WorldWideScience

Sample records for blowers nozzles geometria

  1. Optimum geometry for boiler soot blowers nozzles; Geometria optima de toberas para deshollinadores de caldera

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza Garza, Jesus; Garcia Tinoco, Guillermo J.; Martinez Flores, Jose Oscar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    For boiler soot blowing converging-diverging nozzles are employed, whose function is to convert thermal energy of a gas into kinetic energy to remove the deposits that adhere to the heat exchanger surfaces. In this paper are described the experimental equipment and the methods for flow, dynamic pressure, discharge velocity and air expansion factor calculation in each nozzle, as a function of its design geometry, utilizing air from a five stage centrifugal compressor. The graphic analysis of the results, concludes that the most efficient nozzles are not the ones than develop the greatest velocity, but the ones of highest dynamic pressure at the outlet. The nozzle geometry that allows obtaining the maximum dynamic air pressure at the discharge is A{sub 2}/A{sub g}=1.3676 [Espanol] Para el deshollinado de calderas se utilizan las toberas convergentes-divergentes, cuya funcion es convertir la energia termica de un gas en energia cinetica para remover los depositos que se adhieren a las superficies de intercambio de calor. En este trabajo se describen el equipo experimental y los metodos de calculo para flujo, presion dinamica, velocidad a la descarga y factor de expansion del aire en cada tobera, como funcion de su geometria de diseno. Durante la experimentacion se evaluaron siete disenos diferentes de toberas, empleando aire de un compresor centrifugo de cinco etapas. Del analisis grafico de los resultados, se concluye que las toberas mas eficientes no son las que desarrollan mayor velocidad sino las de mayor presion dinamica de la salida. La geometria de tobera que permite obtener la maxima presion dinamica del aire a la descarga es A{sub 2}/A{sub g} = 1.3676.

  2. Geometria responsiva

    Directory of Open Access Journals (Sweden)

    Graziano Mario Valenti

    2012-06-01

    Full Text Available Il progetto industriale, così come quello architettonico, manifesta un’attenzione crescente verso comportamenti di tipo “responsivo”. Gli oggetti, sia nella piccola scala del Design, sia nella più grande scala dell’architettura, sono sempre più frequentemente dotati di un’intelligenza digitale, una logica comportamentale che consente loro di interagire con le persone che li fruiscono. Gli oggetti e gli spazi a carattere “responsivo” caratterizzeranno senza dubbio il prossimo futuro e questo processo di trasformazione riguarderà in modo particolare anche la forma e dunque la geometria che la forma stessa astrae e descrive. E’ necessario dunque un nuovo modo di immaginare e di progettare modelli dinamici. La modellazione parametrica è un valido ausilio in questo processo, ma il progettista, più del solito, dovrà necessariamente confrontarsi con la geometria. Lo studio qui illustrato sperimenta la parametrizzazione finalizzata alla trasformazione dinamica di superfici piane in superfici coniche.

  3. Ensino de geometria descritiva: inovando na metodologia

    Directory of Open Access Journals (Sweden)

    Regina Coeli Moraes Kopke

    2001-03-01

    Full Text Available Com base na observação, durante anos de magistério superior, na área de desenho, dos alunos de Engenharia, Matemática, Arquitetura e Artes, quanto às dificuldades encontradas por eles no aprendizado de desenho, em especial da Geometria Descritiva, é que nos propusemos, em 1999, lecionar essa disciplina para os cursos de Arquitetura e Artes, adotando uma metodologia diferente da convencional, para despertar, no aluno, o gosto pela disciplina e o desenvolvimento de uma habilidade pouco trabalhada na escola: a visão espacial. Mostrar para os alunos que essa disciplina não é difícil, mas apenas diferente daquilo que estudaram até então, tornou-se nossa meta. A visão espacial é uma habilidade mental localizada no lado direito do cérebro e, assim, quanto mais lúdica for esta aprendizagem, será mais bem assimilada. A proposta é iniciada no sentido de se trabalhar primeiro com sólidos: neles estarão os pontos, retas e planos normalmente abordados na metodologia convencional, nessa ordem. Como conclusão, tem-se que o importante é ressaltar o grande avanço que a Geometria Descritiva traz para quem quer representar graficamente qualquer coisa. Onde há planejamento, projeto e representação gráfica, aí estará a Geometria Descritiva.During many years observing the teaching of design at the Engineering, Mathematics, Architeture and Arts courses, we can note the difficulties of the students to learn it, specially the descriptive geometry. Because of that, we decided to teach this discipline to the Architeture and Arts courses, using a new metodology to make the students motivated to study and to learn, and trying to develop their their spatial vision. We want to show to the students that this discipline is not so difficult as they think, but show them that is only different. The spatial vision is a mental skill found at the right side of the brain and the more soft the learning is, the more it is assimilated by the brain. The

  4. VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER

    Energy Technology Data Exchange (ETDEWEB)

    Shixiao Wang; Herman Wiegman; Wilson Wu; John Down; Luana Iorio; Asha Devarajan; Jing Wang; Ralph Carl; Charlie Stephens; Jeannine Jones; Paul Szczesny

    2001-11-14

    This comprehensive topical report discusses the key findings in the development of a intelligent integrated blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented and a prototype blower design is presented. A comparison of the proposed blower to that of three typical units from the industry is presented. The design of the blower housing is also addressed and the impact of size limitations on static efficiency is discussed. Issues of air flow controllability in the rearward inclined blower is addressed and a solution to this problem is proposed. Several motor design options are discussed including inside-out radial flux designs and novel axial flux designs, all are focused on the various blower needs. The control of the motor-blower and airflow through the use of a high density inverter stage and modern digital signal processor is presented. The key technical challenges of the approach are discussed. The use of the motor as a sensor in the larger heating/ventilating system is also discussed. Diagnostic results for both the motor itself and the blower system are presented.

  5. Air injection vacuum blower noise control

    Energy Technology Data Exchange (ETDEWEB)

    Mose, Tyler L.A.; Faszer, Andrew C. [Noise Solutions Inc. (Canada)], email: tmose@noisesolutions.com, email: afaszer@noisesolutions.com

    2011-07-01

    Air injection vacuum blowers, with applications in waste removal, central vacuum systems, and aeration systems, are widely used when high vacuum levels are required. Noise generated by those blowers must be addressed for operator health and residential disturbance. This paper describes a project led by Noise Solutions Inc., to identify noise sources in a blower, and design and test a noise mitigation system. First the predominant noise sources in the blower must be determined, this is done with a sound level meter used to quantify the contribution of each individual noise source and the dominant tonal noise from the blower. Design of a noise abatement system must take into account constraints arising from blower mobile use, blower optimal performance, and the resulting overall vibration of the structure. The design was based on calculations from the sound attenuation of a reactive expansion chamber and two prototypes of custom silencers were then tested, showing a significant noise reduction both in total sound levels and tonal noise.

  6. Stepped nozzle

    Science.gov (United States)

    Sutton, George P.

    1998-01-01

    An insert which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment.

  7. 33 CFR 154.826 - Vapor compressors and blowers.

    Science.gov (United States)

    2010-07-01

    ... system acceptable to the Commandant (CG-522). (b) If a reciprocating or screw-type compressor handles... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor compressors and blowers....826 Vapor compressors and blowers. (a) Each inlet and outlet to a compressor or blower which...

  8. Production Facility Prototype Blower Installation Report

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-28

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating.  Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere.  With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig).  An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing.  This report describes this blower/motor/ppressure vessel package and the status of the facility preparations.

  9. Simplified multizone blower door techniques for multifamily buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This research focused on the applicability of (a) two-blower-door and (b) single-blower-door multi-zone pressurization techniques for estimating the air leakage characteristics of New York State multi-family apartment buildings. The research also investigated the magnitude of external leakage area in multi-family buildings and used computer simulations to estimate the effect of decreasing external and internal leakage areas on air infiltration rates. This research investigates whether two blower doors can be used to determine the ELA of the exterior envelope and the ELA of partitions. Two multi-zone versions of the single-blower-door pressurization method are also examined.

  10. Production Facility Prototype Blower 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended test of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.

  11. Sandblasting nozzle

    Science.gov (United States)

    Perkins, G. S.; Pawlik, E. V.; Phillips, W. M. (Inventor)

    1981-01-01

    A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing.

  12. Soot blower using fuel gas as blowing medium

    Science.gov (United States)

    Tanca, Michael C.

    1982-01-01

    A soot blower assembly (10) for use in combination with a coal gasifier (14). The soot blower assembly is adapted for use in the hot combustible product gas generated in the gasifier as the blowing medium. The soot blower lance (20) and the drive means (30) by which it is moved into and out of the gasifier is housed in a gas tight enclosure (40) which completely surrounds the combination. The interior of the enclosure (40) is pressurized by an inert gas to a pressure level higher than that present in the gasifier so that any combustible product gas leaking from the soot blower lance (20) is forced into the gasifier rather than accumulating within the enclosure.

  13. Dynamical system analysis of unstable flow phenomena in centrifugal blower

    Directory of Open Access Journals (Sweden)

    Garcia David

    2015-09-01

    Full Text Available Methods of dynamical system analysis were employed to analyze unsteady phenomena in a centrifugal blower. Pressure signals gathered at different control points were decomposed into their Principal Components (PCs by means of Singular Spectrum Analysis (SSA. Certain number of PCs was considered in the analysis based on their statistical correlation. Projection of the original signal onto its PCs allowed to draw the phase trajectory that clearly separated non-stable blower working conditions from its regular operation.

  14. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    Directory of Open Access Journals (Sweden)

    Les Gutzwiller

    2003-01-01

    Full Text Available This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.

  15. Integrated high efficiency blower apparatus for HVAC systems

    Science.gov (United States)

    Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

    2007-07-24

    An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

  16. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Lacey, Benjamin Paul; York, William David; Stevenson, Christian Xavier

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  17. Gas only nozzle

    Science.gov (United States)

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  18. Nozzles: selection and sizing

    OpenAIRE

    Grisso, Robert D. (Robert Dwight), 1956-; Hipkins, Patricia A.; Askew, Shawn; Hipkins, Perry Lloyd, 1945-; McCall, David Scott

    2013-01-01

    Covers nozzle description, recommended use for common nozzle types, and orifice sizing for agricultural and turf sprayers. Proper selection of a nozzle type and size is essential for correct and accurate pesticide application. The nozzle is a major factor in determining the amount of spray applied to an area, uniformity of application, coverage obtained on the target surface, and amount of potential drift.

  19. Uji Performansi Getaran Mekanis dan Kebisingan Mist Blower Yanmar MK 150-B

    OpenAIRE

    Ahmad Noval Irvani; Mad Yamin

    2012-01-01

    Mist blower is one of the mechanization tool of agriculture considered as a tool that can assist humans in fertilizer and pesticides spreading activities. Levels of motor speed in the used mist blower were 1915, 4009, and 7227 rpm. Vibration measurements were conducted on the engine and handlebar control mist blower with the three-dimensional axes namely X, Y, and Z. Mist blower noise measurements were performed on the engine, operator's right ear and left ear. Based on the analysis of vibrat...

  20. Building America Top Innovations 2013 Profile – High-Performance Furnace Blowers

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    This Top Innovations profile describes Lawrence Berkeley National Laboratory's work with furnace blower design that led to the creation of a standard for rating blowers, credits for the use of good blowers in Federal tax credit programs and energy codes, and consideration in current federal rulemaking procedures.

  1. TEORIA E APLICAÇÃO DA GEOMETRIA HIDRÁULICA: REVISÃO

    Directory of Open Access Journals (Sweden)

    Fernando Grison

    2011-12-01

    Full Text Available Desde a criação da teoria da geometria hidráulica, um elevado número de trabalhos foi desenvolvido em relação a essa teoria e sua aplicação. O presente estudo teve o objetivo de revisar a definição dessa teoria, formas pelas quais ela vem sendo estudada e os principais métodos aplicados para interpretação dos seus resultados. As principais descobertas mostram que, com aumento da vazão, a velocidade e a profundidade aumentam mais rapidamente do que a largura das seções transversais e que a variação da largura nos canais com leito rochoso é semelhante àquela com leito aluvial. Foi claramente observado que as relações matemáticas da geometria hidráulica, que se diferenciam pela mudança da potência do escoamento do curso d’água, vêm sendo detalhadamente estudadas. Vários tipos de clima e formações geológicas foram avaliados para verificar suas influências nos expoentes da geometria hidráulica. Além disso, também se investigou o motivo das grandes variações dos valores desses expoentes. A vazão dominante está intimamente correlacionada com a área de drenagem e, a partir disso, foram desenvolvidas as Equações Regionais da Geometria Hidráulica. Outros trabalhos mostraram o comportamento dos sedimentos com relação às mudanças na forma dos cursos d’água. O tópico mais explorado na geometria hidráulica é a modelagem matemática, que foi utilizada principalmente para investigar a influência da forma de uma seção transversal e do leito de um canal em nível de margens plenas no comportamento das variáveis hidráulicas. A modelagem matemática também foi empregada para verificar a variabilidade espacial da geometria hidráulica devido à localização das seções transversais. As aplicações da geometria hidráulica encontram-se, na prática, tal como em projetos de revitalizações de rios e projetos de gerenciamento de recursos hídricos.

  2. Blower-door techniques for measuring interzonal leakage

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  3. Nozzle airfoil having movable nozzle ribs

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  4. La geometria del còdex 80 (s. XII de la catedral de Tortosa

    Directory of Open Access Journals (Sweden)

    Lluís i Ginovart, Josep

    2015-12-01

    Full Text Available The geometry in codex 80 of the Capitular Archive has traditionally been understood as a complete text and attributed to Gerbert of Aurillac (c. 940-1003. From a new reading of the text, we can say that it is a miscellaneous writing about geometry, composed of three independent parts: one containing the Geometria Incerti Auctoris apocryphical by Gerbert of Aurillac (c. 940-1003; another one is a fragment of De Nuptiis Philologiae et Mercurii by Martianus Capella (fl . 430 from Ergasticis Schematibus of Book VII of the Geometry; and finally there is a gloss to the Elementa by Euclides (c. 325-c. 265 bC. by Al-Ḥajjāj ibn Yūsuf ibn Maṭar (786-833. The interpretation of the geometrical propositions provides knowledge about the indirect measure of places which are inaccessible using medieval instrumental, the astrolabe, mirrors, cane and squares.[ct] La geometria del còdex 80 de l’Arxiu Capitular de Tortosa ha estat tradicionalment atribuïda, com un text únic, a Gerbert d’Orlhac (c. 940-1003. Una nova lectura del text ens permet assegurar que es tracta d’un text de caràcter miscel·lani de geometria, compost per tres textos independents: una part pertany a la Geometria Incerti Auctoris apòcrifa de Gerbert d’Orlhac; una altra, al fragment De Nuptiis Philologiae et Mercurii de Marcià Capella (fl . 430 Ergasticis Schematibus, del llibre VII de la Geometria; i, finalment, s’hi llegeix una glossa als Elementa d’Euclides (c. 325-c. 265 aC. d’Al-Ḥajjāj ibn Yūsuf ibn Maṭar (786-833. La interpretació de les proposicions de la geometria dóna el coneixement de la mesura indirecta de llocs als quals no es pot accedir amb l’instrumental medieval, és a dir, amb astrolabi, miralls, bastons i escaires.

  5. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  6. Spiral cooled fuel nozzle

    Science.gov (United States)

    Fox, Timothy; Schilp, Reinhard

    2012-09-25

    A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.

  7. Ensino de Geometria Espacial métrica: uma experiência com modelagem

    Directory of Open Access Journals (Sweden)

    Andrea Cardoso

    2012-12-01

    Full Text Available O estudo de geometria permite o desenvolvimento de habilidades e conhecimentos em relação a fatos e questões do cotidiano. Entretanto, os resultados em exames oficiais apontam uma grande defasagem no ensino e aprendizagem, principalmente em geometria espacial. Esta pesquisa está inserida no contexto do ensino e aprendizagem da geometria espacial na educação básica, em particular, à métrica dos sólidos geométricos. O objetivo do trabalho é apresentar uma sequência didática utilizando a modelagem matemática como alternativa metodológica, tendo em vista seu potencial para quebrar a dicotomia existente entre a matemática escolar e a matemática presente nas mais variadas situações do cotidiano. A sequência foi desenvolvida em duas escolas públicas junto a estudantes do ensino médio. Para validar a sequência proposta, a pesquisa foi fundamentada nos princípios da engenharia didática e a análise foi realizada utilizando-se registros em diário de campo, registros das atividades desenvolvidas pelos estudantes e aplicação de questionários e testes diagnósticos. Os resultados obtidos levaram a concluir que houve um avanço por parte dos estudantes na apreensão de conceitos de geometria plana e espacial.

  8. Performance Enhancement of Dual-Inlet Centrifugal Blower by Optimal Design of Splitter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Sung; Jang, Choon Man [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2014-12-15

    The shape of an impeller splitter for a dual-inlet centrifugal blower was optimized to enhance the blower performance. Two design variable, the normalized chord and pitch of a splitter, were used to evaluate the blower performance and internal flow fields based on the three-dimensional flow analysis. The blower performance obtained using this numerical simulation had a maximum error of 4 percent compared to that in an experiment at the design flow condition. The shape optimization of the splitter successfully increased the blower efficiency and pressure by 3.65 and 1.14 percent compared to the reference values. The blower performance was increased by reducing the flow separation near the blade suction surface by optimizing the shape of the splitter, which produced a pressure increase at the outlet of the volute casing.

  9. Time-frequency analysis of the Surge Onset in the Centrifugal Blower

    Science.gov (United States)

    Liskiewicz, Grzegorz; Horodko, Longin

    2015-09-01

    Time frequency analysis of the surge onset was performed in the centrifugal blower. A pressure signal was registered at the blower inlet, outlet and three locations at the impeller shroud. The time-frequency scalograms were obtained by means of the Continuous Wavelet Transform (CWT). The blower was found to successively operate in four different conditions: stable working condition, inlet recirculation, transient phase and deep surge. Scalograms revealed different spectral structures of aforementioned phases and suggest possible ways of detecting the surge predecessors.

  10. Turbine nozzle positioning system

    Science.gov (United States)

    Norton, Paul F.; Shaffer, James E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  11. Que geometria ensinar? uma breve história da redefinição do conhecimento elementar matemático para crianças

    Directory of Open Access Journals (Sweden)

    Wagner Rodrigues Valente

    2013-04-01

    Full Text Available O artigo aborda a geometria para crianças, seu ensino para alunos das primeiras séries escolares. Leva em conta, inicialmente, a trajetória da Geometria para o nível elementar, desde, praticamente, a Independência do Brasil. Nessa análise, evidencia a permanência de conteúdos da geometria euclidiana até quase meados do século XX. Em seguida, analisa as propostas de alteração do ensino de Geometria elaboradas na década de 1960. Com isso, procura mostrar as intenções de modificar os conteúdos desse ramo matemático, em busca da redefinição de um novo elementar: um novo conhecimento elementar de geometria, vindo de processos de apropriação das contribuições trazidas pelos estudos da Psicologia cognitiva.

  12. Turbine nozzle/nozzle support structure

    Science.gov (United States)

    Boyd, Gary L.; Shaffer, James E.

    1997-01-01

    An axial flow turbine's nozzle/nozzle support structure having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse.

  13. Gas-cooled reactor coolant circulator and blower technology

    International Nuclear Information System (INIS)

    In the previous 17 meetings held within the framework of the International Working Group on Gas-Cooled Reactors, a wide variety of topics and components have been addressed, but the San Diego meeting represented the first time that a group of specialists had been convened to discuss circulator and blower related technology. A total of 20 specialists from 6 countries attended the meeting in which 15 technical papers were presented in 5 sessions: circulator operating experience I and II (6 papers); circulator design considerations I and II (6 papers); bearing technology (3 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  14. Shaanxi Blower Group: One Brand with Two "China Top Brand"

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Shaanxi Blower (Group) Co., Ltd.is a group company of large engineering technology and equipment focused on design and manufacturing of turbo-machinery, a large key enterprise in China, one of the top 500 enterprises for machinery industries, one of the best 100 enterprises in income from sales of Chinese Machinery Industries in 2004,one of the largest 1000 group enterprises in China in 2004, one of the vanguard enterprises in Chinese industries in 2005,the key support enterprise aiming at 10billion in production value during the "Eleventh Five-year Plan" by Xi'an Municipal government.

  15. Shaanxi Blower Group: One Brand with Two "China Top Brand"

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

      Shaanxi Blower (Group) Co., Ltd.is a group company of large engineering technology and equipment focused on design and manufacturing of turbo-machinery, a large key enterprise in China, one of the top 500 enterprises for machinery industries, one of the best 100 enterprises in income from sales of Chinese Machinery Industries in 2004,one of the largest 1000 group enterprises in China in 2004, one of the vanguard enterprises in Chinese industries in 2005,the key support enterprise aiming at 10billion in production value during the "Eleventh Five-year Plan" by Xi'an Municipal government.……

  16. Gas only nozzle fuel tip

    Science.gov (United States)

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  17. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-01

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.

  18. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    International Nuclear Information System (INIS)

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.

  19. Controlled overspray spray nozzle

    Science.gov (United States)

    Prasthofer, W. P. (Inventor)

    1981-01-01

    A spray system for a multi-ingredient ablative material wherein a nozzle A is utilized for suppressing overspray is described. The nozzle includes a cyclindrical inlet which converges to a restricted throat. A curved juncture between the cylindrical inlet and the convergent portion affords unrestricted and uninterrupted flow of the ablative material. A divergent bell-shaped chamber and adjustable nozzle exit B is utilized which provides a highly effective spray pattern in suppressing overspray to an acceptable level and producing a homogeneous jet of material that adheres well to the substrate.

  20. SCOUT Nozzle Data Book

    Science.gov (United States)

    Shieds, S.

    1976-01-01

    Available analyses and material property information are summarized relevant to the design of four rocket motor nozzles currently incorporated in the four solid propellant rocket stages of the NASA SCOUT launch vehicle. The nozzles discussed include those for the following motors: (1) first stage - Algol IIIA; (2) second stage - Castor IIA; (3) third stage - Antares IIA; and (4) fourth stage - Altair IIIA. Separate sections for each nozzle provide complete data packages. Information on the Antares IIB motor which had limited usage as an alternate motor for the third stage is included.

  1. Nozzle for a turbomachine

    Science.gov (United States)

    Lacy, Benjamin Paul; Kraemer, Gilbert Otto; Yilmaz, Ertan; Melton, Patrick Benedict

    2012-10-30

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, and an injection nozzle operatively connected to the combustor. The injection nozzle includes a main body having a first end section that extends to a second end section to define an inner flow path. The injection nozzle further includes an outlet arranged at the second end section of the main body, at least one passage that extends within the main body and is fluidly connected to the outlet, and at least one conduit extending between the inner flow path and the at least one passage.

  2. A utilização de software educativo na aprendizagem da Geometria por alunos do 3º Ciclo do Ensino Básico

    OpenAIRE

    Cadavez, Cristina Maria Pinto de Freitas

    2013-01-01

    Este estudo teve como objetivo geral estudar a influência da utilização de um programa de geometria dinâmica, o Geogebra, na aprendizagem de conceitos geométricos, pelos alunos do 3.º ciclo do ensino básico. Como objetivo específico foi definido a avaliação da integração dos ambientes de geometria dinâmica como estratégia de ensinoaprendizagem da geometria. O trabalho experimental decorreu em Janeiro e Fevereiro de 2012, numa escola do distrito de Bragança. A população constitu...

  3. Wear characterization of abrasive waterjet nozzles and nozzle materials

    Science.gov (United States)

    Nanduri, Madhusarathi

    Parameters that influence nozzle wear in the abrasive water jet (AWJ) environment were identified and classified into nozzle geometric, AWJ system, and nozzle material categories. Regular and accelerated wear test procedures were developed to study nozzle wear under actual and simulated conditions, respectively. Long term tests, using garnet abrasive, were conducted to validate the accelerated test procedure. In addition to exit diameter growth, two new measures of wear, nozzle weight loss and nozzle bore profiles were shown to be invaluable in characterizing and explaining the phenomena of nozzle wear. By conducting nozzle wear tests, the effects of nozzle geometric, and AWJ system parameters on nozzle wear were systematically investigated. An empirical model was developed for nozzle weight loss rate. To understand the response of nozzle materials under varying AWJ system conditions, erosion tests were conducted on samples of typical nozzle materials. The effect of factors such as jet impingement angle, abrasive type, abrasive size, abrasive flow rate, water pressure, traverse speed, and target material was evaluated. Scanning electron microscopy was performed on eroded samples as well as worn nozzles to understand the wear mechanisms. The dominant wear mechanism observed was grain pullout. Erosion models were reviewed and along the lines of classical erosion theories a semi-empirical model, suitable for erosion of nozzle materials under AWJ impact, was developed. The erosion data correlated very well with the developed model. Finally, the cutting efficiency of AWJ nozzles was investigated in conjunction with nozzle wear. The cutting efficiency of a nozzle deteriorates as it wears. There is a direct correlation between nozzle wear and cutting efficiency. The operating conditions that produce the most efficient jets also cause the most wear in the nozzle.

  4. MEMS-Based Spinning Nozzle

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2003-01-01

    A nozzle body and assembly for delivering atomized fuel to a combustion chamber. The nozzle body is rotatably mounted onto a substrate. One or more curvilinear fuel delivery channels are in flow communication with an internal fuel distribution cavity formed in the nozzle body. Passage of pressurized fuel through the nozzle body causes the nozzle body to rotate. Components of the nozzle assembly are formed of silicon carbide having surfaces etched by deep reactive ion etching utilizing MEMS (micro-electro-mechanical systems) technology. A fuel premix chamber is carried on the substrate in flow communication with a supply passage in the nozzle body.

  5. Laser cutting nozzle

    Science.gov (United States)

    Ramos, Terry J.

    1984-01-01

    A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece. BACKGROUND OF THE INVENTION

  6. Ceramic Cerami Turbine Nozzle

    Science.gov (United States)

    Boyd, Gary L.

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  7. Ceramic turbine nozzle

    Science.gov (United States)

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  8. Pumping characteristics of roots blower pumps for light element gases

    International Nuclear Information System (INIS)

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H2, D2 and He) and for N2, in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m3/s), two EH250s (ibid. 250 m3/s) and a backing pump (ibid. 100 m3/s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D2 and N2 were 1200 and 1300 m3/h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  9. Residential Forced Air System Cabinet Leakage and Blower Performance

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  10. Enhancement of performance by blade optimization in two-stage ring blower

    Science.gov (United States)

    Jang, Choon-Man; Han, Gi-Young

    2010-10-01

    This paper describes the shape optimization of an impeller used for two-stage high pressure ring blower. Two shape variables, which are used to define an impeller shape, are introduced to increase the blower performance. The pressure of a blower is selected as an object function, and the blade optimization is performed by a response surface method. Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of object function for the training data. Relatively good agreement between experimental measurements and numerical simulation is obtained in the present study. Throughout the shape optimization, it is found that a hub height is effective to increase pressure in the ring blower. The pressure rise for the optimal two-stage ring blower is successfully increased up to 1.86% compared with that of reference at the design flow rate. Local recirculation flow having low velocity is formed in both sides of the impeller outlet by different flow direction of the inlet and outlet of the impeller. Detailed flow field inside the ring blower is also analyzed and discussed.

  11. Metal atomization spray nozzle

    Science.gov (United States)

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  12. Atomizing nozzle and process

    Science.gov (United States)

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  13. Inlet nozzle assembly

    Science.gov (United States)

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  14. REACTOR NOZZLE ASSEMBLY

    Science.gov (United States)

    Capuder, F.C.; Dearwater, J.R.

    1959-02-10

    An improved nozzle assembly useful in a process for the direct reduction of uranium hexafluoride to uranium tetrafluoride by means of dissociated ammonia in a heated reaction vessel is descrlbed. The nozzle design provides for intimate mixing of the two reactants and at the same time furnishes a layer of dissociated ammonia adjacent to the interior wall of the reaction vessel, thus preventing build-up of the reaction product on the vessel wall.

  15. Time-frequency analysis of the Surge Onset in the Centrifugal Blower

    Directory of Open Access Journals (Sweden)

    Liskiewicz Grzegorz

    2015-09-01

    Full Text Available Time frequency analysis of the surge onset was performed in the centrifugal blower. A pressure signal was registered at the blower inlet, outlet and three locations at the impeller shroud. The time-frequency scalograms were obtained by means of the Continuous Wavelet Transform (CWT. The blower was found to successively operate in four different conditions: stable working condition, inlet recirculation, transient phase and deep surge. Scalograms revealed different spectral structures of aforementioned phases and suggest possible ways of detecting the surge predecessors.

  16. Response of centrifugal blowers to simulated tornado transients, July-September 1981

    International Nuclear Information System (INIS)

    During this quarter, quasi-steady and dynamic testing of the 24-in. centrifugal blower was completed using the blowdown facility located at New Mexico State University. The data were obtained using a new digital data-acquisition system. Software was developed at the Los Alamos National Laboratory to reduce the dynamic test data and create computer-generated movies showing the dynamic performance of the blower under simulated tornado transient pressure conditions relative to its quasi-steady-state performance. Currently, quadrant-four (outrunning flow) data have been reduced for the most severe and a less severe tornado pressure transient. The results indicate that both the quasi-steady and dynamic blower performance are very similar. Some hysteresis in the dynamic performance occurs because of rotational inertia effects in the blower rotor and drive system. Currently quadrant-two (backflow) data are being transferred to the LTSS computer system at Los Alamos and will be reduced shortly

  17. Production Facility Prototype Blower Installation Report with 1000 Hr Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations.

  18. Using jet blowers in order to increase the intake capacity of pumping wells

    Energy Technology Data Exchange (ETDEWEB)

    Voznyy, V.R.; Goy, I.M.; Kifor, B.M.; Lotovskiy, V.N.; Yatsura, Ya.V.

    1983-01-01

    Methods for increasing the intake capacity of pumping wells are analyzed and a new technology is proposed for clearing the near shaft zone of a stratum using jet blowers. Experience in operations to restore the filtration properties of productive levels by the complex effect of acetic processing and cyclic action using the jet blowers on a stratum is described. Conclusions and recommendations for using the developed technology for clearing the near shaft zone of a stratum are given.

  19. OPTIMIZING IMPELLER GEOMETRY FOR PERFORMANCE ENHANCEMENT OF A CENTRIFUGAL BLOWER USING THE TAGUCHI QUALITY CONCEPT

    OpenAIRE

    R RAGOTH SINGH; M.Nataraj

    2012-01-01

    As the diffusion of flow process is highly complex in centrifugal blower operation, it is necessary to design / develop the geometry of impeller and casing to reduce the flow losses significantly. In the present study, the methodology to find near optimum combination of blower operating variables for performance enhancement were analyzed using computational fluid dynamics(CFD). Taguchi orthogonal array (OA) based design of experiments (DoE) technique determines the required experimental trial...

  20. Turbine nozzle attachment system

    Science.gov (United States)

    Norton, Paul F.; Shaffer, James E.

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  1. Design of a Centrifugal Blower for a 400kg Rotary Furnace.

    Directory of Open Access Journals (Sweden)

    Sani Malami Suleiman

    2016-10-01

    Full Text Available Poor performance of a rotary furnace cannot be unconnected to failure in the design of the blower among others, This paper discuss the design of a centrifugal blower for a rotary furnace which will give the required manometric efficiency that will aid adequate combustion as required. The blower was designed to convert ‘driver’ energy to kinetic energy in the fluid by accelerating it to the outer rim of the revolving device known as the impeller. The impeller, driven by the blower shaft adds the velocity component to the fluid by centrifugally casting the fluid away from the impeller vane tips. The amount of energy given to the fluid corresponds to the velocity at the edge or vane tip of the impeller. Significance: Centrifugal blowers are applicable in furnaces such as Rotary and cupola furnace, the efficiency of these furnaces depend on the blast rate and air delivery from a well design blower. This paper will guide to achieve this aims.

  2. Oil burner nozzle

    Science.gov (United States)

    Wright, Donald G.

    1982-01-01

    An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

  3. Lentes progressivas x lentes multifocais: um estudo baseado na geometria analítica do cone

    Directory of Open Access Journals (Sweden)

    Araújo Marília Cavalcante

    2004-01-01

    Full Text Available OBJETIVO: Compreender, por meio de figuras e funções matemáticas do cone, as lentes progressivas e mostrar que elas não são lentes multifocais porque, nelas, a refração da luz não obedece as leis da geometria euclidiana. MÉTODOS: Foi feito um estudo da geometria analítica do cone, com o programa de computador Auto-CAD 14, dando enfoque óptico às figuras geométricas obtidas com a sua secção. RESULTADOS: Pela análise das figuras obtidas da secção do cone, pudemos observar as superfícies que compõem as lentes progressivas. Estas superfícies são compostas de elipse, círculo, parábola e hipérbole. Diferente do que é dito na literatura, encontramos as elipses com diâmetro maior nas ordenadas e de mesmo sentido seguida por duas superfícies inferiores que são parábola e hipérbole e não o contrário. CONCLUSÕES: As lentes progressivas diferentemente das lentes multifocais apresentam prismas nos centros ópticos como decorrência da sua estrutura. No final, fizemos análise das suas formas mostrando o limite teórico da sua evolução.

  4. Blower Gun pellet injection system for W7-X

    International Nuclear Information System (INIS)

    Foreseen to serve for the new stellarator W7-X for pellet investigations, the former ASDEX Upgrade Blower Gun was revised and revitalized in a test bed. The gun is able now to launch cylindrical pellets of 2 mm diameter and 2 mm length, produced from frozen Deuterium (D2) or Hydrogen (H2). Pellets are accelerated by a short pulse of pressurized helium propellant gas to velocities in the range of 100-250 m/s. Delivery reliabilities at the launcher exit close to unity are achieved. For pellet transfer to the plasma vessel a first mock up guiding tube version was investigated. Transfer through this S-shaped (inner diameter 8 mm; length 6 m) stainless steel guiding tube containing two 1 m curvature radii was investigated for both H2 and D2 pellets. Tests were performed applying repetition rates from 2 Hz to 50 Hz and propellant gas pressures ranging from 1 bar to 6 bar. For both H2 and D2, low overall delivery efficiencies were observed at slow repetition rates, but stable efficiencies of about 90% above 10 Hz.

  5. Whistle-blower accuses VA inspector general of a "whitewash"

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2014-09-01

    Full Text Available No abstract available. Article truncated after 150 words. Yesterday, Dr. Sam Foote, the initial whistle-blower at the Phoenix VA, criticized the Department of Veterans Affairs inspector general's (VAOIG report on delays in healthcare at the Phoenix VA at a hearing before the House Committee of Veterans Affairs (1,2. Foote accused the VAOIG of minimizing bad patient outcomes and deliberately confusing readers, downplaying the impact of delayed health care at Phoenix VA facilities. "At its best, this report is a whitewash. At its worst, it is a feeble attempt at a cover-up," said Foote. Foote earlier this year revealed that as many as 40 Phoenix patients died while awaiting care and that the Phoenix VA maintained secret waiting lists while under-reporting patient wait times for appointments. His disclosures triggered the national VA scandal. Richard Griffin, the acting VAOIG, said that nearly 300 patients died while on backlogged wait lists in the Phoenix VA Health Care System, a much higher ...

  6. Duplex tab exhaust nozzle

    Science.gov (United States)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  7. Dalla geometria delle preesistenze alla conoscenza della costruzione: un’esperienza di recupero aggiornata dalla metodologia BIM

    Directory of Open Access Journals (Sweden)

    Massimiliano Lo Turco

    2012-06-01

    Full Text Available Il termine costruire (lessicalmente equivale a riordinare le singole parti dell’operazione secondo il nesso logico e grammaticale; ed altresì disporle e collegarle secondo le regole e l’uso della lingua. Analogamente gli odierni strumenti BIM possiedono nelle loro corde sia una riconoscibile capacità di sviluppare progetti seguendo le regole del buon costruire, sia un puntuale controllo della geometria da cui derivano le molteplici rappresentazioni di tipo grafo-numerico. Ci si interrogherà inoltre sul rinnovato rapporto tra Rilievo e Progetto, in un ambiente particolarmente fertile ove la Geometria è indagata nelle sue poliedriche proprietà e al Disegno è affidato un ruolo di maggiore visibilità e di effettiva rilevanza.

  8. Forced Mixer Nozzle Optimization

    Science.gov (United States)

    Sheoran, Yogi; Hoover, Robert; Schuster, William; Anderson, Morris; Weir, Donald S.

    1999-01-01

    Computational fluid dynamic (CFD) and computational acoustic analyses (CAA) were performed for a TFE731-40 compound nozzle, a TFE731-60 mixer nozzle and an Energy Efficient Engine (E(sup 3)) mixer nozzle for comparison with available data. The CFD analyses were performed with a three dimensional, Navier-Stokes solution of the flowfield on an unstructured grid using the RAMPANT program. The CAA analyses were performed with the NASA Glenn MGB program using a structured grid. A successful aerodynamic solution for the TFE731-40 compound nozzle operating statically was obtained, simulating an engine operating on a test stand. Analysis of the CFD results of the TFE731-40 with the MGB program produced predicted sound power levels that agree quite well with the measured data front full-scale static engine tests. Comparison of the predicted sound pressure with the data show good agreement near the jet axis, but the noise levels are overpredicted at angles closer to the inlet. The predicted sound power level for the TFE731-60 did not agree as well with measured static engine data as the TFE731-40. Although a reduction in the predicted noise level due to the mixed flow was observed, the reduction was not as significant as the measured data. The analysis of the V2 mixer from the E(sup 3) study showed that peak temperatures predicted in the mixer exit flowfield were within 5 percent of the values measured by the exit probes. The noise predictions of the V2 mixer nozzle tended to be 3-5 dB higher in peak noise level than the measurements. In addition, the maximum frequency of the noise was also overpredicted. An analysis of the 3 candidate mixer nozzle configurations demonstrated the feasibility of using centerbody lobes and porosity to improve mixing efficiency. A final configuration was designed with a predicted thermal mixing efficiency that was 5 percent higher than the 3 candidate mixers. The results of the MGB noise calculations show that the final design will exceed the

  9. Nozzle limit pressure

    International Nuclear Information System (INIS)

    A brief description of the static method aiming to determined the collapse load in a structure of elastic-plastic material is given. This methodology together with the Finite Element Method in the field approximation, leads to a problem of minimizing a linear function with linear constraints. The application of this technique to axissymmetrical shells submmited to axissymmetric loads is analyzed; the numerical application is done for nozzles in pipelines and pressure vessels joints. (E.G.)

  10. Limit loads in nozzles

    International Nuclear Information System (INIS)

    The static method for the evaluation of the limit loads of a perfectly elasto-plastic structure is presented. Using the static theorem of Limit Analysis and the Finite Element Method, a lower bound for the colapso load can be obtained through a linear programming problem. This formulation if then applied to symmetrically loaded shells of revolution and some numerical results of limit loads in nozzles are also presented. (Author)

  11. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  12. OPTIMIZING IMPELLER GEOMETRY FOR PERFORMANCE ENHANCEMENT OF A CENTRIFUGAL BLOWER USING THE TAGUCHI QUALITY CONCEPT

    Directory of Open Access Journals (Sweden)

    R RAGOTH SINGH

    2012-10-01

    Full Text Available As the diffusion of flow process is highly complex in centrifugal blower operation, it is necessary to design / develop the geometry of impeller and casing to reduce the flow losses significantly. In the present study, the methodology to find near optimum combination of blower operating variables for performance enhancement were analyzed using computational fluid dynamics(CFD. Taguchi orthogonal array (OA based design of experiments (DoE technique determines the required experimental trials. The experimental results are justifiedby Analysis of Variance (ANOVA and confirmed by conformation experiments. The parameters chosen for design optimization are Impeller outlet diameter, Impeller wheel width, Thickness of blade and Impeller inlet diameter. The levels for the parametric specification are chosen from the ranges where the blower will get thebest efficiency. CFD results were validated by the fine conformity between the CFD results and the experimental results.

  13. Numerical Simulations of Canted Nozzle and Scarfed Nozzle Flow Fields

    Science.gov (United States)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    Computational fluid dynamics (CFD) techniques are used for the analysis of issues concerning non-conventional (canted and scarfed) nozzle flow fields. Numerical simulations are carried out for the quality of flow in terms of axisymmetric nature at the inlet of canted nozzles of a rocket motor. Two different nozzle geometries are examined. The analysis of these simulation results shows that the flow field at the entry of the nozzles is non axisymmetric at the start of the motor. With time this asymmetry diminishes, also the flow becomes symmetric before the nozzle throat, indicating no misalignment of thrust vector with the nozzle axis. The qualitative flow fields at the inlet of the nozzles are used in selecting the geometry with lesser flow asymmetry. Further CFD methodology is used to analyse flow field of a scarfed nozzle for the evaluation of thrust developed and its direction. This work demonstrates the capability of the CFD based methods for the nozzle analysis problems which were earlier solved only approximately by making simplifying assumptions and semi empirical methods.

  14. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    Science.gov (United States)

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters. PMID:15764523

  15. Speed adjustment of blowers in refrigeration engineering. Exemplary applications; Verfahren der Drehzahlveraenderung von Ventilatoren in der Kaeltetechnik. Beispiel verschiedener Anwendungsfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Albig, J. [Ziehl-Abegg AG, Kuenzelsau (Germany)

    2007-02-15

    Apart from the motor performance, also the investment cost of speed adjustment systems decide the economic efficiency of blowers. The blower performance itself is left out of account in this investigation. The most common control strategies are investigated, i.e. voltage control, frequence control, and EC technology. (orig.)

  16. Response of air cleaning system dampers and blowers to simulated tornado transients

    International Nuclear Information System (INIS)

    The effects of tornado-like pressure transients upon dampers and blowers in nuclear air cleaning systems were studied. For the dampers pressure drop as a function of flow rate was obtained and an empirical relationship developed. Transient response was examined for several types of dampers, as was structural integrity. Both centrifugal and axi-vane blowers were tested and transient characteristic curves were generated in outrunning and backflow situations. The transient characteristic curves do not necessarily match the quasi-steady characteristic curves

  17. Jet vectoring through nozzle asymmetry

    Science.gov (United States)

    Roh, Chris; Rosakis, Alexandros; Gharib, Morteza

    2015-11-01

    Previously, we explored the functionality of a tri-leaflet anal valve of a dragonfly larva. We saw that the dragonfly larva is capable of controlling the three leaflets independently to asymmetrically open the nozzle. Such control resulted in vectoring of the jet in various directions. To further understand the effect of asymmetric nozzle orifice, we tested jet flow through circular asymmetric nozzles. We report the relationship between nozzle asymmetry and redirecting of the jet at various Reynolds numbers. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  18. Geometria fractal em física do solo Fractal geometry in soil physics

    Directory of Open Access Journals (Sweden)

    O.O.S. Bacchi

    1993-09-01

    Full Text Available A geometria fractal tem sido aplicada nos mais diversos ramos da ciencia, mostrando grande potencial na descrição de estruturas altamente complexas. A sua aplicação em ciência do solo tem despertado grande interesse e vem se intensificando nos últimos anos. Apesar da sua divulgação através da literatura científica internacional, de conhecido acesso por parte dos pesquisadores brasileiros, o assunto parece não ter merecido ainda a nossa atenção, a contar pela ausência do tema em nossas revistas especializadas. Tratamos aqui da conceituação básica dessa nova abordagem e de algumas aplicações em física do solo.Fractal geometry has been applied on different branches of science, showing high potential in describing complex structures. Its applications in soil science have received large attention and have been intensified in the last few years. Inspite of the large number of internationally published papers, the subject seems not having received the same attention by Brazilian soil scientists, as verified by the absence of the subject in our scientific journals. This paper presents the basic concepts of this new tool and some of its applications in soil physics.

  19. Supersonic-Nozzle Shock-Wave Analysis

    Science.gov (United States)

    Wagner, W. R.; Ratekin, G. H.

    1984-01-01

    Analytical procedure used to modify design of high-pressure-ratio nozzles to reduce vibration during start-up and shutdown. Nozzles used in jet engines, laser nozzles and diffusers, wind tunnels, gas turbines and rocket engines.

  20. Testicular cancer trends as 'whistle blowers' of testicular developmental problems in populations

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, Ewa; Jørgensen, N;

    2007-01-01

    in TGCC rates of a population may be 'whistle blowers' of other reproductive health problems. As cancer registries are often of excellent quality - in contrast to registries for congenital abnormalities - health authorities should consider an increase in TGCC as a warning that other reproductive health...

  1. Velocity and turbulence measurements of impellers discharge flow for multi-stage centrifugal blower

    International Nuclear Information System (INIS)

    This paper assesses some results of an experimental investigation on a 4-stage centrifugal blower. The two-dimensional velocity and turbulence field at the exit of the first and fourth stage was measured in some working conditions of the machine, by a single hot-wire anemometer rotated twice about its own axis

  2. Modification and application of a leaf blower-vac for field sampling of arthropods

    NARCIS (Netherlands)

    Zou, Yi; Telgen, van Mario D.; Chen, Junhui; Xiao, Haijun; Kraker, de Joop; Bianchi, Felix J.J.A.; Werf, van der Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure,

  3. Auxiliary bearing design and rotor dynamics analysis of blower fan for HTR-10

    International Nuclear Information System (INIS)

    The electromagnetic bearing instead of ordinary mechanical bearing was chosen to support the rotor in the blower fan system with helium of 10 MW high temperature gas-cooled test reactor (HTR-10), and the auxiliary bearing was applied in the HTR-10 as the backup protector. When the electromagnetic bearing doesn't work suddenly for the power broken, the auxiliary bearing is used to support the falling rotor with high rotating speed. The rotor system will be protected by the auxiliary bearing. The design of auxiliary bearing is the ultimate safeguard for the system. This rotor is vertically mounted to hold the blower fan. The rotor's length is about 1.5 m, its weight is about 240 kg and the rotating speed is about 5400 r/min. Auxiliary bearing design and rotor dynamics analysis are very important for the design of blower fan to make success. The research status of the auxiliary bearing was summarized in the paper. A sort of auxiliary bearing scheme was proposed. MSC.Marc was selected to analyze the vibration mode and the natural frequency of the rotor. The scheme design of auxiliary bearing and analysis result of rotor dynamics offer the important theoretical base for the protector design and control system of electromagnetic bearing of the blower fan. (authors)

  4. Desenvolvimento Instrumental do Raciocínio dos Professores em Geometria Dinâmica (Tradução

    Directory of Open Access Journals (Sweden)

    Alqahtani, Muteb M.

    2015-05-01

    Full Text Available To contribute to understanding how teachers can develop geometrical understanding, we report on the discursive development of teachers’ geometrical reasoning through instrument appropriation while collaborating in an online dynamic geometry environment (DGE. Using the theory of instrument-mediated activity, we analysis the discourse and DGE actions of a group of middle and high school mathematics teachers who participated in a semester-long, professional development course. Working in small teams, they collaborated to solve geometric problems. Our results show that as teachers appropriate DGE artifacts and transform its components into instruments, they develop their geometrical knowledge and reasoning in dynamic geometry. Our study contributes to a broad understanding of how teachers develop mathematical knowledge for teaching. Com o intuito de contribuir para o entendimento de como os professores podem desenvolver a compreensão da geometria, este artigo trata do desenvolvimento discursivo do raciocínio geométrico dos professores através de apropriação de instrumentos enquanto colaborando em um ambiente de geometria dinâmica (AGD online. Utilizando a teoria da atividade mediada por instrumentos, analisamos o discurso e as ações AGD de um grupo de professores de matemática do ensino fundamental e médio que participaram de um curso de desenvolvimento profissional com duração de um semestre. Trabalhando em pequenos grupos, eles interagiram para resolver problemas geométricos. Nossos resultados mostram que na medida em que se apropriam dos artefatos AGD e transformam seus componentes em instrumentos, os professores desenvolvem o conhecimento e raciocínio geométricos em geometria dinâmica. Nosso estudo contribui para uma compreensão ampla de como os professores desenvolvem o conhecimento matemático para o ensino.

  5. Nozzle insert for mixed mode fuel injector

    Science.gov (United States)

    Lawrence, Keith E.

    2006-11-21

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. The homogeneous charged nozzle outlet set is defined by a nozzle insert that is attached to an injector body, which defines the conventional nozzle outlet set. The nozzle insert is a one piece metallic component with a large diameter segment separated from a small diameter segment by an annular engagement surface. One of the needle valve members is guided on an outer surface of the nozzle insert, and the nozzle insert has an interference fit attachment to the injector body.

  6. Quam maximis potest itineribus: andata e ritorno della costruzione tra immagine e modello nello spazio grafico della geometria descrittiva

    Directory of Open Access Journals (Sweden)

    Matteo Ballarin

    2012-06-01

    Full Text Available Il contributo testimonia una strategia d'insegnamento congiunto del rilievo architettonico, della geometria descrittiva e del disegno digitale concepita come un viaggio di andata e ritorno tra immagine e modello. Iniziando dalla fotogrammetria elementare e dalle tecniche di foto-modellazione offerte da software (gratuiti e dotati di un'interfaccia sufficientemente  intuitiva si possono poi introdurre – col metodo di Monge – le tecniche del rilievo topografico, giungendo alla costruzione interdefinita di un unico modello digitale degli oggetti del rilievo. Il circolo didattico si chiude poi costruendo rappresentazioni tabulari tradizionali dei modelli.

  7. Airfoil nozzle and shroud assembly

    Science.gov (United States)

    Shaffer, James E.; Norton, Paul F.

    1997-01-01

    An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

  8. Injection nozzle for a turbomachine

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  9. Geometria na educação infantil: da manipulação empirista ao concreto piagetiano

    Directory of Open Access Journals (Sweden)

    Simone de Souza

    2012-01-01

    Full Text Available Refletir sobre os conhecimentos de geometria do professor de educação infantil e as concepções epistemológicas que fundamentam suas condutas pedagógicas foi o objetivo de nossa pesquisa. A análise dos discursos indicou boa vontade das professoras para o trabalho geométrico, entretanto o desconhecimento da geometria enquanto teoria e a enraizada concepção epistemológica empirista, reportaram à ideia de que este conhecimento está nos objetos, bastando sua manipulação para que haja aprendizagem. Assim, caberia às crianças, por meio de estímulos e da organização dos materiais manipuláveis pelos docentes, a descoberta das formas geométricas presentes no mundo que as rodeia. Buscamos, na epistemologia genética de Jean Piaget, as bases sólidas para contribuições à reflexão e atuação de professores.

  10. Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.

    Science.gov (United States)

    Yeager, David Marvin

    An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results

  11. Hook nozzle arrangement for supporting airfoil vanes

    Science.gov (United States)

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A gas turbine engine's nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic.

  12. Flow optimization in blowers by means of LDA measurements; Stroemungstechnische Optimierung von Ventilatoren mit Hilfe der LDA-Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, E.; Strehle, M. [ebm Werke GmbH und Co. KG, Mulfingen (Germany); Bohl, K. [Heilbronn Fachhochschule (Germany)

    2003-06-01

    The contribution describes the application of LDA techniques for flow measurements and optimization of blowers. Three examples are presented to show how LDA measurements can be used for optimization and design of industrial blowers. [German] Der Beitrag beschreibt die Anwendung der LDA-Messtechnik fuer die stroemungstechnische Entwicklung und Optimierung von Ventilatoren. An drei Beispielen wird gezeigt, wie im industriellen Einsatz mit LDA-Messungen wesentliche Informationen ermittelt werden koennen, die dann zur Verbesserung oder zur Auslegung von Ventilatoren eingesetzt werden. (orig.)

  13. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods.

    Science.gov (United States)

    Zou, Yi; van Telgen, Mario D; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J J A; van der Werf, Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m(2) yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries. PMID:27584040

  14. Numerical Simulation of Unsteady Discharge Flow with Fluctuation in Positive Discharge Blower

    Institute of Scientific and Technical Information of China (English)

    LIU Zhengxian; WANG Dou; XU Lianhuan

    2009-01-01

    The operating performance of positive discharge blower/s markedly influenced by the pulsation of the discharge flow, but difficult to be measured with experimental methods. The internal and discharge flow of positive discharge blower with involute type three-lobe are numerically investigated, both in air cooling and countercurrent cooling conditions by means of computational fluid dynamics (CFD). The unsteady compressible flow equations are solved using RNG κ-ε turbulent model. The finite difference method and the second order upwind difference scheme are applied into discrete equations. In the numerical simulation, the dynamic mesh techniques are used to approach the rotating displacement of cell cubage and the alterability of inlet, outlet flow area. The non-uniform mesh is applied to the rotor-stator coupled area. The reliability of the numerical method is verified by simulating the inner flow and comparing with the semi-empirical theory. The flow flux curves and the distributing of velocity vector showed obvious vortex motion in all the discharge process, both in air cooling and countercurrent cooling conditions. These vortexes with different positions, intension and numbers at different rotating angles have remarkable influences on the discharge flux. For air cooling, the vortex produced a second pulsation with big-amplitude in a cycle, and led to the early appearance of maximum of backflow. For countercurrent cooling, the frequency of pulsation increased due to the pre-inflow, but the hackflow at the outlet is prevented, also the pulsation strength has greatly decreased.

  15. Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle

    OpenAIRE

    aShyamshankar.M.B; Sankar.V

    2015-01-01

    The objective of this project work is to computationally analyze shock waves in the Convergent Divergent (CD) Nozzle. The commercial CFD code Fluent is employed to analyze the compressible flow through the nozzle. The analysis is about NPR (Nozzle Pressure Ratio) i.e., the ratio between exit pressure of the nozzle to ambient pressure. The various models of CD Nozzle are designed and the results are compared. The flow characteristic of shockwave for various design of CD Nozzle is a...

  16. Nozzle geometry for organic vapor jet printing

    Science.gov (United States)

    Forrest, Stephen R; McGraw, Gregory

    2015-01-13

    A first device is provided. The device includes a print head. The print head further includes a first nozzle hermetically sealed to a first source of gas. The first nozzle has an aperture having a smallest dimension of 0.5 to 500 microns in a direction perpendicular to a flow direction of the first nozzle. At a distance from the aperture into the first nozzle that is 5 times the smallest dimension of the aperture of the first nozzle, the smallest dimension perpendicular to the flow direction is at least twice the smallest dimension of the aperture of the first nozzle.

  17. Densità di energia di deformazione locale e resistenza a fatica di giunti saldati di geometria complessa

    Directory of Open Access Journals (Sweden)

    P. Lazzarin

    2008-01-01

    Full Text Available Un recente criterio basato sul valore medio della densità di energia di deformazione (SED inun volume di controllo è applicato a diverse serie di dati sperimentali tratti dalla letteratura, relativi a giuntisaldati di geometria complessa realizzati in acciaio. Il volume di controllo è rappresentato da un settore circolare di raggio pari a 0.28 mm, centrato sul piede o sulla radice dei cordoni di saldatura. Entrambe le regioni sono modellate come intagli V non raccordati con differenti angoli di apertura. La densità di energia di deformazione viene valutata direttamente da modelli agli elementi finiti tridimensionali. I dati sperimentali, riconvertiti in termini energetici, si posizionano all’interno di una banda di dispersionerecentemente proposta in letteratura. La banda sintetizzava più di 650 dati sperimentali relativi a giunti saldati con cordone d’angolo, con rotture innescate indifferentemente al piede o alla radice dei cordonidi saldatura.

  18. Geometrias não euclidianas na formação inicial do professor de matemática

    OpenAIRE

    Cavichiolo, Claudia Vanessa, 1971-

    2012-01-01

    Resumo: A inclusão de conteúdos de Geometrias não Euclidianas no currículo da Matemática escolar tem sido tema de discussões entre professores de Matemática dos vários níveis, resultando em orientações curriculares que pressupõem um professor de Matemática preparado para esse ensino. Preocupada em entender como esta inclusão está sendo considerada pelos responsáveis pela formação inicial de professores para a escola básica, esta dissertação buscou responder a seguinte indagação: o que dizem p...

  19. Caminhos e percursos da Geometria Analítica: estudo histórico e epistemológico

    OpenAIRE

    Castro, Adriana

    2013-01-01

    A Geometria Analítica é parte integrante dos conteúdos a serem trabalhados na Educação Básica. Além disso, os conceitos trabalhados na Educação Básica são aprofundados nos componentes curriculares dos cursos de graduação das ciências exatas tais como Engenharia, Ciências da Computação, Arquitetura, Matemática, Física, etc. Seu estudo é relevante, pois é uma ferramenta importante para o Cálculo Diferencial e Integral e é uma das principais referências em um primeiro curso de Álgebra Linear. Es...

  20. Nozzle for superconducting fiber production

    Science.gov (United States)

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  1. Linear nozzle with tailored gas plumes

    Science.gov (United States)

    Leon, David D.; Kozarek, Robert L.; Mansour, Adel; Chigier, Norman

    2001-01-01

    There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

  2. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Energy Technology Data Exchange (ETDEWEB)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  3. Simulation of a Downsized FDM Nozzle

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pimentel, Rodrigo; Pedersen, David B.;

    2015-01-01

    This document discusses the simulat-ion of a downsized nozzle for fused deposition modelling (FDM), namely the E3D HotEnd Extruder with manufactured diameters of 200-400 μm in the nozzle tip. The nozzle has been simulated in terms of heat transfer and fluid flow giving an insight into the physical...

  4. Kinetic energy of rainfall simulation nozzles

    Science.gov (United States)

    Different spray nozzles are used frequently to simulate natural rain for soil erosion and chemical transport, particularly phosphorous (P), studies. Oscillating VeeJet nozzles are used mostly in soil erosion research while constant spray FullJet nozzles are commonly used for P transport. Several ch...

  5. Nozzle Bricks and Well Bricks

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Peng Xigao

    2011-01-01

    1 Scope This standard specifies the classification,brand,technical requirements,test methods,inspection rules,marking,packing,transportation,storage,and quality certificate of nozzle bricks and well bricks.This standard is applicable to unfired and fired products.

  6. O ENSINO DE GEOMETRIA NAS SÉRIES INICIAIS DO ENSINO FUNDAMENTAL: ANALISANDO AS CONCEPÇÕES DOS ACADÊMICOS DO NORMAL SUPERIOR

    Directory of Open Access Journals (Sweden)

    Leny R. M. Teixeira

    2012-07-01

    Full Text Available O presente trabalho relata os resultados de um estudo que investigou concepções e dificuldades de acadêmicos do Curso Normal Superior da Universidade Católica Dom Bosco/Campo Grande-MS a respeito do ensino de Geometria nas séries iniciais do ensino fundamental. Os dados foram coletados mediante observações e aplicação de um questionário durante a realização de um minicurso que envolvia atividades relacionadas às formas tridimensionais e bidimensionais. O questionário tinha o propósito de identificar as concepções e dificuldades dos participantes a respeito da diferenciação entre sólidos e figuras planas. Os dados revelaram que as dificuldades dos acadêmicos, em Geometria, estão relacionadas tanto à nomeação e representação no plano de formas tridimensionais, como à diferenciação entre sólidos e figuras planas. Quanto às concepções, os acadêmicos apontam o livro didático como uma das principais alternativas para conduzir o ensino de Geometria

  7. In-cylinder gas velocity measurements comparing crankcase and blower scavenging in a fired two-stroke cycle engine

    Science.gov (United States)

    Miles, P. C.; Green, R. M.; Witze, P. O.

    1994-01-01

    The in-cylinder flow field of a Schnuerle (loop) scavenged two-stroke engine has been examined under conditions simulating both blower and crankcase driven scavenging. Measurements of the radial component of velocity were obtained along the cylinder centerline during fired operation at delivery ratios of 0.4, 0.6, and 0.8. Both mean velocity profiles and root mean square velocity fluctuations near top center show a strong dependence on the scavenging method. Complementary in-cylinder pressure measurements indicate that combustion performance is better under blower driven scavenging for the engine geometry studied.

  8. R+D works for the further development of high temperature reactors. (1) Captive bearing experiments for active magnetic bearings. (2) Captive bearing test for HTR blowers

    International Nuclear Information System (INIS)

    When using active magnetic bearings as blower shaft bearings, blower motors and bearings must be protected against mechanical damage in case of faults (example: total electrical supply failure due to the supply cables breaking). So-called captive bearings are provided, in order to be able to shut the blowers down safely in such faults. These captive bearings are roller bearings which are additionally fitted in the area of the blower shaft bearings, to prevent mechanical contact between the blower rotor and stator. As there was little experience available for the given boundary conditions, such as - speed, - acceleration, - bearing load, - bearing dimensions, - ambient conditions, appropriate development and tests had to be carried out. It was important to determine suitable captive bearings and the necessary ambient conditions, which will make it possible to support the failures of the magnetic bearings to be expected in 40 years' operation of the reactor without damage and to meet the requirements of the captive bearings. (orig./GL)

  9. Spray nozzle for fire control

    Science.gov (United States)

    Papavergos, Panayiotis G.

    1990-09-01

    The design of a spray nozzle for fire control is described. It produces a spray of gas and liquid having an oval transverse cross section and it comprises a mixing chamber with an oval transverse cross section adapted to induce a toroidal mixing pattern in pressurized gas and liquid introduced to the mixing chamber through a plurality of inlets. In a preferred embodiment the mixing chamber is toroidal. The spray nozzle produces an oval spray pattern for more efficient wetting of narrow passages and is suitable for fire control systems in vehicles or other confined spaces. Vehicles to which this invention may be applied include trains, armoured vehicles, ships, hovercraft, submarines, oil rigs, and most preferably, aircraft.

  10. Small drops from large nozzles

    Science.gov (United States)

    Castrejon-Pita, Alfonso Arturo; Said Mohamed, Ahmed; Castrejon-Pita, Jose Rafael; Herrada, Miguel Angel

    2015-11-01

    We report experimental and numerical results of the generation of drops which are significantly smaller than the nozzle from which they are generated. The system consists of a cylindrical reservoir and two endplates. One plate is a thin metal sheet with a small orifice in its centre which acts as the nozzle. The other end consists of a piston which moves by the action of an elecromechanical actuator which in turn is driven by sine-shape pull-mode pulses. The meniscus (formed at the nozzle) is thus first overturned, forming a cavity. This cavity collapses and a thin and fast jet emerges from its centre. Under appropriate conditions the tip of this jet breaks up and produces a single diminutive drop. A good agreement between the experimental and numerical results was found. Also, a series of experiments were performed in order to study the effects that the pulse amplitude and width, together with variations in the liquid properties, have over the final size of the droplet. Based on these experiments, a predictive law for the droplet size has been derived. This work was funded by the Royal Society (University Research Fellowship and Research Grant), the John Fell Fund (Oxford University Press), the Ministry of Science and Education (DPI2013-46485 Spain), and the Junta de Andalucia (P08-TEP-31704128 Spain).

  11. Nozzle assembly for gas-dynamic high efficiency lasers

    Energy Technology Data Exchange (ETDEWEB)

    Malburg, W.; Mohr, F.

    1981-03-17

    The present nozzle assembly for gas-dynamic high efficiency lasers with a cooling system comprises a plurality of specially formed nozzle members or so-called lamellae. Each nozzle has its own cooling passages, matching bodies and glide surfaces. A series of nozzle members are placed in thermal contact with each other within a mounting or holding block. A coolant flows through said cooling passages which extend through each nozzle throat region and through matching bodies of the nozzle members so that a uniform temperature prevails across the nozzle assembly whereby the nozzle dimensions are maintained constant especially at the nozzle throat width and whereby leakage flows are eliminated.

  12. A geometria do campo magnético na região da nuvem Lupus 1

    Science.gov (United States)

    Alves, F. P.; Franco, G. A. P.

    2003-08-01

    Apresentaremos os resultados de uma investigação polarimétrica na região de formação estelar junto à nuvem escura Lupus 1. Esse estudo baseia-se em polarimétria CCD obtida na banda R, e cobre Lupus 1, bem como a área vizinha a essa nuvem contendo a cavidade em 100 mm IRAS. Os dados observacionais foram coletados com o telescópio IAG de 60 cm do Observatório do Pico dos Dias (LNA/MCT - Brasópolis - MG). Nossa primeira análise mostra que uma variação da orientação do campo magnético através da região pode produzir padrões complexos de polarização cuja geometria do campo não pode ser facilmente determinada. Os padrões de polarização são inconsistentes com um campo magnético estritamente uniforme e unidimensional em larga escala. Comparação com a emissão em 100 mm mostra que localmente os vetores de polarização exibem um forte alinhamento com a orientação dos padrões observados em infravermelho.

  13. Support pedestals for interconnecting a cover and nozzle band wall in a gas turbine nozzle segment

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Webbon, Waylon Willard; Bagepalli, Radhakrishna; Burdgick, Steven Sebastian; Kellock, Iain Robertson

    2002-01-01

    A gas turbine nozzle segment has outer and inner band portions. Each band portion includes a nozzle wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through the apertures of the impingement plate to cool the nozzle wall. Structural pedestals interconnect the cover and nozzle wall and pass through holes in the impingement plate to reduce localized stress otherwise resulting from a difference in pressure within the chamber of the nozzle segment and the hot gas path and the fixed turbine casing surrounding the nozzle stage. The pedestals may be cast or welded to the cover and nozzle wall.

  14. Variable volume combustor with pre-nozzle fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  15. Wire Whip Keeps Spray Nozzle Clean

    Science.gov (United States)

    Carroll, H. R.

    1982-01-01

    Air-turbine-driven wire whip is clamped near spray-gun mount. When spray gun is installed, wire whip is in position to remove foam buildup from nozzle face. Two lengths of wire 1 to 2 inches long and about 0.03 inch in thickness are used. Foam spray would be prevented from accumulating on nozzle face by increasing purge flow and cutting vortex-generating grooves inside cap and on nozzle flats.

  16. A Blower-Like Approach to Predict the Effectiveness of Vaccines in a TB Dynamic Carlos

    Directory of Open Access Journals (Sweden)

    Frederico Fronza

    2014-06-01

    Full Text Available In this paper we present an extension of an automata approach proposed by S. Blower (1998 to describe the tuberculosis progression in a bi-dimensional space. In our extended model, the vaccination was included as an inhibitory variable in order to study its influence on the behavior of the tuberculosis spread. Our simulations showed that the earlier the vaccine is administered in the population, the lower the number of infected individuals, as expected for an in vivo system. However, our results also indicated that although the usual vaccination processes help reducing the strength of infection, the disease is not extinct, remaining the endemic state at low levels. These results strongly suggest that further actions are needed to increase the effectiveness of immunizations.

  17. Nozzle Classification for Drift Reduction in Orchard Spraying: Identification of Drift Reduction Class Threshold Nozzles

    NARCIS (Netherlands)

    Zande, van de J.C.; Holterman, H.J.; Wenneker, M.

    2008-01-01

    In fruit growing high values of spray drift are found compared to arable field applications. In arable spraying drift reducing nozzles are certified for use as drift reducing measures. The nozzles which may potentially reduce drift in fruit growing are not jet classified as drift reducing nozzles, a

  18. Through an Annular Turbine Nozzle

    Directory of Open Access Journals (Sweden)

    Rainer Kurz

    1995-01-01

    is located in the gas turbine. The experiments were performed using total pressure probes and wall static pressure taps. The pitch variation modifies the flow field both upstream and downstream of the nozzle, although the experiments show that the effect is localized to the immediate neighborhood of the involved blades. The effects on the wakes and on the inviscid flow are discussed separately. The mean velocities show a strong sensitivity to the changes of the pitch, which is due to a potential flow effect rather than a viscous effect.

  19. Narrar a experiência e (trans)formar-se: o caso de uma professora diante do desafio de aprender a ensinar geometria

    OpenAIRE

    Marquesin, Denise; Nacarato, Adair

    2011-01-01

    O presente texto refere-se a um recorte de uma pesquisa de mestrado desenvolvida com cinco professoras pertencentes a uma mesma escola situada na zona rural de Jundiaí – Estado de São Paulo, Brasil, tendo como cenário o grupo de trabalho colaborativo. Tem como objetivo narrar a experiência de uma professora diante do desafio de aprender a ensinar geometria nos anos iniciais do Ensino Fundamental. O processo formativo no grupo foi mediado pela produção de narrativas pelas pro...

  20. As competências espaciais no ensino da geometria : a dinâmica da perspectiva linear na imaginação e no desenho

    OpenAIRE

    Ferreira, Helena Sofia Pires, 1982-

    2013-01-01

    Relatório da prática de ensino supervisionada, Ensino das Artes Visuais, Universidade de Lisboa, 2013 O presente relatório foi elaborado no âmbito do Mestrado em Ensino das Artes Visuais e descreve a intervenção realizada numa turma do 11º ano de Artes Visuais, no âmbito da disciplina de Geometria Descritiva A, e é referente à prática de ensino supervisionada desenvolvida na Escola Secundária Quinta do Marquês, em Oeiras. O projeto de estágio relaciona-se com o desenvolvimento ...

  1. A utilização do blogue no ensino-aprendizagem : estudo de caso na disciplina de Geometria Descritiva A

    OpenAIRE

    Costa, António Oliveira da

    2012-01-01

    Dissertação de mestrado em Ciências da Educação (área de especialização em Tecnologia Educativa) Este trabalho pretendeu investigar a utilidade do blogue no ensino-aprendizagem – num estudo de caso da disciplina de Geometria Descritiva A, dentro de um contexto de utilização das novas metodologias que possam complementar o trabalho presencial da sala de aula e contribuir para melhorar o sucesso educativo dos alunos, tanto ao nível da classificação interna como ao nível da aferiç...

  2. High mass throughput particle generation using multiple nozzle spraying

    Energy Technology Data Exchange (ETDEWEB)

    Pui, David Y. H.; Chen, Da-Ren

    2015-06-09

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  3. High mass throughput particle generation using multiple nozzle spraying

    Science.gov (United States)

    Pui, David Y.H.; Chen, Da-Ren

    2004-07-20

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  4. Erosion-Resistant Water-Blast Nozzle

    Science.gov (United States)

    Roberts, Marion L.; Rice, R. M.; Cosby, S. A.

    1988-01-01

    Design of nozzle reduces erosion of orifice by turbulent high-pressure water flowing through it. Improved performance and resistance to erosion achieved by giving interior nozzle surface long, gradual convergence before exit orifice abrupt divergence after orifice and by machining surface to smooth finish.

  5. Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Isolated Nozzles

    Science.gov (United States)

    Castner, Raymond S.

    2011-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-ft Supersonic Wind Tunnel at the NASA Glenn Research Center to validate the computational study. Results demonstrated how the nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion, causing a favorable change in the observed pressure signature. Experimental results were presented for comparison to the CFD results. The strong nozzle lip shock at high values of NPR intersected the nozzle boat-tail expansion and suppressed the expansion wave. Based on these results, it may be feasible to reduce the boat-tail expansion for a future supersonic aircraft with under-expanded nozzle exhaust flow by modifying nozzle pressure or nozzle divergent section geometry.

  6. Exhaust Nozzle Plume and Shock Wave Interaction

    Science.gov (United States)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  7. Numerical Investigation of Separated Plug Nozzle Flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Modern analysis techniques that provide improved viability have enabled further investigation of plug nozzle rocket engines as advanced launch vehicle concepts. A plug nozzle for future single-stage-to-orbit vehicles in China has been designed, and the flow field in the plug nozzle has been studied numerically for different ambient pressures. Calculations were performed by solving the Navier-Stokes equations for an ideal gas. Turbulence is modelled using the k-ε turbulence model. The advantages of the plug nozzles are the external expansion, which automatically adapts to external pressure variations, and the short compact design for high expansion ratios. Expansion waves, compression shocks, and the separated base flow dominate the flow structures and affect the plug nozzle rocket engine performance.

  8. Palo Verde Unit 3 BMI nozzle modification

    International Nuclear Information System (INIS)

    The 61 BMI (Bottom Mount Instrumentation) nozzles of the unit 3 of the Palo Verde plant have been examined through ASME Code Case N722. The nozzle 3 was the only one with leakage noted. The ultrasound testing results are characteristic of PWSCC (Primary Water Stress Corrosion Cracking). The initiation likely occurred at a weld defect which was exposed to the primary water environment resulting in PWSCC. All other nozzles (60) showed no unacceptable indications. Concerning nozzle 3 one crack in J-groove weld connected large defect to primary water. An environmental model has been used to simulate and optimize the repair. The AREVA crew was on site 18 days after contract award and the job was completed in 12 days, 30 hours ahead of baseline schedule. This series of slides describes the examination of the BMI nozzles, the repair steps, and alternative design concepts

  9. Online forecasting model of tundish nozzle clogging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A nozzle clogging online forecasting model based on hydrodynamics engineering was developed, in which the actual flow rate was calculated from the mold width, thickness, and casting speed. There is a linear relationship between the theoretical flow rate and the slide gate opening ratio as the molten steel level, argon flow rate, and the top slag weight are kept constant, and the relationship can be obtained by regression of the data collected at the beginning of the first heat in each casting sequence when the nozzle clogging does not occur. Then, during the casting, the theoretical flow rate can be calculated at intervals of one second. Comparing the theoretical flow rate with the actual flow rate, the online nozzle clogging ratio can be obtained at intervals of one second. The computer model based on the conception of the nozzle clogging ratio can display the degree of the nozzle clogging intuitively.

  10. Resultados Geofísicos Integrados de um Corpo com Geometria 3D sem Manifestação Superficial

    Directory of Open Access Journals (Sweden)

    André Rugenski

    2005-06-01

    Full Text Available O levantamento aerogeofísico SP-RJ do Serviço Geológico do Brasil (CPRM evidencia uma anomalia magnética, semcorrespondentes geológicos em superfície, mas com feições semelhantes àquelas observadas para os complexos alcalinos queafloram na mesma região. Diante da ausência de elementos superficiais, foram utilizadas diferentes técnicas geofísicas paracaracterizar a fonte dessa anomalia. Entre as diferentes metodologias, utilizou-se a análise de imagens de satélite paradiferentes bandas espectrais, sondagens sísmicas, levantamento gravimétrico e correspondente magnético em superfície aolongo de um perfil que corta a anomalia, além de medidas de densidade e susceptibilidade das diferentes litologias da área. Asinformações resultantes da aplicação dessas técnicas serviram como vínculos para modelar simultaneamente os dadosgravimétricos e magnéticos de superfície com geometria 2½D, e para modelar os dados magnéticos do levantamento aéreo comgeometria 3D. Os resultados obtidos convergem para um corpo intrusivo máfico de cerca 3,3 x 109 t, próximo da superfície(~ 40 m e estendendo-se até a profundidade máxima de 1 km.

  11. Blower speed variation in refrigeration engineering and potential applications; Verschiedene Verfahren der Drehzahlveraenderung von Ventilatoren in der Kaeltetechnik mit einer Betrachtung moeglicher Anwendungsfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Albig, J. [Ziehl-Abegg AG, Kuenzelsau (Germany)

    2006-07-01

    Various methods of blower speed control in refrigeration engineering enable user-oriented efficiency increase in axial blowers in refrigeration engineering. Apart from the motor efficiency, the economic efficiency of a blower is also determined by the investment cost of speed control systems. The blower efficiency is left out of account in this contribution. The most common control systems were compared, i.e. voltage control, frequency control and EC control. For an optimum result, the optimum system must be selected already in the planning stage. For this, the advantages and shortcomings must be known for each solution and application. Exemplary recommendations are given for various applications, and the speed control systems described are compared with regard to their efficiency and investment cost. (orig.)

  12. Cosmet'eau-Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments.

    Science.gov (United States)

    Bressy, Adèle; Carré, Catherine; Caupos, Émilie; de Gouvello, Bernard; Deroubaix, José-Frédéric; Deutsch, Jean-Claude; Mailler, Romain; Marconi, Anthony; Neveu, Pascale; Paulic, Laurent; Pichon, Sébastien; Rocher, Vincent; Severin, Irina; Soyer, Mathilde; Moilleron, Régis

    2016-07-01

    The Cosmet'eau project (2015-2018) investigates the "changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments." In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities-including local authorities, industries, and consumers. The project aims to characterize the possible changes in PCP consumption practices and to evaluate the impact of their implementation on aquatic contamination. Our goals are to study the whistle-blowers, the risk perception of consumers linked with their practices, and the contamination in parabens and their substitutes, triclosan, and triclocarban from wastewater to surface water. The project investigates the following potential solutions: modifications of industrial formulation or changes in consumption practices. The final purpose is to provide policy instruments for local authorities aiming at building effective strategies to fight against micropollutants in receiving waters. PMID:27179812

  13. Investigations into effects of blade number in a booster blower for forced ventilation on noise level caused by stream heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, A.

    1985-09-01

    Noise level is analyzed caused by WLE-603A booster mine blowers used for local ventilation in underground coal mines in Poland. The blowers have two impellers rotating in opposite directions. One impeller is equipped with 10 or 11 blades, the other with 9, 8, 7, 6 or 5 blades. Revolution rate of 2940 rpm is used. A formula for optimizing blade number on two impellers and the relation of impeller number is derived. Effects of optimizing blade number on the air streams produced by two impellers and their interaction are analyzed. Effects of stream heterogeneity on noise level are determined. Recommendations for the optimum blade number which reduces noise level are made. 3 references.

  14. Cosmet'eau -Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments

    OpenAIRE

    Bressy, Adèle; Carré, Catherine; Caupos, Émilie; De Gouvello, Bernard; Deroubaix, José-Frédéric; Deutsch, Jean-Claude; Mailler, Romain; Marconi, Anthony; Neveu, Pascale; Paulic, Laurent; Pichon, Sébastien; Rocher, Vincent; Severin, Irina; SOYER, Mathilde; Moilleron, Régis

    2016-01-01

    International audience The Cosmet'eau project (2015-2018) investigates the " changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments. " In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities – including local authorities –, industries and consumers. The project aims to characterize the possible changes in PCP consumption pra...

  15. Safety demonstration tests on pressure rise in ventilation system and blower integrity of a fuel-reprocessing plant

    International Nuclear Information System (INIS)

    In JAERI, the demonstration test was carried out as a part of safety researches of the fuel-reprocessing plant using a large-scale facility consist of cells, ducts, dumpers, HEPA filters and a blower, when an explosive burning due to a rapid reaction of thermal decomposition for solvent/nitric acid occurs in a cell of the reprocessing plant. In the demonstration test, pressure response propagating through the facility was measured under a blowing of air from a pressurized tank into the cell in the facility to elucidate an influence of pressure rise in the ventilation system. Consequently, effective pressure decrease in the facility was given by a configuration of cells and ducts in the facility. In the test, transient responses of HEPA filters and the blower by the blowing of air were also measured to confirm the integrity. So that, it is confirmed that HEPA filters and the blower under pressure loading were sufficient to maintain the integrity. The content described in this report will contribute to safety assessment of the ventilation system in the event of explosive burning in the reprocessing plant. (author)

  16. Effects of inlet radius and bell mouth radius on flow rate and sound quality of centrifugal blower

    International Nuclear Information System (INIS)

    The effect of inlet radius and bell mouth radius on flow rate of centrifugal blower were numerically simulated using a commercial CFD program, FLUENT. In this research, a total of eight numerical models were prepared by combining different values of bell mouth radii and inlet radii (the cross section of bell mouth was chosen as a circular arc in this research). The frozen rotor method combined with a realizable k-epsilon turbulence model and non-equilibrium wall function was used to simulate the three-dimensional flow inside the centrifugal blowers. The inlet radius was then revealed to have significant impact on flow rate with the maximum difference between analyzed models was about 4.5% while the bell mouth radius had about 3% impact on flow rate. Parallel experiments were carried out to confirm the results of CFD analysis. The CFD results were thereafter validated owning to the good agreement between CFD results and the parallel experiment results. In addition to performance analysis, noise experiments were carried out to analyze the dependence of sound quality on inlet radius and bell mouth radius with different flow rate. The noise experiment results showed that the loudness and sharpness value of different models were quite similar, which mean the inlet radius and the bell mouth radius didn't have a clear impact on sound quality of centrifugal blower

  17. Subsonic Euler flows in a divergent nozzle

    Institute of Scientific and Technical Information of China (English)

    WENG ShangKun

    2014-01-01

    We characterize a class of physical boundary conditions that guarantee the existence and uniqueness of the subsonic Euler flow in a general finitely long nozzle.More precisely,by prescribing the incoming flow angle and the Bernoulli’s function at the inlet and the end pressure at the exit of the nozzle,we establish an existence and uniqueness theorem for subsonic Euler flows in a 2-D nozzle,which is also required to be adjacent to some special background solutions.Such a result can also be extended to the 3-D asymmetric case.

  18. Turbine nozzle stage having thermocouple guide tube

    Science.gov (United States)

    Schotsch, Margaret Jones; Kirkpatrick, Francis Lawrence; Lapine, Eric Michael

    2002-01-01

    A guide tube is fixed adjacent opposite ends in outer and inner covers of a nozzle stage segment. The guide tube is serpentine in shape between the outer and inner covers and extends through a nozzle vane. An insert is disposed in the nozzle vane and has apertures to accommodate serpentine portions of the guide tube. Cooling steam is also supplied through chambers of the insert on opposite sides of a central insert chamber containing the guide tube. The opposite ends of the guide tube are fixed to sleeves, in turn fixed to the outer and inner covers.

  19. Effect of Inlet Clearance on the Aerodynamic Performance of a Centrifugal Blower

    Science.gov (United States)

    Hariharan, C.; Govardhan, M.

    2016-09-01

    The present work reports the effect of inlet clearance on the performance of a centrifugal blower, with parallel wall volute, over its full operating range. For a particular impeller configuration, four volutes based on constant angular momentum principle, have been designed and analysed numerically for varying inlet clearances ranging from 0 mm (ideal clearance) to 5 mm. The computational methodology is validated using experimental data. The results indicate that as the clearance increases, the impeller performance in terms of both static and total pressure rise deteriorate. Further, the stage performances deteriorate in terms of efficiency and specific work for all mass flow rates. However, the performance of volute improves at lower mass flow rates compared to the Best Efficiency Point (BEP). A set of correlations have been developed to predict the change in stage performance as a function of clearance ratio. The non-dimensional values of change in specific work, isentropic efficiency and static pressure are found to be same irrespective of the shape of the volute.

  20. PID tuning of Roots blower based on critical proportioning method%基于临界比例度法的罗茨风机PID整定

    Institute of Scientific and Technical Information of China (English)

    孙小凌; 徐术平

    2016-01-01

    The negative pressure in normal running process of the reactor in the chemical project should keep stable. The critical proportioning method is adopted to directly adjust the PID parameters of the Roots blower in preliminarily,and then cal⁃culate the adjusting parameters. After that the parameters are further adjusted according to the practical adjusting condition to de⁃termine the final tuning values. The practical running conditions of feedstock and nozzles cleaning of the reactor prove that the regulator has perfect regulating performance,the negative pressure of the reactor has good stability,which can satisfy the pro⁃cess requirement. This parameter tuning method has the characteristics of fast setting speed,good intuition,and strong adaptabili⁃ty. The method has better engineering practice and reference value for that the process equipment can conduct several tests and the system operates at critical oscillation condition.%某化工项目中热解炉在正常运行过程中负压需保持稳定。在此采用临界比例度法在PLC调节器中直接进行罗茨风机PID参数的初步整定、计算出整定参数,然后根据实际调节情况进行参数的进一步调整,确定最终的整定值。热解炉进料和喷嘴清洗的实际工况运行,证明了调节器的调节性能好,热解炉的负压稳定性好,满足了工艺要求。该整定方法具有快速性、直观性和适应强的特点。该文对于工艺设备可进行多次试验和允许临界振荡工况的系统具有良好的工程实践和借鉴意义。

  1. Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Vectored Nozzles

    Science.gov (United States)

    Castner, Raymond

    2012-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Results show how the shock generated at the nozzle lip affects the near field pressure signature, and thereby the potential sonic boom contribution for a nozzle at vector angles from 3 to 8 . The experiment was based on the NASA F-15 nozzle used in the Lift and Nozzle Change Effects on Tail Shock experiment, which possessed a large external boat-tail angle. In this case, the large boat-tail angle caused a dramatic expansion, which dominated the near field pressure signature. The impact of nozzle vector angle and nozzle pressure ratio are summarized.

  2. Integrated Composite Rocket Nozzle Extension Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  3. Nozzle and shroud assembly mounting structure

    Science.gov (United States)

    Faulder, Leslie J.; Frey, deceased, Gary A.; Nielsen, Engward W.; Ridler, Kenneth J.

    1997-01-01

    The present nozzle and shroud assembly mounting structure configuration increases component life and reduces maintenance by reducing internal stress between the mounting structure having a preestablished rate of thermal expansion and the nozzle and shroud assembly having a preestablished rate of thermal expansion being less than that of the mounting structure. The mounting structure includes an outer sealing portion forming a cradling member in which an annular ring member is slidably positioned. The mounting structure further includes an inner mounting portion to which a hooked end of the nozzle and shroud assembly is attached. As the inner mounting portion expands and contracts, the nozzle and shroud assembly slidably moves within the outer sealing portion.

  4. Low thermal stress ceramic turbine nozzle

    Science.gov (United States)

    Glezer, Boris; Bagheri, Hamid; Fierstein, Aaron R.

    1996-01-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  5. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    Science.gov (United States)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  6. Cross-talk effect in electrostatic based capillary array nozzles

    International Nuclear Information System (INIS)

    Electrohydrodynamic printing is a promising technique for printed electronics application. Most researchers working in this field are using a single nozzle configuration. However, for large area printing a multi-nozzle setup will be required for time and cost effective process. In this paper the influence of electric field and flow-rate on jetting angle on multi-nozzle array has been investigated experimentally. A three nozzle setup has been used in a linear array by using glass capillary as a nozzle with independent voltage applied on each nozzle and independent ink supply. The experiments are performed by changing the nozzle to nozzle gap and the effect on the jetting angle has been investigated. It has been observed that by increasing the applied voltage the jetting angle also increases at fixed flow-rate. In case of increasing the flow-rate, the jetting angle first increases with increase in flow-rate, but as the flow-rate increases at certain level the jetting angle decreases; moreover, at a high flow-rate the cone-jet length starts increasing. Numerical simulation has been performed to have a better understanding of the electric-field with respect to jetting angles. The influence of one nozzle on another nozzle is also investigated by operating the nozzle independently by using different operating cases. The cross-talk effect is also minimized by reducing the nozzle diameter. At 250 μm nozzle diameter the cross-talk effect was negligible for 5 mm nozzle-to-nozzle gap. This study will help in better understanding of the interaction between different nozzles in multi-nozzle cases and better design of the multi-nozzle system by minimizing the effects of adjacent nozzles for multi-nozzle electrohydrodynamic printing system

  7. Jet-diffuser Ejector - Attached Nozzle Design

    Science.gov (United States)

    Alperin, M.; Wu, J. J.

    1980-01-01

    Attached primary nozzles were developed to replace the detached nozzles of jet-diffuser ejectors. Slotted primary nozzles located at the inlet lip and injecting fluid normal to the thrust axis, and rotating the fluid into the thrust direction using the Coanda Effect were investigated. Experiments indicated excessive skin friction or momentum cancellation due to impingement of opposing jets resulted in performance degradation. This indicated a desirability for location and orientation of the injection point at positions removed from the immediate vicinity of the inlet surface, and at an acute angle with respect to the thrust axis. Various nozzle designs were tested over a range of positions and orientations. The problems of aircraft integration of the ejector, and internal and external nozzle losses were also considered and a geometry for the attached nozzles was selected. The effect of leaks, protrusions, and asymmetries in the ejector surfaces was examined. The results indicated a relative insensitivity to all surface irregularities, except for large protrusions at the throat of the ejector.

  8. Simulation of Gas Flow Field in Laval Nozzle and Straight Nozzle for Powder Metallurgy and Spray Forming

    Institute of Scientific and Technical Information of China (English)

    LI Zheng-dong; ZHANG Guo-qing; LI Zhou; ZHANG Yong; XU Wen-yong

    2008-01-01

    Gas flow field in nozzles and out of nozzles was calculated for Laval orifice and straight orifice nozzles.The results showed that the flow generated by the Laval nozzle had a higher exit velocity in the vicinity of the nozzle,in comparison with that of the straight nozzle,that is to say,a Laval nozzle was more efficient than a straight one in disintegrating the melt stream and was apt to produce finer powders.The flow generated by the Laval nozzle was less convergent and the velocity gradient along the radial direction was more moderate than that of a straight nozzle,which could contribute to a broad distribution of melt particles.According to their flow characteristics,the Laval nozzle was reckoned as a better choice of producing larger spray-formed billets.

  9. Nozzle assembly for an earth boring drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Madigan, J. A.

    1985-09-24

    A nozzle assembly for an earth boring drill bit of the type adapted to receive drilling fluid under pressure and having a nozzle bore in the bottom thereof positioned closely adjacent the well bore bottom when the bit is in engagement therewith with the bore having inner and outer portions. The nozzle assembly comprises a generally cylindrical nozzle member of abrasion and erosion resistant material, selected from a plurality of such members, each being of the same outer diameter but having passaging therein of different cross-sectional area. The nozzle member is adapted to be fitted in the inner portion of the nozzle bore in sealing relationship therewith for forming a first seal for the nozzle assembly. The nozzle assembly further comprises a locknut, separate from the nozzle member, for detachbably securing the nozzle member in the nozzle bore, formed at least in part of an abrasion and erosion resistant material. The locknut has a threaded side wall engageable with the outer portion of the nozzle bore, and an aperture therethrough for enabling a stream of drilling fluid from the nozzle member to flow therethrough and being so configured in section as to receive a tool for turning the lockout to install it in and remove it from the nozzle bore.

  10. Uma abordagem curricular em matemática no 3º ciclo do ensino básico: um estudo de caso em geometria

    OpenAIRE

    Lopes, Ilda Maria Ferreira do Couto

    2010-01-01

    Este trabalho debruça-se sobre as práticas de Ensino de Geometria no 3º ciclo do Ensino Básico tendo como principal foco de investigação as práticas de ensino da professora investigadora. O estudo empírico foi realizado em três turmas de 9º ano, da professora investigadora, de Abril a Junho de 2005, numa Escola da região de Trás-os-Montes (designada por Escola A). O trabalho realizado pela professora investigadora com alunos dessas turmas (no 7º em 2002/03, no 8º ano em 2003/04...

  11. Characteristics of a fluted nozzle gas eductor system

    OpenAIRE

    Boykin, Jerry Wayne

    1983-01-01

    Approved for public release; distribution is unlimited Cold flow tests were conducted on a four nozzle and a one nozzle gas educator system. The nozzles employed were fluted with a constant cross sectional area. The four nozzle tests used a mixing stack length-to-diameter ratio, (L/D), 1.5; the single nozzle tests used L/D ratios of2.0, 1.75, and 1.5. The total cross sectional area of the mixing stack was 2/3; for the single fluted nozzle, 2.42. Secondary pumping coefficients, mixing s...

  12. Nozzle dam having a unitary plug

    Science.gov (United States)

    Veronesi, Luciano; Wepfer, Robert M.

    1992-01-01

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket.

  13. Blower door tests of a group of identical flats in a new student accommodation in the Arctic

    OpenAIRE

    Kotol, Martin; Rode, Carsten; Vahala, Jan

    2012-01-01

    A new student accommodation for engineering students “Apisseq” was built in the town of Sisimiut, Greenland in 2010. Its purpose is not only to provide accommodation for students. Thanks to its complex monitoring system it enables researchers to evaluate the building’s energy performance and indoor air quality (IAQ) as well as performance of some single components. In summer 2012 a blower door test was performed on all 37 living units out of which 33 are identical single room flats and 4 are ...

  14. New inlet nozzle assembly: C Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Calkin, J.F.

    1960-10-19

    The use of self-supported fuel elements in ribless Zircaloy-2 tubes at C-Reactor requires some inlet nozzle modification to allow charging of the larger overall diameter fuel pieces. A new nozzle assembly has been developed (by Equipment Development Operation -- IPD) which will allow use of the new fuel pieces and at the same time increase the reliability of the header-to-tube piping and reduce pumping power losses. Flow test data were requested for the new assembly and the results of these tests are presented herein. This report also presents a comparison of the header to tube energy losses for the various reactor inlet nozzle assemblies which are currently used on the Hanford production reactors.

  15. Discharge coefficient of small sonic nozzles

    Directory of Open Access Journals (Sweden)

    Yin Zhao-Qin

    2014-01-01

    Full Text Available The purpose of this investigation is to understand flow characteristics in mini/micro sonic nozzles, in order to precisely measure and control miniscule flowrates. Experimental and numerical simulation methods have been used to study critical flow Venturi nozzles. The results show that the nozzle’s size and shape influence gas flow characteristics which leading the boundary layer thickness to change, and then impact on the discharge coefficient. With the diameter of sonic nozzle throat decreasing, the discharge coefficient reduces. The maximum discharge coefficient exits in the condition of the inlet surface radius being double the throat diameter. The longer the diffuser section, the smaller the discharge coefficient becomes. Diffuser angle affects the discharge coefficient slightly.

  16. Biannular Airbreathing Nozzle Rig (BANR) facility checkout and plug nozzle performance test data

    Science.gov (United States)

    Cummings, Chase B.

    2010-09-01

    The motivation for development of a supersonic business jet (SSBJ) platform lies in its ability to create a paradigm shift in the speed and reach of commercial, private, and government travel. A full understanding of the performance capabilities of exhaust nozzle configurations intended for use in potential SSBJ propulsion systems is critical to the design of an aircraft of this type. Purdue University's newly operational Biannular Airbreathing Nozzle Rig (BANR) is a highly capable facility devoted to the testing of subscale nozzles of this type. The high accuracy, six-axis force measurement system and complementary mass flowrate measurement capabilities of the BANR facility make it rather ideally suited for exhaust nozzle performance appraisal. Detailed accounts pertaining to methods utilized in the proper checkout of these diagnostic capabilities are contained herein. Efforts to quantify uncertainties associated with critical BANR test measurements are recounted, as well. Results of a second hot-fire test campaign of a subscale Gulfstream Aerospace Corporation (GAC) axisymmetric, shrouded plug nozzle are presented. Determined test article performance parameters (nozzle thrust efficiencies and discharge coefficients) are compared to those of a previous test campaign and numerical simulations of the experimental set-up. Recently acquired data is compared to published findings pertaining to plug nozzle experiments of similar scale and operating range. Suggestions relating to the future advancement and improvement of the BANR facility are provided. Lessons learned with regards to test operations and calibration procedures are divulged in an attempt to aid future facility users, as well.

  17. Lightweight Nozzle Extension for Liquid Rocket Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ARES J-2X requires a large nozzle extension. Currently, a metallic nozzle extension is being considered with carbon-carbon composite as a backup. In Phase 1,...

  18. Line drawing of anomaly discovered in redesigned shuttle motor nozzle

    Science.gov (United States)

    1987-01-01

    Line drawing titled 'DM-9 Case-to-Nozzle Joint' shows anomaly discovered in redesigned shuttle motor nozzle. The second full-duration test firing of NASA's redesigned Space Shuttle solid rocket motor (SRM), designated DM-9, was conducted 12-23-87 at Morton Thiokol's Wasatch facility in Utah. A post-test examination of the motor has revealed an anomaly in one nozzle component. Material was discovered missing from the nozzle outer boot ring, a large carbon phenolic composite ring used to anchor one end of the flexible boot that allows the nozzle to move and 'steer' the vehicle. About one-third of the missing 160 degrees of missing ring material was found adjacent to the forward nozzle section inside the motor. This diagram shows the location of the nozzle joint on an assembled SRM, and points out the shaded location of the outer boot ring that circles the motor within the nozzle joint.

  19. Behavior of liquid metal droplets in an aspirating nozzle. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Swank, W.D.; Fincke, J.R.; Mason, T.A.

    1990-12-31

    Measurements of particle size, velocity, and relative mass flux were made on spray field produced by aspirating liquid tin into 350{degrees}C argon flowing through a venturi nozzle via a small orifice in the throat of the nozzle. Details of the aspiration and droplet formation process were observed through windows in the nozzle. The spatial distribution of droplet size, velocity, and relative number density were measured at a location 10 mm from the nozzle exit. Due to the presence of separated flow in the nozzle, changes in nozzle inlet pressure did not significantly effect resulting droplet size and velocity. This suggests that good aerodynamic nozzle design is required if spray characteristics are to be controlled by nozzle flow. 5 refs.

  20. Behavior of liquid metal droplets in an aspirating nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Swank, W.D.; Fincke, J.R.; Mason, T.A.

    1990-01-01

    Measurements of particle size, velocity, and relative mass flux were made on spray field produced by aspirating liquid tin into 350{degrees}C argon flowing through a venturi nozzle via a small orifice in the throat of the nozzle. Details of the aspiration and droplet formation process were observed through windows in the nozzle. The spatial distribution of droplet size, velocity, and relative number density were measured at a location 10 mm from the nozzle exit. Due to the presence of separated flow in the nozzle, changes in nozzle inlet pressure did not significantly effect resulting droplet size and velocity. This suggests that good aerodynamic nozzle design is required if spray characteristics are to be controlled by nozzle flow. 5 refs.

  1. Turbocharger with variable nozzle having vane sealing surfaces

    Science.gov (United States)

    Arnold, Philippe; Petitjean, Dominique; Ruquart, Anthony; Dupont, Guillaume; Jeckel, Denis

    2011-11-15

    A variable nozzle for a turbocharger includes a plurality of vanes rotatably mounted on a nozzle ring and disposed in a nozzle flow path defined between the nozzle ring and an opposite nozzle wall. Either or both of the faces of the nozzle ring and nozzle wall include(s) at least one step that defines sealing surfaces positioned to be substantially abutted by airfoil surfaces of the vanes in the closed position of the vanes and to be spaced from the airfoil surfaces in positions other than the closed position. This substantial abutment between the airfoil surfaces and the sealing surfaces serves to substantially prevent exhaust gas from leaking past the ends of the airfoil portions. At the same time, clearances between the nozzle ring face and the end faces of the airfoil portions can be sufficiently large to prevent binding of the vanes under all operating conditions.

  2. Linear nozzle with tailored gas plumes and method

    Science.gov (United States)

    Leon, David D.; Kozarek, Robert L.; Mansour, Adel; Chigier, Norman

    1999-01-01

    There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

  3. Water distribution characteristics of spray nozzles in a cooling tower

    OpenAIRE

    Vitkovic Pavol

    2015-01-01

    Water distribution characteristics of spray nozzles with spray plates used to distribute cooling water to the cooling fills in a cooling tower is one of the important parameters for the selection of nozzles. Water distribution characteristic describes the distribution of water from the axis of the nozzle along a fill. One of the parameters affecting the water distribution characteristic of the nozzle is airflow velocity of counter flow airstream. Water distribution characteristics are commonl...

  4. Near-Nozzle Instabilities in Gasoline Direct Injection Sprays

    OpenAIRE

    Gavaises, E.; Rewse-Davies, Z.; Nouri, J. M.; Arcoumanis, C.

    2013-01-01

    Nozzle flow of multi-hole GDi injectors can lead to undesirable and uncontrolled spray instabilities. In this study, two different injectors were utilised in order to observe the near-nozzle spray using high magnification optics and a high speed camera; a symmetrical multi-hole injector and an asymmetric, stepped nozzle injector. It was found that the symmetric injector exhibited a number of different spray instabilities, including flapping of the spray cone from an individual nozzle, flappin...

  5. JANNAF Rocket Nozzle Technology Subcommittee Executive Committee Report

    Science.gov (United States)

    Lawrence, Timothy W.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the structure and activities of the panels of the Joint Army Navy NASA Air Force (JANNAF) Rocket Nozzle Technology Subcommittee. The panels profiled are the Processing Science and Materials Panel, the Nozzle Design, Test, and Evaluation Panel, the Nozzle Analysis and Modeling Panel, and the Nozzle Control Systems Panel. The presentation also lists meetings, workshops, and publications in which the subcommittee participated during the reporting period.

  6. Internal performance characteristics of vectored axisymmetric ejector nozzles

    Science.gov (United States)

    Lamb, Milton

    1993-01-01

    A series of vectoring axisymmetric ejector nozzles were designed and experimentally tested for internal performance and pumping characteristics at NASA-Langley Research Center. These ejector nozzles used convergent-divergent nozzles as the primary nozzles. The model geometric variables investigated were primary nozzle throat area, primary nozzle expansion ratio, effective ejector expansion ratio (ratio of shroud exit area to primary nozzle throat area), ratio of minimum ejector area to primary nozzle throat area, ratio of ejector upper slot height to lower slot height (measured on the vertical centerline), and thrust vector angle. The primary nozzle pressure ratio was varied from 2.0 to 10.0 depending upon primary nozzle throat area. The corrected ejector-to-primary nozzle weight-flow ratio was varied from 0 (no secondary flow) to approximately 0.21 (21 percent of primary weight-flow rate) depending on ejector nozzle configuration. In addition to the internal performance and pumping characteristics, static pressures were obtained on the shroud walls.

  7. Characterization of hydraulic nozzles for droplet size and spray coverage

    Science.gov (United States)

    Spray coverage specifications for commercially available nozzles could help applicators determine the optimal nozzles for effective control of insects, diseases and weeds. Spray coverage and deposit density from seven types of nozzles at three different flow rates (0.76, 1.14 and 2.27 l min-1) and t...

  8. Integrated Ceramic Matrix Composite and Carbon/Carbon Structures for Large Rocket Engine Nozzles and Nozzle Extensions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low-cost access to space demands durable, cost-effective, efficient, and low-weight propulsion systems. Key components include rocket engine nozzles and nozzle...

  9. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti (

  10. Fabrication of Microglass Nozzle for Microdroplet Jetting

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2015-02-01

    Full Text Available An ejection aperture nozzle is the essential part for all microdrop generation techniques. The diameter size, the flow channel geometry, and fluid impedance are the key factors affecting the ejection capacity. A novel low-cost fabrication method of microglass nozzle involving four steps is developed in this work. In the first heating step, the glass pipette is melted and pulled. Then, the second heating step is to determine the tip cone angle and modify the flow channel geometry. The desired included angle is usually of 30~45 degrees. Fine grind can determine the exact diameter of the hole. Postheating step is the final process and it can reduce the sharpness of the edges of the hole. Micronozzles with hole diameters varying from 30 to 100 µm are fabricated by the homemade inexpensive and easy-to-operate setup. Hydrophobic treating method of microglass nozzle to ensure stable and accurate injection is also introduced in this work. According to the jetting results of aqueous solution, UV curing adhesive, and solder, the fabricated microglass nozzle can satisfy the need of microdroplet jetting of multimaterials.

  11. New atomization nozzle for spray drying

    NARCIS (Netherlands)

    Deventer, H.C. van; Houben, R.J.; Koldeweij, R.B.J.

    2013-01-01

    A new atomization nozzle based on ink jet technology is introduced for spray drying. Application areas are the food and dairy industry, in the first instance, because in these industries the quality demands on the final powders are high with respect to heat load, powder shape, and size distribution.

  12. Computational Studies of Magnetic Nozzle Performance

    Science.gov (United States)

    Ebersohn, Frans H.; Longmier, Benjamin W.; Sheehan, John P.; Shebalin, John B.; Raja, Laxminarayan

    2013-01-01

    An extensive literature review of magnetic nozzle research has been performed, examining previous work, as well as a review of fundamental principles. This has allow us to catalog all basic physical mechanisms which we believe underlie the thrust generation process. Energy conversion mechanisms include the approximate conservation of the magnetic moment adiabatic invariant, generalized hall and thermoelectric acceleration, swirl acceleration, thermal energy transformation into directed kinetic energy, and Joule heating. Momentum transfer results from the interaction of the applied magnetic field with currents induced in the plasma plume., while plasma detachment mechanisms include resistive diffusion, recombination and charge exchange collisions, magnetic reconnection, loss of adiabaticity, inertial forces, current closure, and self-field detachment. We have performed a preliminary study of Hall effects on magnetic nozzle jets with weak guiding magnetic fields and weak expansions (p(sub jet) approx. = P(sub background)). The conclusion from this study is that the Hall effect creates an azimuthal rotation of the plasma jet and, more generally, creates helical structures in the induced current, velocity field, and magnetic fields. We have studied plasma jet expansion to near vacuum without a guiding magnetic field, and are presently including a guiding magnetic field using a resistive MHD solver. This research is progressing toward the implementation of a full generalized Ohm's law solver. In our paper, we will summarize the basic principle, as well as the literature survey and briefly review our previous results. Our most recent results at the time of submittal will also be included. Efforts are currently underway to construct an experiment at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory (PEPL) to study magnetic nozzle physics for a RF-thruster. Our computational study will work directly with this experiment to validate the numerical

  13. Experimental and CFD analysis of nozzle position of subsonic ejector

    Institute of Scientific and Technical Information of China (English)

    Xilai ZHANG; Shiping JIN; Suyi HUANG; Guoqing TIAN

    2009-01-01

    The influence of nozzle position on the performance of an ejector was analyzed qualitatively with free jet flow model. Experimental investigations and computational fluid dynamics (CFD) analysis of the nozzle position of the subsonic ejector were also conducted. The results show that there is an optimum nozzle position for the ejector. The ejecting coefficient reaches its maximum when the nozzle is positioned at the optimum and decreases when deviating. Moreover, the nozzle position of an ejector is not a fixed value, but is influenced greatly by the flow parameters. Considering the complexity of the ejector, CFD is reckoned as a useful tool in the design of ejectors.

  14. Development of Filter-Blower Unit for use in the Advanced Nuclear Biological Chemical Protection System (ANBCPS) Helicopter/Transport-aircraft version

    NARCIS (Netherlands)

    Sabel, R.; Reffeltrath, P.A.; Jonkman, A.; Post, T.

    2006-01-01

    As a participant in the three-nation partnership for development of the ANBCP-S for use in Helicopters, Transport Aircraft and Fast Jet, the Royal Netherlands Airforce (RNLAF) picked up the challenge to design a Filter- Blower-Unit (FBU). Major Command (MajCom) of the RNLAF set priority to develop a

  15. 气动旋转式吹灰器系统的技术应用%The Actual Application of Pneumatic Soot Blower in Heat Medium Heater

    Institute of Scientific and Technical Information of China (English)

    陈江波

    2000-01-01

    The pneumatic ratchet soot blower and the structure and control principle of CKQ—Ⅱ controller as well as its application in heat medium heater are introduced.The pneumatic ratchet soot blower has got many advantages,such as high level automation control(unattended),soot blower integrated with controller,stable control process,high efficiency and easier to repair compared with conventional soot blower.This soot blower can be adopted in heater and boiler.%介绍了气动旋转式吹灰器和CKQ-Ⅱ型吹灰控制器的结构、控制原理及在热媒炉上的应用,与电动吹灰器相比,气动旋转式吹灰器具有自动化程度高、吹灰器和控制器自成系统、可实现无人职守、控制过程稳定可靠、吹灰效果理想、操作灵活、维修方便等优点。可在各种加热炉、锅炉的吹扫系统中应用。

  16. Design and analysis approach for linear aerospike nozzle

    International Nuclear Information System (INIS)

    The paper presents an aerodynamic design of a simplified linear aerospike nozzle and its detailed exhaust flow analysis with no spike truncation. Analytical method with isentropic planar flow was used to generate the nozzle contour through MATLAB . The developed code produces a number of outputs comprising nozzle wall profile, flow properties along the nozzle wall, thrust coefficient, thrust, as well as amount of nozzle truncation. Results acquired from design code and numerical analyses are compared for observing differences. The numerical analysis adopted an inviscid model carried out through commercially available and reliable computational fluid dynamics (CFD) software. Use of the developed code would assist the readers to perform quick analysis of different aerodynamic design parameters for the aerospike nozzle that has tremendous scope of application in future launch vehicles. Keyword: Rocket propulsion, Aerospike Nozzle, Control Design, Computational Fluid Dynamics. (author)

  17. Pressure drop evaluation in fuel assembly bottom nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Sydney da Silva; Brittes, Luiz Henrique A. [Industrias Nucleares do Brasil S.A. (INB), Resende, RJ (Brazil)]. E-mails: sydney@inb.gov.br; brittes@inb.gov.br; Navarro, Moyses A. [Centro de Desenvolvimento de Energia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: navarro@cdtn.br

    2007-07-01

    Experiments were conducted in order to assess the pressure drop through an anti-debris bottom nozzle relatively to a standard bottom nozzle of a nuclear fuel assembly. Two kinds of experiments have been performed: one using bottom nozzles connected with the lower part of a Fuel Assembly (containing two spacer grids) and another one using the bottom nozzle alone. Reynolds numbers ranging from 10500 . 95000 have been employed, temperatures ranging from 40 . 55 deg C and pressures up to 4 bar. Results have shown that the pressure drop coefficients of the anti-debris nozzle referring to the whole lower region of the Fuel Assembly were {approx} 13% (for Re {approx_equal} 95000) till {approx} 17% (for Re {approx_equal} 10500) higher than the coefficients for standard bottom nozzle. This difference increases up to 118% when the pressure drop coefficients of the bottom nozzle alone are considered. (author)

  18. Segmented inlet nozzle for gas turbine, and methods of installation

    Science.gov (United States)

    Klompas, Nicholas

    1985-01-01

    A gas turbine nozzle guide vane assembly is formed of individual arcuate nozzle segments. The arcuate nozzle segments are elastically joined to each other to form a complete ring, with edges abutted to prevent leakage. The resultant nozzle ring is included within the overall gas turbine stationary structure and secured by a mounting arrangement which permits relative radial movement at both the inner and outer mountings. A spline-type outer mounting provides circumferential retention. A complete rigid nozzle ring with freedom to "float" radially results. Specific structures are disclosed for the inner and outer mounting arrangements. A specific tie-rod structure is also disclosed for elastically joining the individual nozzle segments. Also disclosed is a method of assembling the nozzle ring subassembly-by-subassembly into a gas turbine employing temporary jacks.

  19. Fluid Flow in Continuous Casting Mold with a Configured Nozzle

    Institute of Scientific and Technical Information of China (English)

    王镭; 沈厚发; 柳百成

    2004-01-01

    The influence of a configured nozzle on the turbulent fluid flow in a continuous casting mold was investigated using the simulation program Visual Cast, which used the finite difference method and the SIMPLER algorithm. CAD software was used to construct the complicated nozzle in the calculational region. The simulation accuracy was validated by comparison with the classic driven cavity flow problem. The simulation results agree well with water modeling experiments. The simulations show that the velocity distribution at the nozzle port is uneven and the jet faces downward more than the nozzle outlet. Simulations with a configured nozzle and the inlet velocity at the nozzle entrance give precise results and overcome the traditional difficulty in determining the nozzle outlet velocity.

  20. Calculation of the temperature distribution and thermal stresses in a gas turbine nozzle cooled by air film; Calculo de la distribucion de temperaturas y esfuerzos termicos en una tobera de turbina de gas enfriada por pelicula de aire

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez R, Alejandro; Garcia I, Rafael; Mazur C, Zdislaw [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2004-07-01

    The analysis begins with the generation of a computational geometric model of the gas turbine nozzle using reverse engineering techniques. For the obtaining of the original geometry of the blade, a measurement machine by coordinates and computerized numerical control was used. Next, the computational model is converted into a three-dimensional mesh. In advance, a study of boundary conditions was made of the nozzle material as well as of the turbine operating conditions during non-operating cycles, start-ups and shut-downs. On the other hand, with the boundary conditions imposed to the model, the distributions of the temperature and pressures on the aerofoil profile of the nozzle blade were calculated. These results had to be manipulated to be exported to a finite element software (ANSYS); at this point, another nozzle model was elaborated to be able to import the temperature distribution. With the temperatures correctly imported, the simulations for the calculation of the thermal stresses were made in the nozzle. [Spanish] El analisis inicia con la generacion de un modelo geometrico computacional de la tobera de la turbina de gas utilizando tecnicas de ingenieria inversa. Para la obtencion de la geometria original del alabe, se utilizo una maquina de medicion por coordenadas y control numerico computarizado. A continuacion, el modelo computacional es convertido en una malla tridimensional. Con antelacion, se realizo un estudio de las condiciones de frontera, tanto del material de la tobera como de las condiciones de operacion de la turbina, durante ciclos de paro, arranque y disparo. Por otra parte, con las condiciones de frontera impuestas al modelo, se calcularon las distribuciones de las temperaturas y presiones sobre el perfil aerodinamico de la paleta de la tobera. Estos resultados tuvieron que ser manipulados para ser exportados a un software de elemento finito (ANSYS); en este punto, se elaboro otro modelo de la tobera para poder importar la distribucion de

  1. Application of a compliant foil bearing for the thrust force estimation in the single stage radial blower

    Science.gov (United States)

    Łagodzinski, Jakub; Miazga, Kacper; Musiał, Izabela

    2015-08-01

    The paper presents the application of a compliant foil bearing for estimation of the thrust force in a single stage radial blower under operational conditions. The bump foil of the thrust bearing behaves as a nonlinear spring. The knowledge of the spring deflection curve allows estimation of the actual thrust force for a measured bump deflection at the given rotational speed. To acquire the deflection curve, static calibration of the axial shaft displacement sensor was performed. During the calibration, the information about voltage signals of the sensor for the given loading force was collected. The measured voltage values at different speeds and loadswere then converted into the thrust force. The results were verified by comparison to the thrust force resulting from the pressure distribution on the impeller.

  2. Dewetting Process of Blast Furnace Blower%高炉鼓风机前脱湿技术

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      高炉脱湿鼓风是高炉节能的重要措施,并对高炉的稳定生产具有重要作用。对高炉鼓风机前脱湿的工艺和特点进行说明,并简述其在钢铁企业推广的意义。%Blast furnace dewetting blast is an important measure for energy conservation of blast furnace and it plays an important role in stabilizing production of blast furnace. The dewetting process and features of blast blower are described. The significance to popularize the process in steel enterprises is introduced briefly.

  3. PDE Nozzle Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  4. Jet Engine Exhaust Nozzle Flow Effector

    Science.gov (United States)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2014-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  5. Wormhole Formation in RSRM Nozzle Joint Backfill

    Science.gov (United States)

    Stevens, J.

    2000-01-01

    The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and

  6. Experiments on black liquor splashplate nozzle performance

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, K.

    1996-12-31

    The performance of a throttled black liquor splashplate nozzle was studied in this work. A series of industrial-scale experiments were performed using mass flow rate as a variable at a fixed temperature. The experiments were carried out in a spraying chamber next to the recovery boiler with real mill liquor. The disintegration process of the liquor sheet was videotaped for analyzing. The mass flow rate distribution was measured with a collector. The liquor drops produced by the nozzle were videotaped and measured with a video image analysis technique. The industrial-scale experiments were afterwards repeated on a small scale in the laboratory environment which made it possible to study the liquid sheet disintegration process thoroughly. The small-scale experiments were carried out with a solution of water and glycerol and a splashplate nozzle of approximately one tenth the size of full-scale nozzle. The whole liquid sheet and close-up exposures of the plate area were videotaped. However, the videotaping equipment (camera and objective) were not capable of observing the very thin and transparent liquid sheet. The mass flow rate distribution was measured with steps of 2.5 deg from the plate centerline with a collector device. The drop sizes were measured from various sheet angles with Malvern Particle Sizer and a phase Doppler particle anemometer (Aerometrics). The modeling was based on dimensional analysis. The objective was to compare these two experimental settings and to find out whether small-scale experiments can be used in predicting the spraying characteristics in the full-scale. It was also of interest to test the measured black liquor drop sizes against drop size correlations obtained from the literature. (31 refs.)

  7. Flow Energy Piezoelectric Bimorph Nozzle Harvester

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Kim, Namhyo; Sun, Kai; Corbett, Gary; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffery L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro

    2014-01-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  8. DRILLING CHARACTERISTICS OF COMBINATIONS OF DIFFERENT HIGH PRESSURE JET NOZZLES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-ying; LIU Yong-wang; XU Yi-ji; REN Jian-hua

    2011-01-01

    The high speed fluid jet for directly or indirectly breaking rock is one of the most effective ways to improve the deep penetration rate. In order to maximize the efficiency of energy use, the flow characteristics of different combinations of high pressure jet nozzles are analyzed through numerical simulations. According to the velocity vectors at the bottom and the bottom hole pressure diagram, the effects of the high pressure nozzle combinations on the flow structure and the penetration rate are analyzed. It is shown that the combination of three vertical edge nozzles is very efficient, but inefficient in cleaning the bottom hole and eroding the wall.The jet velocity is 400 m/s and the radius is 5 mm, with a center nozzle added, the problem can be solved, but the high-pressure fluid displacement would increase. The center nozzle's jet velocity is 200 m/s and the radius is 8 mm, the combination of two vertical edge nozzles and a center tilt nozzle or that of a vertical edge nozzle and a center tilt nozzle would provide a flow structure favorable for drilling. The angle of inclination is 10°. To take advantage of high pressure jet energy to improve the efficiency of drilling, it is important to select a suitable nozzle combination according real conditions.

  9. Imergindo a Geometria Dinâmica em Sistemas de Educação a Distância: IGEOM e SAW

    Directory of Open Access Journals (Sweden)

    Leônidas de Oliveira Brandão

    2009-06-01

    Full Text Available Neste trabalho, apresentamos algumas novas funcionalidades desenvolvidas no programa para ensino-aprendizagem de Geometria, o iGeom. Também mostramos um novo sistema gerenciador de cursos pela Web, o SAW, e alguns benefícios trazidos por estes ambientes. Dentre os principais recursos desenvolvidos no iGeom, destacamos: a autoria e a avaliação automática de exercícios e a comunicação com servidores Web. Deste modo, professor e aluno obtém mais benefícios. O professor tem sua tarefa de avaliação de exercícios reduzida ou eliminada, enquanto o aluno, além de poder estudar em seu próprio ritmo, pode obter uma pronta resposta sobre como seu exercício foi avaliado. O iGeom já pode ser descarregado gratuitamente pela Web, e o SAW terá seu código disponibilizado ainda este ano.

  10. Details of Side Load Test Data and Analysis for a Truncated Ideal Contour Nozzle and a Parabolic Contour Nozzle

    Science.gov (United States)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2010-01-01

    Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.

  11. Navier-Stokes predictions of multifunction nozzle flows

    Science.gov (United States)

    Wilmoth, Richard G.; Leavitt, Laurence D.

    1987-10-01

    A two-dimensional, Navier-Stokes code developed by Imlay based on the implicit, finite-volume method of MacCormack has been applied to the prediction of the flow fields and performance of several nonaxisymmetric, convergent-divergent nozzles with and without thrust vectoring. Comparisons of predictions with experiment show that the Navier-Stokes code can accurately predict both the flow fields and performance for nonaxisymmetric nozzles where the flow is predominantly two-dimensional and at nozzle pressure ratios at or above the design values. Discrepancies between predictions and experiment are noted at lower nozzle pressure ratios where separation typically occurs in portions of the nozzle. The overall trends versus parameters such as nozzle pressure ratio, flap angle, and vector angle were generally predicted correctly.

  12. CF6-50 Short Core Exhaust Nozzle

    Science.gov (United States)

    Dusa, D. J.; Hrach, F. J.

    1980-01-01

    The General Electric CF6-50 engine nacelle was originally equipped with both fan nozzle and core nozzle thrust reversers. Many airline operators later deactivated the core reverser. Elimination of the core reverser enabled design changes to be made to help improve performance. A reduction in core nozzle length of approximately two feet was possible. This concept, defined as the Short Core Exhaust Nozzle, was evaluated in engine ground tests, including performance, acoustic, and endurance tests under the NASA/Lewis Engine Component Improvement Program. The test results verified the performance predictions from scale model tests. The Short Core Exhaust Nozzle provides an internal cruise SFC reduction of 0.9% without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing with no signs of distress.

  13. Star 48 solid rocket motor nozzle analyses and instrumented firings

    Science.gov (United States)

    Porter, R. L.

    1986-01-01

    The analyses and testing performed by NASA in support of an expanded and improved nozzle design data base for use by the U.S. solid rocket motor industry is presented. A production nozzle with a history of one ground failure and two flight failures was selected for analyses and testing. The stress analysis was performed with the Champion computer code developed by the U.S. Navy. Several improvements were made to the code. Strain predictions were made and compared to test data. Two short duration motor firings were conducted with highly instrumented nozzles. The first nozzle had 58 thermocouples, 66 strain gages, and 8 bondline pressure measurements. The second nozzle had 59 thermocouples, 68 strain measurements, and 8 bondline pressure measurements. Most of this instrumentation was on the nonmetallic parts, and provided significantly more thermal and strain data on the nonmetallic components of a nozzle than has been accumulated in a solid rocket motor test to date.

  14. Gas turbine nozzle vane insert and methods of installation

    Science.gov (United States)

    Miller, William John; Predmore, Daniel Ross; Placko, James Michael

    2002-01-01

    A pair of hollow elongated insert bodies are disposed in one or more of the nozzle vane cavities of a nozzle stage of a gas turbine. Each insert body has an outer wall portion with apertures for impingement-cooling of nozzle wall portions in registration with the outer wall portion. The insert bodies are installed into the cavity separately and spreaders flex the bodies toward and to engage standoffs against wall portions of the nozzle whereby the designed impingement gap between the outer wall portions of the insert bodies and the nozzle wall portions is achieved. The spreaders are secured to the inner wall portions of the insert bodies and the bodies are secured to one another and to the nozzle vane by welding or brazing.

  15. 加热炉风机噪声特征及控制方法%Characteristics of noise from blower of reheating furnace and its control method

    Institute of Scientific and Technical Information of China (English)

    张天久; 丁岳明

    2011-01-01

    The noise coming from running blowers of the reheating furnace installed in the technical revamp of a specific mill severely contaminates the environments and hurts the health of the worker and staff.In light of the character of the noise from the blower of the reheating furnace a series counter measures have been taken such as installing a silencers at the inlet of the blower,improving the flexible link of the tuyeres,strengthening the stiffness of the blade of rotors,making proper balance between the dynamic and static status of the blade of rotors and checking and examining their vibration,controlling the value of vibration speed within the range of less than 5 mm/s,selecting proper sound insulation door and windows and wrapping the shell of the blower and network of tubes with selected sound absorb materials,well adjusting the wind blow rate,controlling the angle of the wind door and avoiding the abnormal noise from the ventilation system and mutation.By adoption of the above mentioned noise reduction measures the noise from the reheating furnace blowers has been lowered to about 78 db(A) from original 84 db(A),an average reduction of noise about 6 db(A),therefore the environmental conditions around the blower chamber have been greatly improved.%某厂在技术改造中所安装的加热炉风机运行时产生的噪声严重污染环境并有损职工健康。针对加热炉风机噪声特征,在风机进口处设计安装了阻性复合消声器,改进风口的软连接,增强转子叶轮刚度,做好转子叶轮的动静平衡及振动检测,把振动速度值控制在5 mm/s以下;选用隔声门和隔声窗并采用吸声材料包扎风机外壳和管网,调整风量,控制风门角度,避开通风系统异常噪声及突变。实施一系列降噪措施后使加热炉风机的噪声从84 dB(A)左右降低到78 dB(A)左右,平均降低了6 dB(A),使风机室周边环境得到了改善。

  16. Experimental Investigation of Atomizing Performance of Low Pressure Swirl Nozzle

    OpenAIRE

    Yunfei Yan; Li Zhang; WenLi Pan; Ge Pu

    2014-01-01

    The lime slurry nozzle is a key equipment component in the flue gas drying desulfurization system. The atomizing performance of lime slurry nozzles with different structure parameters under low pressure conditions was experimentally studied by using the laser diffraction/scattering particle size distribution analyzer (Win212-2), and the optimized structure of nozzle was obtained. Experimental results indicate that there is a relation between the average granularity and the fluid pressure and ...

  17. The NAL Hypersonic Wind-Tunnel Mach 10 Nozzle

    OpenAIRE

    榊原, 盛三; SAKAKIBARA, Seizo

    2001-01-01

    Recently at NAL, the original nozzle has been improved by re-contouring rather than by manufacturing from scratch. The uniformity of the flow in the test section of the 1.27 m hypersonic wind tunnel1), was improved substantially by smoothing its nozzle. Using the newly developed CFD method, the cost and time required for the construction were dramatically reduced. We achieved 95% uncertainties of +/- 0.3% of the averaged nozzle Mach numbers.

  18. Study for conceptual design of VEO, VTOL exhaust nozzle

    Science.gov (United States)

    Bittrick, W. C.

    1980-01-01

    Design requirements for a VEO Wing V/STOL exhaust nozzle with a two dimensional shape and having the capability for upper surface blowing, spanwise blowing, and 90 deg turning of the exhaust flow for VTOL were established. A preliminary design of the nozzle that identified the actuation scheme, key dimensions, the flowpath, and the recommended materials were prepared. The airplane characteristics resulting from integrating the study nozzle were established.

  19. Fluidized-bed calciner with combustion nozzle and shroud

    Science.gov (United States)

    Wielang, Joseph A.; Palmer, William B.; Kerr, William B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

  20. Pressurizer with a mechanically attached surge nozzle thermal sleeve

    Science.gov (United States)

    Wepfer, Robert M

    2014-03-25

    A thermal sleeve is mechanically attached to the bore of a surge nozzle of a pressurizer for the primary circuit of a pressurized water reactor steam generating system. The thermal sleeve is attached with a series of keys and slots which maintain the thermal sleeve centered in the nozzle while permitting thermal growth and restricting flow between the sleeve and the interior wall of the nozzle.

  1. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  2. Low Cost Carbon-Carbon Rocket Nozzle Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This development will provide an inexpensive vacuum nozzle manufacturing option for NOFBXTM monopropellant systems that are currently being developed under NASA...

  3. Experimental study of subsonic microjet escaping from a rectangular nozzle

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mukhin, K. A.

    2016-10-01

    The first experiments on the subsonic laminar microjets escaping from the nozzles of rectangular shape are carried out. The nozzle size is 83.3x3823 microns. Reynolds number calculated by the nozzle height and the average flow velocity at the nozzle exit ranged from 58 to 154. The working gas was air at room temperature. The velocity decay and velocity fluctuations along the center line of the jet are determined. The fundamental difference between the laminar microjets characteristics and subsonic turbulent jets of macro size is shown. Based on measurements of velocity fluctuations it is shown the presence of laminar-turbulent transition in microjets and its location is determined.

  4. Water distribution characteristics of spray nozzles in a cooling tower

    Science.gov (United States)

    Vitkovic, Pavol

    2015-05-01

    Water distribution characteristics of spray nozzles with spray plates used to distribute cooling water to the cooling fills in a cooling tower is one of the important parameters for the selection of nozzles. Water distribution characteristic describes the distribution of water from the axis of the nozzle along a fill. One of the parameters affecting the water distribution characteristic of the nozzle is airflow velocity of counter flow airstream. Water distribution characteristics are commonly measured using by a set of containers. The problem with this method of the measurement of characteristics is block of the airflow with collections of containers. Therefore, this work is using the visualization method.

  5. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  6. Evaluation of nozzle shapes for an optical flow meter

    Science.gov (United States)

    Sheikholeslami, M. Z.; Patel, B. R.

    1992-05-01

    Numerical modeling is performed for turbulent flow in axisymmetric nozzles using Creare's computer program FLUENT/BFC. The primary objective of the project was to assist Spectron Development Laboratories in selecting an optimum nozzle shape for an optical flowmeter. The nozzle performance is evaluated for various length to diameter ratios, area contraction ratios, and Reynolds numbers. The computations have demonstrated that a cubic profile nozzle with length to diameter ratio of 1.6 and area contraction ratio of 6.2 can decrease the velocity profile non-uniformity from 15 percent at the entrance to 1 percent at the exit. The configuration is recommended for further investigation.

  7. Heat and fluid flow properties of circular impinging jet with a low nozzle to plate spacing. Improvement by nothched nozzle; Nozzle heibankan kyori ga chiisai baai no enkei shototsu funryu no ryudo dennetsu tokusei. Kirikaki nozzle ni yoru kaizen kojo

    Energy Technology Data Exchange (ETDEWEB)

    Shakouchih, T. [Mie University, Mie (Japan). Faculty of Engineering; Matsumoto, A.; Watanabe, A.

    2000-10-25

    It is well known that as decreasing the nozzle to plate spacing considerably the heat transfer coefficient of circular impinging jet, which impinges to the plate normally, increases remarkably. At that time, the flow resistance of nozzle-plate system also increases rapidly. In this study, in order to reduce the flow resistance and to enhance the heat transfer coefficient of the circular impinging jet with a considerably low nozzle to plate spacing, a special nozzle with notches is proposed, and considerable improvement of the flow and heat transfer properties are shown. The mechanism of enhancement of the heat transfer properties is also discussed. (author)

  8. Cavitation Inside Enlarged And Real-Size Fully Transparent Injector Nozzles And Its Effect On Near Nozzle Spray Formation

    OpenAIRE

    Mitroglou, N.; Gavaises, M.; Nouri, J. M.; Arcoumanis, C.

    2011-01-01

    The effect of string cavitation in various transparent Diesel injector nozzles on near nozzle spray dispersion angle is examined. Additional PDA measurements on spray characteristics produced from real-size transparent nozzle tips are presented. Highspeed imaging has provided qualitative information on the existence of geometric and string cavitation, simultaneously with the temporal variation of the spray angle. Additional use of commercial and in-house developed CFD models has provided comp...

  9. Transonic potential flow in hyperbolic nozzles

    Science.gov (United States)

    Park, M.; Caughey, D. A.

    1986-01-01

    The full potential equation for the classical problem of transonic flow through a hyperbolic nozzle (with or without a shock wave) is solved in conservation form using the finite volume method of Jameson and Caughey (1977). Either a firstor a second-order numerical viscosity is added in the direction of the flow, explicitly, in conservation form. A multigrid alternating direction implicit method is used to solve the difference equations, and the results obtained are compared with analytical and numerical results from previous researches.

  10. Effect of working parameters and nozzle wear rate onto the spray quality in use of different fan flat nozzle

    OpenAIRE

    Eleonóra KECSKÉSNÉ NAGY; KOSZEL, Milan; SZTACHÓ-PEKÁRY, István

    2014-01-01

    The subject of the analysis was the influence of working parameters (working pressure and working speed) on +drop tracks size and changes in flow rate level from flat fan nozzle. New nozzles and nozzles after laboratory wear were tested. The influence of nozzles wear on +drop tracks size was examined. It was found that increase in liquid flow rate results in higher values of mean diameter of +drop track. Increase in working pressure or working speed cause decrease in +drop tracks size and red...

  11. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M.; Saito, A. [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S. [Toyota Motor Corp., Aichi (Japan); Shibata, H. [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y. [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  12. Lewis Carroll, a educação e o ensino de geometria na Inglaterra vitoriana - Lewis Carroll, education and the teaching of geometry in victorian England

    Directory of Open Access Journals (Sweden)

    Rafael Montoito

    2015-04-01

    Full Text Available Parte da pesquisa motivada pela tradução para o português do livro Euclides e seus rivais modernos, publicado por Lewis Carroll em 1879, este artigo se inscreve numa série de estudos que visam a um exame hermenêutico dessa obra. São discutidos temas relacionados com a educação, a educação matemática e o ensino de geometria na Inglaterra vitoriana.Palavras-chave: Lewis Carroll, Euclides e seus rivais modernos, história da educação, educação matemática, geometria. LEWIS CARROLL, EDUCATION AND THE TEACHING OF GEOMETRY IN VICTORIAN ENGLANDAbstractResearch partly motivated by Lewis Carrroll's Euclid and his modern rivals (1879 portuguese translation, this paper presents some hermeneutical remarks taken as necessary to understand the context in which such book was produced. The paper focuses particularly on education, in general, and on the teaching of mathematics and geometry in victorian England.Key-words: Lewis Carroll, Euclid and his modern rivals, history of education, mathematics education, geometry. LEWIS CARROLL, LA EDUCACIÓN Y EL ENSINO DE GEOMETRÍA EN LA INGLATERRA VICTORIANAResumenParte de la investigación motivada por la traducción al portugués del libro Euclides y sus enemigos modernos, publicado por Lewis Carroll en 1879, este artículo se inscribe en una serie de estudios que tienen por objetivo hacer un examen hermenéutico de la obra. Son aquí discutidos temas relacionados como la educación, la educación matemática y la enseñanza de geometría en la Inglaterra victoriana.Palabras-clave: Lewis Carroll, Euclides y sus enemigos modernos, historia de la educación, educación matemática, geometría. LEWIS CARROLL, L’ÉDUCATION ET L’ENSEIGMENT DE GÉOMÉTRIE EN L’ANGLETERRE VICTORIENNERésuméFaisant partie de la recherche motivée par la traduction en portugais du livre Euclide et ses rivaux modernes, publié par Lewis Carrol en 1879 , cet article s’inscrit dans une série d’études dont le but

  13. Noise Characteristics of Centrifugal Blower with Low Solidity Cascade Diffuser (Noise Reduction by means of Small Groove Located at LSD Blade Leading Tip)

    Institute of Scientific and Technical Information of China (English)

    Tengen MURAKAMI; Masahiro ISHIDA; Daisaku SAKAGUCHI; Yu KOBA

    2009-01-01

    This paper deals with the effect of the blade tip-groove of the low solidity cascade diffuser (LSD) on the blower characteristic and the noise generated by the LSD. The small grooves were set up at the root and/or tip near the leading edge of the LSD blade. In order to clarify the mechanism of noise increase due to LSD and also to reduce the noise, the relationships between the noise increase based on the LSD, the LSD performance and the secondary flow formed additionally by the tip-groove were investigated experimentally as well as numerically, especially analyzing flow behaviors in the LSD in view points of flow separation on the suction surface of the LSD blade and the secondary flow on the side walls. By reducing the stagnation region smaller near the root and/or tip of the LSD blade leading edge, the secondary flow behavior changes remarkably around the LSD blade, as a result, the noise level and the blower characteristics vary. It can be concluded that, by means of a small tip-groove located only at the shroud side near the LSD blade leading edge, the noise generated by the LSD can be reduced without deteriorations of the LSD performance and the blower characteristics as well.

  14. Optimization in the design and efficiency of retractable soot blowers; Optimacion del diseno y la eficiencia de sopladores de hollin retractiles

    Energy Technology Data Exchange (ETDEWEB)

    Diego Marin, Antonio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    In this article the importance of soot blowers in the subject of design, operation and maintenance are described and the effects that its inefficient functioning causes in the steam generators. The activities and the results of a project for the evaluation of the functioning of the soot blowers in the Comision Federal de Electricidad (CFE) boilers. Finally, the scope of a new project oriented towards the retractable soot blowers efficiency optimization, and to the creation of the infra-structure to substitute the import of its components. [Espanol] En este articulo se describe la importancia de los sopladores de hollin en los aspectos de diseno, operacion y mantenimiento, y los efectos que su funcionamiento deficiente produce en los generadores de vapor. Se presentan tambien las actividades y los resultados de un proyecto para evaluar el funcionamiento de los deshollinadores de las calderas de la Comision Federal de Electricidad (CFE). Finalmente, se presenta el alcance de un nuevo proyecto que se orienta a optimar la eficiencia de los sopladores de hollin retractiles y a crear la infraestructura para sustituir las importaciones de sus componentes.

  15. 旋涡风机叶片侧边型线的研究%Research on the Shape of Blade Side of Vortex Blower

    Institute of Scientific and Technical Information of China (English)

    唐照付; 聂波; 张俊林; 满建楠

    2013-01-01

    旋涡风机叶轮叶片侧边型线影响流体进出叶轮流道的速度三角形,对风机的性能有一定的影响.本文从试验和数值计算的角度对径向直叶片侧边倒角情况进行了研究,发现叶片侧边吸力面倒角比压力面倒角更能提高风机的性能,小流量区更为明显.本文用理论分析了该现象的原因,并推断前弯和后弯叶片也具有同样的性质.%The shape of impeller blade side of vortex blower can influence velocity triangle of fluid flowing in and out of impeller , so as to influence the performance of blower. The chamfer of radial side blade was studied by using methods of experiment and numerical simulation,and It finds that chamfer on the suction side is the best situation for improving the performance of vortex blower specially when little flux. The paper explains the roots of such phenomenon by theoretical analysis, and deduces that forward and backward bending blades own the same properties.

  16. Structure Optimization and Numerical Simulation of Nozzle for High Pressure Water Jetting

    OpenAIRE

    Shuce Zhang; Xueheng Tao; Jinshi Lu; Xuejun Wang; Zhenhua Zeng

    2015-01-01

    Three kinds of nozzles normally used in industrial production are numerically simulated, and the structure of nozzle with the best jetting performance out of the three nozzles is optimized. The R90 nozzle displays the most optimal jetting properties, including the smooth transition of the nozzle’s inner surface. Simulation results of all sample nozzles in this study show that the helix nozzle ultimately displays the best jetting performance. Jetting velocity magnitude along Y and Z coordinate...

  17. Experimental Investigation of Nozzle Effects on Thrust and Inlet Pressure of an Air-breathing Pulse Detonation Engine

    Institute of Scientific and Technical Information of China (English)

    CHEN Wenjuan; FAN Wei; ZHANG Quan; PENG Changxin; YUAN Cheng; YAN Chuanjun

    2012-01-01

    Nozzle effects on thrust and inlet pressure of a multi-cycle air-breathing pulse detonation engine (APDE) are investigated experimentally.An APDE with 68 mm in diameter and 2 050 mm in length is operated using gasoline/air mixture.Straight nozzle,converging nozzle,converging-diverging nozzle and diverging nozzle are tested.The results show that thrust augmentation of converging-diverging nozzle,diverging nozzle or straight nozzle is better than that of converging nozzle on the whole.Thrust augmentation of straight nozzle is worse than those of converging-diverging nozzle and diverging nozzle.Thrust augmentations of diverging nozzle with larger expansion ratio and converging-diverging nozzle with larger throat area range from 20% to 40%on tested frequencies and are bener than those of congeneric other nozzles respectively.Nozzle effects on inlet pressure are also researched.At each frequency it is indicated that filling pressures and average peak pressures of inlet with diverging nozzle and converging-diverging nozzle with large throat cross section area are higher than those with straight nozzle and converging nozzle.Pressures near thrust wall increase in an increase order from without nozzle,with diverging nozzle,straight nozzle and converging-diverging nozzle to converging nozzle.

  18. Grit blasting nozzle fabricated from mild tool steel proves satisfactory

    Science.gov (United States)

    Mc Farland, J. E.; Turbitt, B.

    1966-01-01

    Dry blasting with glass beads through a nozzle assembly descales both the outside and inside surfaces of tubes of Inconel 718 used for the distribution of gaseous oxygen. The inside of the nozzle is coated with polyurethane and the deflector with a commercially available liquid urethane rubber.

  19. Instability of jet plume from an overexpanded nozzle

    Science.gov (United States)

    Papamoschou, Dimitri

    2005-11-01

    Our study involves the phenomenon of supersonic nozzle flow separation wherein a shock forms inside a convergent-divergent nozzle. Of particular interest is the instability of the jet plume exiting this type of nozzle. A rectangular apparatus of aspect ratio 3.57 and flexible walls enabled a parametric study of the mean and turbulent properties of the jet plume versus nozzle pressure ratio (from 1.2 to 2.0), exit-to-throat area ratio (from 1.0 to 1.8) and wall divergence angle at the nozzle exit (from 0 to 4 deg.) Time-resolved surveys of total pressure were obtained by means of a dynamic Pitot probe. The growth rate of the jet and the peak rms value of total pressure fluctuation near the nozzle exit increase several fold with area ratio. This trend becomes most pronounced for nozzle pressure ratio around 1.6. At fixed area ratio and nozzle pressure ratio, the wall divergence angle has little effect on the instability.

  20. Analytical study of nozzle performance for nuclear thermal rockets

    Science.gov (United States)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1991-01-01

    Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively.

  1. An overview of spray drift reduction testing of spray nozzles

    Science.gov (United States)

    The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...

  2. Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    The functions of a regeneratively-cooled nozzle are to (1) expand combustion gases to increase exhaust gas velocity while, (2) maintaining adequate wall temperatures to prevent structural failure, and (3) transfer heat from the hot gases to the coolant fluid to promote injector performance and stability. Regeneratively-cooled nozzles are grouped into two categories: tube-wall nozzles and channel wall nozzles. A channel wall nozzle is designed with an internal liner containing a series of integral coolant channels that are closed out with an external jacket. Manifolds are attached at each end of the nozzle to distribute coolant to and away from the channels. A variety of manufacturing techniques have been explored for channel wall nozzles, including state of the art laser-welded closeouts and pressure-assisted braze closeouts. This paper discusses techniques that NASA MSFC is evaluating for rapid fabrication of channel wall nozzles that address liner fabrication, slotting techniques and liner closeout techniques. Techniques being evaluated for liner fabrication include large-scale additive manufacturing of freeform-deposition structures to create the liner blanks. Abrasive water jet milling is being evaluated for cutting the complex coolant channel geometries. Techniques being considered for rapid closeout of the slotted liners include freeform deposition, explosive bonding and Cold Spray. Each of these techniques, development work and results are discussed in further detail in this paper.

  3. Acoustic measurements of models of military style supersonic nozzle jets

    NARCIS (Netherlands)

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and t

  4. Flows on the nozzle plate of an inkjet printhead

    NARCIS (Netherlands)

    Beulen, Bart; Jong, de Jos; Reinten, Hans; Berg, van den Marc; Wijshoff, Herman; Dongen, van Rini

    2007-01-01

    Flow patterns of ink layers on the nozzle plate of a piezo-driven printhead are investigated. Two different flow types are identified. First, a jet of droplets induces a radial airflow in the direction of the jet, which in turn causes a liquid flow towards the nozzle. Second, the movement of the men

  5. Effects of nozzle spray angle on droplet size and velocity

    Science.gov (United States)

    Spray applicators have many choices in selecting a spray nozzle to make an application of an agricultural product. They must balance flowrate, spray pressure, and nozzle type and setup to deliver their agrochemical in the right droplet size for their particular needs. Studies were conducted to det...

  6. Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Su; Yoo, Changkyoo [Kyung Hee University, Yongin (Korea, Republic of); Kim, Minhan [Pangaea21 Ltd., Seongnam (Korea, Republic of); Kim, Jongrack [UnUsoft Ltd., Seoul (Korea, Republic of)

    2014-10-15

    Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.

  7. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    Science.gov (United States)

    Song, Gangbing (Inventor); Ma, Ning (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  8. UMA ABORDAGEM DE CONCEITOS ELEMENTARES DE GEOMETRIA NÃO EUCLIDIANA: UMA EXPERIÊNCIA VIVENCIADA NO ENSINO DE MATEMÁTICA A PARTIR DE UMA SEQUÊNCIA DIDÁTICA

    Directory of Open Access Journals (Sweden)

    Wanderley Pivatto Brum

    2014-02-01

    Full Text Available Neste artigo apresentamos um relato de uma experiência, de caráter qualitativo, a qual teve como objetivo analisar se a utilização de diferentes atividades, por meio de uma sequência didática para o ensino de Geometria não Euclidiana, em particular, Esférica e Hiperbólica. Para isso, realizamos uma pesquisa participante com 14 estudantes da 2ª série do Ensino Médio de uma escola da rede pública de Tijucas, Santa Catarina. A pesquisa esteve sentada na Teoria da Aprendizagem Significativa de Ausubel. A pesquisa foi dividida em três momentos: no primeiro foi aplicado um pré-teste, no segundo momento ocorreu a aplicação da sequência didática, e por fim, foi aplicado um pós-teste. Os resultados evidenciam que, após a sequência grande parte dos estudantes conseguiram assimilar, diferenciar e reconciliar conceitos de Geometria Euclidiana, Esférica e Hiperbólica, por ser um tema ainda novo nos bancos escolares, houve estudantes que permaneceram com um posicionamento euclidiano frente ao problema não euclidiano.

  9. 燃煤炉鼓风机中变频器的节能分析%Energy conservation analysis of the inverter in coal-fired furnace blower

    Institute of Scientific and Technical Information of China (English)

    武欣

    2011-01-01

    In order to lower the power consumption rate of coal-fired furnace blower, to reduce the starting current, to increase the power factor, and to improve the fireman's working intensity, frequency converter was proposed to be used in coal-fired furnace blower. Compared to the traditional coal-fired furnace blower system,this system used converter to control the flow (air volume), which could save a lot of power. Through a detailed analysis of the pressure H-flow Q curve, it is clear that after the frequency conversion, the required power of blower is reduced. Meanwhile, the soft-start function of the converter and the feature of smooth speed governing could realized the smooth adjustment of the system,which made the system worked stable and extended the service life of various components of the boiler. Finally, the practice data shows it is energy-efficient to use the frequency converter in coal-fired furnace blower.%为了降低燃煤炉鼓风机的用电率、减少起动电流、提高功率因数、改善司炉工工作强度,提出了将变频器用在燃煤炉鼓风机中.与传统的燃煤炉鼓风机系统相比较,该系统利用变频器进行流量(风量)控制时,可节约大量电能.通过详细分析压力H-流量Q曲线,得出变频调速后风机所需功率明显减少.同时,变频器的软启动功能和平滑调速的特点可实现对系统的平稳调节,使系统工作状态稳定,延长锅炉各部件的使用寿命.最后通过实际数据可知使用变频器后的燃煤炉鼓风机是节能的.

  10. Analysis, design and testing of high pressure waterjet nozzles

    Science.gov (United States)

    Mazzoleni, Andre P.

    1996-01-01

    The Hydroblast Research Cell at MSFC is both a research and a processing facility. The cell is used to investigate fundamental phenomena associated with waterjets as well as to clean hardware for various NASA and contractor projects. In the area of research, investigations are made regarding the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current industrial methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents, and high pressure waterjet cleaning has proven to be a viable alternative. Standard methods of waterjet cleaning use hand held or robotically controlled nozzles. The nozzles used can be single-stream or multijet nozzles, and the multijet nozzles may be mounted in a rotating head or arranged in a fan-type shape. We consider in this paper the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage (e.g. the formation of 'islands' of material not cleaned) and damage to the substrate from the waterjet have been observed. In addition, current stripping operations require the nozzle to be placed at a standoff distance of approximately 2 inches in order to achieve adequate performance. This close proximity of the nozzle to the target to be cleaned poses risks to the nozzle and the target in the event of robot error or the striking of unanticipated extrusions on the target surface as the nozzle sweeps past. Two key motivations of this research are to eliminate the formation of 'coating islands' and to increase the allowable standoff distance of the nozzle.

  11. Novel design for transparent high-pressure fuel injector nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  12. Que geometria ensinar? uma breve história da redefinição do conhecimento elementar matemático para crianças Which geometry should we teach? a brief history of the redefinition of elementary mathematics knowledge for children

    Directory of Open Access Journals (Sweden)

    Wagner Rodrigues Valente

    2013-04-01

    Full Text Available O artigo aborda a geometria para crianças, seu ensino para alunos das primeiras séries escolares. Leva em conta, inicialmente, a trajetória da Geometria para o nível elementar, desde, praticamente, a Independência do Brasil. Nessa análise, evidencia a permanência de conteúdos da geometria euclidiana até quase meados do século XX. Em seguida, analisa as propostas de alteração do ensino de Geometria elaboradas na década de 1960. Com isso, procura mostrar as intenções de modificar os conteúdos desse ramo matemático, em busca da redefinição de um novo elementar: um novo conhecimento elementar de geometria, vindo de processos de apropriação das contribuições trazidas pelos estudos da Psicologia cognitiva.The article discusses geometry for children and its teaching for students from early grades. It takes into account, firstly, the geometry journey at the elementary level since practically the Independence of Brazil. This analysis highlights the presence of Euclidean geometry contents up to the mid-twentieth century. It then analyzes the proposed amendment to the teaching of geometry developed in the 1960s. Thus, this article attempts to show the intentions to modify the contents of this branch of mathematics in search of a redefinition of the 'new elementary': a new elementary knowledge of geometry, coming from the appropriation processes of the contributions made by studies of cognitive psychology.

  13. Effect of working parameters and nozzle wear rate onto the spray quality in use of different fan flat nozzle

    Directory of Open Access Journals (Sweden)

    Eleonóra KECSKÉSNÉ NAGY

    2014-03-01

    Full Text Available The subject of the analysis was the influence of working parameters (working pressure and working speed on +drop tracks size and changes in flow rate level from flat fan nozzle. New nozzles and nozzles after laboratory wear were tested. The influence of nozzles wear on +drop tracks size was examined. It was found that increase in liquid flow rate results in higher values of mean diameter of +drop track. Increase in working pressure or working speed cause decrease in +drop tracks size and reduce merging of drops on spray surface. Increase in wear degree was followed by increased coverage rate. This phenomenon is especially dangerous when using nozzles with considerable wear degree for agricultural spray since this poses ecological threat to environment.

  14. Investigation of convergent-divergent nozzles applicable to reduced-power supersonic cruise aircraft

    Science.gov (United States)

    Berrier, B. L.; Re, R. J.

    1980-01-01

    An investigation was conducted of isolated convergent-divergent nozzles to determine the effect of several design parameters on nozzle performance. Tests were conducted using high pressure air for propulsion simulation at Mach numbers from 0.60 to 2.86 at an angle of attack of 0 deg and at nozzle pressure ratios from jet off to 46.0. Three power settings (dry, partial afterburning, and maximum afterburning), three nozzle lengths, and nozzle expansion ratios from 1.22 to 2.24 were investigated. In addition, the effects of nozzle throat radius and a cusp in the external boattail geometry were studied. The results of this study indicate that, for nozzles operating near design conditions, increasing nozzle length increases nozzle thrust-minus-drag performance. Nozzle throat radius and an external boattail cusp had negligible effects on nozzle drag or internal performance.

  15. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel

  16. Feedback mechanism for smart nozzles and nebulizers

    Science.gov (United States)

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  17. Droplet formation under the effect of a flexible nozzle plate.

    Science.gov (United States)

    Sangplung, S; Liburdy, J A

    2009-09-01

    Droplet formation from a flexible nozzle plate driven by a prescribed-waveform excitation of a piezoelectric is numerically investigated using a computational fluid dynamics (CFD) model with the volume of fluid (VOF) method. The droplet generator with a flexible nozzle plate, which is free to vibrate due to the pressure acting on the plate, is modeled in a CFD computational domain. The CFD analysis includes the fluid-structure interaction between fluid and a flexible plate using large deflection theory. The problem is characterized by the nondimensional variables based on the capillary parameters of time, velocity, and pressure. The CFD model is validated with the experiment results. This study examines the characteristics of the applied waveforms and nozzle plate material properties to change the vibrational characteristics of the nozzle plate. The effect of fluid properties on the droplet formation process is also investigated focusing on surface tension and viscous forces. Increasing the impulse of the piezoelectric can be used to cause a higher droplet velocity and it is shown that the vibration of the nozzle plate has a strong effect on the droplet velocity, shape, and volume. Surface tension has a strong influence on the droplet formation characteristics in contrast to viscous forces. For the combination of a fluid with high surface tension and the most flexible nozzle plate, this system cannot cause the droplet ejected out of the nozzle. PMID:19501837

  18. The Low Frequency Aeroacoustics of Buried Nozzle Systems

    Science.gov (United States)

    Taylor, M. V.; Crighton, D. G.; Cargill, A. M.

    1993-05-01

    A simplified model of a "buried nozzle" aeroengine system is considered. The primary flow issues into a co-annular flow within a mixing chamber, and then the co-annular flow issues into the ambient medium from a secondary nozzle. Within the mixing chamber only fine scale mixing takes place, and shear layers within the mixing chamber and downstream of the secondary nozzle are assumed to sustain large scale instability waves. Excitation of this system is provided by low frequency plane waves, incident from upstream on the primary nozzle (and emanating from combustion processes in the hot core of an aeroengine). The response of this system, in the acoustic far field and in the mixing chamber, is obtained analytically from the asymptotic solution, at low frequency, of model sub-problems the solutions of which determine the wave reflection and transmission processes at the primary and secondary nozzles. In these sub-problems the shear layers are represented by vortex sheets and the nozzle walls by semi-infinite circular ducts, with Kutta conditions imposed on the unsteady flow at the primary and secondary nozzle lips. Analytical descriptions are given of the various wave modes (quasi-plane acoustic waves, and instability waves localized on the primary and secondary shear layers), of the acoustic field strength and directivity (essentially monopole, dipole and quadrupole fields), and of the conditions under which near-resonant response may occur, with large amplitudes of the perturbations in the mixing chamber and in the acoustic field.

  19. Influence of nozzle random side loads on launch vehicle dynamics

    Science.gov (United States)

    Srivastava, Nilabh; Tkacik, Peter T.; Keanini, Russell G.

    2010-08-01

    It is well known that the dynamic performance of a rocket or launch vehicle is enhanced when the length of the divergent section of its nozzle is reduced or the nozzle exit area ratio is increased. However, there exists a significant performance trade-off in such rocket nozzle designs due to the presence of random side loads under overexpanded nozzle operating conditions. Flow separation and the associated side-load phenomena have been extensively investigated over the past five decades; however, not much has been reported on the effect of side loads on the attitude dynamics of rocket or launch vehicle. This paper presents a quantitative investigation on the influence of in-nozzle random side loads on the attitude dynamics of a launch vehicle. The attitude dynamics of launch vehicle motion is captured using variable-mass control-volume formulation on a cylindrical rigid sounding rocket model. A novel physics-based stochastic model of nozzle side-load force is developed and embedded in the rigid-body model of rocket. The mathematical model, computational scheme, and results corresponding to side loading scenario are subsequently discussed. The results highlight the influence of in-nozzle random side loads on the roll, pitch, yaw, and translational dynamics of a rigid-body rocket model.

  20. Application of LBB to a nozzle-pipe interface

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J. [and others

    1997-04-01

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.

  1. Single-Cycle Impulse from Detonation Tubes with Nozzles

    OpenAIRE

    Cooper, M; Shepherd, J. E.

    2008-01-01

    Experiments measuring the single-cycle impulse from detonation tubes with nozzles were conducted by hanging the tubes in a ballistic pendulum arrangement within a large tank. The detonation-tube nozzle and surrounding tank were initially filled with air between 1.4 and 100 kPa in pressure simulating high-altitude conditions. A stoichiometric ethylene–oxygen mixture at an initial pressure of 80 kPa filled the constant-diameter portion of the tube. Four diverging nozzles and six converging–dive...

  2. Effusive atomic oven nozzle design using an aligned microcapillary array

    Energy Technology Data Exchange (ETDEWEB)

    Senaratne, Ruwan, E-mail: rsenarat@physics.ucsb.edu; Rajagopal, Shankari V.; Geiger, Zachary A.; Fujiwara, Kurt M.; Lebedev, Vyacheslav; Weld, David M. [Department of Physics and California Institute for Quantum Emulation, University of California Santa Barbara, Santa Barbara, California 93106 (United States)

    2015-02-15

    We present a simple and inexpensive design for a multichannel effusive oven nozzle which provides improved atomic beam collimation and thus extended oven lifetimes. Using this design, we demonstrate an atomic lithium source suitable for trapped-atom experiments. At a nozzle temperature of 525 °C, the collimated atomic beam flux directly after the nozzle is 1.2 × 10{sup 14} atoms/s with a peak beam intensity greater than 5.0 × 10{sup 16} atoms/s/sr. This suggests an oven lifetime of several decades of continuous operation.

  3. Probabilistic assessment of space nuclear propulsion system nozzle

    Science.gov (United States)

    Shah, Ashwin R.; Ball, Richard D.; Chamis, Christos C.

    1994-01-01

    In assessing the reliability of a space nuclear propulsion system (SNPS) nozzle, uncertainties associated with the following design parameters were considered: geometry, boundary conditions, material behavior, and thermal and pressure loads. A preliminary assessment of the reliability was performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), a finite-element computer code developed at the NASA Lewis Research Center. The sensitivity of the nozzle reliability to the uncertainties in the random variables was quantified. With respect to the effective stress, preliminary results showed that the nozzle spatial geometry uncertainties have the most significant effect at low probabilities whereas the inner wall temperature has the most significant effect at higher probabilities.

  4. Interface ring for gas turbine fuel nozzle assemblies

    Science.gov (United States)

    Fox, Timothy A.; Schilp, Reinhard

    2016-03-22

    A gas turbine combustor assembly including a combustor liner and a plurality of fuel nozzle assemblies arranged in an annular array extending within the combustor liner. The fuel nozzle assemblies each include fuel nozzle body integral with a swirler assembly, and the swirler assemblies each include a bellmouth structure to turn air radially inwardly for passage into the swirler assemblies. A radially outer removed portion of each of the bellmouth structures defines a periphery diameter spaced from an inner surface of the combustor liner, and an interface ring is provided extending between the combustor liner and the removed portions of the bellmouth structures at the periphery diameter.

  5. Effusive Atomic Oven Nozzle Design Using a Microcapillary Array

    CERN Document Server

    Senaratne, Ruwan; Geiger, Zachary A; Fujiwara, Kurt M; Lebedev, Vyacheslav; Weld, David M

    2014-01-01

    We present a simple and inexpensive design for a multichannel effusive oven nozzle which provides improved atomic beam collimation and thus extended oven lifetimes. Using this design we demonstrate an atomic lithium source suitable for trapped-atom experiments. At a nozzle temperature of 525$^{\\circ}$C the total atomic beam flux directly after the nozzle is $1.2 \\times 10^{14}$ atoms per second with a peak beam intensity greater than $5.0 \\times 10^{16}$ atoms per second per steradian. This suggests an oven lifetime of several centuries of continuous operation.

  6. Simple and Compact Nozzle Design for Laser Vaporization Sources

    CERN Document Server

    Kokish, M G; Odom, B C

    2015-01-01

    We have developed and implemented a compact transparent nozzle for use in laser vaporization sources. This nozzle eliminates the need for an ablation aperture, allowing for a more intense molecular beam. We use this nozzle to prepare a molecular beam of aluminum monohydride (AlH) suitable for ion trap loading of AlH$^+$ via photoionization in ultra-high vacuum. We demonstrate stable AlH production over hour time scales using a liquid ablation target. The long-term stability, low heat load and fast ion production rate of this source are well-suited to molecular ion experiments employing destructive state readout schemes requiring frequent trap reloading.

  7. Fuel Injector Nozzle For An Internal Combustion Engine

    Science.gov (United States)

    Cavanagh, Mark S.; Urven, Jr.; Roger L.; Lawrence, Keith E.

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  8. A review on nozzle wear in abrasive water jet machining application

    Science.gov (United States)

    Syazwani, H.; Mebrahitom, G.; Azmir, A.

    2016-02-01

    This paper discusses a review on nozzle wear in abrasive water jet machining application. Wear of the nozzle becomes a major problem since it may affect the water jet machining performance. Design, materials, and life of the nozzle give significance effect to the nozzle wear. There are various parameters that may influence the wear rate of the nozzle such as nozzle length, nozzle inlet angle, nozzle diameter, orifice diameter, abrasive flow rate and water pressure. The wear rate of the nozzle can be minimized by controlling these parameters. The mechanism of wear in the nozzle is similar to other traditional machining processes which uses a cutting tool. The high pressure of the water and hard abrasive particles may erode the nozzle wall. A new nozzle using a tungsten carbide-based material has been developed to reduce the wear rate and improve the nozzle life. Apart from that, prevention of the nozzle wear has been achieved using porous lubricated nozzle. This paper presents a comprehensive review about the wear of abrasive water jet nozzle.

  9. Noise Characteristics of Overexpanded Jets from Convergent-Divergent Nozzles

    Science.gov (United States)

    Zaman, K. B. M. Q.

    2008-01-01

    A broadband noise component occurring in the overexpanded flow regime with convergent-divergent nozzles is identified. Relative to a convergent nozzle, at same pressure ratios, this excess noise can lead to a large increase in the overall sound pressure levels. Several features distinguish it from the more familiar broadband shock associated noise. Unlike the latter, it is observed even at shallow polar locations and there is no noticeable shift of the spectral content in frequency with observation angle. The amplitudes are found to be more pronounced with nozzles having larger half-angle of the divergent section. The noise apparently occurs when a shock resides within the divergent section of the nozzle and results from random unsteady motion of the shock.

  10. Altitude Compensating Nozzle Transonic Performance Flight Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Altitude compensating nozzles continue to be of interest for use on future launch vehicle boosters and upper stages because of their higher mission average Isp and...

  11. Plasma separation from magnetic field lines in a magnetic nozzle

    Science.gov (United States)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  12. Design methods of Coanda effect nozzle with two streams

    Directory of Open Access Journals (Sweden)

    Michele TRANCOSSI

    2014-03-01

    Full Text Available This paper continues recent research of the authors about the ACHEON Coanda effect two streams nozzle. This nozzle aims to produce an effective deflection of a propulsive jet with a correspondent deviation of the thrust vector in a 2D plane. On the basis of a previously published mathematical model, based on integral equations, it tries to produce an effective design guideline, which can be adopted for design activities of the nozzle for aeronautic propulsion. The presented model allows defining a governing method for this innovative two stream synthetic jet nozzle. The uncertainness level of the model are discussed and novel aircraft architectures based on it are presented. A CFD validation campaign is produced focusing on validating the model and the designs produced.

  13. Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  14. Design of a continuously variable Mach-number nozzle

    Institute of Scientific and Technical Information of China (English)

    郭善广; 王振国; 赵玉新

    2015-01-01

    A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozzle profile, while other Mach- numbers were derived from the transformation of the original profile. A design scheme, covering a Mach-number range of 3.0nozzle. The computed results indicate that exit uniform flow is obtained with 1.19% of the maximal Mach-number deviation at the nozzle exit. The present design method achieves the continuously variable Mach-number flow during a wind tunnel running.

  15. Analysis of a Low-Angle Annular Expander Nozzle

    Directory of Open Access Journals (Sweden)

    Kyll Schomberg

    2015-01-01

    Full Text Available An experimental and numerical analysis of a low-angle annular expander nozzle is presented to observe the variance in shock structure within the flow field. A RANS-based axisymmetric numerical model was used to evaluate flow characteristics and the model validated using experimental pressure readings and schlieren images. Results were compared with an equivalent converging-diverging nozzle to determine the capability of the wake region in varying the effective area of a low-angle design. Comparison of schlieren images confirmed that shock closure occurred in the expander nozzle, prohibiting the wake region from affecting the area ratio. The findings show that a low angle of deflection is inherently unable to influence the effective area of an annular supersonic nozzle design.

  16. Flashback detection sensor for lean premix fuel nozzles

    Science.gov (United States)

    Thornton, Jimmy Dean; Richards, George Alan; Straub, Douglas L.; Liese, Eric Arnold; Trader, Jr., John Lee; Fasching, George Edward

    2002-08-06

    A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides 360.degree. detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.

  17. Flow Visualization Proposed for Vacuum Cleaner Nozzle Designs

    Science.gov (United States)

    2005-01-01

    In 1995, the NASA Lewis Research Center and the Kirby Company (a major vacuum cleaner company) began negotiations for a Space Act Agreement to conduct research, technology development, and testing involving the flow behavior of airborne particulate flow behavior. Through these research efforts, we hope to identify ways to improve suction, flow rate, and surface agitation characteristics of nozzles used in vacuum cleaner nozzles. We plan to apply an advanced visualization technology, known as Stereoscopic Imaging Velocimetry (SIV), to a Kirby G-4 vacuum cleaner. Resultant data will be analyzed with a high-speed digital motion analysis system. We also plan to evaluate alternative vacuum cleaner nozzle designs. The overall goal of this project is to quantify both velocity fields and particle trajectories throughout the vacuum cleaner nozzle to optimize its "cleanability"--its ability to disturb and remove embedded dirt and other particulates from carpeting or hard surfaces. Reference

  18. 3-D Printed Slit Nozzles for Fourier Transform Microwave Spectroscopy

    Science.gov (United States)

    Dewberry, Chris; Mackenzie, Becca; Green, Susan; Leopold, Ken

    2015-06-01

    3-D printing is a new technology whose applications are only beginning to be explored. In this report, we describe the application of 3-D printing to the facile design and construction of supersonic nozzles. The efficacy of a variety of designs is assessed by examining rotational spectra OCS and Ar-OCS using a Fourier transform microwave spectrometer with tandem cavity and chirped-pulse capabilities. This work focuses primarily on the use of slit nozzles but other designs have been tested as well. New nozzles can be created for 0.50 or less each, and the ease and low cost should facilitate the optimization of nozzle performance (e.g., jet temperature or cluster size distribution) for the needs of any particular experiment.

  19. Pengaruh Nozzle Terhadap Aspek Hidrodinamika Kinerja Kolom Gelembung Pancaran

    Directory of Open Access Journals (Sweden)

    Didiek Hari Nugroho

    2015-07-01

    Full Text Available Kolom gelembung pancaran merupakan salah satu alat perpindahan massa antara fasa gas dan cair. Penelitian ini bermaksud untuk mempelajari pengaruh nozzle terhadap aspek hidrodinamika antara lain: kedalaman penetrasi gelembung (Z, holdup gas (eg, dan laju alir volumetrik gas entrainment (Ql yang terjadi dalam kolom gelembung pancaran. Variabel proses yang dipelajari antara lain laju alir volumetrik cairan (10-50 L/menit, ukuran diameter nozzle (0,008-0,0127 m, dan tinggi nozzle (0,125-0,25 m. Hasil penelitian memperlihatkan bahwa ukuran diameter nozzle semakin kecil dan laju alir volumetrik cairan yang semakin besar menghasikan laju alir volumetrik gas entrainment, holdup gas, dan kedalaman penetrasi gelembung yang semakin besar.

  20. Feasibility evaluation of the monolithic braided ablative nozzle

    Science.gov (United States)

    Director, Mark N.; McPherson, Douglass J., Sr.

    1992-02-01

    The feasibility of the monolithic braided ablative nozzle was evaluated as part of an independent research and development (IR&D) program complementary to the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC) Low-Cost, High-Reliability Case, Insulation and Nozzle for Large Solid Rocket Motors (LOCCIN) Program. The monolithic braided ablative nozzle is a new concept that utilizes a continuous, ablative, monolithic flame surface that extends from the nozzle entrance, through the throat, to the exit plane. The flame surface is fabricated using a Through-the-Thickness braided carbon-fiber preform, which is impregnated with a phenolic or phenolic-like resin. During operation, the braided-carbon fiber/resin material ablates, leaving the structural backside at temperatures which are sufficiently low to preclude the need for any additional insulative materials. The monolithic braided nozzle derives its potential for low life cycle cost through the use of automated processing, one-component fabrication, low material scrap, low process scrap, inexpensive raw materials, and simplified case attachment. It also has the potential for high reliability because its construction prevents delamination, has no nozzle bondlines or leak paths along the flame surface, is amenable to simplified analysis, and is readily inspectable. In addition, the braided construction has inherent toughness and is damage-tolerant. Two static-firing tests were conducted using subscale, 1.8 - 2.0-inch throat diameter, hardware. Tests were approximately 15 seconds in duration, using a conventional 18 percent aluminum/ammonium perchlorate propellant. The first of these tests evaluated the braided ablative as an integral backside insulator and exit cone; the second test evaluated the monolithic braided ablative as an integral entrance/throat/exit cone nozzle. Both tests met their objectives. Radial ablation rates at the throat were as predicted, approximately 0.017 in

  1. Spray stability from VCO and a new diesel nozzle design concept

    OpenAIRE

    Mitroglou, N.; Gavaises, M.; Arcoumanis, D.

    2012-01-01

    Cavitation structures developing within the injection holes of high-pressure Diesel injectors are known to affect the emerging spray shape and its stability. The present study attempts to link the development of these cavitation structures to the near-nozzle spray formation for a Valve Covered Orifice (VCO) nozzle and a new Diesel nozzle design concept, through use of high speed flow visualisation applied on large-scale and real-size transparent nozzle replicas. A prototype Diesel nozzle has ...

  2. Computational Simulation on a Coaxial Substream Powder Feeding Laval Nozzle of Cold Spraying

    OpenAIRE

    Huang, Guosheng; GU, DAMING; Xiangbo LI; Lukuo XING

    2014-01-01

    In this paper, a substream coaxial powder feeding nozzle was investigated for use in cold spraying. The relationship between nozzle structure and gas flow, the acceleration behavior of copper particles were examined by computational simulation method. Also, one of the nozzle was used to spray copper coating on steel substrate. The simulation results indicate that: the velocity of gas at the center of the nozzle is lower than that of the conventional nozzle. Powders are well restrained near th...

  3. Fuel to the nuclear debate : [Rezension von:] Nuclear power in crisis, Andrew Blowers and David Pepper (editors), New York, Nichols; London ..., Croom Helm, 1987

    OpenAIRE

    Renn, Ortwin

    1988-01-01

    Nuclear energy is one of the most popular topics of today’s publication market. The literature about the pros and cons of nuclear power may easily fill a whole library. Is there anything new to add to this voluminous body of arguments and contra-arguments that would justify editing another book on nuclear energy? Andrew Blowers and David Pepper obviously felt that way and published a reader on Nuclear Power in Crisis. The book consists of 13 articles covering mainly the political, social and ...

  4. 降低罗茨风机噪声的消声器研制%The noise depressing measures for Roots blower

    Institute of Scientific and Technical Information of China (English)

    程勒

    2001-01-01

    论述了自制消声器的设计计算及制造方法,举例说明这种降低罗茨风机噪声措施取得的明显效果,以及在石化企业中的应用。%The noise depressing measures for Roots blower,design,calculation and fabrication of the muffler are described.It shows that the m easures obtain obvious effect and can be applied in oil chemical plant.

  5. An analysis of the particulate flow in cold spray nozzles

    OpenAIRE

    Meyer, M; R. Lupoi

    2015-01-01

    Cold Spray is a novel technology for the application of coatings onto a variety of substrate materials. In this method, melting temperatures are not crossed and the bonding is realized by the acceleration of powder particles through a carrier gas in a converging-diverging nozzle and their high energy impact over a substrate material. The critical aspect of this technology is the acceleration process and the multiphase nature of it. Three different nozzle designs were experim...

  6. Numerical Investigation of Spray Formation in Coaxial Nozzles

    OpenAIRE

    Konstantinov, Mikhail; Wagner, Claus

    2008-01-01

    In this paper the results of numerical investigation of atomization process of liquid fuel (Diesel) in Laval and coaxial nozzles are presented. The calculations have been performed using CFD codes of STAR-CD. The dependences between the different cases of pressure drop and spray formation have been analysed. For that purpose a model to simulate unsteady two-phase atomization process has been employed. Results of transient flow through various 3D nozzle shapes and the resulting spray developme...

  7. Plasma spray nozzle with low overspray and collimated flow

    Science.gov (United States)

    Beason, Jr., George P. (Inventor); McKechnie, Timothy N. (Inventor); Power, Christopher A. (Inventor)

    1996-01-01

    An improved nozzle for reducing overspray in high temperature supersonic plasma spray devices comprises a body defining an internal passageway having an upstream end and a downstream end through which a selected plasma gas is directed. The nozzle passageway has a generally converging/diverging Laval shape with its upstream end converging to a throat section and its downstream end diverging from the throat section. The upstream end of the passageway is configured to accommodate a high current cathode for producing an electrical arc in the passageway to heat and ionize the gas flow to plasma form as it moves along the passageway. The downstream end of the nozzle is uniquely configured through the methodology of this invention to have a contoured bell-shape that diverges from the throat to the exit of the nozzle. Coating material in powder form is injected into the plasma flow in the region of the bell-shaped downstream end of the nozzle and the powder particles become entrained in the flow. The unique bell shape of the nozzle downstream end produces a plasma spray that is ideally expanded at the nozzle exit and thus virtually free of shock phenomena, and that is highly collimated so as to exhibit significantly reduced fanning and diffusion between the nozzle and the target. The overall result is a significant reduction in the amount of material escaping from the plasma stream in the form of overspray and a corresponding improvement in the cost of the coating operation and in the quality and integrity of the coating itself.

  8. Jet-Engine Exhaust Nozzle With Thrust-Directing Flaps

    Science.gov (United States)

    Wing, David J.

    1996-01-01

    Convergent/divergent jet-engine exhaust nozzle has cruciform divergent passage containing flaps that move to deflect flow of exhaust in either or both planes perpendicular to main fore-and-aft axis of undeflected flow. Prototype of thrust-vector-control nozzles installed in advanced, high-performance airplanes to provide large pitching (usually, vertical) and yawing (usually, horizontal) attitude-control forces independent of attitude-control forces produced by usual aerodynamic control surfaces.

  9. USB noise reduction by nozzle and flap modifications

    Science.gov (United States)

    Hayden, R. E.

    1976-01-01

    The development of concepts for reducing upper surface blown flap noise at the source through flap modifications and special nozzles is reviewed. In particular, recent results obtained on the aerodynamic and acoustic performance of flaps with porous surfaces near the trailing edge and multi-slotted nozzles are reviewed. Considerable reduction (6-10 db) of the characteristic low frequency peak is shown. The aerodynamic performance is compared with conventional systems, and prospects for future improvements are discussed.

  10. Influences of Geometric Parameters upon Nozzle Performances in Scramjets

    Institute of Scientific and Technical Information of China (English)

    Li Jianping; Song Wenyan; Xing Ying; Luo Feiteng

    2008-01-01

    This article investigates and presents the influences of geomea'ic parameters of a scramjet exerting upon its nozzle performances. These parameters include divergent angles, total lengths, height ratios, cowl lengths, and cowl angles. The flow field within the scramjet nozzle is simulated numerically by using the CFD software--FLUENT in association with coupled implicit solver and an RNG k-ε tur-bulence model.

  11. Multi-tube fuel nozzle with mixing features

    Science.gov (United States)

    Hughes, Michael John

    2014-04-22

    A system includes a multi-tube fuel nozzle having an inlet plate and a plurality of tubes adjacent the inlet plate. The inlet plate includes a plurality of apertures, and each aperture includes an inlet feature. Each tube of the plurality of tubes is coupled to an aperture of the plurality of apertures. The multi-tube fuel nozzle includes a differential configuration of inlet features among the plurality of tubes.

  12. Magnetic-Nozzle Studies for Fusion Propulsion Applications: Gigawatt Plasma Source Operation and Magnetic Nozzle Analysis

    Science.gov (United States)

    Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin

    2004-01-01

    This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.

  13. Fluidic Control of Nozzle Flow: Some Performance Measurements

    Science.gov (United States)

    Federspiel, John; Bangert, Linda; Wing, David; Hawkes, Tim

    1995-01-01

    Results are presented of an experimental program that investigated the use of a secondary air stream to control the amount of flow through a convergent-divergent nozzle. These static tests utilized high pressure, ambient temperature air that was injected at the throat of the nozzle through an annular slot. Multiple injection slot sizes and injection angles were tested. The introduction of secondary flow was made in an opposing direction to the primary flow and the resulting flow field caused the primary stream to react as though the physical throat size had been reduced. The percentage reduction in primary flow rate was generally about twice the injected flow rate. The most effective throttling was achieved by injecting through the smallest slot in an orientation most nearly opposed to the approaching primary flow. Thrust edliciency, as measured by changes in nozzle thrust coefficient, was highest at high nozzle pressure ratios, NPR. The static test results agreed with predictions obtained prior from PABSD, a fully viscous computational fluid dynamics program. Since use of such an injection system on gas turbine engine exhaust nozzles would be primarily at high NPRs, it was concluded that fluidic control holds promise for reducing nozzle weight and complexity on future systems.

  14. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    Science.gov (United States)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-08-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  15. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    Science.gov (United States)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-07-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  16. Reverse flow through a large scale multichannel nozzle

    International Nuclear Information System (INIS)

    A database was developed for the flow of water through a scaled nozzle of a Savannah River Site reactor inlet plenum. The water flow in the nozzle was such that it ranged from stratified to water solid conditions. Data on the entry of air into the nozzle and plenum as a function of water flow are of interest in loss-of-coolant studies. The scaled nozzle was 44 cm long, had an entrance diameter of 95 mm, an exit opening of 58 mm x 356 mm, and an exit hydraulic diameter approximately equal to that of the inlet. Within the nozzle were three flow-straightening vanes which divided the flow path into four channels. All data were taken at steady-state and isothermal (300 K ± 1.5 K) conditions. During the reverse flow of water through the nozzle the point at which air begins to enter was predicted within 90% by a critical weir-flow calculation. The point of air entry into the plenum itself was found to be a function of flow conditions

  17. Simulating radiative shocks in nozzle shock tubes

    CERN Document Server

    van der Holst, B; Sokolov, I V; Daldorff, L K S; Powell, K G; Drake, R P

    2011-01-01

    We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1ns. The later times are calculated with the CRASH code. This code solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties a...

  18. Particle Streak Velocimetry of Supersonic Nozzle Flows

    Science.gov (United States)

    Willits, J. D.; Pourpoint, T. L.

    2016-01-01

    A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.

  19. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles: Comprehensive data report. [nozzle transfer functions

    Science.gov (United States)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through a coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken (1) to define the test parameters which influence the internal noise radiation; (2) to develop a test methodology which could realistically be used to examine the effects of the test parameters; and (3) to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the jet nozzles. Noise transmission characteristics of a coannular nozzle system were then investigated. In particular, the effects of fan convergence angle, core extension length to annulus height ratio and flow Mach numbers and temperatures were studied. Relevant spectral data only is presented in the form of normalized nozzle transfer function versus nondimensional frequency.

  20. Reason Analysis of Unstable Operation of Wedge Ring Sealed Roots Blowers and Solutions%楔形环密封型罗茨风机运行不稳定原因分析及解决措施

    Institute of Scientific and Technical Information of China (English)

    韩振禹

    2012-01-01

    阐述了楔形环密封型罗茨风机在生产运行中存在的问题,分析了导致风机不能长周期运转的主要原因,针对设备运行中各种不利因素,对设备实行了多处改造后,提高了风机的运行稳定性,增加了聚乙烯产品的生产能力,为装置平稳生产做出了突出贡献.%Some problems of wedge ring sealed Roots blowers in the production operation were introduced,main reasons to cause the blowers not run for long time were analyzed.Aiming at various unfavorable factors,the equipment was transformed to enhance stability of the blowers and increase polyethylene production capacity.

  1. Analysis to the elements of solar geometry and it relation with the conformation of prehispanic site; Analisis de los elementos de geometria solar y sus relacion con la conformacion de un sitio prehispanico

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Torres, Juan M; Navarrete Padilla, Roberto; Martinez Cossio, Jose L. [Universidad de Guanajuato, Guanjuato, Gto. (Mexico); Castaneda Lopez, Carlos [Instituto Nacional de Antropologia y Historia (INAH), Marfil, Gto. (Mexico)

    2000-07-01

    The first results are presented from the analysis to the general elements of solar geometry in the archaeological place of Plazuelas these elements they are presented as two possible cases, a) the general structure of the place and b) the elements in existent Scale model in the contiguous esplanade to the place that is contemplated above the 400 scale models in the current registrations, of those which approximately 20 present characteristic of design that could be models to scale of other places of great importance for their magnitude and conformation. The astronomical elements initially contemplate alone the relative thing to the limited Solar Geometry mainly for the phase of intervention of the place, which is in the first preliminary works and they have not allowed to discover all the geometric elements of the place, however in this first approach they can be derived some hypotheses of the definition of the same one. [Spanish] Se presentan los primeros resultados del analisis a los elementos generales de geometria solar en el sitio arqueologico de Plazuelas estos elementos se presentan como dos posibles casos, a) la estructura general del sitio y b) los elementos en Maqueta existentes en la explanada contigua al sitio, que en los registros actuales se contempla por encima de las 400 maquetas, de las cuales aproximadamente 20 presentan caracteristicas de diseno que podrian ser modelos a escala de otros sitios de gran importancia por su magnitud y conformacion. Los elementos astronomicos inicialmente contemplan solo lo relativo a la geometria solar limitado principalmente por la fase de intervencion del lugar, el cual se encuentra en los primeros trabajos preliminares y no ha permitido descubrir todos los elementos geometricos del sitio, sin embargo en este primer acercamiento se pueden derivar algunas hipotesis de la definicion del mismo.

  2. Optimal geometry and dimensions for the receiver of a parabolic solar concentrator with an angle of 90 degrees; Determiancion de la geometria y dimensiones optimas de un receptor para un concentrador solar paraboloidal con angulo de apertura de 90 grados

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Claudio A; Arancibia, Camilo [Centro de Investigacion en Energia UNAM, Temixco, Morelos (Mexico); Hernandez, Nestor [Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico)

    2000-07-01

    The optimal geometry and dimensions for the receiver of a parabolic solar concentrator based on microwave communication antenna are obtained. First, the experiments for the determination of the angular error of the concentrator and the dimensions of its focal region are described. Results are also presented for the ray tracing study, from which the optimal characteristics of the receiver are obtained according to the experimental results. As the aluminum antenna has a rim angle of 90 Celsius degrees, it is necessary to use a cavity receiver to allow external as well as internal absorption of radiative flux. Cylindrical, conical and spherical geometric were considered, as well as combinations of them. The best results are achieved using a conical cavity. Its dimensions are calculated to maximize the radiative transfer efficiency from the aperture of the concentrator to the receiver. [Spanish] Se determinan la geometria y dimensiones optimas del receptor de un concentrador solar parabolico obtenido a partir de una antena de telecomunicaciones para microondas. Primeramente se describen los experimentos realizados para obtener el valor del error angular asociado al concentrador y de las dimensiones de su region focal. Tambien se presentan los resultados del estudio optico de trazado de rayos, que permitio determinar teoricamente las caracteristicas del receptor, de acuerdo a los resultados de los experimentos. Debido a que la antena de aluminio tiene un angulo de borde de 90 grados Celcius, es necesario usar un receptor tipo cavidad que permita la captacion de energia tanto interna como externa. Se consideraron geometrias cilindrica, conica, esferica y combinaciones entre ellas, resultando ser la conica la que da los mejores resultados. Las dimensiones del receptor fueron determinadas maximizando la eficiencia del transporte de radiacion de la apertura del concentrador al receptor.

  3. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    Science.gov (United States)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  4. Study on Characteristics of Different Types of Nozzles for Coal-Water Slurry Atomization

    Institute of Scientific and Technical Information of China (English)

    Kun Yuan; Lifang Chen; Chengkang Wu

    2001-01-01

    Three types of nozzles: a low-pressure multistage nozzle, an effervescent nozzle and a newly developed internal mixing air-blast nozzle, for atomization of Coal-Water Slurry (CWS) were investigated. Influence of CWS properties including surface tension and apparent viscosity on atomization was studied. Comparisons among the nozzles were carried out in terms of spray droplet mean diameter and fuel output. Versatility of each nozzle was investigated and atomization mechanism of each nozzle was analyzed as well. The results showed that the newly developed internal-mixing air-blast nozzle has high fuel output and small mean droplet size in the spray, but the multistage nozzle has high versatility for handling of low quality CWS.

  5. Thermal analysis of nozzle for powder feeding in High Power Diode Laser (HPDL powder surfacing

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2007-01-01

    Full Text Available Purpose: Purpose of these researches was to determine the influence of High Power Diode Laser (HPDLpowder surfacing parameters, material type and shape of the nozzle for powder feeding on the temperature fieldof the nozzle.Design/methodology/approach: Different materials for manufacturing of the nozzle for powder feeding duringHPDL powder surfacing and different shapes of the nozzle were tested to establish the optimum shape and selectthe material that ensure lowest heating of the nozzle. Reflection coefficient of the infrared laser radiation of 808 nmfor the tested materials were determined as a function of a temperature. Temperature of the nozzle tip was measuredand determined as a function of surfacing parameters. Life time of the different nozzles was determined.Findings: It was shown that the nozzle made of copper body and thin-walled tube made of austenitic stainless steelensures much higher life time of the nozzle and also higher process efficiency compared with nozzle made of copper.Research limitations/implications: It was found that decreasing the distance from the nozzle tip of thin-walledtube made of austenitic stainless steel to the weld pool surface resulted in increasing of the process efficiencybut too short distance is the reason of extensive heating of the nozzle.Originality/value: The optimized shape of the powder feeding nozzle made of thin-walled tube made ofaustenitic stainless steel guarantee unlimited lifetime of the nozzle and high surfacing efficiency over 95%.

  6. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    OpenAIRE

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The nozzles types used were the standard flat fan XR as a reference nozzle and the DG, XLTD, IDN, AIXR and AIRmix as drift reducing nozzles types. A Patternator was used to check the cross distribution...

  7. Parametric study of single expansion ramp nozzles at subsonic/transonic speeds

    Science.gov (United States)

    Capone, F. J.; Re, R. J.; Bare, E. A.; Maclean, M. K.

    1987-01-01

    The Langley Research Center has conducted a parametric investigation to determine the aeropropulsive characteristics of single expansion ramp nozzles (SERN). The SERN is a nonaxisymmetric, variable-area, internal/external expansion exhaust nozzle. Internal nozzle parameters that were varied included upper ramp length, ramp chordal angle, lower flap length, flap angle and the axial and vertical locations of nozzle throat. Convergent-divergent and convergent nozzles were included in this investigation which was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.6 to 1.2 and at nozzle pressure ratios up to 12.0.

  8. The role of nozzle convergence in diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    J. Benajes; S. Molina; C. Gonzaalez; R. Donde [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain)

    2008-08-15

    An experimental study has been performed for identifying the role of injector nozzle hole convergence and cavitation in diesel engine combustion and pollutant emissions. For doing so, five nozzles were tested under different operating and experimental conditions. The critical cavitation number of each nozzle was analyzed. With this value, an estimation of the mixing process at different conditions obtained. This data is used to explain the combustion results which are analyzed in terms of the apparent combustion time, rate of heat release, in-cylinder pressures, adiabatic temperatures and soot and NOx emissions. Special emphasis is put in developing an expression to explicitly link the mixing process and the injection rate with the rate of heat release. The results show that the fuel-air mixing process can be improved by the use of both convergent and cavitating nozzles, thus lowering the soot emissions. The NOx production, being dependent of the injection rate and the mixing process, does not necessarily increase with the use of more convergent nozzles. 40 refs., 8 fig., tabs.

  9. Power consumption and parameter optimization of stalk impeller blowers%叶片式秸秆抛送装置功耗分析与参数优化

    Institute of Scientific and Technical Information of China (English)

    翟之平; 高搏; 杨忠义; 吴雅梅

    2013-01-01

    The impeller blower is widely used in various forage harvesters, such as crop straw choppers, rubbing, and breaking machines, to convey materials because of its simplicity, reliability, easy maintenance and adjustment, high capacity and low manufacturing cost. However, some undesired problems such as high power consumption, low throwing/blowing efficiency and high clogging probability also exist in the process of throwing/blowing the materials. In order to reduce the power consumption of the impeller blower and increase its blowing efficiency, the theoretical analyzing method was used to establish the mathematical models of the power consumption, firstly based on considering the airflow, which is suitable for forward-slant, backward-slant and radial paddle. The power consumption includes two parts. One part is the energy required to accelerate the materials that will obtain kinetic energy by means of the mechanical centrifugal force when the paddle rotates at high speed. The other part is the energy that accelerates the airflow in the impeller blower and helps the materials conveying under the condition of high rotating speed of the paddle. The first power consumption is related to the material-threw angle, namely, the rotation angle of the paddle in the course of hitting, carrying and throwing out of the material. When the material-threw angle is in the range from approximately 60°to 130°, all materials are thrown out of the housing under the condition of low energy consumption, high throwing/blowing efficiency and low clogging probability. However, when the material-threw angle is less than 60°or more than 130°, few materials are thrown out of the housing directly. Most of the materials will hit the housing, which causes most of the energy lost under the hitting energy E4c and a frictional energy E4f. Through validation by using the test data of the corn stalk, it shows that the computing power consumption by using this mathematical model of the power

  10. Blast wave in a nozzle for propulsive applications

    Science.gov (United States)

    Varsi, G.; Back, L. H.; Kim, K.

    1976-01-01

    The reported investigation has been conducted in connection with studies concerning the development of a propulsion system based on the use of a detonating fluid propellant. Measurements have been made of the pressure and shock wave velocity in a conical nozzle at various ambient pressures and at an ambient temperature of 25 C. In the experiments a small amount of explosive was placed at the end wall of a conical aluminum nozzle and detonated by a microdetonator inside the nozzle. Differences regarding the characteristics of conventional chemical propulsion and detonation propulsion are illustrated with the aid of a graph. One- and two-dimensional numerical flow calculations were performed and compared with the experimental data.

  11. Temperature Histories in Ceramic-Insulated Heat-Sink Nozzle

    Science.gov (United States)

    Ciepluch, Carl C.

    1960-01-01

    Temperature histories were calculated for a composite nozzle wall by a simplified numerical integration calculation procedure. These calculations indicated that there is a unique ratio of insulation and metal heat-sink thickness that will minimize total wall thickness for a given operating condition and required running time. The optimum insulation and metal thickness will vary throughout the nozzle as a result of the variation in heat-transfer rate. The use of low chamber pressure results in a significant increase in the maximum running time of a given weight nozzle. Experimentally measured wall temperatures were lower than those calculated. This was due in part to the assumption of one-dimensional or slab heat flow in the calculation procedure.

  12. Electrochemical cell apparatus having an exterior fuel mixer nozzle

    Science.gov (United States)

    Reichner, Philip; Doshi, Vinod B.

    1992-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one hot gaseous spent fuel recirculation channel (46), where the spent fuel recirculation channel (46), a portion of which is in contact with the outside of a mixer chamber (52), passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at the entrance to the mixer chamber, and a mixer nozzle (50) is located at the entrance to the mixer chamber, where the mixer chamber (52) connects with the reforming chamber (54), and where the mixer-diffuser chamber (52) and mixer nozzle (50) are exterior to and spaced apart from the combustion chamber (24), and the generator chamber (22), and the mixer nozzle (50) can operate below 400.degree. C.

  13. Aeroelastic stability analysis of flexible overexpanded rocket nozzle

    Science.gov (United States)

    Bekka, N.; Sellam, M.; Chpoun, A.

    2016-07-01

    The aim of this paper is to present a new aeroelastic stability model taking into account the viscous effects for a supersonic nozzle flow in overexpanded regimes. This model is inspired by the Pekkari model which was developed initially for perfect fluid flow. The new model called the "Modified Pekkari Model" (MPM) considers a more realistic wall pressure profile for the case of a free shock separation inside the supersonic nozzle using the free interaction theory of Chapman. To reach this objective, a code for structure computation coupled with aerodynamic excitation effects is developed that allows the analysis of aeroelastic stability for the overexpanded nozzles. The main results are presented in a comparative manner using existing models (Pekkari model and its extended version) and the modified Pekkari model developed in this work.

  14. Injector nozzle for molten salt destruction of energetic waste materials

    Science.gov (United States)

    Brummond, William A.; Upadhye, Ravindra S.

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  15. The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc

    Science.gov (United States)

    Zhang, Q.; Liu, J.; Yan, J. D.; Fang, M. T. C.

    2016-08-01

    The present work (part II) forms the second part of an investigation into the behaviour of SF6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (di/dt) before current zero and a voltage ramp (dV/dt) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures (P 0) and two values of di/dt for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0, rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed.

  16. A geometria barroca do destino

    Directory of Open Access Journals (Sweden)

    Ismail Xavier

    2011-12-01

    Full Text Available Análise da leitura que o filme Lavoura arcaica (2001, de Luiz Fernando Carvalho, faz do romance homônimo de Raduan Nassar (1975, com ênfase nas diferenças que se produzem na condução de um projeto marcado pela sintonia entre escritor e cineasta. No filme, há a forte presença da voz overdo narrador, que transpõe passagens do texto de Raduan. No romance, a palavra é soberana; no cinema, ela deve interagir com a mise-en-scène; imagem e som compõem uma nova dinâmica, que define a originalidade das escolhas do cineasta e sua concepção da tragédia familiar.

  17. Experimental Investigation of 'Transonic Resonance' with Convergent-Divergent Nozzles

    Science.gov (United States)

    Zaman, K. B. M. Q.; Dahl, M. D.; Bencic, T. J.; Zaman, Khairul (Technical Monitor)

    2001-01-01

    Convergent-divergent nozzles, when run at pressure ratios lower than the design value, often undergo a flow resonance accompanied by the emission of acoustic tones. The phenomenon, different in characteristics from conventional 'screech' tones, has been studied experimentally. Unlike screech, the frequency increases with increasing supply pressure. There is a 'staging' behavior; 'odd harmonic' stages resonate at lower pressures while the fundamental occurs in a range of higher pressures corresponding to a fully expanded Mach number (M(sub j)) around unity. The frequency (f(sub N)) variation with M(sub j) depends on the half angle-of-divergence (theta) of the nozzle. At smaller theta, the slope of f(sub N) versus M(sub j) curve becomes steeper. The resonance involves standing waves and is driven by unsteady shock/boundary layer interaction. The distance between the foot of the shock and the nozzle exit imposes the lengthscale (L'). The fundamental corresponds to a quarterwave resonance, the next stage at a lower supply pressure corresponds to a three-quarter-wave resonance, and so on. The principal trends in the frequency variation are explained simply from the characteristic variation of the length-scale L'. Based on the data, correlation equations are provided for the prediction of f(sub N). A striking feature is that tripping of the boundary layer near the nozzle's throat tends to suppress the resonance. In a practical nozzle a tendency for the occurrence of the phenomenon is thought to be a source of 'internal noise'; thus, there is a potential for noise benefit simply by appropriate boundary layer tripping near the nozzle's throat.

  18. Numerical Optimization of converging diverging miniature cavitating nozzles

    Science.gov (United States)

    Chavan, Kanchan; Bhingole, B.; Raut, J.; Pandit, A. B.

    2015-12-01

    The work focuses on the numerical optimization of converging diverging cavitating nozzles through nozzle dimensions and wall shape. The objective is to develop design rules for the geometry of cavitating nozzles for desired end-use. Two main aspects of nozzle design which affects the cavitation have been studied i.e. end dimensions of the geometry (i.e. angle and/or curvature of the inlet, outlet and the throat and the lengths of the converging and diverging sections) and wall curvatures(concave or convex). Angle of convergence at the inlet was found to control the cavity growth whereas angle of divergence of the exit controls the collapse of cavity. CFD simulations were carried out for the straight line converging and diverging sections by varying converging and diverging angles to study its effect on the collapse pressure generated by the cavity. Optimized geometry configurations were obtained on the basis of maximum Cavitational Efficacy Ratio (CER)i.e. cavity collapse pressure generated for a given permanent pressure drop across the system. With increasing capabilities in machining and fabrication, it is possible to exploit the effect of wall curvature to create nozzles with further increase in the CER. Effect of wall curvature has been studied for the straight, concave and convex shapes. Curvature has been varied and effect of concave and convex wall curvatures vis-à-vis straight walls studied for fixed converging and diverging angles.It is concluded that concave converging-diverging nozzles with converging angle of 20° and diverging angle of 5° with the radius of curvature 0.03 m and 0.1530 m respectively gives maximum CER. Preliminary experiments using optimized geometry are indicating similar trends and are currently being carried out. Refinements of the CFD technique using two phase flow simulations are planned.

  19. Shelf life extension for the lot AAE nozzle severance LSCs

    Science.gov (United States)

    Cook, M.

    1990-01-01

    Shelf life extension tests for the remaining lot AAE linear shaped charges for redesigned solid rocket motor nozzle aft exit cone severance were completed in the small motor conditioning and firing bay, T-11. Five linear shaped charge test articles were thermally conditioned and detonated, demonstrating proper end-to-end charge propagation. Penetration depth requirements were exceeded. Results indicate that there was no degradation in performance due to aging or the linear shaped charge curving process. It is recommended that the shelf life of the lot AAE nozzle severance linear shaped charges be extended through January 1992.

  20. Numerical study on drop formation through a micro nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Il; Son, Gi Hun [Sogang Univ., Seoul (Korea, Republic of)

    2005-02-01

    The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satelite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation.

  1. Study for the Gas Flow through a Critical Nozzle

    Institute of Scientific and Technical Information of China (English)

    Jae-Hyung Kim; Heuy-Dong Kim; Shigeru Matsuo; Toshiaki Setoguchi

    2003-01-01

    In the present study, computational work using the axisymmetric, compressible, Navier-Stokes equations is carried out to predict the discharge coefficient and critical pressure ratio of gas flow through a critical nozzle. The Reynolds number effects are investigated with several nozzles with different throat diameter. Diffuser angle is varied to investigate the effects on the discharge coefficient and critical pressure ratio. The computational results are compared with the previous experimental ones. It is known that the discharge coefficient and critical pressure ratio are given by functions of the Reynolds number and boundary layer integral properties. It is also found that diffuser angle affects the critical pressure ratio.

  2. Multiple-Nozzle Spray Head Applies Foam Insulation

    Science.gov (United States)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  3. Jet Engine Nozzle Exit Configurations and Associated Systems and Methods

    Science.gov (United States)

    Mengle, Vinod G. (Inventor)

    2013-01-01

    Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter.

  4. Application of ultrasonic shot peening to steam generator nozzles

    International Nuclear Information System (INIS)

    An effective countermeasure against stress corrosion cracks in nozzle welds is to improve the surface residual stress. A new technique of the ultrasonic shot peening (USP) for steam generator (SG) nozzles will be introduced as a method to improve the residual stress on Alloy 600 Welds. This method changes the compressive stress by applying plastic strain to the surface via the impact force of the shot material during the shot peening. We have successfully performed 14 USP operations in actual plants in Japan. (author)

  5. Intensification of heat transfer by changing the burner nozzle

    Science.gov (United States)

    DzurÅák, Róbert; Kizek, Ján; Jablonský, Gustáv

    2016-06-01

    Thermal aggregates are using burner which burns combustible mixture with an oxidizing agent, by adjustment of the burner nozzle we can achieve better conditions of combustion to intensify heat transfer at furnace space. The aim of the present paper was using a computer program Ansys Workbench to create a computer simulation which analyzes the impact of the nozzle on the shape of a flame thereby intensifies heat transfer in rotary drum furnaces and radiation heat transfer from the flue gas into the furnace space. Article contains analysis of the geometry of the burner for achieving temperature field in a rotary drum furnace using oxy-combustion and the practical results of computer simulations

  6. Injection nozzle materials for a coal-fueled diesel locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, R.L.; Leonard, G.L.; Johnson, R.N.; Lavigne, R.G.

    1990-12-31

    In order to identify materials resistant to coal water mixture (CWM) erosive wear, a number of materials were evaluated using both orifice slurry and dry air erosion tests. Both erosion tests ranked materials in the same order, and the most erosion resistant material identified was sintered diamond compact. Based on operation using CWM in a single-cylinder locomotive test, superhard nozzle materials such as diamond, cubic boron nitride, and perhaps TiB{sub 2} were found to be necessary in order to obtain a reasonable operating life. An injection nozzle using sintered diamond compacts was designed and built, and has operated successfully in a CWM fired locomotive engine.

  7. Investigation the flushing flow of liquid methane in Laval nozzle

    Science.gov (United States)

    Snigerev, B. A.; Tukmakov, A. L.; Tonkonog, V. G.

    2016-06-01

    Turbulent flushing flow of methane in Laval nozzles are investigated. To describe the motion of vapor-liquid mixture are used Favre averaged over the set of equations including the equations conservation of mass, momentum, and energy for a homogeneous mixture consisting from liquid and vapour phases. Numerical flow simulation based on cavitation approach using an additional transport equation for the volume fraction of the liquid phase. The study of the expiry of boiling methane at different degrees of underheating and the back pressures in the Laval nozzle are performed.

  8. Internal performance of two nozzles utilizing gimbal concepts for thrust vectoring

    Science.gov (United States)

    Berrier, Bobby L.; Taylor, John G.

    1990-01-01

    The internal performance of an axisymmetric convergent-divergent nozzle and a nonaxisymmetric convergent-divergent nozzle, both of which utilized a gimbal type mechanism for thrust vectoring was evaluated in the Static Test Facility of the Langley 16-Foot Transonic Tunnel. The nonaxisymmetric nozzle used the gimbal concept for yaw thrust vectoring only; pitch thrust vectoring was accomplished by simultaneous deflection of the upper and lower divergent flaps. The model geometric parameters investigated were pitch vector angle for the axisymmetric nozzle and pitch vector angle, yaw vector angle, nozzle throat aspect ratio, and nozzle expansion ratio for the nonaxisymmetric nozzle. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 12.0.

  9. DURACON - Variable Emissivity Broadband Coatings for Liquid Propellant Rocket Nozzles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need exists for a fast drying, robust, low gloss, black, high emissivity coating that can be applied easily on aircraft rocket nozzles and nozzle extensions....

  10. Structure Optimization and Numerical Simulation of Nozzle for High Pressure Water Jetting

    Directory of Open Access Journals (Sweden)

    Shuce Zhang

    2015-01-01

    Full Text Available Three kinds of nozzles normally used in industrial production are numerically simulated, and the structure of nozzle with the best jetting performance out of the three nozzles is optimized. The R90 nozzle displays the most optimal jetting properties, including the smooth transition of the nozzle’s inner surface. Simulation results of all sample nozzles in this study show that the helix nozzle ultimately displays the best jetting performance. Jetting velocity magnitude along Y and Z coordinates is not symmetrical for the helix nozzle. Compared to simply changing the jetting angle, revolving the jet issued from the helix nozzle creates a grinding wheel on the cleaning surface, which makes not only an impact effect but also a shearing action on the cleaning object. This particular shearing action improves the cleaning process overall and forms a wider, effective cleaning range, thus obtaining a broader jet width.

  11. Computational Simulation on a Coaxial Substream Powder Feeding Laval Nozzle of Cold Spraying

    Directory of Open Access Journals (Sweden)

    Guosheng HUANG

    2014-09-01

    Full Text Available In this paper, a substream coaxial powder feeding nozzle was investigated for use in cold spraying. The relationship between nozzle structure and gas flow, the acceleration behavior of copper particles were examined by computational simulation method. Also, one of the nozzle was used to spray copper coating on steel substrate. The simulation results indicate that: the velocity of gas at the center of the nozzle is lower than that of the conventional nozzle. Powders are well restrained near the central line of the nozzle, no collision occurred between the nozzle wall and the powders. This type of nozzle with expansion 3.25 can successfully deposit copper coating on steel substrate, the copper coating has low porosity about 3.1 % – 3.8 % and high bonding strength about 23.5 MPa – 26.8 MPa. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4244

  12. Vortex nozzle for segmenting and transporting metal chips from turning operations

    Science.gov (United States)

    Bieg, Lothar F.

    1993-04-20

    Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.

  13. Control of Surge in Centrifugal Compressor by Using a Nozzle Injection System: Universality in Optimal Position of Injection Nozzle

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hirano

    2012-01-01

    Full Text Available The passive control method for surge and rotating stall in centrifugal compressors by using a nozzle injection system was proposed to extend the stable operating range to the low flow rate. A part of the flow at the scroll outlet of a compressor was recirculated to an injection nozzle installed on the inner wall of the suction pipe of the compressor through the bypass pipe and injected to the impeller inlet. Two types of compressors were tested at the rotational speeds of 50,000 rpm and 60,000 rpm with the parameter of the circumferential position of the injection nozzle. The present experimental results revealed that the optimum circumferential position, which most effectively reduced the flow rate for the surge inception, existed at the opposite side of the tongue of the scroll against the rotational axis and did not depend on the compressor system and the rotational speeds.

  14. Performance characteristics of two multiaxis thrust-vectoring nozzles at Mach numbers up to 1.28

    Science.gov (United States)

    Wing, David J.; Capone, Francis J.

    1993-01-01

    The thrust-vectoring axisymmetric (VA) nozzle and a spherical convergent flap (SCF) thrust-vectoring nozzle were tested along with a baseline nonvectoring axisymmetric (NVA) nozzle in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0 to 1.28 and nozzle pressure ratios from 1 to 8. Test parameters included geometric yaw vector angle and unvectored divergent flap length. No pitch vectoring was studied. Nozzle drag, thrust minus drag, yaw thrust vector angle, discharge coefficient, and static thrust performance were measured and analyzed, as well as external static pressure distributions. The NVA nozzle and the VA nozzle displayed higher static thrust performance than the SCF nozzle throughout the nozzle pressure ratio (NPR) range tested. The NVA nozzle had higher overall thrust minus drag than the other nozzles throughout the NPR and Mach number ranges tested. The SCF nozzle had the lowest jet-on nozzle drag of the three nozzles throughout the test conditions. The SCF nozzle provided yaw thrust angles that were equal to the geometric angle and constant with NPR. The VA nozzle achieved yaw thrust vector angles that were significantly higher than the geometric angle but not constant with NPR. Nozzle drag generally increased with increases in thrust vectoring for all the nozzles tested.

  15. Selection of the parameters and operating conditions of laser cutter nozzles

    Science.gov (United States)

    Panchenko, V. I.; Smorodin, F. K.

    The interaction between a gas jet and a target during laser cutting was investigated experimentally for nozzles with different pressure differentials and Mach numbers at the exit section. Based on an analysis of the experimental data obtained, the optimal parameters of laser cutter nozzles are determined. Nozzles with a zero pressure differential or a pressure differential that does not produce a Mach disk in the jet or slow separation within the nozzle are shown to be particularly suitable for laser cutting.

  16. Convective and Film Cooled Nozzle Extension for a High Pressure Rocket Subscale Combustion Chamber

    OpenAIRE

    Suslov, D. I.; Arnold, R.; Haidn, O. J.

    2010-01-01

    Experimental investigations have been carried out to study heat transfer, flow separation, and side loads in a subscale nozzle extension. A Vulcain 2-like nozzle geometry has been tested with combustion chamber pressures up to 13 MPa. A new manufacturing technology has been demonstrated with minimized contour deformation during fabrication. Gaseous hydrogen was used to cool the upper part of the nozzle while flowing through helical, rectangular cooling channels. At a nozzle area expansion rat...

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 559: T Tunnel Compressor/Blower Pad, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 559, T-Tunnel Compressor/Blower Pad. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 559 is comprised of one Corrective Action Site (CAS): • 12-25-13, Oil Stained Soil and Concrete The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 559.

  18. Control of Surge in Centrifugal Compressor by Using a Nozzle Injection System: Universality in Optimal Position of Injection Nozzle

    OpenAIRE

    Toshiyuki Hirano; Takanori Uchida; Hoshio Tsujita

    2012-01-01

    The passive control method for surge and rotating stall in centrifugal compressors by using a nozzle injection system was proposed to extend the stable operating range to the low flow rate. A part of the flow at the scroll outlet of a compressor was recirculated to an injection nozzle installed on the inner wall of the suction pipe of the compressor through the bypass pipe and injected to the impeller inlet. Two types of compressors were tested at the rotational speeds of 50,000 rpm and 60,0...

  19. Vibration analysis and online thermodynamic assessment of a turbo-blower turbine; Analisis de vibraciones y evaluacion termodinamica en linea de la turbina de un turbosoplador

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Q, Rodolfo; Marino L, Carlos; Ramirez S, Jose A.; Rivera G, Juan J. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-11-15

    In this paper are presented the results of the analysis of dynamic and thermodynamic behavior analysis of a turbo-blower integrated by one 13,080 KW steam turbine and a blower with a flow of 131,520 ft{sup 3}/m, to determine the cause of the excessive wearing of the axial trust bearing of the steam turbine. The main cause of failure is the wearing and severe dirtiness of the turbine stages that contributes with an increment of the turbine axial load. The consequences of the turbine deterioration are: greater axial load due to the additional heating rotor (requires greater steam to generate the same power that in design conditions); turbine motive power reduction and the reduction of isentropic efficiency of the same, for similar average steam consumption between reference and test. Due to the former the turbine power represents a deviation of the 34.74% in Steam Specific Consumption (SSC). [Spanish] Se presenta los resultados del analisis del comportamiento dinamico y termodinamico de un turbosoplador integrado por una turbina de vapor de 13,080 KW y un soplador con un caudal de 131,520 pies{sup 3}/m, para determinar la causa del desgaste excesivo de la chumacera de empuje axial de la turbina de vapor. La causa principal de la falla es el desgaste y ensuciamiento severo de las etapas de la turbina que contribuye con un incremento de la carga axial de la turbina. Las consecuencias del deterioro de la turbina son: mayor carga axial debida al calentamiento adicional del rotor (requiere mayor vapor para generar la misma potencia que en condiciones de diseno); reduccion de la potencia motriz de la turbina y de la eficiencia isoentropica de las mismas, para un consumo de vapor promedio similar entre referencia y prueba. Debido a lo anterior la potencia de la turbina representa una desviacion del 34.74% en el Consumo Especifico de Vapor (CVE).

  20. Effect of the proximity of the machined surface on the discharge coefficients of laser cutter nozzles

    Science.gov (United States)

    Smorodin, F. K.; Abalakov, G. V.

    Results of an experimental study of the discharge coefficients of laser cutter nozzles are reported. It is found that the discharge coefficient of laser cutter nozzles is largely determined by the proximity of the machined surface, Reynolds number, and geometry of the nozzle flow path.

  1. Atomization from agricultural spray nozzles: Effects of air shear and tank mix adjuvants

    Science.gov (United States)

    Spray adjuvants can have a substantial impact on spray atomization from agricultural nozzles; however, this process is also affected by the nozzle type, operating pressure and, for aerial application, the airspeed of application. Different types of ground spray nozzle can dramatically affect the im...

  2. Nozzle design in a fiber spinning process for a maximal pressure gradient

    Directory of Open Access Journals (Sweden)

    Yang Zhanping

    2013-01-01

    Full Text Available The thickness of a spinneret is always a geometrical constraint in nozzle design. The geometrical form of a nozzle has a significant effect on the subsequent spinning characteristics. This paper gives an optimal condition for maximal pressure gradient through the nozzle.

  3. Analytical evaluation of the solid rocket motor nozzle surface recession by the alumina-carbon reaction

    OpenAIRE

    Matsukawa, Yutaka; Sato, Yutaka; 松川 豊; 佐藤 裕

    2008-01-01

    A theoretical model describing the chemical ablation of a solid rocket motor nozzle ablator by the alumina-carbon reaction is presented. An application of it to a typical solid rocket motor with a graphite nozzle ablator indicates a large influence of the reaction on the nozzle surface recession.

  4. Response surface method for evaluation of the performance of agricultural application spray nozzles

    Science.gov (United States)

    Droplet size, being one of the critical factors that influences spray performance and drift, must be considered when selecting spray nozzles and operational setups. Characterizing a spray nozzle for droplet size is typically completed by evaluating arbitrary nozzle type, size and spray pressure. H...

  5. Postflight hardware evaluation RSRM-29 (STS-54). Appendix C: Nozzle PFORs

    Science.gov (United States)

    1993-09-01

    Appendix C, Nozzle Postflight Observation Records (PFOR's) for the Final Postflight Hardware Evaluation Report RSRM-29 (STS-54) is provided. PFOR data are included on: nozzle joint condition; nose inlet-to-throat joint condition; and nozzle subassembly phenolic bondline condition.

  6. Liquid Atomization out of a Full Cone Pressure Swirl Nozzle

    CERN Document Server

    Rimbert, Nicolas

    2010-01-01

    A thorough numerical, theoretical and experimental investigation of the liquid atomization in a full cone pressure swirl nozzle is presented. The first part is devoted to the study of the inner flow. CAD and CFD software are used in order to determine the most important parameters of the flow at the exit of nozzle. An important conclusion is the existence of two flow regions: one in relatively slow motion (the boundary layer) and a second nearly in solid rotation at a very high angular rate (about 100 000 rad/s) with a thickness of about 4/5th of the nozzle section. Then, a theoretical and experimental analysis of the flow outside the nozzle is carried out. In the theoretical section, the size of the biggest drops is successfully compared to results stemming from linear instability theory. However, it is also shown that this theory cannot explain the occurrence of small drops observed in the stability domain whose size are close to the Kolmogorov and Taylor turbulent length scale. A Phase Doppler Particle Ana...

  7. Subsonic Flows in a Multi-Dimensional Nozzle

    CERN Document Server

    Du, Lili; Yan, Wei

    2011-01-01

    In this paper, we study the global subsonic irrotational flows in a multi-dimensional ($n\\geq 2$) infinitely long nozzle with variable cross sections. The flow is described by the inviscid potential equation, which is a second order quasilinear elliptic equation when the flow is subsonic. First, we prove the existence of the global uniformly subsonic flow in a general infinitely long nozzle for arbitrary dimension for sufficiently small incoming mass flux and obtain the uniqueness of the global uniformly subsonic flow. Furthermore, we show that there exists a critical value of the incoming mass flux such that a global uniformly subsonic flow exists uniquely, provided that the incoming mass flux is less than the critical value. This gives a positive answer to the problem of Bers on global subsonic irrotational flows in infinitely long nozzles for arbitrary dimension. Finally, under suitable asymptotic assumptions of the nozzle, we obtain the asymptotic behavior of the subsonic flow in far fields by a blow-up a...

  8. Acoustic measurements of models of military style supersonic nozzle jets

    Institute of Scientific and Technical Information of China (English)

    Ching-Wen Kuo; Jérémy Veltin; Dennis K. McLaughlin

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How-ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small-and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  9. Multilayer refractory nozzles produced by plasma-spray process

    Science.gov (United States)

    Bliton, J. L.; Rausch, J. L.

    1966-01-01

    Multilayer rocket nozzles formed by plasma spraying have good thermal shock resistance and can be reheated in an oxidizing environment without loss of coating adherence. Suggested application of this process are for the production of refractory components, which can be formed as surfaces of revolution.

  10. Atomization of a liquid by a spray nozzle

    Science.gov (United States)

    Kutateladze, S. S. (Editor)

    1980-01-01

    The theory of atomization by mechanical and pneumatic (or vapor) spray nozzles is discussed. Basic design recommendations resulting from generalization of the material and confirmed by experiments are given. Sprayers which are widely used in the furnaces of stationary steam boilers, the combustion chambers of gas turbines, and industrial furnaces are examined.

  11. Thrust augmentation nozzle (TAN) concept for rocket engine booster applications

    Science.gov (United States)

    Forde, Scott; Bulman, Mel; Neill, Todd

    2006-07-01

    Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.

  12. SRB-TPS spray nozzle development for MSA-1 application

    Science.gov (United States)

    Prasthofer, W. P.

    1979-01-01

    Different overspray suppression schemes are presented. A spray nozzle system for the Marshall Sprayable Ablator (MAS-1) material was developed. As a result of the development for MAS-1 a substantial cost and time saving was achieved by permitting a continuous spray operation.

  13. Vortex structures downstream a lobed nozzle/mixer

    Institute of Scientific and Technical Information of China (English)

    Hui Hu; Toshio Kobayashi

    2008-01-01

    An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle. A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vorticity distributions to revealed both the large-scale streamwise vortices produced by the lobed mixer/nozzle and the Kelvin-Helmholtz vortex structures generated due to the Kelvin-Helmholtz instabilities simultaneously and quantitatively for the first time. The instantaneous and the ensemble-averaged vorticity distributions displayed quite different aspects about the evolutions of the unsteady vortex structures. While the ensemble-averaged vorticity distributions indicated the overall effect of the special geometry of the lobed nozzle/mixer on the enhanced mixing process, the instantaneous vorticity distributions elucidated many details about how the enhanced mixing process was conducted. In addition to quantitatively confirming conjectures of previous studies, further insight about the formation, evolution and interaction characteristics of the unsteady vortex structures downstream of the lobed mixer/nozzle were also uncovered quantitatively in the present study.

  14. Cavitation Inside High-Pressure Optically Transparent Fuel Injector Nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2015-12-01

    Nozzle-orifice flow and cavitation have an important effect on primary breakup of sprays. For this reason, a number of studies in recent years have used injectors with optically transparent nozzles so that orifice flow cavitation can be examined directly. Many of these studies use injection pressures scaled down from realistic injection pressures used in modern fuel injectors, and so the geometry must be scaled up so that the Reynolds number can be matched with the industrial applications of interest. A relatively small number of studies have shown results at or near the injection pressures used in real systems. Unfortunately, neither the specifics of the design of the optical nozzle nor the design methodology used is explained in detail in these papers. Here, a methodology demonstrating how to prevent failure of a finished design made from commonly used optically transparent materials will be explained in detail, and a description of a new design for transparent nozzles which minimizes size and cost will be shown. The design methodology combines Finite Element Analysis with relevant materials science to evaluate the potential for failure of the finished assembly. Finally, test results imaging a cavitating flow at elevated pressures are presented.

  15. Acoustic measurements of models of military style supersonic nozzle jets

    Directory of Open Access Journals (Sweden)

    Ching-Wen Kuo

    2014-02-01

    Full Text Available Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  16. Nonlinear indirect combustion noise for compact supercritical nozzle flows

    Science.gov (United States)

    Huet, M.

    2016-07-01

    In this paper, indirect combustion noise generated by the acceleration of entropy perturbations through a supercritical nozzle is investigated in the nonlinear regime and in the low-frequency limit (quasi-static hypothesis). This work completes the study of Huet and Giauque (Journal of Fluid Mechanics 733 (2013) 268-301) for nonlinear noise generation in nozzle flows without shock and particularly focuses on shocked flow regimes. It is based on the analytical model of Marble and Candel for compact nozzles (Journal of Sound and Vibration 55 (1977) 225-243), initially developed for excitations in the linear regime and rederived here for nonlinear perturbations. Full nonlinear analytical solutions are provided in the absence of shock as well as second-order analytical expressions when a shock is present in the diffuser. An analytical evaluation of the shock displacement inside the nozzle caused by the forcing is proposed and maximum possible forcings to avoid unchoke and 'over-choke' are discussed. The accuracy of the second-order model and the nonlinear contributions to the generated waves are then addressed. This model is found to be very accurate for the generated entropy wave with negligible nonlinear contributions. Nonlinearities are more visible, but still limited, for the downstream acoustic wave for large inlet Mach numbers. Analytical developments are validated thanks to comparisons with numerical simulations.

  17. X-ray Diagnostics for Cavitating Nozzle Flow

    Science.gov (United States)

    Duke, Daniel J.; Swantek, Andrew B.; Kastengren, Alan L.; Powell, Christopher F.

    2015-12-01

    Cavitation plays a critical role in the internal flow of nozzles such as those used in direct fuel injection systems. However, quantifying the vapor fraction in the nozzle is difficult. The gas-liquid interfaces refract and multiply scatter visible light, making quantitative extinction measurements difficult. X-rays offer a solution to this problem, as they refract and scatter only weakly. In this paper, we report on current progress in the development of several x-ray diagnostics for cavitating nozzle flows. X-ray radiography experiments undertaken at the Advanced Photon Source at Argonne National Laboratory have provided measurements of total projected void fraction in a 500 μm submerged nozzle, which have been directly compared with numerical simulations. From this work, it has been shown that dissolved gases in the liquid also result in the formation of vapor regions, and it is difficult to separate these multiple phenomena. To address this problem, the liquid was doped with an x-ray fluorescent bromine tracer, and the dissolved air substituted with krypton. The fluorescent emission of Br and Kr at x-ray wavelengths provide a novel measurement of both the total void fraction and the dissolved gas component, allowing both cavitation and dissolved gas contributions to be measured independently. [199/200 words

  18. SHINE Tritium Nozzle Design: Activity 6, Task 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, Brett S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-05

    In FY14, we studied the qualitative and quantitative behavior of a SHINE/PNL tritium nozzle under varying operating conditions. The result is an understanding of the nozzle’s performance in terms of important flow features that manifest themselves under different parametric profiles. In FY15, we will consider nozzle design with a focus on nozzle geometry and integration. From FY14 work, we will understand how the SHINE/PNL nozzle behaves under different operating scenarios. The first task for FY15 is to evaluate the FY14 model as a predictor of the actual flow. Considering different geometries is more time-intensive than parameter studies, therefore we recommend considering any relevant flow features that were not included in the FY14 model. In the absence of experimental data, it is particularly important to consider any sources of heat in the domain or boundary conditions that may affect the flow and incorporate these into the simulation if they are significant. Additionally, any geometric features of the beamline segment should be added to the model such as the orifice plate. The FY14 model works with hydrogen. An improvement that can be made for FY15 is to develop CFD properties for tritium and incorporate those properties into the new models.

  19. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    Science.gov (United States)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  20. Dynamics of the free jets from nozzles of complex geometries

    CERN Document Server

    D'Addio, Paolo

    2015-01-01

    The dynamics of the coherent structures in jets generated by nozzles of different shapes is analyzed through DNS at $Re_{D_e}=565$, by considering circular, square, fractal and star-like nozzles. The jets generated from orifices with corners, undergone a rotation proportional to the corner angular width: ${\\theta}_{rotation}={\\theta}_{corner}/2$. The velocity at which this rotation occurs is also affected by the angle of the corners, being faster for fractal and star-like nozzles which have small ${\\theta}_{corner}$. Therefore it has been found that the velocity of the rotation is associated with enhanced spreading and entraining characteristics. The jet evolution and its rotation are dictated by the vorticity field and, in particular, by the positive and negative ${\\omega}_x$ layers generated at each corner. The comparison between the fractal and the star-like jets at this Re, suggested that the effect of the smaller scales generated by the fractal nozzle does not play a role in the development of the jet, t...

  1. Shape memory alloy actuation for a variable area fan nozzle

    Science.gov (United States)

    Rey, Nancy; Tillman, Gregory; Miller, Robin M.; Wynosky, Thomas; Larkin, Michael J.; Flamm, Jeffrey D.; Bangert, Linda S.

    2001-06-01

    The ability to control fan nozzle exit area is an enabling technology for next generation high-bypass-ratio turbofan engines. Performance benefits for such designs are estimated at up to 9% in thrust specific fuel consumption (TSFC) relative to current fixed-geometry engines. Conventionally actuated variable area fan nozzle (VAN) concepts tend to be heavy and complicated, with significant aircraft integration, reliability and packaging issues. The goal of this effort was to eliminate these undesirable features and formulate a design that meets or exceeds leakage, durability, reliability, maintenance and manufacturing cost goals. A Shape Memory Alloy (SMA) bundled cable actuator acting to move an array of flaps around the fan nozzle annulus is a concept that meets these requirements. The SMA bundled cable actuator developed by the United Technologies Corporation (Patents Pending) provides significant work output (greater than 2200 in-lb per flap, through the range of motion) in a compact package and minimizes system complexity. Results of a detailed design study indicate substantial engine performance, weight, and range benefits. The SMA- based actuation system is roughly two times lighter than a conventional mechanical system, with significant aircraft direct operating cost savings (2-3%) and range improvements (5-6%) relative to a fixed-geometry nozzle geared turbofan. A full-scale sector model of this VAN system was built and then tested at the Jet Exit Test Facility at NASA Langley to demonstrate the system's ability to achieve 20% area variation of the nozzle under full scale aerodynamic loads. The actuator exceeded requirements, achieving repeated actuation against full-scale loads representative of typical cruise as well as greater than worst-case (ultimate) aerodynamic conditions. Based on these encouraging results, work is continuing with the goal of a flight test on a C-17 transport aircraft.

  2. Vortex flow and cavitation in diesel injector nozzles

    Science.gov (United States)

    Andriotis, A.; Gavaises, M.; Arcoumanis, C.

    Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as . Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection

  3. Radical recombination in a hydrocarbon-fueled scramjet nozzle

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoyuan

    2014-12-01

    Full Text Available To reveal the radical recombination process in the scramjet nozzle flow and study the effects of various factors of the recombination, weighted essentially non-oscillatory (WENO schemes are applied to solve the decoupled two-dimensional Euler equations with chemical reactions to simulate the hydrocarbon-fueled scramjet nozzle flow. The accuracy of the numerical method is verified with the measurements obtained by a shock tunnel experiment. The overall model length is nearly 0.5 m, with inlet static temperatures ranging from 2000 K to 3000 K, inlet static pressures ranging from 75 kPa to 175 kPa, and inlet Mach numbers of 2.0 ± 0.4 are involved. The fraction Damkohler number is defined as functions of static temperature and pressure to analyze the radical recombination progresses. Preliminary results indicate that the energy releasing process depends on different chemical reaction processes and species group contributions. In hydrocarbon-fueled scramjet nozzle flow, reactions with H have the greatest contribution during the chemical equilibrium shift. The contrast and analysis of the simulation results show that the radical recombination processes influenced by inflow conditions and nozzle scales are consistent with Damkohler numbers and potential dissociation energy release. The increase of inlet static temperature improves both of them, thus making the chemical non-equilibrium effects on the nozzle performance more significant. While the increase of inlet static pressure improves the former one and reduces the latter, it exerts little influence on the chemical non-equilibrium effects.

  4. Radical recombination in a hydrocarbon-fueled scramjet nozzle

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaoyuan; Qin Lizi; Chen Hong; He Xuzhao; Liu Yu

    2014-01-01

    To reveal the radical recombination process in the scramjet nozzle flow and study the effects of various factors of the recombination, weighted essentially non-oscillatory (WENO) schemes are applied to solve the decoupled two-dimensional Euler equations with chemical reac-tions to simulate the hydrocarbon-fueled scramjet nozzle flow. The accuracy of the numerical method is verified with the measurements obtained by a shock tunnel experiment. The overall model length is nearly 0.5 m, with inlet static temperatures ranging from 2000 K to 3000 K, inlet static pressures ranging from 75 kPa to 175 kPa, and inlet Mach numbers of 2.0 ± 0.4 are involved. The fraction Damkohler number is defined as functions of static temperature and pressure to ana-lyze the radical recombination progresses. Preliminary results indicate that the energy releasing pro-cess depends on different chemical reaction processes and species group contributions. In hydrocarbon-fueled scramjet nozzle flow, reactions with H have the greatest contribution during the chemical equilibrium shift. The contrast and analysis of the simulation results show that the rad-ical recombination processes influenced by inflow conditions and nozzle scales are consistent with Damkohler numbers and potential dissociation energy release. The increase of inlet static temper-ature improves both of them, thus making the chemical non-equilibrium effects on the nozzle per-formance more significant. While the increase of inlet static pressure improves the former one and reduces the latter, it exerts little influence on the chemical non-equilibrium effects.

  5. Manufacturing of nozzle shell with integral flange for EPR reactor pressure vessel and its properties

    International Nuclear Information System (INIS)

    EPR (EPR: European Pressurized Water Reactor) has been developed to achieve higher output (1,600 MW) and longer plant life (60 years), compared with the conventional unclear reactors, and the first commercial reactor was introduced in Finland no.5/Olkiluoto no.3. The integrated mono-block design was applied for nozzle shell flange instead of welded conventional flange and nozzle shell. And due to set-on type nozzles, a 600 ton ingot was required for this part. JSW successfully completed the manufacturing of first nozzle shell with integral flange 11 months after melting. This report summarizes manufacturing technology and process, and properties of nozzle shell with integral flange. (author)

  6. Parametric Study of Afterbody/nozzle Drag on Twin Two-dimensional Convergent-divergent Nozzles at Mach Numbers from 0.60 to 1.20

    Science.gov (United States)

    Pendergraft, Odis C., Jr.; Burley, James R., II; Bare, E. Ann

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle drag of nonaxisymmetric two-dimensional convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine, fighter-aircraft model. Tests were conducted over a Mach number range from 0.60 to 1.20 and over an angle-of-attack range from -5 to 9 deg. Nozzle pressure ratio was varied from jet off (1.0) to approximately 10.0, depending on Mach number.

  7. Static investigation of two STOL nozzle concepts with pitch thrust-vectoring capability

    Science.gov (United States)

    Mason, M. L.; Burley, J. R., II

    1986-01-01

    A static investigation of the internal performance of two short take-off and landing (STOL) nozzle concepts with pitch thrust-vectoring capability has been conducted. An axisymmetric nozzle concept and a nonaxisymmetric nozzle concept were tested at dry and afterburning power settings. The axisymmetric concept consisted of a circular approach duct with a convergent-divergent nozzle. Pitch thrust vectoring was accomplished by vectoring the approach duct without changing the nozzle geometry. The nonaxisymmetric concept consisted of a two dimensional convergent-divergent nozzle. Pitch thrust vectoring was implemented by blocking the nozzle exit and deflecting a door in the lower nozzle flap. The test nozzle pressure ratio was varied up to 10.0, depending on model geometry. Results indicate that both pitch vectoring concepts produced resultant pitch vector angles which were nearly equal to the geometric pitch deflection angles. The axisymmetric nozzle concept had only small thrust losses at the largest pitch deflection angle of 70 deg., but the two-dimensional convergent-divergent nozzle concept had large performance losses at both of the two pitch deflection angles tested, 60 deg. and 70 deg.

  8. Evaluation of the effects of break nozzle configuration in the Semiscale Mod-1 system

    International Nuclear Information System (INIS)

    The Semiscale Mod-1 Program has utilized two different break nozzle configurations in the test system. An evaluation has been made to determine the effect these break nozzle configurations have on system thermal-hydraulic response during a 200 percent double-ended cold leg break loss-of-coolant accident simulation. The first nozzle was a convergent-divergent nozzle (Henry nozzle) and the second, an elongated constant area throat nozzle. Analysis is confined primarily to system response phenomena observed to be affected by the nozzle configuration and concentrates on the fluid response at the break and the resulting core behavior during subcooled and saturated blowdown. The evaluation shows that considerable difference in system response occurs as a result of the difference in break nozzle configuration. The elongated throat nozzle was scaled from the Loss-of-Fluid Test (LOFT) nozzle geometry and since the LOFT counterpart tests were designed to provide results for the LOFT Program, the elongated throat nozzle was used in the subsequent LOFT counterpart tests

  9. The proton therapy nozzles at Samsung Medical Center: A Monte Carlo simulation study using TOPAS

    Science.gov (United States)

    Chung, Kwangzoo; Kim, Jinsung; Kim, Dae-Hyun; Ahn, Sunghwan; Han, Youngyih

    2015-07-01

    To expedite the commissioning process of the proton therapy system at Samsung Medical Center (SMC), we have developed a Monte Carlo simulation model of the proton therapy nozzles by using TOol for PArticle Simulation (TOPAS). At SMC proton therapy center, we have two gantry rooms with different types of nozzles: a multi-purpose nozzle and a dedicated scanning nozzle. Each nozzle has been modeled in detail following the geometry information provided by the manufacturer, Sumitomo Heavy Industries, Ltd. For this purpose, the novel features of TOPAS, such as the time feature or the ridge filter class, have been used, and the appropriate physics models for proton nozzle simulation have been defined. Dosimetric properties, like percent depth dose curve, spreadout Bragg peak (SOBP), and beam spot size, have been simulated and verified against measured beam data. Beyond the Monte Carlo nozzle modeling, we have developed an interface between TOPAS and the treatment planning system (TPS), RayStation. An exported radiotherapy (RT) plan from the TPS is interpreted by using an interface and is then translated into the TOPAS input text. The developed Monte Carlo nozzle model can be used to estimate the non-beam performance, such as the neutron background, of the nozzles. Furthermore, the nozzle model can be used to study the mechanical optimization of the design of the nozzle.

  10. Investigation of Thrust and Drag Characteristics of a Plug-type Exhaust Nozzle

    Science.gov (United States)

    Hearth, Donald P; Gorton, Gerald C

    1954-01-01

    An investigation was conducted in the 8- by 6-foot supersonic wind tunnel on the external and internal characteristics of a plug-type exhaust nozzle. Two positions of the center plug, one simulating a convergent nozzle and the other a convergent-divergent nozzle, were investigated. Data were obtained at free-stream Mach numbers of 0.1, 0.6, 1.6, and 2.0 over a pressure-ratio range of 1 to 20 and angles of attack of zero and 8 degrees. Results of this investigation indicated that the plug nozzle had thrust-minus-drag performance over the entire pressure-ratio range comparable with equivalent conventional nozzles. The effect of the exhaust jet on the external aerodynamics was similar to results observed for conventional nozzles. In addition, the thrust characteristics were generally insensitive to external flow and good agreement was noted with data obtained on comparable plug nozzles in quiescent air.

  11. Wall Pressure Measurements in a Convergent-Divergent Nozzle with Varying Inlet Asymmetry

    Science.gov (United States)

    Senthilkumar, C.; Elangovan, S.; Rathakrishnan, E.

    2016-06-01

    In this paper, flow separation of a convergent-divergent (C-D) nozzle is placed downstream of a supersonic flow delivered from Mach 2.0 nozzle is investigated. Static pressure measurements are conducted using pressure taps. The flow characteristics of straight and slanted entry C-D nozzle are investigated for various NPR of Mach 2.0 nozzle. The effect of asymmetry at inlet by providing 15°, 30°, 45° and 57° cut is analyzed. Particular attention is given to the location of the shock within the divergent section of the test nozzle. This location is examined as a function both NPR of Mach 2.0 nozzle and test nozzle inlet angle. Some of the measurements are favorably compared to previously developed theory. A Mach number ratio of 0.81 across the flow separation region was obtained.

  12. A study on the jet characteristic by using of Coanda effect in constant expansion rate nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sak; Lee, Dong Won; Kwon, Soon Bum [Kyungpook National Univ., Daegu (Korea, Republic of); Kim, Byung Ji [Catholic Sangji College, Andong (Korea, Republic of)

    2005-07-01

    Jets issuing from a conventional nozzle and convergent nozzles of a constant expansion rates and a certain normal using an annular slit are compared to investigate the characteristics of the 3 jets. In experiments, to compare the characteristics between jets, the nozzle exit mean velocity is fixed as 90m/s. The pressures along the jet axis and radial directions is measured by scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution can be obtained by calculation from the measured static and total pressures. To obtain the highly stable and convergency jets, a nozzle has to be designed with an annular slit connected to an conical cylinder, furthermore, the flow through a constant expansion rate nozzle using annular slit is the most probable. And the pressure drop along the nozzle for the constant expansion rate nozzle is small.

  13. Design and performance of atomizing nozzles for spray calcination of high-level wastes

    International Nuclear Information System (INIS)

    A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-μ median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-μ median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure

  14. Design and performance of atomizing nozzles for spray calcination of high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, F.A.; Stout, L.A.

    1981-05-01

    A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-..mu.. median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-..mu.. median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure.

  15. Spreading Characteristics of Compressible Jets from Nozzles of Various Geometries

    Science.gov (United States)

    Zaman, K. B. M. Q.

    1999-01-01

    The spreading characteristics of jets from several asymmetric nozzles, and a set of rectangular orifices are compared, covering a jet Mach number range of 0.3-2.0. The effect of 'tabs' for a rectangular and a round nozzle is also included in the comparison. Compared to a round jet, the jets from the asymmetric nozzles spread only slightly more at subsonic conditions whereas at supersonic conditions, when 'screech' occurs, they spread much more. The dynamics of the azimuthal vortical structures of the jet, organized and intensified under the screeching condition, are thought to be responsible for the observed effect at supersonic conditions. Curiously, the jet from a 'lobed' nozzle spreads much less at supersonic condition compared to all other cases; this is due to the absence of screech with this nozzle. Screech stages inducing flapping, rather than varicose or helical, flow oscillation cause a more pronounced jet spreading. At subsonic conditions, only a slight increase in jet spreading with the asymmetric nozzles contrasts previous observations by others. The present results show that the spreading of most asymmetric jets is not much different from that of a round jet. This inference is further supported by data from the rectangular orifices. In fact, jets from the orifices with small aspect ratio (AR) exhibit virtually no increase in the spreading. A noticeable increase commences only when AR is larger than about 10. Thus, 'shear layer perimeter stretching', achieved with a larger AR for a given cross-sectional area of the orifice, by itself, proves to be a relatively inefficient mechanism for increasing jet spreading. In contrast, the presence of streamwise vortices or 'natural excitation' can cause a significant increase - effects that might explain the observations in the previous investigations. Thus far, the biggest increase in jet spreading is observed with the tabs. This is true in the subsonic regime, as well as in the supersonic regime, in spite of the

  16. Computational design aspects of a NASP nozzle/afterbody experiment

    Science.gov (United States)

    Ruffin, Stephen M.; Venkatapathy, Ethiraj; Keener, Earl R.; Nagaraj, N.

    1989-01-01

    This paper highlights the influence of computational methods on design of a wind tunnel experiment which generically models the nozzle/afterbody flow field of the proposed National Aerospace Plane. The rectangular slot nozzle plume flow field is computed using a three-dimensional, upwind, implicit Navier-Stokes solver. Freestream Mach numbers of 5.3, 7.3, and 10 are investigated. Two-dimensional parametric studies of various Mach numbers, pressure ratios, and ramp angles are used to help determine model loads and afterbody ramp angle and length. It was found that the center of pressure on the ramp occurs at nearly the same location for all ramp angles and test conditions computed. Also, to prevent air liquefaction, it is suggested that a helium-air mixture be used as the jet gas for the highest Mach number test case.

  17. Collimation of stellar winds by nonadiabatic de Laval nozzles

    International Nuclear Information System (INIS)

    The interaction between an isotropic stellar wind and a stratified environment can lead to the formation of de Laval nozzles (in the adiabatic case) or to the formation of an elongated cavity surrounded by a dense cold shell of shocked gas (in the limit of short cooling distances; i.e., in the highly nonadiabatic case). A preliminary exploration of the intermediate regime between the adiabatic and the highly nonadiabatic regimes yields very interesting results. While for cooling distances larger than about 5 times the environmental scale height the flow resembles the adiabatic de Laval nozzle, for shorter cooling distances the flow is considerably different, leading to the formation of very narrow well collimated cold jets. A preliminary comparison between observations of the HH 1/2 source and radio free-free spectra computed from these models gives very encouraging results. 24 refs

  18. Viscous and unsteady flow calculations of condensing steam in nozzles

    International Nuclear Information System (INIS)

    The paper presents two-dimensional calculations for spontaneously nucleating flows of steam in converging-diverging nozzles. The Reynolds-averaged Navier-Stokes equations are solved for the two-phase mixture, using a Jameson-style finite volume method on an unstructured and adaptive triangular mesh. Results are first presented for steady, viscous flow, showing the influence of boundary layer growth on streamwise pressure distributions and droplet sizes. These results have implications for the interpretation of some of the experimental data used for validating the theories of nucleation and droplet growth. The numerical scheme has also been applied to compute unsteady flows in a variety of nozzle geometries, covering a range of inlet conditions in each case. Asymmetric oscillation modes, previously observed in moist air, have been predicted for one of the geometries, indicating for the first time that such oscillations are possible in pure steam

  19. Development of Submerged Entry Nozzles that Resist Clogging

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Jeffrey D. Smith; Kent D. Peasle

    2002-10-14

    Accretion formation and the associated clogging of SENs is a major problem for the steel industry leading to decreased strand speed, premature changing of SENs or strand termination and the associated reductions in productivity, consistency, and steel quality. A program to evaluate potentially clog resistance materials was initiated at the University of Missouri-Rolla. The main objective of the research effort was to identify combinations of steelmaking and refractory practices that would yield improved accretion resistance for tundish nozzles and submerged entry nozzles. A number of tasks were identified during the initial kick-off meeting and each was completed with two exceptions, the thermal shock validation and the industrial trials. Not completing these two tasks related to not having access to industrial scale production facilities. Though much of the results and information generated in the project is of proprietary nature.

  20. Ice Control with Brine Spread with Nozzles on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars; Fonnesbech, Jens Kristian

    2010-01-01

    During the years 1996-2006, the former county of Funen, Denmark, gradually replaced pre-wetted salt with brine spread with nozzles as anti-icing agent in all her ice control activities. The replacement related to 1000 kilometres of highways. Jeopardizing neither road safety nor traffic flow...... the spread rate of pure sodium chloride (and thus the environmental impact) compared to neighbouring counties was less than fifty percent per square meter. Successful pre-salting is, of course, dependent on reliable weather forecasts and on staff well trained in the art of interpreting this information....... The improvements gained by the county of Funen were mainly due to the use of technologies (brine spreading with nozzles) giving a more precise spread pattern than the traditional gritting of pre-wetted salt. The spread pattern for every spreader, tested in The County of Funen, has been meassured 3 hours after...

  1. Influence of cavitation on near nozzle exit spray

    Science.gov (United States)

    Mirshahi, M.; Yan, Y.; Nouri, J. M.

    2015-12-01

    The importance of cavitation inside multi-hole injectors for direct injection internal combustion (IC) engineshas been addressed in many previous investigations. Still, the effect of cavitation on jet spray, its stability and liquid breakup and atomisation is not yet fully understood. The current experimental work aims to address some of these issues. It focuses on the initiation and development of cavitation inside a 7× enlarged transparent model of a symmetric 6-hole spark ignition direct injection (SIDI) injector and quantifies the effect of cavitation on near-nozzle spray cone angle and stability utilising high speed Mie scattering visualisation. The regions studied include the full length of the nozzle and its exitjet spray wherethe primary breakup takes place.

  2. Reaction thrust of water jet for conical nozzles

    Institute of Scientific and Technical Information of China (English)

    HUANG Guo-qin; YANG You-sheng; LI Xiao-hui; ZHU Yu-quan

    2009-01-01

    Clear knowledge on the reaction thrust of water jet is valuable for better design of water jet propulsion system.In this paper,theoretical,numerical and experimental studies were carried out to investigate the effects of the nozzle geometry as well as the inlet conditions on the reaction thrust of water jet.Comparison analyses reveal that the reaction thrust has a direct proportional relationship with the product of the inlet pressure,the square of flow rate and two-thirds power exponent of the input power.The results also indicate that the diameter of the cylinder column for the conical nozzle has great influence on the reaction thrust characteristics.In addition,the best values of the half cone angle and the cylinder column length exist to make the reaction thrust reach its maximum under the same inlet conditions.

  3. Low NOx nozzle tip for a pulverized solid fuel furnace

    Science.gov (United States)

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  4. Large thermoplastic parts quality improvements using monitorized nozzle:

    OpenAIRE

    Fernandez, Angel; Javierre, Carlos; Mercado, Daniel; Muniesa, Manuel

    2008-01-01

    Rheological behaviour control of thermoplastic material is critical to achieve reliable production series free of defects such us flashes or short shots. Defects are especially critical when injecting large parts if stability of processing parameters cannot be achieved. Viscosity variation during production depends specially of lot of raw material and programmed parameters concerning temperature. Understanding rheological behaviour of molten material in injection nozzle is critical to obtain ...

  5. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  6. A contribution on the investigation of the dynamic behavior of rotating shafts with a Hybrid Magnetic Bearing Concept (HMBC) for blower application

    International Nuclear Information System (INIS)

    Within a subproject of the RAPHAEL-Program, which was part of the 6th EURATOM Framework Program supervised by the European Commission, it was investigated whether the use of a Hybrid Magnetic Bearing Concept (HMBC) will be beneficial for a blower application. Within the RAPHAEL program, the subproject 'Component Development' is dealing with R and D of components of High Temperature Reactor Technology (HTR), where a major focus is on safety- and reliability-related issues. That implies special requirements for the support of high speed rotating shafts in HTR-Applications that only can be satisfied by using Active Magnetic Bearings (AMB). Regarding safety and competitiveness, AMBs are considered to be key components for the support of rotating HTR-components due to their technical features. AMBs are characterized by an electromagnetic actuator that is generating the bearing force depending on the clearance between stator and rotor, in which the rotor is levitated. Therefore an active control of the coil current is necessary. Furthermore, Touch Down Bearings (TDB) are needed to avoid damages in case of an emergency shut down or in case of energy supply losses. This contribution provides an internal insight on the advantages of a Hybrid Magnetic Bearing Concept that is characterized by a completely Active Magnetic Bearing-supported vertical arranged rotor and an additional permanent magnetic radial orientated bearing. One benefit of the HMBC is an additional radial guidance of the shaft that may reduce the loads while dropping into the Touch Down Bearings e.g. in case of energy supply losses of the AMBs. Reduced loads on the TDBs will increase their life cycle and the availability of the AMB supported component. The scope of this R and D-Project, which will be described more detailed in this contribution, includes: the analytical modeling and simulation of the dynamic behavior of the Hybrid Magnetic Bearing System; the modification of the completely AMB-supported test

  7. A contribution on the investigation of the dynamic behaviour of rotating shafts with a hybrid magnetic bearing concept (HMBC) for blower application - HTR2008-58045

    International Nuclear Information System (INIS)

    Within a sub-project of the RAPHAEL-Program, which is part of the 6. EURATOM Framework Program supervised by the European Commission it was investigated whether the use of a Hybrid Magnetic Bearing Concept (HMBC) will be beneficial for a blower application. As in the RAPHAEL program the sub-project 'Component Development' deals with R and D on components of High Temperature Reactor Technology (HTR), a major focus is on safety- and reliability-related issues. That implies special requirements for the support of high speed rotating shafts in HTR-Applications that only can be satisfied by using Active Magnetic Bearings (AMB). Regarding safety and competitiveness, AMBs are considered key components for the support of rotating HTR-components due to their technical features. AMBs are characterized by an electromagnetic actuator that is generating the bearing force depending on the clearance between stator and rotor, in which the rotor is levitated. Therefore an active control of the coil current is necessary. Furthermore, Touch Down Bearings (TDB) are needed to avoid damages in case of an emergency shut down or in case of energy supply losses. This contribution provides an internal insight on the advantages of a Hybrid Magnetic Bearing Concept that is characterized by a completely Active Magnetic Bearing-supported vertical arranged rotor and an additional permanent magnetic Radial Bearing. One benefit of the HMBC is an additional radial guidance of the shaft that may reduce the loads while dropping into the Touch Down Bearings e.g. in case of energy supply losses of the AMBs. Reduced loads on the TDBs will increase their life cycle and the availability of the AMB supported component. The Scope of this R and D-Project, which will be described more detailed in this contribution, includes the analytical modeling and simulation of the dynamic behavior of the Hybrid Magnetic Bearing System, the modification of the completely AMB supported test facility FLP500 with a radial

  8. Condensation of uranium hexafluoride in supersonic Laval nozzle flow

    Science.gov (United States)

    Okada, Y.; Isomura, S.; Ashimine, K.; Takeuchi, K.

    1998-08-01

    Condensation, by homogeneous nucleation, of UF6 carried in a mixture of argon and methane was studied experimentally in a continuously operating supersonic Laval nozzle. The onset of condensation was detected by Rayleigh light scattering. Measurements of static pressure in the nozzle, together with the equations of isentropic flow, permitted the determination of the relation between the pressure of UF6, Pk, and the temperature, Tc, at the observed onset of condensation. The experiments addressed conditions of condensation onset in the range 80nozzle formed single-component droplets of UF6 in a mixture of UF6, CH4, and Ar under the experimental conditions studied herein.

  9. Experimental research of multiphase flow with cavitation in the nozzle

    Science.gov (United States)

    Kozubkova, Milada; Bojko, Marian; Jablonska, Jana; Homa, Dorota; Tůma, Jiří

    2016-03-01

    The paper deals with the problems of cavitation in water flow in the nozzle. The area of research is divided into two directions (experimental and numerical research). During the experimental research the equipment with the nozzle is under the measurement and basic physical quantities such as pressure and volume flow rate are recorded. In the following phase measuring of noise which is generated during flow through the nozzle in the area of cavitation is measured at various operating conditions of the pump. In the second part the appropriate multiphase mathematical model including the consideration of cavitation is defined. Boundary conditions for numerical simulation are defined on the basis of experimental measurements. Undissolved air in the flow is taken into account to obtain pressure distribution in accordance to measured one. Results of the numerical simulation are presented by means of basic current quantities such as pressure, velocity and volume fractions of each phase. The conclusions obtained from experimental research of cavitation were applied to modify the multiphase mathematical model.

  10. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  11. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction.

    Science.gov (United States)

    Fritz, Bradley K; Hoffmann, W Clint

    2016-09-16

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected.

  12. Enrichment of U-235 by the separation nozzle process

    International Nuclear Information System (INIS)

    The most favorable results for practical application of the separation nozzle method have so far been obtained with a separating system in which a band-shaped gaseous jet consisting of a UF6/H2-mixture is deflected by a curved wall. Different methods have been developed to produce tubular separation elements based on this principle. Presently, separation capacities of up to 50 SWU/year can be achieved with tubular separation elements 15 cm in diameter and 2 m in length. These separation nozzles need a specific compression work of 2,700 kWh/SWU. Taking into account all energy losses of the enrichment facility this results in a specific energy consumption of about 4,000 kWh/SWU for an industrial-scale plant. Stages equipped with tubular separation elements have performed successfully since 1972 and 1974, respectively. The efficiency of UF6-recycling on the top of the cascades has been demonstrated. The tests of these prototypes provided the knowledge necessary for planning and engineering of industrial-scale enrichment plants. The operating characteristics of such separation nozzle plants can be predicted with high reliability using appropriate digital computer simulation showing that smooth and inherent stable cascade operation can be expected. On the basis of these results a technology program was initiated to provide the prototypes for enrichment plants with capacities of the order of 2.5 to 5 million SWU/year and more. (orig.)

  13. Experimental research of multiphase flow with cavitation in the nozzle

    Directory of Open Access Journals (Sweden)

    Kozubkova Milada

    2016-01-01

    Full Text Available The paper deals with the problems of cavitation in water flow in the nozzle. The area of research is divided into two directions (experimental and numerical research. During the experimental research the equipment with the nozzle is under the measurement and basic physical quantities such as pressure and volume flow rate are recorded. In the following phase measuring of noise which is generated during flow through the nozzle in the area of cavitation is measured at various operating conditions of the pump. In the second part the appropriate multiphase mathematical model including the consideration of cavitation is defined. Boundary conditions for numerical simulation are defined on the basis of experimental measurements. Undissolved air in the flow is taken into account to obtain pressure distribution in accordance to measured one. Results of the numerical simulation are presented by means of basic current quantities such as pressure, velocity and volume fractions of each phase. The conclusions obtained from experimental research of cavitation were applied to modify the multiphase mathematical model.

  14. Piezoelectric diffuser/nozzle micropump with double pump chambers

    Institute of Scientific and Technical Information of China (English)

    Wei WANG; Ying ZHANG; Li TIAN; Xiaojie CHEN; Xiaowei LIU

    2008-01-01

    To eliminate check valve fatigue and valve clogging, diffuser/nozzle elements are used for flow rec-tification in a valveless diffuser/nozzle micropump instead of valves. However, the application of this type of micro-pump is restricted because of its pulsating or periodic flow and low pump flux. In this paper, a diffuser/nozzle Si/ Glass micropump with two pump chambers by IC and MEMS technology is designed. The fabrication process requires only one mask and one etch step, so that the fabrication has the advantages of low cost, short proces-sing period, and facilitation of miniaturization. The pump is equipped with a glass cover board so as to conveniently observe the flow status. Pump-chambers and diffuser ele-ments are fabricated by the anisotropic KOH-etch tech-nique on the silicone substrate, and the convex corner is designed to compensate for an anisotropic etch. The driv-ing force of the micropump is produced by the PZT piezo-electric actuator, The pump performance with both actuators actuated in anti- or same-phase mode is also researched. The result indicates that the micropump achieves great performance with the actuators working at anti-phase. This may be because the liquid flows stead-ily, pulse phenomenon is very weak, and the optimal working frequency, pump back pressure, and flow rate are both double that of the pump driven in same-phase.

  15. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    Science.gov (United States)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  16. Design and Checkout of a High Speed Research Nozzle Evaluation Rig

    Science.gov (United States)

    Castner, Raymond S.; Wolter, John D.

    1997-01-01

    The High Flow Jet Exit Rig (HFJER) was designed to provide simulated mixed flow turbojet engine exhaust for one- seventh scale models of advanced High Speed Research test nozzles. The new rig was designed to be used at NASA Lewis Research Center in the Nozzle Acoustic Test Rig and the 8x6 Supersonic Wind Tunnel. Capabilities were also designed to collect nozzle thrust measurement, aerodynamic measurements, and acoustic measurements when installed at the Nozzle Acoustic Test Rig. Simulated engine exhaust can be supplied from a high pressure air source at 33 pounds of air per second at 530 degrees Rankine and nozzle pressure ratios of 4.0. In addition, a combustion unit was designed from a J-58 aircraft engine burner to provide 20 pounds of air per second at 2000 degrees Rankine, also at nozzle pressure ratios of 4.0. These airflow capacities were designed to test High Speed Research nozzles with exhaust areas from eighteen square inches to twenty-two square inches. Nozzle inlet flow measurement is available through pressure and temperature sensors installed in the rig. Research instrumentation on High Speed Research nozzles is available with a maximum of 200 individual pressure and 100 individual temperature measurements. Checkout testing was performed in May 1997 with a 22 square inch ASME long radius flow nozzle. Checkout test results will be summarized and compared to the stated design goals.

  17. Performance of Several Conical Convergent-Divergent Rocket-Type Exhaust Nozzles

    Science.gov (United States)

    Campbell, C. E.; Farley, J. M.

    1960-01-01

    An investigation was conducted to obtain nozzle performance data with relatively large-scale models at pressure ratios as high as 120. Conical convergent-divergent nozzles with divergence angles alpha of 15, 25, and 29 deg. were each tested at area ratios of approximately 10, 25, and 40. Heated air (1200 F) was supplied at the nozzle inlet at pressures up to 145 pounds per square inch absolute and was exhausted into quiescent air at pressures as low as 1.2 pounds per square inch absolute. Thrust ratios for all nozzle configurations are presented over the range of pressure ratios attainable and were extrapolated when possible to design pressure ratio and beyond. Design thrust ratios decreased with increasing nozzle divergence angle according to the trend predicted by the (1 + cos alpha)/2 parameter. Decreasing the nozzle divergence angle resulted in sizable increases in thrust ratio for a given surface-area ratio (nozzle weight), particularly at low nozzle pressure ratios. Correlations of the nozzle static pressure at separation and of the average static pressure downstream of separation with various nozzle parameters permitted the calculation of thrust in the separated-flow region from unseparated static-pressure distributions. Thrust ratios calculated by this method agreed with measured values within about 1 percent.

  18. Numerical Analysis on Temperature Variation of Coolant in Pressurizer Spray Nozzle Considering Vapor Condensation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se-Hong; Choi, Choengryul; Son, Sung-Man [ELSOLTEC, Yongin (Korea, Republic of); Kim, Hyun-Su; Oh, Chang-Kyun; Jung, Sung-Kyu [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-05-15

    Coolant is discharged into the pressurizer via a spray line pipe and nozzle. However, when the shut-off valve is closed, the coolant flow rate is abruptly reduced and the vapor could be flow upward into the spray nozzle. The inflow of vapor might cause rapid temperature increase and thermal stress problem on the nozzle and weld zones. To estimate the thermal stress applied to the weld zones of pressurizer spray nozzle, internal temperature distribution of the spray nozzle should be identified. Thus, in this paper, numerical analysis has been carried out in order to obtain temperature variation data of coolant near inner nozzle surface. Numerical analysis has been carried out to obtain coolant temperature variation data for the estimation of thermal stress applied on the spray nozzle and weld zones. The results show below. In case 1(temperature difference between coolant and vapor is relatively large), it takes temperature of coolant in the spray head a long time to reach the saturation temperature. And the vapor flows into the nozzle is condensed immediately. Therefore, thermal stratification occurs in the spray nozzle and pipe. In case 2(temperature difference between coolant and vapor is relatively small), since coolant temperature reaches the saturation temperature rapidly, relatively small amount of vapor is condensed. And a large amount of vapor is permeated to the nozzle and pipe.

  19. Numerical Analysis on Temperature Variation of Coolant in Pressurizer Spray Nozzle Considering Vapor Condensation

    International Nuclear Information System (INIS)

    Coolant is discharged into the pressurizer via a spray line pipe and nozzle. However, when the shut-off valve is closed, the coolant flow rate is abruptly reduced and the vapor could be flow upward into the spray nozzle. The inflow of vapor might cause rapid temperature increase and thermal stress problem on the nozzle and weld zones. To estimate the thermal stress applied to the weld zones of pressurizer spray nozzle, internal temperature distribution of the spray nozzle should be identified. Thus, in this paper, numerical analysis has been carried out in order to obtain temperature variation data of coolant near inner nozzle surface. Numerical analysis has been carried out to obtain coolant temperature variation data for the estimation of thermal stress applied on the spray nozzle and weld zones. The results show below. In case 1(temperature difference between coolant and vapor is relatively large), it takes temperature of coolant in the spray head a long time to reach the saturation temperature. And the vapor flows into the nozzle is condensed immediately. Therefore, thermal stratification occurs in the spray nozzle and pipe. In case 2(temperature difference between coolant and vapor is relatively small), since coolant temperature reaches the saturation temperature rapidly, relatively small amount of vapor is condensed. And a large amount of vapor is permeated to the nozzle and pipe

  20. Influence of nozzle type, nozzle arrangement and side wind speed on spray drift as measured in a wind tunnel

    OpenAIRE

    Al Heidary, M.; Douzals, J.P.; Sinfort, C.; Vallet, A.

    2014-01-01

    International audience Spray drift is a great concern because of environmental consequences of agricultural prac-tices. Many studies were conducted in wind tunnel (Miller, 2011; Nuyttens, 2007; Herbst, 2003) mainly focusing on the definition of quantitative deposition on collectors at different distances or heights according to (ISO 22856, 2008). In most cases, only one nozzle posi-tioned frontally (wind direction perpendicular to the main axis of a Flat Fan spray) is tested. This study wa...

  1. As Demonstrações no Ensino da Geometria: discussões sobre a formação de professores através do uso de novas tecnologias Demonstrations in the Teaching of Geometry: discussions on teacher education through the use of new technologies

    Directory of Open Access Journals (Sweden)

    Emilia Barra Ferreira

    2009-12-01

    Full Text Available Este trabalho descreve uma pesquisa realizada junto a professores de Matemática objetivando investigar a contribuição dos ambientes de geometria dinâmica em sua formação, no sentido de incentivá-los ao uso das demonstrações no ensino da Geometria. Considerando-se as demonstrações, pela própria natureza da Matemática, elemento fundamental na construção do conhecimento geométrico, a proposta foi que dificuldades, geralmente encontradas na necessária passagem do conhecimento de natureza empírica àquele de natureza formal, podem ser minimizadas ou superadas através de trabalho em ambientes que possibilitem o experimentar, visualizar, conjecturar, generalizar e demonstrar, como propõem os ambientes de geometria dinâmica. A análise feita baseouse em estudos de Piaget (1983, de Van Hiele (1959 e da Didática da Matemática (BROUSSEAU, 1986, DUVAl, 1995. Desenvolveu-se uma engenharia didática no ambiente proposto e os resultados sugerem que tal trabalho se constitui numa alternativa eficiente no processo de formação de professores no sentido de incentivá-los ao uso das demonstrações. Palavras-chave: Formação de Professores. Demonstrações. Geometria Dinâmica.This paper describes research conducted with mathematics teachers aiming to investigate the contribution of environments of dynamic geometry in their education, to encourage them to use demonstrations in the teaching of geometry. Considering demonstrations, which are by nature a key element in the construction of geometric knowledge, the proposal was that difficulties typically encountered in the necessary passage from empirical knowledge to formal knowledge, can be minimized or overcome through work in environments that allow experimentation, viewing, conjecturing, generalization and demonstration, as proposed by environments of dynamic geometry. The analysis was based on studies of Piaget (1983, Van Hiele (1959 and Didactic of Mathematics (BROUSSEAU, 1986, DUVAL

  2. SO2主风机叶片断裂原因分析%Analysis of Fracture on SO2 Blower Blade

    Institute of Scientific and Technical Information of China (English)

    黄世刚; 雷旻

    2014-01-01

    The impeller blade in an imported SO2 blower for sulfuric acid plant was fractured twice during normal operation. The cause of fracture was found by the SEM fractured appearance analysis, the metallographic structure, chemical composition analysis and static frequency measurement of vane. According to this conclusion, the project for safeguarding SO2 blower’s stable operation by localizing production of impeller and replacing semi-opened impeller by closed impeller was put forward.%硫酸装置某进口SO2主风机正常运行中先后两次发生叶轮叶片断裂事故,经断口SEM、金相组织、金属化学成分、叶片静频等方面的综合分析[1-3],找到了叶轮断裂失效的原因。根据该结论,提出了叶轮国产化改造方案,改半开式叶轮为闭式叶轮,保障了SO2主风机的稳定运行。

  3. Static internal performance including thrust vectoring and reversing of two-dimensional convergent-divergent nozzles

    Science.gov (United States)

    Re, R. J.; Leavitt, L. D.

    1984-01-01

    The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios.

  4. Development of a high pressure water jet nozzle for steam generator lancing system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, N. H.; Jeong, W. T.; Son, S. Y.; Choi, Y. S. [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Nho, B. J. [Chonbuk Univ., Jeonju (Korea, Republic of); Park, Y. S. [Hanboi ENG, Taejon (Korea, Republic of)

    2003-10-01

    Metal-oxide sludge accumulates on the tube sheet of nuclear steam generators as time passes. To prevent degradation of thermal efficiency of nuclear steam generators, it is recommended to clean the tube sheet and the tubes. It is important that efficiency of lancing of steam generators in nuclear power plants depends on nozzle performance. The aspect ratio, among many factors affecting the performance of a nozzle, plays a major role in determining the outer flow pattern and nozzle performance. So in this study, some flow characteristics with the variation of nozzle aspect ratios have been experimentally investigated. By this experiments, the increase of aspect ratio causes decrease of water jet energy. As a result, it was obviously concluded that the nozzle performance depends on the aspect ratio of nozzle.

  5. Effect of Nozzle Material on Downstream Lateral Injection Cold Spray Performance

    Science.gov (United States)

    MacDonald, D.; Leblanc-Robert, S.; Fernández, R.; Farjam, A.; Jodoin, B.

    2016-06-01

    In cold gas dynamic spraying, the gas nature, process stagnation pressure and temperature, and the standoff distance are known to be important parameters that affect the deposition efficiency and coating quality. This investigation attempts to elucidate the effect of nozzle material on coatings produced using a downstream lateral injection cold spray system. Through experimentation, it is shown that the nozzle material has a substantial effect on deposition efficiency and particle velocity. It is proposed that the effects are related to complex interaction between the particles and the internal nozzle walls. The results obtained lead to the conclusion that during the particle/nozzle wall contact, a nozzle with higher thermal diffusivity transfers more heat to the particles. This heat transfer results in lower critical velocities and therefore higher deposition efficiencies, despite a noticeable reduction of particle velocities which is also attributed to particle-nozzle interactions.

  6. Plastic Limit Load Analysis of Cylindrical Pressure Vessels with Different Nozzle Inclination

    Science.gov (United States)

    Prakash, Anupam; Raval, Harit Kishorchandra; Gandhi, Anish; Pawar, Dipak Bapu

    2016-04-01

    Sudden change in geometry of pressure vessel due to nozzle cutout, leads to local stress concentration and deformation, decreasing its strength. Elastic plastic analysis of cylindrical pressure vessels with different inclination angles of nozzle is important to estimate plastic limit load. In the present study, cylindrical pressure vessels with combined inclination of nozzles (i.e. in longitudinal and radial plane) are considered for elastic plastic limit load analysis. Three dimensional static nonlinear finite element analyses of cylindrical pressure vessels with nozzle are performed for incremental pressure loading. The von Mises stress distribution on pressure vessel shows higher stress zones at shell-nozzle junction. Approximate plastic limit load is obtained by twice elastic slope method. Variation in limit pressure with different combined inclination angle of nozzle is analyzed and found to be distinct in nature. Reported results can be helpful in optimizing pressure vessel design.

  7. Simulation of Cold Flow in a Truncated Ideal Nozzle with Film Cooling

    Science.gov (United States)

    Braman, K. E.; Ruf, J. H.

    2015-01-01

    Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket nozzles. The capability to estimate these side loads computationally can streamline the nozzle design process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated using RANS and URANS for a range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model choices and for four approximations of the supersonic film injection geometry, each of which was created with a different simplification of the test article geometry. The results show that although a reasonable match to experiment can be obtained with varying levels of geometric fidelity, the modeling choices made do not fully represent the physics of flow separation in a TIC nozzle with film cooling.

  8. Effect of Nozzle Material on Downstream Lateral Injection Cold Spray Performance

    Science.gov (United States)

    MacDonald, D.; Leblanc-Robert, S.; Fernández, R.; Farjam, A.; Jodoin, B.

    2016-08-01

    In cold gas dynamic spraying, the gas nature, process stagnation pressure and temperature, and the standoff distance are known to be important parameters that affect the deposition efficiency and coating quality. This investigation attempts to elucidate the effect of nozzle material on coatings produced using a downstream lateral injection cold spray system. Through experimentation, it is shown that the nozzle material has a substantial effect on deposition efficiency and particle velocity. It is proposed that the effects are related to complex interaction between the particles and the internal nozzle walls. The results obtained lead to the conclusion that during the particle/nozzle wall contact, a nozzle with higher thermal diffusivity transfers more heat to the particles. This heat transfer results in lower critical velocities and therefore higher deposition efficiencies, despite a noticeable reduction of particle velocities which is also attributed to particle-nozzle interactions.

  9. Fabrication and characterization of truly 3-D diffuser/nozzle microstructures in silicon

    DEFF Research Database (Denmark)

    Heschel, Matthias; Müllenborn, Matthias; Bouwstra, Siebe

    1997-01-01

    We present microfabrication and characterization of truly three-dimensional (3-D) diffuser/nozzle structures in silicon. Chemical vapor deposition (CVD), reactive ion etching (RIE), and laser-assisted etching are used to etch flow chambers and diffuser/nozzle elements. The flow behavior of the fa......We present microfabrication and characterization of truly three-dimensional (3-D) diffuser/nozzle structures in silicon. Chemical vapor deposition (CVD), reactive ion etching (RIE), and laser-assisted etching are used to etch flow chambers and diffuser/nozzle elements. The flow behavior...... of the fabricated elements and the dependence of diffuser/nozzle efficiency on structure geometry has been investigated. The large freedom of 3-D micromachining combined with rapid prototyping allows one to characterize and optimize diffuser/nozzle structures...

  10. Apparatus and methods for impingement cooling of a side wall of a turbine nozzle segment

    Science.gov (United States)

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and a vane therebetween. Each band includes a nozzle wall, a side wall, a cover and an impingement plate between the cover and the nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The impingement plate has a turned flange welded to the inturned flange. A backing plate overlies the turned flange and aligned apertures are formed through the backing plate and turned flange to direct and focus cooling flow onto the side wall of the nozzle segment.

  11. Wind tunnel Measurement of Spray Drift from on-off Controlled Sprayer Nozzles

    DEFF Research Database (Denmark)

    Lund, Ivar; Jensen, Peter Kryger; Miller, Paul;

    2014-01-01

    Sensor-based precision weed control system at a high resolution requires a high spray application accuracy to keep the spray in a small target zone. The objective of this research was to investigate the target accuracy and spray drift from individual controlled sprayer nozzles targeting a 250 mm...... wide surface area with a length of 200 mm. The test was conducted in the wind tunnel at Silsoe Spray Applications Unit in the UK. The measurements consisted of two test series; airborne drift was collected on polyethylene lines more than 375 mm away from the centerline of the nozzle and ground deposits...... were collected on 20 mm wide paper lines closer than 375 mm from the nozzle. The nozzle height was 400 mm and the nozzle was aligned at right angles to forward direction across the wind tunnel and perpendicular to the wind direction. The nozzles involved were mounted on a transporter system...

  12. Wind tunnel measurement of spray drift from on-off controlled sprayer nozzles

    DEFF Research Database (Denmark)

    Lund, Ivar; Jensen, Peter Kryger; Miller, Paul;

    Sensor-based precision weed control system at a high resolution requires a high spray application accuracy to keep the spray in a small target zone. The objective of this research was to investigate the target accuracy and spray drift from individual controlled sprayer nozzles targeting a 250 mm...... wide surface area with a length of 200 mm. The test was conducted in the wind tunnel at Silsoe Spray Applications Unit in the UK. The measurements consisted of two test series; airborne drift was collected on polyethylene lines more than 375 mm away from the centerline of the nozzle and ground deposits...... were collected on 20 mm wide paper lines closer than 375 mm from the nozzle. The nozzle height was 400 mm and the nozzle was aligned at right angles to forward direction across the wind tunnel and perpendicular to the wind direction. The nozzles involved were mounted on a transporter system...

  13. Effects of varying podded nacelle-nozzle installations on transonic aeropropulsive characteristics of a supersonic fighter aircraft

    Science.gov (United States)

    Capone, F. J.; Reubush, D. E.

    1983-01-01

    The aeropropulsive characteristics of an advanced twin engine fighter designed for supersonic cruise was investigated in the 16 foot Transonic Tunnel. The performance characteristics of advanced nonaxisymmetric nozzles installed in various nacelle locations, the effects of thrust induced forces on overall aircraft aerodynamics, the trim characteristics, and the thrust reverser performance were evaluated. The major model variables included nozzle power setting; nozzle duct aspect ratio; forward, mid, and aft nacelle axial locations; inboard and outboard underwing nacelle locations; and underwing and overwing nacelle locations. Thrust vectoring exhaust nozzle configurations included a wedge nozzle, a two dimensional convergent divergent nozzle, and a single expansion ramp nozzle, each with deflection angles up to 30 deg. In addition to the nonaxisymmetric nozzles, an axisymmetric nozzle installation was also tested. The use of a canard for trim was also assessed.

  14. Spray drift of reducing nozzle types spraying a bare soil surface with a boom sprayer

    OpenAIRE

    Zande, van de, J.C.; Michielsen, J.G.P.; Stallinga, H.; Velde, van der, G.

    2014-01-01

    In the Netherlands spray drift reduction measures are obligatory when spraying alongside waterways. Drift Reducing Technology (DRT) is certified through standardised spray drift measurements in the field and by means of the classification of drift reducing nozzle types in the laboratory. Approved DRT and classified nozzles in the drift reduction classes 50%, 75%, 90% and 95% are officially published on a website. Since the introduction of the nozzle classification system in 1999, little measu...

  15. Drug/polymer nanoparticles prepared using unique spray nozzles and recent progress of inhaled formulation

    OpenAIRE

    Tetsuya Ozeki; Tatsuaki Tagami

    2014-01-01

    Inhaled formulations are promising for pulmonary and systemic non-pulmonary diseases. Functional engineered particles including drugs and drug-loaded nanocarriers have been anticipated because they can improve drug delivery efficacy against target sites in the lungs or blood. In this review, unique spray nozzles (e.g., four-fluid spray nozzle and two-solution mixing type nozzle) for the preparation of nanocomposite particles which mean microparticles containing drug nanoparticles are describe...

  16. Asymmetric and Unsteady Flow Separation in High Mach Number Planar Nozzles

    OpenAIRE

    E. Shimshi; Ben-Dor, G.; Levy, A; A. Krothapalli

    2015-01-01

    This paper presents numerical and experimental findings regarding flow separation phenomenon in a high Mach number over expanded planar nozzle. The experimental work is done using a tapered nozzle with a variable area ratio that can produce separation Mach numbers in the range 2.6-3.5. Shadowgraph visualization reveals that depending on the nozzle pressure ratio and the area ratio, steady symmetric, unsteady symmetric and steady asymmetric separations can occur. These sepa...

  17. Non-local electron energy probability function in a plasma expanding along a magnetic nozzle.

    Directory of Open Access Journals (Sweden)

    Roderick William Boswell

    2015-03-01

    Full Text Available Electron energy probability functions (eepfs have been measured along the axis of low pressure plasma expanding in a magnetic nozzle. The eepf at the maximum magnetic field of the nozzle shows a depleted tail commencing at an energy corresponding to the measured potential drop in the magnetic nozzle. The eepfs measured along the axis demonstrate that the potential and kinetic energies of the electrons are conserved and confirm the non-local collisionless kinetics of the electron dynamics.

  18. Parametric investigation of single-expansion-ramp nozzles at Mach numbers from 0.60 to 1.20

    Science.gov (United States)

    Capone, Francis J.; Re, Richard J.; Bare, E. Ann

    1992-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of varying six nozzle geometric parameters on the internal and aeropropulsive performance characteristics of single-expansion-ramp nozzles. This investigation was conducted at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.5 to 12, and angles of attack of 0 deg +/- 6 deg. Maximum aeropropulsive performance at a particular Mach number was highly dependent on the operating nozzle pressure ratio. For example, as the nozzle upper ramp length or angle increased, some nozzles had higher performance at a Mach number of 0.90 because of the nozzle design pressure was the same as the operating pressure ratio. Thus, selection of the various nozzle geometric parameters should be based on the mission requirements of the aircraft. A combination of large upper ramp and large lower flap boattail angles produced greater nozzle drag coefficients at Mach number greater than 0.80, primarily from shock-induced separation on the lower flap of the nozzle. A static conditions, the convergent nozzle had high and nearly constant values of resultant thrust ratio over the entire range of nozzle pressure ratios tested. However, these nozzles had much lower aeropropulsive performance than the convergent-divergent nozzle at Mach number greater than 0.60.

  19. Design and development of SiC/(W,Ti)C gradient ceramic nozzle

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The idea of functionally gradient material (FGM) theory was used to design ceramic nozzle based on the erosion wear behaviors of the ceramic nozzles and the out- standing properties of FGM. The purpose is to reduce the tensile stress at the entry region of the nozzle during sand blasting processes. The design theory and methods of gradient ceramic nozzle were proposed. The physical, micromechanical, and composition distribution models of gradient ceramic nozzle were established. The optimum composition distribution of the gradient ceramic nozzle material was determined from the solution of the multi-objective optimization calculation by constructing the models of the composition distribution versus the structural in- tegrity of the compact in fabricating process. Results showed that compressive residual stresses appeared at the entry area of the gradient ceramic nozzle. The optimized component distribution exponent p is 0.5. An SiC/(W,Ti)C gradient ce- ramic nozzle material was synthesized by hot-pressing according to the design result. Results showed that the surface Vickers hardness of the FGM-1 gradient ceramic nozzle materials was greatly improved in comparison with that of the other layers.

  20. Transonic Investigation of Two-Dimensional Nozzles Designed for Supersonic Cruise

    Science.gov (United States)

    Capone, Francis J.; Deere, Karen A.

    2015-01-01

    An experimental and computational investigation has been conducted to determine the off-design uninstalled drag characteristics of a two-dimensional convergent-divergent nozzle designed for a supersonic cruise civil transport. The overall objectives were to: (1) determine the effects of nozzle external flap curvature and sidewall boattail variations on boattail drag; (2) develop an experimental data base for 2D nozzles with long divergent flaps and small boattail angles and (3) provide data for correlating computational fluid dynamic predictions of nozzle boattail drag. The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.80 to 1.20 at nozzle pressure ratios up to 9. Three-dimensional simulations of nozzle performance were obtained with the computational fluid dynamics code PAB3D using turbulence closure and nonlinear Reynolds stress modeling. The results of this investigation indicate that excellent correlation between experimental and predicted results was obtained for the nozzle with a moderate amount of boattail curvature. The nozzle with an external flap having a sharp shoulder (no curvature) had the lowest nozzle pressure drag. At a Mach number of 1.2, sidewall pressure drag doubled as sidewall boattail angle was increased from 4deg to 8deg. Reducing the height of the sidewall caused large decreases in both the sidewall and flap pressure drags. Summary

  1. Static internal performance of a two-dimensional convergent-divergent nozzle with thrust vectoring

    Science.gov (United States)

    Bare, E. Ann; Reubush, David E.

    1987-01-01

    A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60 tp 23.00 deg. The nozzle pressure ratio was varied up to 10 for all configurations.

  2. Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application

    Science.gov (United States)

    Deere, Karen A.; Flamm, Jeffrey D.; Berrier, Bobby L.; Johnson, Stuart K.

    2007-01-01

    A computational investigation of an axisymmetric Dual Throat Nozzle concept has been conducted. This fluidic thrust-vectoring nozzle was designed with a recessed cavity to enhance the throat shifting technique for improved thrust vectoring. The structured-grid, unsteady Reynolds- Averaged Navier-Stokes flow solver PAB3D was used to guide the nozzle design and analyze performance. Nozzle design variables included extent of circumferential injection, cavity divergence angle, cavity length, and cavity convergence angle. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 1.89 to 10, with the fluidic injection flow rate equal to zero and up to 4 percent of the primary flow rate. The effect of a variable expansion ratio on nozzle performance over a range of freestream Mach numbers up to 2 was investigated. Results indicated that a 60 circumferential injection was a good compromise between large thrust vector angles and efficient internal nozzle performance. A cavity divergence angle greater than 10 was detrimental to thrust vector angle. Shortening the cavity length improved internal nozzle performance with a small penalty to thrust vector angle. Contrary to expectations, a variable expansion ratio did not improve thrust efficiency at the flight conditions investigated.

  3. Static performance of nonaxisymmetric nozzles with yaw thrust-vectoring vanes

    Science.gov (United States)

    Mason, Mary L.; Berrier, Bobby L.

    1988-01-01

    A static test was conducted in the static test facility of the Langley 16 ft Transonic Tunnel to evaluate the effects of post exit vane vectoring on nonaxisymmetric nozzles. Three baseline nozzles were tested: an unvectored two dimensional convergent nozzle, an unvectored two dimensional convergent-divergent nozzle, and a pitch vectored two dimensional convergent-divergent nozzle. Each nozzle geometry was tested with 3 exit aspect ratios (exit width divided by exit height) of 1.5, 2.5 and 4.0. Two post exit yaw vanes were externally mounted on the nozzle sidewalls at the nozzle exit to generate yaw thrust vectoring. Vane deflection angle (0, -20 and -30 deg), vane planform and vane curvature were varied during the test. Results indicate that the post exit vane concept produced resultant yaw vector angles which were always smaller than the geometric yaw vector angle. Losses in resultant thrust ratio increased with the magnitude of resultant yaw vector angle. The widest post exit vane produced the largest degree of flow turning, but vane curvature had little effect on thrust vectoring. Pitch vectoring was independent of yaw vectoring, indicating that multiaxis thrust vectoring is feasible for the nozzle concepts tested.

  4. Static performance of an axisymmetric nozzle with post-exit vanes for multiaxis thrust vectoring

    Science.gov (United States)

    Berrier, Bobby L.; Mason, Mary L.

    1988-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the flow-turning capability and the nozzle internal performance of an axisymmetric convergent-divergent nozzle with post-exit vanes installed for multiaxis thrust vectoring. The effects of vane curvature, vane location relative to the nozzle exit, number of vanes, and vane deflection angle were determined. A comparison of the post-exit-vane thrust-vectoring concept with other thrust-vectoring concepts is provided. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 1.6 to 6.0.

  5. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    Science.gov (United States)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  6. Nozzle Spray Delivery Studies for High-Viscosity Shear-Thinning Fluids

    Science.gov (United States)

    Agrawal, Smita; Cloeter, Mike; Zhang, Yuxi; Rajan, Jana; Curtis-Fisk, Jaime; Deo, Puspendu; Smith, Billy

    2015-03-01

    Experiments were performed to explore the spray of shear-thinning polymer solutions through various nozzles. High speed images near the nozzle exit, drop size distributions, and spatial mass flux distributions were analyzed with the shear-thinning fluids and deionized water for comparison for seven different nozzles with pressure drops up to 40 psi. The nozzles tested include full cone, hollow cone, and flat fan nozzles. The aim was to identify suitable nozzles that would give droplet sizes in the range of 100-2000 μm for the shear thinning fluids. It was found in general that the shear-thinning fluids led to formation of ligament like structures whereas sheet perforation was more predominant with deionized water. The spray break up was delayed with the shear-thinning fluids. The spray of the shear-thinning fluids also led to an increase in the median drop size with the extent of increase being dependent on the nozzle type. The spray angle was found to be reduced by around 20° at a distance of 12'' when compared to that of distilled water. This study lends fundamental insights into spray characteristics for a wide range of spray nozzles with high viscosity shear-thinning solution as compared to spraying deionized water with the same nozzles.

  7. Effects of nozzle lip geometry on spray atomization and emissions advanced gas turbine combustors

    Science.gov (United States)

    Micklow, Gerald J.; Roychoudhury, Subir; Nguyen, H. L.

    1991-01-01

    A parametric study is conducted to investigate the effect of nozzle lip geometry on nozzle fuel distribution, emissions and temperature distribution for a rich burn section of a rich burn/quick quench/lean burn combustor. It is seen that the nozzle lip geometry greatly affects the fuel distribution, emissions and temperature distribution. It is determined that at an equivalence ratio of 1.6 the NO concentration could be lowered by a factor greater than three by changing the nozzle lip geometry.

  8. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    Science.gov (United States)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This paper proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  9. Forward flight effects on mixer nozzle design and noise considerations for STOL externally blown flap systems.

    Science.gov (United States)

    Vonglahn, U. H.; Sekas, N.; Groesbeck, D. E.; Huff, R. G.

    1972-01-01

    Experimental data of the peak axial-velocity decay in a moving airstream are presented for several types of nozzles. The nozzles include a six-tube mixer nozzle of a type considered for reduction of jet-flap interaction noise for externally-blown-flap STOL aircraft. The effect of secondary flow on the core flow velocity decay of a bypass nozzle is also discussed. Tentative correlation equations are suggested for the configurations evaluated. Recommendations for minimizing forward velocity effects on velocity decay and jet-flap interaction noise are made.

  10. An Interactive Method of Characteristics Java Applet to Design and Analyze Supersonic Aircraft Nozzles

    Science.gov (United States)

    Benson, Thomas J.

    2014-01-01

    The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.

  11. Numerical Investigation of Jet Noise Prediction in Exhaust Nozzle by Passive Control Techniques

    Directory of Open Access Journals (Sweden)

    Alagu sundaram.A

    2015-05-01

    Full Text Available The project mainly focuses on the reduction of jet noise emission in the exhaust nozzle of TURBOFAN ENGINES. Reduction of noise in the exhaust system is done by attaching chevrons with particular parameters in the nozzle exit. Numerical investigations have been carried out on chevron nozzles to assess the importance of chevron parameters such as the number of chevrons like (chevron count, chevron penetration and the mixing characteristics of co flow jet. Chevron count is the pertinent parameter for noise reduction at low nozzle pressure ratios, whereas at high nozzle pressure ratios, chevron penetration is crucial. The results illustrate that by careful selection of chevron parameters substantial noise reduction can be achieved. The sound pressure level (SPL can be calculated from that we determined the noise level at nozzle exit section. After assessing the chevron parameters we are going to modify the chevron shapes in order to get maximum noise reduction along with very negligible thrust loss. Modification of chevron is based on aspect of increasing the mixing of cold jet and the hot jet in order to decrease the noise emission. ANSYS-Fluent is a commercial CFD code which will be used for performing the simulation and the simulation configuration contains three different velocities (100,150,200 with two different nozzle model(plain & chevron nozzle. The simulation results are evaluated to find out nozzle noise level in the engine exhaust system.

  12. Formation of Vortex Structures in the Prenozzle Space of an Engine with a Vectorable Thrust Nozzle

    Science.gov (United States)

    Volkov, K. N.; Emel'yanov, V. N.; Denisikhin, S. V.

    2016-05-01

    A numerical simulation of the hydrodynamic effects arising in the process of work of the vectorable thrust nozzle of a solid-propellant rocket engine has been performed. The fields of the flows of combustion products in the channel of a charge, the prenozzle space, and the nozzle unit were calculated for different angles of vectoring of the nozzle. The distributions of the gasdynamic parameters of the flow of combustion products in the prenozzle space, corresponding to their efflux from the cylindrical and star-shaped channels of charges, were compared. The formation of a vortex flow in the neighborhood of the back cover of the nozzle was considered.

  13. CFD simulation of square cross-section, contoured nozzle flows - Comparison with data

    Science.gov (United States)

    Ostrander, Mark J.; Thomas, Scott R.; Voland, Randall T.; Guy, Robert W.; Srinivasan, Shivakumar

    1989-01-01

    Computational analyses have been made of the flow in NASA Langley's Arc-Heated Scramjet Test Facility's Mach 4.7 and Mach 6 square cross-section contoured nozzles, for comparison with experimental results. The analyses, which were performed using a three-dimensional RANS computer code assuming a single species gas with constant specific heats, were intended to provide insight into the nature of the flow development in this type of nozzle. The computational results showed the exit flow distribution to be affected by counter-rotating vortices along the centerline of each nozzle sidewall. Calculated flow properties show general, but not complete, agreement with experimental measurements in both nozzles.

  14. Comparison of CFD Simulations with Experimental Measurements of Nozzle Clogging in Continuous Casting of Steels

    Science.gov (United States)

    Mohammadi-Ghaleni, Mahdi; Asle Zaeem, Mohsen; Smith, Jeffrey D.; O'Malley, Ronald

    2016-08-01

    Measurements of clog deposit thickness on the interior surfaces of a commercial continuous casting nozzle are compared with computational fluid dynamics (CFD) predictions of melt flow patterns and particle-wall interactions to identify the mechanisms of nozzle clogging. A submerged entry nozzle received from industry was encased in epoxy and carefully sectioned to allow measurement of the deposit thickness on the internal surfaces of the nozzle. CFD simulations of melt flow patterns and particle behavior inside the nozzle were performed by combining the Eulerian-Lagrangian approach and detached eddy simulation turbulent model, matching the geometry and operating conditions of the industrial test. The CFD results indicated that convergent areas of the interior cross section of the nozzle increased the velocity and turbulence of the flowing steel inside the nozzle and decreased the clog deposit thickness locally in these areas. CFD simulations also predicted a higher rate of attachment of particles in the divergent area between two convergent sections of the nozzle, which matched the observations made in the industrial nozzle measurements.

  15. Injector Nozzle Flow Model and Its Effects on the Calculations of High Pressure Sprays

    Institute of Scientific and Technical Information of China (English)

    WEI Ming-rui; LIU Yong-chang; WEN Hua; ZHANG Yue-heng

    2004-01-01

    This paper discusses the flowing process inside a nozzle, especially the formation mechanism of cavitations within the nozzle and puts forward a nozzle flow model, which takes account of the injection conditions and nozzle geometry. By the model being implemented to the KIVA codes, the spray characteristics (e.g., spray penetration and cone angle) of diesel and dimethyl ether (DME) are simulated. The comparisons between the computational and experimental results are performed, which show that the liquid spray characteristics could be more truly demonstrated by considering the existence of the cavitations.

  16. Design and development of SiC/(W, Ti)C gradient ceramic nozzle

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The idea of functionally gradient material (FGM) theory was used to design ceramic nozzle based on the erosion wear behaviors of the ceramic nozzles and the outstanding properties of FGM. The purpose is to reduce the tensile stress at the entry region of the nozzle during sand blasting processes. The design theory and methods of gradient ceramic nozzle were proposed. The physical, micromechanical, and composition distribution models of gradient ceramic nozzle were established. The optimum composition distribution of the gradient ceramic nozzle material was determined from the solution of the multi-objective optimization calculation by constructing the models of the composition distribution versus the structural integrity of the compact in fabricating process. Results showed that compressive residual stresses appeared at the entry area of the gradient ceramic nozzle. The optimized component distribution exponent p is 0.5. An SiC/(W,Ti)C gradient ceramic nozzle material was synthesized by hot-pressing according to the design result. Results showed that the surface Vickers hardness of the FGM-1 gradient ceramic nozzle materials was greatly improved in comparison with that of the other layers.

  17. FORMAÇÃO CONTINUADA DO PROFESSOR DOS ANOS INICIAIS: REVISITANDO FIGURAS PLANAS COM SOFTWARE DE GEOMETRIA DINÂMICA. CONTINUING EDUCATION FOR TEACHERS OF THE EARLY YEARS: REVISITING PLANE FIGURES WITH DYNAMIC GEOMETRY SOFTWARE

    Directory of Open Access Journals (Sweden)

    Poloni, Marinês Yole

    2012-05-01

    Full Text Available Este artigo tem por propósito discutir episódios da prática de duas professoras do Ensino Fundamental I que em um curso de formação continuada revisitaram alguns conceitos geométricos. O foco está na reconstrução dos conceitos dessas professoras, entretanto são explicitadas também decisões e estratégias metodológicas por elas tomadas a fim de mediar a aprendizagem dos alunos. A pesquisa de mestrado, que subsidia este texto, foi realizada ao longo do curso “Geometria em Ação”, o qual estava centrado no tema Figuras Planas e, nele, foi utilizado o software Cabri-Géomètre[1]. A fundamentação teórica foi construída a partir dos conceitos de reflexão de Schön, das vertentes do conhecimento didático de Ponte & Oliveira e da articulação entre teoria e prática de Tardif. A pesquisa de caráter qualitativo utilizou a metodologia de Design-Based Research. No artigo apresentamos reflexões tanto sobre a (reconstrução de conceitos geométricos, quanto sobre a prática docente. Concluímos, ao final do estudo, que ocorreram situações de reconstrução de conceitos geométricos por parte de ambas as professoras, particularmente quanto às definições e às propriedades de triângulos e quadriláteros. Em relação à prática docente, elas se conscientizaram das decisões tomadas tanto durante o planejamento de suas aulas quanto durante a aplicação das mesmas avaliando, posteriormente, suas decisões didáticas e pedagógicas. This paper discusses episodes of teaching practices of two primary school teachers whom, during a course of continuing education, have revisited some geometrical concepts. The focus is on the reconstruction of mathematical concepts of these teachers, however, we also present methodological strategies and decisions taken by them in order to support students' learning. The underlying research was carried out along the course "Geometria em Ação" (Geometry in Action, which was centered on the Planar

  18. Influence of data acquisition geometry on soybean spectral response simulated by the prosail model Influência da geometria de aquisição de dados na resposta espectral da soja simulada pelo modelo prosail

    Directory of Open Access Journals (Sweden)

    Fábio M. Breunig

    2013-02-01

    Full Text Available View angle and directional effects significantly affect reflectance and vegetation indices, especially when daily images collected by large field-of-view (FOV sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS are used. In this study, the PROSAIL radiative transfer model was chosen to evaluate the impact of the geometry of data acquisition on soybean reflectance and two vegetation indices (Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index -EVI by varying biochemical and biophysical parameters of the crop. Input values for PROSAIL simulation were based on the literature and were adjusted by the comparison between simulated and real satellite soybean spectra acquired by the MODIS/Terra and hyperspectral Hyperion/Earth Observing-One (EO-1. Results showed that the influence of the view angle and view direction on reflectance was stronger with decreasing leaf area index (LAI and chlorophyll concentration. Because of the greater dependence on the near-infrared reflectance, the EVI was much more sensitive to viewing geometry than NDVI presenting larger values in the backscattering direction. The contrary was observed for NDVI in the forward scattering direction. In relation to the LAI, NDVI was much more isotropic for closed soybean canopies than for incomplete canopies and a contrary behavior was verified for EVI.Os efeitos direcionais e de ângulo de visada afetam significativamente a reflectância e os índices de vegetação, especialmente quando são usadas imagens diárias adquiridas por sensores com amplo campo de visada como o Moderate Resolution Imaging Spectroradiometer (MODIS. No presente estudo, o modelo de transferência radiativa PROSAIL foi escolhido para avaliar o impacto da geometria de aquisição de dados na reflectância da soja e no cálculo de dois índices de vegetação (Normalized Difference Vegetation Index -NDVI e Enhanced Vegetation Index -EVI, variando-se parâmetros bioqu

  19. A geometria fractal da rede de drenagem da bacia hidrográfica do Caeté, Alfredo Wagner-SC Fractal geometry of the drainage network of the Caeté river watershed, Alfredo Wagner-SC

    Directory of Open Access Journals (Sweden)

    Leandro Redin Vestena

    2010-08-01

    Full Text Available Os objetivos deste trabalho foram estimar e avaliar a dimensão fractal da rede de drenagem da bacia hidrográfica do Caeté, em Alfredo Wagner, SC, a partir de diferentes métodos, com o propósito de caracterizar as formas geomorfológicas irregulares. A rede de drenagem apresenta propriedades multifractais. As dimensões fractais para os segmentos individuais (df e para a rede de drenagem inteira (Df foram determinadas por métodos que se fundamentaram nas razões de Horton e pelo método da contagem de caixas (Box-Counting. A rede de drenagem tem característica de autoafinidade. A dimensão fractal proveniente da relação de parâmetros obtidos pelas Leis de Horton apresentou resultados dentro dos limiares da teoria da geometria fractal.The objective of the present work was to evaluate the fractal dimensions of the drainage network of the Caeté river watershed, Alfredo Wagner/SC, with different methods in order to characterize the irregular geomorphologic forms. The drainage network possesses multi-fractal properties. That is why the fractal dimensions for the individual segments (df and for the entire network (Df were evaluated with Horton's Laws and the Box-Counting method. The drainage network has self-affinity characteristics. The fractal dimension obtained through the parameters relationship of Horton's Laws showed the results within the thresholds of the fractal geometry theory.

  20. Numerical modelling of the jet nozzle enrichment process

    International Nuclear Information System (INIS)

    A numerical model was developed for the simulation of the isotopic enrichment produced by the jet nozzle process. The flow was considered stationary and under ideal gas conditions. The model calculates, for any position of the skimmer piece: (a) values of radial mass concentration profiles for each isotopic species and (b) values of elementary separation effect (Σ sub(A)) and uranium cut (theta). The comparison of the numerical results obtained with the experimental values given in the literature proves the validity of the present work as an initial step in the modelling of the process. (Author)

  1. Cryogenic Cavitating Flow in 2D Laval Nozzle

    Institute of Scientific and Technical Information of China (English)

    Naoki Tani; Toshio Nagashima

    2003-01-01

    Cavitation is one of the troublesome problems in rocket turbo pumps, and since most of high-efficiency rocket propellants are cryogenic fluids, so called "thermodynamic effect" becomes more evident than in water. In the present study, numerical and experimental study of liquid nitrogen cavitation in 2D Laval nozzle was carried out,so that the influence of thermodynamic effect was examined. It was revealed that temperature and cavitation have strong inter-relationship with each other in thermo-sensitive cryogenic fluids.

  2. Fuel nozzle for a combustor of a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Belsom, Keith Cletus; McMahan, Kevin Weston; Thomas, Larry Lou

    2016-03-22

    A fuel nozzle for a gas turbine generally includes a main body having an upstream end axially separated from a downstream end. The main body at least partially defines a fuel supply passage that extends through the upstream end and at least partially through the main body. A fuel distribution manifold is disposed at the downstream end of the main body. The fuel distribution manifold includes a plurality of axially extending passages that extend through the fuel distribution manifold. A plurality of fuel injection ports defines a flow path between the fuel supply passage and each of the plurality of axially extending passages.

  3. Analisa Aliran Hub Cap Propeller Terhadap Pengaruh Nozzle Ring

    Directory of Open Access Journals (Sweden)

    Wicaksono Wicaksono

    2014-03-01

    Full Text Available Propeller mempunyai peranan yang penting,dimana alat tersebut yang sering digunakan untuk mengerakan kapal,propeller sendiri dapat mengubah gaya gerak (putar menjadi gaya dorong,berdasarkan studi lebih lanjut dalam penelitian ini,banyak ditemukan tipe propeller yang sudah dimodifikasi untuk memdapatkan performa yang lebih baik,untuk meningkatan efisiensi.tujuan dari tugas akhir ini adalah menghybrid nozzle ring dengan hub cap propeller yang mana dapat mempengaruhi besar dari thrust,torque,dan juga efisiensi yang maksimal dengan pendekatan CFD   (Computational,Fluid,Dynamic,variabel yang divariasikan  adlah sudu ducted dengan hub cap propeller.

  4. BWR feedwater nozzle and control rod drive return line nozzle cracking: resolution of generic technical activity A-10. Technical report

    International Nuclear Information System (INIS)

    This report summarizes work performed by the NRC staff in the resolution of Generic Technical Activity A-10, 'BWR Nozzle Cracking'. Generic Technical Activity A-10 is one of the generic technical subjects designated as 'unresolved safety issues' pursuant to Section 210 of the Energy Reorganization Act of 1974. The report describes the technical issues, the technical studies and analyses performed by the General Electric Company and the NRC staff, the staff's technical positions based on these studies, and the staff's plans for continued implementation of its technical positions. It also provides information for further work to resolve the non-destructive examination issue

  5. Spray nozzle designs for agricultural aviation applications. [relation of drop size to spray characteristics and nozzle efficiency

    Science.gov (United States)

    Lee, K. W.; Putnam, A. A.; Gieseke, J. A.; Golovin, M. N.; Hale, J. A.

    1979-01-01

    Techniques of generating monodisperse sprays and information concerning chemical liquids used in agricultural aviation are surveyed. The periodic dispersion of liquid jet, the spinning disk method, and ultrasonic atomization are the techniques discussed. Conceptually designed spray nozzles for generating monodisperse sprays are assessed. These are based on the classification of the drops using centrifugal force, on using two opposing liquid laden air jets, and on operating a spinning disk at an overloaded flow. Performance requirements for the designs are described and estimates of the operational characteristics are presented.

  6. Noise control in air blower of laboratory ventilation system%实验室通风系统风机噪声的综合治理

    Institute of Scientific and Technical Information of China (English)

    盖磊; 周东

    2012-01-01

    实验室通风系统在保证良好的室内空气质量的同时,往往会带来一定程度的噪声污染.济南市供排水监测中心综合实验室通风系统对室外环境造成了严重的噪声污染.文章对该实验室通风系统的噪声特性进行了测试与分析,结果表明:位于室外屋顶的风机为主要噪声源;阐述了针对风机噪声采用综合运用隔声罩、阻抗式消声器和隔声包扎等治理措施;提出了使用计算机模拟的方法用于噪声治理措施的选择与评价.项目竣工后,其噪声污染已控制到国家允许标准以下.%Laboratory ventilation system can usually ensure good indoor air quality, but at the same time it often brings a certain degree of noise pollution. The laboratory ventilation system of Jinan Water and Waste Water Monitoring Center had polluted the environment seriously. In this paper, the noise from the laboratory ventilation system was tested and analyzed. The results showed that the air blower which was located on the roof was the main noise source. Then some corresponding control measures, such as installing acoustical enclosure, silencer and sound insulation enswathement, were put forward and implemented. It also used computer simulation methods for noise control measures in the selection and evaluation. As those measures were taken, the noise level at the boundary was reduced to the quality standard.

  7. 室外冰场环保清雪车的研制%Development of Environment Protection Snow Blower in Outdoor Ice Rinks

    Institute of Scientific and Technical Information of China (English)

    李兴汉; 张霁虹; 柳洪涛

    2013-01-01

    Ice-snow sports is very popular in North China .Skating class of universities is one of the main courses of physical education in winter .But traditional artificial maintenance rink is slow and low quality , affecting the popularization and development of ice sports .In order to solve the problems that artificially sweeping snow is time -consuming and laborious , low efficiency and poor cleaning effect , the group con-ducted a research work on environment protection snow blower in outdoor ice rinks .Electric vehicle is de-signed , equipped with screw snow pushing device and belt snow brush .Using machinery to replace artifi-cially cleaning snow has fast speed , good effect , and practical significance to popularize and promote ice sports.%冰雪运动在我国北方很盛行,高校滑冰课是冬季体育课主要课程之一,但传统的人工维护冰场,速度慢、质量差,影响了冰上运动的普及和发展。为了解决人工清雪费时费力、效率低、清扫效果差的问题,课题组进行了室外冰场环保清雪车的研制工作。设计制造了环保电动车,配有螺旋推雪器和皮带扫雪刷并用的扫雪方式。用机械替代人力清雪能节省人力,速度快,效果好,对普及和推广冰上体育运动有实际意义。

  8. Development of Environment Protection Snow Blower in Outdoor Ice Rinks%室外冰场环保清雪车的研制

    Institute of Scientific and Technical Information of China (English)

    李兴汉; 张霁虹; 柳洪涛

    2013-01-01

    Ice-snow sports is very popular in North China .Skating class of universities is one of the main courses of physical education in winter .But traditional artificial maintenance rink is slow and low quality , affecting the popularization and development of ice sports .In order to solve the problems that artificially sweeping snow is time -consuming and laborious , low efficiency and poor cleaning effect , the group con-ducted a research work on environment protection snow blower in outdoor ice rinks .Electric vehicle is de-signed , equipped with screw snow pushing device and belt snow brush .Using machinery to replace artifi-cially cleaning snow has fast speed , good effect , and practical significance to popularize and promote ice sports.%冰雪运动在我国北方很盛行,高校滑冰课是冬季体育课主要课程之一,但传统的人工维护冰场,速度慢、质量差,影响了冰上运动的普及和发展。为了解决人工清雪费时费力、效率低、清扫效果差的问题,课题组进行了室外冰场环保清雪车的研制工作。设计制造了环保电动车,配有螺旋推雪器和皮带扫雪刷并用的扫雪方式。用机械替代人力清雪能节省人力,速度快,效果好,对普及和推广冰上体育运动有实际意义。

  9. Flow and acoustic features of a supersonic tapered nozzle

    Science.gov (United States)

    Gutmark, E.; Bowman, H. L.; Schadow, K. C.

    1992-05-01

    The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.

  10. Plasma-based Control of Supersonic Nozzle Flow

    CERN Document Server

    Gaitonde, Datta V

    2009-01-01

    The flow structure obtained when Localized Arc Filament Plasma Actuators (LAFPA) are employed to control the flow issuing from a perfectly expanded Mach 1.3 nozzle is elucidated by visualizing coherent structures obtained from Implicit Large-Eddy Simulations. The computations reproduce recent experimental observations at the Ohio State University to influence the acoustic and mixing properties of the jet. Eight actuators were placed on a collar around the periphery of the nozzle exit and selectively excited to generate various modes, including first and second mixed (m = +/- 1 and m = +/- 2) and axisymmetric (m = 0). In this fluid dynamics video http://ecommons.library.cornell.edu/bitstream/1813/13723/2/Alljoinedtotalwithmodetextlong2-Datta%20MPEG-1.m1v, http://ecommons.library.cornell.edu/bitstream/1813/13723/3/Alljoinedtotalwithmodetextlong2-Datta%20MPEG-2.m2v}, unsteady and phase-averaged quantities are displayed to aid understanding of the vortex dynamics associated with the m = +/- 1 and m = 0 modes exci...

  11. Experimental observations of a complex, supersonic nozzle concept

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team

    2015-11-01

    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  12. Characterization of an inductively coupled plasma source with convergent nozzle

    Science.gov (United States)

    Dropmann, Michael; Clements, Kathryn; Edgren, Josh; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2015-11-01

    The inductively heated plasma generator (IPG6-B) located in the CASPER labs at Baylor University has recently been characterized for both air, nitrogen and helium. A primary area of research within the intended scope of the instrument is the analysis of material degradation under high heat fluxes such as those imposed by a plasma during atmospheric entry of a spacecraft and at the divertor within various fusion experiment. In order to achieve higher flow velocities and respectively higher heat fluxes, a new exit flange has been designed to allow the installation of nozzles with varying geometries at the exit of the plasma generator. This paper will discuss characterization of the plasma generator for a convergent nozzle accelerating the plasma jet to supersonic velocity. The diagnostics employed include a cavity calorimeter to measure the total plasma power, a Pitot probe to measure stagnation pressure and a heat flux probe to measure the local heat flux. Radial profiles of stagnation pressure and heat flux allowing the determination of the local plasma enthalpy in the plasma jet will be presented. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  13. The flip flop nozzle extended to supersonic flows

    Science.gov (United States)

    Raman, Ganesh; Hailye, Michael; Rice, Edward J.

    1992-01-01

    An experiment studying a fluidically oscillated rectangular jet flow was conducted. The Mach number was varied over a range from low subsonic to supersonic. Unsteady velocity and pressure measurements were made using hot wires and piezoresistive pressure transducers. In addition smoke flow visualization using high speed photography was used to document the oscillation of the jet. For the subsonic flip-flop jet it was found that the apparent time-mean widening of the jet was not accompanied by an increase in mass flux. It was found that it is possible to extend the operation of these devices to supersonic flows. Most of the measurements were made for a fixed nozzle geometry for which the oscillations ceased at a fully expanded Mach number of 1.58. By varying the nozzle geometry this limitation was overcome and operation was extended to Mach 1.8. The streamwise velocity perturbation levels produced by this device were much higher than the perturbation levels that could be produced using conventional excitation sources such as acoustic drivers. In view of this ability to produce high amplitudes, the potential for using small scale fluidically oscillated jet as an unsteady excitation source for the control of shear flows in full scale practical applications seems promising.

  14. The flip-flop nozzle extended to supersonic flows

    Science.gov (United States)

    Raman, Ganesh; Hailye, Michael; Rice, Edward J.

    1992-01-01

    An experiment studying a fluidically oscillated rectangular jet flow was conducted. The Mach number was varied over a range from low subsonic to supersonic. Unsteady velocity and pressure measurements were made using hot wires and piezoresistive pressure transducers. In addition smoke flow visualization using high speed photography was used to document the oscillation of the jet. For the subsonic flip-flop jet it was found that the apparent time-mean widening of the jet was not accompanied by an increase in mass flux. It was found that it is possible to extend the operation of these devices to supersonic flows. Most of the measurements were made for a fixed nozzle geometry for which the oscillations ceased at a fully expanded Mach number of 1.58. By varying the nozzle geometry this limitation was overcome and operation was extended to Mach 1.8. The streamwise velocity perturbation levels produced by this device were much higher than the perturbation levels that could be produced using conventional excitation sources such as acoustic drivers. In view of this ability to produce high amplitudes, the potential for using small scale fluidically oscillated jet as an unsteady excitation source for the control of shear flows in full scale practical applications seems promising.

  15. An Investigation of Flow in Nozzle Hole of Dimethyl Ether

    Science.gov (United States)

    Kato, M.; Yokota, T.; Weber, J.; Gill, D.

    2015-12-01

    For over twenty years, DME has shown itself to be a most promising fuel for diesel combustion. DME is produced by simple synthesis of such common sources as coal, natural gas, biomass, and waste feedstock. DME is a flammable, thermally-stable liquid similar to liquefied petroleum gas (LPG) and can be handled like LPG. However, the physical properties of DME such as its low viscosity, lubricity and bulk modulus have negative effects for the fuel injection system, which have both limited the achievable injection pressures to about 500 bar and DME's introduction into the market. To overcome some of these effects, a common rail fuel injection system was adapted to operate with DME and produce injection pressures of up to 1000 bar. To understand the effect of the high injection pressure, tests were carried out using 2D optically accessed nozzles. This allowed the impact of the high vapour pressure of DME on the onset of cavitation in the nozzle hole to be assessed and improve the flow characteristics.

  16. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1. [jet engine noise radiation through coannular exhaust nozzles

    Science.gov (United States)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots.

  17. IR signature study of aircraft engine for variation in nozzle exit area

    Science.gov (United States)

    Baranwal, Nidhi; Mahulikar, Shripad P.

    2016-01-01

    In general, jet engines operate with choked nozzle during take-off, climb and cruise, whereas unchoking occurs while landing and taxiing (when engine is not running at full power). Appropriate thrust in an aircraft in all stages of the flight, i.e., take-off, climb, cruise, descent and landing is achieved through variation in the nozzle exit area. This paper describes the effect on thrust and IR radiance of a turbojet engine due to variation in the exit area of a just choked converging nozzle (Me = 1). The variations in the nozzle exit area result in either choking or unchoking of a just choked converging nozzle. Results for the change in nozzle exit area are analyzed in terms of thrust, mass flow rate and specific fuel consumption. The solid angle subtended (Ω) by the exhaust system is estimated analytically, for the variation in nozzle exit area (Ane), as it affects the visibility of the hot engine parts from the rear aspect. For constant design point thrust, IR radiance is studied from the boresight (ϕ = 0°, directly from the rear side) for various percentage changes in nozzle exit area (%ΔAne), in the 1.9-2.9 μm and 3-5 μm bands.

  18. A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    Science.gov (United States)

    Deere, Karen A.; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

    2005-01-01

    A computational investigation of a two-dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. Several design cycles with the structured-grid, computational fluid dynamics code PAB3D and with experiments in the NASA Langley Research Center Jet Exit Test Facility have been completed to guide the nozzle design and analyze performance. This paper presents computational results on potential design improvements for best experimental configuration tested to date. Nozzle design variables included cavity divergence angle, cavity convergence angle and upstream throat height. Pulsed fluidic injection was also investigated for its ability to decrease mass flow requirements. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 2 to 7, with the fluidic injection flow rate equal to 3 percent of the primary flow rate. Computational results indicate that increasing cavity divergence angle beyond 10 is detrimental to thrust vectoring efficiency, while increasing cavity convergence angle from 20 to 30 improves thrust vectoring efficiency at nozzle pressure ratios greater than 2, albeit at the expense of discharge coefficient. Pulsed injection was no more efficient than steady injection for the Dual Throat Nozzle concept.

  19. CFD Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong T.

    2009-01-01

    A computational fluid dynamics study is conducted to examine nozzle exhaust jet plume effects on the Sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock research airplane, is considered. The computational fluid dynamics code is validated using available wind-tunnel sonic boom experimental data. The effects of grid size, spatial order of accuracy. grid type, and flow viscosity on the accuracy of the predicted sonic boom pressure signature are quantified. Grid lines parallel to the Mach wave direction are found to give the best results. Second-order accurate upwind methods are required as a minimum for accurate sonic boom simulations. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature is observed for the highly underexpanded nozzle flow. Axisymmetric computational fluid dynamics simulations show the flow physics inside the F-15 nozzle to be nonisentropic and complex.

  20. Nozzle optimization for water jet propulsion with a positive displacement pump

    Science.gov (United States)

    Yang, You-sheng; Xie, Ying-chun; Nie, Song-lin

    2014-06-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  1. Experimental study on the effect of nozzle surface finishing in high-speed water jet

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroshi [Ibaraki Univ., Mito (Japan); Ida, Mizuho; Nakamura, Hiroo; Ezato, Koichiro; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Nakamura, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-02-01

    International Fusion Materials Irradiation Facility (IFMIF) employs a liquid Li jet target being formed by two-dimensional metal contraction nozzle. The Li is corrosive substance and there is the possibility that the Li is corrosive to nozzle surface. Therefore, it is necessary to investigate the effect of nozzle surface finishing on the free surface instabilities, from the viewpoint of useful life and to determine the practical accuracy of finishing. The experiments were performed by two methods, one is the observation of free surface behavior by a high-speed video camera, and the other is the measurement of the velocity profile at the nozzle exit by Laser Doppler Velocimeter (LDV). Two types of nozzles are employed in the present experiment, namely, nozzles with surface finishing of {nabla}(maximum roughness: 100 {mu}m) and {nabla}{nabla}{nabla}(maximum roughness: 6.3 {mu}m). In case of the surface finishing of 100 {mu}m, the free surface waves grew growing about 7.5 m/s mean velocity at the nozzle exit, and when the mean velocity is over 15 m/s, many droplets were observed. On the other hand, there was little difference of free surface behavior between surface finishing of 6.3 {mu}m and mirror finishing. These results satisfy the specification required for the IFMIF target nozzle. (author)

  2. PWR nozzle 'crotch corner' inspection: an effective additional ultrasonic technique for radial cracks

    International Nuclear Information System (INIS)

    An ultrasonic non-destructive technique for testing the integrity of the nozzle crotch corner of a PWR pressure vessel is described which uses two angled probes to detect the specular reflection from one probe to the other via a crack lying in the important radial plane of the nozzle. (U.K.)

  3. Study on probability of failure for RPV nozzle region under severe accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon; Oh, Young Jin; Sim, Sang Hoon [Seoul National University, Seoul (Korea)

    2002-04-01

    Most of previous studies for creep rupture of RPV lower head under severe accident condition, have been focused on global failure of RPV lower head. In contrast, the local failure of the RPV nozzle region has not been studied in detail. This study focused the nozzle failure analysis into creep rupture evaluation of RPV lower head under severe accident condition, and this will help improve the safety assessment of nuclear power plants under severe accident conditions. The existence and features of nozzle failure in LAVA-ICI tested vessel of Korea Atomic Energy Research Institute and LHF-4 tested vessel of SNL, are examined. To understand the basic mechanical properties of nozzle material and weld metal, the tensile tests in various temperature levels and the creep rupture tests in various temperature and stress levels, are accomplished. The stress and deformation of LAVA-ICI experiments are analysed using measured basic mechanical properties. The failure time of Advanced Power Reactor 1400 (APR1400) in nozzle region was calculated using modified TMI-2 VIP model. Nozzle region failure characteristics was studied for SNL-LHF-4 experimental case using Finite Element Method (FEM). Using characteristics of nozzle failure, a new failure prediction experimental method was proposed for RPV nozzle failure. 19 refs., 43 figs. (Author)

  4. Coefficients of discharge of fuel-injection nozzles for compression-ignition engines

    Science.gov (United States)

    Gelalles, A G

    1932-01-01

    This report presents the results of an investigation to determine the coefficients of discharge of nozzles with small, round orifices of the size used with high-speed compression-ignition engines. The injection pressures and chamber back pressures employed were comparable to those existing in compression-ignition engines during injection. The construction of the nozzles was varied to determine the effect of the nozzle design on the coefficient. Tests were also made with nozzles assembled in an automatic injection valve, both with a plain and with a helically grooved stem. It was found that a smooth passage before the orifice is requisite for high flow efficiency. A beveled leading edge before the orifice gave a higher coefficient of discharge than a rounded edge. The results with the nozzles assembled in an automatic injection valve having a plain stem duplicated those with the nozzles assembled at the end of a straight tube of constant diameter. Lower coefficients were obtained with the nozzles assembled in an injection valve having a helically grooved stem. When the coefficients of nozzles of any one geometrical shape were plotted against values of corresponding Reynold's numbers for the orifice diameters and rates of flow tested, it was found that experimental points were distributed along a single curve.

  5. Global Stability of Steady Transonic Euler Shocks in Quasi-One-Dimensional Nozzles

    CERN Document Server

    Rauch, Jeffrey; Xin, Zhouping

    2011-01-01

    We prove global in time dynamical stability of steady transonic shock solutions in divergent quasi-one-dimensional nozzles. We assume neither the smallness of the relative slope of the nozzle nor the weakness of the shock. Key ingredients of the proof are an exponentially decaying energy estimate for a linearized problem together with methods from \\cite{LRXX}.

  6. Nozzle and needle during high viscosity adhesive jetting based on piezoelectric jet dispensing

    Science.gov (United States)

    Lu, Song; Jiang, Hai; Li, Minjiao; Liu, Jianfang; Gu, Shoudong; Jiao, Xiaoyang; Liu, Xiaolun

    2015-10-01

    A piezoelectric impinging jet valve is used as a study object to investigate the effect of the ball needle in the existing impinging jet and nozzle structure of the valve on the performance of the jet. First, FLUENT software is used under different ball needle and nozzle structural parameters to simulate the pressure distribution that the ball needle and nozzle in the pressure cavity form when the ball needle hits the nozzle, by arranging the structure model of the ball needle and impact valve nozzle. The piezoelectric impact injection valve and the experiment test system are then designed. Test results show that the ball needle and nozzle structural parameters are closely related to the injection performance of the impact valve. Under certain conditions, a greater needle radius corresponds to a smaller nozzle aperture and taper. Moreover, high-viscosity liquid jetting is easily achieved. By using a ball needle with a radius of 1.5 mm, a taper angle of 60°, and a nozzle diameter of 0.1 mm, we can realize the industrial viscosity of 58 000 cps in glue spray, and the injection plastic fluid volume is 0.62 μl.

  7. 46 CFR 34.25-20 - Spray nozzles-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Spray nozzles-T/ALL. 34.25-20 Section 34.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-20 Spray nozzles—T/ALL. (a) Spray nozzles shall be of an approved type....

  8. Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    CW Enderlin; DG Alberts; JA Bamberger; M White

    1998-09-25

    This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

  9. Cluster Beams Sources. Part 2. The Formation of Cluster Beams in Nozzle Sources

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-12-01

    Full Text Available The article briefly examines the processes occurring during the formation of cluster beams in sources of clusters, using the expansion of the gas mixture through a nozzle. The basic parameters of the gas cluster flow at the outlet nozzle, leading to the formation of clusters are analyzed. Some aspects of the formation of cluster beams from aerodynamic flows are discussed.

  10. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    Science.gov (United States)

    Varatharajan, Balachandar; Ziminsky, Willy Steve; Yilmaz, Ertan; Lacy, Benjamin; Zuo, Baifang; York, William David

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  11. Update to the USDA-ARS fixed-wing spray nozzle models

    Science.gov (United States)

    The current USDA ARS Aerial Spray Nozzle Models were updated to reflect both new standardized measurement methods and systems, as well as, to increase operational spray pressure, aircraft airspeed and nozzle orientation angle limits. The new models were developed using both Central Composite Design...

  12. Reaction thrust characteristics of high-pressure submerged water jet of cylinder nozzles

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hui; ZHU Yu-quan; HUANG Guo-qin; NIE Song-lin

    2009-01-01

    The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. The simulation of the flow field characteristics was conducted via the FLUENT computational fuid dynamics package. Effects of the inlet conditions and the nozzle dimensions on the reaction thrust of a water jet were addressed particularly. The reaction thrust experiments were performed on a cnstom-designed test apparatus. The experimental results reveal that a) the nozzle diameter and the inlet conditions exert great influence on the water jet reaction thrust; and b) for L≤4d0, where the nozzle is treated as a thin plate-orifice, the reaction thrust is independent of nozzle length; for L4d0, where the nozzle is treated as a long orifice, the reaction thrast can reach maximum under the condition of a certain flow rate. These findings lay a theoretical foundation for the design of nozzles and have significant value, especially for the future development of high-pressure water-jet propulsion technology.

  13. Model based decision support system for agrochemical applications for MMAT nozzles

    Science.gov (United States)

    Droplet size, which is affected by nozzle type, nozzle setups and operation, and spray solution, is one of the most critical factors influencing spray performance (Gajtkowski 1985, Matthews 2000, Giles et al. 2005, Miller Tuck 2005, drift (Hewitt 1997), and food safety (Czaczyk Gnusowski 2007), and ...

  14. Nozzle Optimization for Water Jet Propulsion with A Positive Displacement Pump

    Institute of Scientific and Technical Information of China (English)

    杨友胜; 谢迎春; 聂松林

    2014-01-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  15. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  16. Numerical study on the effect of a lobed nozzle on the flow characteristics of submerged exhaust

    Science.gov (United States)

    Miao, T. C.; Du, T.; Wu, D. Z.; Wang, L. Q.

    2016-05-01

    In order to investigate the effecting mechanism of nozzle structure on the flow characteristics of submerged exhaust, the processes of air exhausted from a lobed nozzle and a round nozzle into water have been numerically simulated using realizable k – ε model under the framework of the volume of fluid (VOF) model. Both the flow structure and the upstream pressure fluctuations are taken into consideration. The calculated results are in good agreement with the experimental results, showing that gas exhausted from the lobed nozzle would flow along the axial direction easier. Flow structure of the gas exhausted from the lobed nozzle is more continuous and smoother. The pressure fluctuations in the upstream pipeline would also be reduced when gas exhausted from the lobed nozzle. The resulting analysis indicates that the lobed structure could deflect water flow into the gas jet. The induced water would be mixed into the gas jet in form of small droplets, making the jet more continuous. As a result, the mixed jet flow would be less obstructed by the surrounding water, and the upstream pressure fluctuation would be reduced. The work in this paper partly explained the effecting mechanism of nozzle structure on the flow characteristics of submerged exhaust. The results are useful in the designing of exhaust nozzles.

  17. Investigation on the Clogging Behavior and Additional Wall Cooling for the Axial-Injection Cold Spray Nozzle

    Science.gov (United States)

    Wang, Xudong; Zhang, Bo; Lv, Jinsheng; Yin, Shuo

    2015-04-01

    During the cold spray process, nozzle clogging always happens when spraying low-melting point materials, e.g., aluminum, significantly decreasing the working efficiency. In this paper, a comprehensive investigation was carried out to clarify the reason for inducing nozzle clogging and then to evaluate a home-made nozzle cooling device for preventing nozzle clogging. Computational fluid dynamics technique was employed as the main method with some necessary experiment validation. It is found that the particle dispersion and the high-temperature nozzle wall at the near-throat region are two dominant factors that cause nozzle clogging. The numerical results also reveal that the home-made cooling device can significantly reduce the nozzle wall temperature, which was validated by the experimental measurement. Besides, the aluminum coating build-up experiment further indicates that the additional cooling device can truly prevent the nozzle clogging.

  18. Advanced subsonic Technology Noise Reduction Element Separate Flow Nozzle Tests for Engine Noise Reduction Sub-Element

    Science.gov (United States)

    Saiyed, Naseem H.

    2000-01-01

    Contents of this presentation include: Advanced Subsonic Technology (AST) goals and general information; Nozzle nomenclature; Nozzle schematics; Photograph of all baselines; Configurations tests and types of data acquired; and Engine cycle and plug geometry impact on EPNL.

  19. Design and Fabrication Development of J-2X Engine Metallic Nozzle Extension

    Science.gov (United States)

    Kopicz, C.; Gradl, P.

    2015-01-01

    Maximized rocket engine performance is in part derived from expanding combustion gasses through the rocket nozzle. For upper stage engines the nozzles can be quite large. On the J-2X engine, an uncooled extension of a regeneratively cooled nozzle is used to expand the combustion gasses to a targeted exit pressure which is defined by an altitude for the desired maximum performance. Creating a J-2X nozzle extension capable of surviving the loads of test and flight environments while meeting engine system performance requirements required development of new processes and facilities. Meeting the challenges of the development resulted in concurrent J-2X nozzle extension design and fabrication. This paper describes how some of the design and fabrication challenges were resolved.

  20. Effect of carrier gas pressure on vapor condensation and mass flow-rate in sonic nozzle

    Institute of Scientific and Technical Information of China (English)

    丁红兵; 王超; 陈超

    2015-01-01

    Non-equilibrium vapor condensation of moist gas through a sonic nozzle is a very complicated phenomenon and is related to the measurement accuracy of sonic nozzle. A gas-liquid two-phase model for the moist gas condensation flow was built and validated by moist nitrogen experiment of homogeneous nucleation through a transonic nozzle. The effects of carrier gas pressure on position and status of condensation onset in sonic nozzle were investigated in detail. The results show that condensation process is not easy to occur at lower carrier pressure and throat diameter. The main factors influencing condensation onset are boundary layer thickness, heat capacity of carrier gas and expansion rate. All of results can be used to further analyze the effect of condensation on mass flow-rate of sonic nozzle.

  1. Manufacturing of nozzle shell with integral flange for EPR pressure vessel and its properties

    International Nuclear Information System (INIS)

    The 1600 MWe EPR (European Pressurized Water Reactor) with more improved reliability, operation, maintenance and economics has been developed to achieve higher output and longer lifetime, comparing with conventional nuclear power plants, and the first EPR was introduced in Olkiluoto Unit 3, Finland Unit 5. The integrated mono-block design was applied for the nozzle shell flange instead of the welded conventional flange and nozzle shell. A 600-ton ingot was required for this part because of the set-on type nozzles. Manufacturing of the first nozzle shell with integral flange in the world was completed successfully taking eleven months. This report introduces the manufacturing technology and properties of nozzle shell with integral flange. (T. Tanaka)

  2. Experimental Study on Shock Wave Structures in Constant-area Passage of Cold Spray Nozzle

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Kazuyasu MATSUO

    2007-01-01

    Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseudo-shock waves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique. The schlieren photographs reveals the supersonic flow with shock train in the nozzle. Static pressure along the barrel wall is also measured. The location of the head of pseudo-shock wave and its pressure distribution along the nozzle wall are analytically explained by using a formula of pseudo-shock wave. The analytical results show that the supersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of normal shock wave.

  3. Apparatus for impingement cooling a side wall adjacent an undercut region of a turbine nozzle segment

    Science.gov (United States)

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and vanes therebetween. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. Slots are formed through the inturned flange along the nozzle side wall. A plate having through-apertures extending between opposite edges thereof is disposed in each slot, the slots and plates being angled such that the cooling medium exiting the apertures in the second cavity lie close to the side wall for focusing and targeting cooling medium onto the side wall.

  4. Gas Nozzle Effect on the Deposition of Polysilicon by Monosilane Siemens Reactor

    Directory of Open Access Journals (Sweden)

    Seung Oh Kang

    2012-01-01

    Full Text Available Deposition of polysilicon (poly-Si was tried to increase productivity of poly-Si by using two different types of gas nozzle in a monosilane Bell-jar Siemens (MS-Siemens reactor. In a mass production of poly-Si, deposition rate and energy consumption are very important factors because they are main performance indicators of Siemens reactor and they are directly related with the production cost of poly-Si. Type A and B nozzles were used for investigating gas nozzle effect on the deposition of poly-Si in a MS-Siemens reactor. Nozzle design was analyzed by computation cluid dynamics (CFD. Deposition rate and energy consumption of poly-Si were increased when the type B nozzle was used. The highest deposition rate was 1 mm/h, and the lowest energy consumption was 72 kWh⋅kg-1 in this study.

  5. Analysis of Plume Effects on Sonic Boom Signature for Isolated Nozzle Configurations

    Science.gov (United States)

    Castner, Raymond S.

    2008-01-01

    Computational fluid dynamics (CFD) analysis has been performed to study the plume effects on sonic boom signature for isolated nozzle configurations. The objectives of these analyses were to provide comparison to past work using modern CFD analysis tools, to investigate the differences of high aspect ratio nozzles to circular (axisymmetric) nozzles, and to report the effects of underexpanded nozzle operation on boom signature. CFD analysis was used to address the plume effects on sonic boom signature from a baseline exhaust nozzle. Near-field pressure signatures were collected for nozzle pressure ratios (NPRs) between 6 and 10. A computer code was used to extrapolate these signatures to a ground-observed sonic boom N-wave. Trends show that there is a reduction in sonic boom N-wave signature as NPR is increased from 6 to 10. The performance curve for this supersonic nozzle is flat, so there is not a significant loss in thrust coefficient as the NPR is increased. As a result, this benefit could be realized without significant loss of performance. Analyses were also collected for a high aspect ratio nozzle based on the baseline design for comparison. Pressure signatures were collected for nozzle pressure ratios from 8 to 12. Signatures were nearly twice as strong for the two-dimensional case, and trends also show a reduction in sonic boom signature as NPR is increased from 8 to 12. As low boom designs are developed and improved, there will be a need for understanding the interaction between the aircraft boat tail shocks and the exhaust nozzle plume. These CFD analyses will provide a baseline study for future analysis efforts.

  6. Computational fluid dynamics based aerodynamic optimization of the wind tunnel primary nozzle

    Science.gov (United States)

    Jan, Kolář; Václav, Dvořák

    2012-06-01

    The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in Computational Fluid Dynamics (CFD) is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  7. Application of shape-based similarity query for aerodynamic optimization of wind tunnel primary nozzle

    Directory of Open Access Journals (Sweden)

    Kolář Jan

    2012-04-01

    Full Text Available The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in CFD is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  8. Application of shape-based similarity query for aerodynamic optimization of wind tunnel primary nozzle

    Science.gov (United States)

    Kolář, Jan

    2012-04-01

    The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in CFD is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  9. Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn

    2008-01-01

    understood. This paper provides a systematic and up-to-date review of two-fluid nozzle designs and principles together with a presentation of nozzle fundamentals introducing basic nozzle theory and thermodynamics. Correlations for the prediction of mean droplet diameters are reviewed, compared...

  10. EXAMPLE OF FLOW MODELLING CHARACTERISTICS IN DIESEL ENGINE NOZZLE

    Directory of Open Access Journals (Sweden)

    Dušan KOLARIČ

    2016-03-01

    Full Text Available Modern transport is still based on vehicles powered by internal combustion engines. Due to stricter ecological requirements, the designers of engines are continually challenged to develop more environmentally friendly engines with the same power and performance. Unfortunately, there are not any significant novelties and innovations available at present which could significantly change the current direction of the development of this type of propulsion machines. That is why the existing ones should be continually developed and improved or optimized their performance. By optimizing, we tend to minimize fuel consumption and lower exhaust emissions in order to meet the norms defined by standards (i.e. Euro standards. Those propulsion engines are actually developed to such extent that our current thinking will not be able to change their basic functionality, but possible opportunities for improvement, especially the improvement of individual components, could be introduced. The latter is possible by computational fluid dynamics (CFD which can relatively quickly and inexpensively produce calculations prior to prototyping and implementation of accurate measurements on the prototype. This is especially useful in early stages of development or at optimization of dimensional small parts of the object where the physical execution of measurements is impossible or very difficult. With advances of computational fluid dynamics, the studies on the nozzles and outlet channel injectors have been relieved. Recently, the observation and better understanding of the flow in nozzles at large pressure and high velocity is recently being possible. This is very important because the injection process, especially the dispersion of jet fuel, is crucial for the combustion process in the cylinder and consequently for the composition of exhaust gases. And finally, the chemical composition of the fuel has a strong impact on the formation of dangerous emissions, too. The

  11. When Whistle-blowers Become the Story: The Problem of the ‘Third Victim’; Comment on “Cultures of Silence and Cultures of Voice: The Role of Whistleblowing in Healthcare Organisations”

    Directory of Open Access Journals (Sweden)

    Justin Waring

    2016-02-01

    Full Text Available In the healthcare context, whistleblowing has come to the fore of political, professional and public attention in the wake of major service scandals and mounting evidence of the routine threats to safety that patients face in their care. This paper offers a commentary and wider contextualisation of Mannion and Davies, ‘Cultures of silence and cultures of voice: the role of whistleblowing in healthcare organisations.’ It argues that closer attention is needed to the way in which whistle-blowers can become the focus and victim of raising concerns and speaking up.

  12. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Matthew [Structural Integrity Associates, Inc.; Yin, Shengjun [ORNL; Stevens, Gary [U.S. Nuclear Regulatory Commission; Sommerville, Daniel [Structural Integrity Associates, Inc.; Palm, Nathan [Westinghouse Electric Company, Cranberry Township, PA; Heinecke, Carol [Westinghouse Electric Company, Cranberry Township, PA

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  13. Computer Graphic Design Using Auto-CAD and Plug Nozzle Research

    Science.gov (United States)

    Rogers, Rayna C.

    2004-01-01

    The purpose of creating computer generated images varies widely. They can be use for computational fluid dynamics (CFD), or as a blueprint for designing parts. The schematic that I will be working on the summer will be used to create nozzles that are a part of a larger system. At this phase in the project, the nozzles needed for the systems have been fabricated. One part of my mission is to create both three dimensional and two dimensional models on Auto-CAD 2002 of the nozzles. The research on plug nozzles will allow me to have a better understanding of how they assist in the thrust need for a missile to take off. NASA and the United States military are working together to develop a new design concept. On most missiles a convergent-divergent nozzle is used to create thrust. However, the two are looking into different concepts for the nozzle. The standard convergent-divergent nozzle forces a mixture of combustible fluids and air through a smaller area in comparison to where the combination was mixed. Once it passes through the smaller area known as A8 it comes out the end of the nozzle which is larger the first or area A9. This creates enough thrust for the mechanism whether it is an F-18 fighter jet or a missile. The A9 section of the convergent-divergent nozzle has a mechanism that controls how large A9 can be. This is needed because the pressure of the air coming out nozzle must be equal to that of the ambient pressure other wise there will be a loss of performance in the machine. The plug nozzle however does not need to have an A9 that can vary. When the air flow comes out it can automatically sense what the ambient pressure is and will adjust accordingly. The objective of this design is to create a plug nozzle that is not as complicated mechanically as it counterpart the convergent-divergent nozzle.

  14. Injection and spray characteristics of a variable orifice nozzle applied the jerk type fuel injection pump for DI diesel engine; Jerk shiki nenryo funsha pump wo mochiita kahen funko nozzle no funsha funmu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Matsui, K.; Iwasaki, T.; Kobayashi, T. [Zexel Corp., Tokyo (Japan); Matsumoto, Y. [The University of Tokyo, Tokyo (Japan)

    1997-10-01

    A Variable Orifice Nozzle (VON) by changing a cross-sectional area of the nozzle injection hole, for improving a rate of injection and injection duration, has been developed to study its injection and spray characteristics. The nozzle geometry was optimized to analyze a nozzle internal flow by computational method. Results show that, injection and spray pattern responded to the nozzle orifice cross-sectional area which is changing larger to smaller in the part load range. This results suggest to contribute a combustion improvement which decreasing NOx and soot. 14 refs., 10 figs.

  15. Preliminary scoping studies for nozzle-based coaxial plasma thrusters

    International Nuclear Information System (INIS)

    The ideal steady-state properties of nozzle-based coaxial plasma guns are modelled by means of a magnetic Bernoulli equation. Formulas for thrust, power usage, mass flow rate, and specific impulse using hydrogen are thereby obtained, and are used to approximately assess the mission performance capabilities of such thrusters. Parameters in the range of experience of the Los Alamos spheromak group are addressed within the context of orbit raising, slow (cargo) missions to mars, and fast missions to mars. The various internal atomic and plasma effects on hydrogen plasma thruster performance are approximately estimated or bounded. It is concluded that such devices may be relevant to mission performance at reasonable power levels

  16. Fluid spray simulation with two-fluid nozzles

    Science.gov (United States)

    Ingebo, Robert D.

    1988-01-01

    Two-phase interacting flow inside a two-fluid fuel atomizer was investigated and a correction of aerodynamic and liquid-surface forces with characteristic drop diameter was obtained for liquid-jet breakup in Mach 1 gas flow. Nitrogen gas mass-flux was varied from 6 to 50 g/sq cm sec by using four differently sized two-fluid atomizers with nozzle diameters varyig from 0.32 to 0.56 cm. The correlation was derived by using the acoustic gas velocity, V sub c, as a basic parameter in defining and evaluating the dimensionless product of the Weber (We) and Reynolds (Re) numbers. By using the definition of WeRe, it was found that the ratio of orifice diameter to Sauter mean drop diameter could be correlated with the dimensionless ratio WeRe and the gas to liquid density ratio.

  17. Spray Penetration with a Simple Fuel Injection Nozzle

    Science.gov (United States)

    Miller, Harold E; Beardsley, Edward G

    1926-01-01

    The purpose of the tests covered by this report was to obtain specific information on the rate of penetration of the spray from a simple injection nozzle, having a single orifice with a diameter of 0.015 inch when injecting into compressed gases. The results have shown that the effects of both chamber and fuel pressures on penetration are so marked that the study of sprays by means of high-speed photography or its equivalent is necessary if the effects are to be appreciated sufficiently to enable rational analysis. It was found for these tests that the negative acceleration of the spray tip is approximately proportional to the 1.5 power of the instantaneous velocity of the spray tip.

  18. Fuel spray simulation with two-fluid nozzles

    Science.gov (United States)

    Ingebo, Robert D.

    1989-01-01

    Two-phase interacting flow inside a two-fluid fuel atomizer was investigated and a correction of aerodynamic and liquid-surface forces with characteristic drop diameter was obtained for liquid-jet breakup in Mach 1 gas flow. Nitrogen gas mass-flux was varied from 6 to 50 g/sq cm sec by using four differently sized two-fluid atomizers with nozzle diameters varying from 0.32 to 0.56 cm. The correlation was derived by using the acoustic gas velocity, V sub c, as a basic parameter in defining and evaluating the dimensionless product of the Weber (We) and Reynolds (Re) numbers. By using the definition of WeRe, it was found that the ratio of orifice diameter to Sauter mean drop diameter could be correlated with the dimensionless ratio WeRe and the gas to liquid density ratio.

  19. Hydraulic Analogy for Isentropic Flow Through a Nozzle

    Directory of Open Access Journals (Sweden)

    J. S. Rao

    1983-04-01

    Full Text Available Modelling aspects of isentropic compressible gas flow using hydraulic analogy are discussed. Subsonic and supersonic flows through a typical nozzle are simulated as free surface incompressible water flow in an equivalent 2-D model on a water table. The results are first compared for the well known classical analogy in order to estimate experimental errors. Correction factors for pressure and temperature, to account for non-ideal compressible gas flow are presented and the results obtained on the water table are modified and compared with gas dynamic solution. Within the experimental errors, it is shown that the hydraulic analogy can be used as an effective tool for the study of two dimensional isentropic flows of gases.

  20. Gas Dynamic Virtual Nozzle for Generation of Microscopic Droplet Streams

    CERN Document Server

    DePonte, D P; Starodub, D; Schmidt, K; Spence, J C H; Doak, R B

    2008-01-01

    As shown by Ganan-Calvo and co-workers, a free liquid jet can be compressed in iameter through gas-dynamic forces exerted by a co-flowing gas, obviating the need for a solid nozzle to form a microscopic liquid jet and thereby alleviating the clogging problems that plague conventional droplet sources of small diameter. We describe in this paper a novel form of droplet beam source based on this principle. The source is miniature, robust, dependable, easily fabricated, and eminently suitable for delivery of microscopic liquid droplets, including hydrated biological samples, into vacuum for analysis using vacuum instrumentation. Monodisperse, single file droplet streams are generated by triggering the device with a piezoelectric actuator. The device is essentially immune to clogging.

  1. Eficiência de um hidrociclone de geometria "rietema" para pré-filtragem de água para irrigação Efficiency of a hydrocyclone of "rietema" geometry for pre-filtering of water for irrigation

    Directory of Open Access Journals (Sweden)

    Othon C. Da Cruz

    2010-08-01

    Full Text Available O hidrociclone é um equipamento amplamente utilizado pela indústria em processos envolvendo separação sólido-líquido, porém ainda pouco utilizado na agricultura irrigada no Brasil. Neste trabalho, avaliou-se o desempenho deste equipamento como pré-filtrante de partículas sólidas, oriundas dos processos erosivos e do assoreamento dos recursos hídricos. Os testes foram realizados com um hidrociclone de geometria "Rietema", possuindo diâmetro de 19,2 cm na parte cilíndrica, operando com vazões variando entre 10 m³ h-1 e 27 m³ h-1. Os materiais particulados usados em suspensão foram: solo franco-argiloso e areia de rio. Os resultados mostraram que a perda de carga máxima média foi de 52 kPa e 47 kPa para as suspensões aquosas de areia e solo, respectivamente. Seu melhor desempenho ocorreu operando com suspensão aquosa de areia, apresentando eficiência total de 92,3% para a vazão de 26,9 m³ h-1. Concluiu-se que o equipamento avaliado é mais eficiente para remoção de partículas de areia, podendo ser utilizado como pré-filtro em sistemas de irrigação.The hydrocyclone is an equipment widely used by industry in cases involving solid-liquid separation, but still little used in irrigated agriculture in Brazil. This study evaluated the performance of this equipment as a pre-filter of solid particles, from erosive processes and the silting of water resources. The tests were performed with a hydrocyclone of "Rietema" geometry, with a diameter of 19.2 cm at the cylindrical part operating with outflows ranging between 10 m³ h-1 and 27 m³ h-1. The materials used in particulate suspension were clay loam soil and sand from river. The results showed that the average maximum head loss was 52 kPa and 47 kPa for aqueous suspensions of sand and soil, respectively. Its best performance occurred operating with slurry of sand, presenting total efficiency of 92.3% for 26.9 m³ h-1 of flow rate. It was concluded that such equipment is most

  2. Variabilidade espacial da agregação do solo avaliada pela geometria fractal e geoestatística Spatial variability of soil aggregation evaluated by fractal geometry and geostatistics

    Directory of Open Access Journals (Sweden)

    J. R. P. Carvalho

    2004-02-01

    Full Text Available Este trabalho teve por objetivo explorar a aplicabilidade da teoria de fractais no estudo da variabilidade espacial em agregação de solo. A geometria de fractais tem sido proposta como um modelo para a distribuição de tamanho de partículas. A distribuição do tamanho de agregados do solo, expressos em termos de massa, é apresentada. Os parâmetros do modelo, tais como: a dimensão fractal D, medida representativa da fragmentação do solo (quanto maior seu valor, maior a fragmentação, e o tamanho do maior agregado R L foram definidos como ferramentas descritivas para a agregação do solo. Os agregados foram coletados em uma profundidade de 0-10 cm de um Latossolo Vermelho distrófico típico álico textura argilosa, em Angatuba, São Paulo. Uma grade regular de 100 x 100 m foi usada e a amostragem realizada em 76 pontos nos quais se determinou a distribuição de agregados por via úmida, usando água, álcool e benzeno como pré-tratamentos. Pelo exame de semivariogramas, constatou-se a ocorrência de dependência espacial. A krigagem ordinária foi usada como interpolador e mapas de contorno mostraram-se de grande utilidade na descrição da variabilidade espacial de agregação do solo.This work explored the applicability of the fractal theory for studies into space variability of soil aggregation. Fractal geometry has become a model for soil size particle distribution. The distribution of soil aggregates in terms of its mass was obtained, and model parameters such as the fractal dimension D, which is a representative measure of the soil fragmentation (the larger its value, the larger the fragmentation, and the largest aggregate size R L were defined as descriptive tools for soil aggregation. The aggregates were collected at a depth of 0-10 cm of a Clayey Ferrasol in Angatuba, São Paulo. A regular grid of 100 x 100 m was used and samples collected from 76 points, where the aggregate distribution was determined by humid way (water

  3. High-frequency jet nozzle actuators for noise reduction

    Science.gov (United States)

    Davis, Christopher L.; Calkins, Frederick T.; Butler, George W.

    2003-08-01

    Rules governing airport noise levels are becoming more restrictive and will soon affect the operation of commercial air traffic. Sound produced by jet engine exhaust, particularly during takeoff, is a major contributor to the community noise problem. The noise spectrum is broadband in character and is produced by turbulent mixing of primary, secondary, and ambient streams of the jet engine exhaust. As a potential approach to controlling the noise levels, piezoelectric bimorph actuators have been tailored to enhance the mixing of a single jet with its quiescent environment. The actuators are located at the edge of the nozzle and protrude into the exhaust stream. Several actuator configurations were considered to target two excitation frequencies, 250 Hz and 900 Hz, closely coupled to the naturally unstable frequencies of the mixing process. The piezoelectric actuators were constructed of 10 mil thick d31 poled wafer PZT-5A material bonded to either 10 or 20 mil thick spring steel substrates. Linear analytical beam models and NASTRAN finite element models were used to predict and assess the dynamic performance of the actuators. Experimental mechanical and electrical performance measurements were used to validate the models. A 3 inch diameter nozzle was fitted with actuators and tested in the Boeing Quiet Air Facility with the jet velocity varied from 50 to 1000 ft/s. Performance was evaluated using near-field and far-field acoustic data, flow visualization, and actuator health data. The overall sound pressure level produced from the 3 inch diameter jet illustrates the effect of both static and active actuators.

  4. Numerical Investigation of Nozzle Geometry Effect on Turbulent 3-D Water Offset Jet Flows

    Directory of Open Access Journals (Sweden)

    Negar Mohammad Aliha

    2016-01-01

    Full Text Available Using the Yang-Shih low Reynolds k-ε turbulence model, the mean flow field of a turbulent offset jet issuing from a long circular pipe was numerically investigated. The experimental results were used to verify the numerical results such as decay rate of streamwise velocity, locus of maximum streamwise velocity, jet half width in the wall normal and lateral directions, and jet velocity profiles. The present study focused attention on the influence of nozzle geometry on the evolution of a 3D incompressible turbulent offset jet. Circular, square-shaped, and rectangular nozzles were considered here. A comparison between the mean flow characteristics of offset jets issuing from circular and square-shaped nozzles, which had equal area and mean exit velocity, were made numerically. Moreover, the effect of aspect ratio of rectangular nozzles on the main features of the flow was investigated. It was shown that the spread rate, flow entrainment, and mixing rate of an offset jet issuing from circular nozzle are lower than square-shaped one. In addition, it was demonstrated that the aspect ratio of the rectangular nozzles only affects the mean flow field of the offset jet in the near field (up to 15 times greater than equivalent diameter of the nozzles. Furthermore, other parameters including the wall shear stress, flow entrainment and the length of potential core were also investigated.

  5. Use of direct washing of chemical dispense nozzle for defect control

    Science.gov (United States)

    Linnane, Michael; Mack, George; Longstaff, Christopher; Winter, Thomas

    2006-03-01

    Demands for continued defect reduction in 300mm IC manufacturing are driving process engineers to examine all aspects of the chemical apply process for improvement. Historically, the defect contribution from photoresist apply nozzles has been minimized through a carefully controlled process of "dummy dispenses" to keep the photoresist in the tip "fresh" and remove any solidified material, a preventive maintenance regime involving periodic cleaning or replacing of the nozzles, and reliance on a pool of solvent within the nozzle storage block to keep the photoresist from solidifying at the nozzle tip. The industry standard has worked well for the most part but has limitations in terms of cost effectiveness and absolute defect elimination. In this study, we investigate the direct washing of the chemical apply nozzle to reduce defects seen on the coated wafer. Data is presented on how the direct washing of the chemical dispense nozzle can be used to reduce coating related defects, reduce material costs from the reduction of "dummy dispense", and can reduce equipment downtime related to nozzle cleaning or replacement.

  6. Performance of high area ratio nozzles for a small rocket thruster

    Science.gov (United States)

    Kushida, R. O.; Hermel, J.; Apfel, S.; Zydowicz, M.

    1986-01-01

    Theoretical estimates of supersonic nozzle performance have been compared to experimental test data for nozzles with an area ratio of 100:1 conical and 300:1 optimum contour, and 300:1 nozzles cut off at 200:1 and 100:1. These tests were done on a Hughes Aircraft Company 5 lbf monopropellant hydrazine thruster with chamber pressures ranging from 25 to 135 psia. The analytic method used is the conventional inviscid method of characteristic with correction for laminar boundary layer displacement and drag. Replacing the 100:1 conical nozzle with the 300:1 contoured nozzle resulted in an improvement in thrust performance of 0.74 percent at chamber pressure of 25 psia to 2.14 percent at chamber pressure of 135 psia. The data is significant because it is experimental verification that conventional nozzle design techniques are applicable even where the boundary layer is laminar and displaces as much as 35 percent of the flow at the nozzle exit plane.

  7. The Proton Therapy Nozzles at Samsung Medical Center: A Monte Carlo Simulation Study using TOPAS

    CERN Document Server

    Chung, Kwangzoo; Kim, Dae-Hyun; Ahn, Sunghwan; Han, Youngyih

    2015-01-01

    To expedite the commissioning process of the proton therapy system at Samsung Medical Center (SMC), we have developed a Monte Carlo simulation model of the proton therapy nozzles using TOPAS. At SMC proton therapy center, we have two gantry rooms with different types of nozzles; a multi-purpose nozzle and a dedicated scanning nozzle. Each nozzle has been modeled in detail following the geometry information provided by the manufacturer, Sumitomo Heavy Industries, Ltd. For this purpose, novel features of TOPAS, such as the time feature or the ridge filter class, have been used. And the appropriate physics models for proton nozzle simulation were defined. Dosimetric properties, like percent depth dose curve, spread-out Bragg peak (SOBP), beam spot size, have been simulated and verified against measured beam data. Beyond the Monte Carlo nozzle modeling, we have developed an interface between TOPAS and the treatment planning system (TPS), RayStation. An exported RT plan data from the TPS has been interpreted by th...

  8. Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker

    Science.gov (United States)

    Zhang, Junmin; Lu, Chunrong; Guan, Yonggang; Liu, Weidong

    2016-05-01

    The nozzle ablation process is described as two phases of heat and ablation in the interruption for an SF6 circuit breaker in this paper. Their mathematical models are established with the Fourier heat conduction differential equation respectively. The masses of nozzle ablation with different arc durations and arc currents are calculated through the model of the nozzle ablation combined with an MHD (magneto-hydrodynamic) arc model. The time of the temperature rise on the inner surface of the nozzle under a given energy flux and of reaching the pyrolysis temperature under different energy fluxes is respectively analyzed. The relations between the mass of nozzle ablation and breaking current and arc duration are obtained. The result shows that the absorbing energy process before the nozzle ablation can be neglected under the condition of the energy flux entering into nozzle q > 109 W/m2. The ablation is the severest during the high-current phase and the ablation mass increases rapidly with the breaking current and with arc duration respectively. supported by National Natural Science Foundation of China (Nos. 51177005 and 51477004)

  9. A new design of foam spray nozzle used for precise dust control in underground coal mines

    Institute of Scientific and Technical Information of China (English)

    Han Fangwei; Wang Deming; Jiang Jiaxing; Zhu Xiaolong

    2016-01-01

    In order to improve the utilization rate of foam, an arc jet nozzle was designed for precise dust control. Through theoretical analysis, the different demands of foam were compared amongst arc jets, flat jets and full cone jets when the dust source was covered identically by foam. It is proved that foam consumption was least when an arc jet was used. Foam production capability of an arc jet nozzle under different con-ditions was investigated through experiments. The results show that with the gas liquid ratio (GLR) increasing, the spray state of an arc jet nozzle presents successively water jet, foam jet and mist. Under a reasonable working condition range of foam production and a fixed GLR, foam production quan-tity increases at first, and then decreases with the increase of liquid supply quantity. When the inner diameter of the nozzle is 14 mm, the best GLR is 30 and the optimum liquid supply quantity is 0.375 m3/h. The results of field experiments show that the total dust and respirable dust suppression effi-ciency of arc jet nozzles is 85.8%and 82.6%respectively, which are 1.39 and 1.37 times higher than the full cone nozzles and 1.20 and 1.19 times higher than the flat nozzles.

  10. Calculation of Propulsive Nozzle Flowfields in Multidiffusing Chemically Reacting Environments. Ph.D. Thesis - Purdue Univ.

    Science.gov (United States)

    Kacynski, Kenneth John

    1994-01-01

    An advanced engineering model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multispecies, chemically reacting and multidiffusing Navier-Stokes equations are modelled, including the Soret thermal diffusion and the Dufour energy transfer terms. In addition to the spectrum of multispecies aspects developed, the model developed in this study is also conservative in axisymmetric flow for both inviscid and viscous flow environments and the boundary conditions employ a viscous, chemically reacting, reference plane characteristics method. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and a transpiration cooled plug and spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 and the 25 lbf film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent flow plug and spool nozzle analysis cases performed. Further, the Soret term was shown to represent an important fraction of the diffusion fluxes occurring in a transpiration cooled rocket engine.

  11. Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    ZHANG Junmin; LU Chunrong; GUAN Yonggang; LIU Weidong

    2016-01-01

    The nozzle ablation process is described as two phases of heat and ablation in the interruption for an SF6 circuit breaker in this paper.Their mathematical models are established with the Fourier heat conduction differential equation respectively.The masses of nozzle ablation with different arc durations and arc currents are calculated through the model of the nozzle ablation combined with an MHD (magneto-hydrodynamic) arc model.The time of the temperature rise on the inner surface of the nozzle under a given energy flux and of reaching the pyrolysis temperature under different energy fluxes is respectively analyzed.The relations between the mass of nozzle ablation and breaking current and arc duration are obtained.The result shows that the absorbing energy process before the nozzle ablation can be neglected under the condition of the energy flux entering into nozzle q > 109 W/m2.The ablation is the severest during the high-current phase and the ablation mass increases rapidly with the breaking current and with arc duration respectively.

  12. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    Energy Technology Data Exchange (ETDEWEB)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard [Institute of Fluid Dynamics, ETH Zurich, 8092 Zurich (Switzerland)

    2014-08-15

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  13. Field Test Evaluation of Conservation Retrofits of Low-Income, Single-Family Buildings in Wisconsin: Blower-Door-Directed Infiltration Reduction Procedure, Field Test Implementation and Results

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.B.

    2001-05-21

    A blower-door-directed infiltration retrofit procedure was field tested on 18 homes in south central Wisconsin. The procedure, developed by the Wisconsin Energy Conservation Corporation, includes recommended retrofit techniques as well as criteria for estimating the amount of cost-effective work to be performed on a house. A recommended expenditure level and target air leakage reduction, in air changes per hour at 50 Pascal (ACH50), are determined from the initial leakage rate measured. The procedure produced an average 16% reduction in air leakage rate. For the 7 houses recommended for retrofit, 89% of the targeted reductions were accomplished with 76% of the recommended expenditures. The average cost of retrofits per house was reduced by a factor of four compared with previous programs. The average payback period for recommended retrofits was 4.4 years, based on predicted energy savings computed from achieved air leakage reductions. Although exceptions occurred, the procedure's 8 ACH50 minimum initial leakage rate for advising retrofits to be performed appeared a good choice, based on cost-effective air leakage reduction. Houses with initial rates of 7 ACH50 or below consistently required substantially higher costs to achieve significant air leakage reductions. No statistically significant average annual energy savings was detected as a result of the infiltration retrofits. Average measured savings were -27 therm per year, indicating an increase in energy use, with a 90% confidence interval of 36 therm. Measured savings for individual houses varied widely in both positive and negative directions, indicating that factors not considered affected the results. Large individual confidence intervals indicate a need to increase the accuracy of such measurements as well as understand the factors which may cause such disparity. Recommendations for the procedure include more extensive training of retrofit crews, checks for minimum air exchange rates to insure air

  14. Construção e avaliação do desempenho de três abanadoras de sementes Construction and performance evaluation of three seed blowers

    Directory of Open Access Journals (Sweden)

    José G. da Silva

    2006-03-01

    Full Text Available Os métodos de trilhamento das plantas não proporcionam grãos limpos, em condições de serem comercializados, semeados ou armazenados. É necessário que passem por um processo de limpeza com o fim de eliminar os fragmentos dos próprios grãos, detritos vegetais, folhas e pedaços de hastes. Os processos comuns de limpeza são pouco eficientes e os mais sofisticados podem não estar ao alcance de pequenos produtores. Objetivou-se, com este trabalho, construir três abanadoras e avaliar seu desempenho em sementes de arroz. Uma abanadora é provida de ventilador acionado a pedal; a outra possui ventilador acionado por motor elétrico e a terceira possui ventilador e peneiras movimentados por motor elétrico. Foram abanadas sementes com diferentes teores de impureza e em diferentes taxas de alimentação das máquinas. As abanadoras apresentaram maior eficiência de limpeza nas sementes com menor teor de impureza e na menor taxa de alimentação das máquinas. A eficiência foi considerada adequada para as sementes que possuíam até 4% de impureza antes da abanação. Com 6% de impureza, as sementes devem ser abanadas por três vezes, para ficarem com menos de 1% de impureza. A perda de sementes pelas abanadoras foi desprezível.Usually, the available methods to trash cereal seeds do not provide a clean product, as required for commercialization, seeding and storage. For this purpose it is necessary to submit the seed lot to a cleaning process to eliminate grain fragments and other contaminants such as soil and plant particles. Common processing procedures are not efficient and other methods available, more sophisticated, are not economically suitable for small farmers. The objective of this study was to construct three different blowers and evaluate their performance on rice: one provided with a foot operated fan; a second with an electric fan; and a third with electric fan and screeners. Seed lots with different degrees of impurities and

  15. Experimental stress analysis of the attachment region of hemispherical shells with attached nozzles. Part 5a. Nonradial nozzle at 22-1/2 degrees 2.625 in. O.D.--2.500 in. I.D., zero penetration

    International Nuclear Information System (INIS)

    A continuing series of investigations has been conducted to determine experimentally the stress patterns for the junction region of spherical shells with radially and non-radially attached nozzles when subjected to internal pressure and various types of loadings on the nozzles. Results of the investigations conducted on a nonradially attached nozzle of 2.625 in.-OD, 2.500 in.-ID and finished flush with the inner surface of the hemisphere are reported. The nozzle is inclined at 221/20 from a radial axis. Stress values were determined for the following types of loading: internal pressure applied to the hemisphere and nozzle assembly; an axial load applied collinear with nozzle; and a pure torque applied in the radial plane of the nozzle. (U.S.)

  16. Apparatus and methods for impingement cooling of an undercut region adjacent a side wall of a turbine nozzle segment

    Science.gov (United States)

    Burdgick, Steven Sebastian; Itzel, Gary Michael

    2001-01-01

    A gas turbine nozzle segment has outer and inner bands. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The inturned flange has a plurality of apertures for directing cooling steam to cool the side wall between adjacent nozzle segments.

  17. As Relações entre Área e Perímetro na Geometria Plana: o papel dos observáveis e das regulações na construção da explicação Relations between Area and Perimeter in Plane Geometry: the role of observables and regulations in the construction of explanation

    Directory of Open Access Journals (Sweden)

    João Alberto da Silva

    2009-12-01

    Full Text Available O ensino da geometria plana nas séries finais do Ensino Fundamental é, muitas vezes, desprovido de sentido. Os professores optam por práticas pedagógicas que se fundamentam em algoritmos, sem preocuparem-se com os processos de pensamento que estão envolvidos na construção do pensamento geométrico. Essa pesquisa vale-se da Epistemologia Genética para investigar como adolescentes e adultos, que freqüentaram a escola e obtiveram êxito na aprendizagem de geometria, elaboram explicações a propósito de problemas que envolvem o cálculo da área e do perímetro de figuras planas. Os dados indicam que a totalidade dos entrevistados é capaz de realizar o cálculo através do algoritmo, mas muito poucos apresentam explicações elaboradas. Os modelos explicativos são os mais variados e dirigem-se de um pensamento baseado exclusivamente na percepção até a explicação lógico-matemática dos conceitos envolvidos. Palavras-chave: Ensino de Geometria. Modelos Explicativos. Jean Piaget. Epistemologia Genética.The teaching of plane geometry in elementary school is often lacking in meaning. Teachers choose teaching practices based on algorithms, without concern for the thinking processes involved in the construction of geometric thinking. This study is based on Genetic Epistemology to investigate how adolescents and adults who attended school, and were successful in learning geometry, construct explanations about problems involving the calculation of the area and the perimeter of plane figures. The data show that the interviewees are capable of doing the calculation with the algorithm, but very few show elaborated explanations. The explanatory models are the most varied, ranging from thinking based solely on perception to logical-mathematical explanations of the concepts involved. Keywords: Teaching of Geometry. Explanatory Models. Jean Piaget. Genetic Epistemology.

  18. Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    Science.gov (United States)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2006-01-01

    A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.

  19. Slot Nozzle Effects for Reduced Sonic Boom on a Generic Supersonic Wing Section

    Science.gov (United States)

    Caster, Raymond S.

    2010-01-01

    NASA has conducted research programs to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas. Restrictions are due to the disturbance from the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Results from two-dimensional computational fluid dynamic (CFD) analyses (performed on a baseline Mach 2.0 nozzle in a simulated Mach 2.2 flow) indicate that over-expanded and under-expanded operation of the nozzle has an effect on the N-wave boom signature. Analyses demonstrate the feasibility of reducing the magnitude of the sonic boom N-wave by controlling the nozzle plume interaction with the nozzle boat tail shock structure. This work was extended to study the impact of integrating a high aspect ratio exhaust nozzle or long slot nozzle on the trailing edge of a supersonic wing. The nozzle is operated in a highly under-expanded condition, creating a large exhaust plume and a shock at the trailing edge of the wing. This shock interacts with and suppresses the expansion wave caused by the wing, a major contributor to the sonic boom signature. The goal was to reduce the near field pressures caused by the expansion using a slot nozzle located at the wing trailing edge. Results from CFD analysis on a simulated wing cross-section and a slot nozzle indicate potential reductions in sonic boom signature compared to a baseline wing with no propulsion or trailing edge exhaust. Future studies could investigate if this effect could be useful on a supersonic aircraft for main propulsion, auxiliary propulsion, or flow control.

  20. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    Science.gov (United States)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.