WorldWideScience

Sample records for blowers nozzles geometria

  1. Optimum geometry for boiler soot blowers nozzles; Geometria optima de toberas para deshollinadores de caldera

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza Garza, Jesus; Garcia Tinoco, Guillermo J.; Martinez Flores, Jose Oscar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    For boiler soot blowing converging-diverging nozzles are employed, whose function is to convert thermal energy of a gas into kinetic energy to remove the deposits that adhere to the heat exchanger surfaces. In this paper are described the experimental equipment and the methods for flow, dynamic pressure, discharge velocity and air expansion factor calculation in each nozzle, as a function of its design geometry, utilizing air from a five stage centrifugal compressor. The graphic analysis of the results, concludes that the most efficient nozzles are not the ones than develop the greatest velocity, but the ones of highest dynamic pressure at the outlet. The nozzle geometry that allows obtaining the maximum dynamic air pressure at the discharge is A{sub 2}/A{sub g}=1.3676 [Espanol] Para el deshollinado de calderas se utilizan las toberas convergentes-divergentes, cuya funcion es convertir la energia termica de un gas en energia cinetica para remover los depositos que se adhieren a las superficies de intercambio de calor. En este trabajo se describen el equipo experimental y los metodos de calculo para flujo, presion dinamica, velocidad a la descarga y factor de expansion del aire en cada tobera, como funcion de su geometria de diseno. Durante la experimentacion se evaluaron siete disenos diferentes de toberas, empleando aire de un compresor centrifugo de cinco etapas. Del analisis grafico de los resultados, se concluye que las toberas mas eficientes no son las que desarrollan mayor velocidad sino las de mayor presion dinamica de la salida. La geometria de tobera que permite obtener la maxima presion dinamica del aire a la descarga es A{sub 2}/A{sub g} = 1.3676.

  2. Geometria responsiva

    Directory of Open Access Journals (Sweden)

    Graziano Mario Valenti

    2012-06-01

    Full Text Available Il progetto industriale, così come quello architettonico, manifesta un’attenzione crescente verso comportamenti di tipo “responsivo”. Gli oggetti, sia nella piccola scala del Design, sia nella più grande scala dell’architettura, sono sempre più frequentemente dotati di un’intelligenza digitale, una logica comportamentale che consente loro di interagire con le persone che li fruiscono. Gli oggetti e gli spazi a carattere “responsivo” caratterizzeranno senza dubbio il prossimo futuro e questo processo di trasformazione riguarderà in modo particolare anche la forma e dunque la geometria che la forma stessa astrae e descrive. E’ necessario dunque un nuovo modo di immaginare e di progettare modelli dinamici. La modellazione parametrica è un valido ausilio in questo processo, ma il progettista, più del solito, dovrà necessariamente confrontarsi con la geometria. Lo studio qui illustrato sperimenta la parametrizzazione finalizzata alla trasformazione dinamica di superfici piane in superfici coniche.

  3. Ensino de geometria descritiva: inovando na metodologia

    OpenAIRE

    Kopke Regina Coeli Moraes

    2001-01-01

    Com base na observação, durante anos de magistério superior, na área de desenho, dos alunos de Engenharia, Matemática, Arquitetura e Artes, quanto às dificuldades encontradas por eles no aprendizado de desenho, em especial da Geometria Descritiva, é que nos propusemos, em 1999, lecionar essa disciplina para os cursos de Arquitetura e Artes, adotando uma metodologia diferente da convencional, para despertar, no aluno, o gosto pela disciplina e o desenvolvimento de uma habilidade pouco trabalha...

  4. VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER

    Energy Technology Data Exchange (ETDEWEB)

    Shixiao Wang; Herman Wiegman; Wilson Wu; John Down; Luana Iorio; Asha Devarajan; Jing Wang; Ralph Carl; Charlie Stephens; Jeannine Jones; Paul Szczesny

    2001-11-14

    This comprehensive topical report discusses the key findings in the development of a intelligent integrated blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented and a prototype blower design is presented. A comparison of the proposed blower to that of three typical units from the industry is presented. The design of the blower housing is also addressed and the impact of size limitations on static efficiency is discussed. Issues of air flow controllability in the rearward inclined blower is addressed and a solution to this problem is proposed. Several motor design options are discussed including inside-out radial flux designs and novel axial flux designs, all are focused on the various blower needs. The control of the motor-blower and airflow through the use of a high density inverter stage and modern digital signal processor is presented. The key technical challenges of the approach are discussed. The use of the motor as a sensor in the larger heating/ventilating system is also discussed. Diagnostic results for both the motor itself and the blower system are presented.

  5. VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER; TOPICAL

    International Nuclear Information System (INIS)

    This comprehensive topical report discusses the key findings in the development of a intelligent integrated blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented and a prototype blower design is presented. A comparison of the proposed blower to that of three typical units from the industry is presented. The design of the blower housing is also addressed and the impact of size limitations on static efficiency is discussed. Issues of air flow controllability in the rearward inclined blower is addressed and a solution to this problem is proposed. Several motor design options are discussed including inside-out radial flux designs and novel axial flux designs, all are focused on the various blower needs. The control of the motor-blower and airflow through the use of a high density inverter stage and modern digital signal processor is presented. The key technical challenges of the approach are discussed. The use of the motor as a sensor in the larger heating/ventilating system is also discussed. Diagnostic results for both the motor itself and the blower system are presented

  6. Ensino de geometria descritiva: inovando na metodologia

    Directory of Open Access Journals (Sweden)

    Regina Coeli Moraes Kopke

    2001-03-01

    Full Text Available Com base na observação, durante anos de magistério superior, na área de desenho, dos alunos de Engenharia, Matemática, Arquitetura e Artes, quanto às dificuldades encontradas por eles no aprendizado de desenho, em especial da Geometria Descritiva, é que nos propusemos, em 1999, lecionar essa disciplina para os cursos de Arquitetura e Artes, adotando uma metodologia diferente da convencional, para despertar, no aluno, o gosto pela disciplina e o desenvolvimento de uma habilidade pouco trabalhada na escola: a visão espacial. Mostrar para os alunos que essa disciplina não é difícil, mas apenas diferente daquilo que estudaram até então, tornou-se nossa meta. A visão espacial é uma habilidade mental localizada no lado direito do cérebro e, assim, quanto mais lúdica for esta aprendizagem, será mais bem assimilada. A proposta é iniciada no sentido de se trabalhar primeiro com sólidos: neles estarão os pontos, retas e planos normalmente abordados na metodologia convencional, nessa ordem. Como conclusão, tem-se que o importante é ressaltar o grande avanço que a Geometria Descritiva traz para quem quer representar graficamente qualquer coisa. Onde há planejamento, projeto e representação gráfica, aí estará a Geometria Descritiva.During many years observing the teaching of design at the Engineering, Mathematics, Architeture and Arts courses, we can note the difficulties of the students to learn it, specially the descriptive geometry. Because of that, we decided to teach this discipline to the Architeture and Arts courses, using a new metodology to make the students motivated to study and to learn, and trying to develop their their spatial vision. We want to show to the students that this discipline is not so difficult as they think, but show them that is only different. The spatial vision is a mental skill found at the right side of the brain and the more soft the learning is, the more it is assimilated by the brain. The

  7. Air injection vacuum blower noise control

    Energy Technology Data Exchange (ETDEWEB)

    Mose, Tyler L.A.; Faszer, Andrew C. [Noise Solutions Inc. (Canada)], email: tmose@noisesolutions.com, email: afaszer@noisesolutions.com

    2011-07-01

    Air injection vacuum blowers, with applications in waste removal, central vacuum systems, and aeration systems, are widely used when high vacuum levels are required. Noise generated by those blowers must be addressed for operator health and residential disturbance. This paper describes a project led by Noise Solutions Inc., to identify noise sources in a blower, and design and test a noise mitigation system. First the predominant noise sources in the blower must be determined, this is done with a sound level meter used to quantify the contribution of each individual noise source and the dominant tonal noise from the blower. Design of a noise abatement system must take into account constraints arising from blower mobile use, blower optimal performance, and the resulting overall vibration of the structure. The design was based on calculations from the sound attenuation of a reactive expansion chamber and two prototypes of custom silencers were then tested, showing a significant noise reduction both in total sound levels and tonal noise.

  8. Regenerative Blower for EVA Suit Ventilation Fan

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  9. Il ruolo della geometria descrittiva nel graphic design

    Directory of Open Access Journals (Sweden)

    Stefano Chiarenza

    2012-06-01

    Full Text Available Frequentemente si è discusso sul ruolo della geometria descrittiva nel processo di analisi e di configurazione dell’architettura, riconoscendovi un indiscusso valore anche nell’era dell’informatica. Meno indagato appare invece il ruolo di questa disciplina nel campo del graphic design, un settore nel quale l’immagine è essenza della comunicazione.Nella definizione, allora, di una immagine che deve assurgere a ruolo di comunicazione pluridirezionale il contributo della geometria appare sostanziale.Il presente contributo sulla base di una esperienza didattica e di ricerca, specificamente orientata al graphic design, intende mettere in luce i profondi legami tra la strutturazione dell’immagine grafica (lettering, corporate image, brand image, product image etc. e la geometria proiettiva e descrittiva.

  10. Stepped nozzle

    Science.gov (United States)

    Sutton, George P.

    1998-01-01

    An insert which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment.

  11. 33 CFR 154.826 - Vapor compressors and blowers.

    Science.gov (United States)

    2010-07-01

    ...) Excessive shaft bearing temperature. (d) If a centrifugal compressor, fan, or lobe blower handles vapor in....826 Vapor compressors and blowers. (a) Each inlet and outlet to a compressor or blower which handles... system acceptable to the Commandant (CG-522). (b) If a reciprocating or screw-type compressor...

  12. Production Facility Prototype Blower Installation Report

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-28

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating.  Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere.  With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig).  An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing.  This report describes this blower/motor/ppressure vessel package and the status of the facility preparations.

  13. Simplified multizone blower door techniques for multifamily buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This research focused on the applicability of (a) two-blower-door and (b) single-blower-door multi-zone pressurization techniques for estimating the air leakage characteristics of New York State multi-family apartment buildings. The research also investigated the magnitude of external leakage area in multi-family buildings and used computer simulations to estimate the effect of decreasing external and internal leakage areas on air infiltration rates. This research investigates whether two blower doors can be used to determine the ELA of the exterior envelope and the ELA of partitions. Two multi-zone versions of the single-blower-door pressurization method are also examined.

  14. Experimental investigation on a one-step centripetal blower as a model of a blower to ventilate cooling towers

    International Nuclear Information System (INIS)

    Model tests were performed on a one-step centripetal blower (impeller external diameter of 1 m) whose aim was to clarify whether this kind of blower is suitable to ventilate a cooling tower. Aside from the investigation of the general operational behaviour, it was above all important in the tests to investigate the sensitivity of the centripetal blower to rotating tearing with regular flow as well as with side wind, as the main difficulty was suspected in controlling the blower with side wind. (orig./LN)

  15. Operating experience with main blowers with variable blade angles

    Energy Technology Data Exchange (ETDEWEB)

    Bogatov, I.V.; Spivak, V.A.

    1986-05-01

    Efficiency of blowers used for ventilation in underground coal mines in the USSR in many cases is below the statistical efficiency level. Efficiency of 30% of blowers does not exceed 60%. New design of blower blades developed and tested in the USSR is an easy and economic way for increasing blower efficiency. Each blade consists of 2 sections: a stationary section and a section with a variable-incidence angle. The incidence angle depends on local conditions and requirements for ventilation. During performance tests of VTsZ-32 blowers in the PKAA mine an angle of blade incidence of 20 or 30 degrees was used. This guaranteed air pressure of 6,000 Pa and air output of 120 m/sup 3//s. Increased blade incidence angle was used in summer and during periods of increased methane emission. In winter angle of blade incidence was reduced to 10 degrees, blower output ranged from 80 to 90 m/sup 3//s, air pressure declined to 3,800 Pa. Using blower blades with variable-incidence angle reduced energy consumption, ventilation cost and investment.

  16. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    OpenAIRE

    2003-01-01

    This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.Although the blowers showed very satisfact...

  17. Nozzle Development

    Science.gov (United States)

    2008-01-01

    Shown is the installation of O-rings in the aft nozzle section in support of the Ares/CLV First Stage at ATK in Utah. This image is extracted from a high definition video file and is the highest resolution available

  18. Blower door method in radon diagnostics

    International Nuclear Information System (INIS)

    The idea of the radon transfer factor is commonly presented as the ratio of the building indoor radon concentration to the subsoil radon concentration. Ventilation and the pressure field over the whole building envelope, which varies in a time over a very wide range even in the same building, poses a major problem. Therefore a new approach based on the controlled conditions determining the soil air infiltration was developed. Radon in soil gas infiltrates into the building indoor environment particularly through cracks and other leakages in the structure providing the building contact with its subsoil. The infiltration is driven by the air pressure difference on the two sides of the structure. The pressure difference is caused by the stack effect and its value ranges from 1-2 Pa in family houses to some tens of Pa in higher buildings. Unfortunately, the pressure difference is very unstable under normal conditions, being affected by a host of parameters such as the height of the building, distribution and geometry of leakages, outdoor-indoor temperature difference, etc. Wind direction and velocity of the wind plays a major role. In our research the blower door method was applied in combination with a monitoring of the indoor radon concentration. The indoor-outdoor pressure difference and the pressure difference at the two sides of the screen shutter of the blower door fan are also measured. The blower door ensures a constant, evaluable air exchange rate. The fan power is regulated to provide a stable pressure difference within the range of roughly 5-100 Pa. This approach provides very well defined conditions allowing us to apply a constant ventilation-constant radon supply model. In such circumstances the dynamical changes of radon concentrations are very fast, and therefore a unique continual radon monitor was applied. The radon supply rate is evaluated from the radon steady state of the time course of radon concentration. The dependence of the radon supply rate on

  19. EC motors for blowers; EC-Motoren fuer Luefter

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Thomas; Reiff, Ellen-Christine

    2009-10-15

    There are highly flexible commercial ventilation and air conditioning systems for server rooms which combine energy savings with optimum room air quality. EC blowers contribute to this and reduce also body sound. (orig./GL)

  20. Dynamical system analysis of unstable flow phenomena in centrifugal blower

    Directory of Open Access Journals (Sweden)

    Garcia David

    2015-09-01

    Full Text Available Methods of dynamical system analysis were employed to analyze unsteady phenomena in a centrifugal blower. Pressure signals gathered at different control points were decomposed into their Principal Components (PCs by means of Singular Spectrum Analysis (SSA. Certain number of PCs was considered in the analysis based on their statistical correlation. Projection of the original signal onto its PCs allowed to draw the phase trajectory that clearly separated non-stable blower working conditions from its regular operation.

  1. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    Directory of Open Access Journals (Sweden)

    Les Gutzwiller

    2003-01-01

    Full Text Available This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.

  2. Sandblasting nozzle

    Science.gov (United States)

    Perkins, G. S.; Pawlik, E. V.; Phillips, W. M. (Inventor)

    1981-01-01

    A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing.

  3. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Lacey, Benjamin Paul; York, William David; Stevenson, Christian Xavier

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  4. On sound generation mechanism by a centrifugal blower

    Science.gov (United States)

    Wu, Sean

    2002-05-01

    Centrifugal blower noise has often been modeled as dipoles and quadrupoles to account for the effects of fluid-structure interaction and turbulence as the impeller rotates. However, many experimental results have shown that sound powers from centrifugal blowers increase with speed to the power of 4-6, which implies the existence of a monopole [Lighthill, Proc. R. Soc., Ser. A 222, 564-587 (1952)]. This paper demonstrates that such a monopole indeed exists for a blower running inside a heating ventilation and air-conditioning (HVAC) unit of a vehicle. Tests indicate that this monopole is producible by a volumetric fluctuation due to an unsteady rotor. When the blower is operated at the voltage power input specified by the car manufacturer, the sound power increases with the speed to the power of 4. When the blower is installed on a stable shaft and running at the same voltage power input, the volumetric fluctuations are significantly reduced and the sound power increases with speed to the power of 6. This implies that the monopole sound has been effectively replaced by the dipole sound. Since dipole is less effective in generating sound at low speeds than monopole, eliminating rotor fluctuations can lower vehicle HVAC noise levels.

  5. Gas only nozzle

    Science.gov (United States)

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  6. Uji Performansi Getaran Mekanis dan Kebisingan Mist Blower Yanmar MK 150-B

    OpenAIRE

    Ahmad Noval Irvani; Mad Yamin

    2012-01-01

    Mist blower is one of the mechanization tool of agriculture considered as a tool that can assist humans in fertilizer and pesticides spreading activities. Levels of motor speed in the used mist blower were 1915, 4009, and 7227 rpm. Vibration measurements were conducted on the engine and handlebar control mist blower with the three-dimensional axes namely X, Y, and Z. Mist blower noise measurements were performed on the engine, operator's right ear and left ear. Based on the analysis of vibrat...

  7. Nozzles: selection and sizing

    OpenAIRE

    Grisso, Robert D. (Robert Dwight), 1956-; Hipkins, Patricia A.; Askew, Shawn; Hipkins, Perry Lloyd, 1945-; McCall, David Scott

    2013-01-01

    Covers nozzle description, recommended use for common nozzle types, and orifice sizing for agricultural and turf sprayers. Proper selection of a nozzle type and size is essential for correct and accurate pesticide application. The nozzle is a major factor in determining the amount of spray applied to an area, uniformity of application, coverage obtained on the target surface, and amount of potential drift.

  8. Building America Top Innovations 2013 Profile – High-Performance Furnace Blowers

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    This Top Innovations profile describes Lawrence Berkeley National Laboratory's work with furnace blower design that led to the creation of a standard for rating blowers, credits for the use of good blowers in Federal tax credit programs and energy codes, and consideration in current federal rulemaking procedures.

  9. Nozzle airfoil having movable nozzle ribs

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  10. La geometria del còdex 80 (s. XII de la catedral de Tortosa

    Directory of Open Access Journals (Sweden)

    Lluís i Ginovart, Josep

    2015-12-01

    Full Text Available The geometry in codex 80 of the Capitular Archive has traditionally been understood as a complete text and attributed to Gerbert of Aurillac (c. 940-1003. From a new reading of the text, we can say that it is a miscellaneous writing about geometry, composed of three independent parts: one containing the Geometria Incerti Auctoris apocryphical by Gerbert of Aurillac (c. 940-1003; another one is a fragment of De Nuptiis Philologiae et Mercurii by Martianus Capella (fl . 430 from Ergasticis Schematibus of Book VII of the Geometry; and finally there is a gloss to the Elementa by Euclides (c. 325-c. 265 bC. by Al-Ḥajjāj ibn Yūsuf ibn Maṭar (786-833. The interpretation of the geometrical propositions provides knowledge about the indirect measure of places which are inaccessible using medieval instrumental, the astrolabe, mirrors, cane and squares.[ct] La geometria del còdex 80 de l’Arxiu Capitular de Tortosa ha estat tradicionalment atribuïda, com un text únic, a Gerbert d’Orlhac (c. 940-1003. Una nova lectura del text ens permet assegurar que es tracta d’un text de caràcter miscel·lani de geometria, compost per tres textos independents: una part pertany a la Geometria Incerti Auctoris apòcrifa de Gerbert d’Orlhac; una altra, al fragment De Nuptiis Philologiae et Mercurii de Marcià Capella (fl . 430 Ergasticis Schematibus, del llibre VII de la Geometria; i, finalment, s’hi llegeix una glossa als Elementa d’Euclides (c. 325-c. 265 aC. d’Al-Ḥajjāj ibn Yūsuf ibn Maṭar (786-833. La interpretació de les proposicions de la geometria dóna el coneixement de la mesura indirecta de llocs als quals no es pot accedir amb l’instrumental medieval, és a dir, amb astrolabi, miralls, bastons i escaires.

  11. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  12. Nuove applicazioni della geometria descrittiva: le PQ mesh nell’architettura contemporanea

    Directory of Open Access Journals (Sweden)

    Leonardo Baglioni

    2012-06-01

    Full Text Available I modellatori informatici oggi a disposizione di tutti i progettisti, hanno portato ad un profondo cambiamento dell’intero processo del fare architettura. Tra i nuovi temi delle applicazioni di Geometria descrittiva, va sicuramente annoverato il passaggio della approssimazione delle superfici continue in superfici discrete. Ogni superficie continua può essere discretizzata in una superficie poliedrica composta da facce piane. L’attenzione dei progettisti si sta dirigendo verso le superfici piane quadrilatere (PQ mesh, che permettono la generazione di mesh parallele. Lo studio delle PQ mesh applicate all’architettura sembra essere una naturale evoluzione del grande tema dei poliedri, argomento ampiamente radicato nella storia della matematica e che trova nel computer una linfa vitale che alimenta, oggi più che mai, l’intera area della Geometria descrittiva.

  13. Architettura e/è Geometria: dalla forma architettonica alla costruzione geometrica

    Directory of Open Access Journals (Sweden)

    Mariateresa Galizia

    2012-06-01

    Full Text Available L’avvento delle tecnologie digitali di acquisizione dati 3D ha proiettato gli studiosi dell’architettura in una dimensione del tutto inaspettata. Milioni di punti hanno travolto ricercatori e professionisti ancora culturalmente impreparati ad affrontare la rivoluzione digitale nel campo del Rilievo. Le nuvole di punti acquisite documentano e allo stesso tempo rappresentano la spazialità degli oggetti reali, tuttavia, nulla rivelano su forma e geometria, architettura e materia se non attraverso una successiva interpretazione. Il contributo vuole soffermarsi sulle implicazioni teoriche e applicative del processo di interpretazione dei dati acquisiti per la comprensione della geometria e sulla funzione euristica della modellazione digitale, nel passaggio dal “noto all’ignoto”, nella “ri-scoperta” della forma e quindi dell’idea progettuale.

  14. Spiral cooled fuel nozzle

    Science.gov (United States)

    Fox, Timothy; Schilp, Reinhard

    2012-09-25

    A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.

  15. Performance Enhancement of Dual-Inlet Centrifugal Blower by Optimal Design of Splitter

    International Nuclear Information System (INIS)

    The shape of an impeller splitter for a dual-inlet centrifugal blower was optimized to enhance the blower performance. Two design variable, the normalized chord and pitch of a splitter, were used to evaluate the blower performance and internal flow fields based on the three-dimensional flow analysis. The blower performance obtained using this numerical simulation had a maximum error of 4 percent compared to that in an experiment at the design flow condition. The shape optimization of the splitter successfully increased the blower efficiency and pressure by 3.65 and 1.14 percent compared to the reference values. The blower performance was increased by reducing the flow separation near the blade suction surface by optimizing the shape of the splitter, which produced a pressure increase at the outlet of the volute casing

  16. Performance Enhancement of Dual-Inlet Centrifugal Blower by Optimal Design of Splitter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Sung; Jang, Choon Man [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2014-12-15

    The shape of an impeller splitter for a dual-inlet centrifugal blower was optimized to enhance the blower performance. Two design variable, the normalized chord and pitch of a splitter, were used to evaluate the blower performance and internal flow fields based on the three-dimensional flow analysis. The blower performance obtained using this numerical simulation had a maximum error of 4 percent compared to that in an experiment at the design flow condition. The shape optimization of the splitter successfully increased the blower efficiency and pressure by 3.65 and 1.14 percent compared to the reference values. The blower performance was increased by reducing the flow separation near the blade suction surface by optimizing the shape of the splitter, which produced a pressure increase at the outlet of the volute casing.

  17. Design and Development of a Regenerative Blower for Space Suit Ventilation

    Science.gov (United States)

    Izenson, Mike; Chen, Weibo; Paul, Heather

    2010-01-01

    The ventilation subsystem in future space suits will require a dedicated ventilation fan. The unique requirements for the ventilation fan, including stringent safety requirements and the ability to increase output to operate in buddy mode, combine to make a regenerative blower an attractive technology choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for a ventilation subsystem for future space suit life support. Analysis methods were developed for the blower s complex internal flows and impeller geometries were identified that enable significant improvements in blower efficiency. Performance predictions were verified by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. A compact motor/controller was developed to drive the blower efficiently at low rotating speed (4500 rpm). Finally, a low-pressure oxygen test loop was assembled to demonstrate the blower s reliability under prototypical conditions.

  18. Design and Development of a Regenerative Blower for EVA Suit Ventilation

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Hill, Roger W.; Phillips, Scott D.; Paul, Heather L.

    2011-01-01

    Ventilation subsystems in future space suits require a dedicated ventilation fan. The unique requirements for the ventilation fan - including stringent safety requirements and the ability to increase output to operate in buddy mode - combine to make a regenerative blower an attractive choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. We have developed analysis methods for the blower s complex, internal flows and identified impeller geometries that enable significant improvements in blower efficiency. We verified these predictions by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. We have developed a compact motor/controller to drive the blower efficiently at low rotating speed (4500 rpm). Finally, we have assembled a low-pressure oxygen test loop to demonstrate the blower s reliability under prototypical conditions.

  19. Sistem Pemeliharaan Dan Cara Kerja Peralatan Blower Di Pabrik Mini PTKI – Medan

    OpenAIRE

    Manurung, Benari H.

    2012-01-01

    Pendidikan Teknologi Kimia Industri Medan memiliki suatu pabrik mini yang di dalamnya terdapat banyak peralatan – peralatan mekanik yang sering di gunakan di bidang industri, salah satu dari peralatan tersebut adalah Blower. Blower merupakan mesin atau alat yang digunakan untuk menaikkan atau memperbesar tekanan udara atau gas, yang akan dialirkan dalam suatu ruangan tertentu, juga sebagai pengisapan atau pemvakuman udara atau gas yang tertentu. Pada blower, cara kerja yang terjadi memi...

  20. Time-frequency analysis of the Surge Onset in the Centrifugal Blower

    Science.gov (United States)

    Liskiewicz, Grzegorz; Horodko, Longin

    2015-09-01

    Time frequency analysis of the surge onset was performed in the centrifugal blower. A pressure signal was registered at the blower inlet, outlet and three locations at the impeller shroud. The time-frequency scalograms were obtained by means of the Continuous Wavelet Transform (CWT). The blower was found to successively operate in four different conditions: stable working condition, inlet recirculation, transient phase and deep surge. Scalograms revealed different spectral structures of aforementioned phases and suggest possible ways of detecting the surge predecessors.

  1. Response to centrifugal and axi-vane blowers to large pressure transients

    International Nuclear Information System (INIS)

    The effect of large pressure pulses on the operation of centrifugal and axi-vane blowers of the types found in ventilation systems used in the mining and nuclear industries was investigated using the Los Alamos National Laboratory/New Mexico State University fluid dynamics test facility. Three blowers were tested for both quasi-steady and transient pressures: a 24-in. and a 12-in. centrifugal blower and a 33-in. axi-vane blower were subjected to pressure pulses at their exhaust and inlet, which caused backflow and outrunning flow, respectively. Performance curves were obtained for the first, second, and fourth quadrants

  2. Turbine nozzle positioning system

    Science.gov (United States)

    Norton, Paul F.; Shaffer, James E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  3. Gas-cooled reactor coolant circulator and blower technology

    International Nuclear Information System (INIS)

    In the previous 17 meetings held within the framework of the International Working Group on Gas-Cooled Reactors, a wide variety of topics and components have been addressed, but the San Diego meeting represented the first time that a group of specialists had been convened to discuss circulator and blower related technology. A total of 20 specialists from 6 countries attended the meeting in which 15 technical papers were presented in 5 sessions: circulator operating experience I and II (6 papers); circulator design considerations I and II (6 papers); bearing technology (3 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  4. Turbine nozzle/nozzle support structure

    Science.gov (United States)

    Boyd, Gary L.; Shaffer, James E.

    1997-01-01

    An axial flow turbine's nozzle/nozzle support structure having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse.

  5. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-01

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.

  6. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    International Nuclear Information System (INIS)

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.

  7. Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; McCormick, John; Paul, Heather L.; Jennings, Mallory A.

    2012-01-01

    Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. The blower includes a custom-designed motor that has significantly improved its efficiency. We have measured the blower s head/flow performance and power consumption under conditions that simulate both the normal and buddy mode operating points. We have operated the blower for TBD hours and demonstrated safe operation in an oxygen test loop at prototypical pressures. We also demonstrated operation with simulated lunar dust.

  8. Gas only nozzle fuel tip

    Science.gov (United States)

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  9. A utilização de software educativo na aprendizagem da Geometria por alunos do 3º Ciclo do Ensino Básico

    OpenAIRE

    Cadavez, Cristina Maria Pinto de Freitas

    2013-01-01

    Este estudo teve como objetivo geral estudar a influência da utilização de um programa de geometria dinâmica, o Geogebra, na aprendizagem de conceitos geométricos, pelos alunos do 3.º ciclo do ensino básico. Como objetivo específico foi definido a avaliação da integração dos ambientes de geometria dinâmica como estratégia de ensinoaprendizagem da geometria. O trabalho experimental decorreu em Janeiro e Fevereiro de 2012, numa escola do distrito de Bragança. A população constitu...

  10. Robótica Educacional – Geometria da direção de triciclos com “drive governor”

    Directory of Open Access Journals (Sweden)

    Fred Santos

    2015-07-01

    Full Text Available Esse artigo aborda o projeto de robô móvel em forma de triciclo revelando características peculiares da sua geometria de direção permitindo compreender detalhes de seu dimensionamento a partir do conhecimento do ambiente com o qual ele irá interagir.

  11. Residential Forced Air System Cabinet Leakage and Blower Performance

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  12. Pumping characteristics of roots blower pumps for light element gases

    International Nuclear Information System (INIS)

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H2, D2 and He) and for N2, in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m3/s), two EH250s (ibid. 250 m3/s) and a backing pump (ibid. 100 m3/s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D2 and N2 were 1200 and 1300 m3/h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  13. Improving quality of assembly of mine ventilation blowers

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, V.A.

    1984-01-01

    Results of a study by Dongiprouglemash of reasons for substandard performance of main ventilation blowers are described. Mean time between failures is 12-20 months, and this could be improved by 1.8-2.5 times. A table illustrating common faults and their consequences is given, and two examples from Donbass mines are described. Most common faults are poor alignment of bearing due e.g. to inadequate contact between concrete base and bearing shell (reduction of bearing life from 5-10 years to less than 1 year), stepped or otherwise incorrect shaping of concrete in air flow part (2-8% pressure reduction and 3-8% efficiency reduction), uneven labyrinth gaps, and incorrect setting of guide vanes (in given example leading to vibration, noise, overheating of bearings and 30% increase in electricity consumption).

  14. SCOUT Nozzle Data Book

    Science.gov (United States)

    Shieds, S.

    1976-01-01

    Available analyses and material property information are summarized relevant to the design of four rocket motor nozzles currently incorporated in the four solid propellant rocket stages of the NASA SCOUT launch vehicle. The nozzles discussed include those for the following motors: (1) first stage - Algol IIIA; (2) second stage - Castor IIA; (3) third stage - Antares IIA; and (4) fourth stage - Altair IIIA. Separate sections for each nozzle provide complete data packages. Information on the Antares IIB motor which had limited usage as an alternate motor for the third stage is included.

  15. Nozzle for a turbomachine

    Science.gov (United States)

    Lacy, Benjamin Paul; Kraemer, Gilbert Otto; Yilmaz, Ertan; Melton, Patrick Benedict

    2012-10-30

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, and an injection nozzle operatively connected to the combustor. The injection nozzle includes a main body having a first end section that extends to a second end section to define an inner flow path. The injection nozzle further includes an outlet arranged at the second end section of the main body, at least one passage that extends within the main body and is fluidly connected to the outlet, and at least one conduit extending between the inner flow path and the at least one passage.

  16. Controlled overspray spray nozzle

    Science.gov (United States)

    Prasthofer, W. P. (Inventor)

    1981-01-01

    A spray system for a multi-ingredient ablative material wherein a nozzle A is utilized for suppressing overspray is described. The nozzle includes a cyclindrical inlet which converges to a restricted throat. A curved juncture between the cylindrical inlet and the convergent portion affords unrestricted and uninterrupted flow of the ablative material. A divergent bell-shaped chamber and adjustable nozzle exit B is utilized which provides a highly effective spray pattern in suppressing overspray to an acceptable level and producing a homogeneous jet of material that adheres well to the substrate.

  17. Enhancement of performance by blade optimization in two-stage ring blower

    Science.gov (United States)

    Jang, Choon-Man; Han, Gi-Young

    2010-10-01

    This paper describes the shape optimization of an impeller used for two-stage high pressure ring blower. Two shape variables, which are used to define an impeller shape, are introduced to increase the blower performance. The pressure of a blower is selected as an object function, and the blade optimization is performed by a response surface method. Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of object function for the training data. Relatively good agreement between experimental measurements and numerical simulation is obtained in the present study. Throughout the shape optimization, it is found that a hub height is effective to increase pressure in the ring blower. The pressure rise for the optimal two-stage ring blower is successfully increased up to 1.86% compared with that of reference at the design flow rate. Local recirculation flow having low velocity is formed in both sides of the impeller outlet by different flow direction of the inlet and outlet of the impeller. Detailed flow field inside the ring blower is also analyzed and discussed.

  18. MEMS-Based Spinning Nozzle

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2003-01-01

    A nozzle body and assembly for delivering atomized fuel to a combustion chamber. The nozzle body is rotatably mounted onto a substrate. One or more curvilinear fuel delivery channels are in flow communication with an internal fuel distribution cavity formed in the nozzle body. Passage of pressurized fuel through the nozzle body causes the nozzle body to rotate. Components of the nozzle assembly are formed of silicon carbide having surfaces etched by deep reactive ion etching utilizing MEMS (micro-electro-mechanical systems) technology. A fuel premix chamber is carried on the substrate in flow communication with a supply passage in the nozzle body.

  19. Laser cutting nozzle

    Science.gov (United States)

    Ramos, Terry J.

    1984-01-01

    A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece. BACKGROUND OF THE INVENTION

  20. Ceramic Cerami Turbine Nozzle

    Science.gov (United States)

    Boyd, Gary L.

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  1. Ceramic turbine nozzle

    Science.gov (United States)

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  2. Time-frequency analysis of the Surge Onset in the Centrifugal Blower

    Directory of Open Access Journals (Sweden)

    Liskiewicz Grzegorz

    2015-09-01

    Full Text Available Time frequency analysis of the surge onset was performed in the centrifugal blower. A pressure signal was registered at the blower inlet, outlet and three locations at the impeller shroud. The time-frequency scalograms were obtained by means of the Continuous Wavelet Transform (CWT. The blower was found to successively operate in four different conditions: stable working condition, inlet recirculation, transient phase and deep surge. Scalograms revealed different spectral structures of aforementioned phases and suggest possible ways of detecting the surge predecessors.

  3. Mechanically modulated nozzles

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    Praha : Ústav termomechaniky AV ČR, v. v. i., 2015 - (Šimurda, D.; Bodnár, T.), s. 199-220 ISBN 978-80-87012-55-0. ISSN 2336-5781. [Topical Problems of Fluid Mechanics 2015. Praha (CZ), 11.02.2015-13.02.2015] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : nozzles * needle nozzles * flow separation Subject RIV: BK - Fluid Dynamics

  4. Metal atomization spray nozzle

    Science.gov (United States)

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  5. Atomizing nozzle and process

    Science.gov (United States)

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  6. Inlet nozzle assembly

    Science.gov (United States)

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  7. REACTOR NOZZLE ASSEMBLY

    Science.gov (United States)

    Capuder, F.C.; Dearwater, J.R.

    1959-02-10

    An improved nozzle assembly useful in a process for the direct reduction of uranium hexafluoride to uranium tetrafluoride by means of dissociated ammonia in a heated reaction vessel is descrlbed. The nozzle design provides for intimate mixing of the two reactants and at the same time furnishes a layer of dissociated ammonia adjacent to the interior wall of the reaction vessel, thus preventing build-up of the reaction product on the vessel wall.

  8. Response of centrifugal blowers to simulated tornado transients, July-September 1981

    International Nuclear Information System (INIS)

    During this quarter, quasi-steady and dynamic testing of the 24-in. centrifugal blower was completed using the blowdown facility located at New Mexico State University. The data were obtained using a new digital data-acquisition system. Software was developed at the Los Alamos National Laboratory to reduce the dynamic test data and create computer-generated movies showing the dynamic performance of the blower under simulated tornado transient pressure conditions relative to its quasi-steady-state performance. Currently, quadrant-four (outrunning flow) data have been reduced for the most severe and a less severe tornado pressure transient. The results indicate that both the quasi-steady and dynamic blower performance are very similar. Some hysteresis in the dynamic performance occurs because of rotational inertia effects in the blower rotor and drive system. Currently quadrant-two (backflow) data are being transferred to the LTSS computer system at Los Alamos and will be reduced shortly

  9. Using jet blowers in order to increase the intake capacity of pumping wells

    Energy Technology Data Exchange (ETDEWEB)

    Voznyy, V.R.; Goy, I.M.; Kifor, B.M.; Lotovskiy, V.N.; Yatsura, Ya.V.

    1983-01-01

    Methods for increasing the intake capacity of pumping wells are analyzed and a new technology is proposed for clearing the near shaft zone of a stratum using jet blowers. Experience in operations to restore the filtration properties of productive levels by the complex effect of acetic processing and cyclic action using the jet blowers on a stratum is described. Conclusions and recommendations for using the developed technology for clearing the near shaft zone of a stratum are given.

  10. OPTIMIZING IMPELLER GEOMETRY FOR PERFORMANCE ENHANCEMENT OF A CENTRIFUGAL BLOWER USING THE TAGUCHI QUALITY CONCEPT

    OpenAIRE

    R RAGOTH SINGH; M.Nataraj

    2012-01-01

    As the diffusion of flow process is highly complex in centrifugal blower operation, it is necessary to design / develop the geometry of impeller and casing to reduce the flow losses significantly. In the present study, the methodology to find near optimum combination of blower operating variables for performance enhancement were analyzed using computational fluid dynamics(CFD). Taguchi orthogonal array (OA) based design of experiments (DoE) technique determines the required experimental trial...

  11. Are laptop ventilation-blowers a potential source of nosocomial infections for patients?

    Science.gov (United States)

    Siegmund, Katja; Hübner, Nils; Heidecke, Claus-Dieter; Brandenburg, Ronny; Rackow, Kristian; Benkhai, Hicham; Schnaak, Volker; Below, Harald; Dornquast, Tina; Assadian, Ojan; Kramer, Axel

    2010-01-01

    Inadequately performed hand hygiene and non-disinfected surfaces are two reasons why the keys and mouse-buttons of laptops could be sources of microbial contamination resulting consequently in indirect transmission of potential pathogens and nosocomial infections. Until now the question has not been addressed whether the ventilation-blowers in laptops are actually responsible for the spreading of nosocomial pathogens. Therefore, an investigational experimental model was developed which was capable of differentiating between the microorganisms originating from the external surfaces of the laptop, and from those being blown out via the ventilation-blower duct. Culture samples were taken at the site of the external exhaust vent and temperature controls were collected through the use of a thermo-camera at the site of the blower exhaust vent as well as from surfaces which were directly exposed to the cooling ventilation air projected by the laptop. Control of 20 laptops yielded no evidence of microbial emission originating from the internal compartment following switching-on of the ventilation blower. Cultures obtained at the site of the blower exhaust vent also showed no evidence of nosocomial potential. High internal temperatures on the inner surfaces of the laptops (up to 73°C) as well as those documented at the site of the blower exhaust vent (up to 56°C) might be responsible for these findings. PMID:20941339

  12. Are laptop ventilation-blowers a potential source of nosocomial infections for patients?

    Directory of Open Access Journals (Sweden)

    Siegmund, Katja

    2010-01-01

    Full Text Available Inadequately performed hand hygiene and non-disinfected surfaces are two reasons why the keys and mouse-buttons of laptops could be sources of microbial contamination resulting consequently in indirect transmission of potential pathogens and nosocomial infections. Until now the question has not been addressed whether the ventilation-blowers in laptops are actually responsible for the spreading of nosocomial pathogens. Therefore, an investigational experimental model was developed which was capable of differentiating between the microorganisms originating from the external surfaces of the laptop, and from those being blown out via the ventilation-blower duct. Culture samples were taken at the site of the external exhaust vent and temperature controls were collected through the use of a thermo-camera at the site of the blower exhaust vent as well as from surfaces which were directly exposed to the cooling ventilation air projected by the laptop. Control of 20 laptops yielded no evidence of microbial emission originating from the internal compartment following switching-on of the ventilation blower. Cultures obtained at the site of the blower exhaust vent also showed no evidence of nosocomial potential. High internal temperatures on the inner surfaces of the laptops (up to 73°C as well as those documented at the site of the blower exhaust vent (up to 56°C might be responsible for these findings.

  13. Blower Gun pellet injection system for W7-X

    International Nuclear Information System (INIS)

    Foreseen to serve for the new stellarator W7-X for pellet investigations, the former ASDEX Upgrade Blower Gun was revised and revitalized in a test bed. The gun is able now to launch cylindrical pellets of 2 mm diameter and 2 mm length, produced from frozen Deuterium (D2) or Hydrogen (H2). Pellets are accelerated by a short pulse of pressurized helium propellant gas to velocities in the range of 100-250 m/s. Delivery reliabilities at the launcher exit close to unity are achieved. For pellet transfer to the plasma vessel a first mock up guiding tube version was investigated. Transfer through this S-shaped (inner diameter 8 mm; length 6 m) stainless steel guiding tube containing two 1 m curvature radii was investigated for both H2 and D2 pellets. Tests were performed applying repetition rates from 2 Hz to 50 Hz and propellant gas pressures ranging from 1 bar to 6 bar. For both H2 and D2, low overall delivery efficiencies were observed at slow repetition rates, but stable efficiencies of about 90% above 10 Hz.

  14. Evaluation in drawing and geometry Avaliação em desenho e geometria

    Directory of Open Access Journals (Sweden)

    Maria Bernardete Barison

    1998-08-01

    Full Text Available The purpose of this paper is to carry out a study on evaluation in Drawing and Geometry, based on an experience developed in the State University of Londrina, with results obtained from two groups of students from Geometric Drawing and Descriptive Geometry as well as Technical Drawing. A study on evaluation was initially carried out. After that, a critical report of the developed experience was made, which allowed us to identify possible failures and difficulties. A research among the students of these two disciplines was also performed in order to confirm the positive and negative aspects of the experience. A questionnaire was answered by the students, as well. Based on studies about evaluation and the analysis of the students' reports, it was possible to plan an evaluation proposal.A proposta deste trabalho é realizar um estudo sobre avaliação em Desenho e Geometria. O objetivo é apresentar uma proposta fundamentada em uma experiência desenvolvida com alunos da Universidade Estadual de Londrina, com alguns resultados obtidos com dois grupos de alunos das Disciplinas Desenho Geométrico e Geometria Descritiva e Desenho Técnico. Inicialmente foi realizado um estudo sobre avaliação, em um segundo momento realizou-se um relato critico da experiência desenvolvida, que possibilitou levantar-se possíveis falhas e dificuldades. Para confirmar os aspectos positivos e negativos da experiência, foi realizada uma pesquisa com os alunos dessas duas disciplinas. A metodologia empregada na pesquisa foi a aplicação de um questionário. A partir dos estudos feitos sobre avaliação e da análise dos depoimentos dos alunos, foi possível delinear uma proposta de avaliação.

  15. A geometria descritiva nas disciplinas do curso de engenharia: um contexto para aprendizagem

    Directory of Open Access Journals (Sweden)

    Vanderlí Fava de Oliveira

    2001-03-01

    Full Text Available Esse trabalho tem por objetivo apresentar uma experiência realizada na disciplina Geometria Descritiva I, oferecida para o 1º período do curso de Engenharia Civil da Universidade Federal de Juiz de Fora (UFJF. A experiência envolveu aspectos relacionados a métodos de ensino/aprendizagem e de abordagem do conteúdo, além da inclusão de um trabalho de campo. No que se refere aos aspectos metodológicos, buscaram-se formas de aumentar a participação do aluno em sala de aula e, em termos de abordagem do conteúdo, procurou-se vincular os conceitos e elementos da disciplina a situações de aplicação real em Engenharia. O trabalho de campo, realizado junto aos departamentos da Faculdade de Engenharia, permitiu que os alunos tivessem uma visão geral do curso e da relação da Geometria Descritiva com as disciplinas do mesmo.The aim of this work is to relate the experience developed in the Descriptive Geometry I discipline offered during the first term of the Civil Engineering course at the Federal University of Juiz de Fora (UFJF. The experience has features related to the teaching/learning methodologies and to the contents approach, with the inclusion of fieldwork. The search for means to improve the student's participation in the classroom was achieved by the application of methodological approaches related to the link of the contents and concepts of the discipline with to real life engineering activities. The fieldwork was developed with other departments of the civil engineering course in order to allow the students to have a global vision of the course and to relate Descriptive Geometry and other engineering disciplines.

  16. Lentes progressivas x lentes multifocais: um estudo baseado na geometria analítica do cone

    Directory of Open Access Journals (Sweden)

    Araújo Marília Cavalcante

    2004-01-01

    Full Text Available OBJETIVO: Compreender, por meio de figuras e funções matemáticas do cone, as lentes progressivas e mostrar que elas não são lentes multifocais porque, nelas, a refração da luz não obedece as leis da geometria euclidiana. MÉTODOS: Foi feito um estudo da geometria analítica do cone, com o programa de computador Auto-CAD 14, dando enfoque óptico às figuras geométricas obtidas com a sua secção. RESULTADOS: Pela análise das figuras obtidas da secção do cone, pudemos observar as superfícies que compõem as lentes progressivas. Estas superfícies são compostas de elipse, círculo, parábola e hipérbole. Diferente do que é dito na literatura, encontramos as elipses com diâmetro maior nas ordenadas e de mesmo sentido seguida por duas superfícies inferiores que são parábola e hipérbole e não o contrário. CONCLUSÕES: As lentes progressivas diferentemente das lentes multifocais apresentam prismas nos centros ópticos como decorrência da sua estrutura. No final, fizemos análise das suas formas mostrando o limite teórico da sua evolução.

  17. Turbine nozzle attachment system

    Science.gov (United States)

    Norton, Paul F.; Shaffer, James E.

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  18. Oil burner nozzle

    Science.gov (United States)

    Wright, Donald G.

    1982-01-01

    An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

  19. Dalla geometria delle preesistenze alla conoscenza della costruzione: un’esperienza di recupero aggiornata dalla metodologia BIM

    Directory of Open Access Journals (Sweden)

    Massimiliano Lo Turco

    2012-06-01

    Full Text Available Il termine costruire (lessicalmente equivale a riordinare le singole parti dell’operazione secondo il nesso logico e grammaticale; ed altresì disporle e collegarle secondo le regole e l’uso della lingua. Analogamente gli odierni strumenti BIM possiedono nelle loro corde sia una riconoscibile capacità di sviluppare progetti seguendo le regole del buon costruire, sia un puntuale controllo della geometria da cui derivano le molteplici rappresentazioni di tipo grafo-numerico. Ci si interrogherà inoltre sul rinnovato rapporto tra Rilievo e Progetto, in un ambiente particolarmente fertile ove la Geometria è indagata nelle sue poliedriche proprietà e al Disegno è affidato un ruolo di maggiore visibilità e di effettiva rilevanza.

  20. Characterisation of subsonic axisymmetric nozzles

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2008-01-01

    Roč. 86, č. 11 (2008), s. 1253-1262. ISSN 0263-8762 R&D Projects: GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : nozzle * characterisation * nozzle properties * nozzle invariants Subject RIV: BK - Fluid Dynamics Impact factor: 0.989, year: 2008

  1. Duplex tab exhaust nozzle

    Science.gov (United States)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  2. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  3. OPTIMIZING IMPELLER GEOMETRY FOR PERFORMANCE ENHANCEMENT OF A CENTRIFUGAL BLOWER USING THE TAGUCHI QUALITY CONCEPT

    Directory of Open Access Journals (Sweden)

    R RAGOTH SINGH

    2012-10-01

    Full Text Available As the diffusion of flow process is highly complex in centrifugal blower operation, it is necessary to design / develop the geometry of impeller and casing to reduce the flow losses significantly. In the present study, the methodology to find near optimum combination of blower operating variables for performance enhancement were analyzed using computational fluid dynamics(CFD. Taguchi orthogonal array (OA based design of experiments (DoE technique determines the required experimental trials. The experimental results are justifiedby Analysis of Variance (ANOVA and confirmed by conformation experiments. The parameters chosen for design optimization are Impeller outlet diameter, Impeller wheel width, Thickness of blade and Impeller inlet diameter. The levels for the parametric specification are chosen from the ranges where the blower will get thebest efficiency. CFD results were validated by the fine conformity between the CFD results and the experimental results.

  4. Nozzle limit pressure

    International Nuclear Information System (INIS)

    A brief description of the static method aiming to determined the collapse load in a structure of elastic-plastic material is given. This methodology together with the Finite Element Method in the field approximation, leads to a problem of minimizing a linear function with linear constraints. The application of this technique to axissymmetrical shells submmited to axissymmetric loads is analyzed; the numerical application is done for nozzles in pipelines and pressure vessels joints. (E.G.)

  5. Limit loads in nozzles

    International Nuclear Information System (INIS)

    The static method for the evaluation of the limit loads of a perfectly elasto-plastic structure is presented. Using the static theorem of Limit Analysis and the Finite Element Method, a lower bound for the colapso load can be obtained through a linear programming problem. This formulation if then applied to symmetrically loaded shells of revolution and some numerical results of limit loads in nozzles are also presented. (Author)

  6. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    Science.gov (United States)

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters. PMID:15764523

  7. Response of air cleaning system dampers and blowers to simulated tornado transients

    International Nuclear Information System (INIS)

    The effects of tornado-like pressure transients upon dampers and blowers in nuclear air cleaning systems were studied. For the dampers pressure drop as a function of flow rate was obtained and an empirical relationship developed. Transient response was examined for several types of dampers, as was structural integrity. Both centrifugal and axi-vane blowers were tested and transient characteristic curves were generated in outrunning and backflow situations. The transient characteristic curves do not necessarily match the quasi-steady characteristic curves

  8. Development of local air blower for removing radioactive iodine using the carbon fiber filter

    International Nuclear Information System (INIS)

    Boiling water type nuclear power plant (BWR) conducts overhaul of the condenser and the turbine regularly. The radioactive iodine dissipation in the turbine system, that occurs in the reactor during plant operation, need to implement safeguards against radioactive iodine. Carbon particle filter type local air blower is conventionally used in order to eliminate the radioactive iodine before during maintenance, but has the problem in mobility due to size of the device. We developed the new type of local air blower using carbon fiber to improve mobility of device. (author)

  9. Numerical Simulations of Canted Nozzle and Scarfed Nozzle Flow Fields

    Science.gov (United States)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    Computational fluid dynamics (CFD) techniques are used for the analysis of issues concerning non-conventional (canted and scarfed) nozzle flow fields. Numerical simulations are carried out for the quality of flow in terms of axisymmetric nature at the inlet of canted nozzles of a rocket motor. Two different nozzle geometries are examined. The analysis of these simulation results shows that the flow field at the entry of the nozzles is non axisymmetric at the start of the motor. With time this asymmetry diminishes, also the flow becomes symmetric before the nozzle throat, indicating no misalignment of thrust vector with the nozzle axis. The qualitative flow fields at the inlet of the nozzles are used in selecting the geometry with lesser flow asymmetry. Further CFD methodology is used to analyse flow field of a scarfed nozzle for the evaluation of thrust developed and its direction. This work demonstrates the capability of the CFD based methods for the nozzle analysis problems which were earlier solved only approximately by making simplifying assumptions and semi empirical methods.

  10. Geometria fractal em física do solo Fractal geometry in soil physics

    Directory of Open Access Journals (Sweden)

    O.O.S. Bacchi

    1993-09-01

    Full Text Available A geometria fractal tem sido aplicada nos mais diversos ramos da ciencia, mostrando grande potencial na descrição de estruturas altamente complexas. A sua aplicação em ciência do solo tem despertado grande interesse e vem se intensificando nos últimos anos. Apesar da sua divulgação através da literatura científica internacional, de conhecido acesso por parte dos pesquisadores brasileiros, o assunto parece não ter merecido ainda a nossa atenção, a contar pela ausência do tema em nossas revistas especializadas. Tratamos aqui da conceituação básica dessa nova abordagem e de algumas aplicações em física do solo.Fractal geometry has been applied on different branches of science, showing high potential in describing complex structures. Its applications in soil science have received large attention and have been intensified in the last few years. Inspite of the large number of internationally published papers, the subject seems not having received the same attention by Brazilian soil scientists, as verified by the absence of the subject in our scientific journals. This paper presents the basic concepts of this new tool and some of its applications in soil physics.

  11. Jet vectoring through nozzle asymmetry

    Science.gov (United States)

    Roh, Chris; Rosakis, Alexandros; Gharib, Morteza

    2015-11-01

    Previously, we explored the functionality of a tri-leaflet anal valve of a dragonfly larva. We saw that the dragonfly larva is capable of controlling the three leaflets independently to asymmetrically open the nozzle. Such control resulted in vectoring of the jet in various directions. To further understand the effect of asymmetric nozzle orifice, we tested jet flow through circular asymmetric nozzles. We report the relationship between nozzle asymmetry and redirecting of the jet at various Reynolds numbers. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  12. Desenvolvimento Instrumental do Raciocínio dos Professores em Geometria Dinâmica (Tradução

    Directory of Open Access Journals (Sweden)

    Alqahtani, Muteb M.

    2015-05-01

    Full Text Available To contribute to understanding how teachers can develop geometrical understanding, we report on the discursive development of teachers’ geometrical reasoning through instrument appropriation while collaborating in an online dynamic geometry environment (DGE. Using the theory of instrument-mediated activity, we analysis the discourse and DGE actions of a group of middle and high school mathematics teachers who participated in a semester-long, professional development course. Working in small teams, they collaborated to solve geometric problems. Our results show that as teachers appropriate DGE artifacts and transform its components into instruments, they develop their geometrical knowledge and reasoning in dynamic geometry. Our study contributes to a broad understanding of how teachers develop mathematical knowledge for teaching. Com o intuito de contribuir para o entendimento de como os professores podem desenvolver a compreensão da geometria, este artigo trata do desenvolvimento discursivo do raciocínio geométrico dos professores através de apropriação de instrumentos enquanto colaborando em um ambiente de geometria dinâmica (AGD online. Utilizando a teoria da atividade mediada por instrumentos, analisamos o discurso e as ações AGD de um grupo de professores de matemática do ensino fundamental e médio que participaram de um curso de desenvolvimento profissional com duração de um semestre. Trabalhando em pequenos grupos, eles interagiram para resolver problemas geométricos. Nossos resultados mostram que na medida em que se apropriam dos artefatos AGD e transformam seus componentes em instrumentos, os professores desenvolvem o conhecimento e raciocínio geométricos em geometria dinâmica. Nosso estudo contribui para uma compreensão ampla de como os professores desenvolvem o conhecimento matemático para o ensino.

  13. Auxiliary bearing design and rotor dynamics analysis of blower fan for HTR-10

    International Nuclear Information System (INIS)

    The electromagnetic bearing instead of ordinary mechanical bearing was chosen to support the rotor in the blower fan system with helium of 10 MW high temperature gas-cooled test reactor (HTR-10), and the auxiliary bearing was applied in the HTR-10 as the backup protector. When the electromagnetic bearing doesn't work suddenly for the power broken, the auxiliary bearing is used to support the falling rotor with high rotating speed. The rotor system will be protected by the auxiliary bearing. The design of auxiliary bearing is the ultimate safeguard for the system. This rotor is vertically mounted to hold the blower fan. The rotor's length is about 1.5 m, its weight is about 240 kg and the rotating speed is about 5400 r/min. Auxiliary bearing design and rotor dynamics analysis are very important for the design of blower fan to make success. The research status of the auxiliary bearing was summarized in the paper. A sort of auxiliary bearing scheme was proposed. MSC.Marc was selected to analyze the vibration mode and the natural frequency of the rotor. The scheme design of auxiliary bearing and analysis result of rotor dynamics offer the important theoretical base for the protector design and control system of electromagnetic bearing of the blower fan. (authors)

  14. Velocity and turbulence measurements of impellers discharge flow for multi-stage centrifugal blower

    International Nuclear Information System (INIS)

    This paper assesses some results of an experimental investigation on a 4-stage centrifugal blower. The two-dimensional velocity and turbulence field at the exit of the first and fourth stage was measured in some working conditions of the machine, by a single hot-wire anemometer rotated twice about its own axis

  15. Development of a no-moving-part blower for difficult operating conditions

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2013-01-01

    Roč. 91, č. 12 (2013), s. 2401-2411. ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional research plan: CEZ:AV0Z20760514 Keywords : blower * fluidics * hazardous fluids Subject RIV: BK - Fluid Dynamics Impact factor: 2.281, year: 2013 http://www.sciencedirect.com/science/article/pii/S0263876213001081

  16. Analytical study of ventilation-system behavior using TVENT1 under simulated blower malfunctions

    International Nuclear Information System (INIS)

    A large, complex ventilation system at the Los Alamos National Laboratory's Plutonium Processing Facility was modeled and analyzed using a computer code called TVENT1. Useful information was obtained about the system's operating characteristics when subjected to potential blower malfunctions. This report provides an excellent example for a potential user of TVENT1 for application to an actual system

  17. A GEOMETRIA SE CONSTITUINDO PRÉ-REFLEXIVAMENTE: PROPOSTAS. GEOMETRY CONSTITUTING ITSELF IN A PRE-REFLEXIVE WAY: PROPOSALS

    OpenAIRE

    Adlai Ralph Detoni

    2012-01-01

    Este texto traz propostas de atividades didáticas em torno de temas pertinentes à Geometria Escolar para os anos iniciais do ensino fundamental que foram inicialmente trabalhadas em pesquisa de campo para estudos de doutoramento, cujos dados foram tratados metodologicamente na abordagem qualitativa fenomenológica. Faz-se uma exposição filosófica que sustenta uma concepção fenomenológica do espaço e reflexões de seu desdobramento para um pensamento pedagógico que valoriza o conhecimento consti...

  18. Quam maximis potest itineribus: andata e ritorno della costruzione tra immagine e modello nello spazio grafico della geometria descrittiva

    Directory of Open Access Journals (Sweden)

    Matteo Ballarin

    2012-06-01

    Full Text Available Il contributo testimonia una strategia d'insegnamento congiunto del rilievo architettonico, della geometria descrittiva e del disegno digitale concepita come un viaggio di andata e ritorno tra immagine e modello. Iniziando dalla fotogrammetria elementare e dalle tecniche di foto-modellazione offerte da software (gratuiti e dotati di un'interfaccia sufficientemente  intuitiva si possono poi introdurre – col metodo di Monge – le tecniche del rilievo topografico, giungendo alla costruzione interdefinita di un unico modello digitale degli oggetti del rilievo. Il circolo didattico si chiude poi costruendo rappresentazioni tabulari tradizionali dei modelli.

  19. Industrial jet noise: Coanda nozzles

    Science.gov (United States)

    Li, P.; Halliwell, N. A.

    1985-04-01

    Within the U.K. manufacturing industries noise from industrial jets ranks third as a major contributor to industrial deafness. Noise control is hindered because use is made of the air once it has exuded from the nozzle exit. Important tasks include swarf removal, paint spreading, cooling, etc. Nozzles which employ the Coanda effect appear to offer the possibility of significant noise reduction whilst maintaining high thrust efficiency when compared with the commonly used simple open pipe or ordinary convergent nozzle. In this paper the performance of Coanda-type nozzles is examined in detail and an index rating for nozzle performance is introduced. Results show that far field stagnation pressure distributions are Gaussian and similar in all cases with a dispersion coefficient σ = 0·64. Noise reduction and thrust efficiency are shown to be closely related to the design geometry of the central body of the nozzle. Performance is based on four fundamental characteristics, these being the noise level at 1 m from the exit and at a 90° station to the nozzle axis, and the thrust on a chosen profile, the noise reduction and the thrust efficiency. Physically, performance is attributed to flow near field effects where, although all nozzles are choked, shock cell associated noise is absent.

  20. Nozzle insert for mixed mode fuel injector

    Science.gov (United States)

    Lawrence, Keith E.

    2006-11-21

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. The homogeneous charged nozzle outlet set is defined by a nozzle insert that is attached to an injector body, which defines the conventional nozzle outlet set. The nozzle insert is a one piece metallic component with a large diameter segment separated from a small diameter segment by an annular engagement surface. One of the needle valve members is guided on an outer surface of the nozzle insert, and the nozzle insert has an interference fit attachment to the injector body.

  1. Geometria na educação infantil: da manipulação empirista ao concreto piagetiano

    Directory of Open Access Journals (Sweden)

    Simone de Souza

    2012-01-01

    Full Text Available Refletir sobre os conhecimentos de geometria do professor de educação infantil e as concepções epistemológicas que fundamentam suas condutas pedagógicas foi o objetivo de nossa pesquisa. A análise dos discursos indicou boa vontade das professoras para o trabalho geométrico, entretanto o desconhecimento da geometria enquanto teoria e a enraizada concepção epistemológica empirista, reportaram à ideia de que este conhecimento está nos objetos, bastando sua manipulação para que haja aprendizagem. Assim, caberia às crianças, por meio de estímulos e da organização dos materiais manipuláveis pelos docentes, a descoberta das formas geométricas presentes no mundo que as rodeia. Buscamos, na epistemologia genética de Jean Piaget, as bases sólidas para contribuições à reflexão e atuação de professores.

  2. Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.

    Science.gov (United States)

    Yeager, David Marvin

    An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results

  3. Airfoil nozzle and shroud assembly

    Science.gov (United States)

    Shaffer, James E.; Norton, Paul F.

    1997-01-01

    An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

  4. Injection nozzle for a turbomachine

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  5. Hook nozzle arrangement for supporting airfoil vanes

    Science.gov (United States)

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A gas turbine engine's nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic.

  6. Axisymmetric thrust-vectoring nozzle performance prediction

    International Nuclear Information System (INIS)

    Throat-hinged geometrically variable converging-diverging thrust-vectoring nozzles directly affect the jet flow geometry and rotation angle at the nozzle exit as a function of the nozzle geometry, the nozzle pressure ratio and flight velocity. The consideration of nozzle divergence in the effective-geometric nozzle relation is theoretically considered here for the first time. In this study, an explicit calculation procedure is presented as a function of nozzle geometry at constant nozzle pressure ratio, zero velocity and altitude, and compared with experimental results in a civil thrust-vectoring scenario. This procedure may be used in dynamic thrust-vectoring nozzle design performance predictions or analysis for civil and military nozzles as well as in the definition of initial jet flow conditions in future numerical VSTOL/TV jet performance studies

  7. Numerical Simulation of Unsteady Discharge Flow with Fluctuation in Positive Discharge Blower

    Institute of Scientific and Technical Information of China (English)

    LIU Zhengxian; WANG Dou; XU Lianhuan

    2009-01-01

    The operating performance of positive discharge blower/s markedly influenced by the pulsation of the discharge flow, but difficult to be measured with experimental methods. The internal and discharge flow of positive discharge blower with involute type three-lobe are numerically investigated, both in air cooling and countercurrent cooling conditions by means of computational fluid dynamics (CFD). The unsteady compressible flow equations are solved using RNG κ-ε turbulent model. The finite difference method and the second order upwind difference scheme are applied into discrete equations. In the numerical simulation, the dynamic mesh techniques are used to approach the rotating displacement of cell cubage and the alterability of inlet, outlet flow area. The non-uniform mesh is applied to the rotor-stator coupled area. The reliability of the numerical method is verified by simulating the inner flow and comparing with the semi-empirical theory. The flow flux curves and the distributing of velocity vector showed obvious vortex motion in all the discharge process, both in air cooling and countercurrent cooling conditions. These vortexes with different positions, intension and numbers at different rotating angles have remarkable influences on the discharge flux. For air cooling, the vortex produced a second pulsation with big-amplitude in a cycle, and led to the early appearance of maximum of backflow. For countercurrent cooling, the frequency of pulsation increased due to the pre-inflow, but the hackflow at the outlet is prevented, also the pulsation strength has greatly decreased.

  8. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods.

    Science.gov (United States)

    Zou, Yi; van Telgen, Mario D; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J J A; van der Werf, Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m(2) yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries. PMID:27584040

  9. Construction and testing of a blower-door assembly for regulation of air pressure within structures

    International Nuclear Information System (INIS)

    The Technical Measurements Center is evaluating several methods to decrease the time required to determine an annual average radon-daughter concentration in structures. One method involves stabilizing the air pressure within the structure at a constant pressure with reference to external atmospheric or soil-gas pressure. This report describes the construction and preliminary testing of a blower-door system to maintain a constant differential air pressure within a structure. The blower-door assembly includes a collapsible frame and a large fan to occlude a doorway, a damper with an actuator to control air flow, a controller to drive the damper actuator, and a pressure transducer to measure the differential pressure. Preliminary testing of the system indicates that pressure within the structure in the range of 1 to 20 Pascals can be held to within approximately +-1 Pa of the set point. Further testing of the blower-door system is planned to provide data on the applicability of this method to short-duration tests for annual average radon-daughter concentration estimates. 13 figs., 1 tab

  10. Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle

    OpenAIRE

    aShyamshankar.M.B; Sankar.V

    2015-01-01

    The objective of this project work is to computationally analyze shock waves in the Convergent Divergent (CD) Nozzle. The commercial CFD code Fluent is employed to analyze the compressible flow through the nozzle. The analysis is about NPR (Nozzle Pressure Ratio) i.e., the ratio between exit pressure of the nozzle to ambient pressure. The various models of CD Nozzle are designed and the results are compared. The flow characteristic of shockwave for various design of CD Nozzle is a...

  11. Densità di energia di deformazione locale e resistenza a fatica di giunti saldati di geometria complessa

    Directory of Open Access Journals (Sweden)

    P. Lazzarin

    2008-01-01

    Full Text Available Un recente criterio basato sul valore medio della densità di energia di deformazione (SED inun volume di controllo è applicato a diverse serie di dati sperimentali tratti dalla letteratura, relativi a giuntisaldati di geometria complessa realizzati in acciaio. Il volume di controllo è rappresentato da un settore circolare di raggio pari a 0.28 mm, centrato sul piede o sulla radice dei cordoni di saldatura. Entrambe le regioni sono modellate come intagli V non raccordati con differenti angoli di apertura. La densità di energia di deformazione viene valutata direttamente da modelli agli elementi finiti tridimensionali. I dati sperimentali, riconvertiti in termini energetici, si posizionano all’interno di una banda di dispersionerecentemente proposta in letteratura. La banda sintetizzava più di 650 dati sperimentali relativi a giunti saldati con cordone d’angolo, con rotture innescate indifferentemente al piede o alla radice dei cordonidi saldatura.

  12. Caminhos e percursos da Geometria Analítica: estudo histórico e epistemológico

    OpenAIRE

    Castro, Adriana

    2013-01-01

    A Geometria Analítica é parte integrante dos conteúdos a serem trabalhados na Educação Básica. Além disso, os conceitos trabalhados na Educação Básica são aprofundados nos componentes curriculares dos cursos de graduação das ciências exatas tais como Engenharia, Ciências da Computação, Arquitetura, Matemática, Física, etc. Seu estudo é relevante, pois é uma ferramenta importante para o Cálculo Diferencial e Integral e é uma das principais referências em um primeiro curso de Álgebra Linear. Es...

  13. Geometrias não euclidianas na formação inicial do professor de matemática

    OpenAIRE

    Cavichiolo, Claudia Vanessa, 1971-

    2012-01-01

    Resumo: A inclusão de conteúdos de Geometrias não Euclidianas no currículo da Matemática escolar tem sido tema de discussões entre professores de Matemática dos vários níveis, resultando em orientações curriculares que pressupõem um professor de Matemática preparado para esse ensino. Preocupada em entender como esta inclusão está sendo considerada pelos responsáveis pela formação inicial de professores para a escola básica, esta dissertação buscou responder a seguinte indagação: o que dizem p...

  14. Nozzle geometry for organic vapor jet printing

    Science.gov (United States)

    Forrest, Stephen R; McGraw, Gregory

    2015-01-13

    A first device is provided. The device includes a print head. The print head further includes a first nozzle hermetically sealed to a first source of gas. The first nozzle has an aperture having a smallest dimension of 0.5 to 500 microns in a direction perpendicular to a flow direction of the first nozzle. At a distance from the aperture into the first nozzle that is 5 times the smallest dimension of the aperture of the first nozzle, the smallest dimension perpendicular to the flow direction is at least twice the smallest dimension of the aperture of the first nozzle.

  15. Nozzle for superconducting fiber production

    Science.gov (United States)

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  16. Linear nozzle with tailored gas plumes

    Science.gov (United States)

    Leon, David D.; Kozarek, Robert L.; Mansour, Adel; Chigier, Norman

    2001-01-01

    There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

  17. Computer aided design study of hypermixing nozzles

    Science.gov (United States)

    Mefferd, L. A.; Bevilacqua, P. M.

    1979-01-01

    The development of a nozzle which combines the hypermixing and lobe mechanisms to achieve further increases in jet entrainment and ejector performance is investigated. A computer program which incorporates a two equation turbulence model and is used to predict and compare the evolution of jets from various nozzle designs is discussed. Increasing the length of the nozzle lobes and an alternating lobe nozzle are a methods examined for increasing the entrainment rate.

  18. Perfect bell nozzle parametric and optimization curves

    Science.gov (United States)

    Tuttle, J. L.; Blount, D. H.

    1983-01-01

    Nozzle contour data for untruncated Bell nozzles with expansion area ratios to 6100 and a specific heat ratio of 1.2 are provided. Curves for optimization of nozzles for maximum thrust coefficient within a given length, surface area, or area ratio are included. The nozzles are two dimensional axisymmetric and calculations were performed using the method of characteristics. Drag due to wall friction was included in the final thrust coefficient.

  19. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Energy Technology Data Exchange (ETDEWEB)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  20. Kinetic energy of rainfall simulation nozzles

    Science.gov (United States)

    Different spray nozzles are used frequently to simulate natural rain for soil erosion and chemical transport, particularly phosphorous (P), studies. Oscillating VeeJet nozzles are used mostly in soil erosion research while constant spray FullJet nozzles are commonly used for P transport. Several ch...

  1. Nozzle Bricks and Well Bricks

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Peng Xigao

    2011-01-01

    1 Scope This standard specifies the classification,brand,technical requirements,test methods,inspection rules,marking,packing,transportation,storage,and quality certificate of nozzle bricks and well bricks.This standard is applicable to unfired and fired products.

  2. Experimental characterization of spin motor nozzle flow.

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Rocky J.; Peterson, Carl Williams; Henfling, John Francis

    2006-11-01

    The Mach number in the inviscid core of the flow exiting scarfed supersonic nozzles was measured using pitot probes. Nozzle characterization experiments were conducted in a modified section of an obsolete M = 7.3 test section/nozzle assembly on Sandia's Hypersonic Wind Tunnel. By capitalizing on existing hardware, the cost and time required for tunnel modifications were significantly reduced. Repeatability of pitot pressure measurements was excellent, and instrumentation errors were reduced by optimizing the pressure range of the transducers used for each test run. Bias errors in probe position prevented us from performing a successful in situ calibration of probe angle effects using pitot probes placed at an angle to the nozzle centerline. The abrupt throat geometry used in the Baseline and Configuration A and B nozzles modeled the throat geometry of the flight vehicle's spin motor nozzles. Survey data indicates that small (''unmeasurable'') differences in the nozzle throat geometries produced measurable flow asymmetries and differences in the flow fields generated by supposedly identical nozzles. Therefore, data from the Baseline and Configuration A and B nozzles cannot be used for computational fluid dynamics (CFD) code validation. Configuration C and D nozzles replaced the abrupt throat geometry of Baseline and Configuration A and B nozzles with a 0.500-inch streamwise radius of curvature in the throat region. This throat geometry eliminated the flow asymmetries, flow separation in the nozzle throat, and measurable differences between the flow fields from identical nozzles that were observed in Baseline/A/B nozzles. Data from Configuration C and D nozzles can be used for CFD code validation.

  3. Use of EC-blowers contribute to green investment; Gebruik van EC-ventilatoren levert bijdrage aan groene investering

    Energy Technology Data Exchange (ETDEWEB)

    Huijgens, G.; Ridder, A.

    2009-07-01

    Despite their small share in the entire use, applying EC blowers (electronically commutated) in coolers and condensers can provide an interesting contribution to a sound green investment. This additional investment with EC blowers will pay off through more efficient energy use and easy operation with rpm control. [Dutch] Door gebruik te maken van EC-ventilatoren (EC staat voor 'electronically commutated') op koelers en condensors kan, ondanks het kleine aandeel in het totaalverbruik, toch een interessante bijdrage geleverd worden aan een verantwoorde groene investering. Deze meerinvestering met EC-ventilatoren betaalt zich uit in zuinig energieverbruik en eenvoudige aansturing met toerenregeling.

  4. Simulation of a Downsized FDM Nozzle

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pimentel, Rodrigo; Pedersen, David B.;

    2015-01-01

    This document discusses the simulat-ion of a downsized nozzle for fused deposition modelling (FDM), namely the E3D HotEnd Extruder with manufactured diameters of 200-400 μm in the nozzle tip. The nozzle has been simulated in terms of heat transfer and fluid flow giving an insight into the physical...... behavior of the polymer inside the nozzle. The extruder contains a nozzle, a heater block, a heatbreak and a heatsink additionally cooled by a fan. The diameter is located in the sub-mm re-gion allowing to reduce the size and surface roughness of the product. The simulation results were experimentally...

  5. Fracture assessment of a BWR pump nozzle

    International Nuclear Information System (INIS)

    Fracture mechanics calculations are performed to support the non-destructive testing (NDT) qualification programs for pump nozzle investigations of boiling water reactor (BWR) nozzles of reactor pressure vessels (RPVs), with the aim of the determination of qualification defects, which are located in the Inconel 182 weld of the pump nozzle at the bottom of the RPV. The ferritic nozzle and housing have an Inconel buttering and each part is cladded with Inconel 182 before it is mounted. All theses weldments are heat treated after welding; only the connecting weldment between pump housing and nozzle, which is also an Inconel 182 weld, performed on site, is in the as welded condition. (author)

  6. R+D works for the further development of high temperature reactors. (1) Captive bearing experiments for active magnetic bearings. (2) Captive bearing test for HTR blowers

    International Nuclear Information System (INIS)

    When using active magnetic bearings as blower shaft bearings, blower motors and bearings must be protected against mechanical damage in case of faults (example: total electrical supply failure due to the supply cables breaking). So-called captive bearings are provided, in order to be able to shut the blowers down safely in such faults. These captive bearings are roller bearings which are additionally fitted in the area of the blower shaft bearings, to prevent mechanical contact between the blower rotor and stator. As there was little experience available for the given boundary conditions, such as - speed, - acceleration, - bearing load, - bearing dimensions, - ambient conditions, appropriate development and tests had to be carried out. It was important to determine suitable captive bearings and the necessary ambient conditions, which will make it possible to support the failures of the magnetic bearings to be expected in 40 years' operation of the reactor without damage and to meet the requirements of the captive bearings. (orig./GL)

  7. Spray nozzle for fire control

    Science.gov (United States)

    Papavergos, Panayiotis G.

    1990-09-01

    The design of a spray nozzle for fire control is described. It produces a spray of gas and liquid having an oval transverse cross section and it comprises a mixing chamber with an oval transverse cross section adapted to induce a toroidal mixing pattern in pressurized gas and liquid introduced to the mixing chamber through a plurality of inlets. In a preferred embodiment the mixing chamber is toroidal. The spray nozzle produces an oval spray pattern for more efficient wetting of narrow passages and is suitable for fire control systems in vehicles or other confined spaces. Vehicles to which this invention may be applied include trains, armoured vehicles, ships, hovercraft, submarines, oil rigs, and most preferably, aircraft.

  8. Small drops from large nozzles

    Science.gov (United States)

    Castrejon-Pita, Alfonso Arturo; Said Mohamed, Ahmed; Castrejon-Pita, Jose Rafael; Herrada, Miguel Angel

    2015-11-01

    We report experimental and numerical results of the generation of drops which are significantly smaller than the nozzle from which they are generated. The system consists of a cylindrical reservoir and two endplates. One plate is a thin metal sheet with a small orifice in its centre which acts as the nozzle. The other end consists of a piston which moves by the action of an elecromechanical actuator which in turn is driven by sine-shape pull-mode pulses. The meniscus (formed at the nozzle) is thus first overturned, forming a cavity. This cavity collapses and a thin and fast jet emerges from its centre. Under appropriate conditions the tip of this jet breaks up and produces a single diminutive drop. A good agreement between the experimental and numerical results was found. Also, a series of experiments were performed in order to study the effects that the pulse amplitude and width, together with variations in the liquid properties, have over the final size of the droplet. Based on these experiments, a predictive law for the droplet size has been derived. This work was funded by the Royal Society (University Research Fellowship and Research Grant), the John Fell Fund (Oxford University Press), the Ministry of Science and Education (DPI2013-46485 Spain), and the Junta de Andalucia (P08-TEP-31704128 Spain).

  9. A GEOMETRIA SE CONSTITUINDO PRÉ-REFLEXIVAMENTE: PROPOSTAS. GEOMETRY CONSTITUTING ITSELF IN A PRE-REFLEXIVE WAY: PROPOSALS

    Directory of Open Access Journals (Sweden)

    Adlai Ralph Detoni

    2012-11-01

    Full Text Available Este texto traz propostas de atividades didáticas em torno de temas pertinentes à Geometria Escolar para os anos iniciais do ensino fundamental que foram inicialmente trabalhadas em pesquisa de campo para estudos de doutoramento, cujos dados foram tratados metodologicamente na abordagem qualitativa fenomenológica. Faz-se uma exposição filosófica que sustenta uma concepção fenomenológica do espaço e reflexões de seu desdobramento para um pensamento pedagógico que valoriza o conhecimento constituído no domínio do pré-reflexivo.This text brings proposals of didactic activities on themes that are connected to Geometry in the initial years of elementary school and which were initially developed in field research for doctoring studies that methodologically treated the data in a qualitative phenomenological approach. A philosophical exposition is presented and it supports a phenomenological conception of space and reflections on its unfolding into a pedagogical thinking that valorizes the knowledge constituted in the pre-reflexive domain.

  10. Testicular cancer trends as 'whistle blowers' of testicular developmental problems in populations

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N; Main, K M; Leffers, H; Andersson, A-M; Juul, A; Jensen, T K; Toppari, J

    2007-01-01

    Recently a worldwide rise in the incidence of testicular germ cell cancer (TGCC) has been repeatedly reported. The changing disease pattern may signal that other testicular problems may also be increasing. We have reviewed recent research progress, in particular evidence gathered in the Nordic...... countries, which shows strong associations between testicular cancer, undescended testis, hypospadias, poor testicular development and function, and male infertility. These studies have led us to suggest the existence of a testicular dysgenesis syndrome (TDS), of which TGCC, undescended testis, hypospadias...... trends in TGCC rates of a population may be 'whistle blowers' of other reproductive health problems. As cancer registries are often of excellent quality - in contrast to registries for congenital abnormalities - health authorities should consider an increase in TGCC as a warning that other reproductive...

  11. Nozzle assembly for gas-dynamic high efficiency lasers

    Energy Technology Data Exchange (ETDEWEB)

    Malburg, W.; Mohr, F.

    1981-03-17

    The present nozzle assembly for gas-dynamic high efficiency lasers with a cooling system comprises a plurality of specially formed nozzle members or so-called lamellae. Each nozzle has its own cooling passages, matching bodies and glide surfaces. A series of nozzle members are placed in thermal contact with each other within a mounting or holding block. A coolant flows through said cooling passages which extend through each nozzle throat region and through matching bodies of the nozzle members so that a uniform temperature prevails across the nozzle assembly whereby the nozzle dimensions are maintained constant especially at the nozzle throat width and whereby leakage flows are eliminated.

  12. Support pedestals for interconnecting a cover and nozzle band wall in a gas turbine nozzle segment

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Webbon, Waylon Willard; Bagepalli, Radhakrishna; Burdgick, Steven Sebastian; Kellock, Iain Robertson

    2002-01-01

    A gas turbine nozzle segment has outer and inner band portions. Each band portion includes a nozzle wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through the apertures of the impingement plate to cool the nozzle wall. Structural pedestals interconnect the cover and nozzle wall and pass through holes in the impingement plate to reduce localized stress otherwise resulting from a difference in pressure within the chamber of the nozzle segment and the hot gas path and the fixed turbine casing surrounding the nozzle stage. The pedestals may be cast or welded to the cover and nozzle wall.

  13. Wire Whip Keeps Spray Nozzle Clean

    Science.gov (United States)

    Carroll, H. R.

    1982-01-01

    Air-turbine-driven wire whip is clamped near spray-gun mount. When spray gun is installed, wire whip is in position to remove foam buildup from nozzle face. Two lengths of wire 1 to 2 inches long and about 0.03 inch in thickness are used. Foam spray would be prevented from accumulating on nozzle face by increasing purge flow and cutting vortex-generating grooves inside cap and on nozzle flats.

  14. Variable volume combustor with pre-nozzle fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  15. As competências espaciais no ensino da geometria : a dinâmica da perspectiva linear na imaginação e no desenho

    OpenAIRE

    Ferreira, Helena Sofia Pires, 1982-

    2013-01-01

    Relatório da prática de ensino supervisionada, Ensino das Artes Visuais, Universidade de Lisboa, 2013 O presente relatório foi elaborado no âmbito do Mestrado em Ensino das Artes Visuais e descreve a intervenção realizada numa turma do 11º ano de Artes Visuais, no âmbito da disciplina de Geometria Descritiva A, e é referente à prática de ensino supervisionada desenvolvida na Escola Secundária Quinta do Marquês, em Oeiras. O projeto de estágio relaciona-se com o desenvolvimento ...

  16. Narrar a experiência e (trans)formar-se: o caso de uma professora diante do desafio de aprender a ensinar geometria

    OpenAIRE

    Marquesin, Denise; Nacarato, Adair

    2011-01-01

    O presente texto refere-se a um recorte de uma pesquisa de mestrado desenvolvida com cinco professoras pertencentes a uma mesma escola situada na zona rural de Jundiaí – Estado de São Paulo, Brasil, tendo como cenário o grupo de trabalho colaborativo. Tem como objetivo narrar a experiência de uma professora diante do desafio de aprender a ensinar geometria nos anos iniciais do Ensino Fundamental. O processo formativo no grupo foi mediado pela produção de narrativas pelas pro...

  17. A utilização do blogue no ensino-aprendizagem : estudo de caso na disciplina de Geometria Descritiva A

    OpenAIRE

    Costa, António Oliveira da

    2012-01-01

    Dissertação de mestrado em Ciências da Educação (área de especialização em Tecnologia Educativa) Este trabalho pretendeu investigar a utilidade do blogue no ensino-aprendizagem – num estudo de caso da disciplina de Geometria Descritiva A, dentro de um contexto de utilização das novas metodologias que possam complementar o trabalho presencial da sala de aula e contribuir para melhorar o sucesso educativo dos alunos, tanto ao nível da classificação interna como ao nível da aferiç...

  18. Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle

    Directory of Open Access Journals (Sweden)

    aShyamshankar.M.B

    2015-05-01

    Full Text Available The objective of this project work is to computationally analyze shock waves in the Convergent Divergent (CD Nozzle. The commercial CFD code Fluent is employed to analyze the compressible flow through the nozzle. The analysis is about NPR (Nozzle Pressure Ratio i.e., the ratio between exit pressure of the nozzle to ambient pressure. The various models of CD Nozzle are designed and the results are compared. The flow characteristic of shockwave for various design of CD Nozzle is also discussed. The purpose of this project is to investigate supersonic C-D nozzle flow for increasing NPR (Nozzle pressure ratio through CFD. The imperfect matching between the pressures and ambient pressure and exit pressure leads to the formation of a complicated shock wave structure. Supersonic nozzle flow separation occurs in CD nozzles at NPR values far above their design value that results in shock formation inside the nozzle. The one-dimensional analysis approximations are not accurate, in reality the flow detaches from the wall and forms a separation region, subsequently the flow downstream becomes non-uniform and unstable. Shock wave affects flow performance of nozzle from NPR value 1.63 for existing geometrical conditions of nozzle. Problem of using this nozzle above 1.63NPR is shock wave at downstream of throat. After shock wave, static pressure increases further downstream of flow. It leads to flow separation and back pressure effects. Back pressure makes nozzle chocked. To investigate this problem, geometry of divergent portion is introduced and analysed through CFD. This is expected in resulting of reduction of flow separation and back pressure effect as well as increase in nozzle working NPR.

  19. Nozzle Classification for Drift Reduction in Orchard Spraying: Identification of Drift Reduction Class Threshold Nozzles

    NARCIS (Netherlands)

    Zande, van de J.C.; Holterman, H.J.; Wenneker, M.

    2008-01-01

    In fruit growing high values of spray drift are found compared to arable field applications. In arable spraying drift reducing nozzles are certified for use as drift reducing measures. The nozzles which may potentially reduce drift in fruit growing are not jet classified as drift reducing nozzles, a

  20. Through an Annular Turbine Nozzle

    Directory of Open Access Journals (Sweden)

    Rainer Kurz

    1995-01-01

    is located in the gas turbine. The experiments were performed using total pressure probes and wall static pressure taps. The pitch variation modifies the flow field both upstream and downstream of the nozzle, although the experiments show that the effect is localized to the immediate neighborhood of the involved blades. The effects on the wakes and on the inviscid flow are discussed separately. The mean velocities show a strong sensitivity to the changes of the pitch, which is due to a potential flow effect rather than a viscous effect.

  1. Resultados Geofísicos Integrados de um Corpo com Geometria 3D sem Manifestação Superficial

    Directory of Open Access Journals (Sweden)

    André Rugenski

    2005-06-01

    Full Text Available O levantamento aerogeofísico SP-RJ do Serviço Geológico do Brasil (CPRM evidencia uma anomalia magnética, semcorrespondentes geológicos em superfície, mas com feições semelhantes àquelas observadas para os complexos alcalinos queafloram na mesma região. Diante da ausência de elementos superficiais, foram utilizadas diferentes técnicas geofísicas paracaracterizar a fonte dessa anomalia. Entre as diferentes metodologias, utilizou-se a análise de imagens de satélite paradiferentes bandas espectrais, sondagens sísmicas, levantamento gravimétrico e correspondente magnético em superfície aolongo de um perfil que corta a anomalia, além de medidas de densidade e susceptibilidade das diferentes litologias da área. Asinformações resultantes da aplicação dessas técnicas serviram como vínculos para modelar simultaneamente os dadosgravimétricos e magnéticos de superfície com geometria 2½D, e para modelar os dados magnéticos do levantamento aéreo comgeometria 3D. Os resultados obtidos convergem para um corpo intrusivo máfico de cerca 3,3 x 109 t, próximo da superfície(~ 40 m e estendendo-se até a profundidade máxima de 1 km.

  2. High mass throughput particle generation using multiple nozzle spraying

    Energy Technology Data Exchange (ETDEWEB)

    Pui, David Y. H.; Chen, Da-Ren

    2015-06-09

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  3. High mass throughput particle generation using multiple nozzle spraying

    Science.gov (United States)

    Pui, David Y.H.; Chen, Da-Ren

    2004-07-20

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  4. Erosion-Resistant Water-Blast Nozzle

    Science.gov (United States)

    Roberts, Marion L.; Rice, R. M.; Cosby, S. A.

    1988-01-01

    Design of nozzle reduces erosion of orifice by turbulent high-pressure water flowing through it. Improved performance and resistance to erosion achieved by giving interior nozzle surface long, gradual convergence before exit orifice abrupt divergence after orifice and by machining surface to smooth finish.

  5. Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Isolated Nozzles

    Science.gov (United States)

    Castner, Raymond S.

    2011-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-ft Supersonic Wind Tunnel at the NASA Glenn Research Center to validate the computational study. Results demonstrated how the nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion, causing a favorable change in the observed pressure signature. Experimental results were presented for comparison to the CFD results. The strong nozzle lip shock at high values of NPR intersected the nozzle boat-tail expansion and suppressed the expansion wave. Based on these results, it may be feasible to reduce the boat-tail expansion for a future supersonic aircraft with under-expanded nozzle exhaust flow by modifying nozzle pressure or nozzle divergent section geometry.

  6. Palo Verde Unit 3 BMI nozzle modification

    International Nuclear Information System (INIS)

    The 61 BMI (Bottom Mount Instrumentation) nozzles of the unit 3 of the Palo Verde plant have been examined through ASME Code Case N722. The nozzle 3 was the only one with leakage noted. The ultrasound testing results are characteristic of PWSCC (Primary Water Stress Corrosion Cracking). The initiation likely occurred at a weld defect which was exposed to the primary water environment resulting in PWSCC. All other nozzles (60) showed no unacceptable indications. Concerning nozzle 3 one crack in J-groove weld connected large defect to primary water. An environmental model has been used to simulate and optimize the repair. The AREVA crew was on site 18 days after contract award and the job was completed in 12 days, 30 hours ahead of baseline schedule. This series of slides describes the examination of the BMI nozzles, the repair steps, and alternative design concepts

  7. Online forecasting model of tundish nozzle clogging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A nozzle clogging online forecasting model based on hydrodynamics engineering was developed, in which the actual flow rate was calculated from the mold width, thickness, and casting speed. There is a linear relationship between the theoretical flow rate and the slide gate opening ratio as the molten steel level, argon flow rate, and the top slag weight are kept constant, and the relationship can be obtained by regression of the data collected at the beginning of the first heat in each casting sequence when the nozzle clogging does not occur. Then, during the casting, the theoretical flow rate can be calculated at intervals of one second. Comparing the theoretical flow rate with the actual flow rate, the online nozzle clogging ratio can be obtained at intervals of one second. The computer model based on the conception of the nozzle clogging ratio can display the degree of the nozzle clogging intuitively.

  8. Numerical Investigation of Separated Plug Nozzle Flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Modern analysis techniques that provide improved viability have enabled further investigation of plug nozzle rocket engines as advanced launch vehicle concepts. A plug nozzle for future single-stage-to-orbit vehicles in China has been designed, and the flow field in the plug nozzle has been studied numerically for different ambient pressures. Calculations were performed by solving the Navier-Stokes equations for an ideal gas. Turbulence is modelled using the k-ε turbulence model. The advantages of the plug nozzles are the external expansion, which automatically adapts to external pressure variations, and the short compact design for high expansion ratios. Expansion waves, compression shocks, and the separated base flow dominate the flow structures and affect the plug nozzle rocket engine performance.

  9. Exhaust Nozzle Plume and Shock Wave Interaction

    Science.gov (United States)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  10. Investigations into effects of blade number in a booster blower for forced ventilation on noise level caused by stream heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, A.

    1985-09-01

    Noise level is analyzed caused by WLE-603A booster mine blowers used for local ventilation in underground coal mines in Poland. The blowers have two impellers rotating in opposite directions. One impeller is equipped with 10 or 11 blades, the other with 9, 8, 7, 6 or 5 blades. Revolution rate of 2940 rpm is used. A formula for optimizing blade number on two impellers and the relation of impeller number is derived. Effects of optimizing blade number on the air streams produced by two impellers and their interaction are analyzed. Effects of stream heterogeneity on noise level are determined. Recommendations for the optimum blade number which reduces noise level are made. 3 references.

  11. Cosmet'eau-Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments.

    Science.gov (United States)

    Bressy, Adèle; Carré, Catherine; Caupos, Émilie; de Gouvello, Bernard; Deroubaix, José-Frédéric; Deutsch, Jean-Claude; Mailler, Romain; Marconi, Anthony; Neveu, Pascale; Paulic, Laurent; Pichon, Sébastien; Rocher, Vincent; Severin, Irina; Soyer, Mathilde; Moilleron, Régis

    2016-07-01

    The Cosmet'eau project (2015-2018) investigates the "changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments." In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities-including local authorities, industries, and consumers. The project aims to characterize the possible changes in PCP consumption practices and to evaluate the impact of their implementation on aquatic contamination. Our goals are to study the whistle-blowers, the risk perception of consumers linked with their practices, and the contamination in parabens and their substitutes, triclosan, and triclocarban from wastewater to surface water. The project investigates the following potential solutions: modifications of industrial formulation or changes in consumption practices. The final purpose is to provide policy instruments for local authorities aiming at building effective strategies to fight against micropollutants in receiving waters. PMID:27179812

  12. Cosmet'eau -Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments

    OpenAIRE

    Bressy, Adèle; Carré, Catherine; Caupos, Émilie; De Gouvello, Bernard; Deroubaix, José-Frédéric; Deutsch, Jean-Claude; Mailler, Romain; Marconi, Anthony; Neveu, Pascale; Paulic, Laurent; Pichon, Sébastien; Rocher, Vincent; Severin, Irina; SOYER, Mathilde; Moilleron, Régis

    2016-01-01

    International audience The Cosmet'eau project (2015-2018) investigates the " changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments. " In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities – including local authorities –, industries and consumers. The project aims to characterize the possible changes in PCP consumption pra...

  13. Safety demonstration tests on pressure rise in ventilation system and blower integrity of a fuel-reprocessing plant

    International Nuclear Information System (INIS)

    In JAERI, the demonstration test was carried out as a part of safety researches of the fuel-reprocessing plant using a large-scale facility consist of cells, ducts, dumpers, HEPA filters and a blower, when an explosive burning due to a rapid reaction of thermal decomposition for solvent/nitric acid occurs in a cell of the reprocessing plant. In the demonstration test, pressure response propagating through the facility was measured under a blowing of air from a pressurized tank into the cell in the facility to elucidate an influence of pressure rise in the ventilation system. Consequently, effective pressure decrease in the facility was given by a configuration of cells and ducts in the facility. In the test, transient responses of HEPA filters and the blower by the blowing of air were also measured to confirm the integrity. So that, it is confirmed that HEPA filters and the blower under pressure loading were sufficient to maintain the integrity. The content described in this report will contribute to safety assessment of the ventilation system in the event of explosive burning in the reprocessing plant. (author)

  14. Effects of inlet radius and bell mouth radius on flow rate and sound quality of centrifugal blower

    International Nuclear Information System (INIS)

    The effect of inlet radius and bell mouth radius on flow rate of centrifugal blower were numerically simulated using a commercial CFD program, FLUENT. In this research, a total of eight numerical models were prepared by combining different values of bell mouth radii and inlet radii (the cross section of bell mouth was chosen as a circular arc in this research). The frozen rotor method combined with a realizable k-epsilon turbulence model and non-equilibrium wall function was used to simulate the three-dimensional flow inside the centrifugal blowers. The inlet radius was then revealed to have significant impact on flow rate with the maximum difference between analyzed models was about 4.5% while the bell mouth radius had about 3% impact on flow rate. Parallel experiments were carried out to confirm the results of CFD analysis. The CFD results were thereafter validated owning to the good agreement between CFD results and the parallel experiment results. In addition to performance analysis, noise experiments were carried out to analyze the dependence of sound quality on inlet radius and bell mouth radius with different flow rate. The noise experiment results showed that the loudness and sharpness value of different models were quite similar, which mean the inlet radius and the bell mouth radius didn't have a clear impact on sound quality of centrifugal blower

  15. Effects of inlet radius and bell mouth radius on flow rate and sound quality of centrifugal blower

    Energy Technology Data Exchange (ETDEWEB)

    Son, Pham Ngoc; Kim, Jae Won; Byun, S. M. [Sunmoon University, Asan (Korea, Republic of); Ahn, E. Y. [Hanbat National University, Daejeon (Korea, Republic of)

    2012-05-15

    The effect of inlet radius and bell mouth radius on flow rate of centrifugal blower were numerically simulated using a commercial CFD program, FLUENT. In this research, a total of eight numerical models were prepared by combining different values of bell mouth radii and inlet radii (the cross section of bell mouth was chosen as a circular arc in this research). The frozen rotor method combined with a realizable k-epsilon turbulence model and non-equilibrium wall function was used to simulate the three-dimensional flow inside the centrifugal blowers. The inlet radius was then revealed to have significant impact on flow rate with the maximum difference between analyzed models was about 4.5% while the bell mouth radius had about 3% impact on flow rate. Parallel experiments were carried out to confirm the results of CFD analysis. The CFD results were thereafter validated owning to the good agreement between CFD results and the parallel experiment results. In addition to performance analysis, noise experiments were carried out to analyze the dependence of sound quality on inlet radius and bell mouth radius with different flow rate. The noise experiment results showed that the loudness and sharpness value of different models were quite similar, which mean the inlet radius and the bell mouth radius didn't have a clear impact on sound quality of centrifugal blower.

  16. Coordination of nuclear safety regulations and corporate compliance activities. Desirable implementation of the whistle-blower protection scheme in Japan

    International Nuclear Information System (INIS)

    Recently, scandals and incidents associated with development and utilization of nuclear energy have attracted social concerns widely. However, there are limitations in preventing nuclear operators from illegal or unethical conduct only through reinforcement and expanding the nuclear safety regulations. From this viewpoint, it has turned out a real issue to develop a desirable coordination between the regulatory system and corporate compliance activities to maintain and further improve nuclear safety. Whistle-blower protection scheme (as depicted 'Declaration to the Competent Minister' in The Law for the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors') reveals itself as a promising scheme to promote such coordination of nuclear safety regulations and corporate compliance activities. This study demonstrates that introduction of whistle-blower protection system in the U.S. federal nuclear safety regulations has encouraged developments of Employee Concerns Programs as corporate allegation programs at the U.S. based utility companies, and thereby indicates concrete improvement proposals of whistle-blower protection system enforcement in nuclear safety regulation in Japan that encourages corporate compliance activities. The principal aspects are as follows; (1) Development of compensatory scheme for employees who were discriminated on ground of the declaration, and (2) Clear rulemaking for existing private corporate allegation programs to be compatible with the official whistle-blowing procedure by Nuclear and Industrial Safety Agency, the Japanese safety regulatory authority. (author)

  17. A noninvasive high frequency oscillation ventilator: Achieved by utilizing a blower and a valve

    Science.gov (United States)

    Yuan, YueYang; Sun, JianGuo; Wang, Baicun; Feng, Pei; Yang, ChongChang

    2016-02-01

    After the High Frequency Oscillatory Ventilation (HFOV) has been applied in the invasive ventilator, the new technique of noninvasive High Frequency Oscillatory Ventilation (nHFOV) which does not require opening the patient's airway has attracted much attention from the field. This paper proposes the design of an experimental positive pressure-controlled nHFOV ventilator which utilizes a blower and a special valve and has three ventilation modes: spontaneous controlled ventilation combining HFOV, time-cycled ventilation combining HFOV (T-HFOV), and continuous positive airway pressure ventilation combining HFOV. Experiments on respiratory model are conducted and demonstrated the feasibility of using nHFOV through the control of fan and valve. The experimental ventilator is able to produce an air flow with small tidal volume (VT) and a large minute ventilation volume (MV) using regular breath tubes and nasal mask (e.g., under T-HFOV mode, with a maximum tidal volume of 100 ml, the minute ventilation volume reached 14 400 ml). In the process of transmission, there is only a minor loss of oscillation pressure. (Under experimental condition and with an oscillation frequency of 2-10 Hz, peak pressure loss was around 0%-50% when it reaches the mask.)

  18. Effect of nozzle flexibility on piping system

    International Nuclear Information System (INIS)

    Piping systems should be designed flexibly to avoid the burden more on the buffer tube and nozzle equipment. In conditions where space is limited then to create a routing that is flexible enough not impossible to achieve. As a result, the force generated would be enormous. One way to reduce the load more on the support and on the equipment nozzles with the method of nozzle flexibility. In this method, the nozzle was not considered to be rigid but has a certain flexibility in accordance with the dimensions of the equipment. Based on calculations using Caesar II produced Fx = 11926 kg, Fy = 2510 kg, FZ = 800 kg, Mx = -17712 kg-m, My = 44514 kg-m and Mz = 7813 kg-m. From these data there are still components that moment, that is My still quite large. To reduce the load on the nozzle so on nozzle factors included flexibility in order to get results Fx = 1989 kg, Fy = -1938, FZ = 1672, Mx = -1798 kg-m, My = 8106 kg-m and Mz = 3846 kg-m . Seeing the results of calculations with the nozzle flexibility and style of the moment turns out that there is less than the allowable limits so that this condition is declared safe to install. (author)

  19. Subsonic Euler flows in a divergent nozzle

    Institute of Scientific and Technical Information of China (English)

    WENG ShangKun

    2014-01-01

    We characterize a class of physical boundary conditions that guarantee the existence and uniqueness of the subsonic Euler flow in a general finitely long nozzle.More precisely,by prescribing the incoming flow angle and the Bernoulli’s function at the inlet and the end pressure at the exit of the nozzle,we establish an existence and uniqueness theorem for subsonic Euler flows in a 2-D nozzle,which is also required to be adjacent to some special background solutions.Such a result can also be extended to the 3-D asymmetric case.

  20. Turbine nozzle stage having thermocouple guide tube

    Science.gov (United States)

    Schotsch, Margaret Jones; Kirkpatrick, Francis Lawrence; Lapine, Eric Michael

    2002-01-01

    A guide tube is fixed adjacent opposite ends in outer and inner covers of a nozzle stage segment. The guide tube is serpentine in shape between the outer and inner covers and extends through a nozzle vane. An insert is disposed in the nozzle vane and has apertures to accommodate serpentine portions of the guide tube. Cooling steam is also supplied through chambers of the insert on opposite sides of a central insert chamber containing the guide tube. The opposite ends of the guide tube are fixed to sleeves, in turn fixed to the outer and inner covers.

  1. Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Vectored Nozzles

    Science.gov (United States)

    Castner, Raymond

    2012-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Results show how the shock generated at the nozzle lip affects the near field pressure signature, and thereby the potential sonic boom contribution for a nozzle at vector angles from 3 to 8 . The experiment was based on the NASA F-15 nozzle used in the Lift and Nozzle Change Effects on Tail Shock experiment, which possessed a large external boat-tail angle. In this case, the large boat-tail angle caused a dramatic expansion, which dominated the near field pressure signature. The impact of nozzle vector angle and nozzle pressure ratio are summarized.

  2. Integrated Composite Rocket Nozzle Extension Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  3. Nozzle and shroud assembly mounting structure

    Science.gov (United States)

    Faulder, Leslie J.; Frey, deceased, Gary A.; Nielsen, Engward W.; Ridler, Kenneth J.

    1997-01-01

    The present nozzle and shroud assembly mounting structure configuration increases component life and reduces maintenance by reducing internal stress between the mounting structure having a preestablished rate of thermal expansion and the nozzle and shroud assembly having a preestablished rate of thermal expansion being less than that of the mounting structure. The mounting structure includes an outer sealing portion forming a cradling member in which an annular ring member is slidably positioned. The mounting structure further includes an inner mounting portion to which a hooked end of the nozzle and shroud assembly is attached. As the inner mounting portion expands and contracts, the nozzle and shroud assembly slidably moves within the outer sealing portion.

  4. Low thermal stress ceramic turbine nozzle

    Science.gov (United States)

    Glezer, Boris; Bagheri, Hamid; Fierstein, Aaron R.

    1996-01-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  5. Cross-talk effect in electrostatic based capillary array nozzles

    International Nuclear Information System (INIS)

    Electrohydrodynamic printing is a promising technique for printed electronics application. Most researchers working in this field are using a single nozzle configuration. However, for large area printing a multi-nozzle setup will be required for time and cost effective process. In this paper the influence of electric field and flow-rate on jetting angle on multi-nozzle array has been investigated experimentally. A three nozzle setup has been used in a linear array by using glass capillary as a nozzle with independent voltage applied on each nozzle and independent ink supply. The experiments are performed by changing the nozzle to nozzle gap and the effect on the jetting angle has been investigated. It has been observed that by increasing the applied voltage the jetting angle also increases at fixed flow-rate. In case of increasing the flow-rate, the jetting angle first increases with increase in flow-rate, but as the flow-rate increases at certain level the jetting angle decreases; moreover, at a high flow-rate the cone-jet length starts increasing. Numerical simulation has been performed to have a better understanding of the electric-field with respect to jetting angles. The influence of one nozzle on another nozzle is also investigated by operating the nozzle independently by using different operating cases. The cross-talk effect is also minimized by reducing the nozzle diameter. At 250 μm nozzle diameter the cross-talk effect was negligible for 5 mm nozzle-to-nozzle gap. This study will help in better understanding of the interaction between different nozzles in multi-nozzle cases and better design of the multi-nozzle system by minimizing the effects of adjacent nozzles for multi-nozzle electrohydrodynamic printing system

  6. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    Science.gov (United States)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  7. Jet-diffuser Ejector - Attached Nozzle Design

    Science.gov (United States)

    Alperin, M.; Wu, J. J.

    1980-01-01

    Attached primary nozzles were developed to replace the detached nozzles of jet-diffuser ejectors. Slotted primary nozzles located at the inlet lip and injecting fluid normal to the thrust axis, and rotating the fluid into the thrust direction using the Coanda Effect were investigated. Experiments indicated excessive skin friction or momentum cancellation due to impingement of opposing jets resulted in performance degradation. This indicated a desirability for location and orientation of the injection point at positions removed from the immediate vicinity of the inlet surface, and at an acute angle with respect to the thrust axis. Various nozzle designs were tested over a range of positions and orientations. The problems of aircraft integration of the ejector, and internal and external nozzle losses were also considered and a geometry for the attached nozzles was selected. The effect of leaks, protrusions, and asymmetries in the ejector surfaces was examined. The results indicated a relative insensitivity to all surface irregularities, except for large protrusions at the throat of the ejector.

  8. Simulation of Gas Flow Field in Laval Nozzle and Straight Nozzle for Powder Metallurgy and Spray Forming

    Institute of Scientific and Technical Information of China (English)

    LI Zheng-dong; ZHANG Guo-qing; LI Zhou; ZHANG Yong; XU Wen-yong

    2008-01-01

    Gas flow field in nozzles and out of nozzles was calculated for Laval orifice and straight orifice nozzles.The results showed that the flow generated by the Laval nozzle had a higher exit velocity in the vicinity of the nozzle,in comparison with that of the straight nozzle,that is to say,a Laval nozzle was more efficient than a straight one in disintegrating the melt stream and was apt to produce finer powders.The flow generated by the Laval nozzle was less convergent and the velocity gradient along the radial direction was more moderate than that of a straight nozzle,which could contribute to a broad distribution of melt particles.According to their flow characteristics,the Laval nozzle was reckoned as a better choice of producing larger spray-formed billets.

  9. Uma abordagem curricular em matemática no 3º ciclo do ensino básico: um estudo de caso em geometria

    OpenAIRE

    Lopes, Ilda Maria Ferreira do Couto

    2010-01-01

    Este trabalho debruça-se sobre as práticas de Ensino de Geometria no 3º ciclo do Ensino Básico tendo como principal foco de investigação as práticas de ensino da professora investigadora. O estudo empírico foi realizado em três turmas de 9º ano, da professora investigadora, de Abril a Junho de 2005, numa Escola da região de Trás-os-Montes (designada por Escola A). O trabalho realizado pela professora investigadora com alunos dessas turmas (no 7º em 2002/03, no 8º ano em 2003/04...

  10. Study of the generated density of cavitation inside diesel nozzle using different fuels and nozzles

    International Nuclear Information System (INIS)

    Highlights: • Compared the cavitation inside diesel nozzle using different fuels and nozzles by flow visualization experiment. • Two new parameters are put forward to analyze quantitatively the generated intensity of cavitation inside nozzle. • The influences of injection conditions on the generated intensity of cavitation are investigated by new parameters. • The generated intensity of cavitation is sensitive to the change of injection conditions. - Abstract: A comparative study using different fuels and nozzles has been conducted focusing on the generated density of cavitation inside diesel nozzle. In this paper a visualization experiment has been carried out and the new parameters are presented to compare the effect of the injection conditions (including injection pressure, the spray angle of nozzle, the length–diameter ratio of nozzle orifice and the fuel type) on the generated density of cavitation. The research results indicate that the generated density of cavitation is sensitive to the change of injection conditions. The generated density increases about 10% for every 10 MPa in injection pressure. The generated density increases with the increase of nozzle spray angle and with the decrease of length–diameter ratio. The cavitation appears early and changes fast by using the fuel with lower viscosity and higher saturated vapor pressure. The generated density of cavitation increases with the increase of saturated vapor pressure and decreases with the increase of viscosity

  11. Blower door tests of a group of identical flats in a new student accommodation in the Arctic

    OpenAIRE

    Kotol, Martin; Rode, Carsten; Vahala, Jan

    2012-01-01

    A new student accommodation for engineering students “Apisseq” was built in the town of Sisimiut, Greenland in 2010. Its purpose is not only to provide accommodation for students. Thanks to its complex monitoring system it enables researchers to evaluate the building’s energy performance and indoor air quality (IAQ) as well as performance of some single components. In summer 2012 a blower door test was performed on all 37 living units out of which 33 are identical single room flats and 4 are ...

  12. Parametric study of solar thermal rocket nozzle performance

    Science.gov (United States)

    Pearson, J. Boise; Landrum, D. Brian; Hawk, Clark W.

    1995-01-01

    This paper details a numerical investigation of performance losses in low-thrust solar thermal rocket nozzles. The effects of nozzle geometry on three types of losses were studied; finite rate dissociation-recombination kinetic losses, two dimensional axisymmetric divergence losses, and compressible viscous boundary layer losses. Short nozzle lengths and supersonic flow produce short residence times in the nozzle and a nearly frozen flow, resulting in large kinetic losses. Variations in geometry have a minimal effect on kinetic losses. Divergence losses are relatively small, and careful shaping of the nozzle can nearly eliminate them. The boundary layer in these small nozzles can grow to a major fraction of nozzle radius, and cause large losses. These losses are attributed to viscous drag on the nozzle walls and flow blockage by the boundary layer, especially in the throat region. Careful shaping of the nozzle can produce a significant reduction in viscous losses.

  13. Method to construct the nozzle walls of separating nozzles with deflector channels

    International Nuclear Information System (INIS)

    The method is employed for economic mass production of very precise separation nozzles with very small channel cross sections of the type described as the basis of the well-known separation nozzle process in P 19 08 693.2. This supplementary application improves that patented design by further advancing the fabrication technique so as to achieve particularly high precision. A packing of a material easily dissolved occupies the space later to become a hollow space, similar to the core of a casting model. This packing also contains the transverse webs, which are made of a material similar to that used for the nozzles, which are to retain the funnel shape of the finished nozzle with a high degree of precision. After a process of solid connection between the webs and the walls of the nozzle the packing is removed. (HP)

  14. Aeroelastic Modeling of a Nozzle Startup Transient

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  15. Nozzle dam having a unitary plug

    Science.gov (United States)

    Veronesi, Luciano; Wepfer, Robert M.

    1992-01-01

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket.

  16. Robotic cleaning of radwaste tank nozzles

    International Nuclear Information System (INIS)

    The Susquehanna radwaste processing system includes two reactor water cleanup phase separator tanks and one waste sludge phase separator tank. A system of educator nozzles and associated piping is used to provide mixing in the tanks. The mixture pumped through the nozzles is a dense resin-and-water slurry, and the nozzles tend to plug up during processing. The previous method for clearing the nozzles had been for a worker to enter the tanks and manually insert a hydrolaser into each nozzle, one at a time. The significant radiation exposure and concern for worker safety in the tank led the utility to investigate alternate means for completing this task. The typical tank configuration is shown in a figure. The initial approach investigated was to insert a manipulator arm in the tank. This arm would be installed by workers and then teleoperated from a remote control station. This approach was abandoned because of several considerations including educator location and orientation, excessive installation time, and cost. The next approach was to use a mobile platform that would operate on the tank floor. This approach was selected as being the most feasible solution. After a competitive selection process, REMOTEC was selected to provide the mobile platform. Their proposal was based on the commercial ANDROS Mark 5 platform

  17. Characteristics of a fluted nozzle gas eductor system

    OpenAIRE

    Boykin, Jerry Wayne

    1983-01-01

    Approved for public release; distribution is unlimited Cold flow tests were conducted on a four nozzle and a one nozzle gas educator system. The nozzles employed were fluted with a constant cross sectional area. The four nozzle tests used a mixing stack length-to-diameter ratio, (L/D), 1.5; the single nozzle tests used L/D ratios of2.0, 1.75, and 1.5. The total cross sectional area of the mixing stack was 2/3; for the single fluted nozzle, 2.42. Secondary pumping coefficients, mixing s...

  18. Automation of the control system and reform of the COSIPA no. 3 turbo blower; Automacao dos sistema de controle e reforma do turbo soprador n. 3 da Cosipa

    Energy Technology Data Exchange (ETDEWEB)

    Kobukloski, Sandro; Martins, Marcos Rogerio S.; Garcia, Jose Eduardo da S.; Reis, Joao de Paula; Romao Junior, Wilson; Vilarinho, Joao Clovis; Spinassi, Luiz Carlos; Florencio, Aurelio Freire; Rocha, Jose Olimpio Castro Pereira da [Companhia Siderurgica Paulista (COSIPA), Cubatao, SP (Brazil)

    2001-07-01

    The turbo blower no. 3 (TS no. 3) start operation in 1976 blowing for the COSIPA blast furnace no. 2. Since 1993 the equipment was dedicated to the blast furnace no. 1, which is smaller than the previous one, consequently releasing the excess air to the atmosphere. Due to some modifications and for safety of the equipment, an operational conditional has been introducing with higher energy consumption. Due to operational requests a complete machine control system reformation was decided, blower stator and rotor blade replacement, and installation of a self-cleaning pre-filtering system. (author)

  19. Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics

    International Nuclear Information System (INIS)

    Highlights: • Two common types of diesel injector nozzles (VCO and microsac) are compared. • A CFD code with a HEM model for two-phase flow and a RANS approach is used. • Simulations are performed in stationary conditions at several needle lifts. • Differences in cavitation inception and morphology are analysed. • VCO nozzles are more prone to cavitate and more affected by the needle presence. - Abstract: A computational study focused on the inner nozzle flow and cavitation phenomena has been reported in this paper in order to investigate the two most common types of diesel injector nozzles at the present: microsac and valve covered orifice (VCO). The geometrical differences among both types of nozzles are mainly located at the needle seat, upstream of the discharge orifices. In the case of microsac nozzles there is a small volume upstream of the discharge orifices which is not present in VCO nozzles. Due to these geometrical differences among both type of nozzles, differences in the inner flow and the cavitation development have been found and analysed in this research. For the study, two cylindrical nozzles with six orifices and the same outlet diameter have been experimentally characterized in terms of mass flow rate. These measurements have been used to validate the CFD results obtained with the code OpenFOAM used for the analysis of the internal nozzle flow. For the simulations, two meshes that reproduce the microsac and VCO nozzles seat geometry while keeping the same geometry at the orifices have been built. The simulations have been carried out with a code previously validated and able to simulate cavitation phenomena using a homogeneous equilibrium model (HEM) and with RANS approach for the turbulence modelling (RNG k–ε). For the computational study, three injection pressures and different geometries simulating different needle lifts have been used. The comparison among nozzles has been made in terms of mass flow, momentum flux and effective

  20. Biannular Airbreathing Nozzle Rig (BANR) facility checkout and plug nozzle performance test data

    Science.gov (United States)

    Cummings, Chase B.

    2010-09-01

    The motivation for development of a supersonic business jet (SSBJ) platform lies in its ability to create a paradigm shift in the speed and reach of commercial, private, and government travel. A full understanding of the performance capabilities of exhaust nozzle configurations intended for use in potential SSBJ propulsion systems is critical to the design of an aircraft of this type. Purdue University's newly operational Biannular Airbreathing Nozzle Rig (BANR) is a highly capable facility devoted to the testing of subscale nozzles of this type. The high accuracy, six-axis force measurement system and complementary mass flowrate measurement capabilities of the BANR facility make it rather ideally suited for exhaust nozzle performance appraisal. Detailed accounts pertaining to methods utilized in the proper checkout of these diagnostic capabilities are contained herein. Efforts to quantify uncertainties associated with critical BANR test measurements are recounted, as well. Results of a second hot-fire test campaign of a subscale Gulfstream Aerospace Corporation (GAC) axisymmetric, shrouded plug nozzle are presented. Determined test article performance parameters (nozzle thrust efficiencies and discharge coefficients) are compared to those of a previous test campaign and numerical simulations of the experimental set-up. Recently acquired data is compared to published findings pertaining to plug nozzle experiments of similar scale and operating range. Suggestions relating to the future advancement and improvement of the BANR facility are provided. Lessons learned with regards to test operations and calibration procedures are divulged in an attempt to aid future facility users, as well.

  1. Turbocharger with variable nozzle having vane sealing surfaces

    Science.gov (United States)

    Arnold, Philippe; Petitjean, Dominique; Ruquart, Anthony; Dupont, Guillaume; Jeckel, Denis

    2011-11-15

    A variable nozzle for a turbocharger includes a plurality of vanes rotatably mounted on a nozzle ring and disposed in a nozzle flow path defined between the nozzle ring and an opposite nozzle wall. Either or both of the faces of the nozzle ring and nozzle wall include(s) at least one step that defines sealing surfaces positioned to be substantially abutted by airfoil surfaces of the vanes in the closed position of the vanes and to be spaced from the airfoil surfaces in positions other than the closed position. This substantial abutment between the airfoil surfaces and the sealing surfaces serves to substantially prevent exhaust gas from leaking past the ends of the airfoil portions. At the same time, clearances between the nozzle ring face and the end faces of the airfoil portions can be sufficiently large to prevent binding of the vanes under all operating conditions.

  2. Linear nozzle with tailored gas plumes and method

    Science.gov (United States)

    Leon, David D.; Kozarek, Robert L.; Mansour, Adel; Chigier, Norman

    1999-01-01

    There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

  3. Line drawing of anomaly discovered in redesigned shuttle motor nozzle

    Science.gov (United States)

    1987-01-01

    Line drawing titled 'DM-9 Case-to-Nozzle Joint' shows anomaly discovered in redesigned shuttle motor nozzle. The second full-duration test firing of NASA's redesigned Space Shuttle solid rocket motor (SRM), designated DM-9, was conducted 12-23-87 at Morton Thiokol's Wasatch facility in Utah. A post-test examination of the motor has revealed an anomaly in one nozzle component. Material was discovered missing from the nozzle outer boot ring, a large carbon phenolic composite ring used to anchor one end of the flexible boot that allows the nozzle to move and 'steer' the vehicle. About one-third of the missing 160 degrees of missing ring material was found adjacent to the forward nozzle section inside the motor. This diagram shows the location of the nozzle joint on an assembled SRM, and points out the shaded location of the outer boot ring that circles the motor within the nozzle joint.

  4. Lightweight Nozzle Extension for Liquid Rocket Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ARES J-2X requires a large nozzle extension. Currently, a metallic nozzle extension is being considered with carbon-carbon composite as a backup. In Phase 1,...

  5. Behavior of liquid metal droplets in an aspirating nozzle. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Swank, W.D.; Fincke, J.R.; Mason, T.A.

    1990-12-31

    Measurements of particle size, velocity, and relative mass flux were made on spray field produced by aspirating liquid tin into 350{degrees}C argon flowing through a venturi nozzle via a small orifice in the throat of the nozzle. Details of the aspiration and droplet formation process were observed through windows in the nozzle. The spatial distribution of droplet size, velocity, and relative number density were measured at a location 10 mm from the nozzle exit. Due to the presence of separated flow in the nozzle, changes in nozzle inlet pressure did not significantly effect resulting droplet size and velocity. This suggests that good aerodynamic nozzle design is required if spray characteristics are to be controlled by nozzle flow. 5 refs.

  6. Behavior of liquid metal droplets in an aspirating nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Swank, W.D.; Fincke, J.R.; Mason, T.A.

    1990-01-01

    Measurements of particle size, velocity, and relative mass flux were made on spray field produced by aspirating liquid tin into 350{degrees}C argon flowing through a venturi nozzle via a small orifice in the throat of the nozzle. Details of the aspiration and droplet formation process were observed through windows in the nozzle. The spatial distribution of droplet size, velocity, and relative number density were measured at a location 10 mm from the nozzle exit. Due to the presence of separated flow in the nozzle, changes in nozzle inlet pressure did not significantly effect resulting droplet size and velocity. This suggests that good aerodynamic nozzle design is required if spray characteristics are to be controlled by nozzle flow. 5 refs.

  7. JANNAF Rocket Nozzle Technology Subcommittee Executive Committee Report

    Science.gov (United States)

    Lawrence, Timothy W.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the structure and activities of the panels of the Joint Army Navy NASA Air Force (JANNAF) Rocket Nozzle Technology Subcommittee. The panels profiled are the Processing Science and Materials Panel, the Nozzle Design, Test, and Evaluation Panel, the Nozzle Analysis and Modeling Panel, and the Nozzle Control Systems Panel. The presentation also lists meetings, workshops, and publications in which the subcommittee participated during the reporting period.

  8. Water distribution characteristics of spray nozzles in a cooling tower

    OpenAIRE

    Vitkovic Pavol

    2015-01-01

    Water distribution characteristics of spray nozzles with spray plates used to distribute cooling water to the cooling fills in a cooling tower is one of the important parameters for the selection of nozzles. Water distribution characteristic describes the distribution of water from the axis of the nozzle along a fill. One of the parameters affecting the water distribution characteristic of the nozzle is airflow velocity of counter flow airstream. Water distribution characteristics are commonl...

  9. Near-Nozzle Instabilities in Gasoline Direct Injection Sprays

    OpenAIRE

    Gavaises, E.; Rewse-Davies, Z.; Nouri, J. M.; Arcoumanis, C.

    2013-01-01

    Nozzle flow of multi-hole GDi injectors can lead to undesirable and uncontrolled spray instabilities. In this study, two different injectors were utilised in order to observe the near-nozzle spray using high magnification optics and a high speed camera; a symmetrical multi-hole injector and an asymmetric, stepped nozzle injector. It was found that the symmetric injector exhibited a number of different spray instabilities, including flapping of the spray cone from an individual nozzle, flappin...

  10. Characterization of hydraulic nozzles for droplet size and spray coverage

    Science.gov (United States)

    Spray coverage specifications for commercially available nozzles could help applicators determine the optimal nozzles for effective control of insects, diseases and weeds. Spray coverage and deposit density from seven types of nozzles at three different flow rates (0.76, 1.14 and 2.27 l min-1) and t...

  11. Integrated Ceramic Matrix Composite and Carbon/Carbon Structures for Large Rocket Engine Nozzles and Nozzle Extensions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low-cost access to space demands durable, cost-effective, efficient, and low-weight propulsion systems. Key components include rocket engine nozzles and nozzle...

  12. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti (

  13. New atomization nozzle for spray drying

    NARCIS (Netherlands)

    Deventer, H.C. van; Houben, R.J.; Koldeweij, R.B.J.

    2013-01-01

    A new atomization nozzle based on ink jet technology is introduced for spray drying. Application areas are the food and dairy industry, in the first instance, because in these industries the quality demands on the final powders are high with respect to heat load, powder shape, and size distribution.

  14. Comparative study of reinforced nozzle connections

    International Nuclear Information System (INIS)

    The shell theory and finite-element method are used for the stress analysis of models of unreinforced and reinforced nozzle connections under internal pressure and external loads. Various reinforcement configurations are considered. The results of a comparative study of the effects of reinforcement on the maximum stress in radial models of the intersecting cylindrical shells are presented. (orig.)

  15. Development of Filter-Blower Unit for use in the Advanced Nuclear Biological Chemical Protection System (ANBCPS) Helicopter/Transport-aircraft version

    NARCIS (Netherlands)

    Sabel, R.; Reffeltrath, P.A.; Jonkman, A.; Post, T.

    2006-01-01

    As a participant in the three-nation partnership for development of the ANBCP-S for use in Helicopters, Transport Aircraft and Fast Jet, the Royal Netherlands Airforce (RNLAF) picked up the challenge to design a Filter- Blower-Unit (FBU). Major Command (MajCom) of the RNLAF set priority to develop a

  16. EC blowers for school building ventilation. Wholesome climate and high energy efficiency; EC-Ventilatoren fuer Schullueftungskonzepte. Gesundes Klima bei hoher Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Salig, Andreas [ebm-papst, Mulfingen (Germany). Verkauf Inland; Grohmann, Erwin [Grohmann Lueftungstechnik GmbH, Forchtenberg (Germany); Reiff, Ellen-Christine [Redaktionsbuero Stutensee (Germany)

    2009-07-01

    Government funds of several thousands of millions were provided in 2009 for the modernisation of school buildings. There are highly flexible commercial ventilation and air conditioning systems for this type of buildings which combine energy savings with optimum room air quality. EC blowers contribute to this. (orig.)

  17. Computational Studies of Magnetic Nozzle Performance

    Science.gov (United States)

    Ebersohn, Frans H.; Longmier, Benjamin W.; Sheehan, John P.; Shebalin, John B.; Raja, Laxminarayan

    2013-01-01

    An extensive literature review of magnetic nozzle research has been performed, examining previous work, as well as a review of fundamental principles. This has allow us to catalog all basic physical mechanisms which we believe underlie the thrust generation process. Energy conversion mechanisms include the approximate conservation of the magnetic moment adiabatic invariant, generalized hall and thermoelectric acceleration, swirl acceleration, thermal energy transformation into directed kinetic energy, and Joule heating. Momentum transfer results from the interaction of the applied magnetic field with currents induced in the plasma plume., while plasma detachment mechanisms include resistive diffusion, recombination and charge exchange collisions, magnetic reconnection, loss of adiabaticity, inertial forces, current closure, and self-field detachment. We have performed a preliminary study of Hall effects on magnetic nozzle jets with weak guiding magnetic fields and weak expansions (p(sub jet) approx. = P(sub background)). The conclusion from this study is that the Hall effect creates an azimuthal rotation of the plasma jet and, more generally, creates helical structures in the induced current, velocity field, and magnetic fields. We have studied plasma jet expansion to near vacuum without a guiding magnetic field, and are presently including a guiding magnetic field using a resistive MHD solver. This research is progressing toward the implementation of a full generalized Ohm's law solver. In our paper, we will summarize the basic principle, as well as the literature survey and briefly review our previous results. Our most recent results at the time of submittal will also be included. Efforts are currently underway to construct an experiment at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory (PEPL) to study magnetic nozzle physics for a RF-thruster. Our computational study will work directly with this experiment to validate the numerical

  18. Experimental and CFD analysis of nozzle position of subsonic ejector

    Institute of Scientific and Technical Information of China (English)

    Xilai ZHANG; Shiping JIN; Suyi HUANG; Guoqing TIAN

    2009-01-01

    The influence of nozzle position on the performance of an ejector was analyzed qualitatively with free jet flow model. Experimental investigations and computational fluid dynamics (CFD) analysis of the nozzle position of the subsonic ejector were also conducted. The results show that there is an optimum nozzle position for the ejector. The ejecting coefficient reaches its maximum when the nozzle is positioned at the optimum and decreases when deviating. Moreover, the nozzle position of an ejector is not a fixed value, but is influenced greatly by the flow parameters. Considering the complexity of the ejector, CFD is reckoned as a useful tool in the design of ejectors.

  19. Calculation of the temperature distribution and thermal stresses in a gas turbine nozzle cooled by air film; Calculo de la distribucion de temperaturas y esfuerzos termicos en una tobera de turbina de gas enfriada por pelicula de aire

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez R, Alejandro; Garcia I, Rafael; Mazur C, Zdislaw [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2004-07-01

    The analysis begins with the generation of a computational geometric model of the gas turbine nozzle using reverse engineering techniques. For the obtaining of the original geometry of the blade, a measurement machine by coordinates and computerized numerical control was used. Next, the computational model is converted into a three-dimensional mesh. In advance, a study of boundary conditions was made of the nozzle material as well as of the turbine operating conditions during non-operating cycles, start-ups and shut-downs. On the other hand, with the boundary conditions imposed to the model, the distributions of the temperature and pressures on the aerofoil profile of the nozzle blade were calculated. These results had to be manipulated to be exported to a finite element software (ANSYS); at this point, another nozzle model was elaborated to be able to import the temperature distribution. With the temperatures correctly imported, the simulations for the calculation of the thermal stresses were made in the nozzle. [Spanish] El analisis inicia con la generacion de un modelo geometrico computacional de la tobera de la turbina de gas utilizando tecnicas de ingenieria inversa. Para la obtencion de la geometria original del alabe, se utilizo una maquina de medicion por coordenadas y control numerico computarizado. A continuacion, el modelo computacional es convertido en una malla tridimensional. Con antelacion, se realizo un estudio de las condiciones de frontera, tanto del material de la tobera como de las condiciones de operacion de la turbina, durante ciclos de paro, arranque y disparo. Por otra parte, con las condiciones de frontera impuestas al modelo, se calcularon las distribuciones de las temperaturas y presiones sobre el perfil aerodinamico de la paleta de la tobera. Estos resultados tuvieron que ser manipulados para ser exportados a un software de elemento finito (ANSYS); en este punto, se elaboro otro modelo de la tobera para poder importar la distribucion de

  20. Application of a compliant foil bearing for the thrust force estimation in the single stage radial blower

    Science.gov (United States)

    Łagodzinski, Jakub; Miazga, Kacper; Musiał, Izabela

    2015-08-01

    The paper presents the application of a compliant foil bearing for estimation of the thrust force in a single stage radial blower under operational conditions. The bump foil of the thrust bearing behaves as a nonlinear spring. The knowledge of the spring deflection curve allows estimation of the actual thrust force for a measured bump deflection at the given rotational speed. To acquire the deflection curve, static calibration of the axial shaft displacement sensor was performed. During the calibration, the information about voltage signals of the sensor for the given loading force was collected. The measured voltage values at different speeds and loadswere then converted into the thrust force. The results were verified by comparison to the thrust force resulting from the pressure distribution on the impeller.

  1. Dewetting Process of Blast Furnace Blower%高炉鼓风机前脱湿技术

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      高炉脱湿鼓风是高炉节能的重要措施,并对高炉的稳定生产具有重要作用。对高炉鼓风机前脱湿的工艺和特点进行说明,并简述其在钢铁企业推广的意义。%Blast furnace dewetting blast is an important measure for energy conservation of blast furnace and it plays an important role in stabilizing production of blast furnace. The dewetting process and features of blast blower are described. The significance to popularize the process in steel enterprises is introduced briefly.

  2. Nuclear thermal rocket nozzle testing and evaluation program

    International Nuclear Information System (INIS)

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. In this report, the Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis Research Center is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within plus or minus 1.17%

  3. Segmented inlet nozzle for gas turbine, and methods of installation

    Science.gov (United States)

    Klompas, Nicholas

    1985-01-01

    A gas turbine nozzle guide vane assembly is formed of individual arcuate nozzle segments. The arcuate nozzle segments are elastically joined to each other to form a complete ring, with edges abutted to prevent leakage. The resultant nozzle ring is included within the overall gas turbine stationary structure and secured by a mounting arrangement which permits relative radial movement at both the inner and outer mountings. A spline-type outer mounting provides circumferential retention. A complete rigid nozzle ring with freedom to "float" radially results. Specific structures are disclosed for the inner and outer mounting arrangements. A specific tie-rod structure is also disclosed for elastically joining the individual nozzle segments. Also disclosed is a method of assembling the nozzle ring subassembly-by-subassembly into a gas turbine employing temporary jacks.

  4. Fluid Flow in Continuous Casting Mold with a Configured Nozzle

    Institute of Scientific and Technical Information of China (English)

    王镭; 沈厚发; 柳百成

    2004-01-01

    The influence of a configured nozzle on the turbulent fluid flow in a continuous casting mold was investigated using the simulation program Visual Cast, which used the finite difference method and the SIMPLER algorithm. CAD software was used to construct the complicated nozzle in the calculational region. The simulation accuracy was validated by comparison with the classic driven cavity flow problem. The simulation results agree well with water modeling experiments. The simulations show that the velocity distribution at the nozzle port is uneven and the jet faces downward more than the nozzle outlet. Simulations with a configured nozzle and the inlet velocity at the nozzle entrance give precise results and overcome the traditional difficulty in determining the nozzle outlet velocity.

  5. Design and analysis approach for linear aerospike nozzle

    International Nuclear Information System (INIS)

    The paper presents an aerodynamic design of a simplified linear aerospike nozzle and its detailed exhaust flow analysis with no spike truncation. Analytical method with isentropic planar flow was used to generate the nozzle contour through MATLAB . The developed code produces a number of outputs comprising nozzle wall profile, flow properties along the nozzle wall, thrust coefficient, thrust, as well as amount of nozzle truncation. Results acquired from design code and numerical analyses are compared for observing differences. The numerical analysis adopted an inviscid model carried out through commercially available and reliable computational fluid dynamics (CFD) software. Use of the developed code would assist the readers to perform quick analysis of different aerodynamic design parameters for the aerospike nozzle that has tremendous scope of application in future launch vehicles. Keyword: Rocket propulsion, Aerospike Nozzle, Control Design, Computational Fluid Dynamics. (author)

  6. Energy saving opportunities of energy efficient air nozzles

    Science.gov (United States)

    Slootmaekers, Tim; Slaets, Peter; Bartsoen, Tom; Malfait, Lieven; Vanierschot, Maarten

    2015-12-01

    Compressed air is a common energy medium. The production of compressed air itself is not a very efficient process. Avoiding any unnecessary losses of air can lead to large reductions in electricity consumption. Since blowing applications are one of the main domains were compressed-air is used, any reduction in the mass flow needed for operation can lead to significant energy savings. In this paper the normal volumetric flow rate and generated impact force are compared between a stepped nozzle and a so called energy saving nozzle which allows extra air from the surroundings to be entrained. These two different nozzle geometries are used in industrial blowing applications. Until now there was no study available which compares the impact forces and volumetric flow rates for these types of nozzles. The flow field of the two nozzles was calculated by CFD simulations. The impact forces and volumetric flow rates are calculated out of this flow field. Each nozzle was simulated with three different input pressures. The nozzles were simulated with an input pressure of 3, 4 and 5 barg. The energy saving nozzle consumes only 1 % less volumetric flow rate then the stepped nozzle at the same inlet pressure. The replacement of a stepped nozzle with an energy saving nozzle will not immediately result in a decrease in input volumetric flow rate. The pressure at the inlet of the energy saving nozzle has to be reduced as well. After reducing the input pressure the energy saving nozzle generates the same impact force than the stepped nozzle. Hereby a decrease of 4.5 % in input volumetric flow rate was possible. The energy cost will decrease with 4.5 % as well because the normal volumetric flow rate is directly proportional to the energy cost. The replacement of a stepped nozzle with an energy saving nozzle while maintaining the same inlet pressure is only useful when the impact force from the stepped nozzle is not sufficient. The energy saving nozzle can generate 5.6 % more impact

  7. Imergindo a Geometria Dinâmica em Sistemas de Educação a Distância: IGEOM e SAW

    Directory of Open Access Journals (Sweden)

    Leônidas de Oliveira Brandão

    2009-06-01

    Full Text Available Neste trabalho, apresentamos algumas novas funcionalidades desenvolvidas no programa para ensino-aprendizagem de Geometria, o iGeom. Também mostramos um novo sistema gerenciador de cursos pela Web, o SAW, e alguns benefícios trazidos por estes ambientes. Dentre os principais recursos desenvolvidos no iGeom, destacamos: a autoria e a avaliação automática de exercícios e a comunicação com servidores Web. Deste modo, professor e aluno obtém mais benefícios. O professor tem sua tarefa de avaliação de exercícios reduzida ou eliminada, enquanto o aluno, além de poder estudar em seu próprio ritmo, pode obter uma pronta resposta sobre como seu exercício foi avaliado. O iGeom já pode ser descarregado gratuitamente pela Web, e o SAW terá seu código disponibilizado ainda este ano.

  8. Axisymmetric arc in a supersonic nozzle

    International Nuclear Information System (INIS)

    Axisymmetric arc burning in a supersonic nozzle has wide technical applications (eg in gas blast circuit breaker, arc heaters etc.). Mathematical modelling of such an arc is usually based on boundary-layer assumption which assumes a known pressure distribution imposed on the arc or based on the integral method of arc analysis. Thus, the flow outside of the arc's thermal influence is assumed to be one dimensional. In practice, this is not the case as the nozzle is not sufficiently gentle in the axial direction or the presence of the upstream electrode makes the assumption of one-dimensional flow invalid. The purpose of the present investigation is to model the arc based on Navier-Stokes equations which are modified to take into account of electrical power input and radiation transport. The arcing gas is SF6, the transport properties of which (electrical conductivity, viscosity, thermal conductivity etc.) are highly nonlinear functions of temperature but only weakly dependent on the pressure

  9. PDE Nozzle Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  10. Wormhole Formation in RSRM Nozzle Joint Backfill

    Science.gov (United States)

    Stevens, J.

    2000-01-01

    The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and

  11. Jet Engine Exhaust Nozzle Flow Effector

    Science.gov (United States)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2014-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  12. Experiments on black liquor splashplate nozzle performance

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, K.

    1996-12-31

    The performance of a throttled black liquor splashplate nozzle was studied in this work. A series of industrial-scale experiments were performed using mass flow rate as a variable at a fixed temperature. The experiments were carried out in a spraying chamber next to the recovery boiler with real mill liquor. The disintegration process of the liquor sheet was videotaped for analyzing. The mass flow rate distribution was measured with a collector. The liquor drops produced by the nozzle were videotaped and measured with a video image analysis technique. The industrial-scale experiments were afterwards repeated on a small scale in the laboratory environment which made it possible to study the liquid sheet disintegration process thoroughly. The small-scale experiments were carried out with a solution of water and glycerol and a splashplate nozzle of approximately one tenth the size of full-scale nozzle. The whole liquid sheet and close-up exposures of the plate area were videotaped. However, the videotaping equipment (camera and objective) were not capable of observing the very thin and transparent liquid sheet. The mass flow rate distribution was measured with steps of 2.5 deg from the plate centerline with a collector device. The drop sizes were measured from various sheet angles with Malvern Particle Sizer and a phase Doppler particle anemometer (Aerometrics). The modeling was based on dimensional analysis. The objective was to compare these two experimental settings and to find out whether small-scale experiments can be used in predicting the spraying characteristics in the full-scale. It was also of interest to test the measured black liquor drop sizes against drop size correlations obtained from the literature. (31 refs.)

  13. DRILLING CHARACTERISTICS OF COMBINATIONS OF DIFFERENT HIGH PRESSURE JET NOZZLES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-ying; LIU Yong-wang; XU Yi-ji; REN Jian-hua

    2011-01-01

    The high speed fluid jet for directly or indirectly breaking rock is one of the most effective ways to improve the deep penetration rate. In order to maximize the efficiency of energy use, the flow characteristics of different combinations of high pressure jet nozzles are analyzed through numerical simulations. According to the velocity vectors at the bottom and the bottom hole pressure diagram, the effects of the high pressure nozzle combinations on the flow structure and the penetration rate are analyzed. It is shown that the combination of three vertical edge nozzles is very efficient, but inefficient in cleaning the bottom hole and eroding the wall.The jet velocity is 400 m/s and the radius is 5 mm, with a center nozzle added, the problem can be solved, but the high-pressure fluid displacement would increase. The center nozzle's jet velocity is 200 m/s and the radius is 8 mm, the combination of two vertical edge nozzles and a center tilt nozzle or that of a vertical edge nozzle and a center tilt nozzle would provide a flow structure favorable for drilling. The angle of inclination is 10°. To take advantage of high pressure jet energy to improve the efficiency of drilling, it is important to select a suitable nozzle combination according real conditions.

  14. Details of Side Load Test Data and Analysis for a Truncated Ideal Contour Nozzle and a Parabolic Contour Nozzle

    Science.gov (United States)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2010-01-01

    Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.

  15. Gas turbine nozzle vane insert and methods of installation

    Science.gov (United States)

    Miller, William John; Predmore, Daniel Ross; Placko, James Michael

    2002-01-01

    A pair of hollow elongated insert bodies are disposed in one or more of the nozzle vane cavities of a nozzle stage of a gas turbine. Each insert body has an outer wall portion with apertures for impingement-cooling of nozzle wall portions in registration with the outer wall portion. The insert bodies are installed into the cavity separately and spreaders flex the bodies toward and to engage standoffs against wall portions of the nozzle whereby the designed impingement gap between the outer wall portions of the insert bodies and the nozzle wall portions is achieved. The spreaders are secured to the inner wall portions of the insert bodies and the bodies are secured to one another and to the nozzle vane by welding or brazing.

  16. CF6-50 Short Core Exhaust Nozzle

    Science.gov (United States)

    Dusa, D. J.; Hrach, F. J.

    1980-01-01

    The General Electric CF6-50 engine nacelle was originally equipped with both fan nozzle and core nozzle thrust reversers. Many airline operators later deactivated the core reverser. Elimination of the core reverser enabled design changes to be made to help improve performance. A reduction in core nozzle length of approximately two feet was possible. This concept, defined as the Short Core Exhaust Nozzle, was evaluated in engine ground tests, including performance, acoustic, and endurance tests under the NASA/Lewis Engine Component Improvement Program. The test results verified the performance predictions from scale model tests. The Short Core Exhaust Nozzle provides an internal cruise SFC reduction of 0.9% without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing with no signs of distress.

  17. Star 48 solid rocket motor nozzle analyses and instrumented firings

    Science.gov (United States)

    Porter, R. L.

    1986-01-01

    The analyses and testing performed by NASA in support of an expanded and improved nozzle design data base for use by the U.S. solid rocket motor industry is presented. A production nozzle with a history of one ground failure and two flight failures was selected for analyses and testing. The stress analysis was performed with the Champion computer code developed by the U.S. Navy. Several improvements were made to the code. Strain predictions were made and compared to test data. Two short duration motor firings were conducted with highly instrumented nozzles. The first nozzle had 58 thermocouples, 66 strain gages, and 8 bondline pressure measurements. The second nozzle had 59 thermocouples, 68 strain measurements, and 8 bondline pressure measurements. Most of this instrumentation was on the nonmetallic parts, and provided significantly more thermal and strain data on the nonmetallic components of a nozzle than has been accumulated in a solid rocket motor test to date.

  18. The NAL Hypersonic Wind-Tunnel Mach 10 Nozzle

    OpenAIRE

    榊原, 盛三; SAKAKIBARA, Seizo

    2001-01-01

    Recently at NAL, the original nozzle has been improved by re-contouring rather than by manufacturing from scratch. The uniformity of the flow in the test section of the 1.27 m hypersonic wind tunnel1), was improved substantially by smoothing its nozzle. Using the newly developed CFD method, the cost and time required for the construction were dramatically reduced. We achieved 95% uncertainties of +/- 0.3% of the averaged nozzle Mach numbers.

  19. Pressurizer with a mechanically attached surge nozzle thermal sleeve

    Science.gov (United States)

    Wepfer, Robert M

    2014-03-25

    A thermal sleeve is mechanically attached to the bore of a surge nozzle of a pressurizer for the primary circuit of a pressurized water reactor steam generating system. The thermal sleeve is attached with a series of keys and slots which maintain the thermal sleeve centered in the nozzle while permitting thermal growth and restricting flow between the sleeve and the interior wall of the nozzle.

  20. Design methods of Coanda effect nozzle with two streams

    OpenAIRE

    Trancossi, Michele; Dumas, Antonio; Shyam Sumantha DAS; Pascoa, Jose

    2014-01-01

    This paper continues recent research of the authors about the ACHEON Coanda effect two streams nozzle. This nozzle aims to produce an effective deflection of a propulsive jet with a correspondent deviation of the thrust vector in a 2D plane. On the basis of a previously published mathematical model, based on integral equations, it tries to produce an effective design guideline, which can be adopted for design activities of the nozzle for aeronautic propulsion. The presented model allows defin...

  1. Study for conceptual design of VEO, VTOL exhaust nozzle

    Science.gov (United States)

    Bittrick, W. C.

    1980-01-01

    Design requirements for a VEO Wing V/STOL exhaust nozzle with a two dimensional shape and having the capability for upper surface blowing, spanwise blowing, and 90 deg turning of the exhaust flow for VTOL were established. A preliminary design of the nozzle that identified the actuation scheme, key dimensions, the flowpath, and the recommended materials were prepared. The airplane characteristics resulting from integrating the study nozzle were established.

  2. Fluidized-bed calciner with combustion nozzle and shroud

    International Nuclear Information System (INIS)

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition. 4 claims, 2 figures

  3. Experimental Investigation of Atomizing Performance of Low Pressure Swirl Nozzle

    OpenAIRE

    Yunfei Yan; Li Zhang; WenLi Pan; Ge Pu

    2014-01-01

    The lime slurry nozzle is a key equipment component in the flue gas drying desulfurization system. The atomizing performance of lime slurry nozzles with different structure parameters under low pressure conditions was experimentally studied by using the laser diffraction/scattering particle size distribution analyzer (Win212-2), and the optimized structure of nozzle was obtained. Experimental results indicate that there is a relation between the average granularity and the fluid pressure and ...

  4. Analysis of natural circulation in the in-core structure test section (T2) in the case of a blower trip

    International Nuclear Information System (INIS)

    When a blower trip occurs in an abnormal condition of the in-core structure test section (T2), natural circulation will develop in the two flow channels which are formed by the gap between the fixed reflector and the side shield and the gap between the side shield and the core barrel. The natural circulation heats up the structures of T2, such as a core restraint mechanism and a core barrel and others. Moreover, the radiation emitted from the heated core barrel enhances markably heating-up of the pressure vessel. This report deals with an analysis of the natural circulation accurred after a blower trip, and with the effect on the temperature rise of the structures of T2. Possible countermeasures are also discussed. (author)

  5. Heat and fluid flow properties of circular impinging jet with a low nozzle to plate spacing. Improvement by nothched nozzle; Nozzle heibankan kyori ga chiisai baai no enkei shototsu funryu no ryudo dennetsu tokusei. Kirikaki nozzle ni yoru kaizen kojo

    Energy Technology Data Exchange (ETDEWEB)

    Shakouchih, T. [Mie University, Mie (Japan). Faculty of Engineering; Matsumoto, A.; Watanabe, A.

    2000-10-25

    It is well known that as decreasing the nozzle to plate spacing considerably the heat transfer coefficient of circular impinging jet, which impinges to the plate normally, increases remarkably. At that time, the flow resistance of nozzle-plate system also increases rapidly. In this study, in order to reduce the flow resistance and to enhance the heat transfer coefficient of the circular impinging jet with a considerably low nozzle to plate spacing, a special nozzle with notches is proposed, and considerable improvement of the flow and heat transfer properties are shown. The mechanism of enhancement of the heat transfer properties is also discussed. (author)

  6. Water distribution characteristics of spray nozzles in a cooling tower

    Science.gov (United States)

    Vitkovic, Pavol

    2015-05-01

    Water distribution characteristics of spray nozzles with spray plates used to distribute cooling water to the cooling fills in a cooling tower is one of the important parameters for the selection of nozzles. Water distribution characteristic describes the distribution of water from the axis of the nozzle along a fill. One of the parameters affecting the water distribution characteristic of the nozzle is airflow velocity of counter flow airstream. Water distribution characteristics are commonly measured using by a set of containers. The problem with this method of the measurement of characteristics is block of the airflow with collections of containers. Therefore, this work is using the visualization method.

  7. Low Cost Carbon-Carbon Rocket Nozzle Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This development will provide an inexpensive vacuum nozzle manufacturing option for NOFBXTM monopropellant systems that are currently being developed under NASA...

  8. Cavitation Inside Enlarged And Real-Size Fully Transparent Injector Nozzles And Its Effect On Near Nozzle Spray Formation

    OpenAIRE

    Mitroglou, N.; Gavaises, M.; Nouri, J. M.; Arcoumanis, C.

    2011-01-01

    The effect of string cavitation in various transparent Diesel injector nozzles on near nozzle spray dispersion angle is examined. Additional PDA measurements on spray characteristics produced from real-size transparent nozzle tips are presented. Highspeed imaging has provided qualitative information on the existence of geometric and string cavitation, simultaneously with the temporal variation of the spray angle. Additional use of commercial and in-house developed CFD models has provided comp...

  9. Optimization in the design and efficiency of retractable soot blowers; Optimacion del diseno y la eficiencia de sopladores de hollin retractiles

    Energy Technology Data Exchange (ETDEWEB)

    Diego Marin, Antonio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    In this article the importance of soot blowers in the subject of design, operation and maintenance are described and the effects that its inefficient functioning causes in the steam generators. The activities and the results of a project for the evaluation of the functioning of the soot blowers in the Comision Federal de Electricidad (CFE) boilers. Finally, the scope of a new project oriented towards the retractable soot blowers efficiency optimization, and to the creation of the infra-structure to substitute the import of its components. [Espanol] En este articulo se describe la importancia de los sopladores de hollin en los aspectos de diseno, operacion y mantenimiento, y los efectos que su funcionamiento deficiente produce en los generadores de vapor. Se presentan tambien las actividades y los resultados de un proyecto para evaluar el funcionamiento de los deshollinadores de las calderas de la Comision Federal de Electricidad (CFE). Finalmente, se presenta el alcance de un nuevo proyecto que se orienta a optimar la eficiencia de los sopladores de hollin retractiles y a crear la infraestructura para sustituir las importaciones de sus componentes.

  10. 旋涡风机叶片侧边型线的研究%Research on the Shape of Blade Side of Vortex Blower

    Institute of Scientific and Technical Information of China (English)

    唐照付; 聂波; 张俊林; 满建楠

    2013-01-01

    旋涡风机叶轮叶片侧边型线影响流体进出叶轮流道的速度三角形,对风机的性能有一定的影响.本文从试验和数值计算的角度对径向直叶片侧边倒角情况进行了研究,发现叶片侧边吸力面倒角比压力面倒角更能提高风机的性能,小流量区更为明显.本文用理论分析了该现象的原因,并推断前弯和后弯叶片也具有同样的性质.%The shape of impeller blade side of vortex blower can influence velocity triangle of fluid flowing in and out of impeller , so as to influence the performance of blower. The chamfer of radial side blade was studied by using methods of experiment and numerical simulation,and It finds that chamfer on the suction side is the best situation for improving the performance of vortex blower specially when little flux. The paper explains the roots of such phenomenon by theoretical analysis, and deduces that forward and backward bending blades own the same properties.

  11. Airfoil shape for a turbine nozzle

    Science.gov (United States)

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  12. Transonic potential flow in hyperbolic nozzles

    Science.gov (United States)

    Park, M.; Caughey, D. A.

    1986-01-01

    The full potential equation for the classical problem of transonic flow through a hyperbolic nozzle (with or without a shock wave) is solved in conservation form using the finite volume method of Jameson and Caughey (1977). Either a firstor a second-order numerical viscosity is added in the direction of the flow, explicitly, in conservation form. A multigrid alternating direction implicit method is used to solve the difference equations, and the results obtained are compared with analytical and numerical results from previous researches.

  13. Preparation of zircon nozzle for the Tundish

    International Nuclear Information System (INIS)

    Zircon sand of two different particle distribution with 2 percent of ground pyrophyllite were adopted to prepare the dense specimens of the stopper nozzle for the tundish. The molding pressure of 600kg/cm2 brought about the superior properties to those obtained at the pressure of 300kg/cm2, and as the firing temperatures were increased from 1,3500C to 1,6000C, better characteristics resulted. The addition of 2 percent MgCr2O2 to zircon pyrophyllite batch was more effective in corrosion-resistance to the blast furnace-slag. (author)

  14. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M.; Saito, A. [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S. [Toyota Motor Corp., Aichi (Japan); Shibata, H. [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y. [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  15. Effect of working parameters and nozzle wear rate onto the spray quality in use of different fan flat nozzle

    OpenAIRE

    Eleonóra KECSKÉSNÉ NAGY; KOSZEL, Milan; SZTACHÓ-PEKÁRY, István

    2014-01-01

    The subject of the analysis was the influence of working parameters (working pressure and working speed) on +drop tracks size and changes in flow rate level from flat fan nozzle. New nozzles and nozzles after laboratory wear were tested. The influence of nozzles wear on +drop tracks size was examined. It was found that increase in liquid flow rate results in higher values of mean diameter of +drop track. Increase in working pressure or working speed cause decrease in +drop tracks size and red...

  16. Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control

    International Nuclear Information System (INIS)

    Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading

  17. Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Su; Yoo, Changkyoo [Kyung Hee University, Yongin (Korea, Republic of); Kim, Minhan [Pangaea21 Ltd., Seongnam (Korea, Republic of); Kim, Jongrack [UnUsoft Ltd., Seoul (Korea, Republic of)

    2014-10-15

    Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.

  18. Nuclear fuel assembly debris resistant bottom nozzle

    International Nuclear Information System (INIS)

    A debris resistant bottom nozzle useful in a fuel assembly for a nuclear reactor is described, the bottom nozzle comprising: (a) support means adapted to rest on a lower core plate of a nuclear reactor; and (b) a plate fixed on the support means and being of a substantial solid configuration with a plurality of spaced cut-out regions therein adapted to align directly above inlet holes in the lower core plate; and (c) a plurality of open separate criss-cross structures, each of the criss-cross structures fixed to the plate and extending across one of the cut-out regions therein, the criss-cross structures defining individual openings small enough in cross-sectional size to filter out debris of damage-inducing size larger than 0.190 inch in width otherwise collects in unoccupied spaces of a lowermost grid of the fuel assembly, but large enough in size to let pass debris of nondamage-inducing size which otherwise passes through the unoccupied spaced of the lowermost grid

  19. Que geometria ensinar? uma breve história da redefinição do conhecimento elementar matemático para crianças Which geometry should we teach? a brief history of the redefinition of elementary mathematics knowledge for children

    Directory of Open Access Journals (Sweden)

    Wagner Rodrigues Valente

    2013-04-01

    Full Text Available O artigo aborda a geometria para crianças, seu ensino para alunos das primeiras séries escolares. Leva em conta, inicialmente, a trajetória da Geometria para o nível elementar, desde, praticamente, a Independência do Brasil. Nessa análise, evidencia a permanência de conteúdos da geometria euclidiana até quase meados do século XX. Em seguida, analisa as propostas de alteração do ensino de Geometria elaboradas na década de 1960. Com isso, procura mostrar as intenções de modificar os conteúdos desse ramo matemático, em busca da redefinição de um novo elementar: um novo conhecimento elementar de geometria, vindo de processos de apropriação das contribuições trazidas pelos estudos da Psicologia cognitiva.The article discusses geometry for children and its teaching for students from early grades. It takes into account, firstly, the geometry journey at the elementary level since practically the Independence of Brazil. This analysis highlights the presence of Euclidean geometry contents up to the mid-twentieth century. It then analyzes the proposed amendment to the teaching of geometry developed in the 1960s. Thus, this article attempts to show the intentions to modify the contents of this branch of mathematics in search of a redefinition of the 'new elementary': a new elementary knowledge of geometry, coming from the appropriation processes of the contributions made by studies of cognitive psychology.

  20. Experimental Investigation of Nozzle Effects on Thrust and Inlet Pressure of an Air-breathing Pulse Detonation Engine

    Institute of Scientific and Technical Information of China (English)

    CHEN Wenjuan; FAN Wei; ZHANG Quan; PENG Changxin; YUAN Cheng; YAN Chuanjun

    2012-01-01

    Nozzle effects on thrust and inlet pressure of a multi-cycle air-breathing pulse detonation engine (APDE) are investigated experimentally.An APDE with 68 mm in diameter and 2 050 mm in length is operated using gasoline/air mixture.Straight nozzle,converging nozzle,converging-diverging nozzle and diverging nozzle are tested.The results show that thrust augmentation of converging-diverging nozzle,diverging nozzle or straight nozzle is better than that of converging nozzle on the whole.Thrust augmentation of straight nozzle is worse than those of converging-diverging nozzle and diverging nozzle.Thrust augmentations of diverging nozzle with larger expansion ratio and converging-diverging nozzle with larger throat area range from 20% to 40%on tested frequencies and are bener than those of congeneric other nozzles respectively.Nozzle effects on inlet pressure are also researched.At each frequency it is indicated that filling pressures and average peak pressures of inlet with diverging nozzle and converging-diverging nozzle with large throat cross section area are higher than those with straight nozzle and converging nozzle.Pressures near thrust wall increase in an increase order from without nozzle,with diverging nozzle,straight nozzle and converging-diverging nozzle to converging nozzle.

  1. Grit blasting nozzle fabricated from mild tool steel proves satisfactory

    Science.gov (United States)

    Mc Farland, J. E.; Turbitt, B.

    1966-01-01

    Dry blasting with glass beads through a nozzle assembly descales both the outside and inside surfaces of tubes of Inconel 718 used for the distribution of gaseous oxygen. The inside of the nozzle is coated with polyurethane and the deflector with a commercially available liquid urethane rubber.

  2. Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    The functions of a regeneratively-cooled nozzle are to (1) expand combustion gases to increase exhaust gas velocity while, (2) maintaining adequate wall temperatures to prevent structural failure, and (3) transfer heat from the hot gases to the coolant fluid to promote injector performance and stability. Regeneratively-cooled nozzles are grouped into two categories: tube-wall nozzles and channel wall nozzles. A channel wall nozzle is designed with an internal liner containing a series of integral coolant channels that are closed out with an external jacket. Manifolds are attached at each end of the nozzle to distribute coolant to and away from the channels. A variety of manufacturing techniques have been explored for channel wall nozzles, including state of the art laser-welded closeouts and pressure-assisted braze closeouts. This paper discusses techniques that NASA MSFC is evaluating for rapid fabrication of channel wall nozzles that address liner fabrication, slotting techniques and liner closeout techniques. Techniques being evaluated for liner fabrication include large-scale additive manufacturing of freeform-deposition structures to create the liner blanks. Abrasive water jet milling is being evaluated for cutting the complex coolant channel geometries. Techniques being considered for rapid closeout of the slotted liners include freeform deposition, explosive bonding and Cold Spray. Each of these techniques, development work and results are discussed in further detail in this paper.

  3. Stresses at non-radial nozzle in cylindrical pressure vessels

    International Nuclear Information System (INIS)

    A method for determining both the stress concentration factor and the stress distribution in the neighbourhood of non-radial nozzle to cylinder connection is described. Combination of classical and finite element method is used to analyse the problem. This type of nozzle connections are common in CANDU type nuclear power reactors. (author)

  4. Flows on the nozzle plate of an inkjet printhead

    NARCIS (Netherlands)

    Beulen, Bart; Jong, de Jos; Reinten, Hans; Berg, van den Marc; Wijshoff, Herman; Dongen, van Rini

    2007-01-01

    Flow patterns of ink layers on the nozzle plate of a piezo-driven printhead are investigated. Two different flow types are identified. First, a jet of droplets induces a radial airflow in the direction of the jet, which in turn causes a liquid flow towards the nozzle. Second, the movement of the men

  5. Effects of nozzle spray angle on droplet size and velocity

    Science.gov (United States)

    Spray applicators have many choices in selecting a spray nozzle to make an application of an agricultural product. They must balance flowrate, spray pressure, and nozzle type and setup to deliver their agrochemical in the right droplet size for their particular needs. Studies were conducted to det...

  6. Noise from Aft Deck Exhaust Nozzles: Differences in Experimental Embodiments

    Science.gov (United States)

    Bridges, James E.

    2014-01-01

    Two embodiments of a rectangular nozzle on an aft deck are compared. In one embodiment the lower lip of the nozzle was extended with the sidewalls becoming triangles. In a second embodiment a rectangular nozzle was fitted with a surface that fit flush to the lower lip and extended outward from the sides of the nozzle, approximating a semi-infinite plane. For the purpose of scale-model testing, making the aft deck an integral part of the nozzle is possible for relatively short deck lengths, but a separate plate model is more flexible, accounts for the expanse of deck to the sides of the nozzle, and allows the nozzle to stand off from the deck. Both embodiments were tested and acoustic far-field results were compared. In both embodiments the extended deck introduces a new noise source, but the amplitude of the new source was dependent upon the span (cross-stream dimension) of the aft deck. The noise increased with deck length (streamwise dimension), and in the case of the beveled nozzle it increased with increasing aspect ratio. In previous studies of slot jets in wings it was noted that the increased noise from the extended aft deck appears as a dipole at the aft deck trailing edge, an acoustic source type with different dependence on velocity than jet mixing noise. The extraneous noise produced by the aft deck in the present studies also shows this behavior both in directivity and in velocity scaling.

  7. The Effect of Nozzle Trailing Edge Thickness on Jet Noise

    Science.gov (United States)

    Henderson, Brenda; Kinzie, Kevin; Haskin, Henry

    2004-01-01

    The effect of nozzle trailing edge thickness on broadband acoustic radiation and the production of tones is investigated for coannular nozzles. Experiments were performed for a core nozzle trailing edge thickness between 0.38 mm and 3.17 mm. The on-set of discrete tones was found to be predominantly affected by the velocity ratio, the ratio of the fan velocity to the core velocity, although some dependency on trailing edge thickness was also noted. For a core nozzle trailing edge thickness greater than or equal to 0.89 mm, tones were produced for velocity ratios between 0.91 and 1.61. For a constant nozzle trailing edge thickness, the frequency varied almost linearly with the core velocity. The Strouhal number based on the core velocity changed with nozzle trailing edge thickness and varied between 0.16 and 0.2 for the core nozzles used in the experiments. Increases in broadband noise with increasing trailing edge thickness were observed for tone producing and non-tone producing conditions. A variable thickness trailing edge (crenellated) nozzle resulted in no tonal production and a reduction of the broadband trailing edge noise relative to that of the corresponding constant thickness trailing edge.

  8. Acoustic measurements of models of military style supersonic nozzle jets

    NARCIS (Netherlands)

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and t

  9. An overview of spray drift reduction testing of spray nozzles

    Science.gov (United States)

    The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...

  10. Nozzle cooling of hot surfaces with various orientations

    Directory of Open Access Journals (Sweden)

    Horsky Jaroslav

    2012-04-01

    Full Text Available The aim of this research is an investigation of hot surface orientation influence on heat transfer during cooling by a nozzle. Two types of nozzles were used for the experiments (air-mist nozzle and hydraulic nozzle. A test plate was cooled in three positions – top, side and bottom position. The aim was to simulate a cooling situation in the secondary zone of a continuous casting machine. Temperature was measured in seven locations under the cooled surface by thermocouples. These data were used for an inverse heat conduction problem and then boundary conditions were computed. These boundary conditions are represented by surface temperature, heat transfer coefficient and heat flux. Results from an inverse calculation were compared in each position of thermocouples separately. The total cooling intensity was specified for all configurations of nozzles and test plate orientation. Results are summarised in a graphical and numerical format.

  11. Bank layout of spray nozzles in a spray pond

    International Nuclear Information System (INIS)

    The efficiency of the spray pond performance is dependent on the type of spray nozzles. The investigations conducted at the B.E.Vedeneev VNIIG indicated that tangential spray nozzles hold much promise as they are reliable in operation and do not require careful centering during assembly. This is confirmed by special studies which showed that the cooling capacity of the sprayer plume does not change if the nozzle deflects by up to 30 degree from the vertical, whereas it decreases by less than 10% if the nozzle is inclined at an angle of 45 degree. Taking the aforesaid into consideration, a spray pond with a bank layout of spray nozzles has been constructed at the Takhiatashskaya thermal power plant. The construction of the spray pond was carried out in a non-constricted channel without shutting down the operating power plant. On-site studies of the first stage of the spray pond proved its reliability and maneuverability at the startup

  12. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    Science.gov (United States)

    Song, Gangbing (Inventor); Ma, Ning (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  13. Analysis, design and testing of high pressure waterjet nozzles

    Science.gov (United States)

    Mazzoleni, Andre P.

    1996-01-01

    The Hydroblast Research Cell at MSFC is both a research and a processing facility. The cell is used to investigate fundamental phenomena associated with waterjets as well as to clean hardware for various NASA and contractor projects. In the area of research, investigations are made regarding the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current industrial methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents, and high pressure waterjet cleaning has proven to be a viable alternative. Standard methods of waterjet cleaning use hand held or robotically controlled nozzles. The nozzles used can be single-stream or multijet nozzles, and the multijet nozzles may be mounted in a rotating head or arranged in a fan-type shape. We consider in this paper the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage (e.g. the formation of 'islands' of material not cleaned) and damage to the substrate from the waterjet have been observed. In addition, current stripping operations require the nozzle to be placed at a standoff distance of approximately 2 inches in order to achieve adequate performance. This close proximity of the nozzle to the target to be cleaned poses risks to the nozzle and the target in the event of robot error or the striking of unanticipated extrusions on the target surface as the nozzle sweeps past. Two key motivations of this research are to eliminate the formation of 'coating islands' and to increase the allowable standoff distance of the nozzle.

  14. Novel design for transparent high-pressure fuel injector nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  15. Effect of working parameters and nozzle wear rate onto the spray quality in use of different fan flat nozzle

    Directory of Open Access Journals (Sweden)

    Eleonóra KECSKÉSNÉ NAGY

    2014-03-01

    Full Text Available The subject of the analysis was the influence of working parameters (working pressure and working speed on +drop tracks size and changes in flow rate level from flat fan nozzle. New nozzles and nozzles after laboratory wear were tested. The influence of nozzles wear on +drop tracks size was examined. It was found that increase in liquid flow rate results in higher values of mean diameter of +drop track. Increase in working pressure or working speed cause decrease in +drop tracks size and reduce merging of drops on spray surface. Increase in wear degree was followed by increased coverage rate. This phenomenon is especially dangerous when using nozzles with considerable wear degree for agricultural spray since this poses ecological threat to environment.

  16. Characterisation of inexpensive, simply shaped nozzles

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2010-01-01

    Roč. 88, č. 11A (2010), s. 1433-1444. ISSN 0263-8762 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : nozzle * characteristic * separation of flow Subject RIV: BK - Fluid Dynamics Impact factor: 1.519, year: 2010 http://www. science direct.com/ science ?_ob=MImg&_imagekey=B8JGF-4YPPRBF-3-2X&_cdi=43669&_user=640952&_pii=S0263876210001115&_origin=search&_coverDate=11%2F30%2F2010&_sk=999119988&view=c&wchp=dGLbVlW-zSkWb&md5=dbed1a6fea7702efd86e09264ff1a0e4&ie=/sdarticle.pdf

  17. Feedback mechanism for smart nozzles and nebulizers

    Science.gov (United States)

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  18. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel

  19. Droplet formation under the effect of a flexible nozzle plate.

    Science.gov (United States)

    Sangplung, S; Liburdy, J A

    2009-09-01

    Droplet formation from a flexible nozzle plate driven by a prescribed-waveform excitation of a piezoelectric is numerically investigated using a computational fluid dynamics (CFD) model with the volume of fluid (VOF) method. The droplet generator with a flexible nozzle plate, which is free to vibrate due to the pressure acting on the plate, is modeled in a CFD computational domain. The CFD analysis includes the fluid-structure interaction between fluid and a flexible plate using large deflection theory. The problem is characterized by the nondimensional variables based on the capillary parameters of time, velocity, and pressure. The CFD model is validated with the experiment results. This study examines the characteristics of the applied waveforms and nozzle plate material properties to change the vibrational characteristics of the nozzle plate. The effect of fluid properties on the droplet formation process is also investigated focusing on surface tension and viscous forces. Increasing the impulse of the piezoelectric can be used to cause a higher droplet velocity and it is shown that the vibration of the nozzle plate has a strong effect on the droplet velocity, shape, and volume. Surface tension has a strong influence on the droplet formation characteristics in contrast to viscous forces. For the combination of a fluid with high surface tension and the most flexible nozzle plate, this system cannot cause the droplet ejected out of the nozzle. PMID:19501837

  20. Unsteady transitions of separation patterns in single expansion ramp nozzle

    Science.gov (United States)

    Yu, Y.; Xu, J.; Yu, K.; Mo, J.

    2015-11-01

    The single expansion ramp nozzle is one of the optimal configurations for a planar rocket-based combined cycle engine because of its good integration and self-adaptability at off-design operation. The single expansion ramp nozzle is seriously overexpanded when the vehicle is at low speed, resulting in complex flow separation phenomena. Several separation patterns have been found in the single expansion ramp nozzle. Numerical simulations have shown that the transition between these separation patterns occurs in the nozzle startup and shutdown processes. However, only a few relevant experimental studies have been reported. This study reproduces the nozzle startup and shutdown processes using wind tunnel experiments. Two restricted shock separation patterns are observed in the experiment, namely, a separation bubble either forms on the ramp or the flap. The detailed flow fields in the transition processes are captured using a high-speed camera. The shock wave structures in the two separation patterns, influences of the nozzle pressure ratio (NPR) on the separation patterns and changes of the shock waves in the transition processes are discussed in detail. Shock wave instabilities accompany the separation transition, which usually takes less than 5 ms. The nozzle pressure ratios corresponding to the separation pattern transition are different in the startup and shutdown processes, which leads to a hysteresis effect.

  1. The Low Frequency Aeroacoustics of Buried Nozzle Systems

    Science.gov (United States)

    Taylor, M. V.; Crighton, D. G.; Cargill, A. M.

    1993-05-01

    A simplified model of a "buried nozzle" aeroengine system is considered. The primary flow issues into a co-annular flow within a mixing chamber, and then the co-annular flow issues into the ambient medium from a secondary nozzle. Within the mixing chamber only fine scale mixing takes place, and shear layers within the mixing chamber and downstream of the secondary nozzle are assumed to sustain large scale instability waves. Excitation of this system is provided by low frequency plane waves, incident from upstream on the primary nozzle (and emanating from combustion processes in the hot core of an aeroengine). The response of this system, in the acoustic far field and in the mixing chamber, is obtained analytically from the asymptotic solution, at low frequency, of model sub-problems the solutions of which determine the wave reflection and transmission processes at the primary and secondary nozzles. In these sub-problems the shear layers are represented by vortex sheets and the nozzle walls by semi-infinite circular ducts, with Kutta conditions imposed on the unsteady flow at the primary and secondary nozzle lips. Analytical descriptions are given of the various wave modes (quasi-plane acoustic waves, and instability waves localized on the primary and secondary shear layers), of the acoustic field strength and directivity (essentially monopole, dipole and quadrupole fields), and of the conditions under which near-resonant response may occur, with large amplitudes of the perturbations in the mixing chamber and in the acoustic field.

  2. Final data report: Plenum-Nozzle Flow Characteristics Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; May, C.P.

    1993-09-01

    A database was developed for the flow of water through a scaled nozzle of a Savannah River Site (SRS) reactor inlet plenum. The water flow in the nozzle was such that it ranged from stratified to water-solid conditions. Data on the entry of air into the nozzle and plenum as a function of water flow are of interest in loss-of-coolant studies. The scaled nozzle was 0.44 m long, had an entrance diameter of 0.095 m, an exit opening of 0.058 m {times} 0.356 m, and an exit hydraulic diameter approximately equal to that of the inlet. Within the nozzle were three flow-straightening vanes which divided the flow path into four channels. This report includes all of the data taken for the first phase of the Plenum-Nozzle and Cold-Leg Vertical Process-Pipe Flow Characteristics Experiments: Plenum-Nozzle Experiment. Those data include daily reference checks, to determine proper operation of all instrumentation before the experiment was run, and the actual data themselves in engineering units. Not included are the videographic data which are available for each test run. However, there are four (4) 3/4 in. -video tapes of visual data and the specific tape and the location on that tape are indicated for each test run on the data sheets. The database is from sixteen test modes (e.g., flow direction, location of pipe break, air-water or just water, single nozzle or three nozzle). The flow rates ranged to approximately 320 gpm ({approx}10 kgpm prototypic) for both air and water. All data were taken at steady-state, isothermal (300 K{plus_minus}1.5 K), and atmospheric pressure conditions.

  3. Application of LBB to a nozzle-pipe interface

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J. [and others

    1997-04-01

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.

  4. Effusive atomic oven nozzle design using an aligned microcapillary array

    Energy Technology Data Exchange (ETDEWEB)

    Senaratne, Ruwan, E-mail: rsenarat@physics.ucsb.edu; Rajagopal, Shankari V.; Geiger, Zachary A.; Fujiwara, Kurt M.; Lebedev, Vyacheslav; Weld, David M. [Department of Physics and California Institute for Quantum Emulation, University of California Santa Barbara, Santa Barbara, California 93106 (United States)

    2015-02-15

    We present a simple and inexpensive design for a multichannel effusive oven nozzle which provides improved atomic beam collimation and thus extended oven lifetimes. Using this design, we demonstrate an atomic lithium source suitable for trapped-atom experiments. At a nozzle temperature of 525 °C, the collimated atomic beam flux directly after the nozzle is 1.2 × 10{sup 14} atoms/s with a peak beam intensity greater than 5.0 × 10{sup 16} atoms/s/sr. This suggests an oven lifetime of several decades of continuous operation.

  5. Probabilistic assessment of space nuclear propulsion system nozzle

    Science.gov (United States)

    Shah, Ashwin R.; Ball, Richard D.; Chamis, Christos C.

    1994-01-01

    In assessing the reliability of a space nuclear propulsion system (SNPS) nozzle, uncertainties associated with the following design parameters were considered: geometry, boundary conditions, material behavior, and thermal and pressure loads. A preliminary assessment of the reliability was performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), a finite-element computer code developed at the NASA Lewis Research Center. The sensitivity of the nozzle reliability to the uncertainties in the random variables was quantified. With respect to the effective stress, preliminary results showed that the nozzle spatial geometry uncertainties have the most significant effect at low probabilities whereas the inner wall temperature has the most significant effect at higher probabilities.

  6. The fabrication of nozzles for nuclear components by welding

    International Nuclear Information System (INIS)

    A nozzle with medium outside diameter of 1000 mm and medium thickness of 150 mm composed integrally by deposited metal by submerged-arc (wire S3NiMo1, 0.5mm) was fabricated in NUCLEP. The nondestructive, mechanical, metallographic and chemical testing carried out in a test sample made by the same procedure and welding parameters, showed results according to specifications established for primary components for nuclear power plants, and the tests presented mechanical properties and tenacity better than similar nozzle samples. This nozzle is cheapest concerning to importations, in respecting to its forged similar. (M.C.K.)

  7. Interface ring for gas turbine fuel nozzle assemblies

    Science.gov (United States)

    Fox, Timothy A.; Schilp, Reinhard

    2016-03-22

    A gas turbine combustor assembly including a combustor liner and a plurality of fuel nozzle assemblies arranged in an annular array extending within the combustor liner. The fuel nozzle assemblies each include fuel nozzle body integral with a swirler assembly, and the swirler assemblies each include a bellmouth structure to turn air radially inwardly for passage into the swirler assemblies. A radially outer removed portion of each of the bellmouth structures defines a periphery diameter spaced from an inner surface of the combustor liner, and an interface ring is provided extending between the combustor liner and the removed portions of the bellmouth structures at the periphery diameter.

  8. Effusive Atomic Oven Nozzle Design Using a Microcapillary Array

    CERN Document Server

    Senaratne, Ruwan; Geiger, Zachary A; Fujiwara, Kurt M; Lebedev, Vyacheslav; Weld, David M

    2014-01-01

    We present a simple and inexpensive design for a multichannel effusive oven nozzle which provides improved atomic beam collimation and thus extended oven lifetimes. Using this design we demonstrate an atomic lithium source suitable for trapped-atom experiments. At a nozzle temperature of 525$^{\\circ}$C the total atomic beam flux directly after the nozzle is $1.2 \\times 10^{14}$ atoms per second with a peak beam intensity greater than $5.0 \\times 10^{16}$ atoms per second per steradian. This suggests an oven lifetime of several centuries of continuous operation.

  9. Simple and Compact Nozzle Design for Laser Vaporization Sources

    CERN Document Server

    Kokish, M G; Odom, B C

    2015-01-01

    We have developed and implemented a compact transparent nozzle for use in laser vaporization sources. This nozzle eliminates the need for an ablation aperture, allowing for a more intense molecular beam. We use this nozzle to prepare a molecular beam of aluminum monohydride (AlH) suitable for ion trap loading of AlH$^+$ via photoionization in ultra-high vacuum. We demonstrate stable AlH production over hour time scales using a liquid ablation target. The long-term stability, low heat load and fast ion production rate of this source are well-suited to molecular ion experiments employing destructive state readout schemes requiring frequent trap reloading.

  10. Fuel Injector Nozzle For An Internal Combustion Engine

    Science.gov (United States)

    Cavanagh, Mark S.; Urven, Jr.; Roger L.; Lawrence, Keith E.

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  11. Single-Cycle Impulse from Detonation Tubes with Nozzles

    OpenAIRE

    Cooper, M; Shepherd, J. E.

    2008-01-01

    Experiments measuring the single-cycle impulse from detonation tubes with nozzles were conducted by hanging the tubes in a ballistic pendulum arrangement within a large tank. The detonation-tube nozzle and surrounding tank were initially filled with air between 1.4 and 100 kPa in pressure simulating high-altitude conditions. A stoichiometric ethylene–oxygen mixture at an initial pressure of 80 kPa filled the constant-diameter portion of the tube. Four diverging nozzles and six converging–dive...

  12. Fuel to the nuclear debate : [Rezension von:] Nuclear power in crisis, Andrew Blowers and David Pepper (editors), New York, Nichols; London ..., Croom Helm, 1987

    OpenAIRE

    Renn, Ortwin

    1988-01-01

    Nuclear energy is one of the most popular topics of today’s publication market. The literature about the pros and cons of nuclear power may easily fill a whole library. Is there anything new to add to this voluminous body of arguments and contra-arguments that would justify editing another book on nuclear energy? Andrew Blowers and David Pepper obviously felt that way and published a reader on Nuclear Power in Crisis. The book consists of 13 articles covering mainly the political, social and ...

  13. 降低罗茨风机噪声的消声器研制%The noise depressing measures for Roots blower

    Institute of Scientific and Technical Information of China (English)

    程勒

    2001-01-01

    论述了自制消声器的设计计算及制造方法,举例说明这种降低罗茨风机噪声措施取得的明显效果,以及在石化企业中的应用。%The noise depressing measures for Roots blower,design,calculation and fabrication of the muffler are described.It shows that the m easures obtain obvious effect and can be applied in oil chemical plant.

  14. JOYO MK-III performance test report. Blower start-up test (PT-303), power-increase test (PT-301), rated power operation test (PT-302)

    International Nuclear Information System (INIS)

    In the MK-III performance test for the experimental fast reactor JOYO, the reactor thermal power was raised gradually with steps at about 20%, 50%, 75%, 90%, and 100% (140 MWt). The rated power of 140 MWt for the MK-III reactor core was reached on October 28, 2003. Then, it was operated continuously by rated power for 100 hours or more. The major results of the tests are as follows. (1) From standby states (sodium temperature of 250degC, isothermal condition), the rated power of 140 MWt for the MK-III reactor core was reached on October 28, 2003 by the usual power-increase operation (a power-up rate of about 5 MWt/20 min, where the power was held for about 10 minutes every 5 MWt). It was confirmed that the temperature and flow of sodium were the alarm setting values or less at each steps. (2) The blower start-up operation of which the parameter was the reactor thermal power was done, and the influence which it was on coolant temperature was confirmed. As a result, the optimal reactor thermal power to start up the blower from a natural ventilation cooling state was set to about 18 MWt, and the starting procedure was made into a method (order of 1A->2A->1B->2B) which starts four sets of one blower at a time one by one. (3) The reactor shutdown operation was confirmed by two simultaneous control-rod insertions at 35 MWt. It was confirmed to be carried out by a series of operations from the control rod insertion to the blower shutdown with enough time margin. By adopting this reactor shutdown operation, operation complexity was mitigated and plant characteristics also improved. (4) The rated power of 140 MWt was reached on November 14. It was operated continuously by rated power for 100 hours or more on November 20, 10:30. The detailed plant data was acquired at intervals of 24 hours, and was confirmed to be less than the alarm setting values. (author)

  15. A review on nozzle wear in abrasive water jet machining application

    Science.gov (United States)

    Syazwani, H.; Mebrahitom, G.; Azmir, A.

    2016-02-01

    This paper discusses a review on nozzle wear in abrasive water jet machining application. Wear of the nozzle becomes a major problem since it may affect the water jet machining performance. Design, materials, and life of the nozzle give significance effect to the nozzle wear. There are various parameters that may influence the wear rate of the nozzle such as nozzle length, nozzle inlet angle, nozzle diameter, orifice diameter, abrasive flow rate and water pressure. The wear rate of the nozzle can be minimized by controlling these parameters. The mechanism of wear in the nozzle is similar to other traditional machining processes which uses a cutting tool. The high pressure of the water and hard abrasive particles may erode the nozzle wall. A new nozzle using a tungsten carbide-based material has been developed to reduce the wear rate and improve the nozzle life. Apart from that, prevention of the nozzle wear has been achieved using porous lubricated nozzle. This paper presents a comprehensive review about the wear of abrasive water jet nozzle.

  16. FORMAÇÃO CONTINUADA DO PROFESSOR DOS ANOS INICIAIS: REVISITANDO FIGURAS PLANAS COM SOFTWARE DE GEOMETRIA DINÂMICA. CONTINUING EDUCATION FOR TEACHERS OF THE EARLY YEARS: REVISITING PLANE FIGURES WITH DYNAMIC GEOMETRY SOFTWARE

    OpenAIRE

    Poloni, Marinês Yole; Lobo da Costa, Nielce Meneguelo

    2012-01-01

    Este artigo tem por propósito discutir episódios da prática de duas professoras do Ensino Fundamental I que em um curso de formação continuada revisitaram alguns conceitos geométricos. O foco está na reconstrução dos conceitos dessas professoras, entretanto são explicitadas também decisões e estratégias metodológicas por elas tomadas a fim de mediar a aprendizagem dos alunos. A pesquisa de mestrado, que subsidia este texto, foi realizada ao longo do curso “Geometria em Ação”, o qual estava ce...

  17. Prática de ensino supervisionada, curso geral de artes visuais, geometria descritiva A, 11º ano : Escola Secundária-3 de Amato Lusitano, Castelo Branco

    OpenAIRE

    Morgado, Eugénia Margarida de Figueiredo

    2011-01-01

    Relatório de Estágio Pedagógico elaborado no âmbito do Mestrado em Ensino das Artes Visuais no 3º Ciclo do Ensino Básico e no Ensino Secundário. O Estágio Pedagógico foi iniciado a 1 de Setembro de 2010, na Escola Secundária/3 de Amato Lusitano em Castelo Branco, sob a orientação pedagógica do Dr. Aníbal Cravo Nunes, na disciplina de Geometria Descritiva A, a duas turmas do 11.º ano. O período de leccionação ocorreu de Setembro de 2010 a Fevereiro de 2011. A prática de ensino supervisionad...

  18. Flow Visualization Proposed for Vacuum Cleaner Nozzle Designs

    Science.gov (United States)

    2005-01-01

    In 1995, the NASA Lewis Research Center and the Kirby Company (a major vacuum cleaner company) began negotiations for a Space Act Agreement to conduct research, technology development, and testing involving the flow behavior of airborne particulate flow behavior. Through these research efforts, we hope to identify ways to improve suction, flow rate, and surface agitation characteristics of nozzles used in vacuum cleaner nozzles. We plan to apply an advanced visualization technology, known as Stereoscopic Imaging Velocimetry (SIV), to a Kirby G-4 vacuum cleaner. Resultant data will be analyzed with a high-speed digital motion analysis system. We also plan to evaluate alternative vacuum cleaner nozzle designs. The overall goal of this project is to quantify both velocity fields and particle trajectories throughout the vacuum cleaner nozzle to optimize its "cleanability"--its ability to disturb and remove embedded dirt and other particulates from carpeting or hard surfaces. Reference

  19. 3-D Printed Slit Nozzles for Fourier Transform Microwave Spectroscopy

    Science.gov (United States)

    Dewberry, Chris; Mackenzie, Becca; Green, Susan; Leopold, Ken

    2015-06-01

    3-D printing is a new technology whose applications are only beginning to be explored. In this report, we describe the application of 3-D printing to the facile design and construction of supersonic nozzles. The efficacy of a variety of designs is assessed by examining rotational spectra OCS and Ar-OCS using a Fourier transform microwave spectrometer with tandem cavity and chirped-pulse capabilities. This work focuses primarily on the use of slit nozzles but other designs have been tested as well. New nozzles can be created for 0.50 or less each, and the ease and low cost should facilitate the optimization of nozzle performance (e.g., jet temperature or cluster size distribution) for the needs of any particular experiment.

  20. Analysis of a Low-Angle Annular Expander Nozzle

    Directory of Open Access Journals (Sweden)

    Kyll Schomberg

    2015-01-01

    Full Text Available An experimental and numerical analysis of a low-angle annular expander nozzle is presented to observe the variance in shock structure within the flow field. A RANS-based axisymmetric numerical model was used to evaluate flow characteristics and the model validated using experimental pressure readings and schlieren images. Results were compared with an equivalent converging-diverging nozzle to determine the capability of the wake region in varying the effective area of a low-angle design. Comparison of schlieren images confirmed that shock closure occurred in the expander nozzle, prohibiting the wake region from affecting the area ratio. The findings show that a low angle of deflection is inherently unable to influence the effective area of an annular supersonic nozzle design.

  1. Plasma separation from magnetic field lines in a magnetic nozzle

    Science.gov (United States)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  2. Altitude Compensating Nozzle Transonic Performance Flight Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Altitude compensating nozzles continue to be of interest for use on future launch vehicle boosters and upper stages because of their higher mission average Isp and...

  3. Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  4. Design of a continuously variable Mach-number nozzle

    Institute of Scientific and Technical Information of China (English)

    郭善广; 王振国; 赵玉新

    2015-01-01

    A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozzle profile, while other Mach- numbers were derived from the transformation of the original profile. A design scheme, covering a Mach-number range of 3.0nozzle. The computed results indicate that exit uniform flow is obtained with 1.19% of the maximal Mach-number deviation at the nozzle exit. The present design method achieves the continuously variable Mach-number flow during a wind tunnel running.

  5. Pengaruh Nozzle Terhadap Aspek Hidrodinamika Kinerja Kolom Gelembung Pancaran

    Directory of Open Access Journals (Sweden)

    Didiek Hari Nugroho

    2015-07-01

    Full Text Available Kolom gelembung pancaran merupakan salah satu alat perpindahan massa antara fasa gas dan cair. Penelitian ini bermaksud untuk mempelajari pengaruh nozzle terhadap aspek hidrodinamika antara lain: kedalaman penetrasi gelembung (Z, holdup gas (eg, dan laju alir volumetrik gas entrainment (Ql yang terjadi dalam kolom gelembung pancaran. Variabel proses yang dipelajari antara lain laju alir volumetrik cairan (10-50 L/menit, ukuran diameter nozzle (0,008-0,0127 m, dan tinggi nozzle (0,125-0,25 m. Hasil penelitian memperlihatkan bahwa ukuran diameter nozzle semakin kecil dan laju alir volumetrik cairan yang semakin besar menghasikan laju alir volumetrik gas entrainment, holdup gas, dan kedalaman penetrasi gelembung yang semakin besar.

  6. Hydraulic Modeling of Novel Combined Nozzle for Pool Scrubbing System

    International Nuclear Information System (INIS)

    The particles are collected in the scrubbing liquid. Knowing that the particle is removed from the gas stream mainly by scrubbing phenomena, the filtration efficiency can be enhanced by enlarging the contact area between the scrubbing water and the gas/particle mixture (e.g. break the bulk of gas flow into fine bubbles) or by enlarging the contact time of them (e. g. increase the water pool depth). In this study, the novel design of the combined nozzle has been developed to minimize the size of the filtration system and to ensure the filtration efficiency over the wide range of operating conditions. The hydraulic simulation has been conducted to investigate the flow behavior inside of the nozzle prior to evaluate the filtering efficiency. The proto-typical combined nozzle has been modeling in CFD and simulated for different conditions. Preliminary CFD simulation is conducted to examine the effects of key features and the flow behaviors inside the combined nozzle

  7. Design methods of Coanda effect nozzle with two streams

    Directory of Open Access Journals (Sweden)

    Michele TRANCOSSI

    2014-03-01

    Full Text Available This paper continues recent research of the authors about the ACHEON Coanda effect two streams nozzle. This nozzle aims to produce an effective deflection of a propulsive jet with a correspondent deviation of the thrust vector in a 2D plane. On the basis of a previously published mathematical model, based on integral equations, it tries to produce an effective design guideline, which can be adopted for design activities of the nozzle for aeronautic propulsion. The presented model allows defining a governing method for this innovative two stream synthetic jet nozzle. The uncertainness level of the model are discussed and novel aircraft architectures based on it are presented. A CFD validation campaign is produced focusing on validating the model and the designs produced.

  8. USB noise reduction by nozzle and flap modifications

    Science.gov (United States)

    Hayden, R. E.

    1976-01-01

    The development of concepts for reducing upper surface blown flap noise at the source through flap modifications and special nozzles is reviewed. In particular, recent results obtained on the aerodynamic and acoustic performance of flaps with porous surfaces near the trailing edge and multi-slotted nozzles are reviewed. Considerable reduction (6-10 db) of the characteristic low frequency peak is shown. The aerodynamic performance is compared with conventional systems, and prospects for future improvements are discussed.

  9. Jet-Engine Exhaust Nozzle With Thrust-Directing Flaps

    Science.gov (United States)

    Wing, David J.

    1996-01-01

    Convergent/divergent jet-engine exhaust nozzle has cruciform divergent passage containing flaps that move to deflect flow of exhaust in either or both planes perpendicular to main fore-and-aft axis of undeflected flow. Prototype of thrust-vector-control nozzles installed in advanced, high-performance airplanes to provide large pitching (usually, vertical) and yawing (usually, horizontal) attitude-control forces independent of attitude-control forces produced by usual aerodynamic control surfaces.

  10. Influences of Geometric Parameters upon Nozzle Performances in Scramjets

    Institute of Scientific and Technical Information of China (English)

    Li Jianping; Song Wenyan; Xing Ying; Luo Feiteng

    2008-01-01

    This article investigates and presents the influences of geomea'ic parameters of a scramjet exerting upon its nozzle performances. These parameters include divergent angles, total lengths, height ratios, cowl lengths, and cowl angles. The flow field within the scramjet nozzle is simulated numerically by using the CFD software--FLUENT in association with coupled implicit solver and an RNG k-ε tur-bulence model.

  11. Multi-tube fuel nozzle with mixing features

    Science.gov (United States)

    Hughes, Michael John

    2014-04-22

    A system includes a multi-tube fuel nozzle having an inlet plate and a plurality of tubes adjacent the inlet plate. The inlet plate includes a plurality of apertures, and each aperture includes an inlet feature. Each tube of the plurality of tubes is coupled to an aperture of the plurality of apertures. The multi-tube fuel nozzle includes a differential configuration of inlet features among the plurality of tubes.

  12. An analysis of the particulate flow in cold spray nozzles

    OpenAIRE

    Meyer, M; R. Lupoi

    2015-01-01

    Cold Spray is a novel technology for the application of coatings onto a variety of substrate materials. In this method, melting temperatures are not crossed and the bonding is realized by the acceleration of powder particles through a carrier gas in a converging-diverging nozzle and their high energy impact over a substrate material. The critical aspect of this technology is the acceleration process and the multiphase nature of it. Three different nozzle designs were experim...

  13. Numerical Investigation of Spray Formation in Coaxial Nozzles

    OpenAIRE

    Konstantinov, Mikhail; Wagner, Claus

    2008-01-01

    In this paper the results of numerical investigation of atomization process of liquid fuel (Diesel) in Laval and coaxial nozzles are presented. The calculations have been performed using CFD codes of STAR-CD. The dependences between the different cases of pressure drop and spray formation have been analysed. For that purpose a model to simulate unsteady two-phase atomization process has been employed. Results of transient flow through various 3D nozzle shapes and the resulting spray developme...

  14. Plasma spray nozzle with low overspray and collimated flow

    Science.gov (United States)

    Beason, Jr., George P. (Inventor); McKechnie, Timothy N. (Inventor); Power, Christopher A. (Inventor)

    1996-01-01

    An improved nozzle for reducing overspray in high temperature supersonic plasma spray devices comprises a body defining an internal passageway having an upstream end and a downstream end through which a selected plasma gas is directed. The nozzle passageway has a generally converging/diverging Laval shape with its upstream end converging to a throat section and its downstream end diverging from the throat section. The upstream end of the passageway is configured to accommodate a high current cathode for producing an electrical arc in the passageway to heat and ionize the gas flow to plasma form as it moves along the passageway. The downstream end of the nozzle is uniquely configured through the methodology of this invention to have a contoured bell-shape that diverges from the throat to the exit of the nozzle. Coating material in powder form is injected into the plasma flow in the region of the bell-shaped downstream end of the nozzle and the powder particles become entrained in the flow. The unique bell shape of the nozzle downstream end produces a plasma spray that is ideally expanded at the nozzle exit and thus virtually free of shock phenomena, and that is highly collimated so as to exhibit significantly reduced fanning and diffusion between the nozzle and the target. The overall result is a significant reduction in the amount of material escaping from the plasma stream in the form of overspray and a corresponding improvement in the cost of the coating operation and in the quality and integrity of the coating itself.

  15. Analysis to the elements of solar geometry and it relation with the conformation of prehispanic site; Analisis de los elementos de geometria solar y sus relacion con la conformacion de un sitio prehispanico

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Torres, Juan M; Navarrete Padilla, Roberto; Martinez Cossio, Jose L. [Universidad de Guanajuato, Guanjuato, Gto. (Mexico); Castaneda Lopez, Carlos [Instituto Nacional de Antropologia y Historia (INAH), Marfil, Gto. (Mexico)

    2000-07-01

    The first results are presented from the analysis to the general elements of solar geometry in the archaeological place of Plazuelas these elements they are presented as two possible cases, a) the general structure of the place and b) the elements in existent Scale model in the contiguous esplanade to the place that is contemplated above the 400 scale models in the current registrations, of those which approximately 20 present characteristic of design that could be models to scale of other places of great importance for their magnitude and conformation. The astronomical elements initially contemplate alone the relative thing to the limited Solar Geometry mainly for the phase of intervention of the place, which is in the first preliminary works and they have not allowed to discover all the geometric elements of the place, however in this first approach they can be derived some hypotheses of the definition of the same one. [Spanish] Se presentan los primeros resultados del analisis a los elementos generales de geometria solar en el sitio arqueologico de Plazuelas estos elementos se presentan como dos posibles casos, a) la estructura general del sitio y b) los elementos en Maqueta existentes en la explanada contigua al sitio, que en los registros actuales se contempla por encima de las 400 maquetas, de las cuales aproximadamente 20 presentan caracteristicas de diseno que podrian ser modelos a escala de otros sitios de gran importancia por su magnitud y conformacion. Los elementos astronomicos inicialmente contemplan solo lo relativo a la geometria solar limitado principalmente por la fase de intervencion del lugar, el cual se encuentra en los primeros trabajos preliminares y no ha permitido descubrir todos los elementos geometricos del sitio, sin embargo en este primer acercamiento se pueden derivar algunas hipotesis de la definicion del mismo.

  16. Optimal geometry and dimensions for the receiver of a parabolic solar concentrator with an angle of 90 degrees; Determiancion de la geometria y dimensiones optimas de un receptor para un concentrador solar paraboloidal con angulo de apertura de 90 grados

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Claudio A; Arancibia, Camilo [Centro de Investigacion en Energia UNAM, Temixco, Morelos (Mexico); Hernandez, Nestor [Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico)

    2000-07-01

    The optimal geometry and dimensions for the receiver of a parabolic solar concentrator based on microwave communication antenna are obtained. First, the experiments for the determination of the angular error of the concentrator and the dimensions of its focal region are described. Results are also presented for the ray tracing study, from which the optimal characteristics of the receiver are obtained according to the experimental results. As the aluminum antenna has a rim angle of 90 Celsius degrees, it is necessary to use a cavity receiver to allow external as well as internal absorption of radiative flux. Cylindrical, conical and spherical geometric were considered, as well as combinations of them. The best results are achieved using a conical cavity. Its dimensions are calculated to maximize the radiative transfer efficiency from the aperture of the concentrator to the receiver. [Spanish] Se determinan la geometria y dimensiones optimas del receptor de un concentrador solar parabolico obtenido a partir de una antena de telecomunicaciones para microondas. Primeramente se describen los experimentos realizados para obtener el valor del error angular asociado al concentrador y de las dimensiones de su region focal. Tambien se presentan los resultados del estudio optico de trazado de rayos, que permitio determinar teoricamente las caracteristicas del receptor, de acuerdo a los resultados de los experimentos. Debido a que la antena de aluminio tiene un angulo de borde de 90 grados Celcius, es necesario usar un receptor tipo cavidad que permita la captacion de energia tanto interna como externa. Se consideraron geometrias cilindrica, conica, esferica y combinaciones entre ellas, resultando ser la conica la que da los mejores resultados. Las dimensiones del receptor fueron determinadas maximizando la eficiencia del transporte de radiacion de la apertura del concentrador al receptor.

  17. Spray stability from VCO and a new diesel nozzle design concept

    OpenAIRE

    Mitroglou, N.; Gavaises, M.; Arcoumanis, D.

    2012-01-01

    Cavitation structures developing within the injection holes of high-pressure Diesel injectors are known to affect the emerging spray shape and its stability. The present study attempts to link the development of these cavitation structures to the near-nozzle spray formation for a Valve Covered Orifice (VCO) nozzle and a new Diesel nozzle design concept, through use of high speed flow visualisation applied on large-scale and real-size transparent nozzle replicas. A prototype Diesel nozzle has ...

  18. Computational Simulation on a Coaxial Substream Powder Feeding Laval Nozzle of Cold Spraying

    OpenAIRE

    Huang, Guosheng; GU, DAMING; Xiangbo LI; Lukuo XING

    2014-01-01

    In this paper, a substream coaxial powder feeding nozzle was investigated for use in cold spraying. The relationship between nozzle structure and gas flow, the acceleration behavior of copper particles were examined by computational simulation method. Also, one of the nozzle was used to spray copper coating on steel substrate. The simulation results indicate that: the velocity of gas at the center of the nozzle is lower than that of the conventional nozzle. Powders are well restrained near th...

  19. Magnetic-Nozzle Studies for Fusion Propulsion Applications: Gigawatt Plasma Source Operation and Magnetic Nozzle Analysis

    Science.gov (United States)

    Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin

    2004-01-01

    This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.

  20. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    Science.gov (United States)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-07-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  1. Reverse flow through a large scale multichannel nozzle

    International Nuclear Information System (INIS)

    A database was developed for the flow of water through a scaled nozzle of a Savannah River Site reactor inlet plenum. The water flow in the nozzle was such that it ranged from stratified to water solid conditions. Data on the entry of air into the nozzle and plenum as a function of water flow are of interest in loss-of-coolant studies. The scaled nozzle was 44 cm long, had an entrance diameter of 95 mm, an exit opening of 58 mm x 356 mm, and an exit hydraulic diameter approximately equal to that of the inlet. Within the nozzle were three flow-straightening vanes which divided the flow path into four channels. All data were taken at steady-state and isothermal (300 K ± 1.5 K) conditions. During the reverse flow of water through the nozzle the point at which air begins to enter was predicted within 90% by a critical weir-flow calculation. The point of air entry into the plenum itself was found to be a function of flow conditions

  2. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    Science.gov (United States)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-08-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  3. Simulating radiative shocks in nozzle shock tubes

    CERN Document Server

    van der Holst, B; Sokolov, I V; Daldorff, L K S; Powell, K G; Drake, R P

    2011-01-01

    We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1ns. The later times are calculated with the CRASH code. This code solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties a...

  4. Particle Streak Velocimetry of Supersonic Nozzle Flows

    Science.gov (United States)

    Willits, J. D.; Pourpoint, T. L.

    2016-01-01

    A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.

  5. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles: Comprehensive data report. [nozzle transfer functions

    Science.gov (United States)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through a coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken (1) to define the test parameters which influence the internal noise radiation; (2) to develop a test methodology which could realistically be used to examine the effects of the test parameters; and (3) to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the jet nozzles. Noise transmission characteristics of a coannular nozzle system were then investigated. In particular, the effects of fan convergence angle, core extension length to annulus height ratio and flow Mach numbers and temperatures were studied. Relevant spectral data only is presented in the form of normalized nozzle transfer function versus nondimensional frequency.

  6. Study on Characteristics of Different Types of Nozzles for Coal-Water Slurry Atomization

    Institute of Scientific and Technical Information of China (English)

    Kun Yuan; Lifang Chen; Chengkang Wu

    2001-01-01

    Three types of nozzles: a low-pressure multistage nozzle, an effervescent nozzle and a newly developed internal mixing air-blast nozzle, for atomization of Coal-Water Slurry (CWS) were investigated. Influence of CWS properties including surface tension and apparent viscosity on atomization was studied. Comparisons among the nozzles were carried out in terms of spray droplet mean diameter and fuel output. Versatility of each nozzle was investigated and atomization mechanism of each nozzle was analyzed as well. The results showed that the newly developed internal-mixing air-blast nozzle has high fuel output and small mean droplet size in the spray, but the multistage nozzle has high versatility for handling of low quality CWS.

  7. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    Science.gov (United States)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  8. Thermal analysis of nozzle for powder feeding in High Power Diode Laser (HPDL powder surfacing

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2007-01-01

    Full Text Available Purpose: Purpose of these researches was to determine the influence of High Power Diode Laser (HPDLpowder surfacing parameters, material type and shape of the nozzle for powder feeding on the temperature fieldof the nozzle.Design/methodology/approach: Different materials for manufacturing of the nozzle for powder feeding duringHPDL powder surfacing and different shapes of the nozzle were tested to establish the optimum shape and selectthe material that ensure lowest heating of the nozzle. Reflection coefficient of the infrared laser radiation of 808 nmfor the tested materials were determined as a function of a temperature. Temperature of the nozzle tip was measuredand determined as a function of surfacing parameters. Life time of the different nozzles was determined.Findings: It was shown that the nozzle made of copper body and thin-walled tube made of austenitic stainless steelensures much higher life time of the nozzle and also higher process efficiency compared with nozzle made of copper.Research limitations/implications: It was found that decreasing the distance from the nozzle tip of thin-walledtube made of austenitic stainless steel to the weld pool surface resulted in increasing of the process efficiencybut too short distance is the reason of extensive heating of the nozzle.Originality/value: The optimized shape of the powder feeding nozzle made of thin-walled tube made ofaustenitic stainless steel guarantee unlimited lifetime of the nozzle and high surfacing efficiency over 95%.

  9. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    OpenAIRE

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The nozzles types used were the standard flat fan XR as a reference nozzle and the DG, XLTD, IDN, AIXR and AIRmix as drift reducing nozzles types. A Patternator was used to check the cross distribution...

  10. Power consumption and parameter optimization of stalk impeller blowers%叶片式秸秆抛送装置功耗分析与参数优化

    Institute of Scientific and Technical Information of China (English)

    翟之平; 高搏; 杨忠义; 吴雅梅

    2013-01-01

    The impeller blower is widely used in various forage harvesters, such as crop straw choppers, rubbing, and breaking machines, to convey materials because of its simplicity, reliability, easy maintenance and adjustment, high capacity and low manufacturing cost. However, some undesired problems such as high power consumption, low throwing/blowing efficiency and high clogging probability also exist in the process of throwing/blowing the materials. In order to reduce the power consumption of the impeller blower and increase its blowing efficiency, the theoretical analyzing method was used to establish the mathematical models of the power consumption, firstly based on considering the airflow, which is suitable for forward-slant, backward-slant and radial paddle. The power consumption includes two parts. One part is the energy required to accelerate the materials that will obtain kinetic energy by means of the mechanical centrifugal force when the paddle rotates at high speed. The other part is the energy that accelerates the airflow in the impeller blower and helps the materials conveying under the condition of high rotating speed of the paddle. The first power consumption is related to the material-threw angle, namely, the rotation angle of the paddle in the course of hitting, carrying and throwing out of the material. When the material-threw angle is in the range from approximately 60°to 130°, all materials are thrown out of the housing under the condition of low energy consumption, high throwing/blowing efficiency and low clogging probability. However, when the material-threw angle is less than 60°or more than 130°, few materials are thrown out of the housing directly. Most of the materials will hit the housing, which causes most of the energy lost under the hitting energy E4c and a frictional energy E4f. Through validation by using the test data of the corn stalk, it shows that the computing power consumption by using this mathematical model of the power

  11. The role of nozzle convergence in diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    J. Benajes; S. Molina; C. Gonzaalez; R. Donde [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain)

    2008-08-15

    An experimental study has been performed for identifying the role of injector nozzle hole convergence and cavitation in diesel engine combustion and pollutant emissions. For doing so, five nozzles were tested under different operating and experimental conditions. The critical cavitation number of each nozzle was analyzed. With this value, an estimation of the mixing process at different conditions obtained. This data is used to explain the combustion results which are analyzed in terms of the apparent combustion time, rate of heat release, in-cylinder pressures, adiabatic temperatures and soot and NOx emissions. Special emphasis is put in developing an expression to explicitly link the mixing process and the injection rate with the rate of heat release. The results show that the fuel-air mixing process can be improved by the use of both convergent and cavitating nozzles, thus lowering the soot emissions. The NOx production, being dependent of the injection rate and the mixing process, does not necessarily increase with the use of more convergent nozzles. 40 refs., 8 fig., tabs.

  12. A geometria barroca do destino

    Directory of Open Access Journals (Sweden)

    Ismail Xavier

    2011-12-01

    Full Text Available Análise da leitura que o filme Lavoura arcaica (2001, de Luiz Fernando Carvalho, faz do romance homônimo de Raduan Nassar (1975, com ênfase nas diferenças que se produzem na condução de um projeto marcado pela sintonia entre escritor e cineasta. No filme, há a forte presença da voz overdo narrador, que transpõe passagens do texto de Raduan. No romance, a palavra é soberana; no cinema, ela deve interagir com a mise-en-scène; imagem e som compõem uma nova dinâmica, que define a originalidade das escolhas do cineasta e sua concepção da tragédia familiar.

  13. Characterization of a plasma propulsion simulator with a magnetic nozzle

    International Nuclear Information System (INIS)

    The characteristics of a plasma propulsion simulator have been analyzed by electric probes. The simulator consists of a helicon plasma generator, ion cyclotron resonance heating magnets, nozzle magnets and an expansion chamber. Helicon plasma with densities of 10-12 cm3 and electron temperature of 3.2 eV is produced at the middle point of the magnetic nozzle and Nagoya Type III antenna for the following conditions (rf power = 800 watt, rf frequency = 24 MHz, magnetic field = 1.3 kG, working pressure = 4 ∼ 10 mTorr, working gas = Ar). Plasmas in the magnetic nozzle are centrally concentrated along the axial direction.. This is due to the fact that plasmas are effectively detached from the magnetic lines

  14. Reusable Solid Rocket Motor Nozzle Joint 5 Redesign

    Science.gov (United States)

    Lui, R. C.; Stratton, T. C.; LaMont, D. T.

    2003-01-01

    Torque tension testing of a newly designed Reusable Solid Rocket Motor nozzle bolted assembly was successfully completed. Test results showed that the 3-sigma preload variation was as expected at the required input torque level and the preload relaxation were within the engineering limits. A shim installation technique was demonstrated as a simple process to fill a shear lip gap between nozzle housings in the joint region. A new automated torque system was successfully demonstrated in this test. This torque control tool was found to be very precise and accurate. The bolted assembly performance was further evaluated using the Nozzle Structural Test Bed. Both current socket head cap screw and proposed multiphase alloy bolt configurations were tested. Results indicated that joint skip and bolt bending were significantly reduced with the new multiphase alloy bolt design. This paper summarizes all the test results completed to date.

  15. Injector nozzle for molten salt destruction of energetic waste materials

    Science.gov (United States)

    Brummond, William A.; Upadhye, Ravindra S.

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  16. Electrochemical cell apparatus having an exterior fuel mixer nozzle

    Science.gov (United States)

    Reichner, Philip; Doshi, Vinod B.

    1992-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one hot gaseous spent fuel recirculation channel (46), where the spent fuel recirculation channel (46), a portion of which is in contact with the outside of a mixer chamber (52), passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at the entrance to the mixer chamber, and a mixer nozzle (50) is located at the entrance to the mixer chamber, where the mixer chamber (52) connects with the reforming chamber (54), and where the mixer-diffuser chamber (52) and mixer nozzle (50) are exterior to and spaced apart from the combustion chamber (24), and the generator chamber (22), and the mixer nozzle (50) can operate below 400.degree. C.

  17. Blast wave in a nozzle for propulsive applications

    Science.gov (United States)

    Varsi, G.; Back, L. H.; Kim, K.

    1976-01-01

    The reported investigation has been conducted in connection with studies concerning the development of a propulsion system based on the use of a detonating fluid propellant. Measurements have been made of the pressure and shock wave velocity in a conical nozzle at various ambient pressures and at an ambient temperature of 25 C. In the experiments a small amount of explosive was placed at the end wall of a conical aluminum nozzle and detonated by a microdetonator inside the nozzle. Differences regarding the characteristics of conventional chemical propulsion and detonation propulsion are illustrated with the aid of a graph. One- and two-dimensional numerical flow calculations were performed and compared with the experimental data.

  18. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic

    International Nuclear Information System (INIS)

    Experimental investigations on the atomization characteristics of twin-fluid water mist nozzle were conducted using particle image velocimetry (PIV) system and particle motion analysis system (PMAS). The twin-fluid water mist nozzles with swirlers designed two types of swirl angles such as 0 .deg. , 90 .deg. and three different size nozzle hole diameters such as 0.5mm, 1mm, 1.5mm were employed. The experiments were carried out by the injection pressure of water and air divided into 1bar, 2bar respectively. The droplet size of the spray was measured using PMAS. The velocity and turbulence intensity were measured using PIV. The velocity, turbulence intensity and SMD distributions of the sprays were measured along the centerline and radial direction. As the experimental results, swirl angle controlled to droplet sizes. It was found that SMD distribution decreases with the increase of swirl angle. The developed twin-fluid water mist nozzle was satisfied to the criteria of NFPA 750, Class 1. It was proven that the developed nozzle under low pressures could be applied to fire protection system

  19. The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc

    Science.gov (United States)

    Zhang, Q.; Liu, J.; Yan, J. D.; Fang, M. T. C.

    2016-08-01

    The present work (part II) forms the second part of an investigation into the behaviour of SF6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (di/dt) before current zero and a voltage ramp (dV/dt) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures (P 0) and two values of di/dt for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0, rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed.

  20. Numerical Optimization of converging diverging miniature cavitating nozzles

    Science.gov (United States)

    Chavan, Kanchan; Bhingole, B.; Raut, J.; Pandit, A. B.

    2015-12-01

    The work focuses on the numerical optimization of converging diverging cavitating nozzles through nozzle dimensions and wall shape. The objective is to develop design rules for the geometry of cavitating nozzles for desired end-use. Two main aspects of nozzle design which affects the cavitation have been studied i.e. end dimensions of the geometry (i.e. angle and/or curvature of the inlet, outlet and the throat and the lengths of the converging and diverging sections) and wall curvatures(concave or convex). Angle of convergence at the inlet was found to control the cavity growth whereas angle of divergence of the exit controls the collapse of cavity. CFD simulations were carried out for the straight line converging and diverging sections by varying converging and diverging angles to study its effect on the collapse pressure generated by the cavity. Optimized geometry configurations were obtained on the basis of maximum Cavitational Efficacy Ratio (CER)i.e. cavity collapse pressure generated for a given permanent pressure drop across the system. With increasing capabilities in machining and fabrication, it is possible to exploit the effect of wall curvature to create nozzles with further increase in the CER. Effect of wall curvature has been studied for the straight, concave and convex shapes. Curvature has been varied and effect of concave and convex wall curvatures vis-à-vis straight walls studied for fixed converging and diverging angles.It is concluded that concave converging-diverging nozzles with converging angle of 20° and diverging angle of 5° with the radius of curvature 0.03 m and 0.1530 m respectively gives maximum CER. Preliminary experiments using optimized geometry are indicating similar trends and are currently being carried out. Refinements of the CFD technique using two phase flow simulations are planned.

  1. Experimental Investigation of 'Transonic Resonance' with Convergent-Divergent Nozzles

    Science.gov (United States)

    Zaman, K. B. M. Q.; Dahl, M. D.; Bencic, T. J.; Zaman, Khairul (Technical Monitor)

    2001-01-01

    Convergent-divergent nozzles, when run at pressure ratios lower than the design value, often undergo a flow resonance accompanied by the emission of acoustic tones. The phenomenon, different in characteristics from conventional 'screech' tones, has been studied experimentally. Unlike screech, the frequency increases with increasing supply pressure. There is a 'staging' behavior; 'odd harmonic' stages resonate at lower pressures while the fundamental occurs in a range of higher pressures corresponding to a fully expanded Mach number (M(sub j)) around unity. The frequency (f(sub N)) variation with M(sub j) depends on the half angle-of-divergence (theta) of the nozzle. At smaller theta, the slope of f(sub N) versus M(sub j) curve becomes steeper. The resonance involves standing waves and is driven by unsteady shock/boundary layer interaction. The distance between the foot of the shock and the nozzle exit imposes the lengthscale (L'). The fundamental corresponds to a quarterwave resonance, the next stage at a lower supply pressure corresponds to a three-quarter-wave resonance, and so on. The principal trends in the frequency variation are explained simply from the characteristic variation of the length-scale L'. Based on the data, correlation equations are provided for the prediction of f(sub N). A striking feature is that tripping of the boundary layer near the nozzle's throat tends to suppress the resonance. In a practical nozzle a tendency for the occurrence of the phenomenon is thought to be a source of 'internal noise'; thus, there is a potential for noise benefit simply by appropriate boundary layer tripping near the nozzle's throat.

  2. Corrective Action Decision Document/Closure Report for Corrective Action Unit 559: T Tunnel Compressor/Blower Pad, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 559, T-Tunnel Compressor/Blower Pad. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 559 is comprised of one Corrective Action Site (CAS): • 12-25-13, Oil Stained Soil and Concrete The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 559.

  3. Shelf life extension for the lot AAE nozzle severance LSCs

    Science.gov (United States)

    Cook, M.

    1990-01-01

    Shelf life extension tests for the remaining lot AAE linear shaped charges for redesigned solid rocket motor nozzle aft exit cone severance were completed in the small motor conditioning and firing bay, T-11. Five linear shaped charge test articles were thermally conditioned and detonated, demonstrating proper end-to-end charge propagation. Penetration depth requirements were exceeded. Results indicate that there was no degradation in performance due to aging or the linear shaped charge curving process. It is recommended that the shelf life of the lot AAE nozzle severance linear shaped charges be extended through January 1992.

  4. Application of ultrasonic shot peening to steam generator nozzles

    International Nuclear Information System (INIS)

    An effective countermeasure against stress corrosion cracks in nozzle welds is to improve the surface residual stress. A new technique of the ultrasonic shot peening (USP) for steam generator (SG) nozzles will be introduced as a method to improve the residual stress on Alloy 600 Welds. This method changes the compressive stress by applying plastic strain to the surface via the impact force of the shot material during the shot peening. We have successfully performed 14 USP operations in actual plants in Japan. (author)

  5. Jet Engine Nozzle Exit Configurations and Associated Systems and Methods

    Science.gov (United States)

    Mengle, Vinod G. (Inventor)

    2013-01-01

    Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter.

  6. Investigation the flushing flow of liquid methane in Laval nozzle

    Science.gov (United States)

    Snigerev, B. A.; Tukmakov, A. L.; Tonkonog, V. G.

    2016-06-01

    Turbulent flushing flow of methane in Laval nozzles are investigated. To describe the motion of vapor-liquid mixture are used Favre averaged over the set of equations including the equations conservation of mass, momentum, and energy for a homogeneous mixture consisting from liquid and vapour phases. Numerical flow simulation based on cavitation approach using an additional transport equation for the volume fraction of the liquid phase. The study of the expiry of boiling methane at different degrees of underheating and the back pressures in the Laval nozzle are performed.

  7. Injection nozzle materials for a coal-fueled diesel locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, R.L.; Leonard, G.L.; Johnson, R.N.; Lavigne, R.G.

    1990-12-31

    In order to identify materials resistant to coal water mixture (CWM) erosive wear, a number of materials were evaluated using both orifice slurry and dry air erosion tests. Both erosion tests ranked materials in the same order, and the most erosion resistant material identified was sintered diamond compact. Based on operation using CWM in a single-cylinder locomotive test, superhard nozzle materials such as diamond, cubic boron nitride, and perhaps TiB{sub 2} were found to be necessary in order to obtain a reasonable operating life. An injection nozzle using sintered diamond compacts was designed and built, and has operated successfully in a CWM fired locomotive engine.

  8. Multiple-Nozzle Spray Head Applies Foam Insulation

    Science.gov (United States)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  9. Vibration analysis and online thermodynamic assessment of a turbo-blower turbine; Analisis de vibraciones y evaluacion termodinamica en linea de la turbina de un turbosoplador

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Q, Rodolfo; Marino L, Carlos; Ramirez S, Jose A.; Rivera G, Juan J. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-11-15

    In this paper are presented the results of the analysis of dynamic and thermodynamic behavior analysis of a turbo-blower integrated by one 13,080 KW steam turbine and a blower with a flow of 131,520 ft{sup 3}/m, to determine the cause of the excessive wearing of the axial trust bearing of the steam turbine. The main cause of failure is the wearing and severe dirtiness of the turbine stages that contributes with an increment of the turbine axial load. The consequences of the turbine deterioration are: greater axial load due to the additional heating rotor (requires greater steam to generate the same power that in design conditions); turbine motive power reduction and the reduction of isentropic efficiency of the same, for similar average steam consumption between reference and test. Due to the former the turbine power represents a deviation of the 34.74% in Steam Specific Consumption (SSC). [Spanish] Se presenta los resultados del analisis del comportamiento dinamico y termodinamico de un turbosoplador integrado por una turbina de vapor de 13,080 KW y un soplador con un caudal de 131,520 pies{sup 3}/m, para determinar la causa del desgaste excesivo de la chumacera de empuje axial de la turbina de vapor. La causa principal de la falla es el desgaste y ensuciamiento severo de las etapas de la turbina que contribuye con un incremento de la carga axial de la turbina. Las consecuencias del deterioro de la turbina son: mayor carga axial debida al calentamiento adicional del rotor (requiere mayor vapor para generar la misma potencia que en condiciones de diseno); reduccion de la potencia motriz de la turbina y de la eficiencia isoentropica de las mismas, para un consumo de vapor promedio similar entre referencia y prueba. Debido a lo anterior la potencia de la turbina representa una desviacion del 34.74% en el Consumo Especifico de Vapor (CVE).

  10. Control of Surge in Centrifugal Compressor by Using a Nozzle Injection System: Universality in Optimal Position of Injection Nozzle

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hirano

    2012-01-01

    Full Text Available The passive control method for surge and rotating stall in centrifugal compressors by using a nozzle injection system was proposed to extend the stable operating range to the low flow rate. A part of the flow at the scroll outlet of a compressor was recirculated to an injection nozzle installed on the inner wall of the suction pipe of the compressor through the bypass pipe and injected to the impeller inlet. Two types of compressors were tested at the rotational speeds of 50,000 rpm and 60,000 rpm with the parameter of the circumferential position of the injection nozzle. The present experimental results revealed that the optimum circumferential position, which most effectively reduced the flow rate for the surge inception, existed at the opposite side of the tongue of the scroll against the rotational axis and did not depend on the compressor system and the rotational speeds.

  11. Vortex nozzle for segmenting and transporting metal chips from turning operations

    Science.gov (United States)

    Bieg, Lothar F.

    1993-04-20

    Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.

  12. DURACON - Variable Emissivity Broadband Coatings for Liquid Propellant Rocket Nozzles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need exists for a fast drying, robust, low gloss, black, high emissivity coating that can be applied easily on aircraft rocket nozzles and nozzle extensions....

  13. Computational Simulation on a Coaxial Substream Powder Feeding Laval Nozzle of Cold Spraying

    Directory of Open Access Journals (Sweden)

    Guosheng HUANG

    2014-09-01

    Full Text Available In this paper, a substream coaxial powder feeding nozzle was investigated for use in cold spraying. The relationship between nozzle structure and gas flow, the acceleration behavior of copper particles were examined by computational simulation method. Also, one of the nozzle was used to spray copper coating on steel substrate. The simulation results indicate that: the velocity of gas at the center of the nozzle is lower than that of the conventional nozzle. Powders are well restrained near the central line of the nozzle, no collision occurred between the nozzle wall and the powders. This type of nozzle with expansion 3.25 can successfully deposit copper coating on steel substrate, the copper coating has low porosity about 3.1 % – 3.8 % and high bonding strength about 23.5 MPa – 26.8 MPa. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4244

  14. SU-E-T-239: Monte Carlo Modelling of SMC Proton Nozzles Using TOPAS

    International Nuclear Information System (INIS)

    Purpose: To expedite and cross-check the commissioning of the proton therapy nozzles at Samsung Medical Center using TOPAS. Methods: We have two different types of nozzles at Samsung Medical Center (SMC), a multi-purpose nozzle and a pencil beam scanning dedicated nozzle. Both nozzles have been modelled in Monte Carlo simulation by using TOPAS based on the vendor-provided geometry. The multi-purpose nozzle is mainly composed of wobbling magnets, scatterers, ridge filters and multi-leaf collimators (MLC). Including patient specific apertures and compensators, all the parts of the nozzle have been implemented in TOPAS following the geometry information from the vendor.The dedicated scanning nozzle has a simpler structure than the multi-purpose nozzle with a vacuum pipe at the down stream of the nozzle.A simple water tank volume has been implemented to measure the dosimetric characteristics of proton beams from the nozzles. Results: We have simulated the two proton beam nozzles at SMC. Two different ridge filters have been tested for the spread-out Bragg peak (SOBP) generation of wobbling mode in the multi-purpose nozzle. The spot sizes and lateral penumbra in two nozzles have been simulated and analyzed using a double Gaussian model. Using parallel geometry, both the depth dose curve and dose profile have been measured simultaneously. Conclusion: The proton therapy nozzles at SMC have been successfully modelled in Monte Carlo simulation using TOPAS. We will perform a validation with measured base data and then use the MC simulation to interpolate/extrapolate the measured data. We believe it will expedite the commissioning process of the proton therapy nozzles at SMC

  15. Scramjet nozzle design and analysis as applied to a highly integrated hypersonic research airplane

    Science.gov (United States)

    Small, W. J.; Weidner, J. P.; Johnston, P. J.

    1976-01-01

    Engine-nozzle airframe integration at hypersonic speeds was conducted by using a high-speed research aircraft concept as a focus. Recently developed techniques for analysis of scramjet-nozzle exhaust flows provide a realistic analysis of complex forces resulting from the engine-nozzle airframe coupling. By properly integrating the engine-nozzle propulsive system with the airframe, efficient, controlled and stable flight results over a wide speed range.

  16. Convective and Film Cooled Nozzle Extension for a High Pressure Rocket Subscale Combustion Chamber

    OpenAIRE

    Suslov, D. I.; Arnold, R.; Haidn, O. J.

    2010-01-01

    Experimental investigations have been carried out to study heat transfer, flow separation, and side loads in a subscale nozzle extension. A Vulcain 2-like nozzle geometry has been tested with combustion chamber pressures up to 13 MPa. A new manufacturing technology has been demonstrated with minimized contour deformation during fabrication. Gaseous hydrogen was used to cool the upper part of the nozzle while flowing through helical, rectangular cooling channels. At a nozzle area expansion rat...

  17. Structural optimization design of reactor pressure vessel nozzle over the use of ANSYS

    International Nuclear Information System (INIS)

    Using ANSYS APDL language to establish nozzle model parametrically, outside radius and fillet of nozzle as (design variables, local membrane on fillet as constraints, volume of nozzle as) objective function, choosing the suitable design optimization arithmetic (or combination) to make the design optimization of nozzle. Within the limitation, the best result will take volume 45% off. Combination of finite element and optimization techniques, rejecting the traditional passive checking method, searching the best solution in the space, this method is effective. (authors)

  18. Control of Surge in Centrifugal Compressor by Using a Nozzle Injection System: Universality in Optimal Position of Injection Nozzle

    OpenAIRE

    Toshiyuki Hirano; Takanori Uchida; Hoshio Tsujita

    2012-01-01

    The passive control method for surge and rotating stall in centrifugal compressors by using a nozzle injection system was proposed to extend the stable operating range to the low flow rate. A part of the flow at the scroll outlet of a compressor was recirculated to an injection nozzle installed on the inner wall of the suction pipe of the compressor through the bypass pipe and injected to the impeller inlet. Two types of compressors were tested at the rotational speeds of 50,000 rpm and 60,0...

  19. Nozzle design in a fiber spinning process for a maximal pressure gradient

    Directory of Open Access Journals (Sweden)

    Yang Zhanping

    2013-01-01

    Full Text Available The thickness of a spinneret is always a geometrical constraint in nozzle design. The geometrical form of a nozzle has a significant effect on the subsequent spinning characteristics. This paper gives an optimal condition for maximal pressure gradient through the nozzle.

  20. Response surface method for evaluation of the performance of agricultural application spray nozzles

    Science.gov (United States)

    Droplet size, being one of the critical factors that influences spray performance and drift, must be considered when selecting spray nozzles and operational setups. Characterizing a spray nozzle for droplet size is typically completed by evaluating arbitrary nozzle type, size and spray pressure. H...

  1. Analytical evaluation of the solid rocket motor nozzle surface recession by the alumina-carbon reaction

    OpenAIRE

    Matsukawa, Yutaka; Sato, Yutaka; 松川 豊; 佐藤 裕

    2008-01-01

    A theoretical model describing the chemical ablation of a solid rocket motor nozzle ablator by the alumina-carbon reaction is presented. An application of it to a typical solid rocket motor with a graphite nozzle ablator indicates a large influence of the reaction on the nozzle surface recession.

  2. Atomization from agricultural spray nozzles: Effects of air shear and tank mix adjuvants

    Science.gov (United States)

    Spray adjuvants can have a substantial impact on spray atomization from agricultural nozzles; however, this process is also affected by the nozzle type, operating pressure and, for aerial application, the airspeed of application. Different types of ground spray nozzle can dramatically affect the im...

  3. Preparation of nanoparticles by using a vibrating nozzle device

    OpenAIRE

    Zvonar, Alenka; Jurkovič, Polona; Kerč, Janez; Ahlin Grabnar, Pegi; Kristl, Julijana

    2015-01-01

    A method for preparing nanoparticles is provided, which comprises the steps ofdissolving a polymer and, optionally, at least one additional ingredient, inan organic solvent, passing the solution through a vibrating nozzle and dropping the solution through the electrical field into an aqueous solution, which is stirred, such that nanoparticles are formed by the rapid diffusion ofthe solvent.

  4. X-ray Diagnostics for Cavitating Nozzle Flow

    Science.gov (United States)

    Duke, Daniel J.; Swantek, Andrew B.; Kastengren, Alan L.; Powell, Christopher F.

    2015-12-01

    Cavitation plays a critical role in the internal flow of nozzles such as those used in direct fuel injection systems. However, quantifying the vapor fraction in the nozzle is difficult. The gas-liquid interfaces refract and multiply scatter visible light, making quantitative extinction measurements difficult. X-rays offer a solution to this problem, as they refract and scatter only weakly. In this paper, we report on current progress in the development of several x-ray diagnostics for cavitating nozzle flows. X-ray radiography experiments undertaken at the Advanced Photon Source at Argonne National Laboratory have provided measurements of total projected void fraction in a 500 μm submerged nozzle, which have been directly compared with numerical simulations. From this work, it has been shown that dissolved gases in the liquid also result in the formation of vapor regions, and it is difficult to separate these multiple phenomena. To address this problem, the liquid was doped with an x-ray fluorescent bromine tracer, and the dissolved air substituted with krypton. The fluorescent emission of Br and Kr at x-ray wavelengths provide a novel measurement of both the total void fraction and the dissolved gas component, allowing both cavitation and dissolved gas contributions to be measured independently. [199/200 words

  5. Thrust augmentation nozzle (TAN) concept for rocket engine booster applications

    Science.gov (United States)

    Forde, Scott; Bulman, Mel; Neill, Todd

    2006-07-01

    Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.

  6. SHINE Tritium Nozzle Design: Activity 6, Task 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, Brett S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-05

    In FY14, we studied the qualitative and quantitative behavior of a SHINE/PNL tritium nozzle under varying operating conditions. The result is an understanding of the nozzle’s performance in terms of important flow features that manifest themselves under different parametric profiles. In FY15, we will consider nozzle design with a focus on nozzle geometry and integration. From FY14 work, we will understand how the SHINE/PNL nozzle behaves under different operating scenarios. The first task for FY15 is to evaluate the FY14 model as a predictor of the actual flow. Considering different geometries is more time-intensive than parameter studies, therefore we recommend considering any relevant flow features that were not included in the FY14 model. In the absence of experimental data, it is particularly important to consider any sources of heat in the domain or boundary conditions that may affect the flow and incorporate these into the simulation if they are significant. Additionally, any geometric features of the beamline segment should be added to the model such as the orifice plate. The FY14 model works with hydrogen. An improvement that can be made for FY15 is to develop CFD properties for tritium and incorporate those properties into the new models.

  7. Dynamics of the free jets from nozzles of complex geometries

    CERN Document Server

    D'Addio, Paolo

    2015-01-01

    The dynamics of the coherent structures in jets generated by nozzles of different shapes is analyzed through DNS at $Re_{D_e}=565$, by considering circular, square, fractal and star-like nozzles. The jets generated from orifices with corners, undergone a rotation proportional to the corner angular width: ${\\theta}_{rotation}={\\theta}_{corner}/2$. The velocity at which this rotation occurs is also affected by the angle of the corners, being faster for fractal and star-like nozzles which have small ${\\theta}_{corner}$. Therefore it has been found that the velocity of the rotation is associated with enhanced spreading and entraining characteristics. The jet evolution and its rotation are dictated by the vorticity field and, in particular, by the positive and negative ${\\omega}_x$ layers generated at each corner. The comparison between the fractal and the star-like jets at this Re, suggested that the effect of the smaller scales generated by the fractal nozzle does not play a role in the development of the jet, t...

  8. Acoustic measurements of models of military style supersonic nozzle jets

    Institute of Scientific and Technical Information of China (English)

    Ching-Wen Kuo; Jérémy Veltin; Dennis K. McLaughlin

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How-ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small-and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  9. Vortex structures downstream a lobed nozzle/mixer

    Institute of Scientific and Technical Information of China (English)

    Hui Hu; Toshio Kobayashi

    2008-01-01

    An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle. A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vorticity distributions to revealed both the large-scale streamwise vortices produced by the lobed mixer/nozzle and the Kelvin-Helmholtz vortex structures generated due to the Kelvin-Helmholtz instabilities simultaneously and quantitatively for the first time. The instantaneous and the ensemble-averaged vorticity distributions displayed quite different aspects about the evolutions of the unsteady vortex structures. While the ensemble-averaged vorticity distributions indicated the overall effect of the special geometry of the lobed nozzle/mixer on the enhanced mixing process, the instantaneous vorticity distributions elucidated many details about how the enhanced mixing process was conducted. In addition to quantitatively confirming conjectures of previous studies, further insight about the formation, evolution and interaction characteristics of the unsteady vortex structures downstream of the lobed mixer/nozzle were also uncovered quantitatively in the present study.

  10. Nonlinear indirect combustion noise for compact supercritical nozzle flows

    Science.gov (United States)

    Huet, M.

    2016-07-01

    In this paper, indirect combustion noise generated by the acceleration of entropy perturbations through a supercritical nozzle is investigated in the nonlinear regime and in the low-frequency limit (quasi-static hypothesis). This work completes the study of Huet and Giauque (Journal of Fluid Mechanics 733 (2013) 268-301) for nonlinear noise generation in nozzle flows without shock and particularly focuses on shocked flow regimes. It is based on the analytical model of Marble and Candel for compact nozzles (Journal of Sound and Vibration 55 (1977) 225-243), initially developed for excitations in the linear regime and rederived here for nonlinear perturbations. Full nonlinear analytical solutions are provided in the absence of shock as well as second-order analytical expressions when a shock is present in the diffuser. An analytical evaluation of the shock displacement inside the nozzle caused by the forcing is proposed and maximum possible forcings to avoid unchoke and 'over-choke' are discussed. The accuracy of the second-order model and the nonlinear contributions to the generated waves are then addressed. This model is found to be very accurate for the generated entropy wave with negligible nonlinear contributions. Nonlinearities are more visible, but still limited, for the downstream acoustic wave for large inlet Mach numbers. Analytical developments are validated thanks to comparisons with numerical simulations.

  11. Subsonic Flows in a Multi-Dimensional Nozzle

    CERN Document Server

    Du, Lili; Yan, Wei

    2011-01-01

    In this paper, we study the global subsonic irrotational flows in a multi-dimensional ($n\\geq 2$) infinitely long nozzle with variable cross sections. The flow is described by the inviscid potential equation, which is a second order quasilinear elliptic equation when the flow is subsonic. First, we prove the existence of the global uniformly subsonic flow in a general infinitely long nozzle for arbitrary dimension for sufficiently small incoming mass flux and obtain the uniqueness of the global uniformly subsonic flow. Furthermore, we show that there exists a critical value of the incoming mass flux such that a global uniformly subsonic flow exists uniquely, provided that the incoming mass flux is less than the critical value. This gives a positive answer to the problem of Bers on global subsonic irrotational flows in infinitely long nozzles for arbitrary dimension. Finally, under suitable asymptotic assumptions of the nozzle, we obtain the asymptotic behavior of the subsonic flow in far fields by a blow-up a...

  12. Acoustic measurements of models of military style supersonic nozzle jets

    Directory of Open Access Journals (Sweden)

    Ching-Wen Kuo

    2014-02-01

    Full Text Available Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  13. Multilayer refractory nozzles produced by plasma-spray process

    Science.gov (United States)

    Bliton, J. L.; Rausch, J. L.

    1966-01-01

    Multilayer rocket nozzles formed by plasma spraying have good thermal shock resistance and can be reheated in an oxidizing environment without loss of coating adherence. Suggested application of this process are for the production of refractory components, which can be formed as surfaces of revolution.

  14. Atomization of a liquid by a spray nozzle

    Science.gov (United States)

    Kutateladze, S. S. (Editor)

    1980-01-01

    The theory of atomization by mechanical and pneumatic (or vapor) spray nozzles is discussed. Basic design recommendations resulting from generalization of the material and confirmed by experiments are given. Sprayers which are widely used in the furnaces of stationary steam boilers, the combustion chambers of gas turbines, and industrial furnaces are examined.

  15. Liquid Atomization out of a Full Cone Pressure Swirl Nozzle

    CERN Document Server

    Rimbert, Nicolas

    2010-01-01

    A thorough numerical, theoretical and experimental investigation of the liquid atomization in a full cone pressure swirl nozzle is presented. The first part is devoted to the study of the inner flow. CAD and CFD software are used in order to determine the most important parameters of the flow at the exit of nozzle. An important conclusion is the existence of two flow regions: one in relatively slow motion (the boundary layer) and a second nearly in solid rotation at a very high angular rate (about 100 000 rad/s) with a thickness of about 4/5th of the nozzle section. Then, a theoretical and experimental analysis of the flow outside the nozzle is carried out. In the theoretical section, the size of the biggest drops is successfully compared to results stemming from linear instability theory. However, it is also shown that this theory cannot explain the occurrence of small drops observed in the stability domain whose size are close to the Kolmogorov and Taylor turbulent length scale. A Phase Doppler Particle Ana...

  16. SRB-TPS spray nozzle development for MSA-1 application

    Science.gov (United States)

    Prasthofer, W. P.

    1979-01-01

    Different overspray suppression schemes are presented. A spray nozzle system for the Marshall Sprayable Ablator (MAS-1) material was developed. As a result of the development for MAS-1 a substantial cost and time saving was achieved by permitting a continuous spray operation.

  17. Cavitation Inside High-Pressure Optically Transparent Fuel Injector Nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2015-12-01

    Nozzle-orifice flow and cavitation have an important effect on primary breakup of sprays. For this reason, a number of studies in recent years have used injectors with optically transparent nozzles so that orifice flow cavitation can be examined directly. Many of these studies use injection pressures scaled down from realistic injection pressures used in modern fuel injectors, and so the geometry must be scaled up so that the Reynolds number can be matched with the industrial applications of interest. A relatively small number of studies have shown results at or near the injection pressures used in real systems. Unfortunately, neither the specifics of the design of the optical nozzle nor the design methodology used is explained in detail in these papers. Here, a methodology demonstrating how to prevent failure of a finished design made from commonly used optically transparent materials will be explained in detail, and a description of a new design for transparent nozzles which minimizes size and cost will be shown. The design methodology combines Finite Element Analysis with relevant materials science to evaluate the potential for failure of the finished assembly. Finally, test results imaging a cavitating flow at elevated pressures are presented.

  18. Radical recombination in a hydrocarbon-fueled scramjet nozzle

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoyuan

    2014-12-01

    Full Text Available To reveal the radical recombination process in the scramjet nozzle flow and study the effects of various factors of the recombination, weighted essentially non-oscillatory (WENO schemes are applied to solve the decoupled two-dimensional Euler equations with chemical reactions to simulate the hydrocarbon-fueled scramjet nozzle flow. The accuracy of the numerical method is verified with the measurements obtained by a shock tunnel experiment. The overall model length is nearly 0.5 m, with inlet static temperatures ranging from 2000 K to 3000 K, inlet static pressures ranging from 75 kPa to 175 kPa, and inlet Mach numbers of 2.0 ± 0.4 are involved. The fraction Damkohler number is defined as functions of static temperature and pressure to analyze the radical recombination progresses. Preliminary results indicate that the energy releasing process depends on different chemical reaction processes and species group contributions. In hydrocarbon-fueled scramjet nozzle flow, reactions with H have the greatest contribution during the chemical equilibrium shift. The contrast and analysis of the simulation results show that the radical recombination processes influenced by inflow conditions and nozzle scales are consistent with Damkohler numbers and potential dissociation energy release. The increase of inlet static temperature improves both of them, thus making the chemical non-equilibrium effects on the nozzle performance more significant. While the increase of inlet static pressure improves the former one and reduces the latter, it exerts little influence on the chemical non-equilibrium effects.

  19. Radical recombination in a hydrocarbon-fueled scramjet nozzle

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaoyuan; Qin Lizi; Chen Hong; He Xuzhao; Liu Yu

    2014-01-01

    To reveal the radical recombination process in the scramjet nozzle flow and study the effects of various factors of the recombination, weighted essentially non-oscillatory (WENO) schemes are applied to solve the decoupled two-dimensional Euler equations with chemical reac-tions to simulate the hydrocarbon-fueled scramjet nozzle flow. The accuracy of the numerical method is verified with the measurements obtained by a shock tunnel experiment. The overall model length is nearly 0.5 m, with inlet static temperatures ranging from 2000 K to 3000 K, inlet static pressures ranging from 75 kPa to 175 kPa, and inlet Mach numbers of 2.0 ± 0.4 are involved. The fraction Damkohler number is defined as functions of static temperature and pressure to ana-lyze the radical recombination progresses. Preliminary results indicate that the energy releasing pro-cess depends on different chemical reaction processes and species group contributions. In hydrocarbon-fueled scramjet nozzle flow, reactions with H have the greatest contribution during the chemical equilibrium shift. The contrast and analysis of the simulation results show that the rad-ical recombination processes influenced by inflow conditions and nozzle scales are consistent with Damkohler numbers and potential dissociation energy release. The increase of inlet static temper-ature improves both of them, thus making the chemical non-equilibrium effects on the nozzle per-formance more significant. While the increase of inlet static pressure improves the former one and reduces the latter, it exerts little influence on the chemical non-equilibrium effects.

  20. Manufacturing of nozzle shell with integral flange for EPR reactor pressure vessel and its properties

    International Nuclear Information System (INIS)

    EPR (EPR: European Pressurized Water Reactor) has been developed to achieve higher output (1,600 MW) and longer plant life (60 years), compared with the conventional unclear reactors, and the first commercial reactor was introduced in Finland no.5/Olkiluoto no.3. The integrated mono-block design was applied for nozzle shell flange instead of welded conventional flange and nozzle shell. And due to set-on type nozzles, a 600 ton ingot was required for this part. JSW successfully completed the manufacturing of first nozzle shell with integral flange 11 months after melting. This report summarizes manufacturing technology and process, and properties of nozzle shell with integral flange. (author)

  1. Geometria dinâmica e formação inicial: episódios a partir de um curso de extensão universitária

    Directory of Open Access Journals (Sweden)

    Guilherme Henrique Gomes da Silva

    2016-05-01

    Full Text Available This experience report presents some situations involving the work of prospective teachers of courses of exact sciences with the Geogebra software. The work was developed based on a university extension course. Its aim was to introduce students to a dynamic geometry environment, and explore its potential use in Elementary and High School math classes. This paper highlights some episodes that occurred during the course, evincing investigative activities in a computational environment that were explored by participants. In particular, it reports an episode which places prospective teachers in the so-called risk zone. Este relato de experiência apresenta situações envolvendo o trabalho de futuros professores de cursos da área das ciências exatas com o software Geogebra. Este trabalho foi feito a partir de um curso de extensão universitária cujo intuito foi introduzir os estudantes em um ambiente de geometria dinâmica e explorar potencialidades de sua utilização em aulas de matemática do Ensino Fundamental e Médio. Neste texto, serão destacados episódios ocorridos durante o curso, evidenciando determinadas tarefas investigativas no ambiente computacional que foram exploradas pelos participantes. Em particular, será destacado um episódio em que situações inesperadas colocaram os futuros professores no que a literatura denomina de zona de risco.

  2. The proton therapy nozzles at Samsung Medical Center: A Monte Carlo simulation study using TOPAS

    Science.gov (United States)

    Chung, Kwangzoo; Kim, Jinsung; Kim, Dae-Hyun; Ahn, Sunghwan; Han, Youngyih

    2015-07-01

    To expedite the commissioning process of the proton therapy system at Samsung Medical Center (SMC), we have developed a Monte Carlo simulation model of the proton therapy nozzles by using TOol for PArticle Simulation (TOPAS). At SMC proton therapy center, we have two gantry rooms with different types of nozzles: a multi-purpose nozzle and a dedicated scanning nozzle. Each nozzle has been modeled in detail following the geometry information provided by the manufacturer, Sumitomo Heavy Industries, Ltd. For this purpose, the novel features of TOPAS, such as the time feature or the ridge filter class, have been used, and the appropriate physics models for proton nozzle simulation have been defined. Dosimetric properties, like percent depth dose curve, spreadout Bragg peak (SOBP), and beam spot size, have been simulated and verified against measured beam data. Beyond the Monte Carlo nozzle modeling, we have developed an interface between TOPAS and the treatment planning system (TPS), RayStation. An exported radiotherapy (RT) plan from the TPS is interpreted by using an interface and is then translated into the TOPAS input text. The developed Monte Carlo nozzle model can be used to estimate the non-beam performance, such as the neutron background, of the nozzles. Furthermore, the nozzle model can be used to study the mechanical optimization of the design of the nozzle.

  3. Evaluation of the effects of break nozzle configuration in the Semiscale Mod-1 system

    International Nuclear Information System (INIS)

    The Semiscale Mod-1 Program has utilized two different break nozzle configurations in the test system. An evaluation has been made to determine the effect these break nozzle configurations have on system thermal-hydraulic response during a 200 percent double-ended cold leg break loss-of-coolant accident simulation. The first nozzle was a convergent-divergent nozzle (Henry nozzle) and the second, an elongated constant area throat nozzle. Analysis is confined primarily to system response phenomena observed to be affected by the nozzle configuration and concentrates on the fluid response at the break and the resulting core behavior during subcooled and saturated blowdown. The evaluation shows that considerable difference in system response occurs as a result of the difference in break nozzle configuration. The elongated throat nozzle was scaled from the Loss-of-Fluid Test (LOFT) nozzle geometry and since the LOFT counterpart tests were designed to provide results for the LOFT Program, the elongated throat nozzle was used in the subsequent LOFT counterpart tests

  4. Flow separation in out-of-round nozzles, a numerical and experimental study

    Science.gov (United States)

    Génin, C.; Stark, R.; Jack, S.

    2015-06-01

    The start-up and shutdown transient phases in rocket engine nozzles generate high side loads. The internal and external flow fluctuations can excite the eigenmodes of the nozzle structure. The flow separation in out-of-round nozzle intensifies the initial structure deformation leading in the worst case to the collapse of the nozzle. In the framework of the DLR internal cooperation program ProTAU, the ovalization of nozzles is being investigated from both the numerical and the experimental point of view. Three nozzle geometries have been designed and deformed applying various methods. The flow behavior in the initially axisymmetric and the ovalized contours has been numerically investigated. The most promising contours will be manufactured as permanently ovalized nozzle models and tested under cold flow conditions.

  5. Wall Pressure Measurements in a Convergent-Divergent Nozzle with Varying Inlet Asymmetry

    Science.gov (United States)

    Senthilkumar, C.; Elangovan, S.; Rathakrishnan, E.

    2016-06-01

    In this paper, flow separation of a convergent-divergent (C-D) nozzle is placed downstream of a supersonic flow delivered from Mach 2.0 nozzle is investigated. Static pressure measurements are conducted using pressure taps. The flow characteristics of straight and slanted entry C-D nozzle are investigated for various NPR of Mach 2.0 nozzle. The effect of asymmetry at inlet by providing 15°, 30°, 45° and 57° cut is analyzed. Particular attention is given to the location of the shock within the divergent section of the test nozzle. This location is examined as a function both NPR of Mach 2.0 nozzle and test nozzle inlet angle. Some of the measurements are favorably compared to previously developed theory. A Mach number ratio of 0.81 across the flow separation region was obtained.

  6. A study on the jet characteristic by using of Coanda effect in constant expansion rate nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sak; Lee, Dong Won; Kwon, Soon Bum [Kyungpook National Univ., Daegu (Korea, Republic of); Kim, Byung Ji [Catholic Sangji College, Andong (Korea, Republic of)

    2005-07-01

    Jets issuing from a conventional nozzle and convergent nozzles of a constant expansion rates and a certain normal using an annular slit are compared to investigate the characteristics of the 3 jets. In experiments, to compare the characteristics between jets, the nozzle exit mean velocity is fixed as 90m/s. The pressures along the jet axis and radial directions is measured by scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution can be obtained by calculation from the measured static and total pressures. To obtain the highly stable and convergency jets, a nozzle has to be designed with an annular slit connected to an conical cylinder, furthermore, the flow through a constant expansion rate nozzle using annular slit is the most probable. And the pressure drop along the nozzle for the constant expansion rate nozzle is small.

  7. A study on the jet characteristic by using of Coanda effect in constant expansion rate nozzle

    International Nuclear Information System (INIS)

    Jets issuing from a conventional nozzle and convergent nozzles of a constant expansion rates and a certain normal using an annular slit are compared to investigate the characteristics of the 3 jets. In experiments, to compare the characteristics between jets, the nozzle exit mean velocity is fixed as 90m/s. The pressures along the jet axis and radial directions is measured by scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution can be obtained by calculation from the measured static and total pressures. To obtain the highly stable and convergency jets, a nozzle has to be designed with an annular slit connected to an conical cylinder, furthermore, the flow through a constant expansion rate nozzle using annular slit is the most probable. And the pressure drop along the nozzle for the constant expansion rate nozzle is small

  8. Spreading Characteristics of Compressible Jets from Nozzles of Various Geometries

    Science.gov (United States)

    Zaman, K. B. M. Q.

    1999-01-01

    The spreading characteristics of jets from several asymmetric nozzles, and a set of rectangular orifices are compared, covering a jet Mach number range of 0.3-2.0. The effect of 'tabs' for a rectangular and a round nozzle is also included in the comparison. Compared to a round jet, the jets from the asymmetric nozzles spread only slightly more at subsonic conditions whereas at supersonic conditions, when 'screech' occurs, they spread much more. The dynamics of the azimuthal vortical structures of the jet, organized and intensified under the screeching condition, are thought to be responsible for the observed effect at supersonic conditions. Curiously, the jet from a 'lobed' nozzle spreads much less at supersonic condition compared to all other cases; this is due to the absence of screech with this nozzle. Screech stages inducing flapping, rather than varicose or helical, flow oscillation cause a more pronounced jet spreading. At subsonic conditions, only a slight increase in jet spreading with the asymmetric nozzles contrasts previous observations by others. The present results show that the spreading of most asymmetric jets is not much different from that of a round jet. This inference is further supported by data from the rectangular orifices. In fact, jets from the orifices with small aspect ratio (AR) exhibit virtually no increase in the spreading. A noticeable increase commences only when AR is larger than about 10. Thus, 'shear layer perimeter stretching', achieved with a larger AR for a given cross-sectional area of the orifice, by itself, proves to be a relatively inefficient mechanism for increasing jet spreading. In contrast, the presence of streamwise vortices or 'natural excitation' can cause a significant increase - effects that might explain the observations in the previous investigations. Thus far, the biggest increase in jet spreading is observed with the tabs. This is true in the subsonic regime, as well as in the supersonic regime, in spite of the

  9. Design and performance of atomizing nozzles for spray calcination of high-level wastes

    International Nuclear Information System (INIS)

    A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-μ median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-μ median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure

  10. Design and performance of atomizing nozzles for spray calcination of high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, F.A.; Stout, L.A.

    1981-05-01

    A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-..mu.. median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-..mu.. median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure.

  11. A contribution on the investigation of the dynamic behavior of rotating shafts with a Hybrid Magnetic Bearing Concept (HMBC) for blower application

    International Nuclear Information System (INIS)

    Within a subproject of the RAPHAEL-Program, which was part of the 6th EURATOM Framework Program supervised by the European Commission, it was investigated whether the use of a Hybrid Magnetic Bearing Concept (HMBC) will be beneficial for a blower application. Within the RAPHAEL program, the subproject 'Component Development' is dealing with R and D of components of High Temperature Reactor Technology (HTR), where a major focus is on safety- and reliability-related issues. That implies special requirements for the support of high speed rotating shafts in HTR-Applications that only can be satisfied by using Active Magnetic Bearings (AMB). Regarding safety and competitiveness, AMBs are considered to be key components for the support of rotating HTR-components due to their technical features. AMBs are characterized by an electromagnetic actuator that is generating the bearing force depending on the clearance between stator and rotor, in which the rotor is levitated. Therefore an active control of the coil current is necessary. Furthermore, Touch Down Bearings (TDB) are needed to avoid damages in case of an emergency shut down or in case of energy supply losses. This contribution provides an internal insight on the advantages of a Hybrid Magnetic Bearing Concept that is characterized by a completely Active Magnetic Bearing-supported vertical arranged rotor and an additional permanent magnetic radial orientated bearing. One benefit of the HMBC is an additional radial guidance of the shaft that may reduce the loads while dropping into the Touch Down Bearings e.g. in case of energy supply losses of the AMBs. Reduced loads on the TDBs will increase their life cycle and the availability of the AMB supported component. The scope of this R and D-Project, which will be described more detailed in this contribution, includes: the analytical modeling and simulation of the dynamic behavior of the Hybrid Magnetic Bearing System; the modification of the completely AMB-supported test

  12. A contribution on the investigation of the dynamic behaviour of rotating shafts with a hybrid magnetic bearing concept (HMBC) for blower application - HTR2008-58045

    International Nuclear Information System (INIS)

    Within a sub-project of the RAPHAEL-Program, which is part of the 6. EURATOM Framework Program supervised by the European Commission it was investigated whether the use of a Hybrid Magnetic Bearing Concept (HMBC) will be beneficial for a blower application. As in the RAPHAEL program the sub-project 'Component Development' deals with R and D on components of High Temperature Reactor Technology (HTR), a major focus is on safety- and reliability-related issues. That implies special requirements for the support of high speed rotating shafts in HTR-Applications that only can be satisfied by using Active Magnetic Bearings (AMB). Regarding safety and competitiveness, AMBs are considered key components for the support of rotating HTR-components due to their technical features. AMBs are characterized by an electromagnetic actuator that is generating the bearing force depending on the clearance between stator and rotor, in which the rotor is levitated. Therefore an active control of the coil current is necessary. Furthermore, Touch Down Bearings (TDB) are needed to avoid damages in case of an emergency shut down or in case of energy supply losses. This contribution provides an internal insight on the advantages of a Hybrid Magnetic Bearing Concept that is characterized by a completely Active Magnetic Bearing-supported vertical arranged rotor and an additional permanent magnetic Radial Bearing. One benefit of the HMBC is an additional radial guidance of the shaft that may reduce the loads while dropping into the Touch Down Bearings e.g. in case of energy supply losses of the AMBs. Reduced loads on the TDBs will increase their life cycle and the availability of the AMB supported component. The Scope of this R and D-Project, which will be described more detailed in this contribution, includes the analytical modeling and simulation of the dynamic behavior of the Hybrid Magnetic Bearing System, the modification of the completely AMB supported test facility FLP500 with a radial

  13. Application of small diameter nozzles systems for cyclotron targets cooling

    International Nuclear Information System (INIS)

    In the present work estimating calculations of cadmium targets cooling conditions under proton beam irradiation are cited. Irradiation conditions and targets parameters are as follows: a) proton initial energy - 16 MeV, beam current - 20 μA; b) metallic cadmium layer thickness - 660 μm; target diameter - 9 mm, it squire - 0.64 cm2; c) vanadium substrate thickness, on which the cadmium layer is fixed - 200 μm; d) proton energy losses in the target - 15 MeV, heat release in the cadmium layer - 300 W, heat release on the target surface - 471 W·cm-2; e) proton energy losses in the substrate - 1 MeV, heat release in vanadium - 15 W. For the calculation the system of 7 nozzles was selected. It is noted, that cooling change by single jet of nozzle systems with small diameter provides to heat transfer coefficient increase and sharply reduces (into 3 times) water flow

  14. Collimation of stellar winds by nonadiabatic de Laval nozzles

    International Nuclear Information System (INIS)

    The interaction between an isotropic stellar wind and a stratified environment can lead to the formation of de Laval nozzles (in the adiabatic case) or to the formation of an elongated cavity surrounded by a dense cold shell of shocked gas (in the limit of short cooling distances; i.e., in the highly nonadiabatic case). A preliminary exploration of the intermediate regime between the adiabatic and the highly nonadiabatic regimes yields very interesting results. While for cooling distances larger than about 5 times the environmental scale height the flow resembles the adiabatic de Laval nozzle, for shorter cooling distances the flow is considerably different, leading to the formation of very narrow well collimated cold jets. A preliminary comparison between observations of the HH 1/2 source and radio free-free spectra computed from these models gives very encouraging results. 24 refs

  15. Development of Submerged Entry Nozzles that Resist Clogging

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Jeffrey D. Smith; Kent D. Peasle

    2002-10-14

    Accretion formation and the associated clogging of SENs is a major problem for the steel industry leading to decreased strand speed, premature changing of SENs or strand termination and the associated reductions in productivity, consistency, and steel quality. A program to evaluate potentially clog resistance materials was initiated at the University of Missouri-Rolla. The main objective of the research effort was to identify combinations of steelmaking and refractory practices that would yield improved accretion resistance for tundish nozzles and submerged entry nozzles. A number of tasks were identified during the initial kick-off meeting and each was completed with two exceptions, the thermal shock validation and the industrial trials. Not completing these two tasks related to not having access to industrial scale production facilities. Though much of the results and information generated in the project is of proprietary nature.

  16. Viscous and unsteady flow calculations of condensing steam in nozzles

    International Nuclear Information System (INIS)

    The paper presents two-dimensional calculations for spontaneously nucleating flows of steam in converging-diverging nozzles. The Reynolds-averaged Navier-Stokes equations are solved for the two-phase mixture, using a Jameson-style finite volume method on an unstructured and adaptive triangular mesh. Results are first presented for steady, viscous flow, showing the influence of boundary layer growth on streamwise pressure distributions and droplet sizes. These results have implications for the interpretation of some of the experimental data used for validating the theories of nucleation and droplet growth. The numerical scheme has also been applied to compute unsteady flows in a variety of nozzle geometries, covering a range of inlet conditions in each case. Asymmetric oscillation modes, previously observed in moist air, have been predicted for one of the geometries, indicating for the first time that such oscillations are possible in pure steam

  17. Computational design aspects of a NASP nozzle/afterbody experiment

    Science.gov (United States)

    Ruffin, Stephen M.; Venkatapathy, Ethiraj; Keener, Earl R.; Nagaraj, N.

    1989-01-01

    This paper highlights the influence of computational methods on design of a wind tunnel experiment which generically models the nozzle/afterbody flow field of the proposed National Aerospace Plane. The rectangular slot nozzle plume flow field is computed using a three-dimensional, upwind, implicit Navier-Stokes solver. Freestream Mach numbers of 5.3, 7.3, and 10 are investigated. Two-dimensional parametric studies of various Mach numbers, pressure ratios, and ramp angles are used to help determine model loads and afterbody ramp angle and length. It was found that the center of pressure on the ramp occurs at nearly the same location for all ramp angles and test conditions computed. Also, to prevent air liquefaction, it is suggested that a helium-air mixture be used as the jet gas for the highest Mach number test case.

  18. Low NOx nozzle tip for a pulverized solid fuel furnace

    Science.gov (United States)

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  19. Influence of cavitation on near nozzle exit spray

    Science.gov (United States)

    Mirshahi, M.; Yan, Y.; Nouri, J. M.

    2015-12-01

    The importance of cavitation inside multi-hole injectors for direct injection internal combustion (IC) engineshas been addressed in many previous investigations. Still, the effect of cavitation on jet spray, its stability and liquid breakup and atomisation is not yet fully understood. The current experimental work aims to address some of these issues. It focuses on the initiation and development of cavitation inside a 7× enlarged transparent model of a symmetric 6-hole spark ignition direct injection (SIDI) injector and quantifies the effect of cavitation on near-nozzle spray cone angle and stability utilising high speed Mie scattering visualisation. The regions studied include the full length of the nozzle and its exitjet spray wherethe primary breakup takes place.

  20. Ice Control with Brine Spread with Nozzles on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars; Fonnesbech, Jens Kristian

    2010-01-01

    During the years 1996-2006, the former county of Funen, Denmark, gradually replaced pre-wetted salt with brine spread with nozzles as anti-icing agent in all her ice control activities. The replacement related to 1000 kilometres of highways. Jeopardizing neither road safety nor traffic flow...... the spread rate of pure sodium chloride (and thus the environmental impact) compared to neighbouring counties was less than fifty percent per square meter. Successful pre-salting is, of course, dependent on reliable weather forecasts and on staff well trained in the art of interpreting this information....... The improvements gained by the county of Funen were mainly due to the use of technologies (brine spreading with nozzles) giving a more precise spread pattern than the traditional gritting of pre-wetted salt. The spread pattern for every spreader, tested in The County of Funen, has been meassured 3 hours after...

  1. Reaction thrust of water jet for conical nozzles

    Institute of Scientific and Technical Information of China (English)

    HUANG Guo-qin; YANG You-sheng; LI Xiao-hui; ZHU Yu-quan

    2009-01-01

    Clear knowledge on the reaction thrust of water jet is valuable for better design of water jet propulsion system.In this paper,theoretical,numerical and experimental studies were carried out to investigate the effects of the nozzle geometry as well as the inlet conditions on the reaction thrust of water jet.Comparison analyses reveal that the reaction thrust has a direct proportional relationship with the product of the inlet pressure,the square of flow rate and two-thirds power exponent of the input power.The results also indicate that the diameter of the cylinder column for the conical nozzle has great influence on the reaction thrust characteristics.In addition,the best values of the half cone angle and the cylinder column length exist to make the reaction thrust reach its maximum under the same inlet conditions.

  2. As Demonstrações no Ensino da Geometria: discussões sobre a formação de professores através do uso de novas tecnologias Demonstrations in the Teaching of Geometry: discussions on teacher education through the use of new technologies

    Directory of Open Access Journals (Sweden)

    Emilia Barra Ferreira

    2009-12-01

    Full Text Available Este trabalho descreve uma pesquisa realizada junto a professores de Matemática objetivando investigar a contribuição dos ambientes de geometria dinâmica em sua formação, no sentido de incentivá-los ao uso das demonstrações no ensino da Geometria. Considerando-se as demonstrações, pela própria natureza da Matemática, elemento fundamental na construção do conhecimento geométrico, a proposta foi que dificuldades, geralmente encontradas na necessária passagem do conhecimento de natureza empírica àquele de natureza formal, podem ser minimizadas ou superadas através de trabalho em ambientes que possibilitem o experimentar, visualizar, conjecturar, generalizar e demonstrar, como propõem os ambientes de geometria dinâmica. A análise feita baseouse em estudos de Piaget (1983, de Van Hiele (1959 e da Didática da Matemática (BROUSSEAU, 1986, DUVAl, 1995. Desenvolveu-se uma engenharia didática no ambiente proposto e os resultados sugerem que tal trabalho se constitui numa alternativa eficiente no processo de formação de professores no sentido de incentivá-los ao uso das demonstrações. Palavras-chave: Formação de Professores. Demonstrações. Geometria Dinâmica.This paper describes research conducted with mathematics teachers aiming to investigate the contribution of environments of dynamic geometry in their education, to encourage them to use demonstrations in the teaching of geometry. Considering demonstrations, which are by nature a key element in the construction of geometric knowledge, the proposal was that difficulties typically encountered in the necessary passage from empirical knowledge to formal knowledge, can be minimized or overcome through work in environments that allow experimentation, viewing, conjecturing, generalization and demonstration, as proposed by environments of dynamic geometry. The analysis was based on studies of Piaget (1983, Van Hiele (1959 and Didactic of Mathematics (BROUSSEAU, 1986, DUVAL

  3. A geometria de poder do conflito territorial entre fazendeiros e Guaranis-Kaiowás na fronteira do Brasil com o Paraguai (Geometry of power of conflict between farmers and territorial Guarani-Kaiowas on the border of Brazil with Paraguay)

    OpenAIRE

    MONDARDO, Marcos Leandro

    2014-01-01

    Tomando por base o conflito territorial entre fazendeiros e Guaranis-Kaiowás na fronteira do Brasil com o Paraguai, analisamos a geometria de poder que envolve o processo de demarcação das terras indígenas no estado do Mato Grosso do Sul. Partindo da dinâmica de desterritorialização vinculada à expansão da “modernização da agricultura” pelas monoculturas de soja, pecuária e mais recentemente da cana-de-açúcar, analisamos a luta de reterritorialização dos povos indígenas pelo movimento de reto...

  4. PWR fuel assembly bottom nozzle with a particle retention filter

    International Nuclear Information System (INIS)

    The bottom nozzle has a thin fitted plate, supporting feet and a filtering plate ensuring the retention of coolant particles. The filtering plate is fixed to the lower part of the supporting feet that in use rests on the lower plate of the reactor core. Zones of the filtering plate have filtering grids that are positioned across the coolant passages in the lower plate of the core

  5. Effective hydraulic resistance of actuator nozzle generating a periodic jet

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2012-01-01

    Roč. 179, JUN 2012 (2012), s. 211-222. ISSN 0924-4247 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR(CZ) TA02020795 Institutional research plan: CEZ:AV0Z20760514 Keywords : nozzle * periodic flow * compressibility Subject RIV: BK - Fluid Dynamics Impact factor: 1.841, year: 2012 http://www.sciencedirect.com/science/article/pii/S0924424712001781

  6. Infrared spectroscopy of UF6 with argon in supersonic nozzle

    International Nuclear Information System (INIS)

    We determined the dependence of the population of UF6 monomer in a supersonic nozzle on the total concentration of UF6. The population was determined from the peak area of ν3 Q-branch of UF6 measured by using high resolution infrared spectroscopy. The population of UF6 monomer increases linearly with the increase of the total concentration up to a point, and reaches a peak. Above this point, the population decreases with the increase of the total concentration. (author)

  7. Large thermoplastic parts quality improvements using monitorized nozzle:

    OpenAIRE

    Fernandez, Angel; Javierre, Carlos; Mercado, Daniel; Muniesa, Manuel

    2008-01-01

    Rheological behaviour control of thermoplastic material is critical to achieve reliable production series free of defects such us flashes or short shots. Defects are especially critical when injecting large parts if stability of processing parameters cannot be achieved. Viscosity variation during production depends specially of lot of raw material and programmed parameters concerning temperature. Understanding rheological behaviour of molten material in injection nozzle is critical to obtain ...

  8. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  9. Experimental research of multiphase flow with cavitation in the nozzle

    Science.gov (United States)

    Kozubkova, Milada; Bojko, Marian; Jablonska, Jana; Homa, Dorota; Tůma, Jiří

    2016-03-01

    The paper deals with the problems of cavitation in water flow in the nozzle. The area of research is divided into two directions (experimental and numerical research). During the experimental research the equipment with the nozzle is under the measurement and basic physical quantities such as pressure and volume flow rate are recorded. In the following phase measuring of noise which is generated during flow through the nozzle in the area of cavitation is measured at various operating conditions of the pump. In the second part the appropriate multiphase mathematical model including the consideration of cavitation is defined. Boundary conditions for numerical simulation are defined on the basis of experimental measurements. Undissolved air in the flow is taken into account to obtain pressure distribution in accordance to measured one. Results of the numerical simulation are presented by means of basic current quantities such as pressure, velocity and volume fractions of each phase. The conclusions obtained from experimental research of cavitation were applied to modify the multiphase mathematical model.

  10. Experimental research of multiphase flow with cavitation in the nozzle

    Directory of Open Access Journals (Sweden)

    Kozubkova Milada

    2016-01-01

    Full Text Available The paper deals with the problems of cavitation in water flow in the nozzle. The area of research is divided into two directions (experimental and numerical research. During the experimental research the equipment with the nozzle is under the measurement and basic physical quantities such as pressure and volume flow rate are recorded. In the following phase measuring of noise which is generated during flow through the nozzle in the area of cavitation is measured at various operating conditions of the pump. In the second part the appropriate multiphase mathematical model including the consideration of cavitation is defined. Boundary conditions for numerical simulation are defined on the basis of experimental measurements. Undissolved air in the flow is taken into account to obtain pressure distribution in accordance to measured one. Results of the numerical simulation are presented by means of basic current quantities such as pressure, velocity and volume fractions of each phase. The conclusions obtained from experimental research of cavitation were applied to modify the multiphase mathematical model.

  11. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    Science.gov (United States)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  12. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  13. Three dimensional fatigue propagation modeling of a nozzle corner crack

    International Nuclear Information System (INIS)

    The problem of nozzle corner fatigue crack propagation has been addressed since more than 25 years (Brookhaven, 1975, Kobayashi, 1979). The high stress concentration in a nozzle corner under pressure and thermal shocks, make necessary the check of fatigue crack initiation and propagation risks in such a zone. Most of the integrity studies carried out over 40 years of service do include fatigue crack propagation assessments. However a realistic analysis of the crack extension is a complex three-dimensional problem. The fatigue growth is driven by the Stress Intensity Factor (SIF) values along the crack front. These SIF depend not only on the crack size but also on its shape and the location along the crack front. Therefore the crack shape is likely to change continuously. The current practice for stress intensity factors calculation consists in using influence functions established for a given type of crack front shape (semi-elliptical) and which take into account only in-depth stress gradients. This leads for instance to an overestimation of the crack extension and is not able to take into account the protective role of a thermal sleeve. The aim of the present study is to get through 3 dimensional finite element computations of the SIF, a more realistic estimate of the fatigue crack propagation of nozzle corner cracks. Namely, a reliable description of the crack shape evolution was expected for analyzing the risk of break through and examining the feasibility of non destructive examinations. (authors)

  14. Enrichment of U-235 by the separation nozzle process

    International Nuclear Information System (INIS)

    The most favorable results for practical application of the separation nozzle method have so far been obtained with a separating system in which a band-shaped gaseous jet consisting of a UF6/H2-mixture is deflected by a curved wall. Different methods have been developed to produce tubular separation elements based on this principle. Presently, separation capacities of up to 50 SWU/year can be achieved with tubular separation elements 15 cm in diameter and 2 m in length. These separation nozzles need a specific compression work of 2,700 kWh/SWU. Taking into account all energy losses of the enrichment facility this results in a specific energy consumption of about 4,000 kWh/SWU for an industrial-scale plant. Stages equipped with tubular separation elements have performed successfully since 1972 and 1974, respectively. The efficiency of UF6-recycling on the top of the cascades has been demonstrated. The tests of these prototypes provided the knowledge necessary for planning and engineering of industrial-scale enrichment plants. The operating characteristics of such separation nozzle plants can be predicted with high reliability using appropriate digital computer simulation showing that smooth and inherent stable cascade operation can be expected. On the basis of these results a technology program was initiated to provide the prototypes for enrichment plants with capacities of the order of 2.5 to 5 million SWU/year and more. (orig.)

  15. Piezoelectric diffuser/nozzle micropump with double pump chambers

    Institute of Scientific and Technical Information of China (English)

    Wei WANG; Ying ZHANG; Li TIAN; Xiaojie CHEN; Xiaowei LIU

    2008-01-01

    To eliminate check valve fatigue and valve clogging, diffuser/nozzle elements are used for flow rec-tification in a valveless diffuser/nozzle micropump instead of valves. However, the application of this type of micro-pump is restricted because of its pulsating or periodic flow and low pump flux. In this paper, a diffuser/nozzle Si/ Glass micropump with two pump chambers by IC and MEMS technology is designed. The fabrication process requires only one mask and one etch step, so that the fabrication has the advantages of low cost, short proces-sing period, and facilitation of miniaturization. The pump is equipped with a glass cover board so as to conveniently observe the flow status. Pump-chambers and diffuser ele-ments are fabricated by the anisotropic KOH-etch tech-nique on the silicone substrate, and the convex corner is designed to compensate for an anisotropic etch. The driv-ing force of the micropump is produced by the PZT piezo-electric actuator, The pump performance with both actuators actuated in anti- or same-phase mode is also researched. The result indicates that the micropump achieves great performance with the actuators working at anti-phase. This may be because the liquid flows stead-ily, pulse phenomenon is very weak, and the optimal working frequency, pump back pressure, and flow rate are both double that of the pump driven in same-phase.

  16. Condensation of uranium hexafluoride in supersonic Laval nozzle flow

    Science.gov (United States)

    Okada, Y.; Isomura, S.; Ashimine, K.; Takeuchi, K.

    1998-08-01

    Condensation, by homogeneous nucleation, of UF6 carried in a mixture of argon and methane was studied experimentally in a continuously operating supersonic Laval nozzle. The onset of condensation was detected by Rayleigh light scattering. Measurements of static pressure in the nozzle, together with the equations of isentropic flow, permitted the determination of the relation between the pressure of UF6, Pk, and the temperature, Tc, at the observed onset of condensation. The experiments addressed conditions of condensation onset in the range 80nozzle formed single-component droplets of UF6 in a mixture of UF6, CH4, and Ar under the experimental conditions studied herein.

  17. Numerical Analysis on Temperature Variation of Coolant in Pressurizer Spray Nozzle Considering Vapor Condensation

    International Nuclear Information System (INIS)

    Coolant is discharged into the pressurizer via a spray line pipe and nozzle. However, when the shut-off valve is closed, the coolant flow rate is abruptly reduced and the vapor could be flow upward into the spray nozzle. The inflow of vapor might cause rapid temperature increase and thermal stress problem on the nozzle and weld zones. To estimate the thermal stress applied to the weld zones of pressurizer spray nozzle, internal temperature distribution of the spray nozzle should be identified. Thus, in this paper, numerical analysis has been carried out in order to obtain temperature variation data of coolant near inner nozzle surface. Numerical analysis has been carried out to obtain coolant temperature variation data for the estimation of thermal stress applied on the spray nozzle and weld zones. The results show below. In case 1(temperature difference between coolant and vapor is relatively large), it takes temperature of coolant in the spray head a long time to reach the saturation temperature. And the vapor flows into the nozzle is condensed immediately. Therefore, thermal stratification occurs in the spray nozzle and pipe. In case 2(temperature difference between coolant and vapor is relatively small), since coolant temperature reaches the saturation temperature rapidly, relatively small amount of vapor is condensed. And a large amount of vapor is permeated to the nozzle and pipe

  18. Numerical Analysis on Temperature Variation of Coolant in Pressurizer Spray Nozzle Considering Vapor Condensation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se-Hong; Choi, Choengryul; Son, Sung-Man [ELSOLTEC, Yongin (Korea, Republic of); Kim, Hyun-Su; Oh, Chang-Kyun; Jung, Sung-Kyu [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-05-15

    Coolant is discharged into the pressurizer via a spray line pipe and nozzle. However, when the shut-off valve is closed, the coolant flow rate is abruptly reduced and the vapor could be flow upward into the spray nozzle. The inflow of vapor might cause rapid temperature increase and thermal stress problem on the nozzle and weld zones. To estimate the thermal stress applied to the weld zones of pressurizer spray nozzle, internal temperature distribution of the spray nozzle should be identified. Thus, in this paper, numerical analysis has been carried out in order to obtain temperature variation data of coolant near inner nozzle surface. Numerical analysis has been carried out to obtain coolant temperature variation data for the estimation of thermal stress applied on the spray nozzle and weld zones. The results show below. In case 1(temperature difference between coolant and vapor is relatively large), it takes temperature of coolant in the spray head a long time to reach the saturation temperature. And the vapor flows into the nozzle is condensed immediately. Therefore, thermal stratification occurs in the spray nozzle and pipe. In case 2(temperature difference between coolant and vapor is relatively small), since coolant temperature reaches the saturation temperature rapidly, relatively small amount of vapor is condensed. And a large amount of vapor is permeated to the nozzle and pipe.

  19. SO2主风机叶片断裂原因分析%Analysis of Fracture on SO2 Blower Blade

    Institute of Scientific and Technical Information of China (English)

    黄世刚; 雷旻

    2014-01-01

    The impeller blade in an imported SO2 blower for sulfuric acid plant was fractured twice during normal operation. The cause of fracture was found by the SEM fractured appearance analysis, the metallographic structure, chemical composition analysis and static frequency measurement of vane. According to this conclusion, the project for safeguarding SO2 blower’s stable operation by localizing production of impeller and replacing semi-opened impeller by closed impeller was put forward.%硫酸装置某进口SO2主风机正常运行中先后两次发生叶轮叶片断裂事故,经断口SEM、金相组织、金属化学成分、叶片静频等方面的综合分析[1-3],找到了叶轮断裂失效的原因。根据该结论,提出了叶轮国产化改造方案,改半开式叶轮为闭式叶轮,保障了SO2主风机的稳定运行。

  20. Influence of nozzle type, nozzle arrangement and side wind speed on spray drift as measured in a wind tunnel

    OpenAIRE

    Al Heidary, M.; Douzals, J.P.; Sinfort, C.; Vallet, A.

    2014-01-01

    International audience Spray drift is a great concern because of environmental consequences of agricultural prac-tices. Many studies were conducted in wind tunnel (Miller, 2011; Nuyttens, 2007; Herbst, 2003) mainly focusing on the definition of quantitative deposition on collectors at different distances or heights according to (ISO 22856, 2008). In most cases, only one nozzle posi-tioned frontally (wind direction perpendicular to the main axis of a Flat Fan spray) is tested. This study wa...

  1. FORMAÇÃO CONTINUADA DO PROFESSOR DOS ANOS INICIAIS: REVISITANDO FIGURAS PLANAS COM SOFTWARE DE GEOMETRIA DINÂMICA. CONTINUING EDUCATION FOR TEACHERS OF THE EARLY YEARS: REVISITING PLANE FIGURES WITH DYNAMIC GEOMETRY SOFTWARE

    Directory of Open Access Journals (Sweden)

    Poloni, Marinês Yole

    2012-05-01

    Full Text Available Este artigo tem por propósito discutir episódios da prática de duas professoras do Ensino Fundamental I que em um curso de formação continuada revisitaram alguns conceitos geométricos. O foco está na reconstrução dos conceitos dessas professoras, entretanto são explicitadas também decisões e estratégias metodológicas por elas tomadas a fim de mediar a aprendizagem dos alunos. A pesquisa de mestrado, que subsidia este texto, foi realizada ao longo do curso “Geometria em Ação”, o qual estava centrado no tema Figuras Planas e, nele, foi utilizado o software Cabri-Géomètre[1]. A fundamentação teórica foi construída a partir dos conceitos de reflexão de Schön, das vertentes do conhecimento didático de Ponte & Oliveira e da articulação entre teoria e prática de Tardif. A pesquisa de caráter qualitativo utilizou a metodologia de Design-Based Research. No artigo apresentamos reflexões tanto sobre a (reconstrução de conceitos geométricos, quanto sobre a prática docente. Concluímos, ao final do estudo, que ocorreram situações de reconstrução de conceitos geométricos por parte de ambas as professoras, particularmente quanto às definições e às propriedades de triângulos e quadriláteros. Em relação à prática docente, elas se conscientizaram das decisões tomadas tanto durante o planejamento de suas aulas quanto durante a aplicação das mesmas avaliando, posteriormente, suas decisões didáticas e pedagógicas. This paper discusses episodes of teaching practices of two primary school teachers whom, during a course of continuing education, have revisited some geometrical concepts. The focus is on the reconstruction of mathematical concepts of these teachers, however, we also present methodological strategies and decisions taken by them in order to support students' learning. The underlying research was carried out along the course "Geometria em Ação" (Geometry in Action, which was centered on the Planar

  2. Effect of Nozzle Material on Downstream Lateral Injection Cold Spray Performance

    Science.gov (United States)

    MacDonald, D.; Leblanc-Robert, S.; Fernández, R.; Farjam, A.; Jodoin, B.

    2016-08-01

    In cold gas dynamic spraying, the gas nature, process stagnation pressure and temperature, and the standoff distance are known to be important parameters that affect the deposition efficiency and coating quality. This investigation attempts to elucidate the effect of nozzle material on coatings produced using a downstream lateral injection cold spray system. Through experimentation, it is shown that the nozzle material has a substantial effect on deposition efficiency and particle velocity. It is proposed that the effects are related to complex interaction between the particles and the internal nozzle walls. The results obtained lead to the conclusion that during the particle/nozzle wall contact, a nozzle with higher thermal diffusivity transfers more heat to the particles. This heat transfer results in lower critical velocities and therefore higher deposition efficiencies, despite a noticeable reduction of particle velocities which is also attributed to particle-nozzle interactions.

  3. Development of a high pressure water jet nozzle for steam generator lancing system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, N. H.; Jeong, W. T.; Son, S. Y.; Choi, Y. S. [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Nho, B. J. [Chonbuk Univ., Jeonju (Korea, Republic of); Park, Y. S. [Hanboi ENG, Taejon (Korea, Republic of)

    2003-10-01

    Metal-oxide sludge accumulates on the tube sheet of nuclear steam generators as time passes. To prevent degradation of thermal efficiency of nuclear steam generators, it is recommended to clean the tube sheet and the tubes. It is important that efficiency of lancing of steam generators in nuclear power plants depends on nozzle performance. The aspect ratio, among many factors affecting the performance of a nozzle, plays a major role in determining the outer flow pattern and nozzle performance. So in this study, some flow characteristics with the variation of nozzle aspect ratios have been experimentally investigated. By this experiments, the increase of aspect ratio causes decrease of water jet energy. As a result, it was obviously concluded that the nozzle performance depends on the aspect ratio of nozzle.

  4. Comparison of Nozzle and Flow Straighteners for Tank Waste Sluicing Applications Letter Report

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, O Dennis; Jackson, David R.

    2000-09-29

    Nozzles and flow straighteners were compared to assess the relative quality of the water streams for sluicing waste from underground storage tankes. The criteria for comparison were 1) the impact force produced by the streams over a range of distance from the nozzle impinging on target plates, and 2) the coherence of the streams as manifest by the variation of force on targets of two different sizes. It was determined that 1) the standard Hanford flow straightener is measurable less effective than a commercial firefighting flow straightener at producing a coherent stream when used with the standard Hanford nozzle, and 2) a lighter and more compact firefighting deluge nozzle will deliver a stream of equal quality to that from the Hanford nozzle when either nozzle is used with the commercial flow straightener.

  5. Apparatus and methods for impingement cooling of a side wall of a turbine nozzle segment

    Science.gov (United States)

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and a vane therebetween. Each band includes a nozzle wall, a side wall, a cover and an impingement plate between the cover and the nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The impingement plate has a turned flange welded to the inturned flange. A backing plate overlies the turned flange and aligned apertures are formed through the backing plate and turned flange to direct and focus cooling flow onto the side wall of the nozzle segment.

  6. Wind tunnel Measurement of Spray Drift from on-off Controlled Sprayer Nozzles

    DEFF Research Database (Denmark)

    Lund, Ivar; Jensen, Peter Kryger; Miller, Paul;

    2014-01-01

    Sensor-based precision weed control system at a high resolution requires a high spray application accuracy to keep the spray in a small target zone. The objective of this research was to investigate the target accuracy and spray drift from individual controlled sprayer nozzles targeting a 250 mm...... wide surface area with a length of 200 mm. The test was conducted in the wind tunnel at Silsoe Spray Applications Unit in the UK. The measurements consisted of two test series; airborne drift was collected on polyethylene lines more than 375 mm away from the centerline of the nozzle and ground deposits...... were collected on 20 mm wide paper lines closer than 375 mm from the nozzle. The nozzle height was 400 mm and the nozzle was aligned at right angles to forward direction across the wind tunnel and perpendicular to the wind direction. The nozzles involved were mounted on a transporter system...

  7. Wind tunnel measurement of spray drift from on-off controlled sprayer nozzles

    DEFF Research Database (Denmark)

    Lund, Ivar; Jensen, Peter Kryger; Miller, Paul;

    Sensor-based precision weed control system at a high resolution requires a high spray application accuracy to keep the spray in a small target zone. The objective of this research was to investigate the target accuracy and spray drift from individual controlled sprayer nozzles targeting a 250 mm...... wide surface area with a length of 200 mm. The test was conducted in the wind tunnel at Silsoe Spray Applications Unit in the UK. The measurements consisted of two test series; airborne drift was collected on polyethylene lines more than 375 mm away from the centerline of the nozzle and ground deposits...... were collected on 20 mm wide paper lines closer than 375 mm from the nozzle. The nozzle height was 400 mm and the nozzle was aligned at right angles to forward direction across the wind tunnel and perpendicular to the wind direction. The nozzles involved were mounted on a transporter system...

  8. Evaluation of the effect of break nozzle configuration in loss-of-coolant accident analysis

    International Nuclear Information System (INIS)

    The Semiscale Mod-1 test program has utilized two different break nozzle configurations in a test facility with identical initial and boundary conditions. An evaluation has been made to determine the effect these break nozzle configurations have on system thermal-hydraulic response during a 200% double-ended cold leg break loss-of-coolant accident simulation. The first nozzle had a convergent-divergent design; the second nozzle had a convergent design with an elongated constant area throat followed by a rapid expansion. Analysis of data from tests conducted with the two nozzles shows that the critical flow characteristics at the break plane were affected by the break nozzle geometry. Differences in break flow caused differences in the core inlet flow which in turn affected core heater rod thermal response. The results of this investigation show that the break flow behavior and the resulting core thermal response in the Semiscale experimental facility can be directly correlated

  9. Effect of Nozzle Material on Downstream Lateral Injection Cold Spray Performance

    Science.gov (United States)

    MacDonald, D.; Leblanc-Robert, S.; Fernández, R.; Farjam, A.; Jodoin, B.

    2016-06-01

    In cold gas dynamic spraying, the gas nature, process stagnation pressure and temperature, and the standoff distance are known to be important parameters that affect the deposition efficiency and coating quality. This investigation attempts to elucidate the effect of nozzle material on coatings produced using a downstream lateral injection cold spray system. Through experimentation, it is shown that the nozzle material has a substantial effect on deposition efficiency and particle velocity. It is proposed that the effects are related to complex interaction between the particles and the internal nozzle walls. The results obtained lead to the conclusion that during the particle/nozzle wall contact, a nozzle with higher thermal diffusivity transfers more heat to the particles. This heat transfer results in lower critical velocities and therefore higher deposition efficiencies, despite a noticeable reduction of particle velocities which is also attributed to particle-nozzle interactions.

  10. A geometria fractal da rede de drenagem da bacia hidrográfica do Caeté, Alfredo Wagner-SC Fractal geometry of the drainage network of the Caeté river watershed, Alfredo Wagner-SC

    Directory of Open Access Journals (Sweden)

    Leandro Redin Vestena

    2010-08-01

    Full Text Available Os objetivos deste trabalho foram estimar e avaliar a dimensão fractal da rede de drenagem da bacia hidrográfica do Caeté, em Alfredo Wagner, SC, a partir de diferentes métodos, com o propósito de caracterizar as formas geomorfológicas irregulares. A rede de drenagem apresenta propriedades multifractais. As dimensões fractais para os segmentos individuais (df e para a rede de drenagem inteira (Df foram determinadas por métodos que se fundamentaram nas razões de Horton e pelo método da contagem de caixas (Box-Counting. A rede de drenagem tem característica de autoafinidade. A dimensão fractal proveniente da relação de parâmetros obtidos pelas Leis de Horton apresentou resultados dentro dos limiares da teoria da geometria fractal.The objective of the present work was to evaluate the fractal dimensions of the drainage network of the Caeté river watershed, Alfredo Wagner/SC, with different methods in order to characterize the irregular geomorphologic forms. The drainage network possesses multi-fractal properties. That is why the fractal dimensions for the individual segments (df and for the entire network (Df were evaluated with Horton's Laws and the Box-Counting method. The drainage network has self-affinity characteristics. The fractal dimension obtained through the parameters relationship of Horton's Laws showed the results within the thresholds of the fractal geometry theory.

  11. Asymmetric and Unsteady Flow Separation in High Mach Number Planar Nozzles

    OpenAIRE

    E. Shimshi; Ben-Dor, G.; Levy, A; A. Krothapalli

    2015-01-01

    This paper presents numerical and experimental findings regarding flow separation phenomenon in a high Mach number over expanded planar nozzle. The experimental work is done using a tapered nozzle with a variable area ratio that can produce separation Mach numbers in the range 2.6-3.5. Shadowgraph visualization reveals that depending on the nozzle pressure ratio and the area ratio, steady symmetric, unsteady symmetric and steady asymmetric separations can occur. These sepa...

  12. Chemical non-equilibrium flow analysis of H2 fueled scramjet nozzle

    OpenAIRE

    Yue Huang; Peiyong Wang; Yang Dou; Fei Xing

    2015-01-01

    A numerical analysis of the chemical non-equilibrium phenomena in a scramjet nozzle has been performed using CHEMKIN software. Different operating conditions of the Hyshot scramjet nozzle were simulated and analyzed. Three chemical status, frozen flow, equilibrium flow, and non-equilibrium flow, were tested and compared to demonstrate the chemical reaction effect on nozzle flow field. The real non-equilibrium flow simulation result is between those of the two limiting cases: frozen flow and e...

  13. Parametric study of reinforcement of pressure vessel head with offset nozzle

    International Nuclear Information System (INIS)

    In this research, stress analysis of reinforced nozzle connections in ellipsoidal heads of pressure vessels was carried out using shell theory and the finite element method. Various reinforcement configurations such as integral reinforcement, torus transition and protruding nozzle were considered. A parametric study of the effects of reinforcements on the maximum stresses in the head-nozzle intersections under internal pressure loading was performed. The effects of the geometric parameters of the reinforcements are discussed

  14. Spray drift of reducing nozzle types spraying a bare soil surface with a boom sprayer

    OpenAIRE

    Zande, van de, J.C.; Michielsen, J.G.P.; Stallinga, H.; Velde, van der, G.

    2014-01-01

    In the Netherlands spray drift reduction measures are obligatory when spraying alongside waterways. Drift Reducing Technology (DRT) is certified through standardised spray drift measurements in the field and by means of the classification of drift reducing nozzle types in the laboratory. Approved DRT and classified nozzles in the drift reduction classes 50%, 75%, 90% and 95% are officially published on a website. Since the introduction of the nozzle classification system in 1999, little measu...

  15. Drug/polymer nanoparticles prepared using unique spray nozzles and recent progress of inhaled formulation

    OpenAIRE

    Tetsuya Ozeki; Tatsuaki Tagami

    2014-01-01

    Inhaled formulations are promising for pulmonary and systemic non-pulmonary diseases. Functional engineered particles including drugs and drug-loaded nanocarriers have been anticipated because they can improve drug delivery efficacy against target sites in the lungs or blood. In this review, unique spray nozzles (e.g., four-fluid spray nozzle and two-solution mixing type nozzle) for the preparation of nanocomposite particles which mean microparticles containing drug nanoparticles are describe...

  16. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    Science.gov (United States)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This paper proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  17. An Interactive Method of Characteristics Java Applet to Design and Analyze Supersonic Aircraft Nozzles

    Science.gov (United States)

    Benson, Thomas J.

    2014-01-01

    The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.

  18. Forward flight effects on mixer nozzle design and noise considerations for STOL externally blown flap systems.

    Science.gov (United States)

    Vonglahn, U. H.; Sekas, N.; Groesbeck, D. E.; Huff, R. G.

    1972-01-01

    Experimental data of the peak axial-velocity decay in a moving airstream are presented for several types of nozzles. The nozzles include a six-tube mixer nozzle of a type considered for reduction of jet-flap interaction noise for externally-blown-flap STOL aircraft. The effect of secondary flow on the core flow velocity decay of a bypass nozzle is also discussed. Tentative correlation equations are suggested for the configurations evaluated. Recommendations for minimizing forward velocity effects on velocity decay and jet-flap interaction noise are made.

  19. CFD simulation of square cross-section, contoured nozzle flows - Comparison with data

    Science.gov (United States)

    Ostrander, Mark J.; Thomas, Scott R.; Voland, Randall T.; Guy, Robert W.; Srinivasan, Shivakumar

    1989-01-01

    Computational analyses have been made of the flow in NASA Langley's Arc-Heated Scramjet Test Facility's Mach 4.7 and Mach 6 square cross-section contoured nozzles, for comparison with experimental results. The analyses, which were performed using a three-dimensional RANS computer code assuming a single species gas with constant specific heats, were intended to provide insight into the nature of the flow development in this type of nozzle. The computational results showed the exit flow distribution to be affected by counter-rotating vortices along the centerline of each nozzle sidewall. Calculated flow properties show general, but not complete, agreement with experimental measurements in both nozzles.

  20. Fabrication and characterization of truly 3-D diffuser/nozzle microstructures in silicon

    DEFF Research Database (Denmark)

    Heschel, Matthias; Müllenborn, Matthias; Bouwstra, Siebe

    1997-01-01

    We present microfabrication and characterization of truly three-dimensional (3-D) diffuser/nozzle structures in silicon. Chemical vapor deposition (CVD), reactive ion etching (RIE), and laser-assisted etching are used to etch flow chambers and diffuser/nozzle elements. The flow behavior...... of the fabricated elements and the dependence of diffuser/nozzle efficiency on structure geometry has been investigated. The large freedom of 3-D micromachining combined with rapid prototyping allows one to characterize and optimize diffuser/nozzle structures...

  1. Injector Nozzle Flow Model and Its Effects on the Calculations of High Pressure Sprays

    Institute of Scientific and Technical Information of China (English)

    WEI Ming-rui; LIU Yong-chang; WEN Hua; ZHANG Yue-heng

    2004-01-01

    This paper discusses the flowing process inside a nozzle, especially the formation mechanism of cavitations within the nozzle and puts forward a nozzle flow model, which takes account of the injection conditions and nozzle geometry. By the model being implemented to the KIVA codes, the spray characteristics (e.g., spray penetration and cone angle) of diesel and dimethyl ether (DME) are simulated. The comparisons between the computational and experimental results are performed, which show that the liquid spray characteristics could be more truly demonstrated by considering the existence of the cavitations.

  2. Design and development of SiC/(W, Ti)C gradient ceramic nozzle

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The idea of functionally gradient material (FGM) theory was used to design ceramic nozzle based on the erosion wear behaviors of the ceramic nozzles and the outstanding properties of FGM. The purpose is to reduce the tensile stress at the entry region of the nozzle during sand blasting processes. The design theory and methods of gradient ceramic nozzle were proposed. The physical, micromechanical, and composition distribution models of gradient ceramic nozzle were established. The optimum composition distribution of the gradient ceramic nozzle material was determined from the solution of the multi-objective optimization calculation by constructing the models of the composition distribution versus the structural integrity of the compact in fabricating process. Results showed that compressive residual stresses appeared at the entry area of the gradient ceramic nozzle. The optimized component distribution exponent p is 0.5. An SiC/(W,Ti)C gradient ceramic nozzle material was synthesized by hot-pressing according to the design result. Results showed that the surface Vickers hardness of the FGM-1 gradient ceramic nozzle materials was greatly improved in comparison with that of the other layers.

  3. Design and development of SiC/(W,Ti)C gradient ceramic nozzle

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The idea of functionally gradient material (FGM) theory was used to design ceramic nozzle based on the erosion wear behaviors of the ceramic nozzles and the out- standing properties of FGM. The purpose is to reduce the tensile stress at the entry region of the nozzle during sand blasting processes. The design theory and methods of gradient ceramic nozzle were proposed. The physical, micromechanical, and composition distribution models of gradient ceramic nozzle were established. The optimum composition distribution of the gradient ceramic nozzle material was determined from the solution of the multi-objective optimization calculation by constructing the models of the composition distribution versus the structural in- tegrity of the compact in fabricating process. Results showed that compressive residual stresses appeared at the entry area of the gradient ceramic nozzle. The optimized component distribution exponent p is 0.5. An SiC/(W,Ti)C gradient ce- ramic nozzle material was synthesized by hot-pressing according to the design result. Results showed that the surface Vickers hardness of the FGM-1 gradient ceramic nozzle materials was greatly improved in comparison with that of the other layers.

  4. Numerical Investigation of Jet Noise Prediction in Exhaust Nozzle by Passive Control Techniques

    Directory of Open Access Journals (Sweden)

    Alagu sundaram.A

    2015-05-01

    Full Text Available The project mainly focuses on the reduction of jet noise emission in the exhaust nozzle of TURBOFAN ENGINES. Reduction of noise in the exhaust system is done by attaching chevrons with particular parameters in the nozzle exit. Numerical investigations have been carried out on chevron nozzles to assess the importance of chevron parameters such as the number of chevrons like (chevron count, chevron penetration and the mixing characteristics of co flow jet. Chevron count is the pertinent parameter for noise reduction at low nozzle pressure ratios, whereas at high nozzle pressure ratios, chevron penetration is crucial. The results illustrate that by careful selection of chevron parameters substantial noise reduction can be achieved. The sound pressure level (SPL can be calculated from that we determined the noise level at nozzle exit section. After assessing the chevron parameters we are going to modify the chevron shapes in order to get maximum noise reduction along with very negligible thrust loss. Modification of chevron is based on aspect of increasing the mixing of cold jet and the hot jet in order to decrease the noise emission. ANSYS-Fluent is a commercial CFD code which will be used for performing the simulation and the simulation configuration contains three different velocities (100,150,200 with two different nozzle model(plain & chevron nozzle. The simulation results are evaluated to find out nozzle noise level in the engine exhaust system.

  5. Nuclear research reactor IEA-R1 heat exchanger inlet nozzle flow - a preliminary study

    International Nuclear Information System (INIS)

    As a computational fluid mechanics training task, a preliminary model was developed. ANSYS-CFXR code was used in order to study the flow at the inlet nozzle of the heat exchanger of the primary circuit of the nuclear research reactor IEA-R1. The geometry of the inlet nozzle is basically compounded by a cylinder and two radial rings which are welded on the shell. When doing so there is an offset between the holes through the shell and the inlet nozzle. Since it is not standardized by TEMA, the inlet nozzle was chosen for a preliminary study of the flow. Results for the proposed model are presented and discussed. (author)

  6. Nozzle Spray Delivery Studies for High-Viscosity Shear-Thinning Fluids

    Science.gov (United States)

    Agrawal, Smita; Cloeter, Mike; Zhang, Yuxi; Rajan, Jana; Curtis-Fisk, Jaime; Deo, Puspendu; Smith, Billy

    2015-03-01

    Experiments were performed to explore the spray of shear-thinning polymer solutions through various nozzles. High speed images near the nozzle exit, drop size distributions, and spatial mass flux distributions were analyzed with the shear-thinning fluids and deionized water for comparison for seven different nozzles with pressure drops up to 40 psi. The nozzles tested include full cone, hollow cone, and flat fan nozzles. The aim was to identify suitable nozzles that would give droplet sizes in the range of 100-2000 μm for the shear thinning fluids. It was found in general that the shear-thinning fluids led to formation of ligament like structures whereas sheet perforation was more predominant with deionized water. The spray break up was delayed with the shear-thinning fluids. The spray of the shear-thinning fluids also led to an increase in the median drop size with the extent of increase being dependent on the nozzle type. The spray angle was found to be reduced by around 20° at a distance of 12'' when compared to that of distilled water. This study lends fundamental insights into spray characteristics for a wide range of spray nozzles with high viscosity shear-thinning solution as compared to spraying deionized water with the same nozzles.

  7. Effects of nozzle lip geometry on spray atomization and emissions advanced gas turbine combustors

    Science.gov (United States)

    Micklow, Gerald J.; Roychoudhury, Subir; Nguyen, H. L.

    1991-01-01

    A parametric study is conducted to investigate the effect of nozzle lip geometry on nozzle fuel distribution, emissions and temperature distribution for a rich burn section of a rich burn/quick quench/lean burn combustor. It is seen that the nozzle lip geometry greatly affects the fuel distribution, emissions and temperature distribution. It is determined that at an equivalence ratio of 1.6 the NO concentration could be lowered by a factor greater than three by changing the nozzle lip geometry.

  8. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    Science.gov (United States)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  9. Formation of Vortex Structures in the Prenozzle Space of an Engine with a Vectorable Thrust Nozzle

    Science.gov (United States)

    Volkov, K. N.; Emel'yanov, V. N.; Denisikhin, S. V.

    2016-05-01

    A numerical simulation of the hydrodynamic effects arising in the process of work of the vectorable thrust nozzle of a solid-propellant rocket engine has been performed. The fields of the flows of combustion products in the channel of a charge, the prenozzle space, and the nozzle unit were calculated for different angles of vectoring of the nozzle. The distributions of the gasdynamic parameters of the flow of combustion products in the prenozzle space, corresponding to their efflux from the cylindrical and star-shaped channels of charges, were compared. The formation of a vortex flow in the neighborhood of the back cover of the nozzle was considered.

  10. Plasma detachment in a propulsive magnetic nozzle via ion demagnetization

    International Nuclear Information System (INIS)

    Plasma detachment in propulsive magnetic nozzles is shown to be a robust phenomenon caused by the inability of the internal electric fields to bend most of the supersonic ions along the magnetic streamtubes. As a result, the plasma momentum is effectively ejected to produce thrust, and only a marginal fraction of the beam mass flows back. Detachment takes place even if quasineutrality holds everywhere and electrons are fully magnetized, and is intimately linked to the formation of local electric currents. The divergence angle of the 95%-mass flow tube is used as a quantitative detachment performance figure. (fast track communication)

  11. Fuel nozzle for a combustor of a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Belsom, Keith Cletus; McMahan, Kevin Weston; Thomas, Larry Lou

    2016-03-22

    A fuel nozzle for a gas turbine generally includes a main body having an upstream end axially separated from a downstream end. The main body at least partially defines a fuel supply passage that extends through the upstream end and at least partially through the main body. A fuel distribution manifold is disposed at the downstream end of the main body. The fuel distribution manifold includes a plurality of axially extending passages that extend through the fuel distribution manifold. A plurality of fuel injection ports defines a flow path between the fuel supply passage and each of the plurality of axially extending passages.

  12. Cryogenic Cavitating Flow in 2D Laval Nozzle

    Institute of Scientific and Technical Information of China (English)

    Naoki Tani; Toshio Nagashima

    2003-01-01

    Cavitation is one of the troublesome problems in rocket turbo pumps, and since most of high-efficiency rocket propellants are cryogenic fluids, so called "thermodynamic effect" becomes more evident than in water. In the present study, numerical and experimental study of liquid nitrogen cavitation in 2D Laval nozzle was carried out,so that the influence of thermodynamic effect was examined. It was revealed that temperature and cavitation have strong inter-relationship with each other in thermo-sensitive cryogenic fluids.

  13. Pneumatic Measurements Downstream of a Radial Turbine Nozzle Cascade

    Czech Academy of Sciences Publication Activity Database

    Luxa, Martin; Dvořák, Rudolf; Šimurda, David; Vimmr, J.

    Gyeongju : National Research Foundation of Corea , 2009 - (Kim, H.), s. 29-29 ISBN 978-89-88090-25-1. [International Symposium on Experimental and Computational Aerothermodynamics of Internal Flow /9./. Gyeogju (KR), 08.09.2009-11.09.2009] R&D Projects: GA ČR(CZ) GA101/08/0623; GA ČR GA101/07/1508; GA MŠk(CZ) ME08025 Institutional research plan: CEZ:AV0Z20760514 Keywords : radial nozzle cascade * pneumatic measurement * internal flow Subject RIV: BK - Fluid Dynamics

  14. Weld failure analysis of 2205 duplex stainless steel nozzle

    Directory of Open Access Journals (Sweden)

    Jingqiang Yang

    2014-10-01

    Full Text Available Failure analyses of weld joint between the nozzle and the head of the reactor made of 2205 duplex stainless steel was performed by optical microscopy (OM and scanning electron microscopy (SEM. Cracks were found in HAZ of the weld. The depth of the cracks is equal to the thickness of the inner weld. Localized uneven distribution of ferrite/austenite with 80–90% ferrite in weld is found. Results show that the cracks occurred along columnar granular with cleavage fracture. Poor weld process probably results in these cracks.

  15. Weld failure analysis of 2205 duplex stainless steel nozzle

    OpenAIRE

    Jingqiang Yang; Qiongqi Wang; Zhongkun Wei; Kaishu Guan

    2014-01-01

    Failure analyses of weld joint between the nozzle and the head of the reactor made of 2205 duplex stainless steel was performed by optical microscopy (OM) and scanning electron microscopy (SEM). Cracks were found in HAZ of the weld. The depth of the cracks is equal to the thickness of the inner weld. Localized uneven distribution of ferrite/austenite with 80–90% ferrite in weld is found. Results show that the cracks occurred along columnar granular with cleavage fracture. Poor weld process pr...

  16. Numerical modelling of the jet nozzle enrichment process

    International Nuclear Information System (INIS)

    A numerical model was developed for the simulation of the isotopic enrichment produced by the jet nozzle process. The flow was considered stationary and under ideal gas conditions. The model calculates, for any position of the skimmer piece: (a) values of radial mass concentration profiles for each isotopic species and (b) values of elementary separation effect (Σ sub(A)) and uranium cut (theta). The comparison of the numerical results obtained with the experimental values given in the literature proves the validity of the present work as an initial step in the modelling of the process. (Author)

  17. Gas Dynamic Virtual Nozzle for Generation of Microscopic Droplet Streams

    OpenAIRE

    DePonte, D. P.; Weierstall, U.; Starodub, D.; Schmidt, K.(Universität Freiburg, Physikalisches Institut, 79104 Freiburg, Germany 10 17); Spence, J. C. H.; Doak, R. B.

    2008-01-01

    As shown by Ganan-Calvo and co-workers, a free liquid jet can be compressed in iameter through gas-dynamic forces exerted by a co-flowing gas, obviating the need for a solid nozzle to form a microscopic liquid jet and thereby alleviating the clogging problems that plague conventional droplet sources of small diameter. We describe in this paper a novel form of droplet beam source based on this principle. The source is miniature, robust, dependable, easily fabricated, and eminently suitable for...

  18. Analisa Aliran Hub Cap Propeller Terhadap Pengaruh Nozzle Ring

    Directory of Open Access Journals (Sweden)

    Wicaksono Wicaksono

    2014-03-01

    Full Text Available Propeller mempunyai peranan yang penting,dimana alat tersebut yang sering digunakan untuk mengerakan kapal,propeller sendiri dapat mengubah gaya gerak (putar menjadi gaya dorong,berdasarkan studi lebih lanjut dalam penelitian ini,banyak ditemukan tipe propeller yang sudah dimodifikasi untuk memdapatkan performa yang lebih baik,untuk meningkatan efisiensi.tujuan dari tugas akhir ini adalah menghybrid nozzle ring dengan hub cap propeller yang mana dapat mempengaruhi besar dari thrust,torque,dan juga efisiensi yang maksimal dengan pendekatan CFD   (Computational,Fluid,Dynamic,variabel yang divariasikan  adlah sudu ducted dengan hub cap propeller.

  19. 室外冰场环保清雪车的研制%Development of Environment Protection Snow Blower in Outdoor Ice Rinks

    Institute of Scientific and Technical Information of China (English)

    李兴汉; 张霁虹; 柳洪涛

    2013-01-01

    Ice-snow sports is very popular in North China .Skating class of universities is one of the main courses of physical education in winter .But traditional artificial maintenance rink is slow and low quality , affecting the popularization and development of ice sports .In order to solve the problems that artificially sweeping snow is time -consuming and laborious , low efficiency and poor cleaning effect , the group con-ducted a research work on environment protection snow blower in outdoor ice rinks .Electric vehicle is de-signed , equipped with screw snow pushing device and belt snow brush .Using machinery to replace artifi-cially cleaning snow has fast speed , good effect , and practical significance to popularize and promote ice sports.%冰雪运动在我国北方很盛行,高校滑冰课是冬季体育课主要课程之一,但传统的人工维护冰场,速度慢、质量差,影响了冰上运动的普及和发展。为了解决人工清雪费时费力、效率低、清扫效果差的问题,课题组进行了室外冰场环保清雪车的研制工作。设计制造了环保电动车,配有螺旋推雪器和皮带扫雪刷并用的扫雪方式。用机械替代人力清雪能节省人力,速度快,效果好,对普及和推广冰上体育运动有实际意义。

  20. Characteristics of proton beams and secondary neutrons arising from two different beam nozzles

    Science.gov (United States)

    Choi, Yeon-Gyeong; Kim, Yu-Seok

    2015-10-01

    A tandem or a Van de Graaff accelerator with an energy of 3 MeV is typically used for Proton Induced X-ray Emission (PIXE) analysis. In this study, the beam line design used in the PIXE analysis, instead of the typical low-energy accelerator, was used to increase the production of isotopes from a 13-MeV cyclotron. For the PIXE analysis, the proton beam should be focused at the target through a nozzle after degrading the proton beams energy from 13 MeV to 3 MeV by using an energy degrader. Previous studies have been conducted to determine the most appropriate material for and the thickness of the energy degrader. From the energy distribution of the degraded proton beam and the neutron occurrence rate at the degrader, an aluminum nozzle of X thickness was determined to be the most appropriate nozzle construction. Neutrons are created by the collision of 3-MeV protons in the nozzle after passage through the energy degrader. In addition, a proton beam of sufficient intensity is required for a non-destructive PIXE analysis. Therefore, if nozzle design is to be optimized, the number of neutrons that arise from the collision of protons inside the nozzle, as well as the track direction of the generated secondary neutrons, must be considered, with the primary aim of ensuring that a sufficient number of protons pass through the nozzle as a direct beam. A number of laboratories are currently conducting research related to the design of nozzles used in accelerator fields, mostly medical fields. This paper presents a comparative analysis of two typical nozzle shapes in order to minimize the loss of protons and the generation of secondary neutrons. The neutron occurrence rate and the number of protons that pass through the nozzle were analyzed by using a Particle and Heavy Ion Transport code System (PHITS) program in order to identify the nozzle that generated the strongest proton beam.

  1. BWR feedwater nozzle and control rod drive return line nozzle cracking: resolution of generic technical activity A-10. Technical report

    International Nuclear Information System (INIS)

    This report summarizes work performed by the NRC staff in the resolution of Generic Technical Activity A-10, 'BWR Nozzle Cracking'. Generic Technical Activity A-10 is one of the generic technical subjects designated as 'unresolved safety issues' pursuant to Section 210 of the Energy Reorganization Act of 1974. The report describes the technical issues, the technical studies and analyses performed by the General Electric Company and the NRC staff, the staff's technical positions based on these studies, and the staff's plans for continued implementation of its technical positions. It also provides information for further work to resolve the non-destructive examination issue

  2. Spray nozzle designs for agricultural aviation applications. [relation of drop size to spray characteristics and nozzle efficiency

    Science.gov (United States)

    Lee, K. W.; Putnam, A. A.; Gieseke, J. A.; Golovin, M. N.; Hale, J. A.

    1979-01-01

    Techniques of generating monodisperse sprays and information concerning chemical liquids used in agricultural aviation are surveyed. The periodic dispersion of liquid jet, the spinning disk method, and ultrasonic atomization are the techniques discussed. Conceptually designed spray nozzles for generating monodisperse sprays are assessed. These are based on the classification of the drops using centrifugal force, on using two opposing liquid laden air jets, and on operating a spinning disk at an overloaded flow. Performance requirements for the designs are described and estimates of the operational characteristics are presented.

  3. Characterization of an inductively coupled plasma source with convergent nozzle

    Science.gov (United States)

    Dropmann, Michael; Clements, Kathryn; Edgren, Josh; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2015-11-01

    The inductively heated plasma generator (IPG6-B) located in the CASPER labs at Baylor University has recently been characterized for both air, nitrogen and helium. A primary area of research within the intended scope of the instrument is the analysis of material degradation under high heat fluxes such as those imposed by a plasma during atmospheric entry of a spacecraft and at the divertor within various fusion experiment. In order to achieve higher flow velocities and respectively higher heat fluxes, a new exit flange has been designed to allow the installation of nozzles with varying geometries at the exit of the plasma generator. This paper will discuss characterization of the plasma generator for a convergent nozzle accelerating the plasma jet to supersonic velocity. The diagnostics employed include a cavity calorimeter to measure the total plasma power, a Pitot probe to measure stagnation pressure and a heat flux probe to measure the local heat flux. Radial profiles of stagnation pressure and heat flux allowing the determination of the local plasma enthalpy in the plasma jet will be presented. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  4. Fuel assembly bottom nozzle with integral debris trap

    International Nuclear Information System (INIS)

    A fuel assembly is described for a nuclear reactor including nuclear fuel rods, at least one grid supporting the fuel rods in an organized array, and at least one guide thimble supporting the grid, an improved bottom nozzle disposed adjacent and below the grid, supporting the guide thimble and adapted to allow flow of liquid coolant into the fuel assembly, the improved bottom nozzle comprising: (a) means spaced below the grid and a lower end of the fuel rods and supporting the guide thimble and allowing flow of coolant into the fuel assembly; (b) means mounted about the supporting means and extending toward but spaced from the grid and lower end of the fuel rods so as to define an open region between the supporting means and the grid and lower end of the fuel rods; and (c) a trap disposed within the open region and on the supporting means, the trap being adapted for passage of the guide thimble through to the supporting means and flow of the coolant for capturing and retaining debris carried by the flowing coolant within the trap to substantially prevent entry of debris into the fuel assembly

  5. The flip flop nozzle extended to supersonic flows

    Science.gov (United States)

    Raman, Ganesh; Hailye, Michael; Rice, Edward J.

    1992-01-01

    An experiment studying a fluidically oscillated rectangular jet flow was conducted. The Mach number was varied over a range from low subsonic to supersonic. Unsteady velocity and pressure measurements were made using hot wires and piezoresistive pressure transducers. In addition smoke flow visualization using high speed photography was used to document the oscillation of the jet. For the subsonic flip-flop jet it was found that the apparent time-mean widening of the jet was not accompanied by an increase in mass flux. It was found that it is possible to extend the operation of these devices to supersonic flows. Most of the measurements were made for a fixed nozzle geometry for which the oscillations ceased at a fully expanded Mach number of 1.58. By varying the nozzle geometry this limitation was overcome and operation was extended to Mach 1.8. The streamwise velocity perturbation levels produced by this device were much higher than the perturbation levels that could be produced using conventional excitation sources such as acoustic drivers. In view of this ability to produce high amplitudes, the potential for using small scale fluidically oscillated jet as an unsteady excitation source for the control of shear flows in full scale practical applications seems promising.

  6. The flip-flop nozzle extended to supersonic flows

    Science.gov (United States)

    Raman, Ganesh; Hailye, Michael; Rice, Edward J.

    1992-01-01

    An experiment studying a fluidically oscillated rectangular jet flow was conducted. The Mach number was varied over a range from low subsonic to supersonic. Unsteady velocity and pressure measurements were made using hot wires and piezoresistive pressure transducers. In addition smoke flow visualization using high speed photography was used to document the oscillation of the jet. For the subsonic flip-flop jet it was found that the apparent time-mean widening of the jet was not accompanied by an increase in mass flux. It was found that it is possible to extend the operation of these devices to supersonic flows. Most of the measurements were made for a fixed nozzle geometry for which the oscillations ceased at a fully expanded Mach number of 1.58. By varying the nozzle geometry this limitation was overcome and operation was extended to Mach 1.8. The streamwise velocity perturbation levels produced by this device were much higher than the perturbation levels that could be produced using conventional excitation sources such as acoustic drivers. In view of this ability to produce high amplitudes, the potential for using small scale fluidically oscillated jet as an unsteady excitation source for the control of shear flows in full scale practical applications seems promising.

  7. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    International Nuclear Information System (INIS)

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code

  8. UT inspection of nozzles by 3D raytracing

    International Nuclear Information System (INIS)

    This paper documents how we have adapted 3D geometric modeling and ray tracing to support design and verification of wedges and preparation of coverage maps for ultrasonic inspection of BWR nozzles. This software is capable of addressing a broad range of modeling issues, including ray tracing in completely general 3D objects comprised of blocky, transversely isotropic material. However, to capitalize on the full range of capability usually requires an investment of time on the part of users. To make 3D modeling accessible to users who have time-urgent requirements or who do not need to utilize the full capabilities of the software, we have developed specialized applications in which restrictions on generality are accepted in exchange for easy access to model building, wedge design and coverage maps for detecting flaws in the bore and inner blend regions of nozzles. This is done by providing partially-completed, parametrized models which give the user latitude to generate general models within a fixed framework. We also provide a graphical user interface which anticipates certain tasks that a user will wish to undertake; other tasks may readily be added. (author)

  9. Metal halogen battery system with multiple outlet nozzle for hydrate

    Science.gov (United States)

    Bjorkman, Jr., Harry K.

    1983-06-21

    A metal halogen battery system, including at least one cell having a positive electrode and a negative electrode contacted by aqueous electrolyte containing the material of said metal and halogen, store means whereby halogen hydrate is formed and stored as part of an aqueous material, means for circulating electrolyte through the cell and to the store means, and conduit means for transmitting halogen gas formed in the cell to a hydrate former whereby the hydrate is formed in association with the store means, said store means being constructed in the form of a container which includes a filter means, said filter means being inoperative to separate the hydrate formed from the electrolyte, said system having, a hydrate former pump means associated with the store means and being operative to intermix halogen gas with aqueous electrolyte to form halogen hydrate, said hydrate former means including, multiple outlet nozzle means connected with the outlet side of said pump means and being operative to minimize plugging, said nozzle means being comprised of at least one divider means which is generally perpendicular to the rotational axes of gears within the pump means, said divider means acting to divide the flow from the pump means into multiple outlet flow paths.

  10. Experimental observations of a complex, supersonic nozzle concept

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team

    2015-11-01

    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  11. Geometrical tuning of microdiffuser/nozzle for valveless micropumps

    International Nuclear Information System (INIS)

    Valveless micropumps require the integration of microdiffusers/nozzles for flow rectification in microfluidic systems. The flow directing capability of a micropump is determined by the efficiency of the diffuser. With the reduction in size of the micropump, conventional microdiffuser geometrical parameters are not suitable for obtaining high flow efficiencies due to several fluidic effects such as channel friction, wall shear stress, vena contracta, etc, and therefore it is important to modify the diffuser geometry according to the requirements of the pressure coefficients in order to obtain improved flow rates. This paper presents a simple and microfabrication friendly geometrical tuning method which offers the user a broad range of dependent tunable geometric parameters to improve the performance of the microdiffuser for valveless micropumps. Herein, for a given flow condition, the flow behaviour and the variation of pressure coefficients of the microdiffuser/nozzle with geometric tuning have been studied for different diffuser angles using finite element modelling (FEM). The results show that the proposed method is highly suitable for tuning the geometry of microdiffusers for a wide range of operating conditions of valveless micropumps. The performances of the best diffuser geometries for different diffuser angles have been experimentally verified, and the test results are used for the validation of the results of the FEM. The comparison between the FEM and experimental results shows a close agreement.

  12. Nucleation of steam in high-pressure nozzle experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gyarmathy, G. [ETH Technische Hochschule, Zurich (Switzerland)

    2005-09-15

    The nucleation characteristics of high-pressure saturated/subcooled steam were studied in Laval nozzles. By using nozzles designed for different expansion rates and varying the inlet stagnation state in wide limits, the Wilson lines and the fog structure (droplet size and number count) were determined between 0.5 and 5 MPa pressure for expansion rates ranging between 10 000 and 200 000 s {sup -1} . The results show that Wilson point nucleation typically occurs in such fast expansions at supersaturated conditions where 3.5-5 per cent moisture would be present in the case of equilibrium flow. Higher expansion rates entail higher supersaturation, causing the formation of smaller, but more numerous, fog droplets. The reported measurements were made in the early seventies and were originally evaluated on the basis of the IFC-67 Steam Tables. The present evaluation uses the new IF-97 equations and reveals significant differences between the old and the new steam tables, leading to severe discrepancies in the value of subcooling at the Wilson point. (author)

  13. Analysis of supersonic plug nozzle flowfield and heat transfer

    Science.gov (United States)

    Murthy, S. N. B.; Sheu, W. H.

    1988-01-01

    A number of problems pertaining to the flowfield in a plug nozzle, designed as a supersonic thruster nozzle, with provision for cooling the plug with a coolant stream admitted parallel to the plug wall surface, were studied. First, an analysis was performed of the inviscid, nonturbulent, gas dynamic interaction between the primary hot stream and the secondary coolant stream. A numerical prediction code for establishing the resulting flowfield with a dividing surface between the two streams, for various combinations of stagnation and static properties of the two streams, was utilized for illustrating the nature of interactions. Secondly, skin friction coefficient, heat transfer coefficient and heat flux to the plug wall were analyzed under smooth flow conditions (without shocks or separation) for various coolant flow conditions. A numerical code was suitably modified and utilized for the determination of heat transfer parameters in a number of cases for which data are available. Thirdly, an analysis was initiated for modeling turbulence processes in transonic shock-boundary layer interaction without the appearance of flow separation.

  14. Flow Analysis for Single and Multi-Nozzle Jet Pump

    Science.gov (United States)

    Narabayashi, Tadashi; Yamazaki, Yukitaka; Kobayashi, Hidetoshi; Shakouchi, Toshihiko

    Jet pumps, driven by a Primary-Loop Recirculation (PLR) Pump, have been widely used in Boiling Water Reactor (BWR) plants to recirculate the reactor core coolant. A jet pump consists of a driving nozzle, a bell-mouth, a throat and a diffuser. The improvement of the jet pump efficiency for BWR plants brings an economic advantage because it reduces the operating power cost of the PLR pump. In order to improve the efficiency of the BWR jet pump, a 1/5 scale jet pump test loop for BWR plant was used and intensive tests were conducted focusing on the types of driving nozzles and shapes of the throat. These test data were used for CFD flow analysis code verification. The analytical data showed good agreement with the test results. After the analytical model verification, improvement of jet pump efficiency was conducted. It was shown by the CFD analysis that the peak efficiency of the improved jet pump will be 36% with the tapered throat.

  15. An Investigation of Flow in Nozzle Hole of Dimethyl Ether

    Science.gov (United States)

    Kato, M.; Yokota, T.; Weber, J.; Gill, D.

    2015-12-01

    For over twenty years, DME has shown itself to be a most promising fuel for diesel combustion. DME is produced by simple synthesis of such common sources as coal, natural gas, biomass, and waste feedstock. DME is a flammable, thermally-stable liquid similar to liquefied petroleum gas (LPG) and can be handled like LPG. However, the physical properties of DME such as its low viscosity, lubricity and bulk modulus have negative effects for the fuel injection system, which have both limited the achievable injection pressures to about 500 bar and DME's introduction into the market. To overcome some of these effects, a common rail fuel injection system was adapted to operate with DME and produce injection pressures of up to 1000 bar. To understand the effect of the high injection pressure, tests were carried out using 2D optically accessed nozzles. This allowed the impact of the high vapour pressure of DME on the onset of cavitation in the nozzle hole to be assessed and improve the flow characteristics.

  16. PWR nozzle 'crotch corner' inspection: an effective additional ultrasonic technique for radial cracks

    International Nuclear Information System (INIS)

    An ultrasonic non-destructive technique for testing the integrity of the nozzle crotch corner of a PWR pressure vessel is described which uses two angled probes to detect the specular reflection from one probe to the other via a crack lying in the important radial plane of the nozzle. (U.K.)

  17. Study on probability of failure for RPV nozzle region under severe accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon; Oh, Young Jin; Sim, Sang Hoon [Seoul National University, Seoul (Korea)

    2002-04-01

    Most of previous studies for creep rupture of RPV lower head under severe accident condition, have been focused on global failure of RPV lower head. In contrast, the local failure of the RPV nozzle region has not been studied in detail. This study focused the nozzle failure analysis into creep rupture evaluation of RPV lower head under severe accident condition, and this will help improve the safety assessment of nuclear power plants under severe accident conditions. The existence and features of nozzle failure in LAVA-ICI tested vessel of Korea Atomic Energy Research Institute and LHF-4 tested vessel of SNL, are examined. To understand the basic mechanical properties of nozzle material and weld metal, the tensile tests in various temperature levels and the creep rupture tests in various temperature and stress levels, are accomplished. The stress and deformation of LAVA-ICI experiments are analysed using measured basic mechanical properties. The failure time of Advanced Power Reactor 1400 (APR1400) in nozzle region was calculated using modified TMI-2 VIP model. Nozzle region failure characteristics was studied for SNL-LHF-4 experimental case using Finite Element Method (FEM). Using characteristics of nozzle failure, a new failure prediction experimental method was proposed for RPV nozzle failure. 19 refs., 43 figs. (Author)

  18. Stress analysis of a column supported hemispherical pressure vessel having a large nozzle

    International Nuclear Information System (INIS)

    Stress analysis of a hemispherical vessel with large nozzle attached to it is studied here when it is subjected to internal pressure and varying temperature across the wall. The stress distribution are plotted to indicate the zones of stress concentrations. It is further shown how the reinforcements near the hemisphere - nozzle intersection reduces the stress concentrations. (orig.)

  19. Nozzle optimization for water jet propulsion with a positive displacement pump

    Science.gov (United States)

    Yang, You-sheng; Xie, Ying-chun; Nie, Song-lin

    2014-06-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  20. Experimental study on the effect of nozzle surface finishing in high-speed water jet

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroshi [Ibaraki Univ., Mito (Japan); Ida, Mizuho; Nakamura, Hiroo; Ezato, Koichiro; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Nakamura, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-02-01

    International Fusion Materials Irradiation Facility (IFMIF) employs a liquid Li jet target being formed by two-dimensional metal contraction nozzle. The Li is corrosive substance and there is the possibility that the Li is corrosive to nozzle surface. Therefore, it is necessary to investigate the effect of nozzle surface finishing on the free surface instabilities, from the viewpoint of useful life and to determine the practical accuracy of finishing. The experiments were performed by two methods, one is the observation of free surface behavior by a high-speed video camera, and the other is the measurement of the velocity profile at the nozzle exit by Laser Doppler Velocimeter (LDV). Two types of nozzles are employed in the present experiment, namely, nozzles with surface finishing of {nabla}(maximum roughness: 100 {mu}m) and {nabla}{nabla}{nabla}(maximum roughness: 6.3 {mu}m). In case of the surface finishing of 100 {mu}m, the free surface waves grew growing about 7.5 m/s mean velocity at the nozzle exit, and when the mean velocity is over 15 m/s, many droplets were observed. On the other hand, there was little difference of free surface behavior between surface finishing of 6.3 {mu}m and mirror finishing. These results satisfy the specification required for the IFMIF target nozzle. (author)

  1. Cluster Beams Sources. Part 2. The Formation of Cluster Beams in Nozzle Sources

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-12-01

    Full Text Available The article briefly examines the processes occurring during the formation of cluster beams in sources of clusters, using the expansion of the gas mixture through a nozzle. The basic parameters of the gas cluster flow at the outlet nozzle, leading to the formation of clusters are analyzed. Some aspects of the formation of cluster beams from aerodynamic flows are discussed.

  2. Update to the USDA-ARS fixed-wing spray nozzle models

    Science.gov (United States)

    The current USDA ARS Aerial Spray Nozzle Models were updated to reflect both new standardized measurement methods and systems, as well as, to increase operational spray pressure, aircraft airspeed and nozzle orientation angle limits. The new models were developed using both Central Composite Design...

  3. Reaction thrust characteristics of high-pressure submerged water jet of cylinder nozzles

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hui; ZHU Yu-quan; HUANG Guo-qin; NIE Song-lin

    2009-01-01

    The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. The simulation of the flow field characteristics was conducted via the FLUENT computational fuid dynamics package. Effects of the inlet conditions and the nozzle dimensions on the reaction thrust of a water jet were addressed particularly. The reaction thrust experiments were performed on a cnstom-designed test apparatus. The experimental results reveal that a) the nozzle diameter and the inlet conditions exert great influence on the water jet reaction thrust; and b) for L≤4d0, where the nozzle is treated as a thin plate-orifice, the reaction thrust is independent of nozzle length; for L4d0, where the nozzle is treated as a long orifice, the reaction thrast can reach maximum under the condition of a certain flow rate. These findings lay a theoretical foundation for the design of nozzles and have significant value, especially for the future development of high-pressure water-jet propulsion technology.

  4. Model based decision support system for agrochemical applications for MMAT nozzles

    Science.gov (United States)

    Droplet size, which is affected by nozzle type, nozzle setups and operation, and spray solution, is one of the most critical factors influencing spray performance (Gajtkowski 1985, Matthews 2000, Giles et al. 2005, Miller Tuck 2005, drift (Hewitt 1997), and food safety (Czaczyk Gnusowski 2007), and ...

  5. Nozzle Optimization for Water Jet Propulsion with A Positive Displacement Pump

    Institute of Scientific and Technical Information of China (English)

    杨友胜; 谢迎春; 聂松林

    2014-01-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  6. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  7. Wear surface studies on coal water slurry nozzles in industrial boilers

    International Nuclear Information System (INIS)

    In this study, Al2O3/(W,Ti)C ceramic, WC/Co cemented carbide, and 1Cr18Ni9Ti stainless steel were produced to be used as nozzle materials in coal water slurry (CWS) industry boilers. Coal water slurry burning tests with these nozzles were carried out. The wear surface features of the nozzles made from these materials were examined. The results showed that the wear mechanisms of nozzles varied from entry to exit. The material removal of Al2O3/(W,Ti)C ceramic nozzle in CWS atomizing and burning is attributed to a mixed mode damage by brittle fracture, polishing, thermal cracking and chipping. The nozzle entry section appears to be entirely brittle in nature with evidence of large scale-chipping. The centre bore area showed a polishing effect with a very smooth surface. While the exit section exhibits cracking owing to the large thermal shock. Examination of the eroded bore surface of the WC/Co cemented carbide nozzles demonstrated that the wear occurred through preferential removal of the metal binder (Co) followed by pluck-out of the exposed WC grains at the entry zone, while the center and the exit zone showed polishing action. The primary wear mechanisms of 1Cr18Ni9Ti stainless steel nozzle exhibited plastic deformation at the entry zone, and plowing and micro-cutting at the other zones by the eroded particles

  8. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    Science.gov (United States)

    Varatharajan, Balachandar; Ziminsky, Willy Steve; Yilmaz, Ertan; Lacy, Benjamin; Zuo, Baifang; York, William David

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  9. IR signature study of aircraft engine for variation in nozzle exit area

    Science.gov (United States)

    Baranwal, Nidhi; Mahulikar, Shripad P.

    2016-01-01

    In general, jet engines operate with choked nozzle during take-off, climb and cruise, whereas unchoking occurs while landing and taxiing (when engine is not running at full power). Appropriate thrust in an aircraft in all stages of the flight, i.e., take-off, climb, cruise, descent and landing is achieved through variation in the nozzle exit area. This paper describes the effect on thrust and IR radiance of a turbojet engine due to variation in the exit area of a just choked converging nozzle (Me = 1). The variations in the nozzle exit area result in either choking or unchoking of a just choked converging nozzle. Results for the change in nozzle exit area are analyzed in terms of thrust, mass flow rate and specific fuel consumption. The solid angle subtended (Ω) by the exhaust system is estimated analytically, for the variation in nozzle exit area (Ane), as it affects the visibility of the hot engine parts from the rear aspect. For constant design point thrust, IR radiance is studied from the boresight (ϕ = 0°, directly from the rear side) for various percentage changes in nozzle exit area (%ΔAne), in the 1.9-2.9 μm and 3-5 μm bands.

  10. Nozzle and needle during high viscosity adhesive jetting based on piezoelectric jet dispensing

    Science.gov (United States)

    Lu, Song; Jiang, Hai; Li, Minjiao; Liu, Jianfang; Gu, Shoudong; Jiao, Xiaoyang; Liu, Xiaolun

    2015-10-01

    A piezoelectric impinging jet valve is used as a study object to investigate the effect of the ball needle in the existing impinging jet and nozzle structure of the valve on the performance of the jet. First, FLUENT software is used under different ball needle and nozzle structural parameters to simulate the pressure distribution that the ball needle and nozzle in the pressure cavity form when the ball needle hits the nozzle, by arranging the structure model of the ball needle and impact valve nozzle. The piezoelectric impact injection valve and the experiment test system are then designed. Test results show that the ball needle and nozzle structural parameters are closely related to the injection performance of the impact valve. Under certain conditions, a greater needle radius corresponds to a smaller nozzle aperture and taper. Moreover, high-viscosity liquid jetting is easily achieved. By using a ball needle with a radius of 1.5 mm, a taper angle of 60°, and a nozzle diameter of 0.1 mm, we can realize the industrial viscosity of 58 000 cps in glue spray, and the injection plastic fluid volume is 0.62 μl.

  11. 46 CFR 34.25-20 - Spray nozzles-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Spray nozzles-T/ALL. 34.25-20 Section 34.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-20 Spray nozzles—T/ALL. (a) Spray nozzles shall be of an approved type....

  12. Numerical study on the effect of a lobed nozzle on the flow characteristics of submerged exhaust

    Science.gov (United States)

    Miao, T. C.; Du, T.; Wu, D. Z.; Wang, L. Q.

    2016-05-01

    In order to investigate the effecting mechanism of nozzle structure on the flow characteristics of submerged exhaust, the processes of air exhausted from a lobed nozzle and a round nozzle into water have been numerically simulated using realizable k – ε model under the framework of the volume of fluid (VOF) model. Both the flow structure and the upstream pressure fluctuations are taken into consideration. The calculated results are in good agreement with the experimental results, showing that gas exhausted from the lobed nozzle would flow along the axial direction easier. Flow structure of the gas exhausted from the lobed nozzle is more continuous and smoother. The pressure fluctuations in the upstream pipeline would also be reduced when gas exhausted from the lobed nozzle. The resulting analysis indicates that the lobed structure could deflect water flow into the gas jet. The induced water would be mixed into the gas jet in form of small droplets, making the jet more continuous. As a result, the mixed jet flow would be less obstructed by the surrounding water, and the upstream pressure fluctuation would be reduced. The work in this paper partly explained the effecting mechanism of nozzle structure on the flow characteristics of submerged exhaust. The results are useful in the designing of exhaust nozzles.

  13. Investigation on the Clogging Behavior and Additional Wall Cooling for the Axial-Injection Cold Spray Nozzle

    Science.gov (United States)

    Wang, Xudong; Zhang, Bo; Lv, Jinsheng; Yin, Shuo

    2015-04-01

    During the cold spray process, nozzle clogging always happens when spraying low-melting point materials, e.g., aluminum, significantly decreasing the working efficiency. In this paper, a comprehensive investigation was carried out to clarify the reason for inducing nozzle clogging and then to evaluate a home-made nozzle cooling device for preventing nozzle clogging. Computational fluid dynamics technique was employed as the main method with some necessary experiment validation. It is found that the particle dispersion and the high-temperature nozzle wall at the near-throat region are two dominant factors that cause nozzle clogging. The numerical results also reveal that the home-made cooling device can significantly reduce the nozzle wall temperature, which was validated by the experimental measurement. Besides, the aluminum coating build-up experiment further indicates that the additional cooling device can truly prevent the nozzle clogging.

  14. When Whistle-blowers Become the Story: The Problem of the ‘Third Victim’; Comment on “Cultures of Silence and Cultures of Voice: The Role of Whistleblowing in Healthcare Organisations”

    Directory of Open Access Journals (Sweden)

    Justin Waring

    2016-02-01

    Full Text Available In the healthcare context, whistleblowing has come to the fore of political, professional and public attention in the wake of major service scandals and mounting evidence of the routine threats to safety that patients face in their care. This paper offers a commentary and wider contextualisation of Mannion and Davies, ‘Cultures of silence and cultures of voice: the role of whistleblowing in healthcare organisations.’ It argues that closer attention is needed to the way in which whistle-blowers can become the focus and victim of raising concerns and speaking up.

  15. Effect of nozzle geometry on the performance of laser ablative propulsion thruster

    Science.gov (United States)

    Li, Long; Jiao, Long; Tang, Zhiping; Hu, Xiaojun; Peng, Jie

    2016-05-01

    The performance of "ablation mode" laser propulsion thrusters can be improved obviously by nozzle constraint. The nozzle geometry of "ablation mode" laser propulsion thrusters has been studied experimentally with CO2 lasers. Experimental results indicate that the propulsion performance of cylindrical nozzle thrusters is better than expansionary nozzle thrusters at the same lengths. The cylindrical nozzle thrusters were optimized by different laser energies. The results show that two important factors, the length-to-diameter ratio α and the thruster diameter to laser-spot diameter ratio β, affect the propulsion performance of the thruster obviously. The momentum coupling coefficient C m increases with the increase of α, while C m increases at first and then decreases with the increase of β.

  16. Theoretical and experimental study of a dual-flow circuit breaker nozzle flow

    Science.gov (United States)

    Dearborn, J. B.; Nagamatsu, H. T.; Rumsey, C. I.

    1983-07-01

    The performance of the high power gas blast circuit breakers to interrupt high power depends on the arc quenching near current zero. The cooling of the arc is governed by the cold flow field through the nozzle. Thus, a finite element type of computer program was developed to determine the axisymmetric cold field for dual-flow arc interrupter nozzle configurations of different throat radii and various gap spacings between the dual-flow nozzles using SF6 or air as the high pressure gas. The axial flow acceleration in the stagnation and sonic regions present in the are interrupter nozzles has been examined in the flow field calculations. Experimental data obtained for a 4 deg conical nozzle correlated well with the computed results.

  17. Manufacturing of nozzle shell with integral flange for EPR pressure vessel and its properties

    International Nuclear Information System (INIS)

    The 1600 MWe EPR (European Pressurized Water Reactor) with more improved reliability, operation, maintenance and economics has been developed to achieve higher output and longer lifetime, comparing with conventional nuclear power plants, and the first EPR was introduced in Olkiluoto Unit 3, Finland Unit 5. The integrated mono-block design was applied for the nozzle shell flange instead of the welded conventional flange and nozzle shell. A 600-ton ingot was required for this part because of the set-on type nozzles. Manufacturing of the first nozzle shell with integral flange in the world was completed successfully taking eleven months. This report introduces the manufacturing technology and properties of nozzle shell with integral flange. (T. Tanaka)

  18. Apparatus for impingement cooling a side wall adjacent an undercut region of a turbine nozzle segment

    Science.gov (United States)

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and vanes therebetween. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. Slots are formed through the inturned flange along the nozzle side wall. A plate having through-apertures extending between opposite edges thereof is disposed in each slot, the slots and plates being angled such that the cooling medium exiting the apertures in the second cavity lie close to the side wall for focusing and targeting cooling medium onto the side wall.

  19. Effect of carrier gas pressure on vapor condensation and mass flow-rate in sonic nozzle

    Institute of Scientific and Technical Information of China (English)

    丁红兵; 王超; 陈超

    2015-01-01

    Non-equilibrium vapor condensation of moist gas through a sonic nozzle is a very complicated phenomenon and is related to the measurement accuracy of sonic nozzle. A gas-liquid two-phase model for the moist gas condensation flow was built and validated by moist nitrogen experiment of homogeneous nucleation through a transonic nozzle. The effects of carrier gas pressure on position and status of condensation onset in sonic nozzle were investigated in detail. The results show that condensation process is not easy to occur at lower carrier pressure and throat diameter. The main factors influencing condensation onset are boundary layer thickness, heat capacity of carrier gas and expansion rate. All of results can be used to further analyze the effect of condensation on mass flow-rate of sonic nozzle.

  20. Experimental Study on Shock Wave Structures in Constant-area Passage of Cold Spray Nozzle

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Kazuyasu MATSUO

    2007-01-01

    Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseudo-shock waves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique. The schlieren photographs reveals the supersonic flow with shock train in the nozzle. Static pressure along the barrel wall is also measured. The location of the head of pseudo-shock wave and its pressure distribution along the nozzle wall are analytically explained by using a formula of pseudo-shock wave. The analytical results show that the supersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of normal shock wave.

  1. Gas Nozzle Effect on the Deposition of Polysilicon by Monosilane Siemens Reactor

    Directory of Open Access Journals (Sweden)

    Seung Oh Kang

    2012-01-01

    Full Text Available Deposition of polysilicon (poly-Si was tried to increase productivity of poly-Si by using two different types of gas nozzle in a monosilane Bell-jar Siemens (MS-Siemens reactor. In a mass production of poly-Si, deposition rate and energy consumption are very important factors because they are main performance indicators of Siemens reactor and they are directly related with the production cost of poly-Si. Type A and B nozzles were used for investigating gas nozzle effect on the deposition of poly-Si in a MS-Siemens reactor. Nozzle design was analyzed by computation cluid dynamics (CFD. Deposition rate and energy consumption of poly-Si were increased when the type B nozzle was used. The highest deposition rate was 1 mm/h, and the lowest energy consumption was 72 kWh⋅kg-1 in this study.

  2. Design and Fabrication Development of J-2X Engine Metallic Nozzle Extension

    Science.gov (United States)

    Kopicz, C.; Gradl, P.

    2015-01-01

    Maximized rocket engine performance is in part derived from expanding combustion gasses through the rocket nozzle. For upper stage engines the nozzles can be quite large. On the J-2X engine, an uncooled extension of a regeneratively cooled nozzle is used to expand the combustion gasses to a targeted exit pressure which is defined by an altitude for the desired maximum performance. Creating a J-2X nozzle extension capable of surviving the loads of test and flight environments while meeting engine system performance requirements required development of new processes and facilities. Meeting the challenges of the development resulted in concurrent J-2X nozzle extension design and fabrication. This paper describes how some of the design and fabrication challenges were resolved.

  3. Stress analysis of 500 MWe PHWR calandria non-radial nozzles for external loadings

    International Nuclear Information System (INIS)

    The 500 MWe Pressurised Heavy Water Reactor (PHWR) calandria is a stainless steel horizontal cylindrical vessel which houses the core of the reactor. It has a number of vertical non-radial nozzles which locate shut down, reactivity control and over pressure relief safety devices. The calandria is designed, fabricated and inspected as per ASME Boiler and Pressure Vessel Code class one component stringent requirements. Model studies of this equipment is carried out to know the stress concentration factors for various thermal and seismic loads transferred through these nozzles. In this experiment nozzles lying in one quadrant of calandria are simulated on a 1:3.2 size model and six types of forces are applied on each nozzle. Total 136 numbers of 3 element strain rosettes have been used in this experiment. The strain data are collected through a 100 channel data recording system and stresses on prototype calandria are predicted for various load cases with the help of a BASIC language rosette analysis program implemented on the microprocessor system of the data logger. The interaction effect between various nozzles is also studied. Comparisons have been made between present experimental results and simplified analytical design calculation (based on Bijlaard's method) along with finite element analysis results of a selected group of 3 nozzles. It is shown that local stresses near an opening decay within a short distance from root of the nozzle and interaction effect on neighbouring nozzles surrounding a loaded nozzles is small. The stress concentration factor data generated can be used by the designer to calculate peak and local stresses on the calandria shell-nozzle junctions of various reactivity devices for all six kinds of nominal thermal and seismic loads. (author). 3 refs., tabs., figs

  4. Application of shape-based similarity query for aerodynamic optimization of wind tunnel primary nozzle

    Directory of Open Access Journals (Sweden)

    Kolář Jan

    2012-04-01

    Full Text Available The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in CFD is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  5. Variabilidade espacial da agregação do solo avaliada pela geometria fractal e geoestatística Spatial variability of soil aggregation evaluated by fractal geometry and geostatistics

    Directory of Open Access Journals (Sweden)

    J. R. P. Carvalho

    2004-02-01

    Full Text Available Este trabalho teve por objetivo explorar a aplicabilidade da teoria de fractais no estudo da variabilidade espacial em agregação de solo. A geometria de fractais tem sido proposta como um modelo para a distribuição de tamanho de partículas. A distribuição do tamanho de agregados do solo, expressos em termos de massa, é apresentada. Os parâmetros do modelo, tais como: a dimensão fractal D, medida representativa da fragmentação do solo (quanto maior seu valor, maior a fragmentação, e o tamanho do maior agregado R L foram definidos como ferramentas descritivas para a agregação do solo. Os agregados foram coletados em uma profundidade de 0-10 cm de um Latossolo Vermelho distrófico típico álico textura argilosa, em Angatuba, São Paulo. Uma grade regular de 100 x 100 m foi usada e a amostragem realizada em 76 pontos nos quais se determinou a distribuição de agregados por via úmida, usando água, álcool e benzeno como pré-tratamentos. Pelo exame de semivariogramas, constatou-se a ocorrência de dependência espacial. A krigagem ordinária foi usada como interpolador e mapas de contorno mostraram-se de grande utilidade na descrição da variabilidade espacial de agregação do solo.This work explored the applicability of the fractal theory for studies into space variability of soil aggregation. Fractal geometry has become a model for soil size particle distribution. The distribution of soil aggregates in terms of its mass was obtained, and model parameters such as the fractal dimension D, which is a representative measure of the soil fragmentation (the larger its value, the larger the fragmentation, and the largest aggregate size R L were defined as descriptive tools for soil aggregation. The aggregates were collected at a depth of 0-10 cm of a Clayey Ferrasol in Angatuba, São Paulo. A regular grid of 100 x 100 m was used and samples collected from 76 points, where the aggregate distribution was determined by humid way (water

  6. Eficiência de um hidrociclone de geometria "rietema" para pré-filtragem de água para irrigação Efficiency of a hydrocyclone of "rietema" geometry for pre-filtering of water for irrigation

    Directory of Open Access Journals (Sweden)

    Othon C. Da Cruz

    2010-08-01

    Full Text Available O hidrociclone é um equipamento amplamente utilizado pela indústria em processos envolvendo separação sólido-líquido, porém ainda pouco utilizado na agricultura irrigada no Brasil. Neste trabalho, avaliou-se o desempenho deste equipamento como pré-filtrante de partículas sólidas, oriundas dos processos erosivos e do assoreamento dos recursos hídricos. Os testes foram realizados com um hidrociclone de geometria "Rietema", possuindo diâmetro de 19,2 cm na parte cilíndrica, operando com vazões variando entre 10 m³ h-1 e 27 m³ h-1. Os materiais particulados usados em suspensão foram: solo franco-argiloso e areia de rio. Os resultados mostraram que a perda de carga máxima média foi de 52 kPa e 47 kPa para as suspensões aquosas de areia e solo, respectivamente. Seu melhor desempenho ocorreu operando com suspensão aquosa de areia, apresentando eficiência total de 92,3% para a vazão de 26,9 m³ h-1. Concluiu-se que o equipamento avaliado é mais eficiente para remoção de partículas de areia, podendo ser utilizado como pré-filtro em sistemas de irrigação.The hydrocyclone is an equipment widely used by industry in cases involving solid-liquid separation, but still little used in irrigated agriculture in Brazil. This study evaluated the performance of this equipment as a pre-filter of solid particles, from erosive processes and the silting of water resources. The tests were performed with a hydrocyclone of "Rietema" geometry, with a diameter of 19.2 cm at the cylindrical part operating with outflows ranging between 10 m³ h-1 and 27 m³ h-1. The materials used in particulate suspension were clay loam soil and sand from river. The results showed that the average maximum head loss was 52 kPa and 47 kPa for aqueous suspensions of sand and soil, respectively. Its best performance occurred operating with slurry of sand, presenting total efficiency of 92.3% for 26.9 m³ h-1 of flow rate. It was concluded that such equipment is most

  7. EXAMPLE OF FLOW MODELLING CHARACTERISTICS IN DIESEL ENGINE NOZZLE

    Directory of Open Access Journals (Sweden)

    Dušan KOLARIČ

    2016-03-01

    Full Text Available Modern transport is still based on vehicles powered by internal combustion engines. Due to stricter ecological requirements, the designers of engines are continually challenged to develop more environmentally friendly engines with the same power and performance. Unfortunately, there are not any significant novelties and innovations available at present which could significantly change the current direction of the development of this type of propulsion machines. That is why the existing ones should be continually developed and improved or optimized their performance. By optimizing, we tend to minimize fuel consumption and lower exhaust emissions in order to meet the norms defined by standards (i.e. Euro standards. Those propulsion engines are actually developed to such extent that our current thinking will not be able to change their basic functionality, but possible opportunities for improvement, especially the improvement of individual components, could be introduced. The latter is possible by computational fluid dynamics (CFD which can relatively quickly and inexpensively produce calculations prior to prototyping and implementation of accurate measurements on the prototype. This is especially useful in early stages of development or at optimization of dimensional small parts of the object where the physical execution of measurements is impossible or very difficult. With advances of computational fluid dynamics, the studies on the nozzles and outlet channel injectors have been relieved. Recently, the observation and better understanding of the flow in nozzles at large pressure and high velocity is recently being possible. This is very important because the injection process, especially the dispersion of jet fuel, is crucial for the combustion process in the cylinder and consequently for the composition of exhaust gases. And finally, the chemical composition of the fuel has a strong impact on the formation of dangerous emissions, too. The

  8. Construção e avaliação do desempenho de três abanadoras de sementes Construction and performance evaluation of three seed blowers

    Directory of Open Access Journals (Sweden)

    José G. da Silva

    2006-03-01

    Full Text Available Os métodos de trilhamento das plantas não proporcionam grãos limpos, em condições de serem comercializados, semeados ou armazenados. É necessário que passem por um processo de limpeza com o fim de eliminar os fragmentos dos próprios grãos, detritos vegetais, folhas e pedaços de hastes. Os processos comuns de limpeza são pouco eficientes e os mais sofisticados podem não estar ao alcance de pequenos produtores. Objetivou-se, com este trabalho, construir três abanadoras e avaliar seu desempenho em sementes de arroz. Uma abanadora é provida de ventilador acionado a pedal; a outra possui ventilador acionado por motor elétrico e a terceira possui ventilador e peneiras movimentados por motor elétrico. Foram abanadas sementes com diferentes teores de impureza e em diferentes taxas de alimentação das máquinas. As abanadoras apresentaram maior eficiência de limpeza nas sementes com menor teor de impureza e na menor taxa de alimentação das máquinas. A eficiência foi considerada adequada para as sementes que possuíam até 4% de impureza antes da abanação. Com 6% de impureza, as sementes devem ser abanadas por três vezes, para ficarem com menos de 1% de impureza. A perda de sementes pelas abanadoras foi desprezível.Usually, the available methods to trash cereal seeds do not provide a clean product, as required for commercialization, seeding and storage. For this purpose it is necessary to submit the seed lot to a cleaning process to eliminate grain fragments and other contaminants such as soil and plant particles. Common processing procedures are not efficient and other methods available, more sophisticated, are not economically suitable for small farmers. The objective of this study was to construct three different blowers and evaluate their performance on rice: one provided with a foot operated fan; a second with an electric fan; and a third with electric fan and screeners. Seed lots with different degrees of impurities and

  9. Field Test Evaluation of Conservation Retrofits of Low-Income, Single-Family Buildings in Wisconsin: Blower-Door-Directed Infiltration Reduction Procedure, Field Test Implementation and Results

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.B.

    2001-05-21

    A blower-door-directed infiltration retrofit procedure was field tested on 18 homes in south central Wisconsin. The procedure, developed by the Wisconsin Energy Conservation Corporation, includes recommended retrofit techniques as well as criteria for estimating the amount of cost-effective work to be performed on a house. A recommended expenditure level and target air leakage reduction, in air changes per hour at 50 Pascal (ACH50), are determined from the initial leakage rate measured. The procedure produced an average 16% reduction in air leakage rate. For the 7 houses recommended for retrofit, 89% of the targeted reductions were accomplished with 76% of the recommended expenditures. The average cost of retrofits per house was reduced by a factor of four compared with previous programs. The average payback period for recommended retrofits was 4.4 years, based on predicted energy savings computed from achieved air leakage reductions. Although exceptions occurred, the procedure's 8 ACH50 minimum initial leakage rate for advising retrofits to be performed appeared a good choice, based on cost-effective air leakage reduction. Houses with initial rates of 7 ACH50 or below consistently required substantially higher costs to achieve significant air leakage reductions. No statistically significant average annual energy savings was detected as a result of the infiltration retrofits. Average measured savings were -27 therm per year, indicating an increase in energy use, with a 90% confidence interval of 36 therm. Measured savings for individual houses varied widely in both positive and negative directions, indicating that factors not considered affected the results. Large individual confidence intervals indicate a need to increase the accuracy of such measurements as well as understand the factors which may cause such disparity. Recommendations for the procedure include more extensive training of retrofit crews, checks for minimum air exchange rates to insure air

  10. As Relações entre Área e Perímetro na Geometria Plana: o papel dos observáveis e das regulações na construção da explicação Relations between Area and Perimeter in Plane Geometry: the role of observables and regulations in the construction of explanation

    Directory of Open Access Journals (Sweden)

    João Alberto da Silva

    2009-12-01

    Full Text Available O ensino da geometria plana nas séries finais do Ensino Fundamental é, muitas vezes, desprovido de sentido. Os professores optam por práticas pedagógicas que se fundamentam em algoritmos, sem preocuparem-se com os processos de pensamento que estão envolvidos na construção do pensamento geométrico. Essa pesquisa vale-se da Epistemologia Genética para investigar como adolescentes e adultos, que freqüentaram a escola e obtiveram êxito na aprendizagem de geometria, elaboram explicações a propósito de problemas que envolvem o cálculo da área e do perímetro de figuras planas. Os dados indicam que a totalidade dos entrevistados é capaz de realizar o cálculo através do algoritmo, mas muito poucos apresentam explicações elaboradas. Os modelos explicativos são os mais variados e dirigem-se de um pensamento baseado exclusivamente na percepção até a explicação lógico-matemática dos conceitos envolvidos. Palavras-chave: Ensino de Geometria. Modelos Explicativos. Jean Piaget. Epistemologia Genética.The teaching of plane geometry in elementary school is often lacking in meaning. Teachers choose teaching practices based on algorithms, without concern for the thinking processes involved in the construction of geometric thinking. This study is based on Genetic Epistemology to investigate how adolescents and adults who attended school, and were successful in learning geometry, construct explanations about problems involving the calculation of the area and the perimeter of plane figures. The data show that the interviewees are capable of doing the calculation with the algorithm, but very few show elaborated explanations. The explanatory models are the most varied, ranging from thinking based solely on perception to logical-mathematical explanations of the concepts involved. Keywords: Teaching of Geometry. Explanatory Models. Jean Piaget. Genetic Epistemology.

  11. Computer Graphic Design Using Auto-CAD and Plug Nozzle Research

    Science.gov (United States)

    Rogers, Rayna C.

    2004-01-01

    The purpose of creating computer generated images varies widely. They can be use for computational fluid dynamics (CFD), or as a blueprint for designing parts. The schematic that I will be working on the summer will be used to create nozzles that are a part of a larger system. At this phase in the project, the nozzles needed for the systems have been fabricated. One part of my mission is to create both three dimensional and two dimensional models on Auto-CAD 2002 of the nozzles. The research on plug nozzles will allow me to have a better understanding of how they assist in the thrust need for a missile to take off. NASA and the United States military are working together to develop a new design concept. On most missiles a convergent-divergent nozzle is used to create thrust. However, the two are looking into different concepts for the nozzle. The standard convergent-divergent nozzle forces a mixture of combustible fluids and air through a smaller area in comparison to where the combination was mixed. Once it passes through the smaller area known as A8 it comes out the end of the nozzle which is larger the first or area A9. This creates enough thrust for the mechanism whether it is an F-18 fighter jet or a missile. The A9 section of the convergent-divergent nozzle has a mechanism that controls how large A9 can be. This is needed because the pressure of the air coming out nozzle must be equal to that of the ambient pressure other wise there will be a loss of performance in the machine. The plug nozzle however does not need to have an A9 that can vary. When the air flow comes out it can automatically sense what the ambient pressure is and will adjust accordingly. The objective of this design is to create a plug nozzle that is not as complicated mechanically as it counterpart the convergent-divergent nozzle.

  12. Environmentally assistant fatigue analysis for LWR reactor vessel nozzle

    International Nuclear Information System (INIS)

    Background: Considering the EAF (Environment Assistant Fatigue) effect during the design status is a key issue for generation Ⅲ nuclear power plant. Purpose: The calculation methodology of Fen (Environmentally Assistant Fatigue Factor) and strain ratio of ASME Code Case N-792 has been introduced in this paper. Methods: By creating 2D symmetry model of reactor pressure vessel nozzle, the environmentally assistant fatigue factor Fen and fatigue usage factor has been analyzed according Code Case N-792 with simplified and detailed integral methods. Results: The fatigue usage factor results of ASME-Ⅲ which does not consider environmental effect and Code Case N-792 which consider the environmental effect have been compared and discussed. Conclusions: And the fatigue life considering Fen effect of SCL1 section will reduce to about 1/3 of the life in air condition while the fatigue life of SCL2 decrease 3/5. (authors)

  13. Large-eddy simulation of cavitating nozzle and jet flows

    Science.gov (United States)

    Örley, F.; Trummler, T.; Hickel, S.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A.

    2015-12-01

    We present implicit large-eddy simulations (LES) to study the primary breakup of cavitating liquid jets. The considered configuration, which consists of a rectangular nozzle geometry, adopts the setup of a reference experiment for validation. The setup is a generic reproduction of a scaled-up automotive fuel injector. Modelling of all components (i.e. gas, liquid, and vapor) is based on a barotropic two-fluid two-phase model and employs a homogenous mixture approach. The cavitating liquid model assumes thermodynamic- equilibrium. Compressibility of all phases is considered in order to capture pressure wave dynamics of collapse events. Since development of cavitation significantly affects jet break-up characteristics, we study three different operating points. We identify three main mechanisms which induce primary jet break-up: amplification of turbulent fluctuations, gas entrainment, and collapse events near the liquid-gas interface.

  14. Nozzle-Free Liquid Microjetting via Homogeneous Bubble Nucleation

    Science.gov (United States)

    Lee, Taehwa; Baac, Hyoung Won; Ok, Jong G.; Youn, Hong Seok; Guo, L. Jay

    2015-04-01

    We propose and demonstrate a physical mechanism for producing liquid microjets by taking an optoacoustic approach that can convert light to sound through a carbon-nanotube-coated lens, where light from a pulsed laser is converted to high momentum sound wave. The carbon-nanotube lens can focus high-amplitude sound waves to a microspot of visualizes two consecutive jets closely correlated with bubble dynamics. Because of the acoustic scattering from the interface, negative pressure amplitudes are significantly increased up to 80 MPa, even allowing homogeneous bubble nucleation. As a demonstration, this nozzle-free approach is applied to inject colored liquid into a tissue-mimicking gel as well as print a material on a glass substrate.

  15. Preliminary scoping studies for nozzle-based coaxial plasma thrusters

    International Nuclear Information System (INIS)

    The ideal steady-state properties of nozzle-based coaxial plasma guns are modelled by means of a magnetic Bernoulli equation. Formulas for thrust, power usage, mass flow rate, and specific impulse using hydrogen are thereby obtained, and are used to approximately assess the mission performance capabilities of such thrusters. Parameters in the range of experience of the Los Alamos spheromak group are addressed within the context of orbit raising, slow (cargo) missions to mars, and fast missions to mars. The various internal atomic and plasma effects on hydrogen plasma thruster performance are approximately estimated or bounded. It is concluded that such devices may be relevant to mission performance at reasonable power levels

  16. Hydraulic Analogy for Isentropic Flow Through a Nozzle

    Directory of Open Access Journals (Sweden)

    J. S. Rao

    1983-04-01

    Full Text Available Modelling aspects of isentropic compressible gas flow using hydraulic analogy are discussed. Subsonic and supersonic flows through a typical nozzle are simulated as free surface incompressible water flow in an equivalent 2-D model on a water table. The results are first compared for the well known classical analogy in order to estimate experimental errors. Correction factors for pressure and temperature, to account for non-ideal compressible gas flow are presented and the results obtained on the water table are modified and compared with gas dynamic solution. Within the experimental errors, it is shown that the hydraulic analogy can be used as an effective tool for the study of two dimensional isentropic flows of gases.

  17. Gas Dynamic Virtual Nozzle for Generation of Microscopic Droplet Streams

    CERN Document Server

    DePonte, D P; Starodub, D; Schmidt, K; Spence, J C H; Doak, R B

    2008-01-01

    As shown by Ganan-Calvo and co-workers, a free liquid jet can be compressed in iameter through gas-dynamic forces exerted by a co-flowing gas, obviating the need for a solid nozzle to form a microscopic liquid jet and thereby alleviating the clogging problems that plague conventional droplet sources of small diameter. We describe in this paper a novel form of droplet beam source based on this principle. The source is miniature, robust, dependable, easily fabricated, and eminently suitable for delivery of microscopic liquid droplets, including hydrated biological samples, into vacuum for analysis using vacuum instrumentation. Monodisperse, single file droplet streams are generated by triggering the device with a piezoelectric actuator. The device is essentially immune to clogging.

  18. Fluid spray simulation with two-fluid nozzles

    Science.gov (United States)

    Ingebo, Robert D.

    1988-01-01

    Two-phase interacting flow inside a two-fluid fuel atomizer was investigated and a correction of aerodynamic and liquid-surface forces with characteristic drop diameter was obtained for liquid-jet breakup in Mach 1 gas flow. Nitrogen gas mass-flux was varied from 6 to 50 g/sq cm sec by using four differently sized two-fluid atomizers with nozzle diameters varyig from 0.32 to 0.56 cm. The correlation was derived by using the acoustic gas velocity, V sub c, as a basic parameter in defining and evaluating the dimensionless product of the Weber (We) and Reynolds (Re) numbers. By using the definition of WeRe, it was found that the ratio of orifice diameter to Sauter mean drop diameter could be correlated with the dimensionless ratio WeRe and the gas to liquid density ratio.

  19. Spray Penetration with a Simple Fuel Injection Nozzle

    Science.gov (United States)

    Miller, Harold E; Beardsley, Edward G

    1926-01-01

    The purpose of the tests covered by this report was to obtain specific information on the rate of penetration of the spray from a simple injection nozzle, having a single orifice with a diameter of 0.015 inch when injecting into compressed gases. The results have shown that the effects of both chamber and fuel pressures on penetration are so marked that the study of sprays by means of high-speed photography or its equivalent is necessary if the effects are to be appreciated sufficiently to enable rational analysis. It was found for these tests that the negative acceleration of the spray tip is approximately proportional to the 1.5 power of the instantaneous velocity of the spray tip.

  20. Fuel spray simulation with two-fluid nozzles

    Science.gov (United States)

    Ingebo, Robert D.

    1989-01-01

    Two-phase interacting flow inside a two-fluid fuel atomizer was investigated and a correction of aerodynamic and liquid-surface forces with characteristic drop diameter was obtained for liquid-jet breakup in Mach 1 gas flow. Nitrogen gas mass-flux was varied from 6 to 50 g/sq cm sec by using four differently sized two-fluid atomizers with nozzle diameters varying from 0.32 to 0.56 cm. The correlation was derived by using the acoustic gas velocity, V sub c, as a basic parameter in defining and evaluating the dimensionless product of the Weber (We) and Reynolds (Re) numbers. By using the definition of WeRe, it was found that the ratio of orifice diameter to Sauter mean drop diameter could be correlated with the dimensionless ratio WeRe and the gas to liquid density ratio.