under a research contract with the IAEA Physics Section and is available on diskette from the IAEA Nuclear Data Section. (author)

  15. Contribution of secondary particles to the dose in 12C radiotherapy and other heavy ion beams

    Czech Academy of Sciences Publication Activity Database

    Jadrníčková, Iva; Spurný, František; Molokanov, A. G.

    2007-01-01

    Roč. 126, 1-4 (2007), s. 657-659 ISSN 0144-8420 R&D Projects: GA ČR GA202/04/0795 Institutional research plan: CEZ:AV0Z10480505 Keywords : secondery particles * radiotherapy * LET spectrometer Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.528, year: 2007

  16. The online chemical analysis of single particles using aerosol beams and time of flight mass spectroscopy

    NARCIS (Netherlands)

    Kievit, O.; Weiss, M.; Verheijen, P.J.T.; Marijnissen, J.C.M.; Scarlett, B.

    This paper describes an on-line instrument, capable of measuring the size and chemical composition of single aerosol particles. Possible applications include monitoring aerosol reactors and studying atmospheric chemistry. The main conclusion is that a working prototype has been built and tested. It

  17. Intense, pulsed, charged particle beams and associated applications to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Yatsui, K.; Grigoriu, C.; Masugata, K.; Jiang, W.; Sonegawa, T.; Nakagawa, Y.; Eka Prijono, A.C. [Nagaoka Univ. of Technology, Niigata (Japan)

    1997-03-01

    We have demonstrated successful preparation of thin films and nanosize powders by using the technique of intense pulsed ion beam evaporation. In this paper, we review the experimental results of thin film deposition of ZnS, YBa{sub 2}Cu{sub 3}O{sub 7-x}, BaTiO{sub 3}, cBN, ZrO{sub 2}, ITO, and apatite, as well as the experimental results of the synthesis of nanosize powders of Al{sub 2}O{sub 3}. (author)

  18. Improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    International Nuclear Information System (INIS)

    Xu Chang; Li Baoan

    2010-01-01

    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.

  19. Bounds on supersymmetric particles from a proton beam-dump experiment

    International Nuclear Information System (INIS)

    Bergsma, F.; Dorenbosch, J.; Jonker, M.; Nieuwenhuis, C.; Allaby, J.V.; Amaldi, U.; Barbiellini, G.; Barone, L.; Capone, A.; Flegel, W.; Metcalf, M.; Panman, J.; Winter, K.; Aspiazu, J.; Buesser, F.W.; Daumann, H.; Gall, P.D.; Metz, E.; Niebergall, F.; Ranitzsch, K.H.; Staehelin, P.

    1983-01-01

    We estimate the magnitude of effects induced by gluino hadroproduction and subsequent gluino decay into a photino and hadrons in a proton beam-dump experiment. By comparing our estimates with results obtained by us in an experiment performed at the CERN SPS we set a lower bound on the gluino mass which is a function of the scalar quark mass. The results do not favour the existence of low mass gluinos (< 2 GeV) and scalar quarks (< 100 GeV). (orig.)

  20. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    CERN Document Server

    Kassel, Florian; Dabrowski, Anne; de Boer, Wim

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field,...

  1. Analysis of using protons in secondary beam on BEPC as a particle source in single event effects experiment study

    International Nuclear Information System (INIS)

    He Chaohui; Li Guozheng; Liu Enke

    1999-01-01

    The energy range and yield of the protons in the secondary beam on BEPC are first analyzed, at the point of using the protons as a particle source in the single event effects (SEE) experiment of semiconductor devices. The energy ranges of the proton produced by high energy electrons bombarding on targets in three methods are calculated and the corresponding cross sections are estimated. The cross section of producing protons can be increased by using heavy nucleus target and the differential yield of protons can reach 1.66 x 10 -3 s -1 ·sr -1 ·eV -1 . The protons can be used in SEE experiment of the semiconductor devices with the high SEE cross sections

  2. A Shot Parameter Specification Subsystem for automated control of PBFA [Particle Beam Fusion Accelerator] II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes

  3. Gold nano-particle formation from crystalline AuCN: Comparison of thermal, plasma- and ion-beam activated decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Mihály T.; Bertóti, Imre, E-mail: bertoti.imre@ttk.mta.hu; Mohai, Miklós; Németh, Péter; Jakab, Emma; Szabó, László; Szépvölgyi, János

    2017-02-15

    In this work, in addition to the conventional thermal process, two non-conventional ways, the plasma and ion beam activations are described for preparing gold nanoparticles from microcrystalline AuCN precursor. The phase formation at plasma and ion beam treatments was compared with that at thermal treatments and the products and transformations were characterized by thermogravimetry-mass-spectrometry (TG-MS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TG-MS measurements in Ar atmosphere revealed that AuCN decomposition starts at 400 °C and completes at ≈700 °C with evolution of gaseous (CN){sub 2}. XPS and TEM show that in heat treatment at 450 °C for 1 h in Ar, loss of nitrogen and carbon occurs and small, 5–30 nm gold particles forms. Heating at 450 °C for 10 h in sealed ampoule, much larger, 60–200 nm size and well faceted Au particles develop together with a fibrous (CN){sub n} polymer phase, and the Au crystallites are covered by a 3–5 nm thick polymer shell. Low pressure Ar plasma treatment at 300 eV energy results in 4–20 nm size Au particles and removes most of the nitrogen and part of carbon. During Ar{sup +} ion bombardment with 2500 eV energy, 5–30 nm size Au crystallites form already in 10 min, with preferential loss of nitrogen and with increased amount of carbon residue. The results suggest that plasma and ion beam activation, acting similarly to thermal treatment, may be used to prepare Au nanoparticles from AuCN on selected surface areas either by depositing AuCN precursors on selected regions or by focusing the applied ionized radiation. Thus they may offer alternative ways for preparing tailor-made catalysts, electronic devices and sensors for different applications. - Graphical abstract: Proposed scheme of the decomposition mechanism of AuCN samples: heat treatment in Ar flow (a) and in sealed ampoule (b); Ar{sup +} ion treatment at 300 eV (c) and at 2500 eV (d). Cross section sketches

  4. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C.

    1999-12-09

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.

  5. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    International Nuclear Information System (INIS)

    Carey, D.C.

    1999-01-01

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE

  6. Tests of a Particle Flow Algorithm with CALICE test beam data

    Czech Academy of Sciences Publication Activity Database

    Adloff, C.; Blaha, J.; Blaising, J.J.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Kvasnička, Jiří; Lednický, Denis; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Růžička, Pavel; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2011-01-01

    Roč. 6, č. 7 (2011), s. 1-15 ISSN 1748-0221 R&D Projects: GA MŠk LA09042; GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : calorimeter s * PFA * CALICE * calorimeter methods Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/6/07/P07005

  7. Beam stability and warm-up effects of Nd:YAG lasers used in particle image velocimetry

    International Nuclear Information System (INIS)

    Grayson, K; De Silva, C M; Hutchins, N; Marusic, I

    2017-01-01

    The characteristics and causes of Nd:YAG laser warm-up transients and steady state beam stability effects are investigated in this study. Dynamic laser performance has a particularly noticeable impact on particle image velocimetry (PIV) and other laser-based flow visualisation techniques, where changes in beam pointing can influence the overlap between laser light sheets and thereby degrade the correlation of PIV image pairs. Despite anecdotal knowledge or experience of laser warm-up effects, they have not been formally documented or quantified to date for PIV applications. In this study, the nature of these laser transients are analysed and compared among a selection of typical PIV laser equipment. An investigation into the cause of these transients during the laser warm-up sequence is also presented. Furthermore, the degree of dual cavity transient coupling within a PIV laser system is analysed to determine a practical limit to the laser light sheet overlap that can be expected from PIV experiments. Finally, the results from this study inform a series of recommendations for PIV best practice, which aim to minimise the impact of laser transients on experimental data. (paper)

  8. Absorbed dose assessment in particle-beam irradiated metal-oxide and metal-nonmetal memristors

    Directory of Open Access Journals (Sweden)

    Knežević Ivan D.

    2012-01-01

    Full Text Available Absorbed dose was estimated after Monte Carlo simulation of proton and ion beam irradiation on metal-oxide and metal-nonmetal memristors. A memristive device comprises two electrodes, each of a nanoscale width, and a double-layer active region disposed between and in electrical contact with electrodes. Following materials were considered for the active region: titanium dioxide, zirconium dioxide, hafnium dioxide, strontium titanium trioxide and galium nitride. Obtained results show that significant amount of oxygen ion - oxygen and nonmetal ion - nonmetal vacancy pairs is to be generated. The loss of such vacancies from the device is believed to deteriorate the device performance over time. Estimated absorbed dose values in the memristor for different constituting materials are of the same order of magnitude because of the close values of treshold displacement energies for the investigated materials.

  9. Coherent Structures and Chaos Control in High-Power Microwave and Charged-Particle Beam Devices

    Science.gov (United States)

    2009-01-31

    gating through a periodic solenoidal magnetic focusing field. For continuous beams with long pulses , the longitudinal en- ergy spread is small such...0.2 (cw) 10 ( pulsed ) Current (A) 0.11 111.1 Voltage (kV) 2.29 120 a/b 6.0 20 a (cm) 0.373 1.0 S (cm) 1.912 2.2 koy /box 6.0 20 BQ (kG) 0.263 2.0...envelope equations are d2a b2[a2-2axayJ+a 2aj 2K a2-b2 ds’ (a + b) • 2yJKz (s) ava + 2L_ a = 0. YbPbmc d2b a2\\a2v-2axav)+b 2a2 2K ~ rT\\ u

  10. Beam cooling

    OpenAIRE

    Danared, H

    2006-01-01

    Beam cooling is the technique of reducing the momentum spread and increasing the phase-space density of stored particle beams. This paper gives an introduction to beam cooling and Liouville’s theorem, and then it describes the three methods of active beam cooling that have been proven to work so far, namely electron cooling, stochastic cooling, and laser cooling. Ionization cooling is also mentioned briefly.

  11. Molecular beams

    International Nuclear Information System (INIS)

    Pendelbury, J.M.; Smith, K.F.

    1987-01-01

    Studies with directed collision-free beams of particles continue to play an important role in the development of modern physics and chemistry. The deflections suffered by such beams as they pass through electric and magnetic fields or laser radiation provide some of the most direct information about the individual constituents of the beam; the scattering observed when two beams intersect yields important data about the intermolecular forces responsible for the scattering. (author)

  12. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    International Nuclear Information System (INIS)

    Riquier, Hélène; Abel, Denis; Wera, Anne-Catherine; Heuskin, Anne-Catherine; Genard, Géraldine; Lucas, Stéphane; Michiels, Carine

    2015-01-01

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results

  13. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Energy Technology Data Exchange (ETDEWEB)

    Riquier, Hélène; Abel, Denis [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Wera, Anne-Catherine; Heuskin, Anne-Catherine [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Genard, Géraldine [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Lucas, Stéphane [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Michiels, Carine, E-mail: carine.michiels@unamur.be [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium)

    2015-03-18

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.

  14. PC-Link historical data base system MODCOMP/IBM at link for neutral particle beam operation

    International Nuclear Information System (INIS)

    Thurgood, P.

    1989-12-01

    ''PC-Link'' is a combination of hardware and software that connects an IBM PC/AT to a MODCOMP minicomputer. It is designed as an aid to the Neutral Beam operations coordinator during injection into the DIII-D tokamak project. An IBM PC/AT is linked to 4 MODCOMP ''realtime'' acquisition systems, each of which controls 2 neutral particle beam sources. At various points in the shot sequence, data is sent to the IBM PC/AT. This data can then be integrated with the data from the other sources into tables or graphics displays for use by the Beam Coordinator. In this way, the coordinator gets realtime feedback on the relative settings and performance of the sources and can observe trends within a particular source at one location. The PC- Link is used for observing relative timing information and for post shot historical archiving. The concept of the PC-Link was originally proposed several years ago. In April 1988, in-house implementation of the link software was begun. The PC-Link receives approximately 2 Kbytes of data per source per shot. This data is converted from MODCOMP format to IBM PC format and archived to disk. The last 280 shots per source are stored to disk to observe trends. The data can be displayed in a number of formats depending upon the situation. For example, prior to a shot, the beam MODCOMPs are sent timing information from the DIII-D tokamak control system. This data is echoed on the PC in a graphical representation displaying all 8 sources. At the end of the shot, the actual running times are displayed along with the requested settings. Any subset of the Historical data may be displayed either graphically or in tables for realtime comparisons between sources. This system is designed for realtime use, not for complete archiving purposes. This same data is also sent to a VAX computer for full integration into the archive database. This system is easily upgradable and extremely versatile. 4 figs

  15. Blowup phenomena for the compressible euler and euler-poisson equations with initial functional conditions.

    Science.gov (United States)

    Wong, Sen; Yuen, Manwai

    2014-01-01

    We study, in the radial symmetric case, the finite time life span of the compressible Euler or Euler-Poisson equations in R (N) . For time t ≥ 0, we can define a functional H(t) associated with the solution of the equations and some testing function f. When the pressure function P of the governing equations is of the form P = Kρ (γ) , where ρ is the density function, K is a constant, and γ > 1, we can show that the nontrivial C (1) solutions with nonslip boundary condition will blow up in finite time if H(0) satisfies some initial functional conditions defined by the integrals of f. Examples of the testing functions include r (N-1)ln(r + 1), r (N-1) e (r) , r (N-1)(r (3) - 3r (2) + 3r + ε), r (N-1)sin((π/2)(r/R)), and r (N-1)sinh r. The corresponding blowup result for the 1-dimensional nonradial symmetric case is also given.

  16. On the possibility of gamma-laser pumping occurring at a charged particle counter motion and in density-modulated electron beams by a high frequency intensive radiation

    International Nuclear Information System (INIS)

    Maksyuta, N.V.

    1999-01-01

    The given report deals with the problem of motion and radiation of relativistic electron in a field of opposite plane density-modulated relativistic electron beam. Physical essence of high-frequency intensive radiation origin could be explained, first by the additional Lorentz reduction of the electron beam modulation period (modulation period Λ in a laboratory co-ordinate system reduces by a factor γ as compared with the modulation period in a beam co-ordinate system) and, secondly, a simultaneous γ-fold increase of transverse components of relativistic electrons of the beam electric and magnetic fields. Such a moving modulated electron beam can be regarded as a dynamic micro-ondulator. Unlike static micro-ondulators we can observe here one more positive moment along with a small period Λ = Λ'/γ, i.e. the electric and magnetic fields in a transverse direction are changed according to the law of exp(-2πx/Λ'). It means that charged particle interaction with a dynamic micro-ondulator will be effective in a wide range of transverse distances, i.e., to get an intensive short wave radiation one can use charged particle beams with rather large apertures which leads to an additional radiation intensity increase. A discussion is given showing that the proposed dynamic modulator possesses some essential merits. A detailed calculation is presented. (author)

  17. STEREO/SEPT observations of upstream particle events: almost monoenergetic ion beams

    Directory of Open Access Journals (Sweden)

    A. Klassen

    2009-05-01

    Full Text Available We present observations of Almost Monoenergetic Ion (AMI events in the energy range of 100–1200 keV detected with the Solar Electron and Proton Telescope (SEPT onboard both STEREO spacecraft. The energy spectrum of AMI events contain 1, 2, or 3 narrow peaks with the relative width at half maximum of 0.1–0.7 and their energy maxima varies for different events from 120 to 1200 keV. These events were detected close to the bow-shock (STEREO-A&B and to the magnetopause at STEREO-B as well as unexpectedly far upstream of the bow-shock and far away from the magnetotail at distances up to 1100 RE (STEREO-B and 1900 RE (STEREO-A. We discuss the origin of AMI events, the connection to the Earth's bow-shock and to the magnetosphere, and the conditions of the interplanetary medium and magnetosphere under which these AMI bursts occur. Evidence that the detected spectral peaks were caused by quasi-monoenergetic beams of protons, helium, and heavier ions are given. Furthermore, we present the spatial distribution of all AMI events from December 2006 until August 2007.

  18. The CMS Barrel Calorimeter Response to Particle Beams from 2 to 350 GeV/c

    CERN Document Server

    Abdullin, Salavat; Acharya, Bannaje Sripathi; Adam, Nadia; Adams, Mark Raymond; Adzic, Petar; Akchurin, Nural; Akgun, Ugur; Albayrak, Elif Asli; Alemany-Fernandez, Reyes; Almeida, Nuno; Anagnostou, Georgios; Andelin, Daniel; Anderson, E Walter; Anfreville, Marc; Anicin, Ivan; Antchev, Georgy; Antunovic, Zeljko; Arcidiacono, Roberta; Arenton, Michael Wayne; Auffray, Etiennette; Argiro, Stefano; Askew, Andrew; Atramentov, Oleksiy; Ayan, S; Arcidy, M; Aydin, Sezgin; Aziz, Tariq; Baarmand, Marc M; Babich, Kanstantsin; Baccaro, Stefania; Baden, Drew; Baffioni, Stephanie; Bakirci, Mustafa Numan; Balazs, Michael; Banerjee, Sunanda; Banerjee, Sudeshna; Bard, Robert; Barge, Derek; Barnes, Virgil E; Barney, David; Barone, Luciano; Bartoloni, Alessandro; Baty, Clement; Bawa, Harinder Singh; Baiatian, G; Bandurin, Dmitry; Beauceron, Stephanie; Bell, Ken W; Bencze, Gyorgy; Benetta, Robert; Bercher, Michel; Beri, Suman Bala; Bernet, Colin; Berntzon, Lisa; Berthon, Ursula; Besançon, Marc; Betev, Botjo; Beuselinck, Raymond; Bhatnagar, Vipin; Bhatti, Anwar; Biino, Cristina; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bodek, Arie; Bornheim, Adolf; Bose, Suvadeep; Bose, Tulika; Bourotte, Jean; Brett, Angela Mary; Brown, Robert M; Britton, David; Budd, Howard; Bühler, M; Burchesky, Kyle; Busson, Philippe; Camanzi, Barbara; Camporesi, Tiziano; Cankocak, Kerem; Carrell, Kenneth Wayne; Carrera, E; Cartiglia, Nicolo; Cavallari, Francesca; Cerci, Salim; Cerutti, cM; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chen, E Augustine; Chen, Wan-Ting; Chen, Zheng-Yu; Chendvankar, Sanjay; Chipaux, Rémi; Choudhary, Brajesh C; Choudhury, Rajani Kant; Chung, Yeon Sei; Clarida, Warren; Cockerill, David J A; Combaret, Christophe; Conetti, Sergio; Cossutti, Fabio; Cox, Bradley; Cremaldi, Lucien Marcus; Cushman, Priscilla; Cussans, David; Dafinei, Ioan; Damgov, Jordan; Da Silva Di Calafiori, Diogo Raphael; Daskalakis, Georgios; Davatz, Giovanna; David, A; De Barbaro, Pawel; Debbins, Paul; Deiters, Konrad; Dejardin, Marc; Djordjevic, Milos; Deliomeroglu, Mehmet; Della Negra, Rodolphe; Della Ricca, Giuseppe; Del Re, Daniele; Demianov, A; De Min, Alberto; Denegri, Daniel; Depasse, Pierre; de Visser, Theo; Descamps, Julien; Deshpande, Pandurang Vishnu; Díaz, Jonathan; Diemoz, Marcella; Di Marco, Emanuele; Dimitrov, Lubomir; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Duboscq, Jean Etienne; Dugad, Shashikant; Dumanoglu, Isa; Duru, Firdevs; Dutta, Dipanwita; Dzelalija, Mile; Efthymiopoulos, I; Elias, John E; Peisert, A; El-Mamouni, H; Elvira, D; Emeliantchik, Igor; Eno, Sarah Catherine; Ershov, Alexander; Erturk, Sefa; Esen, Selda; Eskut, Eda; Evangelou, Ioannis; Evans, David; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Fenyvesi, Andras; Ferri, Federico; Fisher, Wade Cameron; Flower, Paul S; Franci, Daniele; Franzoni, Giovanni; Freeman, Jim; Freudenreich, Klaus; Funk, Wolfgang; Ganjour, Serguei; Gargiulo, Corrado; Gascon, Susan; Gataullin, Marat; Gaultney, Vanessa; Gamsizkan, Halil; Gavrilov, Vladimir; Geerebaert, Yannick; Genchev, Vladimir; Gentit, François-Xavier; Gerbaudo, Davide; Gershtein, Yuri; Ghezzi, Alessio; Ghodgaonkar, Manohar; Gilly, Jean; Givernaud, Alain; Gleyzer, Sergei V; Gninenko, Sergei; Go, Apollo; Gobbo, Benigno; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Goncharov, Petr; Gong, Datao; Govoni, Pietro; Grant, Nicholas; Gras, Philippe; Grassi, Tullio; Green, Dan; Greenhalgh, R J S; Gribushin, Andrey; Grinev, B; Guevara Riveros, Luz; Guillaud, Jean-Paul; Gurtu, Atul; Murat Guler, A; Gülmez, Erhan; Gümüs, K; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Haguenauer, Maurice; Halyo, Valerie; Hamel de Monchenault, Gautier; Hansen, Sten; Hashemi, Majid; Hauptman, John M; Hazen, Eric; Heath, Helen F; Heering, Arjan Hendrix; Heister, Arno; Heltsley, Brian; Hill, Jack; Hintz, Wieland; Hirosky, Robert; Hobson, Peter R; Honma, Alan; Hou, George Wei-Shu; Hsiung, Yee; Hunt, Adam; Husejko, Michal; Ille, Bernard; Ilyina, N; Imlay, Richard; Ingram, D; Ingram, Quentin; Isiksal, Engin; Jarry, Patrick; Jarvis, Chad; Jeong, Chiyoung; Jessop, Colin; Johnson, Kurtis F; Jones, John; Jovanovic, Dragoslav; Kaadze, Ketino; Kachanov, Vassili; Kaftanova, V; Kailas, Swaminathan; Kalagin, Vladimir; Kalinin, Alexey; Kalmani, Suresh Devendrappa; Karmgard, Daniel John; Kataria, Sushil Kumar; Kaur, Manjit; Kaya, Mithat; Kaya, Ozlem; Kayis-Topaksu, A; Kellogg, Richard G; Kennedy, Bruce W; Khmelnikov, Alexander; Kim, Heejong; Kisselevich, I; Kloukinas, Kostas; Kodolova, Olga; Kohli, Jatinder Mohan; Kokkas, Panagiotis; Kolberg, Ted; Kolossov, V; Korablev, Andrey; Korneev, Yury; Kosarev, Ivan; Kramer, Laird; Krasnikov, Nikolai; Krinitsyn, Alexander; Krokhotin, Andrey; Krpic, Dragomir; Kryshkin, V; Kubota, Yuichi; Kubrik, A; Kuleshov, Sergey; Kumar, Arun; Kumar, P; Kunori, Shuichi; Kuo, Chen-Cheng; Kurt, Pelin; Kyberd, Paul; Kyriakis, Aristotelis; Laasanen, Alvin T; Ladygin, Vladimir; Laird, Edward; Landsberg, Greg; Laszlo, Andras; Lawlor, C; Lazic, Dragoslav; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Ledovskoy, Alexander; Lee, Sang Joon; Leshev, Georgi; Lethuillier, Morgan; Levchuk, Leonid; Lin, Sheng-Wen; Lin, Willis; Linn, Stephan; Lintern, A L; Litvine, Vladimir; Litvintsev, Dmitri; Litov, Leander; Lobolo, L; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Los, Serguei; Lubinsky, V; Luckey, Paul David; Lukanin, Vladimir; Lustermann, Werner; Lynch, Clare; Ma, Yousi; Machado, Emanuel; Mahlke-Krüger, H; Maity, Manas; Majumder, Gobinda; Malberti, Martina; Malclès, Julie; Maletic, Dimitrije; Mandjavidze, Irakli; Mans, Jeremy; Manthos, Nikolaos; Maravin, Yurii; Marchica, Carmelo; Marinelli, Nancy; Markou, Athanasios; Markou, Christos; Marlow, Daniel; Markowitz, Pete; Marone, Matteo; Martínez, German; Mathez, Hervé; Matveev, Viktor; Mavrommatis, Charalampos; Maurelli, Georges; Mazumdar, Kajari; Meridiani, Paolo; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mescheryakov, G; Mestvirishvili, Alexi; Mikhailin, V; Milenovic, Predrag; Miller, Michael; Milleret, Gérard; Miné, Philippe; Möller, A; Mohammadi-Najafabadi, M; Mohanty, Ajit Kumar; Moissenz, P; Mondal, Naba Kumar; Moortgat, Filip; Mossolov, Vladimir; Mur, Michel; Musella, Pasquale; Musienko, Yuri; Nagaraj, P; Nardulli, Alessandro; Nash, Jordan; Nédélec, Patrick; Negri, Pietro; Newman, Harvey B; Nikitenko, Alexander; Norbeck, Edwin; Nessi-Tedaldi, Francesca; Obertino, Maria Margherita; Olson, Jonathan; Onel, Yasar; Onengüt, G; Organtini, Giovanni; Orimoto, Toyoko; Ozkan, Cigdem; Ozkurt, Halil; Ozkorucuklu, Suat; Ozok, Ferhat; Paganoni, Marco; Paganini, Pascal; Paktinat, S; Pal, Andras; Palma, Alessandro; Panev, Bozhidar; Pant, Lalit Mohan; Papadakis, Antonakis; Papadakis, Ioannis; Papadopoulos, Ioannis; Paramatti, Riccardo; Parracho, P; Pastrone, Nadia; Patil, Mandakini Ravindra; Patterson, Juliet Ritchie; Pauss, Felicitas; Penzo, Aldo; Petrakou, Eleni; Petrushanko, Sergey; Petrosian, A; Phillips II, David; Pikalov, Vladimir; Piperov, Stefan; Piroué, Pierre; Podrasky, V; Polatoz, A; Pompos, Arnold; Popescu, Sorina; Posch, C; Pozdnyakov, Andrey; Ptochos, Fotios; Puljak, Ivica; Pullia, Antonino; Punz, Thomas; Puzovic, Jovan; Qian, Weiming; Ragazzi, Stefano; Rahatlou, Shahram; Ralich, Robert; Rande, J; Razis, Panos A; Redaelli, Nicola; Reddy, L; Reidy, Jim; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Ribeiro, Pedro Quinaz; Röser, Ulf; Rogalev, Evgueni; Rogan, Christopher; Roh, Youn; Rohlf, James; Romanteau, Thierry; Rondeaux, Françoise; Ronquest, Michael; Ronzhin, Anatoly; Rosowsky, André; Rovelli, Chiara; Ruchti, Randy; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Ryazanov, Anton; Safronov, Grigory; Sala, Leonardo; Salerno, Roberto; Sanders, David A; Santanastasio, Francesco; Sanzeni, Christopher; Sarycheva, Ludmila; Satyanarayana, B; Schinzel, Dietrich; Schmidt, Ianos; Seez, Christopher; Sekmen, Sezen; Semenov, Sergey; Senchishin, V; Sergeyev, S; Serin, Meltem; Sever, Ramazan; Sharp, Peter; Shepherd-Themistocleous, Claire; Siamitros, Christos; Sillou, Daniel; Singh, Jas Bir; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Silva, J; Silva, Pedro; Skuja, Andris; Sharma, Seema; Sherwood, Brian; Shiu, Jing-Ge; Shivpuri, Ram Krishen; Shukla, Prashant; Shumeiko, Nikolai; Smirnov, Vitaly; Smith, Brian; Smith, Vincent J; Sogut, Kenan; Sonmez, Nasuf; Sorokin, Pavel; Spezziga, Mario; Sproston, Martin; Stefanovich, R; Stockli, F; Stolin, Viatcheslav; Sudhakar, Katta; Sulak, Lawrence; Suter, Henry; Suzuki, Ichiro; Swain, John; Tabarellide Fatis, T; Talov, Vladimir; Takahashi, Maiko; Tcheremoukhine, Alexandre; Teller, Olivier; Teplov, Konstantin; Theofilatos, Konstantinos; Thiebaux, Christophe; Thomas, Ray; Timciuc, Vladlen; Timlin, Claire; Titov, Maksym; Tobias, A; Tonwar, Suresh C; Topakli, Huseyin; Topkar, Anita; Triantis, Frixos A; Troshin, Sergey; Tully, Christopher; Turchanovich, L; Tyurin, Nikolay; Ueno, Koji; Ulyanov, A; Uzunian, Andrey; Vanini, A; Vankov, Ivan; Vardanyan, Irina; Varela, F; Varela, Joao; Vasil ev, A; Velasco, Mayda; Vergili, Mehmet; Verma, Piyush; Verrecchia, Patrice; Vesztergombi, Gyorgy; Veverka, Jan; Vichoudis, Paschalis; Vidal, Richard; Virdee, Tejinder; Vishnevskiy, Alexander; Vlassov, E; Vodopiyanov, Igor; Volobouev, Igor; Volkov, Alexey; Volodko, Anton; Von Gunten, Hans Peter; Wang, Lei; Wang, Minzu; Wardrope, David; Weber, Markus; Weng, Joanna; Werner, Jeremy Scott; Wetstein, Matthew; Winn, Dave; Wigmans, Richard; Williams, Jennifer C; Whitmore, Juliana; Won, Steven; Wu, Shouxiang; Yang, Yong; Yaselli, Ignacio; Yazgan, Efe; Yetkin, Taylan; Yohay, Rachel; Zabi, Alexandre; Zálán, Peter; Zamiatin, Nikolai; Zarubin, Anatoli; Zelepoukine, Serguei; Zeyrek, Mehmet; Zhang, Jia-Wen; Zhang, Lin; Zhu, Kejun; Zhu, Ren-Yuan

    2008-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7$\\pm$1.6$\\%$ and the constant term is 7.4$\\pm$0.8$\\%$. The corrected mean response remains constant within 1.3$\\%$ rms.

  19. Status and prospects of new clinical methods of cancer diagnostics and treatment based on particle and ion beams available at JINR

    International Nuclear Information System (INIS)

    Savchenko, O.V.

    1996-01-01

    Brief history of radiation therapy is given. New radiation sources providing better distribution of the radiation doses in a patient's body are shown to increase the efficiency of the radiation therapy. Grounds for using heavy nuclear particles to treat malignant tumours and the first clinical tests of these particles at some physics research centres in different countries of the world are considered. A many-room complex of radiation treatment with JINR phasotron beams at the Laboratory of Nuclear Problems is described. The first results of treating cancer patients with proton beams in this complex are given. The prospects for radiation therapy and diagnosis with heavy nuclear beams from other basic facilities of JINR are presented. The necessity of building a radiological hospital and a regional treatment and diagnosis centre in Dubna is discussed, which will allow the fastest and most efficient application of new nuclear physics techniques and designs to medicine. 68 refs., 17 figs., 6 tabs

  20. Method and device for monochromatization of the internal accelerated particles beam in isochronous cyclotrons

    International Nuclear Information System (INIS)

    Enchevich, I.B.; Dinev, D.H.

    1988-01-01

    The invention assures a reduced size of the supplementary electrode which leads to economy of a material and a more effective use of the accelerator space, where the elements of an axial injection system of the cyclotron particles can be situated. The amplitude homogeneity of the supplementary accelerating field is also improved. To the main high-frequency field, covering the whole scope of the acceleration radiuses, an additional accelerating high-frequency field is introduced comprising a part of the scope of the acceleration radiuses. The frequency of this additional accelerating high frequency field is a third harmonics of the main field frequency. The device consists of a supplementary accelerating electrode, connected to an additional resonator and an additional exciting high-frequency generator. 2 cls., 7 figs

  1. Advanced treatment planning using direct 4D optimisation for pencil-beam scanned particle therapy

    Science.gov (United States)

    Bernatowicz, Kinga; Zhang, Ye; Perrin, Rosalind; Weber, Damien C.; Lomax, Antony J.

    2017-08-01

    We report on development of a new four-dimensional (4D) optimisation approach for scanned proton beams, which incorporates both irregular motion patterns and the delivery dynamics of the treatment machine into the plan optimiser. Furthermore, we assess the effectiveness of this technique to reduce dose to critical structures in proximity to moving targets, while maintaining effective target dose homogeneity and coverage. The proposed approach has been tested using both a simulated phantom and a clinical liver cancer case, and allows for realistic 4D calculations and optimisation using irregular breathing patterns extracted from e.g. 4DCT-MRI (4D computed tomography-magnetic resonance imaging). 4D dose distributions resulting from our 4D optimisation can achieve almost the same quality as static plans, independent of the studied geometry/anatomy or selected motion (regular and irregular). Additionally, current implementation of the 4D optimisation approach requires less than 3 min to find the solution for a single field planned on 4DCT of a liver cancer patient. Although 4D optimisation allows for realistic calculations using irregular breathing patterns, it is very sensitive to variations from the planned motion. Based on a sensitivity analysis, target dose homogeneity comparable to static plans (D5-D95  <5%) has been found only for differences in amplitude of up to 1 mm, for changes in respiratory phase  <200 ms and for changes in the breathing period of  <20 ms in comparison to the motions used during optimisation. As such, methods to robustly deliver 4D optimised plans employing 4D intensity-modulated delivery are discussed.

  2. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.

    Science.gov (United States)

    McMullan, G; Vinothkumar, K R; Henderson, R

    2015-11-01

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å(2) for every incident 300 keV e(-)/Å(2). The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e(-)/Å(2) per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles

    International Nuclear Information System (INIS)

    Nie, Zhongquan; Shi, Guang; Li, Dongyu; Zhang, Xueru; Wang, Yuxiao; Song, Yinglin

    2015-01-01

    The intensity distributions near the focus for radially polarized Laguerre–Bessel–Gaussian beams by a high numerical aperture objective in the immersion liquid are computed based on the vector diffraction theory. We compare the focusing properties of the radially polarized Laguerre–Bessel–Gaussian beams with those of Laguerre–Gaussian and Bessel–Gaussian modes. Furthermore, the effects of the optimally designed concentric three-zone phase filters on the intensity profiles in the focal region are examined. We further analyze the radiation forces on Rayleigh particles produced by the highly focused radially polarized Laguerre–Bessel–Gaussian beams using the specially engineered three-zone phase filters. - Highlights: • The tightly focusing of radially polarized LBG beams is examined. • The focusing performances of LBG beams are preferable over that of LG and BG modes. • A bright spot and an optical cage can be formed by special phase modulation. • These special focusing patterns can stably manipulate two types of particles

  4. Characterization of a nondestructive beam profile monitor using luminescent emission

    Directory of Open Access Journals (Sweden)

    A. Variola

    2007-12-01

    Full Text Available The LHC (large hadron collider [LHC study group: LHC. The large hadron collider conceptual design; CERN/AC/95-05] is the future p-p collider under construction at CERN, Geneva. Over a circumference of 26.7 km a set of cryogenic dipoles and rf cavities will store and accelerate proton and ion beams up to energies of the order of 7 TeV. Injection in LHC will be performed by the CERN complex of accelerators, starting from the source and passing through the linac, the four booster rings, the proton synchrotron (PS, and super proton synchrotron (SPS accelerators. One of the main constraints on LHC performance is emittance preservation along the whole chain of CERN accelerators. The accepted relative normalized emittance blowup after filamentation is ±7%. To monitor the beam and the emittance blowup process, a study of different prototypes of nonintercepting beam profile monitors has been performed. In this context a monitor using the luminescent emission of gases excited by ultrarelativistic protons (450 GeV was developed and tested in the SPS ring. The results of beam size measurements and their evolution as a function of the machine parameters are presented. The image quality and resolution attainable in the LHC case have been assessed. A first full characterization of the luminescence cross section, spectrum, decay time, and afterglow effect for an ultrarelativistic proton beam is provided. Some significant results are also provided for lead ion beams.

  5. Plasma simulation by macroscale, electromagnetic particle code and its application to current-drive by relativistic electron beam injection

    International Nuclear Information System (INIS)

    Tanaka, M.; Sato, T.

    1985-01-01

    A new implicit macroscale electromagnetic particle simulation code (MARC) which allows a large scale length and a time step in multi-dimensions is described. Finite mass electrons and ions are used with relativistic version of the equation of motion. The electromagnetic fields are solved by using a complete set of Maxwell equations. For time integration of the field equations, a decentered (backward) finite differencing scheme is employed with the predictor - corrector method for small noise and super-stability. It is shown both in analytical and numerical ways that the present scheme efficiently suppresses high frequency electrostatic and electromagnetic waves in a plasma, and that it accurately reproduces low frequency waves such as ion acoustic waves, Alfven waves and fast magnetosonic waves. The present numerical scheme has currently been coded in three dimensions for application to a new tokamak current-drive method by means of relativistic electron beam injection. Some remarks of the proper macroscale code application is presented in this paper

  6. Zeeman-Stern Gerlach deceleration of supersonic beams of paramagnetic particles with traveling waves of magnetic field

    International Nuclear Information System (INIS)

    Trimeche, Azer

    2013-01-01

    This work focuses on the study and implementation of a new technique of deceleration of a supersonic beam of paramagnetic particles using a co-moving progressive wave of magnetic field. This technique relies on a method of slowing based on Stern-Gerlach forces acting on a paramagnetic system in motion in the presence of a co-propagating magnetic field. This highly innovative approach has the advantage of being applicable to a wide range of species and opens up new opportunities. A suitable theoretical approach is followed, that allows for a direct link between theory, programming of experimental parameters, and experimental results in a systematic, rational and predictive manner. The understanding and control of the dynamics of trapping at a given speed, acceleration and deceleration require decoupling between the transverse and longitudinal effects of the wave. These effects are clearly visible when the added uniform magnetic field limits the transverse effects of the progressive wave of magnetic field. The outlooks for the new Zeeman Stern Gerlach decelerator are numerous. Deceleration paramagnetic molecules, free radicals and neutrons are possible. (author) [fr

  7. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Noll, Daniel [Goethe Univ., Frankfurt (Germany); Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-11-17

    An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.

  8. Depolarization of the 4{sup 1}D{sub 2} state of a helium atom by charged particles in beam plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kazantsev, S.A.; Luchinkina, V.V.; Mezentsev, A.P.; Mustafaev, A.S.; Rebane, V.N.; Rys, A.G.; Stepanov, Yu.L. [St. Petersburg (Russian Federation)

    1994-06-01

    Depolarization of the 4{sup 1}D{sub 2}-2{sup 1}P{sub 1} spectra line of He atoms caused by collisions with charged particles in beam plasma discharge is investigated both experimentally and theoretically. A comparison is made between the values of the rate constant for the collisional breakdown of alignment of helium atoms in the 4{sup 1}D{sub 2} state calculated from the theory of collisional relaxation of atomic polarization moments and determined from the experimentally observed broadening of the Hanle signal contour with the increase of the beam discharge current. 23 refs., 6 figs.

  9. Managing the Real-time Behaviour of a Particle Beam Factory The CERN Proton Synchrotron Complex and its Timing System Principles

    CERN Document Server

    Bau, J C; Lewis, J; Philippe, J

    1998-01-01

    In the CERN 26 Gev Proton Synchrotron (PS) accelerator network, super-cycles are defined as sequences of different kinds of beams produced repetitively [Fig.1]. Each of these beams is characterised by attributes such as particle type, beam energy, its route through the accelerator network, and the final end user. The super-cycle is programmed by means of an editor through which the operational requirements of the physics programme can be described. Each beam in the normal sequence may later be replaced by a set of spare beams automatically depending on software and hardware interlocks and requests presented to the Master Timing Generator (MTG [Glos. 1]). The MTG calculates at run time how each beam is to be manufactured, and sends a telegram [Glos. 3] message to each accelerator, just before each cycle, describing what it should be doing now and during the next cycle. These messages, together with key machine timing events and clocks are encoded onto a timing distribution drop net where they are distributed a...

  10. Molecular beam/Wien filter application to the study of charged soot in flames: Methodology and mass distributions of particles in butadiene flames

    Energy Technology Data Exchange (ETDEWEB)

    Wegert, R.; Wiese, W.; Homann, K.H. (Technische Hochschule Darmstadt (Germany). Inst. fuer Physikalische Chemie)

    1993-10-01

    Charge soot particles during their initial growth have been investigated at 27 mbar in premixed butadiene/oxygen and ethyne/oxygen flames. They were withdrawn in a skimmed nozzle beam and analyzed for their mass distribution by use of a Wien filter (velocity selector) combined with an energy discriminator. The use of this novel device and the method of determining mass distributions are described in detail. Simultaneously, velocity distributions of the relatively heavy soot particles in the seeded'' gas beam were obtained. Computer simulations showing the validity of the method are presented, together with investigations of the influence of the nozzle diameter on the particles' velocity and mass distributions in the beam. Distributions of mass, mainly of positively charged particles between m = 2 [times] 10[sup 3] and 30 [times] 10[sup 3] u, and their change with height in the flame, are reported for sooting butadiene flames with 0.88 < C/O < 0.92 and 38 < velocity of unburned gas, v[sub u] < 46 cm/s. The influence of a pressure change and the distribution of masses for negatively charged particles are also presented. The change in the masses and the increase of the average mass with time can be explained through surface growth by hydrocarbons, such as ethyne, being proportional to the surface area of the soot particles. In the ranges of flame conditions investigated the growth rate does not depend on C/O, but is sensitive to flame temperature, which was dependent on v[sub u] and the burning pressure.

  11. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    International Nuclear Information System (INIS)

    Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Okuda, S.; Fukano, A.

    2014-01-01

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result

  12. LHC Damper Beam commissioning in 2010

    CERN Document Server

    Höfle, W; Schokker, M; Valuch, D

    2011-01-01

    The LHC transverse dampers were commissioned in 2010 with beam and their use at injection energy of 450 GeV, during the ramp and in collisions at 3.5 TeV for Physics has become part of the standard operations pro- cedure. The system proved important to limit emittance blow-up at injection and to maintain smaller than nominal emittances throughout the accelerating cycle. We describe the commissioning of the system step-by-step as done in 2010 and summarize its performance as achieved for pro- ton as well as ion beams in 2010. Although its principle function is to keep transverse oscillations under control, the system has also been used as an exciter for abort gap clean- ing and tune measurement. The dedicated beam position measurement system with its low noise properties provides additional possibilities for diagnostics.

  13. One-dimensional kinetic description of nonlinear traveling-pulse and traveling-wave disturbances in long coasting charged particle beams

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    2015-09-01

    Full Text Available This paper makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius r_{w}. The average axial electric field is expressed as ⟨E_{z}⟩=-(∂/∂z⟨ϕ⟩=-e_{b}g_{0}∂λ_{b}/∂z-e_{b}g_{2}r_{w}^{2}∂^{3}λ_{b}/∂z^{3}, where g_{0} and g_{2} are constant geometric factors, λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t is the line density of beam particles, and F_{b}(z,p_{z},t satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave and traveling-pulse (soliton solutions with time-stationary waveform are examined for a wide range of system parameters extending from moderate-amplitudes to large-amplitude modulations of the beam charge density. Two classes of solutions for the beam distribution function are considered, corresponding to: (i the nonlinear waterbag distribution, where F_{b}=const in a bounded region of p_{z}-space; and (ii nonlinear Bernstein-Green-Kruskal (BGK-like solutions, allowing for both trapped and untrapped particle distributions to interact with the self-generated electric field ⟨E_{z}⟩.

  14. Construction and commissioning of a hadronic test-beam calorimeter to validate the particle-flow concept at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Groll, M.

    2007-06-15

    This thesis discusses research and development studies performed for a hadronic calorimeter concept for the International Linear Collider (ILC). The requirements for a detector for the ILC are de ned by the particle-ow concept in which the overall detector performance for jet reconstruction is optimised by reconstructing each particle individually. The calorimeter system has to have unprecedented granularity to ful l the task of shower separation. The validation of the shower models used to simulate the detector performance is mandatory for the design and optimisation of the ILC detector. The construction and operation of a highly granular test-beam system will serve as a tool for this validation. This motivates the urgent need of research and development on calorimeter prototypes. One possible realisation of the hadronic calorimeter is based on a sampling structure of steel and plastic scintillator with analogue readout, where the sensitive scintillator layers are divided into tiles. A newly developed silicon based photo-detector (SiPM) o ers the possibilities to design such a system. The SiPM is a multi-pixel avalanche photo-diode operated in Geiger mode. Due to its small dimensions it is possible to convert the light produced in the calorimeter to an electronic signal already inside the calorimeter volume. The basic developments on scintillator, tile and photo-detector studies provide the basis for prototype construction. The main part of this thesis will discuss the construction and rst commissioning of an analogue hadronic calorimeter prototype consisting of 8000 channels read out with SiPMs. The smallest calorimeter unit is the tile system including the SiPM. The production and characterisation chain of this unit is an essential step in the construction of a large scale prototype. These basic units are arranged on readout layers, which are already a multi-channel system of 200 channels. In addition, the new photo-detector requires dedicated readout

  15. Arcing and rf signal generation during target irradiation by a high-energy, pulsed neutral particle beam

    International Nuclear Information System (INIS)

    Robiscoe, R.T.

    1988-02-01

    We present a theory describing the dynamics of arc discharges in bulk dielectric materials on board space-based vehicles. Such ''punch-through'' arcs can occur in target satellites irradiated by high-energy (250 MeV), pulsed (100 mA x 10 ms) neutral particle beams. We treat the arc as a capacitively limited avalanche current in the target dielectric material, and we find expressions for the arc duration, charge transport, currents, and discharge energy. These quantities are adjusted to be consistent with known scaling laws for the area of charge depleted by the arc. After a brief account of the statistical distribution of voltages at which the arc starts and stops, we calculate the signal strength and frequency spectrum of the electromagnetic radiation broadcast by the arc. We find that arcs from thick (/similar to/1 cm) targets can generate rf signals detectable up to 1000 km from the target, bu a radio receiver operating at frequency 80 MHz, bandwidth 100 kHz, and detection threshold -105 dBm. These thick-target arc signals are 10 to 20 dB above ambient noise at the receiver, and they provide target hit assessment if the signal spectrum can be sampled at several frequencies in the nominal range 30-200 MHz. Thin-target (/similar to/1 mm) arc signals are much weaker, but when they are detecable in conjunction with thick-target signals, target discrimination is possible by comparing the signal frequency spectra. 24 refs., 12 figs

  16. Use of specific features of electron and positron interactions with monocrystals for the control of high-energy particle beam parameters

    International Nuclear Information System (INIS)

    Bochek, G.L.; Vit'ko, V.I.; Grishaev, I.A.; Kovalenko, G.D.; Kulibaba, V.I.; Morokhovskij, V.L.; Shramenko, B.I.

    1977-01-01

    To study possibilities of using the effect of high energy positron and electron interactions with crystals in practice at the 2 GeV Kharkov lineac the effect of a light particle charge sign on the processes of bremsstrahlung, elastic scattering and revealing ''blocking effect'' in elastic scatterina has been investigated experimentally of 1 GeV electron (positron) beam is directed to a silicon crystal of 185 μkm thickness. Dependence of total bremsstrahlung flow on the angle between the beam direction and crystal axis has shown, that positron bremsstrahlung is minimum (positrons are channelling, but electron bremsstrahlung is maximum, when crystallographic axis direction coincides with particle direction. The process of positron annihilation in flight has been investigated in 300 μkm thick silicon monocrystal. Bremsstrahlung intensity for channeling positrons drops 4.4 times, and intensity of annihilation radiation - 1.6 times as compared to the case, when channeling regime is absent. Experimental data point out the possibility of using monocrystals for control of the parameters of high-energy particle control beams

  17. Determination of mass and velocity distributions of soot particles in a nozzle beam from a flame by means of a Wien filter

    Energy Technology Data Exchange (ETDEWEB)

    Homann, K.H.; Wiese, W. [Institute fuer Physikalische Chemie, Darmstadt (Germany)

    1995-03-01

    Size distributions of soot particles in flames have mainly been determined from electron micrographs of particles. However, there is a limit of about 3 nm below which the uncertainty in particle diameter determined in this way becomes too large for a sufficiently accurate mass determination. For an understanding of the soot formation mechanism it is of particular interest to study the mass growth of the first soot particles after their inception from large hydrocarbon molecules. This concerns a mass range of some 10{sup 3} to some 10{sup 4} u. High-resolution mass spectrometry (MS) has the shortcoming that ionization of soot particles in an ion source does not seem to be very effective. Furthermore, the sensitivity of the usually applied electron multiplier detectors decreases with ion mass in a uncontrollable way. The authors therefore developed a new method for the mass analysis of very small particles. Charged soot particles can be sampled from low-pressure flames via a nozzle beam which generates a current large enough to be measured with a Faraday detector and a sensitive electrometer. Their mass distribution is quasi-continuous so that high mass resolution is not necessary.

  18. Secondary radiation measurements for particle therapy applications: charged particles produced by 4He and 12C ion beams in a PMMA target at large angle

    Science.gov (United States)

    Rucinski, A.; Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Frallicciardi, P. M.; Mancini-Terracciano, C.; Marafini, M.; Mattei, I.; Muraro, S.; Paramatti, R.; Piersanti, L.; Pinci, D.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Patera, V.

    2018-03-01

    Proton and carbon ion beams are used in the clinical practice for external radiotherapy treatments achieving, for selected indications, promising and superior clinical results with respect to x-ray based radiotherapy. Other ions, like \

  19. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de [Institute for Experimental Nuclear Physics (IEKP), KIT, Karlsruhe (Germany); Guthoff, Moritz; Dabrowski, Anne [CERN, Meyrin (Switzerland)

    2016-10-15

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb{sup -1} corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the

  20. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    International Nuclear Information System (INIS)

    Kassel, Florian; Boer, Wim de; Guthoff, Moritz; Dabrowski, Anne

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb -1 corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the CCE in