WorldWideScience

Sample records for bloom detection monitoring

  1. Satellite-based detection and monitoring of phytoplankton blooms along the Oregon coast

    Science.gov (United States)

    McKibben, S. M.; Strutton, P. G.; Foley, D. G.; Peterson, T. D.; White, A. E.

    2012-12-01

    We have applied a normalized difference algorithm to 8 day composite chlorophyll-a (CHL) and fluorescence line height (FLH) imagery obtained from the Moderate Resolution Imaging Spectroradiometer aboard the Aqua spacecraft in order to detect and monitor phytoplankton blooms in the Oregon coastal region. The resulting bloom products, termed CHLrel and FLHrel, respectively, describe the onset and advection of algal blooms as a function of the percent relative change observed in standard 8 day CHL or FLH imagery over time. Bloom product performance was optimized to consider local time scales of biological variability (days) and cloud cover. Comparison of CHLrel and FLHrelretrievals to in situ mooring data collected off the central Oregon coast from summer 2009 through winter 2010 shows that the products are a robust means to detect bloom events during the summer upwelling season. Evaluation of winter performance was inconclusive due to persistent cloud cover and limited in situ chl-a records. Pairing the products with coincident in situ physical proxies provides a tool to elucidate the conditions that induce bloom onset and identify the physical mechanisms that affect bloom advection, persistence, and decay. These products offer an excellent foundation for remote bloom detection and monitoring in this region, and the methods developed herein are applicable to any region with sufficient CHL and FLH coverage.

  2. Applications of Satellite Ocean Color Imagery for Detecting and Monitoring Harmful Algal Blooms in the Olympic Peninsula Region

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Ashley C.; Stumpf, Richard P.; Tomlinson, Michelle C.; Ransibrahmanakul, Varis; Trainer, Vera L.; Woodruff, Dana L.

    2003-08-01

    Harmful algal blooms (HABs) attributed to Pseudo-nitzschia species, a diatom that produces Domoic acid, are a common occurrence and serious threat along the coast of the US Northwest. Monitoring these events or providing advanced warning of their occurrence at the coast would provide an important aid to fisheries managers. Remote sensing, which is being used in the Gulf of Mexico for HAB detection and forecasting (of a different algae), could provide a tool for monitoring and warnings. Chlorophyll and SST imagery are being used to support a research and monitoring program for the region, and HAB monitoring techniques used in the Gulf of Mexico are being examined for their potential utility along the Washington coast. The focus of this study is to determine the efficacy of using satellite ocean color imagery for HAB monitoring off of Washingtons Olympic Peninsula region, and to provide support in the form of ocean color imagery products for management and mitigation efforts.

  3. Development of Hyperspectral Remote Sensing Capability For the Early Detection and Monitoring of Harmful Algal Blooms (HABs) in the Great Lakes

    Science.gov (United States)

    Lekki, John; Anderson, Robert; Nguyen, Quang-Viet; Demers, James; Leshkevich, George; Flatico, Joseph; Kojima, Jun

    2013-01-01

    Hyperspectral imagers have significant capability for detecting and classifying waterborne constituents. One particularly appropriate application of such instruments in the Great Lakes is to detect and monitor the development of potentially Harmful Algal Blooms (HABs). Two generations of small hyperspectral imagers have been built and tested for aircraft based monitoring of harmful algal blooms. In this paper a discussion of the two instruments as well as field studies conducted using these instruments will be presented. During the second field study, in situ reflectance data was obtained from the Research Vessel Lake Guardian in conjunction with reflectance data obtained with the hyperspectral imager from overflights of the same locations. A comparison of these two data sets shows that the airborne hyperspectral imager closely matches measurements obtained from instruments on the lake surface and thus positively supports its utilization for detecting and monitoring HABs.

  4. Optical researches for cyanobacteria bloom monitoring in Curonian Lagoon

    Science.gov (United States)

    Shirshin, Evgeny A.; Budylin, Gleb B.; Yakimov, Boris P.; Voloshina, Olga V.; Karabashev, Genrik S.; Evdoshenko, Marina A.; Fadeev, Victor V.

    2016-04-01

    Cyanobacteria bloom is a great ecological problem of Curonian Lagoon and Baltic Sea. The development of novel methods for the on-line control of cyanobacteria concentration and, moreover, for prediction of bloom spreading is of interest for monitoring the state of ecosystem. Here, we report the results of the joint application of hyperspectral measurements and remote sensing of Curonian Lagoon in July 2015 aimed at the assessment of cyanobacteria communities. We show that hyperspectral data allow on-line detection and qualitative estimation of cyanobacteria concentration, while the remote sensing data indicate the possibility of cyanobacteria bloom detection using the spectral features of upwelling irradiation.

  5. Algal bloom detection, monitoring and prediction. 3. Workshop on public health

    Energy Technology Data Exchange (ETDEWEB)

    Catena, G.; Funari, E. [eds.] [Istituto Superiore di Sanita' , Rome (Italy). Lab. di Igiene Ambientale

    1999-07-01

    The report presents articles discussed in the 3. Workshop on Public Health (Rome, Italy) focused on the problem of the harmful algae in the Mediterranean basin with the aim of verifying the possibilities of using remote sensing techniques together with conventional ones. These proceedings report the aim aspects of the problem, as the ecological one, the conventional monitoring techniques, the activities of international organizations and finally some of the current research activities in Italy aimed at using remote sensing techniques. [Italian] Il workshop sulla salute pubblica e' incentrato sul problema delle alghe tossiche marine all'interno del bacino del Mediterraneo con lo scopo di verificare le possibilita' di utilizzare delle tecniche di telerilevamento in modo complementare rispetto a quelle convenzionali. Si affrontano alcuni degli aspetti principali di questa problematica quali l'ecologia, le tecniche convenzionali di monitoraggio, le attivita' di organismi internazionali e infine le attivita' in corso in Italia finalizzate all'utilizzazione delle tecniche di telerilevamento.

  6. Use of remote sensing in monitoring and forecasting of harmful algal blooms

    Science.gov (United States)

    Stumpf, Richard P.; Tomlinson, Michelle C.

    2005-08-01

    Harmful algal blooms (HABs) have impacts on coastal economies, public health, and various endangered species. HABs are caused by a variety of organisms, most commonly dinoflagellates, diatoms, and cyanobacteria. In the late 1970's, optical remote sensing was found to have a potential for detecting the presence of blooms of Karenia brevis on the US Florida coast. Due to the nearly annual frequency of these blooms and the ability to note them with ocean color imagery, K. brevis blooms have strongly influenced the field of HAB remote sensing. However, with the variability between phytoplankton blooms, heir environment and their relatively narrow range of pigment types, particularly between toxic and non-toxic dinoflagellates and diatoms, techniques beyond optical detection are required for detecting and monitoring HABs. While satellite chlorophyll has some value, ecological or environmental characteristics are required to use chlorophyll. For example, identification of new blooms can be an effective means of identifying HABs that are quie intense, also blooms occurring after specific rainfall or wind events can be indicated as HABs. Several HAB species do not bloom in the traditional sense, in that they do not dominate the biomass. In these cases, remote sensing of SST or chlorophyll can be coupled with linkages to seasonal succession, changes in circulation or currents, and wind-induced transport--including upwelling and downwelling, to indicate the potential for a HAB to occur. An effective monitoring and forecasting system for HABs will require the coupling of remote sensing with an environmental and ecological understanding of the organism.

  7. Application of Multispectral and Hyperspectral Remote Sensing For Detection of Freshwater Harmful Algal Blooms

    Science.gov (United States)

    Kudela, R. M.; Accorsi, E.; Austerberry, D.; Palacios, S. L.

    2013-12-01

    Freshwater Cyanobacterial Harmful algal blooms (CHABs) represent a pressing and apparently increasing threat to both human and environmental health. In California, toxin producing blooms of several species, including Aphanizomenon, Microcystis, Lyngbya, and Anabaena are common; toxins from these blooms have been linked to impaired drinking water, domestic and wild animal deaths, and increasing evidence for toxin transfer to coastal marine environments, including the death of several California sea otters, a threatened marine species. California scientists and managers are under increasing pressure to identify and mitigate these potentially toxic blooms, but point-source measurements and grab samples have been less than effective. There is increasing awareness that these toxic events are both spatially widespread and ephememeral, leading to the need for better monitoring methods applicable to large spatial and temporal scales. Based on monitoring in several California water bodies, it appears that Aphanizomenon blooms frequently precede dangerous levels of toxins from Microcystis. We are exploring new detection methods for identifying CHABs and potentially distinguishing between blooms of the harmful cyanobacteria Aphanizomenon and Microcystis using remote sensing reflectance from a variety of airborne and satellite sensors. We suggest that Aphanizomenon blooms could potentially be used as an early warning of more highly toxic subsequent blooms, and that these methods, combined with better toxin monitoring, can lead to improved understanding and prediction of CHABs by pinpointing problematic watersheds.

  8. Monitoring cyanobacteria-dominant algal blooms in eutrophicated Taihu Lake in China with synthetic aperture radar images

    Science.gov (United States)

    Wang, Ganlin; Li, Junsheng; Zhang, Bing; Shen, Qian; Zhang, Fangfang

    2015-01-01

    Monitoring algal blooms by optical remote sensing is limited by cloud cover. In this study, synthetic aperture radar (SAR) was deployed with the aim of monitoring cyanobacteria-dominant algal blooms in Taihu Lake in cloudy weather. The study shows that dark regions in the SAR images caused by cyanobacterial blooms damped the microwave backscatter of the lake surface and were consistent with the regions of algal blooms in quasi-synchronous optical images, confirming the applicability of SAR for detection of surface blooms. Low backscatter may also be associated with other factors such as low wind speeds, resulting in interference when monitoring algal blooms using SAR data alone. After feature extraction and selection, the dark regions were classified by the support vector machine method with an overall accuracy of 67.74%. SAR can provide a reference point for monitoring cyanobacterial blooms in the lake, particularly when weather is not suitable for optical remote sensing. Multi-polarization and multi-band SAR can be considered for use in the future to obtain more accurate information regarding algal blooms from SAR data.

  9. Monitoring Algal Blooms in a Southwestern U.S. Reservoir System

    Science.gov (United States)

    Tarrant, Philip; Neuer, Susanne

    2009-02-01

    In recent years, several studies have explored the potential of higher-resolution sensor data for monitoring phytoplankton primary production in coastal areas and lakes. Landsat data have been used to monitor algal blooms [Chang et al., 2004; Vincent et al., 2004], and Moderate Resolution Imaging Spectroradiometer (MODIS) 250-meter and Medium Resolution Imaging Spectrometer (MERIS) full-resolution (300-meter) bands have been utilized to detect cyanobacterial blooms [Reinart and Kutser, 2006] as well as to monitor water quality [Koponen et al., 2004]. Field sampling efforts and MODIS 250-meter data are now being combined to develop a cost-effective method for monitoring water quality in a southwestern U.S. reservoir system. In the Phoenix, Ariz., metropolitan area, the Salt River reservoirs supply more than 3.5 million people, a population expected to rise to more than 6 million by 2030. Given that reservoir capacities have physical limitations, maintaining water quality will become critical as the population expands. Potentially noxious algal blooms that can release toxins and may affect water quality by modifying taste and odor have become a major concern in recent years. While frequent field sampling regimes are expensive, satellite imagery can be applied cost-effectively to monitor algal biomass trends remotely, and this information could provide early warning of blooms in these reservoirs.

  10. Satellite Detection of Phaeocystis Globosa Blooms in the Eastern English Channel

    Science.gov (United States)

    Lubac, B.; Loisel, H.; Poteau, A.; Guiselin, N.

    2006-12-01

    Detecting phytoplankton species from remote sensing is essential to map and monitor algal blooms in coastal waters, but stays a challenge because of the interference of suspended sediments and dissolved organic matter with the phytoplankton signal. In the eastern English Channel and the south North Sea, a more or less intensive bloom of prymnesiophyceae Phaeocystis globosa occurs almost every spring and follows generally a first bloom of diatoms. From hyperspectral radiometric measurements (TRIOS; 350-950 nm, with a 3 nm resolution) concurrently performed with absorption, and backscattering measurements, as well as with phytoplankton species diversity determination, a spectral signature based on a derivative analysis was observed to discriminate the P. globosa blooms. In this study, we develop a multispectral approach to detect P. globosa blooms and investigate the possibility to apply this method to "ocean color" sensors (SeaWIFS). Then, we examine the impact of the bloom of P. globosa on the restitution of ocean color standard products, in particularly the chlorophyll a concentration (Chl), and examine new approaches to improve the restitution of Chl in this complex coastal environment.

  11. Monitoring for Harmful Algal Blooms in Influent Waters and Through Treatment on Lake Erie in the 2013 and 2014 Bloom Seasons 

    Science.gov (United States)

    Monitoring of Harmful Algal Blooms in Influent and Through Drinking Water Treatment Facilities Located on Lake Erie in the 2013 and 2014 Bloom SeasonsToby Sanan, Nicholas Dugan, Darren Lytle, Heath MashHarmful algal blooms (HABs) and their associated toxins are emerging as signif...

  12. Approaches to monitoring, control and management of harmful algal blooms (HABs).

    Science.gov (United States)

    Anderson, Donald M

    2009-07-01

    require multidisciplinary study ranging from molecular and cell biology to large-scale field surveys, numerical modelling, and remote sensing from space. Our understanding of these phenomena is increasing dramatically, and with this understanding come technologies and management tools that can reduce HAB incidence and impact. Here I summarize the global HAB problem, its trends and causes, and new technologies and approaches to monitoring, control and management, highlighting molecular probes for cell detection, rapid and sensitive toxin assays, remote sensing detection and tracking of blooms, bloom control and mitigation strategies, and the use of large-scale physical/biological models to analyze past blooms and forecast future ones.

  13. Using Ocean Color Satellite Data to Estimate Economics Benefits Associated with Monitoring and Preventing Harmful Algal Blooms

    Science.gov (United States)

    This presentation describes preliminary work that is underway that will illustrate the use of ocean land colour instrument data (Sentinel-3 & Landsat) to detect and monitor harmful algal blooms (HABS) in freshwater lakes for two types of economic analyses. This project is a j...

  14. Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters

    Science.gov (United States)

    Lubac, Bertrand; Loisel, Hubert; Guiselin, Natacha; Astoreca, Rosa; Felipe Artigas, L.; MéRiaux, Xavier

    2008-06-01

    Identification of phytoplankton groups from space is essential to map and monitor algal blooms in coastal waters, but remains a challenge due to the presence of suspended sediments and dissolved organic matter which interfere with phytoplankton signal. On the basis of field measurements of remote sensing reflectance (Rrs(λ)), bio-optical parameters, and phytoplankton cells enumerations, we assess the feasibility of using multispectral and hyperspectral approaches for detecting spring blooms of Phaeocystis globosa (P. globosa). The two reflectance ratios (Rrs(490)/Rrs(510) and Rrs(442.5)/Rrs(490)), used in the multispectral inversion, suggest that detection of P. globosa blooms are possible from current ocean color sensors. The effects of chlorophyll concentration, colored dissolved organic matter (CDOM), and particulate matter composition on the performance of this multispectral approach are investigated via sensitivity analysis. This analysis indicates that the development of a remote sensing algorithm, based on the values of these two ratios, should include information about CDOM concentration. The hyperspectral inversion is based on the analysis of the second derivative of Rrs(λ) (dλ2Rrs). Two criteria, based on the position of the maxima and minima of dλ2Rrs, are established to discriminate the P. globosa blooms from diatoms blooms. We show that the position of these extremes is related to the specific absorption spectrum of P. globosa and is significantly correlated with the relative biomass of P. globosa. This result confirms the advantage of a hyperspectral over multispectral inversion for species identification and enumeration from satellite observations of ocean color.

  15. Detecting harmful algal blooms using Geostationary Ocean Color Imager (GOCI) data in Bohai Sea, China

    Science.gov (United States)

    Xu, Mingzhu; Gao, Zhiqiang; Liu, Chaoshun

    2015-09-01

    Bohai Sea is a semi-enclosed inland sea with serious environmental problems. Harmful algal blooms (HABs) in Bohai Sea happen almost every year covering a large area for a long duration. Real time detection of the HABs can significantly reduce economic loss and assure human safety. Remote sensing technology can monitor the sea surface over a large area and detect HABs. Geo-stationary Ocean Color Imager (GOCI) is the world's first geostationary ocean color imager with high spatial and temporal resolution for monitoring the Bohai Sea. Rapid scanning of the GOCI allows enough cloud-free observations to accumulate for detection of HABs. Many approaches exist for detecting the HABs with GOCI data, but the approaches are rarely validated.. In this paper, an Aureococcus anophagefferens bloom that happened in Qinhuangdao is used to evaluate several HAB detecting approaches: abnormal chlorophyll concentration, red tide index (RI) and MODIS red tide index (MRI). Validations with field observations showed that the HAB was best detected with MRI, second with chlorophyll concentration abnormity and worst with RI. These results show that the MRI best detects the Aureococcus anophagefferens algae.

  16. Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods

    Science.gov (United States)

    Xu, Qing; Zhang, Hongyuan; Cheng, Yongcun

    2016-06-01

    The massive Ulva (U.) prolifera bloom in the Yellow Sea was first observed and reported in summer of 2008. After that, the green tide event occurred every year and influenced coastal areas of Jiangsu and Shandong provinces of China. Satellite remote sensing plays an important role in monitoring the floating macroalgae. In this paper, U. prolifera patches are detected from quasisynchronous satellite images with different spatial resolution, i.e., Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), HJ-1A/B (China Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting), CCD (Charge-Coupled Device), Landsat 8 OLI (Operational Land Imager), and ENVISAT (Environmental Satellite) ASAR (Advanced Synthetic Aperture Radar) images. Two comparative experiments are performed to explore the U. prolifera monitoring abilities by different data using detection methods such as NDVI (Normalized Difference Vegetation Index) with different thresholds. Results demonstrate that spatial resolution is an important factor affecting the extracted area of the floating macroalgae. Due to the complexity of Case II sea water characteristics in the Yellow Sea, a fixed threshold NDVI method is not suitable for U. prolifera monitoring. A method with adaptive ability in time and space, e.g., the threshold selection method proposed by Otsu (1979), is needed here to obtain accurate information on the floating macroalgae.

  17. Monitoring the algal bloom event in Lake Okeechobee, Florida under Tropical Cyclone Fay impacts using MODIS/Terra images

    Science.gov (United States)

    Daranpob, Ammarin; Chang, Ni-Bin; Jin, Kang-Ren; Yang, Y. Jeffrey

    2009-08-01

    Lake Okeechobee, Florida is the largest freshwater lake in the southeastern U.S. It is a key component in the hydrologic system of South Florida providing water supply for agriculture, the environment, and urban areas. Excessive phosphorus loads, from the Okeechobee watershed over the last few decades have led to increased eutrophication of this lake. Much of the excess phosphorus has been sequestered into the sediments. Sediment water interactions, including diffusive fluxes and sediment resuspension are a source of available phosphorus for phytoplankton. As a consequence, nutrient-enriched lake water has led to phytoplankton blooms from time to time. These blooms are often quantified by measurement of chlorophyll-a concentrations. While the in-situ water quality monitoring is time-consuming, sporadic, and costly, multispectral remote sensing sensors onboard satellites can detect chlorophyll-a contained in most phytoplankton efficiently. The objective of this study is to demonstrate the use of MODIS/Terra Surface Reflectance 1- Day images to capture the unique algal bloom event one week after the landfall of the hurricane Fay in mid-Sept. 2008. Use of the genetic programming model permits sound information retrieval for spatial mapping of chlorophyll-a concentrations, which help explain the mechanism as to why the algal bloom event occurred.

  18. An optical system for detecting and describing major algal blooms in coastal and oceanic waters around India

    Science.gov (United States)

    Gokul, Elamurugu Alias; Shanmugam, Palanisamy

    2016-06-01

    An optical system is developed with the aim to detect and monitor three major algal blooms (including harmful algal blooms "HABs") over ecologically relevant scales around India and to strengthen algal forecasting system. This system is designed to be capable of utilizing remote sensing, in situ, and radiative transfer techniques to provide species-specific data necessary for increasing capabilities of an algal forecasting system. With the ability to measure in-water optical properties by means of remote sensing and in situ observations, the optical system developed infers the desired phytoplankton signal from spectral distributions and utilize these data in a numerical classification technique to generate species-specific maps at given spatial and temporal scales. A simple radiative transfer model is adopted for this system to provide a means to optimally interpolate to regions with sparse in situ observation data and to provide a central component to generate in-water optical properties from remotely sensed data. For a given set of inherent optical properties along with surface and bottom boundary conditions, the optical system potentially provides researchers and managers coverage at different locations and depths for tracking algal blooms in the water column. Three major algal blooms focused here include Noctiluca scintillans/miliaris, Trichodesmium erythraeum, and Cochlodinium polykrikoides, which are recurring events in coastal and oceanic waters around India. Because satellite sensors provide a synoptic view of the ocean, both spatially and temporally, our initial efforts tested this optical system using several MODIS-Aqua images and ancillary data. Validation of the results with coincident in situ data obtained from either surface samples or depth samples demonstrated the robustness and potential utility of this approach, with an accuracy of 80-90% for delineating the presence of all three blooms in a heterogeneous phytoplankton community. Despite its

  19. Optical detection of Prorocentrum donghaiense blooms based on multispectral reflectance

    Institute of Scientific and Technical Information of China (English)

    TAO Bangyi; PAN Delu; MAO Zhihua; SHEN Yuzhang; ZHU Qiankun; CHEN Jianyu

    2013-01-01

    Prorocentrum donghaiense is one of the most common red tide causative dinoflagellates in the Changjiang (Yangtze) River Estuary and the adjacent area of the East China Sea. It causes large-scale blooms in late spring and early summer that lead to widespread ecologic and economic damage. A means for distinguish-ing dinoflagellate blooms from diatom (Skeletonema costatum) blooms is desired. On the basis of measure-ments of remote sensing reflectance [Rrs(λ)] and inherent optical parameters, the potential of using a mul-tispectral approach is assessed for discriminating the algal blooms due to P. donghaiense from those due to S. costatum. The behavior of two reflectance ratios [R1 =Rrs(560)/Rrs(532) and R2 =Rrs(708)/Rrs(665)], suggests that differentiation of P. donghaiense blooms from diatom bloom types is possible from the current band setup of ocean color sensors. It is found that there are two reflectance ratio regimes that indicate a bloom is dominated by P. donghaiense: (1) R1 >1.55 and R2 1.75 and R2 ?1.0. Various sensitivity analyses are conducted to investigate the effects of the variation in varying levels of chlorophyll concentration and colored dissolved organic matter (CDOM) as well as changes in the backscattering ratio (bbp/bp) on the efficacy of this multispectral approach. Results indicate that the intensity and inherent op-tical properties of the algal species explain much of the behavior of the two ratios. Although backscattering influences the amplitude of Rrs(λ), especially in the 530 and 560 nm bands, the discrimination between P. donghaiense and diatoms is not significantly affected by the variation of bbp/bp. Since a CDOM(440) in coastal areas of the ECS is typically lower than 1.0 m−1 in most situations, the presence of CDOM does not interfere with this discrimination, even as SCDOM varies from 0.01 to 0.026 nm−1. Despite all of these effects, the dis-crimination of P. donghaiense blooms from diatom blooms based on multispectral

  20. UV-Visible Spectroscopic Method and Models for Assessment and Monitoring of Harmful Algal Blooms

    Science.gov (United States)

    Mitchell, B. Greg

    2000-01-01

    The development of an enhanced predictive and early warning capability for the occurrence and impact of harmful algal blooms (HABs) would be of great benefit to coastal communities. A critical issue for early detection and monitoring of HABs is the need to detect harmful algal species within a mixed-species phytoplankton assemblage. Possession of UV-absorbing compounds called mycosporine-like amino acids (MAAs) may be one factor that allows HAB species to out-compete their phytoplankton neighbors. Possession of MAAs, which we believe can be inferred from strong UV-absorption signals in phytoplankton absorption coefficients, can be used as a flag for potential HAB outbreak. The goal of this project was to develop a solar simulating UV-visible incubator to grow HAB dinoflagellates, to begin MAA analysis of samples collected on global cruises, and to carry out initial experiments on HAB dinoflagellate species in pure culture. Our scientific objectives are to quantify MAA production and spectral induction mechanisms in HAB species, to characterize spectral absorption of MAAs, and to define the ecological benefit of MAAs (i.e. photoprotection). Data collected on cruises to the global oceans will be used to parameterize phytoplankton absorption in the UV region, and this parameterization could be incorporated into existing models of seawater optical properties in the UV spectral region. Data collected in this project were used for graduate fellowship applications by Elizabeth Frame. She has been awarded an EPA STAR fellowship to continue the work initiated by this project.

  1. Airborne Hyperspectral Sensing of Monitoring Harmful Algal Blooms in the Great Lakes Region: System Calibration and Validation

    Science.gov (United States)

    Lekki, John; Anderson, Robert; Avouris, Dulcinea; Becker, RIchard; Churnside, James; Cline, Michael; Demers, James; Leshkevich, George; Liou, Larry; Luvall, Jeffrey; Ortiz, Joseph; Royce, Anthony; Ruberg, Steve; Sawtell, Reid; Sayers, Michael; Schiller, Stephen; Shuchman, Robert; Simic, Anita; Stuart, Dack; Sullivan, Glenn; Tavernelli, Paul; Tokars, Roger; Vander Woude, Andrea

    2017-01-01

    Harmful algal blooms (HABs) in Lake Erie have been prominent in recent years. The bloom in 2014 reached a severe level causing the State of Ohio to declare a state of emergency. At that time NASA Glenn Research Center was requested by stakeholders to help monitor the blooms in Lake Erie. Glenn conducted flights twice a week in August and September and assembled and distributed the HAB information to the shoreline water resource managers using its hyperspectral imaging sensor (in development since 2006), the S??3 Viking aircraft, and funding resources from the NASA Headquarters Earth Science Division. Since then, the State of Ohio, National Oceanic and Atmospheric Administration (NOAA), and U.S. Environmental Protection Agency (EPA) have elevated their funding and activities for observing, monitoring, and addressing the root cause of HABs. Also, the communities and stakeholders have persistently requested NASA Glenn??s participation in HAB observation. Abundant field campaigns and sample analyses have been funded by Ohio and NOAA, which provided a great opportunity for NASA to advance science and airborne hyperspectral remote sensing economically. Capitalizing on this opportunity to advance the science of algal blooms and remote sensing, NASA Glenn conducted the Airborne Hyperspectral Observation of harmful algal blooms campaign in 2015 that was, in many respects, twice as large as the 2014 campaign. Focusing mostly on Lake Erie, but also including other small inland lakes and the Ohio River, the campaign was conducted in partnership with a large number of partners specializing in marine science and remote sensing. Airborne hyperspectral observation of HABs holds promise to distinguish potential HABs from nuisance blooms, determine their concentrations, and delineate their movement in an augmented spatial and temporal resolution and under clouds??all of which are excellent complements to satellite observations. Working with collaborators at several Ohio and Michigan

  2. Norwegian remote sensing spectrometry for mapping and monitoring of algal blooms and pollution - NORSMAP-89

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, L.H.; Johannessen, O.M.; Frette, O. (Nansen Remote Sensing Center, Bergen (Norway))

    1990-01-09

    During the late spring of 1988 an extensive bloom of the toxic algae Chrysocromulina polylepis occurred in the Skagerrak region influencing most life in the upper 30 meter of the ocean. The algal front was advected northward with the Norwegian Coastal Current along the coast of southern Norway, where it became a severe threat to the Norwegian seafarming industry. An ad-hoc expert team was established to monitor and forecast the movement of the algae front. Remote sensing of sea surface temperature from the operational US NOAA satellites monitored the movement of the algal front, consistent with a warm ocean front. The lack of any optical remote sensing instrumentation was recognized as a major de-efficiency during this algal bloom. To prepare for similar events in the future Nansen Remote Sensing Center initiated a three week pilot study in the Oslofjord and Skagerrak region, during May 1989. The Canadian Compact Airborne Spectrographic Imager (CASI) was installed in the surveillance aircraft. Extensive in situ campaigns was also carried out by the Norwegian Institute for Water Research and Institute of Marine Research. A ship-borne non-imaging spectrometer was operated from the vessels participating in the field campaign. As a contribution from a joint campaign (EISAC '89) between the Joint Research Centre (JRC) of the European Community and the European Space Agency (ESA) both the Canadian Fluorescence Line Imager (FLI) and the US 64-channel GER scanner was operated simultaneously at the NORSMAP 89 test site. Regions of different biological and physical conditions were covered during the pilot study and preliminary analysis are obtained from oil slicks, suspended matter from river, as well as minor algal bloom. The joint analysis of the data collected during the NORSMAP 89 campaign and conclussions will be presented, as well as suggestions for future utilization of airborne spectroscopy systems for operational monitoring of algal bloom and water pollution.

  3. A Recent Survey on Bloom Filters in Network Intrusion Detection Systems

    Directory of Open Access Journals (Sweden)

    K.Saravanan,

    2011-03-01

    Full Text Available Computer networks are prone to hacking, viruses and other malware; a Network Intrusion Detection System (NIDS is needed to protect the end-user machines from threats. An effective NIDS is therefore anetwork security system capable of protecting the end user machines well before a threat or intruder affects. NIDS requires a space efficient data base for detection of threats in high speed conditions. A bloom filter is a space efficient randomized data structure for representing a set in order to support membership queries. These Bloom filters allow false positive results (FPR but the space saving capability often outweigh this drawback provided the probability of FPR is controlled. Research is being done to reduce FPR by modifying the structure of bloom filters and enabling it to operate in the increasing network speeds, thus variant bloom filters are being introduced. The aim of this paper is to survey the ways in which Bloom filters have been used and modified to be used in high speed Network Intrusion Detection Systems with their merits and demerits.

  4. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans

    Science.gov (United States)

    Blondeau-Patissier, David; Gower, James F. R.; Dekker, Arnold G.; Phinn, Stuart R.; Brando, Vittorio E.

    2014-04-01

    The need for more effective environmental monitoring of the open and coastal ocean has recently led to notable advances in satellite ocean color technology and algorithm research. Satellite ocean color sensors' data are widely used for the detection, mapping and monitoring of phytoplankton blooms because earth observation provides a synoptic view of the ocean, both spatially and temporally. Algal blooms are indicators of marine ecosystem health; thus, their monitoring is a key component of effective management of coastal and oceanic resources. Since the late 1970s, a wide variety of operational ocean color satellite sensors and algorithms have been developed. The comprehensive review presented in this article captures the details of the progress and discusses the advantages and limitations of the algorithms used with the multi-spectral ocean color sensors CZCS, SeaWiFS, MODIS and MERIS. Present challenges include overcoming the severe limitation of these algorithms in coastal waters and refining detection limits in various oceanic and coastal environments. To understand the spatio-temporal patterns of algal blooms and their triggering factors, it is essential to consider the possible effects of environmental parameters, such as water temperature, turbidity, solar radiation and bathymetry. Hence, this review will also discuss the use of statistical techniques and additional datasets derived from ecosystem models or other satellite sensors to characterize further the factors triggering or limiting the development of algal blooms in coastal and open ocean waters.

  5. Towards spatial localisation of harmful algal blooms; statistics-based spatial anomaly detection

    Science.gov (United States)

    Shutler, J. D.; Grant, M. G.; Miller, P. I.

    2005-10-01

    Harmful algal blooms are believed to be increasing in occurrence and their toxins can be concentrated by filter-feeding shellfish and cause amnesia or paralysis when ingested. As a result fisheries and beaches in the vicinity of blooms may need to be closed and the local population informed. For this avoidance planning timely information on the existence of a bloom, its species and an accurate map of its extent would be prudent. Current research to detect these blooms from space has mainly concentrated on spectral approaches towards determining species. We present a novel statistics-based background-subtraction technique that produces improved descriptions of an anomaly's extent from remotely-sensed ocean colour data. This is achieved by extracting bulk information from a background model; this is complemented by a computer vision ramp filtering technique to specifically detect the perimeter of the anomaly. The complete extraction technique uses temporal-variance estimates which control the subtraction of the scene of interest from the time-weighted background estimate, producing confidence maps of anomaly extent. Through the variance estimates the method learns the associated noise present in the data sequence, providing robustness, and allowing generic application. Further, the use of the median for the background model reduces the effects of anomalies that appear within the time sequence used to generate it, allowing seasonal variations in the background levels to be closely followed. To illustrate the detection algorithm's application, it has been applied to two spectrally different oceanic regions.

  6. Remote sensing models using Landsat satellite data to monitor algal blooms in Lake Champlain.

    Science.gov (United States)

    Trescott, A; Park, M-H

    2013-01-01

    Lake Champlain is significantly impaired by excess phosphorus loading, requiring frequent lake-wide monitoring for eutrophic conditions and algal blooms. Satellite remote sensing provides regular, synoptic coverage of algal production over large areas with better spatial and temporal resolution compared with in situ monitoring. This study developed two algal production models using Landsat Enhanced Thematic Mapper Plus (ETM(+)) satellite imagery: a single band model and a band ratio model. The models predicted chlorophyll a concentrations to estimate algal cell densities throughout Lake Champlain. Each model was calibrated with in situ data compiled from summer 2006 (July 24 to September 10), and then validated with data for individual days in August 2007 and 2008. Validation results for the final single band and band ratio models produced Nash-Sutcliffe efficiency (NSE) coefficients of 0.65 and 0.66, respectively, confirming satisfactory model performance for both models. Because these models have been validated over multiple days and years, they can be applied for continuous monitoring of the lake.

  7. Improved monitoring of phytoplankton bloom dynamics in a Norwegian fjord by integrating satellite data, pigment analysis, and Ferrybox data with a coastal observation network

    Science.gov (United States)

    Volent, Zsolt; Johnsen, Geir; Hovland, Erlend K.; Folkestad, Are; Olsen, Lasse M.; Tangen, Karl; Sørensen, Kai

    2011-01-01

    Monitoring of the coastal environment is vitally important as these areas are of economic value and at the same time highly exposed to anthropogenic influence, in addition to variation of environmental variables. In this paper we show how the combination of bio-optical data from satellites, analysis of water samples, and a ship-mounted automatic flow-through sensor system (Ferrybox) can be used to detect and monitor phytoplankton blooms both spatially and temporally. Chlorophyll a (Chl a) data and turbidity from Ferrybox are combined with remotely sensed Chl a and total suspended matter from the MERIS instrument aboard the satellite ENVISAT (ENVIronmental SATellite) European Space Agency. Data from phytoplankton speciation and enumeration obtained by a national coastal observation network consisting of fish farms and the Norwegian Food Safety Authority are supplemented with data on phytoplankton pigments. All the data sets are then integrated in order to describe phytoplankton bloom dynamics in a Norwegian fjord over a growth season, with particular focus on Emiliania huxleyi. The approach represents a case example of how coastal environmental monitoring can be improved with existing instrument platforms. The objectives of the paper is to present the operative phytoplankton monitoring scheme in Norway, and to present an improved model of how such a scheme can be designed for a large part of the world's coastal areas.

  8. Monitoring of radionuclides in carbon steel blooms produced by EAF process

    Directory of Open Access Journals (Sweden)

    Sofilić T.

    2011-01-01

    Full Text Available Because natural and artificial isotopes in steel might originate from steel scrap or from the residue of the material that was used in the technological process, thus monitoring especially artificial radionuclides 60Co, 137Cs and 192Ir deserve special attention. The analysis by g-spectrometry has been applied to determine the presence of natural isotopes 40K, 226Ra, 232Th and 238U as well as of the artificial isotope 60Co, 137Cs and 192Ir and their activity in the produced steel round blooms in the Steel Mill of CMC Sisak d.o.o. At the same time the content of radionuclides in the other materials (ferroalloys, bauxite, fluorite, lime, coke, graphite electrodes, refractory blocks used in the same steel making process was investigated. The measured values regarding the presence of individual isotopes and their activity in steel were as follows: 40K all values were less than 1.6 Bqkg-1; 232Th all activities values were less than 0.02 Bqkg-1; 226Ra all activities values were less than 0.01 Bqkg-1; 238U all activities values were less than 1.10 Bqkg-1; 60Co all activities values were less than 0.02 Bqkg-1; 192Ir all activities values were less than 0.02 Bqkg-1 and 137Cs all activities values were less than 0.30 Bqkg-1.

  9. Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis).

    Science.gov (United States)

    Carvalho, Gustavo A; Minnett, Peter J; Fleming, Lora E; Banzon, Viva F; Baringer, Warner

    2010-06-01

    In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida Red Tide was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall periods - July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N. Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts ≥1.5×10(4) cells l(-1) defined a detectable HAB. Encouraging statistical results were derived when either or both algorithms correctly flagged known samples. The majority of the valid match-ups were correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results demonstrate an excellent detection capability, on average ~10% more accurate than the individual algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for environmental monitoring of K. brevis blooms, with valuable consequences including leading to the more rapid and efficient use of ships to make in situ measurements of HABs.

  10. An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific

    Directory of Open Access Journals (Sweden)

    Y. Dandonneau

    2011-12-01

    Full Text Available Trichodesmium, a major colonial cyanobacterial nitrogen fixer, forms large blooms in NO3-depleted tropical oceans and enhances CO2 sequestration by the ocean due to its ability to fix dissolved dinitrogen. Thus, its importance in C and N cycles requires better estimates of its distribution at basin to global scales. However, existing algorithms to detect them from satellite have not yet been successful in the South Western Tropical Pacific (SP. Here, a novel algorithm (TRICHOdesmium SATellite based on radiance anomaly spectra (RAS observed in SeaWiFS imagery, is used to detect Trichodesmium during the austral summertime in the SP (5° S–25° S 160° E–170° W. Selected pixels are characterized by a restricted range of parameters quantifying RAS spectra (e.g. slope, intercept, curvature. The fraction of valid (non-cloudy pixels identified as Trichodesmium surface blooms in the region is low (between 0.01 and 0.2 %, but is about 100 times higher than deduced from previous algorithms. At daily scales in the SP, this fraction represents a total ocean surface area varying from 16 to 48 km2 in Winter and from 200 to 1000 km2 in Summer (and at monthly scale, from 500 to 1000 km2 in Winter and from 3100 to 10 890 km2 in Summer with a maximum of 26 432 km2 in January 1999. The daily distribution of Trichodesmium surface accumulations in the SP detected by TRICHOSAT is presented for the period 1998–2010 which demonstrates that the number of selected pixels peaks in November–February each year, consistent with field observations. This approach was validated with in situ observations of Trichodesmium surface accumulations in the Melanesian archipelago around New Caledonia, Vanuatu and Fiji Islands for the same period.

  11. Satellite detection, tracing, and early warning of harmful algal blooms (HABs) for the Asian waters

    Science.gov (United States)

    Tang, D. L.

    Over the past two decades, Harmful Algal Blooms (HABs) appear to have increased in frequency, intensity and geographic distribution worldwide, and have caused large economic losses in aquacultured and wild fisheries in recent years. Understanding of the oceanic mechanisms is important for early warning of HAB events. The present study reported several extensive HABs in the Asian waters during 1998 to 2003 detected by satellite remote sensing data (SeaWiFS, NOAA AVHRR, and QuikScat) and in situ observations. An extensive HAB off southeastern Vietnamese waters during late June to July 2002 was detected and its related oceanographic features were analyzed. The HAB had high Chlorophyll-a (Chl-a) concentrations (up to 4.5 mg m-3), occurring about 200 km off the coast and about 200 km northeast of the Mekong River mouth, for a period of about 6 weeks. The bloom was dominated by the harmful algae haptophyte Phaeocystis cf. globosa, and caused a very significant mortality of aquacultured fishes and other marine life. In the same period, Sea Surface Temperature (SST) imagery showed a coldwater plume extending from the coast to the open sea, and QuikScat data showed strong southwesterly winds blowing parallel with the coastline. It indicated the HAB was induced and supported by offshore upwelling that bring nutrients from the deep ocean to the surface and from coastal water to the offshore, and the upwelling was driven by strong wind through Ekman transport when winds were parallel with the coastline. This study demonstrated the possibility of utilizing a combination of satellite data of Chl-a, SST and wind velocity together with coastal bathymetric information and in situ observation to give a better understanding of the biological oceanography of HABs; these results may help for the early warming of HAB.

  12. Satellite Remote Sensing and Crowd Sourcing to Monitor and Predict Cyanobacteria Blooms

    Science.gov (United States)

    Cyanobacterial blooms occur worldwide and are associated with human respiratory irritation, undesirable taste and odor of potable water, increased drinking water treatment costs, loss of revenue from recreational use, and human illness as a result of ingestion or skin exposure du...

  13. Detection of Harmful Algal Blooms in the Optically Complex Coastal Waters of the Kuwait Bay using Aqua-MODIS data

    Science.gov (United States)

    Manche, C. J.; Sultan, M.; Uddin, S.; Al-Dousari, A.; Chouinard, K.

    2013-12-01

    In the optically complex coastal marine waters of the Kuwait Bay, the propagation of Harmful Algal Blooms (HABs) has become a severe issue over the last decade affecting aquaculture a primary component of the Kuwaiti economy. Although several remote sensing based methods of algal bloom detection exist today, few may accurately detect the concentration and identify the type of HABs in Case II waters. The purpose of this study is: (1) assessment of the method that best detects and identifies algal blooms in general and HABs in particular, in the Kuwait Bay, and (2) identification of the factors controlling the occurrence of HABs. Fluorescence Line Height (FLH), Empirical, Bio-Optical, and Operational Methods as well as Ocean Colour 3 Band Ratio (OC3M), Garver-Siegel-Maritorena Model (GSM), and General Inherent Optical Property (GIOP) Chlorophyll-a (Chl-a) algorithms were applied to Moderate Resolution Imaging Spectroradiometer (MODIS) images acquired (07/2002 to 07/2012) over the Kuwait Bay and areas as far east as Shatt Al-Arab and as far south as N. 29.284 (Lat.), E. 50.047 (Long.) decimal degrees. In-situ data (bloom days: 50; sampling locations: 64) collected (09/1999 to 07/2011) from the Kuwait Bay was provided by the Kuwait Institute for Scientific Research and was used to test the reliability of the satellite-based inferences. Tasks accomplished and findings reached include: (1) comparison of in situ to estimated OC3M, GSM, and GIOP chlorophyll concentrations over the sampling locations for the time period 2002 to 2009 showed that OC3M outperformed the two other techniques in predicting the observed distribution and in replicating the measured concentration of the in-situ Chl-a data; (2) applying the OC3M algorithm to a total of 4039 scenes and using threshold values of 3, 4, and 5 mg/m3 Chl-a concentrations we inferred 371, 202, and 124 occurrences in the Kuwait Bay that met their respective threshold; (3) applying the operational method we successfully

  14. Monitoring of Harmful Algal Blooms through Drinking Water Treatment Facilities Located on Lake Erie in the 2014 and 2015 Bloom Seasons

    Science.gov (United States)

    A number of drinking water treatment plants on Lake Erie have supplied water samples on a monthly basis for analysis related to the occurrence of harmful algal blooms (HABs). General water quality parameters including total organic carbon (TOC), orthophosphate, and chlorophyll-A ...

  15. Co-monitoring bacterial and dinoflagellates communities by denaturing gradient gel electrophoresis (DGGE) and SSU rRNA sequencing during a dinoflagellates bloom

    Institute of Scientific and Technical Information of China (English)

    KANJinjun; CHENFeng

    2004-01-01

    Dinoflagellates are unicellular eukaryotic protists that dominate in all coastal waters, and are also present in oceanic waters. Despite the central importance of dinoflagellates in global primary production, the relationship between dinoflagellates and bacteria are still poorly understood. In order to understand the ecological interaction between bacterial and dinoflageUates communities, denaturing gradient gel electrophoresis (DGGE) and SSU rRNA sequencing were applied to monitoring the population dynamics of bacteria and dinoflagellates from the onset to disappearance of a dinoflagellates bloom occurred in Baltimore Inner Harbor, from April 15 to 24, 2002. Although Prorocentrum minimum was the major bloom forming species under the light microscopy, DGGE method with dinoflagellate specific primers demonstrated that Prorocentrum micans, Gymnodinium galatheanum and Gyrodinium uncatenum were also present during the bloom. Population shifts among the minor dinoflagellate groups were observed. DGGE of PCR-amplified 16S rRNA gene fragments indicated that cyanobacteria, α, β, γ-proteobacteria, FlavobacteriumBacteroides-Cytophaga (FBC), and Planctomcetes were the major components of bacterial assemblages during the bloom. DGGE analysis showed that Cytophagales and α-proteobacteria played important roles at different stages of dinoflagellates bloom. DGGE can be used as a rapid tool to simultaneously monitor population dynamics of both bacterial and dinoflagellates communities in aquatic environments, which is demonstrated here.

  16. Progress in Understanding Harmful Algal Blooms: Paradigm Shifts and New Technologies for Research, Monitoring, and Management

    Science.gov (United States)

    Anderson, Donald M.; Cembella, Allan D.; Hallegraeff, Gustaaf M.

    2012-01-01

    The public health, tourism, fisheries, and ecosystem impacts from harmful algal blooms (HABs) have all increased over the past few decades. This has led to heightened scientific and regulatory attention, and the development of many new technologies and approaches for research and management. This, in turn, is leading to significant paradigm shifts with regard to, e.g., our interpretation of the phytoplankton species concept (strain variation), the dogma of their apparent cosmopolitanism, the role of bacteria and zooplankton grazing in HABs, and our approaches to investigating the ecological and genetic basis for the production of toxins and allelochemicals. Increasingly, eutrophication and climate change are viewed and managed as multifactorial environmental stressors that will further challenge managers of coastal resources and those responsible for protecting human health. Here we review HAB science with an eye toward new concepts and approaches, emphasizing, where possible, the unexpected yet promising new directions that research has taken in this diverse field.

  17. Great Lake beach-goer behavior during a retrospectively detected bloom of cyanobacteria

    Science.gov (United States)

    Cyanobacteria blooms pose a potential health risk to beachgoers. We conducted a prospective study of weekend beachgoers at a public Great Lake site during July – September 2003. We recorded each person’s health status and activity during their beach visit. We measured...

  18. 巢湖水华遥感监测与年度统计分析研究%Monitoring and Annual Statistical Analysis of Algal Blooms in Chaohu Based on Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    朱利; 王桥; 吴传庆; 吴迪

    2013-01-01

    It was introduced that the method and technological process of algal bloom of Chaohu daily monitoring and annual statistical analysis used remote sensing in order to support the water environment management in China. First, the spectral difference between the algal bloom and the normal water was analyzed and the steep slope effect in NIR band was used in NDVI method to detect the algal bloom in daily monitoring. Then the annual statistical analysis was based on daily monitoring to obtain the earliest date, the late date and the biggest case of area for the algal bloom in Chaohu. The temporal and spatial algal bloom distribution characteristic such as high frequent area, development trend and existence time was analyzed using three parameters: the algal bloom annual frequency, bloom initial date and duration. The results indicated that the most frequency bloom region is northwestern lake, the longest duration region is northwestern and central lake, and bloom began in western areas, developed to eastern and central areas and appeared in the southwestern and southeastern areas lastly.%介绍了巢湖蓝藻水华的日常遥感监测方法与流程,开展了基于日常监测的年度统计分析,为水华环境管理提供了科学依据.首先分析了蓝藻水华与正常水体的光谱差异,利用蓝藻水华在近红外波段的“陡坡效应”,基于NDVI方法开展水华日常遥感监测.基于日常监测开展水华年度统计分析,获得水华最早发生日期、最晚发生日期、最大发生面积等,并以水华发生频率、水华起始日期和水华持续时间来分析巢湖一年内高发区、发展趋势及持续时间等时空分布规律.研究表明,2010年巢湖水华的高发区域在巢湖西北部水域,水华持续天数最长的区域是巢湖西北和中部部分区域,水华先在西部沿岸聚集,随时间推移向东部和中部扩散,巢湖西南、中部和东南沿岸是最后新增的水华区域.

  19. Understanding Abiotic Triggers For Cyanobacteria Blooms in Lakes Using a Long Term In-situ Monitoring Research Station

    Science.gov (United States)

    Wilkinson, Anne; Hondzo, Miki; Salomon, Christine; Missaghi, Shahram; Guala, Michele

    2016-11-01

    Harmful Algal Blooms (HAB) are ubiquitous ecological and public health hazards. HAB are made up of potentially toxic freshwater cyanobacteria. The occurrences of toxic HAB are unpredictable and highly spatially/temporary variable in freshwater ecosystems. To study the abiotic triggers for toxic HAB, a research station has been deployed in a eutrophic lake from June-October 2016. This station provides hourly water quality profiles and meteorological (every 5 minutes) monitoring with real time access. Water quality monitoring is performed by an autonomously traversed sonde that provides chemical, physical and biological measurements; including phycocyanin, a light-absorbing pigment distinct to cyanobacteria. The research station is a sentinel for HAB accumulation, prompting focused HAB analysis, including: phytoplankton and toxin composition/concentration, and turbulent kinetic energy dissipation rates. We will discuss how mixing conditions, temperature stratification, light intensity, surface wind magnitude and energy dissipation mediate a)HAB formation/composition b)toxicity and c)cyanobacteria stratification.The results will help illuminate abiotic processes that trigger HAB accumulation/toxicity, which can direct timely toxic HAB prediction and prevention efforts.

  20. Lidar fluorosensor system for remote monitoring phytoplankton blooms in the Swedish marine campaign

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, Roberto; Colao, Francesco; Fantoni, Roberta; Palucci, Antonio; Ribezzo, Sergio [ENEA, Centro Ricerche Frascati, Rome (Italy); Micheli, Carla [ENEA, Centro Ricerche Casaccia, Rome (Italy)

    1997-09-01

    The National Agency for New Technologies and the Environments group participated to the ICES/IOC workshop at Kristineberg Marine Research Station (Sweden, 9 - 15 September 1996) with instrumentation suitable to local and remote analysis of phytoplankton. The laser induced fluorescence (LIF) emission of natural communities and cultures has been monitored in vivo allowing to obtain information on the algae species, characterized by different pigments content, and on their photosynthetic activity, the latter differentially measured at different light levels in the presence of a saturating laser pulse. Chemical methods have been used for calibration purposes.

  1. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.

    Digital Repository Service at National Institute of Oceanography (India)

    Tholkapiyan, M.; Shanmugam, P.; Suresh, T.

    on deriving concentrations of chlorophyll-a using certain empirical algorithms to detect and describe the spatial and temporal distributions of phytoplankton biomass in coastal and oceanic waters (Vinayachandran and Mathew 2003, Vinayachandran et al 2003..., Goes et al 2005, Ahn and Shanmugam 2007, Gomes et al., 2008, Prasanna Kumar et al 2010, Li et al 2011). Chlorophyll-a estimations are based on the reflectance (or radiance) ratio algorithms that take advantage of decreased reflectance in the blue (440...

  2. Indian satellite IRS-P4 (OCEANSAT). Monitoring algal blooms in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Bhat, S.R.; Dwivedi, R.M.; Nayak, S.R.

    Kanya of Department of Ocean Development (through CSIR/SAC/NIO) for sea truthing and validation. With this in view, all cruises had a major aim to per- fect our techniques for use of ocean colour, gather data on physical, chemi- cal and biological... monotis, Prorocentrum lima on the macroalgae of artificial and natural reefs in the Northern Tyrrhenian Sea • Italy Ostreopsis ovata, Coolia monotis, Prorocentrum lima, Prorocentrum sp., Amphidinium sp. have been detected on the Tuscany coast, Tyrrhenian...

  3. Development of coastal upwelling edge detection algorithms associated with harmful algal blooms off the Washington coast using sea surface temperature imagery.

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nathan R.; Woodruff, Dana L.; Trainer, Vera L.

    2005-01-01

    Satellite remote sensing imagery is being used to identify and characterize upwelling conditions on the coast of Washington State, with an emphasis on detecting ocean features associated with harmful algal bloom events. Blooms of phytoplankton, including the domoic acid-producing diatom Pseudo-nitzschia, appear to be associated with a semi-permanent eddy bordering Washington and British Columbia that is observed in satellite imagery during extended upwelling events. Strong upwelling conditions may act as a barrier to movement of these blooms onshore. Using NOAA AVHRR temperature imagery, edge detection algorithms are being developed to define the strength, location and extent of the surface temperature expression of upwelling along the coast of Washington. The edge detection technique uses a simple kernel-based gradient method that compares temperatures of pixels at a user-specified distance. This allows identification of larger features with subtle edges. The resulting maximum-gradient map is then converted to a binary format with a user-specified temperature threshold. Skeletonization and edge-linking algorithms are then employed to develop final map products. The upwelling edge detection maps are being examined in relation to harmful algal bloom events that have occurred along the coast.

  4. Development of coastal upwelling edge detection algorithms associated with harmful algal blooms off the Washington coast using sea surface temperature imagery

    Science.gov (United States)

    Evans, Nathan R.; Woodruff, Dana L.; Trainer, Vera L.

    2005-08-01

    Satellite remote sensing imagery is being used to identify and characterize upwelling conditions on the coast of Washington State, with an emphasis on detecting ocean features associated with harmful algal bloom events. Blooms of phytoplankton, including the domoic acid-producing diatom Pseudo-nitzschia, appear to be associated with a semi-permanent eddy bordering Washington and British Columbia that is observed in satellite imagery during extended upwelling events. Strong upwelling conditions may act as a barrier to movement of these blooms onshore. Using NOAA AVHRR temperature imagery, edge detection algorithms are being developed to define the strength, location and extent of the surface temperature expression of upwelling along the coast of Washington. The edge detection technique uses a simple kernel-based gradient method that compares temperatures of pixels at a user-specified distance. This allows identification of larger features with subtle edges. The resulting maximum-gradient map is then converted to a binary format with a user-specified temperature threshold. Skeletonization and edge-linking algorithms are then employed to develop final map products. The upwelling edge detection maps are being examined in relation to harmful algal bloom events that have occurred along the coast.

  5. Monitoring tools and early warning system for harmful cyanobacterial blooms: Río Uruguay and Río de la Plata

    Directory of Open Access Journals (Sweden)

    Carla Kruk

    2015-12-01

    Full Text Available Potentially hazardous cyanobacterial blooming constitutes one of the most widespread problems experienced by aquatic systems worldwide. However, there are not any monitoring methods sensitive enough to be directly applicable to predict and manage blooming events. In order to fulfill this goal, both ecological and genetic concepts were combined to generate cyanobacteria monitoring tools. Two approaches were used: grouping organisms into functional groups and utilizing molecular analysis (real time quantitative PCR as indicators of the presence of genes that encode the expression of cyanotoxins (mcy. Six bi-monthly sampling campaigns were performed to evaluate the suitability of these tools (2013-2014 at six locations composed of two sites each one, ranging downstream from Salto Grande, at the River Uruguay, to Punta del Este, at the Estuary River Plate. A remarkable gradient was observed in the meteorological, physical and chemical variables, as well as higher abundances in planktonic organisms both in Salto Grande and in Punta del Este. The most abundant population of toxic species in the whole gradient were found in Salto, and in particular those belonging to the Microcystis aeruginosa complex (MAC. The most relevant environmental variables to determine the gradient and the variation in biological variables were: salinity, temperature, wind and turbidity. The results of the new indicators (presence of MAC in the plankton net and mcy genes were in agreement with the traditional ones (v.g. chlorophyll-a demonstrating being much more sensitive in cases of the most severe blooming events than in the low abundance situations. The conjunction of results was applied to the construction of a monitoring and early warning system protocol.

  6. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms.

    Science.gov (United States)

    Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten

    2015-10-01

    Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a "business-as-usual" emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m(3) each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments.

  7. Computerized flow monitors detect small kicks

    Energy Technology Data Exchange (ETDEWEB)

    McCann, D.; White, D. (Sedco Forex, Paris (FR))

    1992-02-24

    This paper reports on a smart alarm system installed on a number of offshore rigs and one land rig which can detect kicks more quickly than conventional systems. This rapid kick detection improves rig safety because the smaller the detected influx, the easier it is to control the well. The extensive computerized monitoring system helps drilling personnel detect fluid influxes and fluid losses before the changes in flow would normally be apparent.

  8. Detection and monitoring of early caries lesions

    DEFF Research Database (Denmark)

    Pretty, I A; Ekstrand, K R

    2016-01-01

    AIM: To review the current evidence base of detecting and monitoring early carious lesions in children and adolescents and a rationale proposed to ensure that such lesions are identified and appropriately managed. METHODS: The systematic literature search identified initially a review by Gomez...... of existing visible and radiographical systems to monitor lesions over time. Using low-cost intra-oral cameras facilitates the recording of lesion appearance in the patient record and may be of significant benefit in monitoring early lesions over time following their detection. This benefit extends...

  9. Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis)

    OpenAIRE

    Gustavo A. Carvalho; Minnett, Peter J.; Fleming, Lora E; Banzon, Viva F.; Baringer, Warner

    2010-01-01

    In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida Red Tide was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlor...

  10. Detection of antineutrinos for reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Duk [Center for Underground Physics, Institute of Basic Science, Daejeon (Korea, Republic of)

    2016-04-15

    Reactor neutrinos have been detected in the past 50 years by various detectors for different purposes. Beginning in the 1980s, neutrino physicists have tried to use neutrinos to monitor reactors and develop an optimized detector for nuclear safeguards. Recently, motivated by neutrino oscillation physics, the technology and scale of reactor neutrino detection have progressed considerably. In this review, I will give an overview of the detection technology for reactor neutrinos, and describe the issues related to further improvements in optimized detectors for reactor monitoring.

  11. Monitoring: A Strategy to Detect Imminent Mistakes

    NARCIS (Netherlands)

    Jossberger, Helen; Brand-Gruwel, Saskia; Boshuizen, Els; Van de Wiel, Margje

    2010-01-01

    Jossberger, H., Brand-Gruwel, S., Boshuizen, H. P. A., & Van de Wiel, M. (2010, August). Monitoring: A strategy to detect imminent mistakes. In D. Sembill (Chair), Human Fallibility: The Ambiguity of Errors for Work and Learning. Symposium conducted at the EARLI Learning and Professional Development

  12. “MMA”技术路线在太湖蓝藻水华监测中的应用%The Application of “MMA” Technical Route in Tai Lake Cyanobacteria Bloom Monitoring

    Institute of Scientific and Technical Information of China (English)

    庄严; 黄君; 宋挺; 张虎军; 沈建荣

    2014-01-01

    On the basis of 3S technologies integration, “MMA” technical route was used in cyanobacteria bloom monitoring, which included key steps of“monitoring”,“mapping” and“analyzing”. The results of Tai Lake cyanobacteria bloom monitoring were so similar, but also had something different. On one side, the cyanobacteria density ( CBD ) , Chl-a concentration and cyanobacteria bloom frequency distribution maps all showed a spatial distribution law which is“west high and east low”. On the other, the CBD and Chl-a concentration were also high in the middle area of Tai Lake, however, the remote sensing monitoring result indicated that the cyanobacteria bloom frequency of this area was non-cyanobacteria bloom or only less than 1%. Therefore,“MMA” technical route was put forward to comprehensive applying GPS, GIS and RS technologies and comparing different results. The “MMA” technical route was helpful to cover the shortage of single technology application, and fully reflecting the actual situation of cyanobacteria bloom. It would be useful not only in algae bloom monitoring, but also in other environmental monitoring field.%通过对3S技术整合,提出“MMA”技术路线应用于蓝藻水华监测,包括监测、测绘、分析等关键步骤。对太湖蓝藻水华研究结果表明,总体规律一致,但又有所差异。一方面,太湖蓝藻密度( CBD)、叶绿素a( Chl-a)及水华频率分布图结果均呈现“西高东低”的空间分布规律;另一方面,太湖湖心区CBD和Chl-a浓度亦较高,而遥感监测后的水华频率图显示为无水华或频率小于1%。故应参照“MMA”技术路线,综合应用3S技术,并核验比对,弥补单项技术存在的不足,全面真实反映藻类水华情况。“MMA”技术路线既适用于水华监测,亦可推广至其他环境监测工作。

  13. Bloom syndrome.

    Science.gov (United States)

    Arora, Harleen; Chacon, Anna H; Choudhary, Sonal; McLeod, Michael P; Meshkov, Lauren; Nouri, Keyvan; Izakovic, Jan

    2014-07-01

    Bloom Syndrome (BS, MIM #210900) is an autosomal recessive genetic disorder caused by a mutation in the BLM gene, which codes for the DNA repair enzyme RecQL3 helicase. Without proper DNA repair mechanisms, abnormal DNA exchange takes place between sister chromatids and results in genetic instability that may lead to cancer, especially lymphoma and acute myelogenous leukemia, lower and upper gastrointestinal tract neoplasias, cutaneous tumors, and neoplasias in the genitalia and urinary tract. BS patients are usually of Ashkenazi Jewish descent and exhibit narrow facial features, elongated limbs, and several dermatologic complications including photosensitivity, poikiloderma, and telangiectatic erythema. The most concerning manifestation of BS is multiple malignancies, which require frequent screenings and strict vigilance by the physician. Therefore, distinguishing between BS and other dermatologic syndromes of similar presentation such as Rothmund-Thomson Syndrome, Erythropoietic Protoporphyria, and Cockayne Syndrome is paramount to disease management and to prolonging life. BS can be diagnosed through a variety of DNA sequencing methods, and genetic testing is available for high-risk populations. This review consolidates several sources on BS sequelae and aims to suggest the importance of differentiating BS from other dermatologic conditions. This paper also elucidates the recently discovered BRAFT and FANCM protein complexes that link BS and Fanconi anemia.

  14. Testing a Microarray to Detect and Monitor Toxic Microalgae in Arcachon Bay in France

    Directory of Open Access Journals (Sweden)

    Linda K. Medlin

    2013-03-01

    Full Text Available Harmful algal blooms (HABs occur worldwide, causing health problems and economic damages to fisheries and tourism. Monitoring agencies are therefore essential, yet monitoring is based only on time-consuming light microscopy, a level at which a correct identification can be limited by insufficient morphological characters. The project MIDTAL (Microarray Detection of Toxic Algae—an FP7-funded EU project—used rRNA genes (SSU and LSU as a target on microarrays to identify toxic species. Furthermore, toxins were detected with a newly developed multiplex optical Surface Plasmon Resonance biosensor (Multi SPR and compared with an enzyme-linked immunosorbent assay (ELISA. In this study, we demonstrate the latest generation of MIDTAL microarrays (version 3 and show the correlation between cell counts, detected toxin and microarray signals from field samples taken in Arcachon Bay in France in 2011. The MIDTAL microarray always detected more potentially toxic species than those detected by microscopic counts. The toxin detection was even more sensitive than both methods. Because of the universal nature of both toxin and species microarrays, they can be used to detect invasive species. Nevertheless, the MIDTAL microarray is not completely universal: first, because not all toxic species are on the chip, and second, because invasive species, such as Ostreopsis, already influence European coasts.

  15. Testing a Microarray to Detect and Monitor Toxic Microalgae in Arcachon Bay in France.

    Science.gov (United States)

    Kegel, Jessica U; Del Amo, Yolanda; Costes, Laurence; Medlin, Linda K

    2013-03-05

    Harmful algal blooms (HABs) occur worldwide, causing health problems and economic damages to fisheries and tourism. Monitoring agencies are therefore essential, yet monitoring is based only on time-consuming light microscopy, a level at which a correct identification can be limited by insufficient morphological characters. The project MIDTAL (Microarray Detection of Toxic Algae)-an FP7-funded EU project-used rRNA genes (SSU and LSU) as a target on microarrays to identify toxic species. Furthermore, toxins were detected with a newly developed multiplex optical Surface Plasmon Resonance biosensor (Multi SPR) and compared with an enzyme-linked immunosorbent assay (ELISA). In this study, we demonstrate the latest generation of MIDTAL microarrays (version 3) and show the correlation between cell counts, detected toxin and microarray signals from field samples taken in Arcachon Bay in France in 2011. The MIDTAL microarray always detected more potentially toxic species than those detected by microscopic counts. The toxin detection was even more sensitive than both methods. Because of the universal nature of both toxin and species microarrays, they can be used to detect invasive species. Nevertheless, the MIDTAL microarray is not completely universal: first, because not all toxic species are on the chip, and second, because invasive species, such as Ostreopsis, already influence European coasts.

  16. Intrusion Detection System: Security Monitoring System

    Directory of Open Access Journals (Sweden)

    ShabnamNoorani,

    2015-10-01

    Full Text Available An intrusion detection system (IDS is an ad hoc security solution to protect flawed computer systems. It works like a burglar alarm that goes off if someone tampers with or manages to get past other security mechanisms such as authentication mechanisms and firewalls. An Intrusion Detection System (IDS is a device or a software application that monitors network or system activities for malicious activities or policy violations and produces reports to a management station.Intrusion Detection System (IDS has been used as a vital instrument in defending the network from this malicious or abnormal activity..In this paper we are comparing host based and network based IDS and various types of attacks possible on IDS.

  17. Neurosonology of emboli detection and monitoring

    Directory of Open Access Journals (Sweden)

    Mehmet Akif Topcuoglu

    2012-12-01

    Full Text Available Cerebral embolism is the leading cause of ischemic stroke. Detection of microembolic signals [MES] in cerebral circulation is uniquely attained by several transcranial Doppler techniques, and can not be obtained with any other available imaging modality. Albeit no uniform picture has emerged from the studies, presence and amount of MES can identify a high-risk status in the setting of potential arterial or cardiac sources of cerebral embolism. Real-time MES monitoring during vascular procedures with high cerebral embolism risk seems also promising. The potential of MES detection in improvement of patient care is usually acknowledged, even though several aspects remain yet to be scientifically established. We herein review theory, technique and clinical potential of the neurosonological emboli detection, and try to add to understanding of the journal readership about the recent development on this subject

  18. Monitoring Algal Blooms in Inland Waters From Space-Borne Observation; A Case Study From Northern Africa, Lake Nasser

    Science.gov (United States)

    Sultan, M.; Becker, R.

    2004-05-01

    A preliminary study was conducted to explore techniques and to develop and calibrate methodologies that combine inferences from field and remote sensing data to quantify temporal and spatial variations in lake physical parameters, and to examine their effects on primary productivity, and carbon sequestration rates in artificial lakes. The Case II waters of Lake Nasser (6000 km2) in southern Egypt were used as a test site. The construction of the Aswan High Dam in the 1960's has had major impacts on the landscape in southern Egypt. It gave rise to Lake Nasser, an extensive (capacity: 1.6 x 1011 m3, length: 500 km, average width: 12 km, average depth 30m) reservoir in southern Egypt and northern Sudan. In this study, we analyzed temporal (1980-2004) satellite images acquired over Lake Nasser to investigate spatial and temporal variations in aquatic parameters (e.g., chlorophyll and suspended matter) across the lake, and to test the usefulness of a variety of sensors and algorithms typically used for studies of larger water systems for this specific site. The investigated datasets include Moderate Resolution Imaging Spectroradiometer (MODIS), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and Coastal Zone Color Scanner (CZCS). The following patterns were identified. First, we detected a general enrichment in chlorophyll and in suspended matter upstream compared to the downstream and in the tributaries (Khors) compared to the main channel. This observation is consistent with the reported variations in sediment thickness along the length of the Lake. Thick deposits of up to 25 m were reported at the 2nd Cataract some 350 km south of the Aswan High Dam compared to 1m thick deposits in the vicinity of the Dam. Second, we observed a general and progressive increase in suspended matter and chlorophyll content in the autumn consistent with patterns of annual flooding which carry excess silt, clay, and nutrients. Future work will focus on 1) characterizing trends in carbon

  19. 40 CFR 257.24 - Detection monitoring program.

    Science.gov (United States)

    2010-07-01

    ... Disposal Units Ground-Water Monitoring and Corrective Action § 257.24 Detection monitoring program. (a) Detection monitoring is required at facilities identified in § 257.5(a) at all ground-water monitoring wells... unit to the ground water. In determining alternative parameters, the Director shall consider...

  20. 40 CFR 258.54 - Detection monitoring program.

    Science.gov (United States)

    2010-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection monitoring program. (a) Detection monitoring is required at MSWLF units at all ground-water monitoring wells... from the MSWLF unit to the ground water. In determining alternative parameters, the Director...

  1. A Novel approach for monitoring cyanobacterial blooms using an ensemble based system from MODIS imagery downscaled to 250 metres spatial resolution

    Science.gov (United States)

    El Alem, A.; Chokmani, K.; Laurion, I.; El-Adlouni, S. E.

    2014-12-01

    In reason of inland freshwaters sensitivity to Harmful algae blooms (HAB) development and the limits coverage of standards monitoring programs, remote sensing data have become increasingly used for monitoring HAB extension. Usually, HAB monitoring using remote sensing data is based on empirical and semi-empirical models. Development of such models requires a great number of continuous in situ measurements to reach an acceptable accuracy. However, Ministries and water management organizations often use two thresholds, established by the World Health Organization, to determine water quality. Consequently, the available data are ordinal «semi-qualitative» and they are mostly unexploited. Use of such databases with remote sensing data and statistical classification algorithms can produce hazard management maps linked to the presence of cyanobacteria. Unlike standard classification algorithms, which are generally unstable, classifiers based on ensemble systems are more general and stable. In the present study, an ensemble based classifier was developed and compared to a standard classification method called CART (Classification and Regression Tree) in a context of HAB monitoring in freshwaters using MODIS images downscaled to 250 spatial resolution and ordinal in situ data. Calibration and validation data on cyanobacteria densities were collected by the Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques on 22 waters bodies between 2000 and 2010. These data comprise three density classes: waters poorly ( 100,000 cells mL-1) loaded in cyanobacteria. Results were very interesting and highlighted that inland waters exhibit different spectral response allowing them to be classified into the three above classes for water quality monitoring. On the other, even if the accuracy (Kappa-index = 0.86) of the proposed approach is relatively lower than that of the CART algorithm (Kappa-index = 0.87), but its robustness is

  2. Optical properties of algal blooms in an eutrophicated coastal area and its relevance to remote sensing

    Science.gov (United States)

    Astoreca, Rosa; Rousseau, Veronique; Ruddick, Kevin; Van Mol, Barbara; Parent, Jean-Yves; Lancelot, Christiane

    2005-08-01

    The Southern Bight of the North Sea is characterised by a large influence of river inputs, which results in eutrophication of the area. High concentrations of plankton biomass and suspended matter have been reported for this area, in relation with blooms of different species and resuspension of bottom sediments. In spring the haptophyte Phaeocystis globosa blooms throughout the area reaching up to 30 mg Chlorophyll m-3 or more nearshore. This event is followed in June by red tides of the dinoflagellate Noctiluca scintillans. These blooms are concurrent with different species of diatoms. The strong optical signature of these blooms is clear to human observers making them potentially detectable in satellite imagery. As a first step in this direction, sampling has been carried out in the area, during Phaeocystis and Noctiluca blooms in 2003 and 2004. Phytoplankton pigments and inherent optical properties (particle, detrital and phytoplankton absorption) have been measured spectrophotometrically, and in situ using an ac-9 for total absorption and particle scattering. Field data were compared with optical properties of pure species obtained in laboratory. In parallel, water-leaving reflectance has been also measured. In this paper we characterise the optical signatures of diatoms, Phaeocystis and Noctiluca and their contribution to total absorption. The impact on water-leaving reflectance spectra is evaluated; in order to assess the conditions in which remote sensing can provide information for monitoring the timing, extent and magnitude of blooms in this coastal area.

  3. Complex network modeling of spectral remotely sensed imagery: A case study of massive green algae blooms detection based on MODIS data

    Science.gov (United States)

    Sui, Yi; Shao, Fengjing; Wang, Changying; Sun, Rencheng; Ji, Jun

    2016-12-01

    Feature bands selection and targets classification is of great importance in spectral remotely sensed imagery interpretation. In this work, complex network is adopted for modeling spectral remotely sensed imagery. Subnet is constructed for each band based on spatial neighboring characteristic. Feature bands could be obtained by analyzing and comparing topological characteristics between subnets. After finding feature bands, subnets of feature bands are compounded. Targets classification could be measured by degree distribution of the composited network. This approach is evaluated with empirical experiments based on detecting massive green algae blooms with MODIS data. Feature bands found are coincided with spectral mechanism of green algae. By comparing with FAI, RVI, NDVI, EVI and OSABI methods, our approach improves correct classification rates.

  4. Detection of novel algal blooms of Raphidophytes in the Eastern North Sea with satellite images of MOS and SeaWiFS

    Science.gov (United States)

    Lu, Douding; Goebel, Jeanette; Hetscher, Matthias; Horstmann, U.; Davidov, Alexander

    2003-05-01

    Since 1998 unusual algal blooms of different toxic Raphidophyte species have been observed during April and beginning of May in the northeastern part of the North Sea including the Skagerrak as well as in the Kattegatt region. The algal blooms of Raphidophytes took place after the spring bloom, which normally occurs in this area during March, but before the anually reoccurring bloom of Phaeocystis, which usually is observed during May, when water temperatures exceed 15°C. The Raphidophyte blooms were mainly represented by two different Chattonella species and by Heterosigma akashiwo. The toxic algal blooms which have been identified in 1998, 2000 and 2001 can appear with maximum cell numbers of 24 mill. Cells/l (Backe-Hansen, 1999) and Chlorophyll values up to 80 μg/l. Satellite images of MOS and SeaWiFs show the beginning of the blooms west of Jutland (Denmark) apparently were advected with the Jutland current towards the northeast. Later, the Raphidophyte blooms were observed along the Swedish and Norwegian west coast and extended along the Norwegian south coast up to 6°East, following the extensions of the Baltic current. The causative species of blooms, Chattonella sp., has shown strong phototactic behavior. In addition to 19'-butanoyloxyfucoxanthin, the Chattonella sp. contains three kind of carotenoids which other species do not have. Thus, the observations from microscopy and pigment profile from HPLC suggest that this species in the German Bight should be considered as a new HAB species. The reoccurrence of Chattonella blooms may indicate the response of algae to some kind of environmental change in the North Sea. Determination of the extend and the advection of toxic microalgae blooms as well as predictions through satellite remote sensing in the coastal areas of Denmark, Sweden and southern Norway, is also of great economic importance for the extensive mariculture ventures in this region, which repeatedly have suffered from the effects of toxic algal

  5. Cyanobacteria, Toxins and Indicators: Field Monitoring,Treatment Facility Monitoring and Treatment Studies

    Science.gov (United States)

    This presentation is a compilation of harmful algal bloom (HAB) related field monitoring data from the 2015 bloom season, treatment plant monitoring data from the 2013 and 2014 bloom seasons, and bench-scale treatment study data from 2015.

  6. Adverse event detection, monitoring, and evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers a single-sensor structural health-monitoring (SHM) system that uses the impedance method to monitor structural integrity, wave propagation...

  7. 基于关键帧提取技术的花开过程视频监测系统开发及试验%Development and experiment of blooming video monitoring system based on key frame extraction method

    Institute of Scientific and Technical Information of China (English)

    高林; 王璐; 闫磊; 张军国

    2014-01-01

    为克服传统花开过程监测中视频数据冗余、信息量大的缺点,该文设计了一种基于关键帧提取技术的花开过程视频监测系统。系统对花开过程原始图像采集后,采用基于光流法和熵统计算法实现对花开过程原始图像的关键帧提取,选择关键帧数模式或方向信息熵阈值模式,进行相关参数设置,最终合成出表征花开过程的关键帧视频。该文以百合花开放过程为例实现了基于关键帧提取技术的视频监测。试验结果证明,在该试验的条件下经关键帧提取合成的花开过程的视频数据量减少达84.6%以上,播放时间减少为原始视频播放时间的15.4%以下。视频保留了花开过程细节信息,整段视频播放自然流畅,可为从事植物、花卉研究的相关人员提供一个省时、方便的研究花开过程的监测平台。%The drawback to original video of the blooming process is that it contains a large amount of data and redundant information. In order to provide researchers with a video for monitoring which is endowed with a high compression ratio, small amount of data, rich growth detailed information and natural fluency, a blooming video monitoring system based on a key frame extraction method was developed in this paper. System hardware included:one Personal Computer, Central Processing unit:Intel ® CPU T2300@1.66GHz, 1.24 G memory, one Microsoft high-definition cameras HD-3000、one shading carton box, and one DC LED lamp, etc., software development environment: WinXP Operating System, Microsoft Visual Studio 2008 Professional, OpenCV2.0. This system can be divided into five function modules: image acquisition module, core algorithm module, key frames judgment module、data storage examine module、and video composition preview module. The core of the system is the key frame retrieval method. This method is based on the flower growth characteristics. For example, the background for

  8. 40 CFR 264.98 - Detection monitoring program.

    Science.gov (United States)

    2010-07-01

    ... contamination; (2) Immediately sample the ground water in all monitoring wells and determine whether... constituent detected in the ground water at each monitoring well at the compliance point; (ii) Any proposed... ground-water background. (b) The owner or operator must install a ground-water monitoring......

  9. Seasonal phytoplankton blooms in the North Atlantic linked to the overwintering strategies of copepods

    Directory of Open Access Journals (Sweden)

    Kevin D. Friedland

    2016-04-01

    Full Text Available Abstract The North Atlantic Ocean contains diverse patterns of seasonal phytoplankton blooms with distinct internal dynamics. We analyzed blooms using remotely-sensed chlorophyll a concentration data and change point statistics. The first bloom of the year began during spring at low latitudes and later in summer at higher latitudes. In regions where spring blooms occurred at high frequency (i.e., proportion of years that a bloom was detected, there was a negative correlation between bloom timing and duration, indicating that early blooms last longer. In much of the Northeast Atlantic, bloom development extended over multiple seasons resulting in peak chlorophyll concentrations in summer. Spring bloom start day was found to be positively correlated with a spring phenology index and showed both positive and negative correlations to sea surface temperature and the North Atlantic Oscillation in different regions. Based on the characteristics of spring and summer blooms, the North Atlantic can be classified into two regions: a seasonal bloom region, with a well-defined bloom limited to a single season; and a multi-seasonal bloom region, with blooms extending over multiple seasons. These regions differed in the correlation between bloom start and duration with only the seasonal bloom region showing a significant, negative correlation. We tested the hypothesis that the near-surface springtime distribution of copepods that undergo diapause (Calanus finmarchicus, C. helgolandicus, C. glacialis, and C. hyperboreus may contribute to the contrast in bloom development between the two regions. Peak near-surface spring abundance of the late stages of these Calanoid copepods was generally associated with areas having a well-defined seasonal bloom, implying a link between bloom shape and their abundance. We suggest that either grazing is a factor in shaping the seasonal bloom or bloom shape determines whether a habitat is conducive to diapause, while recognizing

  10. Fault Detection for Shipboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran; Nielsen, Ulrik Dam

    2009-01-01

    In this paper a basic idea of a fault-tolerant monitoring and decision support system will be explained. Fault detection is an important part of the fault-tolerant design for in-service monitoring and decision support systems for ships. In the paper, a virtual example of fault detection will be p...

  11. Blooming Seas West of Ireland

    Science.gov (United States)

    2007-01-01

    For several weeks in May and early June, daily satellite images of the North Atlantic Ocean west of Ireland have captured partial glimpses of luxuriant blooms of microscopic marine plants between patches of clouds. On June 4, 2007, the skies over the ocean cleared, displaying the sea's spring bloom in brilliant color. A bright blue bloom stretches north from the Mouth of the River Shannon and tapers off like a plume of blue smoke north of Clare Island. (In the large image, a second bloom is visible to the north, wrapping around County Donegal, on the island's northwestern tip.) The image was captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite. Cold, nutrient-stocked water often wells up to the surface from the deeper ocean along coastal shelves and at the edges of ocean currents. When it does, it delivers a boost of nutrients that fuel large blooms of single-celled plants collectively known as phytoplankton. The plants are the foundation of the marine food web, and their proliferation in this area of the North Atlantic explains why the waters of western Ireland support myriad fisheries and populations of large mammals like seals, whales, and dolphins. Like plants on land, phytoplankton make their food through photosynthesis, harnessing sunlight for energy using chlorophyll and other light-capturing pigments. The pigments change the way light reflects off the surface water, appearing as colorful swirls of turquoise and green against the darker blue of the ocean. Though individually tiny, collectively these plants play a big role in Earth's carbon and climate cycles; worldwide, they remove about as much carbon dioxide from the atmosphere during photosynthesis as land plants do. Satellites are the only way to map the occurrence of phytoplankton blooms across the global oceans on a regular basis. That kind of information is important not only to scientists who model carbon and climate, but also to biologists and fisheries

  12. Real time observations of coastal algal blooms by an early warning system

    Science.gov (United States)

    Lee, J. H. W.; Hodgkiss, I. J.; Wong, K. T. M.; Lam, I. H. Y.

    2005-10-01

    In eutrophic sub-tropical coastal waters around Hong Kong, phytoplankton or unicellular microalgae can grow rapidly to very high concentrations under favourable environmental conditions. These harmful algal blooms (HABs) have led to massive fish kills, hypoxia, and beach closures. However, to date the causality and mechanism of coastal algal blooms are still poorly understood. A remotely controlled autonomous real time field monitoring system has been developed to continuously track the changes in chlorophyll fluorescence, dissolved oxygen and other hydro-meteorological variables at two representative mariculture zones. The system can give an alarm when a bloom is detected, so that timely manual water quality sampling can be carried out to supplement the telemetric data. During 2000-2003, the system has successfully tracked 19 algal blooms. In the shallow weakly flushed coastal water (depth 7-10 m, tidal current 5-19 cm s -1), the bloom is short-lived, typically lasting a few days to over a week, with chlorophyll and DO concentrations in the range of 20-40 mg m -3 and 2-15 g m -3, respectively. It is found that: (1) the chlorophyll concentration is strongly correlated with its past values in the previous week, suggesting an auto-regressive type of algal dynamics; (2) the dissolved oxygen can reach highly super-saturated levels (12 g m -3) during a diatom bloom, and decreases to below 4 g m -3 at the tail of the growth phase; (3) in contrast, a dinoflagellate bloom is characterized by a much more pronounced vertical structure. Diel vertical migration and aggregation to dense layers are clearly observed. Significant dissolved oxygen consumption is associated with the migration, resulting in DO drops by as much as 6 g m -3 during the bloom; (4) the predominance of diatoms and dinoflagellates at the two sites can be explained in terms of the different hydrographic and nutrient conditions (the N:P ratio). Net algal growth rate, sinking and swimming velocities are

  13. The detection of wind turbine shaft misalignment using temperature monitoring.

    OpenAIRE

    2016-01-01

    Temperature is a parameter increasingly monitored in wind turbine systems. This paper details a potential temperature monitoring technique for use on shaft couplings. Such condition monitoring methods aid fault detection in other areas of wind turbines. However, application to shaft couplings has not previously been widely researched. A novel temperature measurement technique is outlined, using an infra-red thermometer which can be applied to online condition monitoring. The method was va...

  14. Simulation of monitoring strategies for atrial arrhythmia detection

    Directory of Open Access Journals (Sweden)

    Federica Censi

    2013-06-01

    Full Text Available INTRODUCTION: The current external monitoring strategies used to detect atrial fibrillation (AF and atrial tachycardia (AT episodes are based either on transient periods of short-term ECG recordings or on infrequent period of long-term continuous monitoring. The aim of this study was to investigate the ability of short-term daily ECG monitoring strategies for the detection of AF events. METHODS AND MATERIALS: The investigation was based on simulations performed on data extracted from Burden II study (patients implanted with pacemaker for brady-tachy syndrome, reporting date, time and duration of each episodes. RESULTS AND CONCLUSIONS: We found that a short-term daily temporally-optimized ECG monitoring allows to detect a higher percentage of episodes than 1-day Holter monitoring and to be at least as effective as a 7-days monitoring.

  15. Development of an oligonucleotide microarray for the detection and monitoring of marine dinoflagellates.

    Science.gov (United States)

    Galluzzi, Luca; Cegna, Alessandra; Casabianca, Silvia; Penna, Antonella; Saunders, Nick; Magnani, Mauro

    2011-02-01

    Harmful Algal Blooms (HABs), mainly caused by dinoflagellates and diatoms, have great economic and sanitary implications. An important contribution for the comprehension of HAB phenomena and for the identification of risks related to toxic algal species is given by the monitoring programs. In the microscopy-based monitoring methods, harmful species are distinguished through their morphological characteristics. This can be time consuming and requires great taxonomic expertise due to the existence of morphologically close-related species. The high throughput, automation possibility and specificity of microarray-based detection assay, makes this technology very promising for qualitative detection of HAB species. In this study, an oligonucleotide microarray targeted to the ITS1-5.8S-ITS2 rDNA region of nine toxic dinoflagellate species/clades was designed and evaluated. Two probes (45-47 nucleotides in length) were designed for each species/clade to reduce the potential for false positives. The specificity and sensitivity of the probes were evaluated with ITS1-5.8S-ITS2 PCR amplicons obtained from 20 dinoflagellates cultured strains. Cross hybridization experiments confirmed the probe specificity; moreover, the assay showed a good sensitivity, allowing the detection of up to 2 ng of labeled PCR product. The applicability of the assay with field samples was demonstrated using net concentrated seawater samples, un-spiked or spiked with known amounts of cultured cells. Despite the general application of microarray technology for harmful algae detection is not new, a peculiar group of target species/clades has been included in this new-format assay. Moreover, novelties regarding mainly the probes and the target rDNA region have allowed sensitivity improvements in comparison to previously published studies.

  16. GLRT Based Anomaly Detection for Sensor Network Monitoring

    KAUST Repository

    Harrou, Fouzi

    2015-12-07

    Proper operation of antenna arrays requires continuously monitoring their performances. When a fault occurs in an antenna array, the radiation pattern changes and can significantly deviate from the desired design performance specifications. In this paper, the problem of fault detection in linear antenna arrays is addressed within a statistical framework. Specifically, a statistical fault detection method based on the generalized likelihood ratio (GLR) principle is utilized for detecting potential faults in linear antenna arrays. The proposed method relies on detecting deviations in the radiation pattern of the monitored array with respect to a reference (fault-free) one. To assess the abilities of the GLR based fault detection method, three case studies involving different types of faults have been performed. The simulation results clearly illustrate the effectiveness of the GLR-based fault detection method in monitoring the performance of linear antenna arrays.

  17. Growth monitoring as an early detection tool: a systematic review

    NARCIS (Netherlands)

    Scherdel, P.; Dunkel, L.; Dommelen, P. van; Goulet, O.; Salaün, J.F.; Brauner, R.; Heude, B.; Chalumeau, M.

    2016-01-01

    Growth monitoring of apparently healthy children aims at early detection of serious underlying disorders. However, existing growth-monitoring practices are mainly based on suboptimal methods, which can result in delayed diagnosis of severe diseases and inappropriate referrals. We did a systematic re

  18. Recognizing harmful algal bloom based on remote sensing reflectance band ratio

    Science.gov (United States)

    Bresciani, Mariano; Giardino, Claudia; Bartoli, Marco; Tavernini, Silvia; Bolpagni, Rossano; Nizzoli, Daniele

    2011-01-01

    We present a band ratio algorithm based on remote sensing reflectance (RRS) data to detect an algal bloom composed of cyanobacteria (Planktothrix spp.) and chrysophytes in Lake Idro, a small meso-eutrophic lake situated in the subalpine region (northern Italy). The bloom started around the first week of September 2010 and persisted for about 1 month, with highest mean chlorophyll-a concentrations (17.5 +/- 1.6 mgm-3) and phytoplankton cellular density (7,250,000 cell.l-1) measured on September 14, 2010. RRS data obtained from in situ measurements were first investigated to select the diagnostic wavelengths (i.e., 560 and 620 nm) of both phycoerythrin (present in the Planktothrix spp.) and other pigments (e.g., fucoxanthin, common to several species of chrysophyte). Testing the algorithm on RRS data derived from atmospherically corrected image data showed the ability of the medium resolution imaging spectrometer (MERIS) to detect the bloom also. The results demonstrate that a combination of in situ and MERIS data is a valuable tool to monitor the extent and duration of phytoplankton blooms.

  19. Analysis of algal bloom risk with uncertainties in lakes by integrating self-organizing map and fuzzy information theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuwen, E-mail: qchen@rcees.ac.cn [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China); China Three Gorges University, Daxuelu 8, Yichang 443002 (China); CEER, Nanjing Hydraulics Research Institute, Guangzhoulu 223, Nanjing 210029 (China); Rui, Han; Li, Weifeng; Zhang, Yanhui [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China)

    2014-06-01

    Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004–2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial–temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial–temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties. - Highlights: • An innovative method is developed to analyze algal bloom risks with uncertainties. • The algal blooms in Taihu Lake showed obvious spatial and temporal patterns. • The lake is mainly characterized as moderate bloom but with high uncertainty. • Severe bloom with low uncertainty appeared occasionally in the northwest part. • The results provide important information to bloom monitoring and management.

  20. Local clinical quality monitoring for detection of excess operative deaths.

    Science.gov (United States)

    Arrowsmith, J E; Powell, S J; Nashef, S A M

    2006-05-01

    A monitoring system for cardiac surgery has been in use at Papworth Hospital for 10 years. We wished to determine whether this system would have detected an increase in deaths associated with a single practitioner, whether a poorly performing doctor or a serial killer such as Dr Harold Shipman, whose activities went undetected in the absence of a monitoring system for nearly a quarter of a century. Random extra deaths were artificially introduced into the practice of a surgeon and an anaesthetist in a way that broadly reproduced Shipman's pattern. The standard monitoring system was then used to analyse the hypothetical data thus generated. Using the current standard monitoring, the excess deaths would have been detected in less than 10 months. Suspicions would have been raised even earlier. Robust local quality monitoring of risk-adjusted outcomes is possible and, in our opinion, essential.

  1. Botnet Detection by Monitoring Similar Communication Patterns

    CERN Document Server

    Zeidanloo, Hossein Rouhani

    2010-01-01

    Botnet is most widespread and occurs commonly in today's cyber attacks, resulting in serious threats to our network assets and organization's properties. Botnets are collections of compromised computers (Bots) which are remotely controlled by its originator (BotMaster) under a common Command-and-Control (C&C) infrastructure. They are used to distribute commands to the Bots for malicious activities such as distributed denial-of-service (DDoS) attacks, spam and phishing. Most of the existing Botnet detection approaches concentrate only on particular Botnet command and control (C&C) protocols (e.g., IRC,HTTP) and structures (e.g., centralized), and can become ineffective as Botnets change their structure and C&C techniques. In this paper at first we provide taxonomy of Botnets C&C channels and evaluate well-known protocols which are being used in each of them. Then we proposed a new general detection framework which currently focuses on P2P based and IRC based Botnets. This proposed framework is ...

  2. Triplexer Monitor Design for Failure Detection in FTTH System

    Science.gov (United States)

    Fu, Minglei; Le, Zichun; Hu, Jinhua; Fei, Xia

    2012-09-01

    Triplexer was one of the key components in FTTH systems, which employed an analog overlay channel for video broadcasting in addition to bidirectional digital transmission. To enhance the survivability of triplexer as well as the robustness of FTTH system, a multi-ports device named triplexer monitor was designed and realized, by which failures at triplexer ports can be detected and localized. Triplexer monitor was composed of integrated circuits and its four input ports were connected with the beam splitter whose power division ratio was 95∶5. By means of detecting the sampled optical signal from the beam splitters, triplexer monitor tracked the status of the four ports in triplexer (e.g. 1310 nm, 1490 nm, 1550 nm and com ports). In this paper, the operation scenario of the triplexer monitor with external optical devices was addressed. And the integrated circuit structure of the triplexer monitor was also given. Furthermore, a failure localization algorithm was proposed, which based on the state transition diagram. In order to measure the failure detection and localization time under the circumstance of different failed ports, an experimental test-bed was built. Experiment results showed that the detection time for the failure at 1310 nm port by the triplexer monitor was less than 8.20 ms. For the failure at 1490 nm or 1550 nm port it was less than 8.20 ms and for the failure at com port it was less than 7.20 ms.

  3. Early detection and monitoring of Malaria

    Science.gov (United States)

    Rahman, Md Z.; Roytman, Leonid; Kadik, Abdelhamid; Miller, Howard; Rosy, Dilara A.

    2015-05-01

    Global Earth Observation Systems of Systems (GEOSS) are bringing vital societal benefits to people around the globe. In this research article, we engage undergraduate students in the exciting area of space exploration to improve the health of millions of people globally. The goal of the proposed research is to place students in a learning environment where they will develop their problem solving skills in the context of a world crisis (e.g., malaria). Malaria remains one of the greatest threats to public health, particularly in developing countries. The World Health Organization has estimated that over one million die of Malaria each year, with more than 80% of these found in Sub-Saharan Africa. The mosquitoes transmit malaria. They breed in the areas of shallow surface water that are suitable to the mosquito and parasite development. These environmental factors can be detected with satellite imagery, which provide high spatial and temporal coverage of the earth's surface. We investigate on moisture, thermal and vegetation stress indicators developed from NOAA operational environmental satellite data. Using these indicators and collected epidemiological data, it is possible to produce a forecast system that can predict the risk of malaria for a particular geographical area with up to four months lead time. This valuable lead time information provides an opportunity for decision makers to deploy the necessary preventive measures (spraying, treated net distribution, storing medications and etc) in threatened areas with maximum effectiveness. The main objective of the proposed research is to study the effect of ecology on human health and application of NOAA satellite data for early detection of malaria.

  4. Genetics Home Reference: Bloom syndrome

    Science.gov (United States)

    ... 1 link) BLOOM SYNDROME Sources for This Page Amor-Guéret M. Bloom syndrome, genomic instability and cancer: ... Zhang B, Zhang XD, Dou SX, Wang PY, Amor-Gueret M, Xi XG. Structural and functional analyses ...

  5. 基于MODIS荧光高度变化的藻类水华遥感监测方法%Using Temporal Variation in MODIS FLH to Detect Phytoplankton Blooms: a Preliminary Result

    Institute of Scientific and Technical Information of China (English)

    李军; 商少凌; 李永虹; 魏国妹; 张彩云; 曾银东

    2011-01-01

    In order to overcome the shortcomings of using empirically derived chlorophyll a (Chl a) and MODIS fluorescence line height (FLH) in bloom detection, we propose a method to use FLH difference between a single image and the 14 days mean FLH prior to this image to detect blooms. When the FLH variation at a pixel is ≥0. 06 mW/(cm2·μm·sr) .this pixel is judged as a blooming pixel. The criteria is determined based on an in situ dataset of 35 groups of remote sensing reflectance and Chl a collected in the Fujian coastal water where harmful algal blooms occurred. When applying this approach to MODIS FLH from space, the areas judged as blooming water in May 2003 and June 2005 are consistent with in situ observations,demonstrating the effectiveness of this approach in Fujian coastal water. Further studies of the method and more test cases are nevertheless required.%为了研究如何有效应用MODIS荧光高度(fluorescence line height.FLH)产品于近岸水华监测,基于福建近岸浮游植物水华期获得的35组实测遥感反射率和叶绿素a数据,提出MODIS FLH差值法,即当日FLH与前14 d平均FLH差值≥0.06 mW/(cm2·μm·sr)时,判别为水华发生.取2005年6月和2003年5月两个赤潮案例,处理获得MODIS卫星FLH时间差值产品,依据FLH差值≥0.06 mW/(cm2·μm·sr)的判据,判别水华影响区域与实际报道吻合,说明这一方法对于本研究水体行之有效.适用其他水体的情况尚未知,且具体的判据可能随水域而变化,进一步的研究与实例检验将是必要的.

  6. Intrusion detection and monitoring for wireless networks.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda (Indiana University); Tabriz, Parisa (University of Illinois at Urbana-Champaign); Pelon, Kristen (Cedarville University); McCoy, Damon (University of Colorado, Boulder); Lodato, Mark (Lafayette College); Hemingway, Franklin (University of New Mexico); Custer, Ryan P.; Averin, Dimitry (Polytechnic University); Franklin, Jason (Carnegie Mellon University); Kilman, Dominique Marie

    2005-11-01

    complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

  7. Network Traffic Anomalies Detection and Identification with Flow Monitoring

    CERN Document Server

    Nguyen, Huy; Kim, Dong Il; Choi, Deokjai

    2010-01-01

    Network management and security is currently one of the most vibrant research areas, among which, research on detecting and identifying anomalies has attracted a lot of interest. Researchers are still struggling to find an effective and lightweight method for anomaly detection purpose. In this paper, we propose a simple, robust method that detects network anomalous traffic data based on flow monitoring. Our method works based on monitoring the four predefined metrics that capture the flow statistics of the network. In order to prove the power of the new method, we did build an application that detects network anomalies using our method. And the result of the experiments proves that by using the four simple metrics from the flow data, we do not only effectively detect but can also identify the network traffic anomalies.

  8. Characterization of harmful algal blooms (HABs) in the Arabian Gulf and the Sea of Oman using MERIS fluorescence data

    Science.gov (United States)

    Zhao, Jun; Temimi, Marouane; Ghedira, Hosni

    2015-03-01

    In this study, MERIS fluorescence data were utilized to monitor a toxin-producing dinoflagellate Cochlodinium bloom in 2008 in the Arabian Gulf and the Sea of Oman. The bloom was characterized using modified fluorescence line height (MFLH), enhanced Red-Green-Blue (ERGB) and true color composites, and the ratio of particulate backscattering (bbp) to MFLH (bbp/MFLH). In addition to high MFLH values and dark colors in ERGB images which are generally observed when blooms happen, it was found that the Cochlodinium bloom indicated species-specific signatures which consisted of reddish brown colors in true color composites and bbp/MFLH values below 0.2 mW-1 cm2 μm m-1 sr. Based on these findings, Cochlodinium blooms were successfully distinguished from blooms dominated by other species that were found in the study area, like diatom, Noctiluca, and Trichodesmium. Qualitative analysis showed that the fluorescence-based approach presented better performance than the chlorophyll-a anomaly approach for HAB detection, despite the sensitivity to atmospheric perturbations, benthic vegetation in coastal shallow waters, and variations in environmental conditions. The applicability of the HAB characterization approach tested for the first time over the study area using MERIS data was discussed and can be anticipated with sufficient knowledge of local bloom history. Combing different ocean color products is strongly recommended to improve our understanding of HAB dynamics and enhance our ability to characterize them. This is of great importance for marine environment protection and management and can lead to valuable information for contingency planning.

  9. Allan Bloom's Quarrel with History.

    Science.gov (United States)

    Thompson, James

    1988-01-01

    Responds to Allan Bloom's "The Closing of the American Mind." Concludes that despite cranky comments about bourgeois culture, the focus of Bloom's attack is on historicism, which undercuts his nostalgic vision of a prosperous and just America. Condemns Bloom's exclusion of Blacks, Hispanics, and women from America's cultural heritage.…

  10. Detection of Electronic Anklet Wearers’ Groupings throughout Telematics Monitoring

    Directory of Open Access Journals (Sweden)

    Paulo Lima Machado

    2017-01-01

    Full Text Available Ankle bracelets (anklets imposed by law to track convicted individuals are being used in many countries as an alternative to overloaded prisons. There are many different systems for monitoring individuals wearing such devices, and these electronic anklet monitoring systems commonly detect violations of circulation areas permitted to holders. In spite of being able to monitor individual localization, such systems do not identify grouping activities of the monitored individuals, although this kind of event could represent a real risk of further offenses planned by those individuals. In order to address such a problem and to help monitoring systems to be able to have a proactive approach, this paper proposes sensor data fusion algorithms that are able to identify such groups based on data provided by anklet positioning devices. The results from the proposed algorithms can be applied to support risk assessment in the context of monitoring systems. The processing is performed using geographic points collected by a monitoring center, and as result, it produces a history of groups with their members, timestamps, locations and frequency of meetings. The proposed algorithms are validated in various serial and parallel computing scenarios, and the correspondent results are presented and discussed. The information produced by the proposed algorithms yields to a better characterization of the monitored individuals and can be adapted to support decision-making systems used by authorities that are responsible for planning decisions regarding actions affecting public security.

  11. In situ observation of harmful dinoflagellate bloom in the eastern coast of Kyushu, Japan

    Science.gov (United States)

    Yamaguchi, Hisashi; Murakami, Hirishi; Miyamura, Kazuyoshi; Siawanto, Eko; Kobayashi, Hiroshi; Ishizaka, Joji

    2014-05-01

    Oita coast, where is in the eastern coast of Kyushu, Japan, is a richly fish aquaculture area. However, sometimes harmful algal blooms occur in this region, especially harmful dinoflagellates blooms, and cultured fish mortality occurs. Ocean color remote sensing is expected as a useful tool to reduce the financial damage of harmful algal blooms. However, ocean color data is low accuracy in the coastal region because colored dissolved organic matter and suspended solid are dominant. More optical data of harmful algal blooms are required because there are few data in harmful algal blooms. The field observation was conducted to understand the inherent optical property of harmful dinoflagellate bloom in the eastern coast of Oita prefecture on April and August 2013. Chlorophyll-a maximum (>24 mg m^-3) was observed in the subsurface layer on April 2013. The dominant phytoplankton species in this chlorophyll-a maximum layer was dinoflagellate Cochlodinium polykrikoides (>300 cells ml^-1) and early stage of the bloom was formed. Peak of the remote sensing reflectance was near 565nm due to strong phytoplankton absorption within 400 ~ 500 nm domain from the subsurface bloom layer. Moreover, high phytoplankton absorption coefficient was observed at the shorter wavelength (bloom was detected by using dinoflagellate bloom detection algorithm, which is a simpler new satellite remote sensing-based harmful algal blooms detection method for JAXA's GCOM-C/SGLI (Siswanto et al., 2013). However, detection of the dinoflagellate Karenia mikimotoi bloom by using the algorithm on August 2013 was difficult as colored dissolved organic matter and detritus absorptions were high. Although the algorithm could detect the early stage of C. polycrikoides bloom, the algorithm improvement to detect the harmful algal blooms in the case II water is thus highly required. This research is part of the combined research between Japan Aerospace Exploration Agency and National Research Institute of

  12. Detection and monitoring of insect resistance to transgenic Bt crops

    Institute of Scientific and Technical Information of China (English)

    FANGNENG HUANG

    2006-01-01

    Transgenic crops expressing Bacillus thuringiensis (Bt) endotoxins have become one of the most important tools for managing corn and cotton insect pests in the US and other countries. The widespread adoption of transgenic Bt crops could place a high degree of selection pressure on the target insect populations and accelerate development of resistance, raising concerns about the long-term durability of Bt plants as an effective pest management tool. Conservation of Bt susceptibility in insects has become one of the most active research areas in modern agriculture. One of the key factors for a successful Bt resistance management plan is to have a cost-effective monitoring system that can provide information on: (i) the initial Bt resistance allele frequencies at low levels in field insect populations; and (ii) early shifts in Bt resistance allele frequencies so that proactive measures for managing resistance can be deployed well before field control failures. Developing such a monitoring program has been difficult because: (i) resistance traits that occur at very low frequencies are hard to detect; (ii) many factors affect the sensitivity and accuracy of a Bt resistance monitoring program; and (iii) monitoring resistance is costly. Several novel methods for detecting Bt resistance alleles developed during the last decade have made a cost-effective monitoring system possible. Future studies should focus on how to improve and standardize the methodologies for insect sampling and Bt resistance detection.

  13. Cow status monitoring (health and oestrus) using detection sensors

    NARCIS (Netherlands)

    Maatje, K.; Mol, de R.M.; Rossing, W.

    1997-01-01

    In-line sensors were used to measure quarter milk conductivity and milk temperature in the milking claw for monitoring mastitis in dairy cows. In a preliminary experiment, sensor data were used to develop algorithms and threshold values for the detection of mastitis. In a later experiment, these thr

  14. Optoelectronic leak detection system for monitoring subsea structures

    Science.gov (United States)

    Moodie, D.,; Costello, L.; McStay, D.

    2010-04-01

    Leak detection and monitoring on subsea structures is an area of increasing interest for the detection and monitoring of production and control fluids for the oil and gas industry. Current techniques such as capacitive (dielectric) based measurement or passive acoustic systems have limitations and we report here an optoelectronic solution based upon fluorescence spectroscopy to provide a permanent monitoring solution. We report here a new class of optoelectronic subsea sensor for permanent, real time monitoring of hydrocarbon production systems. The system is capable of detecting small leaks of production or hydraulic fluid (ppm levels) over distances of 4-5 meters in a subsea environment. Ideally systems designed for such applications should be capable of working at depths of up to 3000m unattended for periods of 20+ years. The system uses advanced single emitter LED technology to meet the challenges of lifetime, power consumption, spatial coverage and delivery of a cost effective solution. The system is designed for permanent deployment on Christmas tree (XT), subsea processing systems (SPS) and associated equipment to provide enhanced leak detection capability.

  15. Algal bloom response and risk management: On-site response tools.

    Science.gov (United States)

    Watson, Susan B; Zastepa, Arthur; Boyer, Gregory L; Matthews, Eric

    2017-02-13

    Harmful algal blooms caused by cyanobacteria can present a risk to the safety of drinking- and recreational waters and beachfronts through the production of toxins, particularly microcystin, which are highly resilient to degradation. These blooms are difficult to predict, vary in appearance and toxicity, and can show significant spatial heterogeneity: wind- and current-borne scums can produce an order of magnitude range in toxin levels along shorelines. The growing demand for reliable, cost-effective and rapid methods to detect toxins in bloom material and reduce the risk of public exposure cannot be met by most analytical lab turnaround times. Commercial microcystin test kits are now available, but few have been rigorously field-tested or incorporated into monitoring programmes. Working with a local health agency, we evaluated two kits with different operative ranges of detection, applied to samples covering a wide range of water quality, sample matrices, and bloom composition. We compared their performance against lab analyses using Enzyme-Linked Immunosorbent and Protein Phosphatase Inhibition assays. Both kits could resolve samples with high (<10 μg/L microcystin equivalents (MCequiv)) and low/no toxins, but failed to reliably detect toxin levels between 1 and 5 μg/L, at which threshold there were few false negatives (8%) but ∼ one third of the samples (32%) yielded false positives. We conclude that these kits are potentially useful for screening and informed risk management decisions e.g. on beach closures, but should be followed up with more rigorous tests where needed. We describe how, based on these results, the kits have been successfully incorporated into the routine municipal beach monitoring and advisory programme by the Hamilton Public Health Services (Ontario).

  16. Algal Bloom in Aquatic Ecosystems-an Overview

    OpenAIRE

    M. Ghorbani; S.A. Mirbagheri; A. H. Hasani; S. M. Monavari; J.Nouri

    2014-01-01

    Algae play an important role in all aquatic ecosystems by providing all living organisms of water bodies with preliminary nutrients and energy required. However, abnormal and excessive algal growth so-called algal bloom would be detrimental as much. Given the importance of algae in aquatic environment as well as their sensitivity to environmental changes, algal measurements are of key components of water quality monitoring programs. The algal blooms could include a variety of adverse impacts...

  17. Harmful algal bloom smart device application: using image analysis and machine learning techniques for early classification of harmful algal blooms

    Science.gov (United States)

    The Ecological Stewardship Institute at Northern Kentucky University and the U.S. Environmental Protection Agency are collaborating to optimize a harmful algal bloom detection algorithm that estimates the presence and count of cyanobacteria in freshwater systems by image analysis...

  18. A Driver Face Monitoring System for Fatigue and Distraction Detection

    Directory of Open Access Journals (Sweden)

    Mohamad-Hoseyn Sigari

    2013-01-01

    Full Text Available Driver face monitoring system is a real-time system that can detect driver fatigue and distraction using machine vision approaches. In this paper, a new approach is introduced for driver hypovigilance (fatigue and distraction detection based on the symptoms related to face and eye regions. In this method, face template matching and horizontal projection of top-half segment of face image are used to extract hypovigilance symptoms from face and eye, respectively. Head rotation is a symptom to detect distraction that is extracted from face region. The extracted symptoms from eye region are (1 percentage of eye closure, (2 eyelid distance changes with respect to the normal eyelid distance, and (3 eye closure rate. The first and second symptoms related to eye region are used for fatigue detection; the last one is used for distraction detection. In the proposed system, a fuzzy expert system combines the symptoms to estimate level of driver hypo-vigilance. There are three main contributions in the introduced method: (1 simple and efficient head rotation detection based on face template matching, (2 adaptive symptom extraction from eye region without explicit eye detection, and (3 normalizing and personalizing the extracted symptoms using a short training phase. These three contributions lead to develop an adaptive driver eye/face monitoring. Experiments show that the proposed system is relatively efficient for estimating the driver fatigue and distraction.

  19. Sepsis Patient Detection and Monitor Based on Auto-BN.

    Science.gov (United States)

    Jiang, Yu; Sha, Lui; Rahmaniheris, Maryam; Wan, Binhua; Hosseini, Mohammad; Tan, Pengliu; Berlin, Richard B

    2016-04-01

    Sepsis is a life-threatening condition caused by an inappropriate immune response to infection, and is a leading cause of elderly death globally. Early recognition of patients and timely antibiotic therapy based on guidelines improve survival rate. Unfortunately, for those patients, it is often detected late because it is too expensive and impractical to perform frequent monitoring for all the elderly. In this paper, we present a risk driven sepsis screening and monitoring framework to shorten the time of onset detection without frequent monitoring of all the elderly. Within this framework, the sepsis ultimate risk of onset probability and mortality is calculated based on a novel temporal probabilistic model named Auto-BN, which consists of time dependent state, state dependent property, and state dependent inference structures. Then, different stages of a patient are encoded into different states, monitoring frequency is encoded into the state dependent property, and screening content is encoded into different state dependent inference structures. In this way, the screening and monitoring frequency and content can be automatically adjusted when encoding the sepsis ultimate risk into the guard of state transition. This allows for flexible manipulation of the tradeoff between screening accuracy and frequency. We evaluate its effectiveness through empirical study, and incorporate it into existing medical guidance system to improve medical healthcare.

  20. Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species

    Science.gov (United States)

    Carstensen, Jacob; Klais, Riina; Cloern, James E.

    2015-01-01

    Phytoplankton blooms are dynamic phenomena of great importance to the functioning of estuarine and coastal ecosystems. We analysed a unique (large) collection of phytoplankton monitoring data covering 86 coastal sites distributed over eight regions in North America and Europe, with the aim of investigating common patterns in the seasonal timing and species composition of the blooms. The spring bloom was the most common seasonal pattern across all regions, typically occurring early (February–March) at lower latitudes and later (April–May) at higher latitudes. Bloom frequency, defined as the probability of unusually high biomass, ranged from 5 to 35% between sites and followed no consistent patterns across gradients of latitude, temperature, salinity, water depth, stratification, tidal amplitude or nutrient concentrations. Blooms were mostly dominated by a single species, typically diatoms (58% of the blooms) and dinoflagellates (19%). Diatom-dominated spring blooms were a common feature in most systems, although dinoflagellate spring blooms were also observed in the Baltic Sea. Blooms dominated by chlorophytes and cyanobacteria were only common in low salinity waters and occurred mostly at higher temperatures. Key bloom species across the eight regions included the diatoms Cerataulina pelagica and Dactyliosolen fragilissimus and dinoflagellates Heterocapsa triquetra and Prorocentrum cordatum. Other frequent bloom-forming taxa were diatom genera Chaetoceros, Coscinodiscus, Skeletonema, and Thalassiosira. Our meta-analysis shows that these 86 estuarine-coastal sites function as diatom-producing systems, the timing of that production varies widely, and that bloom frequency is not associated with environmental factors measured in monitoring programs. We end with a perspective on the limitations of conclusions derived from meta-analyses of phytoplankton time series, and the grand challenges remaining to understand the wide range of bloom patterns and

  1. Applied network security monitoring collection, detection, and analysis

    CERN Document Server

    Sanders, Chris

    2013-01-01

    Applied Network Security Monitoring is the essential guide to becoming an NSM analyst from the ground up. This book takes a fundamental approach to NSM, complete with dozens of real-world examples that teach you the key concepts of NSM. Network security monitoring is based on the principle that prevention eventually fails. In the current threat landscape, no matter how much you try, motivated attackers will eventually find their way into your network. At that point, it is your ability to detect and respond to that intrusion that can be the difference between a small incident and a major di

  2. Amalgamation of Anomaly-Detection Indices for Enhanced Process Monitoring

    KAUST Repository

    Harrou, Fouzi

    2016-01-29

    Accurate and effective anomaly detection and diagnosis of modern industrial systems are crucial for ensuring reliability and safety and for maintaining desired product quality. Anomaly detection based on principal component analysis (PCA) has been studied intensively and largely applied to multivariate processes with highly cross-correlated process variables; howver conventional PCA-based methods often fail to detect small or moderate anomalies. In this paper, the proposed approach integrates two popular process-monitoring detection tools, the conventional PCA-based monitoring indices Hotelling’s T2 and Q and the exponentially weighted moving average (EWMA). We develop two EWMA tools based on the Q and T2 statistics, T2-EWMA and Q-EWMA, to detect anomalies in the process mean. The performances of the proposed methods were compared with that of conventional PCA-based anomaly-detection methods by applying each method to two examples: a synthetic data set and experimental data collected from a flow heating system. The results clearly show the benefits and effectiveness of the proposed methods over conventional PCA-based methods.

  3. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    Science.gov (United States)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  4. UNMANNED AERIAL VEHICLES FOR ALIEN PLANT SPECIES DETECTION AND MONITORING

    Directory of Open Access Journals (Sweden)

    P. Dvořák

    2015-08-01

    Full Text Available Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms by using purposely designed unmanned aircraft (UAV. We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid. Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded. The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  5. Contribution of bioturbation by the red swamp crayfish Procambarus clarkii to the recruitment of bloom-forming cyanobacteria from sediment

    Directory of Open Access Journals (Sweden)

    Yoshimasa YAMAMOTO

    2010-02-01

    Full Text Available The development of cyanobacterial blooms in a small eutrophic pond was monitored along with the potential effect of bioturbation by the red swamp crayfish Procambarus clarkii discussed as well with respect to the recruitment of cyanobacteria from sediment. Cyanobacterial blooms were observed during the early spring and summer. The spring bloom was dominated by Aphanizomenon flos-aquae. Its population density reached the maximum level in late March, thereafter decreasing rapidly and becoming lower than the detection limit from May. When the water temperature exceeded 20 °C in late May, the population density of Microcystis spp. began to increase, and a bloom was formed from July to early August. Anabaena spp. also contributed to the formation of the summer bloom. The population densities of both Microcystis spp. and Anabaena spp. began to decline in mid August. Crayfish were sampled using baited traps from April to November. No sample was obtained in April, whereas crayfish were captured constantly from May to November. They were distributed widely throughout the pond from June, although a large number of crayfish were captured most effectively at a particular point in the pond. The first captures in late May were dominated by males. The sex ratio of the captures was almost 1:1 from June to September, and fell in favor of females from October. The sex ratio reached a minimum (0.2:1 in mid November, when an extremely large number of crayfish were captured at a distinctly warm point. Next, the potential ability of crayfish to promote the recruitment of cyanobacteria from the sediment was examined by performing an incubation experiment. The presence of crayfish in containers of the pond sediment increased the densities of cyanobacteria such as Microcystis spp. and Anabaena spp. However, population densities of cyanobacteria began to decline after the crayfish was removed. Overall, bioturbation by crayfish seemed to be somewhat important in the

  6. Spring bloom onset in the Nordic Seas

    Science.gov (United States)

    Mignot, Alexandre; Ferrari, Raffaele; Mork, Kjell Arne

    2016-06-01

    The North Atlantic spring bloom is a massive annual growth event of marine phytoplankton, tiny free-floating algae that form the base of the ocean's food web and generates a large fraction of the global primary production of organic matter. The conditions that trigger the onset of the spring bloom in the Nordic Seas, at the northern edge of the North Atlantic, are studied using in situ data from six bio-optical floats released north of the Arctic Circle. It is often assumed that spring blooms start as soon as phytoplankton cells daily irradiance is sufficiently abundant that division rates exceed losses. The bio-optical float data instead suggest the tantalizing hypothesis that Nordic Seas blooms start when the photoperiod, the number of daily light hours experienced by phytoplankton, exceeds a critical value, independently of division rates. The photoperiod trigger may have developed at high latitudes where photosynthesis is impossible during polar nights and phytoplankton enters into a dormant stage in winter. While the first accumulation of biomass recorded by the bio-optical floats is consistent with the photoperiod hypothesis, it is possible that some biomass accumulation started before the critical photoperiod but at levels too low to be detected by the fluorometers. More precise observations are needed to test the photoperiod hypothesis.

  7. Nonlinear Statistical Process Monitoring and Fault Detection Using Kernel ICA

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi; YAN Wei-wu; ZHAO Xu; SHAO Hui-he

    2007-01-01

    A novel nonlinear process monitoring and fault detection method based on kernel independent component analysis (ICA) is proposed. The kernel ICA method is a two-phase algorithm: whitened kernel principal component (KPCA) plus ICA. KPCA spheres data and makes the data structure become as linearly separable as possible by virtue of an implicit nonlinear mapping determined by kernel. ICA seeks the projection directions in the KPCA whitened space, making the distribution of the projected data as non-gaussian as possible. The application to the fluid catalytic cracking unit (FCCU) simulated process indicates that the proposed process monitoring method based on kernel ICA can effectively capture the nonlinear relationship in process variables. Its performance significantly outperforms monitoring method based on ICA or KPCA.

  8. Real-time moving object detection for video monitoring systems

    Institute of Scientific and Technical Information of China (English)

    Wei Zhiqiang; Ji Xiaopeng; Wang Peng

    2006-01-01

    Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. A method for real-time moving object detection is described. A new background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving objects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video monitoring systems.

  9. Sensitive change detection for remote sensing monitoring of nuclear treaties

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schlittenhardt, Jörg

    2005-01-01

    or uninteresting changes, see e.g. (Canty and Schlittenhardt 2001). In our contribution we focus attention on the use of conventional multispectral earth observation satellite platforms with moderate ground resolution (Landsat TM, ASTER, SPOT) to detect changes over wide areas which are relevant to nuclear non......Triggered in part by the advent of high resolution commercial optical satellites, the analysis of open-source satellite imagery has now established itself as an important tool for monitoring nuclear activities throughout the world (Chitumbo et al 2001). Whereas detection of land cover and land use...... the framework of the Global Monitoring for Security and Stability Network of Excellence (GMOSS) initiated by the European Commission. Chitumbo, K., Robb, S., Bunney, J. and Lev\\$\\backslash\\$'e, G., IAEA Satellite imagery and the Department of Safeguards, Proceedings of the Symposium on International Safeguards...

  10. Novel anomaly detection approach for telecommunication network proactive performance monitoring

    Institute of Scientific and Technical Information of China (English)

    Yanhua YU; Jun WANG; Xiaosu ZHAN; Junde SONG

    2009-01-01

    The mode of telecommunication network management is changing from "network oriented" to "subscriber oriented". Aimed at enhancing subscribers'feeling, proactive performance monitoring (PPM) can enable a fast fault correction by detecting anomalies designating performance degradation. In this paper, a novel anomaly detection approach is the proposed taking advantage of time series prediction and the associated confidence interval based on multiplicative autoregressive integrated moving average (ARIMA). Furthermore, under the assumption that the training residual is a white noise process following a normal distribution, the associated confidence interval of prediction can be figured out under any given confidence degree 1-α by constructing random variables satisfying t distribution. Experimental results verify the method's effectiveness.

  11. Parametric roll resonance monitoring using signal-based detection

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas

    2015-01-01

    Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric ro......-based monitoring system is a simple and effective mean to provide timely warning of resonance conditions...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...

  12. Local Leak Detection and Health Monitoring of Pressurized Tanks

    Science.gov (United States)

    Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam

    2011-01-01

    An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.

  13. Leak detection, monitoring, and mitigation technology trade study update

    Energy Technology Data Exchange (ETDEWEB)

    HERTZEL, J.S.

    1998-11-10

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful.

  14. Traffic Monitoring without single Car Detection from optical airborne Images

    OpenAIRE

    Zeller, Klaus; Hinz, Stefan; Rosenbaum, Dominik; Leitloff, Jens; Reinartz, Peter

    2009-01-01

    This article describes several methods for traffic monitoring from airborne optical remote sensing data. These methods classify the traffic into free flowing traffic, traffic congestion and traffic jam. Furthermore a method is explained, which provides information about the average speed of dense traffic on a defined part of the road. All methods gather the information directly from image features, without the use of single vehicle detection. The classification of the traffic is done by st...

  15. SCALABLE TIME SERIES CHANGE DETECTION FOR BIOMASS MONITORING USING GAUSSIAN PROCESS

    Data.gov (United States)

    National Aeronautics and Space Administration — SCALABLE TIME SERIES CHANGE DETECTION FOR BIOMASS MONITORING USING GAUSSIAN PROCESS VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Biomass monitoring,...

  16. Using LANDSAT to expand the historical record of phytoplankton blooms in Lake Erie

    Science.gov (United States)

    Ho, J. C.; Michalak, A. M.; Stumpf, R. P.; Bridgeman, T. B.

    2014-12-01

    Freshwater harmful algal blooms are occurring with increasing frequency worldwide, intensifying the need for deeper understanding of the processes driving bloom formation. Such understanding is a prerequisite for developing management strategies for limiting bloom occurrence. Unfortunately, however, data for developing robust predictive models of bloom formation are lacking. Even in the well-studied Lake Erie, where diatom and cyanobacteria blooms have occurred for several decades in the Western Basin, previous in-situ and remote-sensing data collection efforts have been hampered by spatial and temporal sampling limitations, resulting in a sparse historical record. Leveraging available data to expand the historical record of algal blooms would thus make it possible to better evaluate hypotheses about factors influencing bloom formation. In this work, remotely-sensed observations of phytoplankton obtained using LANDSAT imagery are presented for 1984-2011. Several phytoplankton detection algorithms based on LANDSAT 5 imagery are evaluated during the period also covered by MERIS (2002-2011), which offers a relatively detailed assessment of bloom occurrence over the last decade. The best algorithm is then applied to historical LANDSAT data, and results are used to obtain new information about historical conditions and assess implications for developing improved models of bloom formation. Estimates of historical bloom occurrence and bloom seasonality shed new light on the widely-held view that phosphorus controls and invasive mussels resulted in substantial bloom reductions in the early 1990s. The new estimated records are not consistent with limited in-situ phytoplankton measurements from that period, and provide additional information on bloom occurrence during years with little to no supporting literature. This work demonstrates the potential to unearth new insights about historical phytoplankton blooms in Lake Erie, as well as in freshwater lakes broadly, and is a

  17. Optical monitoring and detection of spinal cord ischemia.

    Directory of Open Access Journals (Sweden)

    Rickson C Mesquita

    Full Text Available Spinal cord ischemia can lead to paralysis or paraparesis, but if detected early it may be amenable to treatment. Current methods use evoked potentials for detection of spinal cord ischemia, a decades old technology whose warning signs are indirect and significantly delayed from the onset of ischemia. Here we introduce and demonstrate a prototype fiber optic device that directly measures spinal cord blood flow and oxygenation. This technical advance in neurological monitoring promises a new standard of care for detection of spinal cord ischemia and the opportunity for early intervention. We demonstrate the probe in an adult Dorset sheep model. Both open and percutaneous approaches were evaluated during pharmacologic, physiological, and mechanical interventions designed to induce variations in spinal cord blood flow and oxygenation. The induced variations were rapidly and reproducibly detected, demonstrating direct measurement of spinal cord ischemia in real-time. In the future, this form of hemodynamic spinal cord diagnosis could significantly improve monitoring and management in a broad range of patients, including those undergoing thoracic and abdominal aortic revascularization, spine stabilization procedures for scoliosis and trauma, spinal cord tumor resection, and those requiring management of spinal cord injury in intensive care settings.

  18. Tsunamis detection, monitoring, and early-warning technologies

    CERN Document Server

    Joseph, Antony

    2011-01-01

    The devastating impacts of tsunamis have received increased focus since the Indian Ocean tsunami of 2004, the most devastating tsunami in over 400 years of recorded history. This professional reference is the first of its kind: it provides a globally inclusive review of the current state of tsunami detection technology and will be a much-needed resource for oceanographers and marine engineers working to upgrade and integrate their tsunami warning systems. It focuses on the two main tsunami warning systems (TWS): International and Regional. Featured are comparative assessments of detection, monitoring, and real-time reporting technologies. The challenges of detection through remote measuring stations are also addressed, as well as the historical and scientific aspects of tsunamis.

  19. A New Bloom: Transforming Learning

    Science.gov (United States)

    Cochran, David; Conklin, Jack

    2007-01-01

    This article discusses a new design for the classic Bloom's Taxonomy developed by Anderson, L. W. & Krathwohl, D. (2001), which can be used to evaluate learners' technology-enhanced experience in more powerful and critical ways. The New Bloom's Taxonomy incorporates contemporary research on learning and human cognition into its model. The…

  20. Bloom syndrome in two siblings.

    Science.gov (United States)

    Sultan, Sheikh Javeed; Sultan, Sheikh Tariq

    2010-01-01

    Bloom syndrome (congenital telangiectatic erythema) is a rare autosomal recessive disorder characterized by telangiectasias and photosensitivity, growth deficiency of prenatal onset, variable degrees of immunodeficiency, and increased susceptibility to neoplasms of many sites and types. We are reporting Bloom syndrome in two brothers from Kashmir (India), 8 and 6 years of age, who presented with erythematous rashes on the face, photosensitivity, and growth retardation.

  1. Damage monitoring and impact detection using optical fiber vibration sensors

    Science.gov (United States)

    Yang, Y. C.; Han, K. S.

    2002-06-01

    Intensity-based optical fiber vibrations sensors (OFVSs) are used in damage monitoring of fiber-reinforced plastics, in vibration sensing, and location of impacts. OFVSs were constructed by placing two cleaved fiber ends in a capillary tube. This sensor is able to monitor structural vibrations. For vibration sensing, the optical fiber sensor was mounted on the carbon fiber reinforced composite beam, and its response was investigated for free and forced vibration. For locating impact points, four OFVSs were placed at chosen positions and the different arrival times of impact-generated vibration signals were recorded. The impact location can be determined from these time delays. Indentation and tensile tests were performed with the measurement of the optical signal and acoustic emission (AE). The OFVSs accurately detected both free and forced vibration signals. Accurate locations of impact were determined on an acrylate plate. It was found that damage information, comparable in quality to AE data, could be obtained from the OFVS signals.

  2. Markers for detecting alcoholism and monitoring for continued abuse.

    Science.gov (United States)

    Morgan, M Y

    1980-01-01

    Several biochemical and haematological abnormalities are associated with excessive alcohol intake and some are used in the recognition and management of alcoholics. The ideal biological marker for detecting and monitoring alcoholics should be sensitive and highly specific for alcohol abuse; its value should be affected by changes in alcohol intake over relatively short periods of time and it should be quick, simple, convenient and inexpensive to estimate. At the present time no simple reliable marker is available which fulfills these criteria. Measurements of serum aspartate transaminase, serum gamma-glutamyl-transpeptidase and mean corpuscular volume are of proven value however and the majority of alcoholics can be detected and monitored by combining the measurements of these three tests. Blood/breath alcohol measurements are of limited value for detection but are useful for follow up. Measurement of the plasma alpha-amino-n-butyric acid/leucine ratio is of disputed value and not likely to be of great practical use. Measurement of serum alpha-lipoproteins, erythrocyte delta-aminolaevulinic acid dehydrase activity and qualitative estimation of serum transferrin have all been proposed as markers for alcohol abuse and are currently under evaluation.

  3. Nuclear imaging in detection and monitoring of cardiotoxicity.

    Science.gov (United States)

    D'Amore, Carmen; Gargiulo, Paola; Paolillo, Stefania; Pellegrino, Angela Maria; Formisano, Tiziana; Mariniello, Antonio; Della Ratta, Giuseppe; Iardino, Elisabetta; D'Amato, Marianna; La Mura, Lucia; Fabiani, Irma; Fusco, Flavia; Perrone Filardi, Pasquale

    2014-07-28

    Cardiotoxicity as a result of cancer treatment is a novel and serious public health issue that has a significant impact on a cancer patient's management and outcome. The coexistence of cancer and cardiac disease in the same patient is more common because of aging population and improvements in the efficacy of antitumor agents. Left ventricular dysfunction is the most typical manifestation and can lead to heart failure. Left ventricular ejection fraction measurement by echocardiography and multigated radionuclide angiography is the most common diagnostic approach to detect cardiac damage, but it identifies a late manifestation of myocardial injury. Early non-invasive imaging techniques are needed for the diagnosis and monitoring of cardiotoxic effects. Although echocardiography and cardiac magnetic resonance are the most commonly used imaging techniques for cardiotoxicity assessment, greater attention is focused on new nuclear cardiologic techniques, which can identify high-risk patients in the early stage and visualize the pathophysiologic process at the tissue level before clinical manifestation. The aim of this review is to summarize the role of nuclear imaging techniques in the non-invasive detection of myocardial damage related to antineoplastic therapy at the reversible stage, focusing on the current role and future perspectives of nuclear imaging techniques and molecular radiotracers in detection and monitoring of cardiotoxicity.

  4. Effect of Zeolite Treatment on the Blooming Behavior of Paraffin Wax in Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Bryan B. Pajarito

    2016-06-01

    Full Text Available The blooming behavior of paraffin wax in natural rubber (NR composites was studied as function of zeolite treatment. Three types of zeolite treatment were treated as factors: acid activation using hydrochloric acid (HCl solution, ion exchange using tetradecyldimethyl amine (TDA chloride salt, and organic modification using glycerol monostearate (GMS. The zeolite was treated according to a 23 full factorial design of experiment. Attenuated total reflectance – Fourier transform infrared (ATR-FTIR spectroscopy was used to characterize the chemical structure of treated zeolite. Treated zeolite was applied as filler to NR composites deliberately compounded with high amount of paraff in wax. The amount of bloomed wax in surface of NR composite sheets was monitored with time at 50oC. Results show the bloom amount to be linear with the square root of time. NR composites reinforced with untreated, acid-activated, and ion-exchanged zeolite fillers indicate reduction in wax blooming as compared to unfilled NR. The bloom rate (slope and initial bloom (y-intercept were determined from the experimental plots. Analysis of variance (ANOVA shows the bloom rate to be signif icantly increased when zeolite fillers are treated with GMS. Meanwhile, initial bloom was significantly enhanced when zeolite fillers are treated with TDA chloride salt and GMS. The significant increase in bloom rate and initial bloom can be attributed to the softening of the NR matrix at high amounts of TDA chloride salt and GMS.

  5. Accounting for Incomplete Species Detection in Fish Community Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University; Jager, Yetta [ORNL

    2013-01-01

    Riverine fish assemblages are heterogeneous and very difficult to characterize with a one-size-fits-all approach to sampling. Furthermore, detecting changes in fish assemblages over time requires accounting for variation in sampling designs. We present a modeling approach that permits heterogeneous sampling by accounting for site and sampling covariates (including method) in a model-based framework for estimation (versus a sampling-based framework). We snorkeled during three surveys and electrofished during a single survey in suite of delineated habitats stratified by reach types. We developed single-species occupancy models to determine covariates influencing patch occupancy and species detection probabilities whereas community occupancy models estimated species richness in light of incomplete detections. For most species, information-theoretic criteria showed higher support for models that included patch size and reach as covariates of occupancy. In addition, models including patch size and sampling method as covariates of detection probabilities also had higher support. Detection probability estimates for snorkeling surveys were higher for larger non-benthic species whereas electrofishing was more effective at detecting smaller benthic species. The number of sites and sampling occasions required to accurately estimate occupancy varied among fish species. For rare benthic species, our results suggested that higher number of occasions, and especially the addition of electrofishing, may be required to improve detection probabilities and obtain accurate occupancy estimates. Community models suggested that richness was 41% higher than the number of species actually observed and the addition of an electrofishing survey increased estimated richness by 13%. These results can be useful to future fish assemblage monitoring efforts by informing sampling designs, such as site selection (e.g. stratifying based on patch size) and determining effort required (e.g. number of

  6. SEQUENTIAL CLUSTERING-BASED EVENT DETECTION FOR NONINTRUSIVE LOAD MONITORING

    Directory of Open Access Journals (Sweden)

    Karim Said Barsim

    2016-01-01

    Full Text Available The problem of change-point detection has been well studied and adopted in many signal processing applications. In such applications, the informative segments of the signal are the stationary ones before and after the change-point. However, for some novel signal processing and machine learning applications such as Non-Intrusive Load Monitoring (NILM, the information contained in the non-stationary transient intervals is of equal or even more importance to the recognition process. In this paper, we introduce a novel clustering-based sequential detection of abrupt changes in an aggregate electricity consumption profile with accurate decomposition of the input signal into stationary and non-stationary segments. We also introduce various event models in the context of clustering analysis. The proposed algorithm is applied to building-level energy profiles with promising results for the residential BLUED power dataset.

  7. Monitoring and detecting atrial fibrillation using wearable technology.

    Science.gov (United States)

    Nemati, Shamim; Ghassemi, Mohammad M; Ambai, Vaidehi; Isakadze, Nino; Levantsevych, Oleksiy; Shah, Amit; Clifford, Gari D

    2016-08-01

    Atrial fibrillation (AFib) is diagnosed by analysis of the morphological and rhythmic properties of the electrocardiogram. It was recently shown that accurate detection of AFib is possible using beat-to-beat interval variations. This raises the question of whether AFib detection can be performed using a pulsatile waveform such as the Photoplethysmogram (PPG). The recent explosion in use of recreational and professional ambulatory wrist-based pulse monitoring devices means that an accurate pulse-based AFib screening algorithm would enable large scale screening for silent or undiagnosed AFib, a significant risk factor for multiple diseases. We propose a noise-resistant machine learning approach to detecting AFib from noisy ambulatory PPG recorded from the wrist using a modern research watch-based wearable device (the Samsung Simband). Ambulatory pulsatile and movement data were recorded from 46 subjects, 15 with AFib and 31 non symptomatic. Single channel electrocardiogram (ECG), multi-wavelength PPG and tri-axial accelerometry were recorded simultaneously at 128 Hz from the non-dominant wrist using the Simband. Recording lengths varied from 3.5 to 8.5 minutes. Pulse (beat) detection was performed on the PPG waveforms, and eleven features were extracted based on beat-to-beat variability and waveform signal quality. Using 10-fold cross validation, an accuracy of 95 % on out-of-sample data was achieved, with a sensitivity of 97%, specificity of 94%, and an area under the receiver operating curve (AUROC) of 0.99. The described approach provides a noise-resistant, accurate screening tool for AFib from PPG sensors located in an ambulatory wrist watch. To our knowledge this is the first study to demonstrate an algorithm with a high enough accuracy to be used in general population studies that does not require an ambulatory Holter electrocardiographic monitor.

  8. Signal Detection and Monitoring Based on Longitudinal Healthcare Data

    Directory of Open Access Journals (Sweden)

    Iris Pigeot

    2012-12-01

    Full Text Available Post-marketing detection and surveillance of potential safety hazards are crucial tasks in pharmacovigilance. To uncover such safety risks, a wide set of techniques has been developed for spontaneous reporting data and, more recently, for longitudinal data. This paper gives a broad overview of the signal detection process and introduces some types of data sources typically used. The most commonly applied signal detection algorithms are presented, covering simple frequentistic methods like the proportional reporting rate or the reporting odds ratio, more advanced Bayesian techniques for spontaneous and longitudinal data, e.g., the Bayesian Confidence Propagation Neural Network or the Multi-item Gamma-Poisson Shrinker and methods developed for longitudinal data only, like the IC temporal pattern detection. Additionally, the problem of adjustment for underlying confounding is discussed and the most common strategies to automatically identify false-positive signals are addressed. A drug monitoring technique based on Wald’s sequential probability ratio test is presented. For each method, a real-life application is given, and a wide set of literature for further reading is referenced.

  9. Prompt-gamma detection towards absorbed energy monitoring during hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J.; Balleyguier, L.; Dauvergne, D.; Mathez, H.; Pinto, M.; Testa, E.; Zoccarato, Y. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, Universite de Lyon 1, IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne cedex (France); Krimmer, J.; Freud, N.; L' etang, J.M. [Universite de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA - Lyon, Universite Lyon 1, Centre Leon Berard (France); Herault, J.; Amblard, R.; Angellier, G. [Centre Antoine Lacassagne, Cyclotron Biomedical, 227 Avenue de la Lanterne, 06200 Nice (France)

    2015-07-01

    Hadrontherapy is an emerging technique which exploits the fact that a large quantity of the energy of the incident particles is deposited at the end of their flight path. This allows a conformation of the applied dose to the tumor volume and a simultaneous sparing of surrounding healthy tissue. A real-time control of the ion range during the treatment is possible via the detection of prompt secondary radiation (gamma rays or charged particles). Besides a monitoring of the ion range, the knowledge of the total energy absorbed inside the patient is also of importance for an improvement of the treatment quality. It has been shown that the ambient dose in a treatment room is correlated to the monitoring units, i.e. the number of protons of the beam delivery system. The present study consists in applying time-of-flight (TOF) information to identify prompt gamma-rays generated by interactions inside the patient which provides a direct information on the energy imparted. Results from test measurements will be given, which show that events generated in the nozzle and the target phantom can be discriminated. Furthermore, a standalone detection system is being developed which will be read out by a standard PC. The status of the developments for the corresponding electronics will be presented. (authors)

  10. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection.

    Science.gov (United States)

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.

  11. Monitoring of hadrontherapy treatments by means of charged particle detection

    Directory of Open Access Journals (Sweden)

    Giuseppe Battistoni

    2016-08-01

    Full Text Available The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. Charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in hadrontherapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA. An important outcome of these studies is that the experimental single track resolution needed for charged particle based monitoring applications can be safely of the order of few millimeters, without spoiling the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.

  12. Nanostructures in environmental pollution detection, monitoring, and remediation

    Directory of Open Access Journals (Sweden)

    A. Vaseashta et al

    2007-01-01

    Full Text Available We present preliminary results of our joint investigations to monitor and mitigate environmental pollution, a leading contributor to chronic and deadly health disorders and diseases affecting millions of people each year. Using nanotechnology-based gas sensors; pollution is monitored at several ground stations. The sensor unit is portable, provides instantaneous ground pollution concentrations accurately, and can be readily deployed to disseminate real-time pollution data to a web server providing a topological overview of monitored locations. We are also employing remote sensing technologies with high-spatial and spectral resolution to model urban pollution using satellite images and image processing. One of the objectives of this investigation is to develop a unique capability to acquire, display and assimilate these valuable sources of data to accurately assess urban pollution by real-time monitoring using commercial sensors fabricated using nanofabrication technologies and satellite imagery. This integrated tool will be beneficial towards prediction processes to support public awareness and establish policy priorities for air quality in polluted areas. The complex nature of environmental pollution data mining requires computing technologies that integrate multiple sources and repositories of data over multiple networking systems and platforms that must be accurate, secure, and reliable. An evaluation of information security risks and strategies within an environmental information system is presented. In addition to air pollution, we explore the efficacy of nanostructured materials in the detection and remediation of water pollution. We present our results of sorption on advanced nanomaterials-based sorbents that have been found effective in the removal of cadmium and arsenic from water streams.

  13. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection

    Science.gov (United States)

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  14. Medical radar considerations for detecting and monitoring Crohn's disease

    Science.gov (United States)

    Smith, Sonny; Narayanan, Ram M.; Messaris, Evangelos

    2014-05-01

    Crohn's disease is a condition that causes inflammation and associated complications along any section of the digestive tract. Over the years, numerous radiological and endoscopic methods as well as the use of ultrasound have been developed to examine and diagnose inflammatory bowel disorders such as Crohn's disease. While such techniques have much merit, an alternative medical solution that is safe, non-invasive, and inexpensive is proposed in this paper. Reflections from electromagnetic signals transmitted by an ultra-wide band (UWB) radar allow for not only range (or extent) information but also spectral analysis of a given target of interest. Moreover, the radar cross-section (RCS) of an object measures how detectable the electromagnetic return energy of such an object is to the radar. In the preliminary phase of research, we investigate how disparities in the dielectric properties of diseased versus non-diseased portions of the intestines can aid in the detection of Crohn's disease. RCS analysis from finite-difference time-domain (FDTD) method simulations using a simple 3D model of the intestines are presented. The ultimate goal of our research is to design a UWB radar system using a suitable waveform to detect and monitor Crohn's disease.

  15. Nuclear imaging in detection and monitoring of cardiotoxicity

    Institute of Scientific and Technical Information of China (English)

    Carmen; D’Amore; Paola; Gargiulo; Stefania; Paolillo; Angela; Maria; Pellegrino; Tiziana; Formisano; Antonio; Mariniello; Giuseppe; DellaRatta; Elisabetta; Iardino; Marianna; D’Amato; Lucia; La; Mura; Irma; Fabiani; Flavia; Fusco; Pasquale; Perrone; Filardi

    2014-01-01

    Cardiotoxicity as a result of cancer treatment is a novel and serious public health issue that has a significant impact on a cancer patient’s management and outcome.The coexistence of cancer and cardiac disease in the same patient is more common because of aging population and improvements in the efficacy of antitumor agents.Left ventricular dysfunction is the most typical manifestation and can lead to heart failure.Left ventricular ejection fraction measurement by echocardiography and multigated radionuclide angiography is the most common diagnostic approach to detect cardiac damage,but it identifies a late manifestation of myocardial injury.Early non-invasive imaging techniques are needed for the diagnosis and monitoringof cardiotoxic effects.Although echocardiography and cardiac magnetic resonance are the most commonly used imaging techniques for cardiotoxicity assessment,greater attention is focused on new nuclear cardiologic techniques,which can identify high-risk patients in the early stage and visualize the pathophysiologic process at the tissue level before clinical manifestation.The aim of this review is to summarize the role of nuclear imaging techniques in the non-invasive detection of myocardial damage related to antineoplastic therapy at the reversible stage,focusing on the current role and future perspectives of nuclear imaging techniques and molecular radiotracers in detection and monitoring of cardiotoxicity.

  16. Weak signal detection using multiscale morphology in microseismic monitoring

    Science.gov (United States)

    Li, Huijian; Wang, Runqiu; Cao, Siyuan; Chen, Yangkang; Tian, Nan; Chen, Xiaoqing

    2016-10-01

    Microseismic events caused by hydraulic fracturing are usually very weak. The magnitude range of microseismic signals is usually from - 3 to 1 Mw. Processing techniques such as band-pass filtering, are widely adopted to improve the signal-to-noise (S/N) ratio of microseismic data, while with a degradation of signal quality. We propose a multi-scale morphological method to detect weak micro-seismic signals. This approach decomposes data set into multi-scale components based on the mathematical morphology theory using structuring element that is similar to the wavelet basis in the well-known wavelet decomposition. The method can help us obtain more information by detecting more waves, like P-wave, S-wave and their reflections, which can be much more valuable in processing and interpretation of microseismic data during microseismic monitoring. The proposed approach is not amplitude preserving and not mathematically reversible. It can offer enhancement of arrivals for picking (and thus can subsequently offer benefits for event detection and location) but at the expense of estimates of magnitude or moment-tensor inversion.

  17. Algal Bloom: Boon or Bane?

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Algal blooms occur in response to nutrient deplete or replete conditions. Nitrogen fixing forms proliferate under oligotrophic conditions when nutrient levels are low. Replete conditions in response to upwelling creates the most biologically...

  18. OSU MODIS FLH Bloom Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Two bloom products were developed for the Oregon coast based on the observed change between running 8-day composite chlorophyll-a (CHL) and fluorescence line-height...

  19. Further Verification of Bloom's Taxonomy

    Science.gov (United States)

    Roberts, Nancy

    1976-01-01

    Tests a curriculum designed to teach fifth and sixth grade students system dynamics thinking, an orientation that is congruent with the fourth and fifth levels of Bloom's "Taxonomy of Educational Objectives: Cognitive Domain".

  20. A novel mobile system for radiation detection and monitoring

    Science.gov (United States)

    Biafore, Mauro

    2014-05-01

    A novel mobile system for real time, wide area radiation surveillance has been developed within the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). The REWARD sensing units are small, mobile portable units with low energy consumption, which consist of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit is integrated by a wireless communication interface to send the data remotely to a monitoring base station as well as a GPS system to calculate the position of the tag. The system also incorporates middleware and high-level software to provide web-service interfaces for the exchange of information. A central monitoring and decision support system has been designed to process the data from the sensing units and to compare them with historical record in order to generate an alarm when an abnormal situation is detected. A security framework ensures protection against unauthorized access to the network and data, ensuring the privacy of the communications and contributing to the overall robustness and reliability of the REWARD system. The REWARD system has been designed for many different scenarios such as nuclear terrorism threats, lost radioactive sources, radioactive contamination or nuclear accidents. It can be deployed in emergency units and in general in any type of mobile or static equipment, but also inside public/private buildings or infrastructures. The complete system is scalable in terms of complexity and cost and offers very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system allows for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity based on their

  1. Above-ground antineutrino detection for nuclear reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.

    2015-01-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by {sup 6}LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of {sup 6}Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].

  2. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  3. Environmental monitoring in peat bog areas by change detection methods

    Science.gov (United States)

    Michel, Ulrich; Mildes, Wiebke

    2016-10-01

    Remote sensing image analysis systems and geographic information systems (GIS) show great promise for the integration of a wide variety of spatial information supporting tasks such as urban and regional planning, natural resource management, agricultural studies and topographic or thematic mapping. Current and future remote sensing programs are based on a variety of sensors that will provide timely and repetitive multisensor earth observation on a global scale. GIS offer efficient tools for handling, manipulating, analyzing and presenting spatial data that are required for sensible decision making in various areas. The Environmental Monitoring project may serve as a convincing example of the operational use of integrated GIS/remote sensing technologies. The overall goal of the project is to assess the capabilities of satellite remote sensing for the analysis of land use changes, especially in moor areas. These areas are recognized as areas crucial to the mission of the Department of Environment and, therefore, to be placed under an extended level of protection. It is of critical importance, however, to have accurate and current information about the ecological and economic state of these sensitive areas. In selected pasture and moor areas, methods for multisensor data fusion have being developed and tested. The results of this testing show which techniques are useful for pasture and moor monitoring at an operational level. A hierarchical method is used for extracting bog land classes with respect to the environmental protection goals. A highly accurate classification of the following classes was accomplished: deciduous- and mixed forest, coniferous forest, water, very wet areas, meadowland/farmland with vegetation, meadowland/farmland with partly vegetation, meadowland/ farmland without vegetation, peat quarrying with maximum of 50% vegetation, de- and regeneration stages. In addition, a change detection analysis is performed in comparison with the existing

  4. Using EEG To Detect and Monitor Mental Fatigue

    Science.gov (United States)

    Montgomery, Leslie; Luna, Bernadette; Trejo, Leonard J.; Montgomery, Richard

    2001-01-01

    This project aims to develop EEG-based methods for detecting and monitoring mental fatigue. Mental fatigue poses a serious risk, even when performance is not apparently degraded. When such fatigue is associated with sustained performance of a single type of cognitive task it may be related to the metabolic energy required for sustained activation of cortical areas specialized for that task. The objective of this study was to adapt EEG to monitor cortical energy over a long period of performance of a cognitive task. Multielectrode event related potentials (ERPs) were collected every 15 minutes in nine subjects who performed a mental arithmetic task (algebraic sum of four randomly generated negative or positive digits). A new problem was presented on a computer screen 0.5 seconds after each response; some subjects endured for as long as three hours. ERPs were transformed to a quantitative measure of scalp electrical field energy. The average energy level at electrode P3 (near the left angular gyrus), 100-300 msec latency, was compared over the series of ERPs. For most subjects, scalp energy density at P3 gradually fell over the period of task performance and dramatically increased just before the subject was unable to continue the task. This neural response can be simulated for individual subjects using, a differential equation model in which it is assumed that the mental arithmetic task requires a commitment of metabolic energy that would otherwise be used for brain activities that are temporarily neglected. Their cumulative neglect eventually requires a reallocation of energy away from the mental arithmetic task.

  5. Scalable Distributed Change Detection from Astronomy Data Streams using Local, Asynchronous Eigen Monitoring Algorithms

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper considers the problem of change detection using local distributed eigen monitoring algorithms for next generation of astronomy petascale data pipelines...

  6. Monitoring gravity waves detected by I33MG

    Science.gov (United States)

    Randrianarinosy, Fanomezana; Andrianaivoarisora, Jean Bernardo; Tahina Rakotoariza, Andriniaina; Rambolamanana, Gérard; Harifidy Ramanantsoa, Andry

    2013-04-01

    Since September 2001, I33MG has recorded and stored data in the National Data Centre which belongs to the Laboratory of Seismology and Infrasound at the Institute and Observatory of Geophysics in Antananarivo (IOGA). The recorded data allowed us to monitor different sources of infrasound such as microbaroms, lightning, volcanoes, cyclones, mountain associated waves, explosions, etc which can be distinguished as acoustic waves. Besides, in the framework of the ARISE project, atmospheric waves having frequency below the acoustic cut-off frequency, known as gravity waves, are considered. Buoyancy oscillations are observed that fill the atmosphere and ocean and propagate long distances horizontally and vertically, have length scales from meters to thousands of kilometers, time scales from seconds to weeks, and release energy into turbulence by wave breaking. WinPMCC based on the Progressive Multi-Channel Correlation (PMCC) is used to detect and to get the wave parameters. Azimuth variation versus time is observed but events are mostly found from 200° to 360°, 0° to 100° and a few from 100° to 200°.

  7. Current limitations and challenges in nanowaste detection, characterisation and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Part, Florian; Zecha, Gudrun [Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna (Austria); Causon, Tim [Department of Chemistry, Division of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna (Austria); Sinner, Eva-Kathrin [Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at [Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna (Austria)

    2015-09-15

    Highlights: • First review on detection of nanomaterials in complex waste samples. • Focus on nanoparticles in solid, liquid and gaseous waste samples. • Summary of current applicable methods for nanowaste detection and characterisation. • Limitations and challenges of characterisation of nanoparticles in waste. - Abstract: Engineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams. Therefore, a new type of waste, so-called nanowaste, is generated when end-of-life ENMs and nano-enabled products are disposed of. In terms of the precautionary principle, environmental monitoring of end-of-life ENMs is crucial to allow assessment of the potential impact of nanowaste on our ecosystem. Trace analysis and quantification of nanoparticulate species is very challenging because of the variety of ENM types that are used in products and low concentrations of nanowaste expected in complex environmental media. In the framework of this paper, challenges in nanowaste characterisation and appropriate analytical techniques which can be applied to nanowaste analysis are summarised. Recent case studies focussing on the characterisation of ENMs in waste streams are discussed. Most studies aim to investigate the fate of nanowaste during incineration, particularly considering aerosol measurements; whereas, detailed studies focusing on the potential release of nanowaste during waste recycling processes are currently not available. In terms of suitable analytical methods, separation techniques coupled to spectrometry-based methods are promising tools to detect nanowaste and determine particle size distribution in liquid waste samples. Standardised leaching protocols can be applied to generate soluble fractions stemming from solid wastes, while

  8. Bloom syndrome with lung involvement.

    Science.gov (United States)

    Nair, Girija; Lobo, Ivona; Jayalaksmi, T K; Uppe, Abhay; Jindal, Savita; Chandra, Abhishek; Swami, Shivani

    2009-07-01

    We report a case of a 24-year old male presented with cough and breathlessness with diabetes mellitus and diagnosed as a case of bloom syndrome. He was a product of consanguineous marriage, having short stature, dolicocephaly, polydactyly, prominent nose with telangiectasia face. The respiratory system examination revealed bilateral coarse crepitations and wheezes and the chest X-ray revealed emphysema with right middle zone inhomogenous opacity. Also, CT thorax examination revealed bilateral cystic bronchiectasis with bronchiolitis obliterans. Bloom's syndrome was diagnosed on the basis of clinical features.

  9. Localization and Tracking of Submerged Phytoplankton Bloom Patches by an Autonomous Underwater Vehicle

    Science.gov (United States)

    Godin, M. A.; Ryan, J. P.; Zhang, Y.; Bellingham, J. G.

    2012-12-01

    Observing plankton in their drifting frame of reference permits effective studies of marine ecology from the perspective of microscopic life itself. By minimizing variation caused simply by advection, observations in a plankton-tracking frame of reference focus measurement capabilities on the processes that influence the life history of populations. Further, the patchy nature of plankton populations motivates use of sensor data in real-time to resolve patch boundaries and adapt observing resources accordingly. We have developed capabilities for population-centric plankton observation and sampling by autonomous underwater vehicles (AUVs). Our focus has been on phytoplankton populations, both because of their ecological significance - as the core of the oceanic food web and yet potentially harmful under certain bloom conditions, as well as the accessibility of their signal to simple optical sensing. During the first field deployment of these capabilities in 2010, we tracked a phytoplankton patch containing toxigenic diatoms and found that their toxicity correlated with exposure to resuspended sediments. However, this first deployment was labor intensive as the AUV drove in a pre-programmed pattern centered around a patch-marking drifter; it required a boat deployment of the patch-marking drifter and required full-time operators to periodically estimate of the position of the patch with respect to the drifter and adjust the AUV path accordingly. In subsequent field experiments during 2011 and 2012, the Tethys-class long-range AUVs ran fully autonomous patch tracking algorithms which detected phytoplankton patches and continually updated estimates of each patch center by driving adaptive patterns through the patch. Iterations of the algorithm were generated to overcome the challenges of tracking advecting and evolving patches while minimizing human involvement in vehicle control. Such fully autonomous monitoring will be necessary to perform long-term in

  10. Bloom, Neatby, and the Lung Fishes.

    Science.gov (United States)

    Auer, John W.

    1991-01-01

    Discusses Allan Bloom's "The Closing of the American Mind" from a Canadian point of view, contending that Bloom's angry, irrational book on failures in U.S. society and higher education does not raise interesting or important ideas. Similarities and differences between Bloom and author Hilda Neatby are noted. (SM)

  11. A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters

    Science.gov (United States)

    Shanmugam, Palanisamy

    2011-04-01

    A new bio-optical algorithm has been developed to provide accurate assessments of chlorophyll a (Chl a) concentration for detection and mapping of algal blooms from satellite data in optically complex waters, where the presence of suspended sediments and dissolved substances can interfere with phytoplankton signal and thus confound conventional band ratio algorithms. A global data set of concurrent measurements of pigment concentration and radiometric reflectance was compiled and used to develop this algorithm that uses the normalized water-leaving radiance ratios along with an algal bloom index (ABI) between three visible bands to determine Chl a concentrations. The algorithm is derived using Sea-viewing Wide Field-of-view Sensor bands, and it is subsequently tuned to be applicable to Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua data. When compared with large in situ data sets and satellite matchups in a variety of coastal and ocean waters the present algorithm makes good retrievals of the Chl a concentration and shows statistically significant improvement over current global algorithms (e.g., OC3 and OC4v4). An examination of the performance of these algorithms on several MODIS/Aqua images in complex waters of the Arabian Sea and west Florida shelf shows that the new algorithm provides a better means for detecting and differentiating algal blooms from other turbid features, whereas the OC3 algorithm has significant errors although yielding relatively consistent results in clear waters. These findings imply that, provided that an accurate atmospheric correction scheme is available to deal with complex waters, the current MODIS/Aqua, MERIS and OCM data could be extensively used for quantitative and operational monitoring of algal blooms in various regional and global waters.

  12. Recreational Exposure to Low Concentrations of Microcystins During an Algal Bloom in a Small Lake

    Directory of Open Access Journals (Sweden)

    Yung-Sung Cheng

    2008-06-01

    Full Text Available We measured microcystins in blood from people at risk for swallowing water or inhaling spray while swimming, water skiing, jet skiing, or boating during an algal bloom. We monitored water samples from a small lake as a Microcystis aeruginosa bloom developed. We recruited 97 people planning recreational activities in that lake and seven others who volunteered to recreate in a nearby bloom-free lake. We conducted our field study within a week of finding a 10-μg/L microcystin concentration. We analyzed water, air, and human blood samples for water quality, potential human pathogens, algal taxonomy, and microcystin concentrations. We interviewed study participants for demographic and current health symptom information. Water samples were assayed for potential respiratory viruses (adenoviruses and enteroviruses, but none were detected. We did find low concentrations of Escherichia coli, indicating fecal contamination. We found low levels of microcystins (2 μg/L to 5 μg/L in the water and (<0.1 ng/m3 in the aerosol samples. Blood levels of microcystins for all participants were below the limit of detection (0.147μg/L. Given this low exposure level, study participants reported no symptom increases following recreational exposure to microcystins. This is the first study to report that water-based recreational activities can expose people to very low concentrations of aerosol-borne microcystins; we recently conducted another field study to assess exposures to higher concentrations of these algal toxins.

  13. 40 CFR Appendix I to Part 258 - Constituents for Detection Monitoring

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Constituents for Detection Monitoring... for Detection Monitoring Common name 1 CAS RN 2 Inorganic Constituents: (1) Antimony (Total) (2) Arsenic (Total) (3) Barium (Total) (4) Beryllium (Total) (5) Cadmium (Total) (6) Chromium (Total)...

  14. Analysis of algal bloom risk with uncertainties in lakes by integrating self-organizing map and fuzzy information theory.

    Science.gov (United States)

    Chen, Qiuwen; Rui, Han; Li, Weifeng; Zhang, Yanhui

    2014-06-01

    Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004-2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial-temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial-temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties.

  15. Mutational analysis of Bloom helicase.

    Science.gov (United States)

    Xi, Xu Guang

    2010-01-01

    DNA helicases are biomolecular motors that convert the chemical energy derived from the hydrolysis of nucleotide triphosphate (usually ATP) into mechanical energy to unwind double-stranded DNA. The unwinding of double-stranded DNA is an essential process for DNA replication, repair, recombination, and transcription. Mutations in human RecQ helicases result in inherent human disease including Bloom's syndrome, Werner's syndrome, and Rothmund-Thomson syndrome. Bloom's syndrome (BS) is a rare human autosomal recessive disorder characterized by a strong predisposition to a wide range of cancers commonly affecting the general population. In order to understand the molecular basis of BS pathology and the mechanism underlying the function of Bloom helicase, we have analyzed BS-causing missense mutations by a combination of structural modeling, site-directed mutagenesis, and biochemical and biophysical approaches. Here, we describe the methods and protocols for measuring ATPase, ATP and DNA binding, DNA strand annealing, and DNA unwinding activities of Bloom protein and its mutant variants. These approaches should be applicable and useful for studying other helicases.

  16. Monitoring marine populations and communities: methods dealing with imperfect detectability

    NARCIS (Netherlands)

    Katsanevakis, S.; Weber, A.; Pipitone, C.; Leopold, M.F.; Scheidat, M.; Boois, de I.J.; Jansen, J.M.

    2012-01-01

    Effective monitoring of populations and communities is a prerequisite for ecosystem-based management of marine areas. However, monitoring programs often neglect important sources of error and thus can lead to biased estimates, spurious conclusions and false management actions. One such source of err

  17. 18. Adduct detection in human monitoring for carcinogen exposure

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Determination of the covalently bound products (adducts) of carcinogens with DNA or proteins may be used for the monitoring of exposure to these compounds. Protein adducts are generally stable and are not enzymatically repaired, and the use of these for cxposure monitoring is normally carried out with globin or albumin, because

  18. Status, Alert System, and Prediction of Cyanobacterial Bloom in South Korea

    Directory of Open Access Journals (Sweden)

    Ankita Srivastava

    2015-01-01

    Full Text Available Bloom-forming freshwater cyanobacterial genera pose a major ecological problem due to their ability to produce toxins and other bioactive compounds, which can have important implications in illnesses of humans and livestock. Cyanobacteria such as Microcystis, Anabaena, Oscillatoria, Phormidium, and Aphanizomenon species producing microcystins and anatoxin-a have been predominantly documented from most South Korean lakes and reservoirs. With the increase in frequency of such blooms, various monitoring approaches, treatment processes, and prediction models have been developed in due course. In this paper we review the field studies and current knowledge on toxin producing cyanobacterial species and ecological variables that regulate toxin production and bloom formation in major rivers (Han, Geum, Nakdong, and Yeongsan and reservoirs in South Korea. In addition, development of new, fast, and high-throughput techniques for effective monitoring is also discussed with cyanobacterial bloom advisory practices, current management strategies, and their implications in South Korean freshwater bodies.

  19. Harmful Algal Bloom Research in China

    Institute of Scientific and Technical Information of China (English)

    Su Jilan; Zhou Mingjiang

    2001-01-01

    Proliferations of harmful algae in coastal waters, i.e., harmful algal blooms (HABs), popularly known as "red tides," have attracted the concern of governments and scientists worldwide. In recent years, HABs have occurred in China with increasing frequency and scope. These outbreaks have seriously affected the economy along the coast through fish kills, heavy losses in aquaculture, threats to human health, and other effects detrimental to the marine ecosystem. Therefore, it is important to pay special attention to the ecology and oceanography studies related to the outbreak of HABs. Only through the combination of the advancement of such knowledge with the strengthening of the monitoring network can we develop a HAB warning system for the sustainable development of the coastal economy.

  20. Crucial Component Damage Detection, Monitoring and Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers an on-board structural health-monitoring (SHM) system with embedded sensors that sense mechanical impedance deviations to flag incipient...

  1. Tsunamis: Detection, monitoring, and early-warning technologies

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    monitoring and management of coastal oceanogenic natural disasters such as storm- surges and tsunamis, a network of real-time reporting sea-level communication systems has several routine operational benefits. These include safe navigation in shallow coastal...

  2. Variability of factors driving spatial and temporal dispersion in river plume and Chattonella antiqua bloom in the Yatsushiro Sea, Japan.

    Science.gov (United States)

    Aoki, Kazuhiro; Onitsuka, Goh; Shimizu, Manabu; Kuroda, Hiroshi; Matsuo, Hitoshi; Kitadai, Yuuki; Sakurada, Kiyonari; Ando, Hidenori; Nishi, Hiromi; Tahara, Yoshio

    2014-04-15

    The dynamics of river plume in relation to harmful blooms of the raphidophycean flagellate, Chattonella antiqua in summer 2008-2010 in the Yatsushiro Sea, Japan were studied using a hydrodynamic model and monitoring data. In the southern area, the bloom formed in the waters stratified by a halocline caused by the southward expansion of riverine water from the Kuma River after the bloom initially forming in the northern area. The timing of the southward riverine water advection can be explained by the balance between the wind stress term and the pressure gradient term calculated from the horizontal density difference between the northern and southern areas. The wind stress and pressure gradient terms were evaluated using the sea surface temperature, salinity, wind speed and direction at two stations. Real time monitoring or continuous observations in these areas will enable nowcasts of bloom expansion when a bloom develops in the northern area.

  3. Monitor for detecting and assessing exposure to airborne nanoparticles

    Science.gov (United States)

    Marra, Johan; Voetz, Matthias; Kiesling, Heinz-Jürgen

    2010-01-01

    An important safety aspect of the workplace environment concerns the severity of its air pollution with nanoparticles (NP; workplace air pollution level and the personal exposure to airborne NPs. This article describes the design and operation of the Aerasense NP monitor that enables intelligence gathering in particular with respect to airborne particles in the 10-300 nm size range. The NP monitor provides real time information about their number concentration, average size, and surface areas per unit volume of inhaled air that deposit in the various compartments of the respiratory tract. The monitor's functionality relies on electrical charging of airborne particles and subsequent measurements of the total particle charge concentration under various conditions. Information obtained with the NP monitor in a typical workplace environment has been compared with simultaneously recorded data from a Scanning Mobility Particle Sizer (SMPS) capable of measuring the particle size distribution in the 11-1086 nm size range. When the toxicological properties of the engineered and/or released particles in the workplace are known, personal exposure monitoring allows a risk assessment to be made for a worker during each workday, when the workplace-produced particles can be distinguished from other (ambient) particles.

  4. Fish Sound Production in the Presence of Harmful Algal Blooms in the Eastern Gulf of Mexico

    Science.gov (United States)

    Wall, Carrie C.; Lembke, Chad; Hu, Chuanmin; Mann, David A.

    2014-01-01

    This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements. PMID:25551564

  5. Fish sound production in the presence of harmful algal blooms in the eastern Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Carrie C Wall

    Full Text Available This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs. Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides. Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements.

  6. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.

    2015-04-01

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms.

  7. Power analysis and trend detection for water quality monitoring data. An application for the Greater Yellowstone Inventory and Monitoring Network

    Science.gov (United States)

    Irvine, Kathryn M.; Manlove, Kezia; Hollimon, Cynthia

    2012-01-01

    An important consideration for long term monitoring programs is determining the required sampling effort to detect trends in specific ecological indicators of interest. To enhance the Greater Yellowstone Inventory and Monitoring Network’s water resources protocol(s) (O’Ney 2006 and O’Ney et al. 2009 [under review]), we developed a set of tools to: (1) determine the statistical power for detecting trends of varying magnitude in a specified water quality parameter over different lengths of sampling (years) and different within-year collection frequencies (monthly or seasonal sampling) at particular locations using historical data, and (2) perform periodic trend analyses for water quality parameters while addressing seasonality and flow weighting. A power analysis for trend detection is a statistical procedure used to estimate the probability of rejecting the hypothesis of no trend when in fact there is a trend, within a specific modeling framework. In this report, we base our power estimates on using the seasonal Kendall test (Helsel and Hirsch 2002) for detecting trend in water quality parameters measured at fixed locations over multiple years. We also present procedures (R-scripts) for conducting a periodic trend analysis using the seasonal Kendall test with and without flow adjustment. This report provides the R-scripts developed for power and trend analysis, tutorials, and the associated tables and graphs. The purpose of this report is to provide practical information for monitoring network staff on how to use these statistical tools for water quality monitoring data sets.

  8. Clinical features of Bloom syndrome and function of the causative gene, BLM helicase.

    Science.gov (United States)

    Kaneko, Hideo; Kondo, Naomi

    2004-05-01

    Bloom syndrome is a rare autosomal recessive genetic disorder characterized by growth deficiency, unusual facies, sun-sensitive telangiectatic erythema, immunodeficiency and predisposition to cancer. The causative gene for Bloom syndrome is BLM, which encodes the BLM RecQ helicase homolog protein. The first part of this review describes a long-term follow-up study of two Bloom syndrome siblings. Subsequently, the focus is placed on the functional domains of BLM. Laboratory diagnosis of Bloom syndrome by detecting mutations in BLM is laborious and impractical, unless there are common mutations in a population. Immunoblot and immunohistochemical analyses for the detection of the BLM protein using a polyclonal BLM antibody, which are useful approaches for clinical diagnosis of Bloom syndrome, are also described. In addition, a useful adjunct for the diagnosis of Bloom syndrome in terms of the BLM function is investigated, since disease cells must have the defective BLM helicase function. This review also discusses the nuclear localization signal of BLM, the proteins that interact with BLM and tumors originating from Bloom syndrome.

  9. Operational Surface Water Detection and Monitoring Using Radarsat 2

    Directory of Open Access Journals (Sweden)

    Sandra Bolanos

    2016-03-01

    Full Text Available Traditional on-site methods for mapping and monitoring surface water extent are prohibitively expensive at a national scale within Canada. Despite successful cost-sharing programs between the provinces and the federal government, an extensive number of water features within the country remain unmonitored. Particularly difficult to monitor are the potholes in the Canadian Prairie region, most of which are ephemeral in nature and represent a discontinuous flow that influences water pathways, runoff response, flooding and local weather. Radarsat-2 and the Radarsat Constellation Mission (RCM offer unique capabilities to map the extent of water bodies at a national scale, including unmonitored sites, and leverage the current infrastructure of the Meteorological Service of Canada to monitor water information in remote regions. An analysis of the technical requirements of the Radarsat-2 beam mode, polarization and resolution is presented. A threshold-based procedure to map locations of non-vegetated water bodies after the ice break-up is used and complemented with a texture-based indicator to capture the most homogeneous water areas and automatically delineate their extents. Some strategies to cope with the radiometric artifacts of noise inherent to Synthetic Aperture Radar (SAR images are also discussed. Our results show that Radarsat-2 Fine mode can capture 88% of the total water area in a fully automated way. This will greatly improve current operational procedures for surface water monitoring information and impact a number of applications including weather forecasting, hydrological modeling, and drought/flood predictions.

  10. Groundwater detection monitoring system design under conditions of uncertainty

    NARCIS (Netherlands)

    Yenigül, N.B.

    2006-01-01

    Landfills represent a wide-spread and significant threat to groundwater quality. In this thesis a methodology was developed for the design of optimal groundwater moni-toring system design at landfill sites under conditions of uncertainty. First a decision analysis approach was presented for optimal

  11. Switching toxin production on and off: intermittent microcystin synthesis in a Microcystis bloom.

    Science.gov (United States)

    Wood, Susie A; Rueckert, Andreas; Hamilton, David P; Cary, S Craig; Dietrich, Daniel R

    2011-02-01

    Toxic cyanobacterial blooms are increasing in prevalence. Microcystins are the most commonly produced cyanotoxin. Despite extensive research the variables regulating microcystin production remain unclear. Using a RT-QPCR assay that allowed the precise measurement of mcyE transcriptional gene expression and an ELISA that enabled small changes in total microcystin concentrations to be monitored, we demonstrate for the first time that microcystin production is not always constitutive and that significant up- and downregulation in microcystin synthesis can occur on time scales of 2-6 h. Samples were collected over 3 days from a small eutrophic lake during a dense microcystin-producing Microcystis bloom. McyE gene transcripts were detected in only four out of 14 samples. Vicissitudes in both microcystin quotas and extracellular microcystin levels corresponded with changes in mcyE expression. During the period of exalted microcystin synthesis Microcystis sp. cell concentrations increased from 70 000 cells ml(-1) to 4 000 000 cells ml(-1) . These data provide compelling evidence that changes in Microcystis cell concentrations influence microcystin production.

  12. A case of Bloom syndrome with uncommon clinical manifestations confirmed on genetic testing.

    Science.gov (United States)

    Jian-Bing, Wu; Cheng-Rang, Li; Yi-Ping, Ma; Nan, Sheng; Hui, Li; Lin, Lin

    2016-02-01

    Bloom syndrome, a rare autosomal-recessive disorder, characteristically presents with photosensitivity, telangiectatic facial erythema, and growth deficiency. We present a case of Bloom syndrome with uncommon clinical manifestations including alopecia areata, eyebrow hair loss, flat nose, reticular pigmentation, and short sharpened distal phalanges with fingernails that were wider than they were long. We detected the Bloom syndrome gene, BLM, which is one of the members of the RecQ family of DNA helicases, and found changes in 2 heterozygous nucleotide sites in the patient as well as her father and mother.

  13. Skill assessment for an operational algal bloom forecast system

    Science.gov (United States)

    Stumpf, Richard P.; Tomlinson, Michelle C.; Calkins, Julie A.; Kirkpatrick, Barbara; Fisher, Kathleen; Nierenberg, Kate; Currier, Robert; Wynne, Timothy T.

    2010-01-01

    An operational forecast system for harmful algal blooms (HABs) in southwest Florida is analyzed for forecasting skill. The HABs, caused by the toxic dinoflagellate, Karenia brevis, lead to shellfish toxicity and to respiratory irritation. In addition to predicting new blooms and their extent, HAB forecasts are made twice weekly during a bloom event, using a combination of satellite derived image products, wind predictions, and a rule-based model derived from previous observations and research. These forecasts include: identification, intensification, transport, extent, and impact; the latter being the most significant to the public. Identification involves identifying new blooms as HABs and is validated against an operational monitoring program involving water sampling. Intensification forecasts, which are much less frequently made, can only be evaluated with satellite data on mono-specific blooms. Extent and transport forecasts of HABs are also evaluated against the water samples. Due to the resolution of the forecasts and available validation data, skill cannot be resolved at scales finer than 30 km. Initially, respiratory irritation forecasts were analyzed using anecdotal information, the only available data, which had a bias toward major respiratory events leading to a forecast accuracy exceeding 90%. When a systematic program of twice-daily observations from lifeguards was implemented, the forecast could be meaningfully assessed. The results show that the forecasts identify the occurrence of respiratory events at all lifeguard beaches 70% of the time. However, a high rate (80%) of false positive forecasts occurred at any given beach. As the forecasts were made at half to whole county level, the resolution of the validation data was reduced to county level, reducing false positives to 22% (accuracy of 78%). The study indicates the importance of systematic sampling, even when using qualitative descriptors, the use of validation resolution to evaluate forecast

  14. Population size influences amphibian detection probability: implications for biodiversity monitoring programs.

    Directory of Open Access Journals (Sweden)

    Lorenzo G Tanadini

    Full Text Available Monitoring is an integral part of species conservation. Monitoring programs must take imperfect detection of species into account in order to be reliable. Theory suggests that detection probability may be determined by population size but this relationship has not yet been assessed empirically. Population size is particularly important because it may induce heterogeneity in detection probability and thereby cause bias in estimates of biodiversity. We used a site occupancy model to analyse data from a volunteer-based amphibian monitoring program to assess how well different variables explain variation in detection probability. An index to population size best explained detection probabilities for four out of six species (to avoid circular reasoning, we used the count of individuals at a previous site visit as an index to current population size. The relationship between the population index and detection probability was positive. Commonly used weather variables best explained detection probabilities for two out of six species. Estimates of site occupancy probabilities differed depending on whether the population index was or was not used to model detection probability. The relationship between the population index and detectability has implications for the design of monitoring and species conservation. Most importantly, because many small populations are likely to be overlooked, monitoring programs should be designed in such a way that small populations are not overlooked. The results also imply that methods cannot be standardized in such a way that detection probabilities are constant. As we have shown here, one can easily account for variation in population size in the analysis of data from long-term monitoring programs by using counts of individuals from surveys at the same site in previous years. Accounting for variation in population size is important because it can affect the results of long-term monitoring programs and ultimately the

  15. Population size influences amphibian detection probability: implications for biodiversity monitoring programs.

    Science.gov (United States)

    Tanadini, Lorenzo G; Schmidt, Benedikt R

    2011-01-01

    Monitoring is an integral part of species conservation. Monitoring programs must take imperfect detection of species into account in order to be reliable. Theory suggests that detection probability may be determined by population size but this relationship has not yet been assessed empirically. Population size is particularly important because it may induce heterogeneity in detection probability and thereby cause bias in estimates of biodiversity. We used a site occupancy model to analyse data from a volunteer-based amphibian monitoring program to assess how well different variables explain variation in detection probability. An index to population size best explained detection probabilities for four out of six species (to avoid circular reasoning, we used the count of individuals at a previous site visit as an index to current population size). The relationship between the population index and detection probability was positive. Commonly used weather variables best explained detection probabilities for two out of six species. Estimates of site occupancy probabilities differed depending on whether the population index was or was not used to model detection probability. The relationship between the population index and detectability has implications for the design of monitoring and species conservation. Most importantly, because many small populations are likely to be overlooked, monitoring programs should be designed in such a way that small populations are not overlooked. The results also imply that methods cannot be standardized in such a way that detection probabilities are constant. As we have shown here, one can easily account for variation in population size in the analysis of data from long-term monitoring programs by using counts of individuals from surveys at the same site in previous years. Accounting for variation in population size is important because it can affect the results of long-term monitoring programs and ultimately the conservation of

  16. MidColumbia - Early Detection, Monitoring and Mapping of Invasives with Volunteers

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Project will initiate a program for the early detection, monitoring and mapping of invasive species on McNary and Umatilla NWR's using Refuge volunteers. The initial...

  17. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  18. Monitoring of enzymatic reactions using capillary electrophoresis with conductivity detection

    OpenAIRE

    2009-01-01

    Capillary electrophoresis combined with contactless conductivity detection allows to separate and detect the ionic species, which are neither UV absorbing nor fluorescent. This thesis focuses on the applications of this method on enzymatic reactions in different analytical tasks. First, the non-ionic species ethanol, glucose, ethyl acetate and ethyl butyrate were made accessible for analysis by capillary electrophoresis via charged products or byproducts obtained in enzymati...

  19. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  20. Developing detection and monitoring strategies for Planococcus minor (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Roda, Amy; Millar, Jocelyn G; Rascoe, John; Weihman, Scott; Stocks, Ian

    2012-12-01

    A pheromone-based system to locate and monitor Planococcus minor (Maskell), a pest of over 250 plants including citrus, grape, and cacao, was tested. The difficulty in distinguishing P. minor from the citrus mealybug, P. citri, makes finding and evaluating the impact of the pest challenging. Studies conducted in Puerto Rico determined that synthetic P. minor pheromone lures preaged 120 d in the field caught similar number of males as lures not aged (fresh). Molecular analysis of trapped mealybug males using mitochondrial cytochrome oxidase-1, the internal transcriber space two locus, and 28S-D2 gene showed the pheromone traps to be species specific. Traps baited with P. minor pheromone were used to monitor the pest in south Florida and to locate potential infestations. P. minor males were found at all locations studied in South Florida and were present in low numbers (1.03 +/- 0.69 mean +/- SE/trap/14 d). Over 14,000 terminals, fruit, and flowers were visually inspected over a 6 mo period of peak trap catches before the first adult P. minor female was found. The synthetic pheromone lures proved to be an effective tool to locate and monitor this pest new to the continental United States.

  1. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    DEFF Research Database (Denmark)

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming

    2013-01-01

    on a single hardware platform, but it is capable of both monitoring and data transmission. This is achieved by employing a new random pulse length detection method that allows data transmission by using a modulated monitoring signal. To prove the proposed concept a test system has been built, using commercial...

  2. MERUNUT PEMAHAMAN TAKSONOMI BLOOM: SUATU KONTEMPLASI FILOSOFIS

    OpenAIRE

    Dominikus Tulasi

    2010-01-01

    This article would like to share the use of Bloom's taxonomy as a cognitive framework for teaching-learning process to undertake the way student-centered learning. Related to the curriculum based competence in excellent education, the abstract cognitive in applying Blooms taxonomy is so called scaffolding. We know the taxonomy Bloom is a six-level classification system that uses observed student behavior to infer and absorb the level of cognitive achievement domain. This article surveys think...

  3. Massive phytoplankton blooms under Arctic sea ice.

    Science.gov (United States)

    Arrigo, Kevin R; Perovich, Donald K; Pickart, Robert S; Brown, Zachary W; van Dijken, Gert L; Lowry, Kate E; Mills, Matthew M; Palmer, Molly A; Balch, William M; Bahr, Frank; Bates, Nicholas R; Benitez-Nelson, Claudia; Bowler, Bruce; Brownlee, Emily; Ehn, Jens K; Frey, Karen E; Garley, Rebecca; Laney, Samuel R; Lubelczyk, Laura; Mathis, Jeremy; Matsuoka, Atsushi; Mitchell, B Greg; Moore, G W K; Ortega-Retuerta, Eva; Pal, Sharmila; Polashenski, Chris M; Reynolds, Rick A; Schieber, Brian; Sosik, Heidi M; Stephens, Michael; Swift, James H

    2012-06-15

    Phytoplankton blooms over Arctic Ocean continental shelves are thought to be restricted to waters free of sea ice. Here, we document a massive phytoplankton bloom beneath fully consolidated pack ice far from the ice edge in the Chukchi Sea, where light transmission has increased in recent decades because of thinning ice cover and proliferation of melt ponds. The bloom was characterized by high diatom biomass and rates of growth and primary production. Evidence suggests that under-ice phytoplankton blooms may be more widespread over nutrient-rich Arctic continental shelves and that satellite-based estimates of annual primary production in these waters may be underestimated by up to 10-fold.

  4. Adaptive, Model-Based Monitoring and Threat Detection

    Science.gov (United States)

    Valdes, Alfonso; Skinner, Keith

    2002-09-01

    We explore the suitability of model-based probabilistic techniques, such as Bayes networks, to the field of intrusion detection and alert report correlation. We describe a network intrusion detection system (IDS) using Bayes inference, wherein the knowledge base is encoded not as rules but as conditional probability relations between observables and hypotheses of normal and malicious usage. The same high-performance Bayes inference library was employed in a component of the Mission-Based Correlation effort, using an initial knowledge base that adaptively learns the security administrator's preference for alert priority and rank. Another major effort demonstrated probabilistic techniques in heterogeneous sensor correlation. We provide results for simulated attack data, live traffic, and the CyberPanel Grand Challenge Problem. Our results establish that model-based probabilistic techniques are an important complementary capability to signature-based methods in detection and correlation.

  5. Webcams for bird detection and monitoring: a demonstration study.

    Science.gov (United States)

    Verstraeten, Willem W; Vermeulen, Bart; Stuckens, Jan; Lhermitte, Stefaan; Van der Zande, Dimitry; Van Ranst, Marc; Coppin, Pol

    2010-01-01

    Better insights into bird migration can be a tool for assessing the spread of avian borne infections or ecological/climatologic issues reflected in deviating migration patterns. This paper evaluates whether low budget permanent cameras such as webcams can offer a valuable contribution to the reporting of migratory birds. An experimental design was set up to study the detection capability using objects of different size, color and velocity. The results of the experiment revealed the minimum size, maximum velocity and contrast of the objects required for detection by a standard webcam. Furthermore, a modular processing scheme was proposed to track and follow migratory birds in webcam recordings. Techniques such as motion detection by background subtraction, stereo vision and lens distortion were combined to form the foundation of the bird tracking algorithm. Additional research to integrate webcam networks, however, is needed and future research should enforce the potential of the processing scheme by exploring and testing alternatives of each individual module or processing step.

  6. Remote Oil Spill Detection and Monitoring Beneath Sea Ice

    Science.gov (United States)

    Polak, Adam; Marshall, Stephen; Ren, Jinchang; Hwang, Byongjun (Phil); Hagan, Bernard; Stothard, David J. M.

    2016-08-01

    The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full extent of the oil seepage beneath the sea ice. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a potential tool to detect the presence of oil beneath the sea ice. A small sample, lab based experiment, serving as a proof of concept, resulted in the successful identification of oil presence beneath the thin ice layer as opposed to the other sample with ice only. The paper demonstrates the results of this experiment that granted a financial support to execute full feasibility study of this technology for oil spill detection beneath the sea ice.

  7. Coastal eutrophication, land use changes and Ceratium furca (Dinophyceae) blooms in Pago Pago Harbor, American Samoa 2007-2009

    Science.gov (United States)

    Morton, Steve L.; Shuler, Andrew; Paternoster, Jeff; Fanolua, Sharon; Vargo, Don

    2011-07-01

    The bloom forming dinoflagellate, Ceratium furca, has been linked with coastal eutrophication worldwide in tropical and subtropical locations. During the summer of 2007, an unusual 6-month long bloom of C. furca was observed in Pago Pago Harbor, Tutuila Island, American Samoa. Incidents of dinoflagellate blooms in this area have not been previously reported. The bloom was first reported in May and dissipated in November 2007. In February-March 2009, a similar C. furca bloom was observed. During both blooms, no fish mortality events were reported. Maximum cell counts were observed on September 20, 2007 at 9 200 cell/mL. At this time, total nitrogen was measured at 1.2 mg/L while total phosphate was below detection limits. Changes in land use practices may have been the primary driver of these blooms. Intense fertilization of athletic fields coupled with ineffective management strategies is hypothesized to have a direct link to the increase in nutrients found in the Pago Pago Harbor and may have been the trigger for the initialization of these blooms. During 2008, the fields were not used due to an infestation of the fire ant, Solenopsis geminata. Once controlled, the fields were opened again in 2009 and fertilizers were applied in January, a month before the bloom was observed.

  8. Sea-ice retreat controls timing of summer plankton blooms in the Eastern Arctic Ocean

    Science.gov (United States)

    Janout, Markus A.; Hölemann, Jens; Waite, Anya M.; Krumpen, Thomas; Appen, Wilken-Jon; Martynov, Fedor

    2016-12-01

    Two full-year mooring records of sea-ice, physical, and bio-optical parameters illuminate tight temporal coupling between the retreating seasonal ice edge and the summer phytoplankton bloom on the Laptev Sea shelf. Our records showed no sign of pelagic under-ice blooms despite available nutrients and thinning sea ice in early summer, presumably because stratification had not yet developed. Chlorophyll blooms were detected immediately after the ice retreated in late May 2014 and late July 2015. Despite radically different timing, the blooms were similar in both magnitude and length, interpreted as community-level nutrient limitation. Acoustic backscatter records suggest the delayed 2015 bloom resulted in lower zooplankton abundance, perhaps due to a timing mismatch between ice algal and pelagic blooms and unfavorable thermal conditions. Our observations provide classical examples of ice-edge blooms and further emphasize the complexity of high-latitude shelves and the need to understand vertical mixing processes important for stratification and nutrient fluxes.

  9. Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques.

    Science.gov (United States)

    Dwivedi, R; Rafeeq, M; Smitha, B R; Padmakumar, K B; Thomas, Lathika Cicily; Sanjeevan, V N; Prakash, Prince; Raman, Mini

    2015-02-01

    Oceanic waters of the Northern Arabian Sea experience massive algal blooms during winter-spring (mid Feb-end Mar), which prevail for at least for 3 months covering the entire northern half of the basin from east to west. Ship cruises were conducted during winter-spring of 2001-2012 covering different stages of the bloom to study the biogeochemistry of the region. Phytoplankton analysis indicated the presence of green tides of dinoflagellate, Noctiluca scintillans (=N. miliaris), in the oceanic waters. Our observations indicated that diatoms are coupled and often co-exist with N. scintillans, making it a mixed-species ecosystem. In this paper, we describe an approach for detection of bloom-forming algae N. scintillans and its discrimination from diatoms using Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data in a mixed-species environment. In situ remote sensing reflectance spectra were generated using Satlantic™ hyperspectral radiometer for the bloom and non-bloom waters. Spectral shapes of the reflectance spectra for different water types were distinct, and the same were used for species identification. Scatter of points representing different phytoplankton classes on a derivative plot revealed four diverse clusters, viz. N. scintillans, diatoms, non-bloom oceanic, and non-bloom coastal waters. The criteria developed for species discrimination were implemented on MODIS data and validated using inputs from a recent ship cruise conducted in March 2013.

  10. Mental Fatigue Monitoring Using a Wearable Transparent Eye Detection System

    Directory of Open Access Journals (Sweden)

    Kota Sampei

    2016-01-01

    Full Text Available We propose mental fatigue measurement using a wearable eye detection system. The system is capable of acquiring movement of the pupil and blinking from the light reflected from the eye. The reflection is detected by dye-sensitized photovoltaic cells. Since these cells are patterned onto the eyeglass and do not require external input power, the system is notable for its lightweight and low power consumption and can be combined with other wearable devices, such as a head mounted display. We performed experiments to correlate information obtained by the eye detection system with the mental fatigue of the user. Since it is quite difficult to evaluate mental fatigue objectively and quantitatively, we assumed that the National Aeronautics and Space Administration Task Load Index (NASA-TLX had a strong correlation with te mental fatigue. While a subject was requested to conduct calculation tasks, the eye detection system collected his/her information that included position, velocity and total movement of the eye, and amount and frequency of blinking. Multiple regression analyses revealed the correlation between NASA-TLX and the information obtained for 3 out of 5 subjects.

  11. Monitoring water supply systems for anomaly detection and response

    NARCIS (Netherlands)

    Bakker, M.; Lapikas, T.; Tangena, B.H.; Vreeburg, J.H.G.

    2012-01-01

    Water supply systems are vulnerable to damage caused by unintended or intended human actions, or due to aging of the system. In order to minimize the damages and the inconvenience for the customers, a software tool was developed to detect anomalies at an early stage, and to support the responsible s

  12. Detecting and monitoring aquacultural patterns through multitemporal SAR imagery analysis

    Science.gov (United States)

    Profeti, Giuliana; Travaglia, Carlo; Carla, Roberto

    2003-03-01

    The inventory and monitoring of aquaculture areas are essential tools for decision-making at a governmental level in developing countries. With the use of satellite imagery, these tasks can be performed in an accurate, rapid and objective way. This approach is also economically viable, as the worth of aquaculture far outweighs its cost. This paper describes a methodology for identifying and monitoring shrimp farms by means of multi-temporal satellite SAR data. SAR offer all-weather capabilities, an important characteristic since shrimp farms exist in tropical and sub-tropical areas. Moreover, the backscatter effect created by the dykes surrounding the ponds produces a typical pattern which allows the interpreter to distinguish them from other types of water-covered surfaces. However, the presence of speckle noise limits the interpretability of SAR imagery. To increase it, a multi-temporal set of four scenes covering the study area was processed by using a method that enhances time-invariant spatial features and reduces speckle without compromising the geometrical resolution of the images. The enhanced SAR imagery has proved to be valuable in identifying shrimp farm patterns with a field-tested accuracy of more than 90 percent. The methodology reported in this study has been tested with the ground truth obtained under operative conditions in Sri Lanka, thanks to the support of the FAO TCP/SRL/6712 project.

  13. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  14. Bloom syndrome with lung involvement

    Directory of Open Access Journals (Sweden)

    Nair Girija

    2009-01-01

    Full Text Available We report a case of a 24-year old male presented with cough and breathlessness with diabetes mellitus and diagnosed as a case of bloom syndrome. He was a product of consanguineous marriage, having short stature, dolicocephaly, polydactyly, prominent nose with telangiectasia face. The respiratory system examination revealed bilateral coarse crepitations and wheezes and the chest X-ray revealed emphysema with right middle zone inhomogenous opacity. Also, CT thorax examination revealed bilateral cystic bronchiectasis with bronchiolitis obliterans. Bloom′s syndrome was diagnosed on the basis of clinical features.

  15. Research on Overflow Monitoring Mechanism Based on Downhole Microflow Detection

    Directory of Open Access Journals (Sweden)

    Liang Ge

    2014-01-01

    Full Text Available The flow rate variation of the drilling fluid and micro-overflow loss is difficult to analyze. The purpose to prevent the occurrence of kick, lost circulation, and other complex conditions is not easy to be achieved. Therefore, the microflow-induced annulus multiphase flow rate and annulus pressure field model were studied, and a downhole microflow measurement system has been developed. A differential pressure type flow measurement was used in the system, and real-time downhole information was obtained to achieve deep, narrow windows and other safety-density complex formation security. This paper introduced a new bottom-hole flow meter which can measure the annular flux while drilling and monitor overflow and circulation loss. The accuracy and reliability of the MPD (managed pressure drilling system can be improved obviously by applying the device; as a result, the safety of drilling is enhanced and the cost is reduced.

  16. Improving Seismic Monitoring System for Small to Intermediate Earthquake Detection

    OpenAIRE

    V. Joevivek, N. Chandrasekar & Y.Srinivas

    2010-01-01

    Efficient and successful seismic event detection is an important and challengingissue in many disciplines, especially in tectonics studies and geo-seismicsciences. In this paper, we propose a fast, efficient, and useful feature extractiontechnique for maximally separable class events. Support vector machineclassifier algorithm with an adjustable learning rate has been utilized toadaptively and accurately estimate small level seismic events. The algorithm hasless computation, and thereby incre...

  17. Home monitoring system improves the detection of ventricular arrhythmia and inappropriate shock

    Institute of Scientific and Technical Information of China (English)

    WANG Huan; HUA Wei; DING Li-gang; WANG Jing; CHEN Ke-ping; ZHANG Shu

    2012-01-01

    Background The impact of home monitoring system in the early detection of ventricular arrhythmia and inappropriate shock in daily work is not clear.The aim of this study was to investigate the impact of home monitoring system on the early detection of ventricular arrhythmia and inappropriate shock in daily clinical practice.Methods Cases of implantable cardioverter defibrillator (ICD) implantation with or without the home monitoring system from June 2010 to October 2011 at our center were reviewed.Follow-up was scheduled after implantation.Data relating to the home monitoring ICD were retrieved using a remote transmitter system.Data relating to the other devices were obtained during scheduled follow-up or unscheduled visits.Results Our study involved 69 patients (mean age (68.4±17.6) years,64.3% males,26 in the home monitoring group vs.43 in the non-home monitoring group).In all,561 ventricular arrhythmia episodes were detected in 17 patients (39.5%) in the non-home monitoring group:495 episodes were ventricular tachycardia and 66 episodes were ventricular fibrillation; among these,476 episodes of ventricular tachycardia and 45 episodes of ventricular fibrillation were appropriately diagnosed (96.1% and 68.2%,respectively).In the home monitoring group,389 ventricular arrhythmia episodes were transmitted by the home monitoring system in nine patients (34.6%):348 ventricular tachycardia episodes and 41 ventricular fibrillation episodes.Device detection was appropriate in 348 ventricular tachycardia episodes (100.0%) and 36 ventricular fibrillation episodes (87.8%).The home monitoring group showed a higher appropriate detection rate of ventricular tachycardia (P <0.01) and ventricular fibrillation (P=0.02).The proportion of inappropriate shock was comparable in the two groups (6/11 in the non-home monitoring group vs.1/7 in the home monitoring group; P=O.08).Conclusions The home monitoring ICD was able to provide information relating to inappropriate

  18. Quantum cascade laser: Applications in chemical detection and environmental monitoring

    Directory of Open Access Journals (Sweden)

    Radovanović Jelena

    2009-01-01

    Full Text Available In this paper we consider the structural parameter optimization of the active region of a GaAs-based quantum cascade laser in order to maximize the optical gain of the laser at the characteristic wavelengths, which are best suited for detection of pollutant gasses, such as SO2, HNO3, CH4, and NH3, in the ambient air by means of direct absorption. The procedure relies on applying elaborate tools for global optimization, such as the genetic algorithm. One of the important goals is to extend the applicability of a single active region design to the detection of several compounds absorbing at close wave-lengths, and this is achieved by introducing a strong external magnetic field perpendicularly to the epitaxial layers. The field causes two-dimensional continuous energy subbands to split into the series of discrete Landau levels. Since the arrangement of Landau levels depends strongly on the magnitude of the magnetic field, this enables one to control the population inversion in the active region, and hence the optical gain. Furthermore, strong effects of band non-parabolicity result in subtle changes of the lasing wavelength at magnetic fields which maximize the gain, thus providing a path for fine-tuning of the output radiation properties and changing the target compound for detection. The numerical results are presented for quantum cascade laser structures designed to emit at specified wavelengths in the mid-infrared part of the spectrum.

  19. Detection and plant monitoring programs: lessons from an intensive survey of Asclepias meadii with five observers.

    Science.gov (United States)

    Alexander, Helen M; Reed, Aaron W; Kettle, W Dean; Slade, Norman A; Bodbyl Roels, Sarah A; Collins, Cathy D; Salisbury, Vaughn

    2012-01-01

    Monitoring programs, where numbers of individuals are followed through time, are central to conservation. Although incomplete detection is expected with wildlife surveys, this topic is rarely considered with plants. However, if plants are missed in surveys, raw count data can lead to biased estimates of population abundance and vital rates. To illustrate, we had five independent observers survey patches of the rare plant Asclepias meadii at two prairie sites. We analyzed data with two mark-recapture approaches. Using the program CAPTURE, the estimated number of patches equaled the detected number for a burned site, but exceeded detected numbers by 28% for an unburned site. Analyses of detected patches using Huggins models revealed important effects of observer, patch state (flowering/nonflowering), and patch size (number of stems) on probabilities of detection. Although some results were expected (i.e. greater detection of flowering than nonflowering patches), the importance of our approach is the ability to quantify the magnitude of detection problems. We also evaluated the degree to which increased observer numbers improved detection: smaller groups (3-4 observers) generally found 90 - 99% of the patches found by all five people, but pairs of observers or single observers had high error and detection depended on which individuals were involved. We conclude that an intensive study at the start of a long-term monitoring study provides essential information about probabilities of detection and what factors cause plants to be missed. This information can guide development of monitoring programs.

  20. HJ-1A/B的 FLAASH大气校正及对东湖蓝藻监测效果分析%The Atmospheric Correction of HJ1-A/B Images and the Effects in Remote Sensing Dynamic Monitoring of Cyanobacteria Bloom in East Lake

    Institute of Scientific and Technical Information of China (English)

    马鸿旭; 郭生练; 洪兴骏; 周研来

    2015-01-01

    HJ-1A/B satellite offers free images with high spatial and temporal resolution ,which is effective to dynamically monitor cyanobacteria bloom .However ,HJ-1A/B satellite also receives distorted signals due to the influence of atmosphere .To acquire ac‐curate information of cyanobacteria bloom ,atmospheric correction is needed .In this paper ,HJ-1A/B images are corrected atmos‐pherically by using FLAASH atmosphere correction model .Considering quantum effect within a certain wavelength range ,spectral response function is introduced into the process .Then the model is used to process HJ-1A/B images ,and the NDVI after atmospher‐ic correction is compared with that before correction .Standard deviation improves from 0 .13 to 0 .158 with 21 .5% .Results indicate that atmospheric correction has reduced the distorted signals effectively .In the end ,NDVI is used to monitor cyanobacteria bloom in Donghu Lake .The accuracy has been enhanced compared with that before correction .%环境一号卫星(HJ1-1A/B)提供免费的高空间、高时间分辨率的遥感图像,是用于蓝藻监测的重要数据。然而,HJ-1A/B卫星由于地球大气及太阳辐射的影响会导致信号失真。为了提高绿藻监测的精度,大气纠正就变得极其重要。使用FLAASH大气校正模型对 HJ-1A/B数据进行大气纠正,考虑了一定波长范围内量子效应的影像,引入了波谱响应函数进行校正。然后对纠正前后的NDVI指数进行对比,标准差由校正前的0.13提升到校正后的0.158,提升了21.5%。结果表明,FLAASH大气校正模型对HJ-1A/B数据有极好的校正效果。最后,利用NDVI数据对东湖蓝藻进行监测,进一步证明,使用FLAASH大气校正模型纠正后的数据可以更加精确地识别蓝藻信息。

  1. Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework.

    Science.gov (United States)

    Shen, Li; Xu, Huiping; Guo, Xulin

    2012-01-01

    Harmful algal blooms (HABs) are severe ecological disasters threatening aquatic systems throughout the World, which necessitate scientific efforts in detecting and monitoring them. Compared with traditional in situ point observations, satellite remote sensing is considered as a promising technique for studying HABs due to its advantages of large-scale, real-time, and long-term monitoring. The present review summarizes the suitability of current satellite data sources and different algorithms for detecting HABs. It also discusses the spatial scale issue of HABs. Based on the major problems identified from previous literature, including the unsystematic understanding of HABs, the insufficient incorporation of satellite remote sensing, and a lack of multiple oceanographic explanations of the mechanisms causing HABs, this review also attempts to provide a comprehensive understanding of the complicated mechanism of HABs impacted by multiple oceanographic factors. A potential synthesized framework can be established by combining multiple accessible satellite remote sensing approaches including visual interpretation, spectra analysis, parameters retrieval and spatial-temporal pattern analysis. This framework aims to lead to a systematic and comprehensive monitoring of HABs based on satellite remote sensing from multiple oceanographic perspectives.

  2. Algal blooms and Membrane Based Desalination Technology

    NARCIS (Netherlands)

    Villacorte, L.O.

    2014-01-01

    Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational pro

  3. Summer heatwaves promote blooms of harmful cyanobacteria

    NARCIS (Netherlands)

    Joehnk, K.D; Huisman, J.; Sharples, J.; Sommeijer, B.P.; Visser, P.M.; Stroom, J.M.

    2008-01-01

    Dense surface blooms of toxic cyanobacteria in eutrophic lakes may lead to mass mortalities of fish and birds, and provide a serious health threat for cattle, pets, and humans. It has been argued that global warming may increase the incidence of harmful algal blooms. Here, we report on a lake experi

  4. Bloom syndrome in an Indian child.

    Science.gov (United States)

    Inamadar, Arun C; Palit, Aparna

    2005-01-01

    A girl presented with severely stunted growth, photosensitivity, and a characteristic facies. Cytogenetic studies were suggestive of Bloom syndrome. This disorder has not been previously documented in the literature in an Indian child. Minor variations in characteristics in this patient have been highlighted. Cytogenetically, she was found to be a low sister chromatid exchange mosaicism of Bloom syndrome.

  5. Detecting and monitoring UCG subsidence with InSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  6. Model based monitoring of wellbore hydraulics for abnormal event detection

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Dimitar; Fruhwirth, Rudolf K. [Thonhauser Data Engineering GmbH, Leoben (Austria); Thonhauser, Gerhard [Montanuniversitaet Leoben (Austria)

    2013-03-15

    With the increasing demand for energy in the last decades, the petroleum industry was forced to push the limits to levels that have never been reached before. Exploring very deep waters, drilling under varying conditions of extreme pressure and temperature and dealing with issues, which involve a new level of understanding, are challenges, which need to be overcome in order to safely and successfully accomplish the planned goals. Operating under such circumstances obligates the driller to be extremely precise in his actions. Even with the driller's extensive experience and training, the possible reaction time is in some cases extremely short. This article discusses the reasons for automatic trouble event recognition systems in the drilling process and how these affect the drilling operations and optimization processes. In this respect a concept of a real time hydraulic monitor will be developed helping the driller to visualize calculations in a plot, showing the pump limitations, the limitations due to the formation fracture gradient and the hole cleaning requirements. Additionally, taking into account the complete wellbore hydraulics and introducing various well behavior models and different algorithms, the system is capable of operating as a real-time indicator for undesired downhole events. (orig.)

  7. Early detection monitoring for larval dreissenid mussels: How much plankton sampling is enough?

    Science.gov (United States)

    Counihan, Timothy D.; Bollens, Stephen M.

    2017-01-01

    The development of quagga and zebra mussel (dreissenids) monitoring programs in the Pacific Northwest provides a unique opportunity to evaluate a regional invasive species detection effort early in its development. Recent studies suggest that the ecological and economic costs of a dreissenid infestation in the Pacific Northwest of the USA would be significant. Consequently, efforts are underway to monitor for the presence of dreissenids. However, assessments of whether these efforts provide for early detection are lacking. We use information collected from 2012 to 2014 to characterize the development of larval dreissenid monitoring programs in the states of Idaho, Montana, Oregon, and Washington in the context of introduction and establishment risk. We also estimate the effort needed for high-probability detection of rare planktonic taxa in four Columbia and Snake River reservoirs and assess whether the current level of effort provides for early detection. We found that the effort expended to monitor for dreissenid mussels increased substantially from 2012 to 2014, that efforts were distributed across risk categories ranging from high to very low, and that substantial gaps in our knowledge of both introduction and establishment risk exist. The estimated volume of filtered water required to fully census planktonic taxa or to provide high-probability detection of rare taxa was high for the four reservoirs examined. We conclude that the current level of effort expended does not provide for high-probability detection of larval dreissenids or other planktonic taxa when they are rare in these reservoirs. We discuss options to improve early detection capabilities.

  8. Accurate Anomaly Detection using Adaptive Monitoring and Fast Switching in SDN

    Directory of Open Access Journals (Sweden)

    Gagandeep Garg

    2015-10-01

    Full Text Available —Software defined networking (SDN is rapidly evolving technology which provides a suitable environment for easily applying efficient monitoring policies on the networks. SDN provides a centralized control of the whole network from which monitoring of network traffic and resources can be done with ease. SDN promises to drastically simplify network monitoring and management and also enable rapid innovation of networks through network programmability. SDN architecture separates the control of the network from the forwarding devices. With the higher innovation provided by the SDN, security threats at open interfaces of SDN also increases significantly as an attacker can target the single centralized point i.e. controller, to attack the network. Hence, efficient adaptive monitoring and measurement is required to detect and prevent malicious activities inside the network. Various such techniques have already been proposed by many researchers. This paper describes a work of applying efficient adaptive monitoring on the network while maintaining the performance of the network considering monitoring overhead over the controller. This work represents effective bandwidth utilization for calculation of threshold range while applying anomaly detection rules for monitoring of the network. Accurate detection of anomalies is implemented and also allows valid users and applications to transfer the data without any restrictions inside the network which otherwise were considered as anomalies in previous technique due to fluctuation of data and narrow threshold window. The concept of fast switching also used to improve the processing speed and performance of the networks.

  9. GPS detection and monitoring of underground nuclear explosions

    Science.gov (United States)

    Park, Jihye; Grejner-Brzezinska, Dorota; von Frese, Ralph; Morton, Yu; Gaya-Pique, Luis

    2013-04-01

    Previous studies by Park et al. (2011) revealed that an underground nuclear explosion (UNE) induces the acoustic-gravity waves, which disturb the ionosphere and generate the traveling ionospheric disturbance (TID). GPS technique allows for the ionospheric disturbance observation with high accuracy, which, in turn, enables detection of the TID induced by the UNE. This study suggests the detection and verification method of the TID using GPS observations. TID waves can be identified from the continuous data span of the total electron content (TEC) along the ray path between the GPS satellites and the observing stations. Since the TID is a high frequency and low amplitude signal, it should be properly isolated from the raw TEC observation. In this study, we applied the numerical derivative method, referred to as the numerical third order horizontal 3-point derivative method. The detected TID-like signals can be verified by its array signature under the assumption that the TID induced from a point source tends to propagate with the constant speed. Moreover, the location of the point source can be computed using the array pattern of TID observations from multiple GPS stations. In this study, two UNEs conducted by the U.S. in 1992 and two UNEs conducted by North Korea in 2006 and 2009 were investigated. The propagation speed of the U.S. UNEs was about 573 m/s and 740 m/s, respectively, while the recent North Korean UNEs propagation speed was less than 300 m/s. This result can be explained by the explosion yields and the depth of the UNEs: the depth of the US UNEs were about 0.3 km with the explosion yield of up to 20 kiloton, while the North Korean UNEs were at about 1 km depth with the yield of less than a few kilotons. In addition, we observed that the TID waves from these four UNE events were highly correlative, and distinguished from waveforms due to other types of events, such as an earthquake. As a case study, we selected the recent Tohoku earthquake of 2011, and

  10. The genus Sphaerocavum and the dominance of S. brasiliense and Microcystis wesenbergii (Microcystaceae, Cyanophyceae in the algae bloom of Huacachina lagoon, Peru

    Directory of Open Access Journals (Sweden)

    Leonardo H. Mendoza-Carbajal

    2016-05-01

    Full Text Available The present work registers for the first time the cyanobacteria Sphaerocavum brasiliense Azevedo y Sant’Anna and Microcystis wesenbergii (Komárek Komárek in Kondrateva (Microcystaceae, Cyanophyceae in an algal bloom on Huacachina lagoon (Ica, including the first report of Sphaerocavum for Peru. We suggest the necessity of monitoring these bloom-forming cyanobacteria.

  11. Advanced monitoring of water systems using in situ measurement stations: data validation and fault detection.

    Science.gov (United States)

    Alferes, Janelcy; Tik, Sovanna; Copp, John; Vanrolleghem, Peter A

    2013-01-01

    In situ continuous monitoring at high frequency is used to collect water quality information about water bodies. However, it is crucial that the collected data be evaluated and validated for the appropriate interpretation of the data so as to ensure that the monitoring programme is effective. Software tools for data quality assessment with a practical orientation are proposed. As water quality data often contain redundant information, multivariate methods can be used to detect correlations, pertinent information among variables and to identify multiple sensor faults. While principal component analysis can be used to reduce the dimensionality of the original variable data set, monitoring of some statistical metrics and their violation of confidence limits can be used to detect faulty or abnormal data and can help the user apply corrective action(s). The developed algorithms are illustrated with automated monitoring systems installed in an urban river and at the inlet of a wastewater treatment plant.

  12. A rare Uroglena bloom in Beaver Lake, Arkansas, spring 2015

    Science.gov (United States)

    Green, William R.; Hufhines, Brad

    2017-01-01

    A combination of factors triggered a Uroglena volvox bloom and taste and odor event in Beaver Lake, a water-supply reservoir in northwest Arkansas, in late April 2015. Factors contributing to the bloom included increased rainfall and runoff containing increased concentrations of dissolved organic carbon, followed by a stable pool, low nutrient concentrations, and an expansion of lake surface area and littoral zone. This was the first time U. volvox was identified in Beaver Lake and the first time it was recognized as a source of taste and odor. Routine water quality samples happened to be collected by the US Geological Survey and the Beaver Water District throughout the reservoir during the bloom—. Higher than normal rainfall in March 2015 increased the pool elevation in Beaver Lake by 2.3 m (by early April), increased the surface area by 10%, and increased the littoral zone by 1214 ha; these conditions persisted for 38 days, resulting from flood water being retained behind the dam. Monitoring programs that cover a wide range of reservoir features, including dissolved organic carbon, zooplankton, and phytoplankton, are valuable in explaining unusual events such as this Uroglena bloom.

  13. Monitoring the Ocean Acoustic Environment: A Model-Based Detection Approach

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Sullivan, E.J.

    2000-03-13

    A model-based approach is applied in the development of a processor designed to passively monitor an ocean acoustic environment along with its associated variations. The technique employs an adaptive, model-based processor embedded in a sequential likelihood detection scheme. The trade-off between state-based and innovations-based monitor designs is discussed, conceptually. The underlying theory for the innovations-based design is briefly developed and applied to a simulated data set.

  14. Design considerations for community-based stream monitoring to detect changes in Pacific salmon habitats

    Directory of Open Access Journals (Sweden)

    Cory R. Lagasse

    2014-12-01

    Full Text Available Communities in the Great Bear Rainforest of British Columbia, Canada are highly dependent on Pacific salmon (Oncorhynchus spp. and the watersheds that support them, yet current monitoring efforts are likely inadequate for detecting changes in stream habitats that may affect salmon populations. The Coastal First Nations Regional Monitoring System is attempting to address these information gaps through a new stream assessment program that collects baseline information and tracks changes in stream habitats. Using the program's monitoring protocol, we assessed the habitat characteristics of eight streams within the Koeye and Namu watersheds, then used a statistical power simulation to determine within-stream sampling requirements for detecting changes in substrate composition that may affect salmon habitat suitability. We also assessed resource constraints and perceived threats to stream habitats via questionnaires to coastal First Nations' stewardship staff. Results suggest that the current recommended sample size of 6 within-stream transects has low statistical power for detecting biologically significant changes in fine sediment. Given limited monitoring resources, we recommend higher transect sampling intensities within productive riffle-pool streams, but an emphasis on monitoring site level characteristics, such as large woody debris and pool volume, in less productive, high gradient cascade-pool streams. Questionnaire results highlight the need for flexibility and local adaptation in monitoring efforts because of differences in resource constraints among First Nations communities. If successfully implemented, the stream assessment program can integrate local knowledge with western science to inform ecosystem-based management of watersheds within the Great Bear Rainforest.

  15. In-situ laser material process monitoring using a cladding power detection technique

    Science.gov (United States)

    Su, Daoning; Norris, Ian; Peters, Chris; Hall, Denis R.; Jones, Julian D. C.

    Progress in laser material processing may require real-time monitoring and process control for consistent quality and productivity. We report a method of in-situ monitoring of laser metal cutting and drilling using cladding power monitoring of an optical fibre beam delivery system—a technique which detects the light reflected or scattered from the workpiece. The light signal carries information about the quality of the process. Experiments involving drilling and cutting of two samples, a thin aluminum foil and a 2-mm thick stainless steel plate, confirmed the effectiveness of this method.

  16. GMDH and neural networks applied in monitoring and fault detection in sensors in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Elaine Inacio [Instituto Federal de Educacao, Ciencia e Tecnologia, Guarulhos, SP (Brazil); Pereira, Iraci Martinez; Silva, Antonio Teixeira e, E-mail: martinez@ipen.b, E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work a new monitoring and fault detection methodology was developed using GMDH (Group Method of Data Handling) algorithm and artificial neural networks (ANNs) which was applied in the IEA-R1 research reactor at IPEN. The monitoring and fault detection system was developed in two parts: the first was dedicated to preprocess information, using GMDH algorithm; and the second to the process information using ANNs. The preprocess information was divided in two parts. In the first part, the GMDH algorithm was used to generate a better database estimate, called matrix z, which was used to train the ANNs. In the second part the GMDH was used to study the best set of variables to be used to train the ANNs, resulting in a best monitoring variable estimative. The methodology was developed and tested using five different models: one theoretical model and for models using different sets of reactor variables. After an exhausting study dedicated to the sensors monitoring, the fault detection in sensors was developed by simulating faults in the sensors database using values of +5%, +10%, +15% and +20% in these sensors database. The good results obtained through the present methodology shows the viability of using GMDH algorithm in the study of the best input variables to the ANNs, thus making possible the use of these methods in the implementation of a new monitoring and fault detection methodology applied in sensors. (author)

  17. Spatial Outlier Detection of CO2 Monitoring Data Based on Spatial Local Outlier Factor

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2015-12-01

    Full Text Available Spatial local outlier factor (SLOF algorithm was adopted in this study for spatial outlier detection because of the limitations of the traditional static threshold detection. Based on the spatial characteristics of CO2 monitoring data obtained in the carbon capture and storage (CCS project, the K-Nearest Neighbour (KNN graph was constructed using the latitude and longitude information of the monitoring points to identify the spatial neighbourhood of the monitoring points. Then SLOF was adopted to calculate the outlier degrees of the monitoring points and the 3σ rule was employed to identify the spatial outlier. Finally, the selection of K value was analysed and the optimal one was selected. The results show that, compared with the static threshold method, the proposed algorithm has a higher detection precision. It can overcome the shortcomings of the static threshold method and improve the accuracy and diversity of local outlier detection, which provides a reliable reference for the safety assessment and warning of CCS monitoring.

  18. A monitoring programme for the detection of illicit radioactive materials entering UK

    Energy Technology Data Exchange (ETDEWEB)

    Tattersall, P.; Macdonald, A.; Mccoll, N. [Health Protection Agency, Chilton (United Kingdom)

    2006-07-01

    A trial of 'portal' monitoring systems for the detection of radioactive materials entering the UK was undertaken at three seaports in 20 02. This was project Cyclamen, co-ordinated by the Home Office and operated by H M Customs and Excise officers. Following the trial Operation Cyclamen commenced in 2004 extending the detection capabilities to different types of traffic and utilising both fixed and mobile detection systems. This paper considers the radiological protection aspects, both regulatory and operational, of Cyclamen operations and reviews some detection events. Risk assessment, training provision and the development of scenarios for multi-agency table-top exercises are considered in greater detail.

  19. Vibration-Based Adaptive Novelty Detection Method for Monitoring Faults in a Kinematic Chain

    Directory of Open Access Journals (Sweden)

    Jesus Adolfo Cariño-Corrales

    2016-01-01

    Full Text Available This paper presents an adaptive novelty detection methodology applied to a kinematic chain for the monitoring of faults. The proposed approach has the premise that only information of the healthy operation of the machine is initially available and fault scenarios will eventually develop. This approach aims to cover some of the challenges presented when condition monitoring is applied under a continuous learning framework. The structure of the method is divided into two recursive stages: first, an offline stage for initialization and retraining of the feature reduction and novelty detection modules and, second, an online monitoring stage to continuously assess the condition of the machine. Contrary to classical static feature reduction approaches, the proposed method reformulates the features by employing first a Laplacian Score ranking and then the Fisher Score ranking for retraining. The proposed methodology is validated experimentally by monitoring the vibration measurements of a kinematic chain driven by an induction motor. Two faults are induced in the motor to validate the method performance to detect anomalies and adapt the feature reduction and novelty detection modules to the new information. The obtained results show the advantages of employing an adaptive approach for novelty detection and feature reduction making the proposed method suitable for industrial machinery diagnosis applications.

  20. Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters.

    Science.gov (United States)

    Miller, Melissa A; Kudela, Raphael M; Mekebri, Abdu; Crane, Dave; Oates, Stori C; Tinker, M Timothy; Staedler, Michelle; Miller, Woutrina A; Toy-Choutka, Sharon; Dominik, Clare; Hardin, Dane; Langlois, Gregg; Murray, Michael; Ward, Kim; Jessup, David A

    2010-09-10

    "Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine "harmful algal

  1. Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin transfer from land to sea otters.

    Directory of Open Access Journals (Sweden)

    Melissa A Miller

    Full Text Available "Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine

  2. Probabilistic monitoring in intrusion detection module for energy efficiency in mobile ad hoc networks

    Science.gov (United States)

    De Rango, Floriano; Lupia, Andrea

    2016-05-01

    MANETs allow mobile nodes communicating to each other using the wireless medium. A key aspect of these kind of networks is the security, because their setup is done without an infrastructure, so external nodes could interfere in the communication. Mobile nodes could be compromised, misbehaving during the multi-hop transmission of data, or they could have a selfish behavior to save energy, which is another important constraint in MANETs. The detection of these behaviors need a framework that takes into account the latest interactions among nodes, so malicious or selfish nodes could be detected also if their behavior is changed over time. The monitoring activity increases the energy consumption, so our proposal takes into account this issue reducing the energy required by the monitoring system, keeping the effectiveness of the intrusion detection system. The results show an improvement in the saved energy, improving the detection performance too.

  3. Distributed temperature monitoring for liquid sodium leakage detection using OFDR-based Rayleigh backscattering

    Science.gov (United States)

    Boldyreva, E.; Cotillard, R.; Laffont, G.; Ferdinand, P.; Cambet, D.; Jeannot, J.-P.; Charvet, P.; Albaladéjo, S.; Rodriguez, G.

    2014-05-01

    For the first time, a gold coated single mode optical fiber has been used to detect a liquid sodium leakage on a pipe of secondary circuit pipe mock-up of nuclear fast reactor (Gen IV) by means of Optical Frequency Domain Reflectometry-based on Rayleigh backscattering. During 150 min of the experiment we were able to detect and monitor the evolution of a liquid sodium leakage on the surface of the pipe.

  4. On Line Current Monitoring and Application of a Residual Method for Eccentricity Fault Detection

    Directory of Open Access Journals (Sweden)

    METATLA, A.

    2011-02-01

    Full Text Available This work concerns the monitoring and diagnosis of faults in induction motors. We develop an approach based on residual analysis of stator currents to detect and diagnose faults eccentricity static, dynamic and mixed in three phase induction motor. To simulate the behavior of motor failure, a model is proposed based on the approach of magnetically coupled coils. The simulation results show the importance of the approach applied for the detection and diagnosis of fault in three phase induction motor.

  5. On the horizontal distribution of algal-bloom in Chaohu Lake and its formation process

    Science.gov (United States)

    Chen, Yuan-Ying; Liu, Qing-Quan

    2014-10-01

    Based on the remote sensing images of algae, the present work analyzes the horizontal distribution characteristics of algal blooms in Chaohu Lake, China, which also reveals the frequency of algal blooms under different wind directions. Further, an unstructured-grid, three-dimensional finite-volume coastal ocean model (FVCOM) is applied to investigate the wind-induced currents and the transport process to explain the reason why algal blooms occur at the detected places. We first deduce the primary distribution of biomass from overlaid satellite images, and explain the formation mechanism by analyzing the pollution sources, and simulating the flow field and transportation process under prevailing wind over Chaohu Lake. And then, we consider the adjustment action of the wind on the corresponding day and develop a two-time scale approach to describe the whole formation process of algae horizontal distribution in Chaohu Lake. That is, on the longer time scale, i.e., during bloom season, prevailing wind determines the primary distribution of biomass by inducing the characteristic flow field; on the shorter time scale, i.e., on the day when bloom occurs, the wind force adjusts the primary distribution of biomass to form the final distribution of algal bloom.

  6. Separation of wind's influence on harmful cyanobacterial blooms.

    Science.gov (United States)

    Wang, Hua; Zhang, Zhizhang; Liang, Dongfang; du, Hanbei; Pang, Yong; Hu, Kaimin; Wang, Jianjian

    2016-07-01

    Wind is an important physical factor involved in Harmful Cyanobacterial blooms (CyanoHABs). Its integrated influence was separated to three components: (a) Direct Disturbance Impact (DDI) on cyanbacterial proliferation, (b) Indirect Nutrient Impact (INI) by sediment release and (c) Direct Transportation Impact (DTI) by both gentle wind-induced surface drift and wave-generated Stokes drift. By the combination of field investigation, laboratory experiment and numerical simulation their individual contributions to the severe bloom event in May 2007 in Meiliang Bay, Lake Taihu, was explored. Wind synthetically made 10.5 percent promotion to the bloom on May 28, 2007, but the impact varied with locations. DTI was featured with the strongest contribution of wind's impacts on CyanoHABs, while INI stood at the lowest level and DDI played an intermediate role. From the point of whole Meiliang Bay, the influencing weights of DTI, DDI and INI were approximately 48.55%, 32.30% and 19.15% respectively. DTI exerted the higher promotion in the regions of middle-east (ME), southwest (SW) and southeast (SE), and its actual contribution rate on CyanoHABs ranged from 6.41% to 7.46%. Due to the background nutrient load, INI was characterized by a tiny effect with the contribution rate being 2.18% on average. From the south bay to the north, DDI was detected with a decreasing tendency, with the practical contribution rate generally falling from 4.13% to 2.7%.

  7. A Data-Driven Monitoring Technique for Enhanced Fall Events Detection

    KAUST Repository

    Zerrouki, Nabil

    2016-07-26

    Fall detection is a crucial issue in the health care of seniors. In this work, we propose an innovative method for detecting falls via a simple human body descriptors. The extracted features are discriminative enough to describe human postures and not too computationally complex to allow a fast processing. The fall detection is addressed as a statistical anomaly detection problem. The proposed approach combines modeling using principal component analysis modeling with the exponentially weighted moving average (EWMA) monitoring chart. The EWMA scheme is applied on the ignored principal components to detect the presence of falls. Using two different fall detection datasets, URFD and FDD, we have demonstrated the greater sensitivity and effectiveness of the developed method over the conventional PCA-based methods.

  8. Anomaly Detection Algorithm for Stay Cable Monitoring Data Based on Data Fusion

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Liu,Qiao Huang∗; Yuan Ren

    2016-01-01

    In order to improve the accuracy and consistency of data in health monitoring system, an anomaly detection algorithm for stay cables based on data fusion is proposed. The monitoring data of Nanjing No. 3 Yangtze River Bridge is used as the basis of study. Firstly, an adaptive processing framework with feedback control is established based on the concept of data fusion. The data processing contains four steps: data specification, data cleaning, data conversion and data fusion. Data processing information offers feedback to the original data system, which further gives guidance for the sensor maintenance or replacement. Subsequently, the algorithm steps based on the continuous data distortion is investigated,which integrates the inspection data and the distribution test method. Finally, a group of cable force data is utilized as an example to verify the established framework and algorithm. Experimental results show that the proposed algorithm can achieve high detection accuracy, providing a valuable reference for other monitoring data processing.

  9. A microprocessor-based digital feeder monitor with high-impedance fault detection

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, R.; Tyska, W. [GE Protection and Control, Malvern, PA (United States); Russell, B.D. [Texas A& M Univ., College Station, TX (United States)] [and others

    1994-12-31

    The high impedance fault detection technology developed at Texas A&M University after more than a decade of research, funded in large part by the Electric Power Research Institute, has been incorporated into a comprehensive monitoring device for overhead distribution feeders. This digital feeder monitor (DFM) uses a high waveform sampling rate for the ac current and voltage inputs in conjunction with a high-performance reduced instruction set (RISC) microprocessor to obtain the frequency response required for arcing fault detection and power quality measurements. Expert system techniques are employed to assure security while maintaining dependability. The DFM is intended to be applied at a distribution substation to monitor one feeder. The DFM is packaged in a non-drawout case which fits the panel cutout for a GE IAC overcurrent relay to facilitate retrofits at the majority of sites were electromechanical overcurrent relays already exist.

  10. Fuzzy logic based anaesthesia monitoring systems for the detection of absolute hypovolaemia.

    Science.gov (United States)

    Mansoor Baig, Mirza; Gholamhosseini, Hamid; Harrison, Michael J

    2013-07-01

    Anaesthesia monitoring involves critical diagnostic tasks carried out amongst lots of distractions. Computers are capable of handling large amounts of data at high speed and therefore decision support systems and expert systems are now capable of processing many signals simultaneously in real time. We have developed two fuzzy logic based anaesthesia monitoring systems; a real time smart anaesthesia alarm system (RT-SAAM) and fuzzy logic monitoring system-2 (FLMS-2), an updated version of FLMS for the detection of absolute hypovolaemia. This paper presents the design aspects of these two systems which employ fuzzy logic techniques to detect absolute hypovolaemia, and compares their performances in terms of usability and acceptability. The interpretation of these two systems of absolute hypovolaemia was compared with clinicians' assessments using Kappa analysis, RT-SAAM K=0.62, FLMS-2 K=0.75; an improvement in performance by FLMS-2.

  11. Fault Detection for Shipboard Monitoring – Volterra Kernel and Hammerstein Model Approaches

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam

    2009-01-01

    In this paper nonlinear fault detection for in-service monitoring and decision support systems for ships will be presented. The ship is described as a nonlinear system, and the stochastic wave elevation and the associated ship responses are conveniently modelled in frequency domain...

  12. Arrhythmia detection after atrial fibrillation ablation: value of incremental monitoring time

    NARCIS (Netherlands)

    Mulder, A.A.W.; Wijffels, M.C.; Wever, E.F.; Kelder, J.C.; Boersma, L.V.

    2012-01-01

    BACKGROUND: After pulmonary vein isolation (PVI), patients need to be followed to analyze the effect of the treatment. We evaluated the influence of the duration of Holter monitoring on the detection of arrhythmia recurrences after a single PVI at 12 months. METHODS: Consecutive patients with paroxy

  13. Operating a Microwave Radiation Detection Monitor. Module 10. Vocational Education Training in Environmental Health Sciences.

    Science.gov (United States)

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on operating a microwave radiation detection monitor. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) testing the…

  14. Algal blooms and Membrane Based Desalination Technology

    OpenAIRE

    Villacorte, L.O.

    2014-01-01

    Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in seawater reverse osmosis (SWRO) plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of the plant to avoid irreversible fouling...

  15. Listening to the sound of flower blooming

    Institute of Scientific and Technical Information of China (English)

    YAN; Wei-fang

    2015-01-01

    The most beautiful thing in our life is the first glance,and the most beautiful point of fireworks is its evanescent bloom.Thing’s beautiful is usually due to its evanescent exist.It might exist shortly but in our mind for a long time.As for me,the most beautiful thing is to listen to the sound of flower blooming.

  16. Bloom's taxonomy of cognitive learning objectives.

    Science.gov (United States)

    Adams, Nancy E

    2015-07-01

    Information professionals who train or instruct others can use Bloom's taxonomy to write learning objectives that describe the skills and abilities that they desire their learners to master and demonstrate. Bloom's taxonomy differentiates between cognitive skill levels and calls attention to learning objectives that require higher levels of cognitive skills and, therefore, lead to deeper learning and transfer of knowledge and skills to a greater variety of tasks and contexts.

  17. Bloom's Taxonomy and Training in Programming Style

    OpenAIRE

    Teodosi TEODOSIEV

    2013-01-01

    Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013 The presented work is using Bloom's taxonomy to set the goals of teaching programming. Here are shown the elements of programming style, in which you can teach novices. Elements of programming style are at different levels of Bloom's pyramid. Association for the Development of the Information Society, Institute of Mathematics and Informatics Bulgarian Academ...

  18. A study on real-time fault monitoring detection method of bearing using the infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Tae [School of Mechanical and Automotive Engineering, Kongju National University, Kongju (Korea, Republic of); Kim, Ho Jong; Hong, Dong Pyo [School of Mechanical System Engineering, Chonbuk Nationa University, Jeonju (Korea, Republic of)

    2013-08-15

    Since real-time monitoring system like a fault early detection has been very important, infrared thermography technique as a new diagnosis method was proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with the frequency data of the existing. As results, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally it was confirmed that the infrared technique was useful for real-time detection of the bearing damages.

  19. Detecting Specific Health-Related Events Using an Integrated Sensor System for Vital Sign Monitoring

    Directory of Open Access Journals (Sweden)

    Mourad Adnane

    2009-09-01

    Full Text Available In this paper, a new method for the detection of apnea/hypopnea periods in physiological data is presented. The method is based on the intelligent combination of an integrated sensor system for long-time cardiorespiratory signal monitoring and dedicated signal-processing packages. Integrated sensors are a PVDF film and conductive fabric sheets. The signal processing package includes dedicated respiratory cycle (RC and QRS complex detection algorithms and a new method using the respiratory cycle variability (RCV for detecting apnea/hypopnea periods in physiological data. Results show that our method is suitable for online analysis of long time series data.

  20. Rainfall-enhanced blooming in typhoon wakes

    Science.gov (United States)

    Lin, Y.-C.; Oey, L.-Y.

    2016-08-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  1. Emergence of Algal Blooms: The Effects of Short-Term Variability in Water Quality on Phytoplankton Abundance, Diversity, and Community Composition in a Tidal Estuary

    Directory of Open Access Journals (Sweden)

    Todd A. Egerton

    2014-01-01

    Full Text Available Algal blooms are dynamic phenomena, often attributed to environmental parameters that vary on short timescales (e.g., hours to days. Phytoplankton monitoring programs are largely designed to examine long-term trends and interannual variability. In order to better understand and evaluate the relationships between water quality variables and the genesis of algal blooms, daily samples were collected over a 34 day period in the eutrophic Lafayette River, a tidal tributary within Chesapeake Bay’s estuarine complex, during spring 2006. During this period two distinct algal blooms occurred; the first was a cryptomonad bloom and this was followed by a bloom of the mixotrophic dinoflagellate, Gymnodinium instriatum. Chlorophyll a, nutrient concentrations, and physical and chemical parameters were measured daily along with phytoplankton abundance and community composition. While 65 phytoplankton species from eight major taxonomic groups were identified in samples and total micro- and nano-phytoplankton cell densities ranged from 5.8 × 106 to 7.8 × 107 cells L−1, during blooms, cryptomonads and G. instriatum were 91.6% and 99.0%, respectively, of the total phytoplankton biomass during blooms. The cryptomonad bloom developed following a period of rainfall and concomitant increases in inorganic nitrogen concentrations. Nitrate, nitrite and ammonium concentrations 0 to 5 days prior were positively lag-correlated with cryptomonad abundance. In contrast, the G. insriatum bloom developed during periods of low dissolved nitrogen concentrations and their abundance was negatively correlated with inorganic nitrogen concentrations.

  2. Detection of perfluorinated taggants in electric blasting caps by electron capture monitors

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R N; Goodrich, R W; Cote, E A

    1978-01-01

    Three types of monitors or detecting instruments for determining the presence of perfluorinated taggants have been developed and validated in field studies. Each of the three versions--a portable continuous real-time monitor, a portable concentrating chromatograph, and a fixed station high sensitivity chromatograph -- have been utilized for detecting these types of compounds in atmospheric tracer studies. The portable continuous monitor, which has a detection capability of two parts of taggant in one trillion parts of air (2 pp 10/sup 12/), has been used in three field tracer studies in the past 18 months, operating on-board aircraft. In a scenario such as continuous on-line screening of checked and hand-carried luggage at airport environments, the sensitivity and response time are more than adequate. Confirmation of the method applied to conveyor belt suitcase screening has been demonstrated. A small concentrating field instrument was developed and field tested more than a year ago. Five minute repetitive sampling rates are estimated to ultimately provide limits of detection for the taggant compounds at about 5 pp 10/sup 16/ and could be extended as much as another 50-fold lower. Applications potentially include detecting vapor tagged explosives in meeting rooms, corridors and passageways, and on-board aircraft.

  3. Peculiarities of the Woody Plants Re-Bloom

    Directory of Open Access Journals (Sweden)

    Opalko Olga Anatolievna

    2015-09-01

    Full Text Available The data of literary sources concerning the bloom of angiosperm plants and deviation in the development of a flower and inflorescence, in particular untimely flowering, was generalized; our observation results of some peculiarities of re-bloom of woody plants in the National Dendrological Park “Sofiyivka” of NAS of Ukraine (NDP “Sofiyivka” were discussed. The flowering process was formed during a long-term evolution of a propagation system of angiosperm plants as a basis of fertilization and further fruit and seed development. As a result of vernalization and photoperiodism reactions, flowering (under regular conditions occurs in the most favorable period for pollination and fertilization of every plant. However, various deviations, in particular, the untimely (most frequently double, sometimes three- and four-fold flowering occurs in this perfect process of generative organ formation of angiosperm plants. An increased number of reports about re-bloom (at the end of summer – at the beginning of fall of the representatives of various woody plant species whose flowers usually blossom in May-June prompts the analysis of the available information concerning the mechanisms of flowering and the causes which lead to deviation of flowering processes. Flowering of the woody plant representatives of the collection fund of the NDP “Sofiyivka” was studied; statistics about re-bloom in different cities of Ukraine were monitored. The classification of re-bloom facts was carried out according to V.L. Vitkovskiy (1984. Although this classification has mostly a stated nature, it was good enough when being formulated and, with certain conditions, it can be applied nowadays. Accordingly, using this classification, abnormal cases can include facts of early summer-fall flowering and early winter flowering. A late spring flowering can be adaptive response of damaged plants to exogenous stresses, due to which the probability of sexual propagation remains

  4. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring

    Directory of Open Access Journals (Sweden)

    Robert S. Allison

    2016-08-01

    Full Text Available For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites. Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context.

  5. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring

    Science.gov (United States)

    Allison, Robert S.; Johnston, Joshua M.; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  6. Advanced Detection Technology of Trace-level Borate for SG Leakage Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seban; Kang, Dukwon; Kim, Seungil; Kim, Hyunki; Heo, Jun; Sung, Jinhyun [Radiation Eng. Center, Shihung (Korea, Republic of); Lee, Dongbum [Academic Support Dept., Seoul (Korea, Republic of)

    2013-05-15

    Many studies have been reported for monitoring technology of steam generator, however, all of these methods have their own limitations. The leakage monitoring technology of steam generator of PWR has also got a limit due to the adoption of specific radionuclides (N-16, Ar-41, H-3, Xe, etc.) generated by nuclear fission, which are available only when reactor output is 20% or more. Most of domestic NPPs apply the N-16 technique for monitoring tube leakage but it has some problem that it is difficult to calculate the leakage rate because neutron flux are not completely formed during low power operation. For example, tube leakage of steam generator occurred in the Uljin nuclear power plant in 2002 during coast down operation for periodic plant maintenance. This plant could not prevent a rupture accident in advance because N-16 method is not possible the leak monitoring less than 20% reactor power. The development of excellent alternative monitoring technology that can monitor the real-time leakage is required under a variety of operating conditions like start-up and abnormal conditions of NPPs. This study was performed to lay a foundation in monitoring the leakage of steam generator coping with the lower output and low power operational condition using trace level of boron which is non-radioactive nuclide to inject control neutron injection. In this study, non-radioactive nuclide boron ion, which existed in the secondary system water, as leakage monitoring indicator was investigated for the separation of complex cation and anion phase. Borate was detected by using borate concentrator column coupled with the ion-exclusion column analytical column, revealing the problem of overlapped peak between fluoride and boron ions. Meanwhile, ion-exchange column could confirm the possibility as a leakage monitoring indicator of steam generator, despite the peak of glycolic acid salts was slightly overlapped. It will be needed for further research regarding the selectivity of the

  7. Energy Efficient Monitoring for Intrusion Detection in Battery-Powered Wireless Mesh Networks

    KAUST Repository

    Hassanzadeh, Amin

    2011-07-18

    Wireless Mesh Networks (WMN) are easy-to-deploy, low cost solutions for providing networking and internet services in environments with no network infrastructure, e.g., disaster areas and battlefields. Since electric power is not readily available in such environments battery-powered mesh routers, operating in an energy efficient manner, are required. To the best of our knowledge, the impact of energy efficient solutions, e.g., involving duty-cycling, on WMN intrusion detection systems, which require continuous monitoring, remains an open research problem. In this paper we propose that carefully chosen monitoring mesh nodes ensure continuous and complete detection coverage, while allowing non-monitoring mesh nodes to save energy through duty-cycling. We formulate the monitoring node selection problem as an optimization problem and propose distributed and centralized solutions for it, with different tradeoffs. Through extensive simulations and a proof-of-concept hardware/software implementation we demonstrate that our solutions extend the WMN lifetime by 8%, while ensuring, at the minimum, a 97% intrusion detection rate.

  8. Soil disturbance/restoration effects on stream sediment loading in the Tahoe Basin--detection monitoring.

    Science.gov (United States)

    Grismer, M E

    2014-07-01

    Quantifying the relative impacts of soil restoration or disturbance on watershed daily sediment and nutrients loads is essential towards assessing the actual costs/benefits of the land management. Such quantification requires stream monitoring programs capable of detecting changes in land-use or soil functional and erosive area "connectivity" conditions across the watershed. Previously, use of a local-scale, field-data based runoff and erosion model for three Lake Tahoe west-shore watersheds as a detection monitoring "proof of concept" suggested that analyses of midrange average daily flows can reveal sediment load reductions of relatively small watershed fractional areas (∼5 %) of restored soil function within a few years of treatment. Developing such an effective stream monitoring program is considered for tributaries on the west shore of the Lake Tahoe Basin using continuous (15-min) stream monitoring information from Ward (2,521 ha), Blackwood (2,886 ha), and the Homewood (260 ha, HMR) Creek watersheds. The continuous total suspended sediment (TSS) and discharge monitoring confirmed the hysteretic TSS concentration-flowrate relationship associated with the daily and seasonal spring snowmelt hydrographs at all three creeks. Using the complete dataset, daily loads estimated from 1-h sampling periods during the day indicated that the optimal sampling hours were in the afternoon during the rising limb of the spring snowmelt hydrograph, an observation likely to apply across the Sierra Nevada and other snowmelt driven watersheds. Measured rising limb sediment loads were used to determine if soils restoration efforts (e.g., dirt road removal, ski run rehabilitation) at the HMR creek watershed reduced sediment loads between 2010 and 2011. A nearly 1.5-fold decrease in sediment yields (kg/ha per m(3)/s flow) was found suggesting that this focused monitoring approach may be useful towards development of TMDL "crediting" tools. Further monitoring is needed to verify

  9. Development Of An Electronic Nose For Environmental Monitoring: Detection Of Specific Environmentally Important Gases At Their Odor Detection Threshold Concentration

    Science.gov (United States)

    Dentoni, Licinia; Capelli, Laura; Sironi, Selena; Del Rosso, Renato; Centola, Paolo; Della Torre, Matteo; Demattè, Fabrizio

    2011-09-01

    The use of a sensor array is demonstrated to be an effective approach to evaluate hazardous odor (or gas) emissions from industrial sites1. Therefore the possibility to use electronic noses for the prolonged survey of odor emissions from industrial sites is of particular interest for environmental monitoring purposes2. At the Olfactometric Laboratory of the Politecnico di Milano, in collaboration with Sacmi Group, Imola, an innovative electronic nose for the continuous monitoring of environmental odors is being developed. The aim of this work is to show the laboratory tests conducted to evaluate the capability of the electronic nose to recognize some specific environmentally important gases at their odor detection threshold concentration. The laboratory studies up to now focused on ammonia and butyric acid, those being compounds that can typically be found in the emissions from waste treatment plants, that may cause health effects when they exceed a given concentration level. The laboratory tests proved the sensors to be sensitive towards the considered compounds and the system to be capable of discriminating between odorous or non-odorous air, with a detection limit comparable with the detection limit of human nose.

  10. Biology in Bloom: Implementing Bloom's Taxonomy to Enhance Student Learning in Biology

    Science.gov (United States)

    Crowe, Alison; Dirks, Clarissa; Wenderoth, Mary Pat

    2008-01-01

    We developed the Blooming Biology Tool (BBT), an assessment tool based on Bloom's Taxonomy, to assist science faculty in better aligning their assessments with their teaching activities and to help students enhance their study skills and metacognition. The work presented here shows how assessment tools, such as the BBT, can be used to guide and…

  11. Kick Detection at the Bit: Early Detection via Low Cost Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Tost, Brian [National Energy Technology Lab. (NETL), Albany, OR (United States). Oak Ridge Inst. for Science and Education (ORISE); Rose, Kelly [National Energy Technology Lab. (NETL), Albany, OR (United States); Aminzadeh, Fred [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Petroleum Engineering; Ante, Magdalene A. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Petroleum Engineering; Huerta, Nicolas [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-06-07

    Formation fluid influxes (i.e. kicks) pose persistent challenges and operational costs during drilling operations. Implications of kicks range in scale but cumulatively result in substantial costs that affect drilling safety, environment, schedule, and infrastructure. Early kick detection presents a low-cost, easily adopted solution for avoiding well control challenges associated with kicks near the bit. Borehole geophysical tools used during the drilling process as part of the logging-while-drilling (LWD) and measurement-while-drilling (MWD) provide the advantage of offering real-time downhole data. LWD/MWD collect data on both the annulus and borehole wall. The annular data are normally treated as background, and are filtered out to isolate the formation measurements. Because kicks will change the local physical properties of annular fluids, bottom-hole measurements are among the first indicators that a formation fluid has invaded the wellbore. This report describes and validates a technique for using the annular portion of LWD/MWD data to facilitate early kick detection using first order principles. The detection technique leverages data from standard and cost-effective technologies that are typically implemented during well drilling, such as MWD/LWD data in combination with mud-pulse telemetry for data transmission.

  12. Dynamic Cognitive Process Application of Blooms Taxonomy for Complex Software Design in the Cognitive Domain

    CERN Document Server

    Kumar, NR Shashi; Selvarani, R

    2010-01-01

    Software design in Software Engineering is a critical and dynamic cognitive process. Accurate and flawless system design will lead to fast coding and early completion of a software project. Blooms taxonomy classifies cognitive domain into six dynamic levels such as Knowledge at base level to Comprehension, Application, Analysis, Synthesis and Evaluation at the highest level in the order of increasing complexity. A case study indicated in this paper is a gira system, which is a gprs based Intranet Remote Administration which monitors and controls the intranet from a mobile device. This paper investigates from this case study that the System Design stage in Software Engineering uses all the six levels of Blooms Taxonomy. The application of the highest levels of Blooms Taxonomy such as Synthesis and Evaluation in the design of gira indicates that Software Design in Software Development Life Cycle is a complex and critical cognitive process.

  13. Design of Wearable Breathing Sound Monitoring System for Real-Time Wheeze Detection

    Science.gov (United States)

    Li, Shih-Hong; Lin, Bor-Shing; Tsai, Chen-Han; Yang, Cheng-Ta; Lin, Bor-Shyh

    2017-01-01

    In the clinic, the wheezing sound is usually considered as an indicator symptom to reflect the degree of airway obstruction. The auscultation approach is the most common way to diagnose wheezing sounds, but it subjectively depends on the experience of the physician. Several previous studies attempted to extract the features of breathing sounds to detect wheezing sounds automatically. However, there is still a lack of suitable monitoring systems for real-time wheeze detection in daily life. In this study, a wearable and wireless breathing sound monitoring system for real-time wheeze detection was proposed. Moreover, a breathing sounds analysis algorithm was designed to continuously extract and analyze the features of breathing sounds to provide the objectively quantitative information of breathing sounds to professional physicians. Here, normalized spectral integration (NSI) was also designed and applied in wheeze detection. The proposed algorithm required only short-term data of breathing sounds and lower computational complexity to perform real-time wheeze detection, and is suitable to be implemented in a commercial portable device, which contains relatively low computing power and memory. From the experimental results, the proposed system could provide good performance on wheeze detection exactly and might be a useful assisting tool for analysis of breathing sounds in clinical diagnosis. PMID:28106747

  14. A novel framework of change-point detection for machine monitoring

    Science.gov (United States)

    Lu, Guoliang; Zhou, Yiqi; Lu, Changhou; Li, Xueyong

    2017-01-01

    The need for automatic machine monitoring has been well known in industries for many years. Although it has been widely accepted that a change in the structural property can indicate the fault in rotating machinery components (e.g., bearing and gears), automatic algorithms for this task are still in progress. In this paper, we propose a novel framework for change-point detection in machine monitoring. The framework includes two phases: (1) anomaly measure: on the basis of an automatic regression (AR) model, a new computation method is proposed to measure anomalies in a given time series which does not require any reference data from other measurement(s); (2) change detection: a new statistical test is employed by using martingale for detecting a potential change in the series which can be operated in an unsupervised and self-conducted manner. Experimental results on testing data captured in real scenarios demonstrated the effectiveness and the realizability of the proposed framework for change-point detection in machine monitoring, which suggests that our framework can be directly applicable in many real-world applications.

  15. Twin signal signature sensing: Application to shorted winding monitoring, detection and localization

    Energy Technology Data Exchange (ETDEWEB)

    Streifel, R.J.; Marks, R.J.; El-Sharkawi, A.E.; Kerszenbaum, I. [Univ. of Washington, Seattle, WA (United States)

    1995-12-31

    Using twin signal sensing we propose a method to monitor, detect and localize shorts in power system devices with windings: including rotors, transformers and motors. There has, to date, been no effective way to do so. The most obvious approach, time domain reflectometry, fails due to the reactive coupling of the windings. Twin signal signature sensing of shorts results from identical signals being simultaneously injected in both sides of the windings. The reflected signals are measured and the difference amplified to produce the signature signal. The signature signal characterizes the current state of the windings. When winding shorts are present, the electrical characteristics of the device will be different and thus the signature signal will also change. The changes in the signature signal can be monitored to detect shorted windings. While a device is in operation, the signature signals can be monitored and the development of winding shorts can be diagnosed through the process of novelty detection. After a device is cleaned or otherwise known to be functioning correctly (no winding shorts), signature signals can be collected which represent the healthy device. If a sufficient number of signals can be collected, the signal space representing healthy windings can be characterized. A detection surface can be placed around the healthy signature signals to provide a partition of the signal space into two regions: healthy and faulty. Any signature signal which is not within the healthy signature partition will indicate a faulted device.

  16. A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays

    Science.gov (United States)

    Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl

    2017-01-01

    This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system. PMID:28245623

  17. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    Science.gov (United States)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  18. Biomass decay rates and tissue nutrient loss in bloom and non-bloom-forming macroalgal species

    Science.gov (United States)

    Conover, Jessie; Green, Lindsay A.; Thornber, Carol S.

    2016-09-01

    Macroalgal blooms occur in shallow, low-wave energy environments and are generally dominated by fast-growing ephemeral macroalgae. When macroalgal mats undergo senescence and decompose they can cause oxygen depletion and release nutrients into the surrounding water. There are relatively few studies that examine macroalgal decomposition rates in areas impacted by macroalgal blooms. Understanding the rate of macroalgal bloom decomposition is essential to understanding the impacts of macroalgal blooms following senescence. Here, we examined the biomass, organic content, nitrogen decay rates and δ15N values for five macroalgal species (the bloom-forming Agardhiella subulata, Gracilaria vermiculophylla, Ulva compressa, and Ulva rigida and the non-bloom-forming Fucus vesiculosus) in Narragansett Bay, Rhode Island, U.S.A. using a litterbag design. Bloom-forming macroalgae had similar biomass decay rates (0.34-0.51 k d-1) and decayed significantly faster than non-bloom-forming macroalgae (0.09 k d-1). Biomass decay rates also varied temporally, with a significant positive correlation between biomass decay rate and water temperature for U. rigida. Tissue organic content decreased over time in all species, although A. subulata and G. vermiculophylla displayed significantly higher rates of organic content decay than U. compressa, U. rigida, and F. vesiculosus. Agardhiella subulata had a significantly higher rate of tissue nitrogen decay (0.35 k d-1) than all other species. By contrast, only the δ15N of F. vesiculosus changed significantly over the decay period. Overall, our results indicate that bloom-forming macroalgal species decay more rapidly than non-bloom-forming species.

  19. The LUPIN detector supporting least intrusive beam monitoring technique through neutron detection

    CERN Document Server

    Manessi, G P; Welsch, C; Caresana, M; Ferrarini, M

    2013-01-01

    The Long interval, Ultra-wide dynamic Pile-up free Neutron rem counter (LUPIN) is a novel detector initially developed for radiation protection purposes, specifically conceived for applications in pulsed neutron fields. The detector has a measurement capability varying over many orders of neutron burst intensity, from a single neutron up to thousands of interactions for each burst, without showing any saturation effect. Whilst LUPIN has been developed for applications in the radiation protection fields, its unique properties make it also well suited to support other beam instrumentation. In this contribution, the design of LUPIN is presented in detail and results from measurements carried out in different facilities summarize its main characteristics. Its potential use as beam loss monitor (BLM) and complementary detector for non-invasive beam monitoring purposes (e.g. to complement a monitor based on proton beam “halo” detection) in medical accelerators is then examined. In the context of its application...

  20. Evaluation of a regional monitoring program's statistical power to detect temporal trends in forest health indicators

    Science.gov (United States)

    Perles, Stephanie J.; Wagner, Tyler; Irwin, Brian J.; Manning, Douglas R.; Callahan, Kristina K.; Marshall, Matthew R.

    2014-01-01

    Forests are socioeconomically and ecologically important ecosystems that are exposed to a variety of natural and anthropogenic stressors. As such, monitoring forest condition and detecting temporal changes therein remain critical to sound public and private forestland management. The National Parks Service’s Vital Signs monitoring program collects information on many forest health indicators, including species richness, cover by exotics, browse pressure, and forest regeneration. We applied a mixed-model approach to partition variability in data for 30 forest health indicators collected from several national parks in the eastern United States. We then used the estimated variance components in a simulation model to evaluate trend detection capabilities for each indicator. We investigated the extent to which the following factors affected ability to detect trends: (a) sample design: using simple panel versus connected panel design, (b) effect size: increasing trend magnitude, (c) sample size: varying the number of plots sampled each year, and (d) stratified sampling: post-stratifying plots into vegetation domains. Statistical power varied among indicators; however, indicators that measured the proportion of a total yielded higher power when compared to indicators that measured absolute or average values. In addition, the total variability for an indicator appeared to influence power to detect temporal trends more than how total variance was partitioned among spatial and temporal sources. Based on these analyses and the monitoring objectives of theVital Signs program, the current sampling design is likely overly intensive for detecting a 5 % trend·year−1 for all indicators and is appropriate for detecting a 1 % trend·year−1 in most indicators.

  1. Detectability Analysis of Road Vehicles in Radarsat-2 Fully Polarimetric SAR Images for Traffic Monitoring

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-02-01

    Full Text Available By acquiring information over a wide area regardless of weather conditions and solar illumination, space-borne Synthetic Aperture Radar (SAR has the potential to be a promising application for traffic monitoring. However, the backscatter character of a vehicle in a SAR image is unstable and varies with image parameters, such as aspect and incidence angle. To investigate vehicle detectability in SAR images for traffic monitoring applications, images of four common types of vehicles in China were acquired using the fully polarimetric (FP SAR of Radarsat-2 in our experiments. Methods for measuring a vehicle’s aspect angle and backscatter intensity are introduced. The experimental FP SAR images are used to analyze the detectability, which is affected by factors such as vehicle size, vehicle shape, and aspect angle. Moreover, a new metric to improve vehicle detectability in FP SAR images is proposed and compared with the well-known intensity metric. The experimental results show that shape is a crucial factor in affecting the backscatter intensity of vehicles, which also oscillates with varying aspect angle. If the size of a vehicle is smaller than the SAR image resolution, using the intensity metric would result in low detectability. However, it could be improved in an FP SAR image by using the proposed metric. Compared with the intensity metric, the overall detectability is improved from 72% to 90% in our experiments. Therefore, this study indicates that FP SAR images have the ability to detect stationary vehicles on the road and are meaningful for traffic monitoring.

  2. Experimental study on structural defect detection by monitoring distributed dynamic strain

    Science.gov (United States)

    Liu, R. M.; Babanajad, S. K.; Taylor, T.; Ansari, F.

    2015-11-01

    A defect detection method of civil structures is studied. In order to complete the task, the proposed detection method is based on the analysis of distributed dynamic strains using Brillouin scattering based fiber optic sensors along large span structures. The current challenges in the detection of localized damage fundamentally include monitoring the dynamic strain as well as eliminating the system noise and the distortion of the changing distributed strain. Due to the capability of Brillouin scattering based methods in distributed monitoring of large structures, Brillouin optical time-domain analysis approach is implemented for assessing damage. In order to highlight the singularity at the damage location, Fourier as well as dual tree complex wavelet transform approaches were conducted. During the processing, the dynamic distributed strain in the time domain was transformed into the frequency domain for extraction of natural and forced frequencies. Then, the data was decomposed, filtered for extraction of crack features and reconstructed. The feasibility of the proposed method is evaluated through an experimental program involving the use of pulse-pre-pump Brillouin optical time domain analysis for the distributed measurement of dynamic strain with 13 Hz sampling speed and detection of simulated cracks in a 15 m long steel beam. The beam mimics a bridge girder with two artificial cracks along its length subjected to free and forced vibrations. The results indicate that the method based on the discontinuities in the strain distribution is applicable in the detection of very small damage as small as 40 micro strains. A crack gauge independently monitored the crack opening displacements during the experiments, and the limit of detected crack openings based on the first appearance of strain singularities was 30 μm.

  3. Continuous dynamic monitoring of a lively footbridge for serviceability assessment and damage detection

    Science.gov (United States)

    Hu, Wei-Hua; Moutinho, Carlos; Caetano, Elsa; Magalhães, Filipe; Cunha, Álvaro

    2012-11-01

    This paper aims at analyzing the feasibility of applying a vibration based damage detection approach, based on Principal Components Analysis (PCA), to eliminate environmental effects using the large amount of high quality data continuously collected by the dynamic monitoring system of Pedro e Inês footbridge since 2007. Few works describe real data, regularly collected along several years by reliable continuous dynamic monitoring systems in bridge structures. One main contribution is to show a large difference between making academic research based on numerical simulations or limited experimental samples, and making validity tests of innovative procedures using large high quality databases collected in real structures. The monitoring system, installed with the only initial objective of checking the efficiency of vibration control devices used to mitigate lateral and vertical vibrations, was therefore further developed for research purposes by implementing LabVIEW based automated signal processing and output-only modal identification routines, that enabled the analysis of the correlation of modal estimates with the temperature and the vibration level, as well as the automatic tracking of modal parameters along several years. With the final purpose of detecting potential structural damage at an early stage, the Principal Components Analysis (PCA) was employed to effectively eliminate temperature effects, whereas Novelty Analysis on the residual errors of the PCA model was used to provide a statistical indication of damage. The efficiency of this vibration based damage detection approach was verified using 3 years of measurements at Pedro e Inês footbridge under operational conditions and simulating several realistic damage scenarios affecting the boundary conditions. It is demonstrated that such a dynamic monitoring system, apart from providing relevant instantaneous dynamic information, working as an alert system associated to the verification of vibration

  4. Cognitive Approach Based User Node Activity Monitoring for Intrusion Detection in Wireless Networks

    Directory of Open Access Journals (Sweden)

    G Sunilkumar

    2012-03-01

    Full Text Available Cognitive networks are the solution for the problems existing on the current networks. Users maintain integrity of the networks and user node activity monitoring is required for provision of security. Cognitive Networks discussed in this paper not only monitor user node activity but also take preventive measures if user node transactions are malicious. The intelligence in cognitive engine is realized using self-organizing maps (CSOMs. Gaussian and Mexican Hat neighbor learning functions have been evaluated to realize CSOMs. Experimental study proves the efficiency of Gaussian Learning function is better for cognition engine. The cognition engine realized is evaluated for malicious node detection in dynamic networks. The proposed concept results in better Intrusion detection rate as compared to existing approaches.

  5. Seven-year-long crack detection monitoring by Brillouin-based fiber optic strain sensor

    Science.gov (United States)

    Imai, Michio

    2015-03-01

    As an optical fiber is able to act as a sensing medium, a Brillouin-based sensor provides continuous strain information along an optical fiber. The sensor has been used in a wide range of civil engineering applications because no other tool can satisfactorily detect discontinuity such as a crack. Cracking generates a local strain change on the embedded optical fiber, thus Brillouin optical correlation domain analysis (BOCDA), which offers a high spatial resolution by stimulated Brillouin scattering, is expected to detect a fine crack on concrete structures. The author installed the surface-mounted optical fiber on a concrete deck and periodically monitored strain distribution for seven years. This paper demonstrates how a BOCDA-based strain sensor can be employed to monitor cracks in a concrete surface. Additionally, focusing on another advantage of the sensor, the natural frequency of the deck is successfully measured by dynamic strain history.

  6. Ubiquitous health monitoring and real-time cardiac arrhythmias detection: a case study.

    Science.gov (United States)

    Li, Jian; Zhou, Haiying; Zuo, Decheng; Hou, Kun-Mean; De Vaulx, Christophe

    2014-01-01

    As the symptoms and signs of heart diseases that cause sudden cardiac death, cardiac arrhythmia has attracted great attention. Due to limitations in time and space, traditional approaches to cardiac arrhythmias detection fail to provide a real-time continuous monitoring and testing service applicable in different environmental conditions. Integrated with the latest technologies in ECG (electrocardiograph) analysis and medical care, the pervasive computing technology makes possible the ubiquitous cardiac care services, and thus brings about new technical challenges, especially in the formation of cardiac care architecture and realization of the real-time automatic ECG detection algorithm dedicated to care devices. In this paper, a ubiquitous cardiac care prototype system is presented with its architecture framework well elaborated. This prototype system has been tested and evaluated in all the clinical-/home-/outdoor-care modes with a satisfactory performance in providing real-time continuous cardiac arrhythmias monitoring service unlimitedly adaptable in time and space.

  7. Proteomic analysis of hepatic tissue of Cyprinus carpio L. exposed to cyanobacterial blooms in Lake Taihu, China.

    Directory of Open Access Journals (Sweden)

    Jinlin Jiang

    Full Text Available With the rapid development of industry and agriculture and associated pollution, the cyanobacterial blooms in Lake Taihu have become a major threat to aquatic wildlife and human health. In this study, the ecotoxicological effects of cyanobacterial blooms on cage-cultured carp (Cyprinus carpio L. in Meiliang Bay of Lake Taihu were investigated. Microcystins (MCs, major cyanobacterial toxins, have been detected in carp cultured at different experimental sites of Meiliang Bay. We observed that the accumulation of MCs in carp was closely associated with several environmental factors, including temperature, pH value, and density of cyanobacterial blooms. The proteomic profile of carp liver exposed to cyanobacterial blooms was analyzed using two-dimensional difference in-gel electrophoresis (2D-DIGE and mass spectrometry. The toxic effects of cyanobacterial blooms on carp liver were similar to changes caused by MCs. MCs were transported into liver cells and induced the excessive production of reactive oxygen species (ROS. MCs and ROS inhibited protein phosphatase and aldehyde dehydrogenase (ALDH, directly or indirectly resulting in oxidative stress and disruption of the cytoskeleton. These effects further interfered with metabolic pathways in the liver through the regulation of series of related proteins. The results of this study indicated that cyanobacterial blooms pose a major threat to aquatic wildlife in Meiliang Bay in Lake Taihu. These results provided evidence of the molecular mechanisms underlying liver damage in carp exposed to cyanobacterial blooms.

  8. Marine environmental radioactivity monitoring by ''in-situ'' {gamma}-radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, C.; Becker, K. [Bundesamt fuer Seeschiffahrt und Hydrographie, Hamburg (Germany); Schilling, G.; Gruettmueller, M. [Bundesamt fuer Seeschiffahrt und Hydrographie, Rostock (Germany)

    2000-08-01

    A monitoring system to observe continuously the artificial part of {gamma}-radiation in the sea by valuation of the {gamma}-energy measured is described. By discrimination against the natural part of {gamma}-radiation, a limit of detection is obtained for contaminations originating from nuclear accidents which is comparable to the detection limit of common chemical analysis methods for tracer nuclides. In addition, the type of radioactive source involved can be identified by {gamma}-spectra taken simultaneously. The measuring system and its application in practice are described. (orig.)

  9. Health Monitoring of Offshore Wind Turbines Online Fault Detection and Identification Module Test Case: Pitch Offset

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    LACobserver is a model based health monitoring (HM) system for wind turbines (WTGs) which provides an intuitive engineering link between load and strength parameters. The present work demonstrates a newly developed LACobserver Fault Detection and Identification (FDI) module for online detection...... of pitch offset and corresponding root causes. Blade-to-blade pitch offset slowly degrade the WTG performance and results in lower WTG annual energy production and higher structural loads. Thus, a FDI strategy will increase wind turbine efficiency, performance and operational lifetime....

  10. Phytoplankton Bloom Phenology near Palmer Station Antarctica

    Science.gov (United States)

    Crews, L.; Doney, S. C.; Kavanaugh, M.; Ducklow, H. W.; Schofield, O.; Glover, D. M.

    2015-12-01

    West Antarctic Peninsula (WAP) phytoplankton bloom phenology is coupled to growing season water column stratification precipitated by seasonal warming and the melting of winter sea-ice. Previous studies document declining bloom magnitude over decadal timescales in conjunction with decreasing sea-ice extent and duration in the Northern WAP, but less work has been to done explain the observed inter-annual variability in this region. Here we use a high-resolution in situ time series collected by the Palmer Station Antarctica Long Term Ecological Research program and satellite ocean color imagery to investigate the underlying mechanisms controlling phytoplankton bloom timing and magnitude near Palmer Station. We pair chlorophyll and CTD measurements collected twice per week during the austral summer, 1992—2003, with satellite ocean color and ice fractional cover data to examine bloom development and within-season trends in mixed layer depth. Initial results suggest a possible shift over time with spring/summer blooms occurring earlier in the growing season reflecting earlier sea-ice free conditions. Net phytoplankton accumulation rates are also computed and compared against growth estimates. Our results can be used to develop and validate models of coastal Antarctic primary production that better represent inter-annual primary production variability.

  11. Pharmacokinetic Monitoring of Indocyanine Green for Tumor Detection Using Photoacoustic Imaging

    Institute of Scientific and Technical Information of China (English)

    YANG Si-Hua; YIN Guang-Zhi; XING Da

    2010-01-01

    @@ We report tumor detection using a photoacoustic technique for the imaging of angiogenesis and monitoring of agent pharmacokinetics on an animal model.We take 532-nm laser pulses to excite photoacoustic signals of blood vessels with acquisition by a broadband hydrophone,and the morphological characteristics of tumor angiogenesis are successfully image depicted.Furthermore,tumor pharmacokinetics is preformed and analyzed with fast multielement photoacoustic imaging of the intravenous-injected indocyanine green (ICG).

  12. Pigment characterization for the 2011 bloom in Qinhuangdao implicated "brown tide" events in China

    Institute of Scientific and Technical Information of China (English)

    KONG Fanzhou; YU Rencheng; ZHANG Qingchun; YAN Tian; ZHOU Mingjiang

    2012-01-01

    A large-scale bloom occurred from May to June in 2011 in sea area near Qinhuangdao of the Bohai Sea,leading to huge damage of the scallop culture industry.Similar blooms have been observed in this region for three years.The causative species of the bloom,which dominated the phytoplankton community with the maximum cell density around 109 cell/L,could not be identified with morphological features due to the small cell size (~2 μm).A pigment analytical method was then adopted to analyze the pigment profile of the phytoplankton samples collected from the blooming sea area.It was found that pico-sized (<2 μm),nano-sized (2-20 μm),and bulk phytoplankton samples had similar pigment profile,representing the pigment signature of the bloom-causative species.The major pigments detected included 19-butanoyloxyfucoxanthin (But-fuco),fucoxanthin (Fuco),diadinoxanthin (Diad) and chlorophyll a (Chl a),and high content of But-fuco was the most significant characteristics of the phytoplankton samples.Based on the pigment composition and content,the bloom-causative species could be tentatively identified as pelagophyte,"type 8" group of haptophyte,or silicoflagellate.Some unique features of the bloom,such as the extremely high cell density,small-sized and But-fuco containing cells,occurring in early summer,and the feeding-cessation effects on scallops,suggest it be a "brown tide" event similar to those reported in the east coast of the United States of America.The recurrent "brown tide" events and their dramatic impacts on the shellfish mariculture industry in Qinhuangdao need close attention in the coming years.

  13. Packet Payload Monitoring for Internet Worm Content Detection Using Deterministic Finite Automaton with Delayed Dictionary Compression

    Directory of Open Access Journals (Sweden)

    Divya Selvaraj

    2014-01-01

    Full Text Available Packet content scanning is one of the crucial threats to network security and network monitoring applications. In monitoring applications, payload of packets in a network is matched against the set of patterns in order to detect attacks like worms, viruses, and protocol definitions. During network transfer, incoming and outgoing packets are monitored in depth to inspect the packet payload. In this paper, the regular expressions that are basically string patterns are analyzed for packet payloads in detecting worms. Then the grouping scheme for regular expression matching is rewritten using Deterministic Finite Automaton (DFA. DFA achieves better processing speed during regular expression matching. DFA requires more memory space for each state. In order to reduce memory utilization, decompression technique is used. Delayed Dictionary Compression (DDC is applied for achieving better speeds in the communication links. DDC achieves decoding latency during compression of payload packets in the network. Experimental results show that the proposed approach provides better time consumption and memory utilization during detection of Internet worm attacks.

  14. Functions and requirements for Hanford single-shell tank leakage detection and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, J.M.; Ohl, P.C.

    1995-04-19

    This document provides the initial functions and requirements for leakage detection and monitoring applicable to past and potential future leakage from the Hanford Site`s 149 single-shell high-level waste tanks. This mission is a part of the overall mission of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineering principles are being applied to this effort. This document reflects the an initial step in the systems engineering approach to decompose the mission into primary functions and requirements. The document is considered approximately 30% complete relative to the effort required to produce a final version that can be used to support demonstration and/or procurement of technologies. The functions and requirements in this document apply to detection and monitoring of below ground leaks from SST containment boundaries and the resulting soil contamination. Leakage detection and monitoring is invoked in the TWRS Program in three fourth level functions: (1) Store Waste, (2) Retrieve Waste, and (3) Disposition Excess Facilities (as identified in DOE/RL-92-60 Rev. 1, Tank Waste Remediation System Functions and Requirements).

  15. Luminance level of a monitor: influence on detectability and detection rate of breast cancer in 2D mammography

    Science.gov (United States)

    Bemelmans, Frédéric; Rashidnasab, Alaleh; Chesterman, Frédérique; Kimpe, Tom; Bosmans, Hilde

    2016-03-01

    Purpose: To evaluate lesion detectability and reading time as a function of luminance level of the monitor. Material and Methods: 3D mass models and microcalcification clusters were simulated into ROIs of for processing mammograms. Randomly selected ROIs were subdivided in three groups according to their background glandularity: high (>30%), medium (15-30%) and low (time were computed for all different conditions. A paired t-test was performed to evaluate the effect of luminance on PC and time. A multi-factorial analysis was performed using MANOVA.. Results: Paired t-test indicated a statistically significant difference for the average time per session between 300 and 1200; 800 and 1200; 1000 and 1200 Cd/m2, for all participants combined. There was no effect on PC. MANOVA denoted significantly lower reading times for high glandularity images at 1200 Cd/m2. Both types of masses were significantly faster detected at 1200 Cd/m2, for the contrast study. In the size study, microcalcification clusters and spiculated masses had a significantly higher detection rate at 1200 Cd/m2. Conclusion: These results demonstrate a significant decrease in reading time, while detectability remained constant.

  16. Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss.

    Science.gov (United States)

    Newton, Joseph M; Schofield, Desmond; Vlahopoulou, Joanna; Zhou, Yuhong

    2016-07-01

    Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction-point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069-1076, 2016.

  17. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review

    OpenAIRE

    Shucai Li; Bin Liu; Lichao Nie; Zhengyu Liu; Mingzhen Tian; Shirui Wang; Maoxin Su; Qian Guo

    2015-01-01

    Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC) resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and...

  18. A Self-Learning Sensor Fault Detection Framework for Industry Monitoring IoT

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2013-01-01

    Full Text Available Many applications based on Internet of Things (IoT technology have recently founded in industry monitoring area. Thousands of sensors with different types work together in an industry monitoring system. Sensors at different locations can generate streaming data, which can be analyzed in the data center. In this paper, we propose a framework for online sensor fault detection. We motivate our technique in the context of the problem of the data value fault detection and event detection. We use the Statistics Sliding Windows (SSW to contain the recent sensor data and regress each window by Gaussian distribution. The regression result can be used to detect the data value fault. Devices on a production line may work in different workloads and the associate sensors will have different status. We divide the sensors into several status groups according to different part of production flow chat. In this way, the status of a sensor is associated with others in the same group. We fit the values in the Status Transform Window (STW to get the slope and generate a group trend vector. By comparing the current trend vector with history ones, we can detect a rational or irrational event. In order to determine parameters for each status group we build a self-learning worker thread in our framework which can edit the corresponding parameter according to the user feedback. Group-based fault detection (GbFD algorithm is proposed in this paper. We test the framework with a simulation dataset extracted from real data of an oil field. Test result shows that GbFD detects 95% sensor fault successfully.

  19. Uncertainty Reduced Novelty Detection Approach Applied to Rotating Machinery for Condition Monitoring

    Directory of Open Access Journals (Sweden)

    S. Ma

    2015-01-01

    Full Text Available Novelty detection has been developed into a state-of-the-art technique to detect abnormal behavior and trigger alarm for in-field machine maintenance. With built-up models of normality, it has been widely applied to several situations with normal supervising dataset such as shaft rotating speed and component temperature available meanwhile in the absence of fault information. However, the research about vibration transmission based novelty detection remains unnoticed until recently. In this paper, vibration transmission measurement on rotor is performed; based on extreme value distributions, thresholds for novelty detection are calculated. In order to further decrease the false alarm rate, both measurement and segmentation uncertainty are considered, as they may affect threshold value and detection correctness heavily. Feasible reduction strategies are proposed and discussed. It is found that the associated multifractal coefficient and Kullback-Leibler Divergence operate well in the uncertainty reduction process. As shown by in situ applications to abnormal rotor with pedestal looseness, it is demonstrated that the abnormal states are detected. The higher specificity value proves the effectiveness of proposed uncertainty reduction method. This paper shows novel achievements of uncertainty reduced novelty detection applied to vibration signal in dynamical system and also sheds lights on its utilization in the field of health monitoring of rotating machinery.

  20. Investigation of a Moire Based Crack Detection Technique for Propulsion Health Monitoring

    Science.gov (United States)

    Woike, Mark R.; Abudl-Aziz, Ali; Fralick, Gustave C.; Wrbanek, John D.

    2012-01-01

    The development of techniques for the health monitoring of the rotating components in gas turbine engines is of major interest to NASA s Aviation Safety Program. As part of this on-going effort several experiments utilizing a novel optical Moir based concept along with external blade tip clearance and shaft displacement instrumentation were conducted on a simulated turbine engine disk as a means of demonstrating a potential optical crack detection technique. A Moir pattern results from the overlap of two repetitive patterns with slightly different periods. With this technique, it is possible to detect very small differences in spacing and hence radial growth in a rotating disk due to a flaw such as a crack. The experiment involved etching a circular reference pattern on a subscale engine disk that had a 50.8 mm (2 in.) long notch machined into it to simulate a crack. The disk was operated at speeds up to 12 000 rpm and the Moir pattern due to the shift with respect to the reference pattern was monitored as a means of detecting the radial growth of the disk due to the defect. In addition, blade displacement data were acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the data obtained from the optical technique. The results of the crack detection experiments and its associated analysis are presented in this paper.

  1. Improved nonlinear fault detection strategy based on the Hellinger distance metric: Plug flow reactor monitoring

    KAUST Repository

    Harrou, Fouzi

    2017-03-18

    Fault detection has a vital role in the process industry to enhance productivity, efficiency, and safety, and to avoid expensive maintenance. This paper proposes an innovative multivariate fault detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions obtained using fault-free data. Furthermore, to enhance further the robustness of these methods to measurement noise, and reduce the false alarms due to modeling errors, wavelet-based multiscale filtering of residuals is used before the application of the HD-based monitoring scheme. The performances of the developed NLPLS-HD fault detection technique is illustrated using simulated plug flow reactor data. The results show that the proposed method provides favorable performance for detection of faults compared to the conventional NLPLS method.

  2. Predicted responses for a particulate detection system in a continuous stack monitor.

    Science.gov (United States)

    Tries, Mark A; Holloman, Ryan L; Bobe, Leo M

    2002-10-01

    Predicted counting rate responses were developed for a particulate detection system that is used for continuous monitoring for the presence of radioactive particulates in the effluent air from a research reactor. The particulate detection system consists of a moving filter paper assembly, a plastic scintillation detector, and a rate meter output, and is part of a comprehensive stack monitoring system. A predicted response was derived for the case of a steady-state activity distribution across the surface of the moving filter paper that is in proximity to the detector and was determined to be 1.59 x 10(7) cpm per unit airborne concentration of 138Cs (expressed in units of Bq cm(-3)), where 138Cs was used as an indicator for a hypothetical fission product release. The corresponding response model provided by the manufacturer was found to underestimate airborne activity concentrations by about an order of magnitude. A predicted response also was derived for the case of a rapid change in airborne activity concentration, which was formulated based on the kinetics of the rate meter circuit and was used to establish alarm settings and detection limits for the particulate detection system.

  3. [Spatial distribution pattern and stock estimation of nutrients during bloom season in Lake Taihu].

    Science.gov (United States)

    Jin, Ying-Wei; Zhu, Guang-Wei; Xu, Hai; Zhu, Meng-Yuan

    2015-03-01

    4(3-)-P, total dissolved phosphorus (TDP) and nitrite nitrogen (NO2(-) -N) were the influencing factors for the fourth section. The study showed that the values of TN, TDN, TP and TDP respectively were 12 800 tons, 9 800 tons, 445 tons and 150 tons during the research period. As a large shallow lake, Lake Taihu showed high spatial heterogeneity in nutrients during bloom season, which was resulted from the space migration accumulation characteristics of cyanobacteria blooms and the alienation characteristics of ecological type. Therefore, when monitoring and evaluating the large shallow lakes, sampling points should be set rationally and the results should be interpreted properly, to avoid overgeneralization due to improper monitoring points and statistical methods.

  4. AN OVERVIEW ON BLOOM'S REVISED TAKSONOMY

    OpenAIRE

    TUTKUN, Ömer Faruk

    2013-01-01

    In this study, the main purpose is to present the main frame of revised version in 2001 of Bloom's taxonomy that has been accepted extensively in our country since 1956 as well as around the world. In accordance with this purpose, in the study, answers have been searched to these questions: 1- The rise of the original Bloom's taxonomy and what are the key features of? 2- What are the reasons for renewal of original taxonomy? 3- What kind of arrangements has been made in revised taxonomy? 4- W...

  5. Coastal engineering and Harmful Algal Blooms along Alexandria coast, Egypt

    Directory of Open Access Journals (Sweden)

    Amany A. Ismael

    2014-01-01

    The phytoplankton composition and its standing crop became totally different during the two periods. The most important bloom was caused by Micromonas pusilla forming a heavy green tide accompanied by a bloom of Peridinium quinquecorne. Although there were no fish or invertebrate mortality, this bloom caused economic losses to internal tourism. In the absence of any Environmental Assessment, the coastal engineering works increased the harmful algal blooms in Alexandria coastal waters, even after corrective steps were taken to mitigate the harmful effects.

  6. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, W.T.; Walker, B.A. [Environmental Evaluation Group, Albuquerque, NM (United States)

    1997-08-01

    Waste Isolation Pilot Plant (WIPP) alpha continuous air monitor (CAM) performance was evaluated to determine if CAMs could detect accidental releases of transuranic radioactivity from the underground repository. Anomalous alpha spectra and poor background subtraction were observed and attributed to salt deposits on the CAM sampling filters. Microscopic examination of salt laden sampling filters revealed that aerosol particles were forming dendritic structures on the surface of the sampling filters. Alpha CAM detection efficiency decreased exponentially as salt deposits increased on the sampling filters, suggesting that sampling-filter salt was performing like a fibrous filter rather than a membrane filter. Aerosol particles appeared to penetrate the sampling-filter salt deposits and alpha particle energy was reduced. These findings indicate that alpha CAMs may not be able to detect acute releases of radioactivity, and consequently CAMs are not used as part of the WIPP dynamic confinement system. 12 refs., 12 figs., 1 tab.

  7. Conceptual design and development of GEM based detecting system for tomographic tungsten focused transport monitoring

    Science.gov (United States)

    Chernyshova, M.; Czarski, T.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Kolasiński, P.; Mazon, D.; Malard, P.

    2015-10-01

    Implementing tungsten as a plasma facing material in ITER and future fusion reactors will require effective monitoring of not just its level in the plasma but also its distribution. That can be successfully achieved using detectors based on Gas Electron Multiplier (GEM) technology. This work presents the conceptual design of the detecting unit for poloidal tomography to be tested at the WEST project tokamak. The current stage of the development is discussed covering aspects which include detector's spatial dimensions, gas mixtures, window materials and arrangements inside and outside the tokamak ports, details of detector's structure itself and details of the detecting module electronics. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing the creation of sustainable nuclear fusion reactors a step closer. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  8. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    Energy Technology Data Exchange (ETDEWEB)

    Sondrup, A. Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rood, Arthur S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) for every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the National

  9. The Establishment of Intelligent Detection Method and Monitoring System for Underwater Target Based on Imaging Sonar

    Directory of Open Access Journals (Sweden)

    Peng Pengfei

    2015-01-01

    Full Text Available For the practical requirement of underwater safety protection, the conception of target precautionary area is put forward combined with the technical characteristic of imaging sonar and the analysis of small underwater target imaging feature. And a detection method for underwater moving target based on image processing is build up, so that the intelligent detection and recognition of the underwater specific target is realized. Meanwhile, the intelligent detection and monitoring system of underwater target based on imaging sonar is designed and developed with the use of multi-level component-based architecture according to the practical application requirements. The system has obtained remarkable economic benefit in practical use and has good prospects for application.

  10. First detection of Agrilus planipennis in Connecticut made by monitoring Cerceris fumipennis (Crabronidae colonies

    Directory of Open Access Journals (Sweden)

    Claire Rutledge

    2013-04-01

    Full Text Available Smoky winged beetle bandits, Cerceris fumipennis Say, digger wasps in the family Hymenoptera: Crabronidae: Cercerini, provision their underground nests with adult metallic wood-boring beetles (Coleoptera: Buprestidae. Researchers, as well as engaged community volunteers, in several states have monitored female wasps returning to their nests as a means to detect invasive buprestid species. In this paper, we report the first detection of emerald ash borer (Agrilus planipennis Fairemore, an invasive beetle responsible for killing millions of ash trees in North America, in Connecticut by C. fumipennis and discuss its relationship to A. planipennis survey efforts by other modalities in the state. We also report detections of A. planipennis by C. fumipennis in Illinois, New York and Ontario; all of which were made after it was known the beetle was in the area. These findings support the use of C. fumipennis as a biomonitoring tool and bolster the use of engaged volunteers.

  11. Oil Spill Detection and Monitoring of Abu Dhabi Coastal Zone Using KOMPSAT-5 SAR Imagery

    Science.gov (United States)

    Harahsheh, H. A.

    2016-06-01

    Abu Dhabi Government endorsed vision for its Maritime Strategy `A safe, secure and sustainable maritime domain for Abu Dhabi'. This research study share this vision using the concept of monitoring as tool for marine protection against any possible oil pollution. The best technology to detect and monitor oil pollution and in particularly oil spill is SAR imagery In this case study we chose KOMPSAT-5 SAR. KOMPSAT-5 carries X-band SAR for earth observation, and is capable of day-and-night imaging under all weather condition. It provides three operation modes: High Resolution Mode to provide 1 m resolution, Standard Mode to provide 3 m resolution and Wide Swath Mode to provide 20 m resolution with 100 km swath at 550 km altitude, with four modes of polarization. KOMPSAT-5 provides products for various applications; security and defense, mapping, and natural resource management, environmental monitoring, disaster monitoring and more. For our case study we chose to work with Wide Swath mode (WS) with Vertical polarization (VV) to cover a wide area of interest located to the north west of Abu Dhabi including some important islands like "Zirku Island", and areas with oil production activities. The results of data acquired on 4th May 2015 show some spot of oil spill with length estimated about 3 KM, and the daily satellite data acquisition over the period July 24 through July 31 shows serious and many oil spill events some are small, but many others are considered to be big with area size around 20 km2. In the context of oil spill pollution in the seas, we have to consider the development and increase of overseas transportation, which is an important factor for both social and economic sectors. The harmful effects of marine pollution are numerous, from the damage of marine life to the damage of the aquatic ecosystem as whole. As such, the need for oil slick detection is crucial, for the location of polluted areas and to evaluate slick drift to protect the coastline

  12. Sampling Methods for Detection and Monitoring of the Asian Citrus Psyllid (Hemiptera: Psyllidae).

    Science.gov (United States)

    Monzo, C; Arevalo, H A; Jones, M M; Vanaclocha, P; Croxton, S D; Qureshi, J A; Stansly, P A

    2015-06-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama is a key pest of citrus due to its role as vector of citrus greening disease or "huanglongbing." ACP monitoring is considered an indispensable tool for management of vector and disease. In the present study, datasets collected between 2009 and 2013 from 245 citrus blocks were used to evaluate precision, sensitivity for detection, and efficiency of five sampling methods. The number of samples needed to reach a 0.25 standard error-mean ratio was estimated using Taylor's power law and used to compare precision among sampling methods. Comparison of detection sensitivity and time expenditure (cost) between stem-tap and other sampling methodologies conducted consecutively at the same location were also assessed. Stem-tap sampling was the most efficient sampling method when ACP densities were moderate to high and served as the basis for comparison with all other methods. Protocols that grouped trees near randomly selected locations across the block were more efficient than sampling trees at random across the block. Sweep net sampling was similar to stem-taps in number of captures per sampled unit, but less precise at any ACP density. Yellow sticky traps were 14 times more sensitive than stem-taps but much more time consuming and thus less efficient except at very low population densities. Visual sampling was efficient for detecting and monitoring ACP at low densities. Suction sampling was time consuming and taxing but the most sensitive of all methods for detection of sparse populations. This information can be used to optimize ACP monitoring efforts.

  13. Seawater reverse osmosis desalination and (harmful) algal blooms

    KAUST Repository

    Villacorte, Loreen O.

    2015-03-01

    This article reviews the occurrence of HABs in seawater, their effects on the operation of seawater reverse osmosis (SWRO) plants, the indicators for quantifying/predicting these effects, and the pretreatment strategies for mitigating operational issues during algal blooms. The potential issues in SWRO plants during HABs are particulate/organic fouling of pretreatment systems and biological fouling of RO membranes, mainly due to accumulation of algal organic matter (AOM). The presence of HAB toxins in desalinated water is also a potential concern but only at very low concentrations. Monitoring algal cell density, AOM concentrations and membrane fouling indices is a promising approach to assess the quality of SWRO feedwater and performance of the pretreatment system. When geological condition is favourable, subsurface intake can be a robust pretreatment for SWRO during HABs. Existing SWRO plants with open intake and are fitted with granular media filtration can improve performance in terms of capacity and product water quality, if preceded by dissolved air flotation or sedimentation. However, the application of advanced pretreatment using ultrafiltration membrane with in-line coagulation is often a better option as it is capable of maintaining stable operation and better RO feed water quality during algal bloom periods with significantly lower chemical consumption.

  14. Application of Pressure Pulse Test Analysis in CO2 Leakage Detection and Monitoring

    Science.gov (United States)

    Shakiba, M.; Hosseini, S. A.

    2015-12-01

    Over the past decade, numerous research and industrial projects have been devoted to investigate the feasibility and efficiency of carbon dioxide capture, storage, and utilization. Besides the studies over the characteristics of candidate formations for CO2 injection, much attention has been paid to answer the environmental concerns regarding the CO2 leak to overlying formations. To first detect and then track a possible CO2 leak, different techniques have been proposed in the literature; however, most of them examine only a small portion of the formation and have a low resolution for early leak detection. To further increase the extent of the investigation zone and to monitor a large section of the formation in more detail, multi-well testing techniques have received a significant attention. Pressure pulse testing is a multi-well test technique in which a pressure signal generated by periods of injection and shut-in from a pulser well is propagated inside the formation, and the corresponding response is recorded at the observer wells. The recorded pressure response is then analyzed to measure the rock and fluid properties and to monitor the possible changes over the time. In this research study, we have applied frequency methods as well as superposition principle to interpret the pressure pulse test data and monitor the changes in transmissibility and storativity of the formation between the well pairs. We have used synthetic reservoir models and numerical reservoir simulations to produce the pressure pulse test data. The analysis of the simulation results indicated that even a small amount of CO2 leak in the investigation zone can have a measurable effect on the calculated storativity and transmissibility factors. This can be of a great importance when an early leak detection is of interest. Moreover, when multiple wells are available in the formation, the distribution of the calculated parameters can visualize the extent of CO2 leak, which has a great

  15. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring

    Directory of Open Access Journals (Sweden)

    Tango Toshiro

    2008-04-01

    Full Text Available Abstract Background Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many different methods have been proposed to detect spatial disease clusters. In particular, some spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected by the circular spatial scan statistic. Results Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time scan statistic for early detection of disease outbreaks. The performance of the proposed space-time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In order to compare their performances, we have developed a space-time power distribution by extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in Massachusetts, USA, are used to illustrate the proposed test statistic. Conclusion The flexible space-time scan statistic is well suited for detecting and monitoring disease outbreaks in irregularly shaped areas.

  16. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-04-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10{sup 4} to 10{sup 6} and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference.

  17. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10[sup 4] to 10[sup 6] and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference.

  18. A fiber optic sensor for detecting and monitoring cracks in concrete structures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The formation and propagation of cracks reflect the aging and pathologic changes of concrete structures and may cause problems such as seepage and long-term durability. Crack detection and monitoring is therefore an effective way to evaluate structural health conditions. An important challenge in such a task is that the locations and orientations of cracks in concrete structures are difficult to predict due to material inhomogeneity and complexity. The number of the required conventional electric and electromagnetic sensors to cover all possible cracks may be too large to be practical for a monitoring scheme. In this paper, a fiber optic sensor with distributed crack sensing capability based on optical time domain reflectometry is proposed and its sensing principle is introduced. Experiments are conducted to obtain the optical power loss versus crack opening at different fiber inclination angles, and then a model is developed to quantify it. Finally, an experiment is performed to demonstrate the practical application of the sensor. The test results show that detecting and monitoring cracks with the sensor do not require a-priori knowledge of crack locations and orientations.

  19. Developing monitoring plans to detect spills related to natural gas production.

    Science.gov (United States)

    Harris, Aubrey E; Hopkinson, Leslie; Soeder, Daniel J

    2016-11-01

    Surface water is at risk from Marcellus Shale operations because of chemical storage on drill pads during hydraulic fracturing operations, and the return of water high in total dissolved solids (up to 345 g/L) from shale gas production. This research evaluated how two commercial, off-the-shelf water quality sensors responded to simulated surface water pollution events associated with Marcellus Shale development. First, peak concentrations of contaminants from typical spill events in monitored watersheds were estimated using regression techniques. Laboratory measurements were then conducted to determine how standard in-stream instrumentation that monitor conductivity, pH, temperature, and dissolved oxygen responded to three potential spill materials: ethylene glycol (corrosion inhibitor), drilling mud, and produced water. Solutions ranging from 0 to 50 ppm of each spill material were assessed. Over this range, the specific conductivity increased on average by 19.9, 27.9, and 70 μS/cm for drilling mud, ethylene glycol, and produced water, respectively. On average, minor changes in pH (0.5-0.8) and dissolved oxygen (0.13-0.23 ppm) were observed. While continuous monitoring may be part of the strategy for detecting spills to surface water, these minor impacts to water quality highlight the difficulty in detecting spill events. When practical, sensors should be placed at the mouths of small watersheds where drilling activities or spill risks are present, as contaminant travel distance strongly affects concentrations in surface water systems.

  20. Video-based respiration monitoring with automatic region of interest detection.

    Science.gov (United States)

    Janssen, Rik; Wang, Wenjin; Moço, Andreia; de Haan, Gerard

    2016-01-01

    Vital signs monitoring is ubiquitous in clinical environments and emerging in home-based healthcare applications. Still, since current monitoring methods require uncomfortable sensors, respiration rate remains the least measured vital sign. In this paper, we propose a video-based respiration monitoring method that automatically detects a respiratory region of interest (RoI) and signal using a camera. Based on the observation that respiration induced chest/abdomen motion is an independent motion system in a video, our basic idea is to exploit the intrinsic properties of respiration to find the respiratory RoI and extract the respiratory signal via motion factorization. We created a benchmark dataset containing 148 video sequences obtained on adults under challenging conditions and also neonates in the neonatal intensive care unit (NICU). The measurements obtained by the proposed video respiration monitoring (VRM) method are not significantly different from the reference methods (guided breathing or contact-based ECG; p-value  =  0.6), and explain more than 99% of the variance of the reference values with low limits of agreement (-2.67 to 2.81 bpm). VRM seems to provide a valid solution to ECG in confined motion scenarios, though precision may be reduced for neonates. More studies are needed to validate VRM under challenging recording conditions, including upper-body motion types.

  1. Decadal-scale changes of dinoflagellates and diatoms in the anomalous baltic sea spring bloom.

    Science.gov (United States)

    Klais, Riina; Tamminen, Timo; Kremp, Anke; Spilling, Kristian; Olli, Kalle

    2011-01-01

    The algal spring bloom in the Baltic Sea represents an anomaly from the winter-spring bloom patterns worldwide in terms of frequent and recurring dominance of dinoflagellates over diatoms. Analysis of approximately 3500 spring bloom samples from the Baltic Sea monitoring programs revealed (i) that within the major basins the proportion of dinoflagellates varied from 0.1 (Kattegat) to >0.8 (central Baltic Proper), and (ii) substantial shifts (e.g. from 0.2 to 0.6 in the Gulf of Finland) in the dinoflagellate proportion over four decades. During a recent decade (1995-2004) the proportion of dinoflagellates increased relative to diatoms mostly in the northernmost basins (Gulf of Bothnia, from 0.1 to 0.4) and in the Gulf of Finland, (0.4 to 0.6) which are typically ice-covered areas. We hypothesize that in coastal areas a specific sequence of seasonal events, involving wintertime mixing and resuspension of benthic cysts, followed by proliferation in stratified thin layers under melting ice, favors successful seeding and accumulation of dense dinoflagellate populations over diatoms. This head-start of dinoflagellates by the onset of the spring bloom is decisive for successful competition with the faster growing diatoms. Massive cyst formation and spreading of cyst beds fuel the expanding and ever larger dinoflagellate blooms in the relatively shallow coastal waters. Shifts in the dominant spring bloom algal groups can have significant effects on major elemental fluxes and functioning of the Baltic Sea ecosystem, but also in the vast shelves and estuaries at high latitudes, where ice-associated cold-water dinoflagellates successfully compete with diatoms.

  2. Microcystin-producing and non-producing cyanobacterial blooms collected from the Central India harbor potentially pathogenic Vibrio cholerae.

    Science.gov (United States)

    Chaturvedi, Prashant; Kumar Agrawal, Manish; Nath Bagchi, Suvendra

    2015-05-01

    On the basis of relative abundance, frequency and biovolume, the important value index ranks were assigned to individual cyanobacteria in phytoplankton samples collected from fourteen water resources of Central India. The mcyABDE genes were detected in all the blooms with Microcystis (-aeruginosa, -viridis, -panniformis, -botrys) as being the major constituent morphospecies. On the other hand, blooms composed of primarily Oscillatoria (-limosa,-agardhii, -laetevirens) along with Anabaena, Nostoc, Phormidium and Spirulina as sub-dominant forms exhibited quite a patchy distribution of one or the other mcy genes. Fifty percent of Microcystis- but none of the Oscillatoria dominant blooms produced microcystins-RR and desmethyl-RR at 0.03-0.41mgg(-1) bloom dry mass. Traces of dissolved microcystin was detected in lake water, which is well below the WHO guideline. Irrespective of cyanobacterial composition and microcystin production ability, during the study period 43-64% of the cyanobacterial bloom samples exhibited association of viable but nonculturable forms of Vibrio cholerae O1 and O139, as evident from amplification of the antigen genes. We believe that spread of endemic cholera is the major threat associated with harmful algal blooms.

  3. Detection of atrial fibrillation with concurrent holter monitoring and continuous cardiac telemetry following ischemic stroke and transient ischemic attack.

    Science.gov (United States)

    Lazzaro, Marc A; Krishnan, Kousik; Prabhakaran, Shyam

    2012-02-01

    Atrial fibrillation (AF) is a major risk factor for recurrent ischemic stroke. We aimed to compare the detection rate of AF using continuous cardiac telemetry (CCT) versus Holter monitoring in hospitalized patients with ischemic stroke or transient ischemic attack (TIA). Between June 2007 and December 2008, 133 patients were admitted to an academic institution for ischemic stroke or TIA and underwent concurrent inpatient CCT and Holter monitoring. Rates of AF detection by CCT and Holter monitoring were compared using the McNemar paired proportion test. Among the 133 patients, 8 (6.0%) were diagnosed with new-onset AF. On average, Holter monitoring was performed for 29.8 hours, and CCT was performed for 73.6 hours. The overall rate of AF detection was higher for Holter monitoring compared with CCT (6.0%; 95% confidence interval [CI], 2.9-11.6 vs 0; 95% CI, 0-3.4; P = .008). Holter detection of AF was even higher in specific subgroups (those with an embolic infarct pattern, those age >65 years, and those with coronary artery disease). Holter monitoring detected AF in 6% of hospitalized ischemic stroke and TIA patients, with higher proportions in high-risk subgroups. Compared with CCT, Holter monitoring is significantly more likely to detect arrhythmias.

  4. Detecting electron beam energy shifts with a commercially available energy monitor.

    Science.gov (United States)

    Evans, M D; Moftah, B A; Olivares, M; Podgorsak, E B

    2000-07-01

    Routine electron beam quality assurance requires an accurate, yet practical, method of energy characterization. Subtle shifts in beam energy may be produced by the linac bending magnet assembly, and the sensitivity of a commercially available electron beam energy-monitoring device for monitoring these small energy drifts has been evaluated. The device shows an 11% change in signal for a 2 mm change in the I50 energy parameter for low energy electron beams (in the vicinity of 6 MeV) and a 2.5% change in signal for a 2 mm change in the I50 energy parameter for high energy electron beams (in the vicinity of 22 MeV). Thus the device is capable of detecting small energy shifts resulting from bending magnet drift for all clinically relevant electron beams.

  5. Detection of biomolecules and bioconjugates by monitoring rotated grating-coupled surface plasmon resonance

    CERN Document Server

    Szalai, Aniko; Somogyi, Aniko; Szenes, Andras; Banhelyi, Balazs; Csapo, Edit; Dekany, Imre; Csendes, Tibor; Csete, Maria

    2016-01-01

    Plasmonic biosensing chips were prepared by fabricating wavelength-scaled dielectric-metal interfacial gratings on thin polycarbonate films covered bimetal layers via two-beam interference laser lithography. Lysozyme (LYZ) biomolecules and gold nanoparticle (AuNP-LYZ) bioconjugates with 1:5 mass ratio were seeded onto the biochip surfaces. Surface plasmon resonance spectroscopy was performed before and after biomolecule seeding in a modified Kretschmann-arrangement by varying the azimuthal and polar angles to optimize the conditions for rotated grating-coupling. The shift of secondary and primary resonance peaks originating from rotated grating-coupling phenomenon was monitored to detect the biomolecule and bioconjugate adherence. Numerical calculations were performed to reproduce the measured reflectance spectra and the resonance peak shifts caused by different biocoverings. Comparison of measurements and calculations proved that monitoring the narrower secondary peaks under optimal rotated-grating coupling ...

  6. Photomask film degradation effects in the wafer fab: how to detect and monitor over time

    Science.gov (United States)

    Whittey, John; Hess, Carl; Garcia, Edgardo; Wagner, Mark; Duffy, Brian

    2012-11-01

    As a result of repeated cleanings and exposure effects such as chrome migration or MoSi oxidation some photomasks in the semiconductor fabs exhibit changes in critical dimension uniformity (CDU) over time. Detecting these effects in a timely manner allows for better risk management and process control in manufacturing. By monitoring changes in film reflectance intensity due to the various degradation mechanisms it is possible to predict when they may begin to influence across chip line width variations (ACLV). By accurately predicting the magnitude of these changes it is possible for semiconductor manufacturers to replace the photomasks before they have an impact on yields. This paper looks at possible causes of CDU variations on reticles during use and how this information might be used to improve or monitor reticle CDU changes over time.

  7. Enhanced surveillance strategies for detecting and monitoring chronic wasting disease in free-ranging cervids

    Science.gov (United States)

    Walsh, Daniel P.

    2012-01-01

    The purpose of this document is to provide wildlife management agencies with the foundation upon which they can build scientifically rigorous and cost-effective surveillance and monitoring programs for chronic wasting disease (CWD) or refine their existing programs. The first chapter provides an overview of potential demographic and spatial risk factors of susceptible wildlife populations that may be exploited for CWD surveillance and monitoring. The information contained in this chapter explores historic as well as recent developments in our understanding of CWD disease dynamics. It also contains many literature references for readers who may desire a more thorough review of the topics or CWD in general. The second chapter examines methods for enhancing efforts to detect CWD on the landscape where it is not presently known to exist and focuses on the efficiency and cost-effectiveness of the surveillance program. Specifically, it describes the means of exploiting current knowledge of demographic and spatial risk factors, as described in the first chapter, through a two-stage surveillance scheme that utilizes traditional design-based sampling approaches and novel statistical methods to incorporate information about the attributes of the landscape, environment, populations and individual animals into CWD surveillance activities. By accounting for these attributes, efficiencies can be gained and cost-savings can be realized. The final chapter is unique in relation to the first two chapters. Its focus is on designing programs to monitor CWD once it is discovered within a jurisdiction. Unlike the prior chapters that are more detailed or prescriptive, this chapter by design is considerably more general because providing comprehensive direction for creating monitoring programs for jurisdictions without consideration of their monitoring goals, sociopolitical constraints, or their biological systems, is not possible. Therefore, the authors draw upon their collective

  8. Pre-operational monitor system of large inland lake water quality with MODIS imagery

    Science.gov (United States)

    Xiaoyu, Zhang; Dingtian, Yang; Xiaofeng, Zhang; Difeng, Wang; Shujing, Li; Delu, Pan

    2005-10-01

    EOS\\MODIS data have been proved a suitable and relative low-cost complementary tool to monitor large inland lake water quality for its re-visit frequency, moderate spatial and spectral resolution and appropriate channels designed for inversing water quality parameters. In this study, by the support of hi-tech research and development program of China, Lake water quality remote monitoring pre-operational system (LWQRMPS) was constructed aimed for practical monitoring of Taihu Lake water quality. The main water quality parameters including Chl-a and SPM, TN and TP inversion algorithm were developed. These parameters were obtained every month from time series fusion satellite data. With the routine trophic state evaluation system, the water quality was assessed every month based on the above retrieved MODIS water quality parameters, varied level of eutrophic area was computed. The obvious high reflectance in near-infrared spectrum caused by blue-green algal bloom support the application of 250m MODIS data in the algal bloom emergency monitor. Therefore, MODIS data were utilized successfully for inversing water quality parameters, evaluating eutrophication status, and detecting algal bloom in near real time. Standard thematic maps were produced and distributed to corresponding management departments. The accuracy of products and retrieve algorithm for operational use were tested with separate data sets. The result suggested that system is good enough for practical monitoring water quality of large size lakes and acquired identification.

  9. Trace gas detection and monitoring with the Digital Array Gas-correlation Radiometer (DAGR)

    Science.gov (United States)

    Gordley, Larry L.; Hervig, Mark E.; Fish, Chad; McHugh, Martin J.

    2011-05-01

    We present the first results from a Digital Array Gas-correlation Radiometer (DAGR) prototype sensor, and discuss applications in remote sensing of trace gases. The sensor concept is based on traditional and reliable Gas Filter Correlation Radiometry (GFCR), but overcomes the limitations in solar backscatter applications. The DAGR sensor design can be scaled to the size of a digital camera and is ideal for downlooking detection of gases in the boundary layer, where solar backscatter measurements are needed to overcome the lack of thermal contrast in the IR. Ground-based portable DAGR sensors can monitor carbon sequestration sites or industrial facilities. Aircraft or UAV deployment can quickly survey large areas and are particularly well suited for gas leak detection or carbon monitoring. From space-based platforms, Doppler modulation can be exploited to produce an extremely fine spectral resolution with effective resolving power exceeding 100,000. Such space-based DAGR observations could provide near-global sensing of climatically important species such as such as CO2, CO, CH4, O3 and N2O. Planetary science applications include detection and mapping of biomarkers in the Martian atmosphere.

  10. Image corruption detection in diffusion tensor imaging for post-processing and real-time monitoring.

    Science.gov (United States)

    Li, Yue; Shea, Steven M; Lorenz, Christine H; Jiang, Hangyi; Chou, Ming-Chung; Mori, Susumu

    2013-01-01

    Due to the high sensitivity of diffusion tensor imaging (DTI) to physiological motion, clinical DTI scans often suffer a significant amount of artifacts. Tensor-fitting-based, post-processing outlier rejection is often used to reduce the influence of motion artifacts. Although it is an effective approach, when there are multiple corrupted data, this method may no longer correctly identify and reject the corrupted data. In this paper, we introduce a new criterion called "corrected Inter-Slice Intensity Discontinuity" (cISID) to detect motion-induced artifacts. We compared the performance of algorithms using cISID and other existing methods with regard to artifact detection. The experimental results show that the integration of cISID into fitting-based methods significantly improves the retrospective detection performance at post-processing analysis. The performance of the cISID criterion, if used alone, was inferior to the fitting-based methods, but cISID could effectively identify severely corrupted images with a rapid calculation time. In the second part of this paper, an outlier rejection scheme was implemented on a scanner for real-time monitoring of image quality and reacquisition of the corrupted data. The real-time monitoring, based on cISID and followed by post-processing, fitting-based outlier rejection, could provide a robust environment for routine DTI studies.

  11. Wetland Monitoring Using the Curvelet-Based Change Detection Method on Polarimetric SAR Imagery

    Directory of Open Access Journals (Sweden)

    Andreas Schmitt

    2013-07-01

    Full Text Available One fundamental task in wetland monitoring is the regular mapping of (temporarily flooded areas especially beneath vegetation. Due to the independence of weather and illumination conditions, Synthetic Aperture Radar (SAR sensors could provide a suitable data base. Using polarimetric modes enables the identification of flooded vegetation by means of the typical double-bounce scattering. In this paper three decomposition techniques—Cloude-Pottier, Freeman-Durden, and Normalized Kennaugh elements—are compared to each other in terms of identifying the flooding extent as well as its temporal change. The image comparison along the time series is performed with the help of the Curvelet-based Change Detection Method. The results indicate that the decomposition algorithm has a strong impact on the robustness and reliability of the change detection. The Normalized Kennaugh elements turn out to be the optimal representation for Curvelet-based change detection processing. Furthermore, the co-polarized channels (same transmit and receive polarization in horizontal (HH and vertical (VV direction respectively appear to be sufficient for wetland monitoring so that dual-co-polarized imaging modes could be an alternative to conventional quad-polarized acquisitions.

  12. Fecal progestagens to detect and monitor pregnancy in captive female cheetahs (Acinonyx jubatus).

    Science.gov (United States)

    Adachi, Itsuki; Kusuda, Satoshi; Kawai, Hitomi; Ohazama, Megumi; Taniguchi, Atsushi; Kondo, Natsuko; Yoshihara, Masato; Okuda, Ryuta; Ishikawa, Tatsuya; Kanda, Iwai; Doi, Osamu

    2011-04-01

    The purposes of the present study were to establish a noninvasive monitoring assay of fecal progestagen measurement to detect pregnancy and to identify the components of fecal progestagens in early, middle and late pregnancy in cheetahs. Feces were collected from 7 female cheetahs and analyzed from 30 days before the last copulation to parturition in 9 pregnancies. Blood was collected from one cheetah. Fecal progestagen and serum progesterone concentrations were determined by enzyme immunoassay (EIA). The profiles of the fecal progestagen concentrations were similar to the serum progesterone profile. Fecal progestagen and serum progesterone concentrations remained at the baseline until copulation. In the mean fecal progestagen profile during pregnancy (92.8 ± 0.4 days; from the last copulation to parturition), the concentrations increased 3-4 days after the last copulation and remained high until parturition. To investigate changes in the components of progestagen metabolites in the tripartite periods of gestation, fecal progestagens were analyzed by HPLC-EIA. Marked immunoreactive peaks consistent with 5α-pregnan-3α/β-ol-20-one and 5α-pregnan-3,20-dione and small peaks consistent with 5β-pregnan-3α/β-ol-20-one were detected. There were no distinct difference in the components of progestagens among the first, second and third trimesters of pregnancy. The hormone assay, as an indicator of fecal 5α-reduced pregnanes, is useful for detecting pregnancy and monitoring pregnant luteal activity in cheetahs.

  13. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    Science.gov (United States)

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  14. Image Corruption Detection in Diffusion Tensor Imaging for Post-Processing and Real-Time Monitoring

    Science.gov (United States)

    Li, Yue; Shea, Steven M.; Lorenz, Christine H.; Jiang, Hangyi; Chou, Ming-Chung; Mori, Susumu

    2013-01-01

    Due to the high sensitivity of diffusion tensor imaging (DTI) to physiological motion, clinical DTI scans often suffer a significant amount of artifacts. Tensor-fitting-based, post-processing outlier rejection is often used to reduce the influence of motion artifacts. Although it is an effective approach, when there are multiple corrupted data, this method may no longer correctly identify and reject the corrupted data. In this paper, we introduce a new criterion called “corrected Inter-Slice Intensity Discontinuity” (cISID) to detect motion-induced artifacts. We compared the performance of algorithms using cISID and other existing methods with regard to artifact detection. The experimental results show that the integration of cISID into fitting-based methods significantly improves the retrospective detection performance at post-processing analysis. The performance of the cISID criterion, if used alone, was inferior to the fitting-based methods, but cISID could effectively identify severely corrupted images with a rapid calculation time. In the second part of this paper, an outlier rejection scheme was implemented on a scanner for real-time monitoring of image quality and reacquisition of the corrupted data. The real-time monitoring, based on cISID and followed by post-processing, fitting-based outlier rejection, could provide a robust environment for routine DTI studies. PMID:24204551

  15. A novel electrical potential sensing method for in vitro stent fracture monitoring and detection.

    Science.gov (United States)

    Park, Chan-Hee; Tijing, Leonard D; Yun, Yeoheung; Kim, Cheol Sang

    2011-01-01

    This article describes a preliminary investigation and prototype fabrication of a novel potential sensing method to continuously monitor vascular stent fractures. A potential measurement system consisting of Wheatstone bridge circuit and signal conditioning circuit was designed for the cardiovascular stent durability and fatigue test. Each end of a bare and polyurethane-covered Nitinol vascular stent was electrically connected to the potential measurement system and then immersed either in simulated body fluid (SBF) media or distilled water at 36.4 ± 1 °C. When the stent experienced fracture (i.e., a cut), its electrical potential decreased with an increase in electrical resistance. This method successfully measured fractures in the stent regardless of location. Furthermore, the number of cycles at the onset of stent fracture was accurately detected and continuously monitored using this technique. Thus, the present fracture detection method, which to our knowledge is the first ever report to use electrical potential measurement for stent durability test, gives a fast, real-time, accurate and efficient detection of fractures in stent during in vitro fatigue and durability test.

  16. MERUNUT PEMAHAMAN TAKSONOMI BLOOM: SUATU KONTEMPLASI FILOSOFIS

    Directory of Open Access Journals (Sweden)

    Dominikus Tulasi

    2010-09-01

    Full Text Available This article would like to share the use of Bloom's taxonomy as a cognitive framework for teaching-learning process to undertake the way student-centered learning. Related to the curriculum based competence in excellent education, the abstract cognitive in applying Blooms taxonomy is so called scaffolding. We know the taxonomy Bloom is a six-level classification system that uses observed student behavior to infer and absorb the level of cognitive achievement domain. This article surveys thinking within general education and management education, which uses and draws on Bloom's taxonomy, and then describes suggested uses of the taxonomy. The empirical evaluation of its effect on student achievement follows, as do thoughts about ways colleagues might use this tool to empower and motivate students as self-responsible learners in the classroom. The objective is to promote higher order thinking in college students, we understood an effort to learn how to assess critical-thinking skills in an introductory course. It means, we develop a process by which questions are prepared with both content and critical-thinking skills in mind.

  17. Harmful cyanobacterial blooms: causes, consequences, and controls.

    Science.gov (United States)

    Paerl, Hans W; Otten, Timothy G

    2013-05-01

    Cyanobacteria are the Earth's oldest oxygenic photoautotrophs and have had major impacts on shaping its biosphere. Their long evolutionary history (≈ 3.5 by) has enabled them to adapt to geochemical and climatic changes, and more recently anthropogenic modifications of aquatic environments, including nutrient over-enrichment (eutrophication), water diversions, withdrawals, and salinization. Many cyanobacterial genera exhibit optimal growth rates and bloom potentials at relatively high water temperatures; hence global warming plays a key role in their expansion and persistence. Bloom-forming cyanobacterial taxa can be harmful from environmental, organismal, and human health perspectives by outcompeting beneficial phytoplankton, depleting oxygen upon bloom senescence, and producing a variety of toxic secondary metabolites (e.g., cyanotoxins). How environmental factors impact cyanotoxin production is the subject of ongoing research, but nutrient (N, P and trace metals) supply rates, light, temperature, oxidative stressors, interactions with other biota (bacteria, viruses and animal grazers), and most likely, the combined effects of these factors are all involved. Accordingly, strategies aimed at controlling and mitigating harmful blooms have focused on manipulating these dynamic factors. The applicability and feasibility of various controls and management approaches is discussed for natural waters and drinking water supplies. Strategies based on physical, chemical, and biological manipulations of specific factors show promise; however, a key underlying approach that should be considered in almost all instances is nutrient (both N and P) input reductions; which have been shown to effectively reduce cyanobacterial biomass, and therefore limit health risks and frequencies of hypoxic events.

  18. In the Cells of the 'Bloom Taxonomy'.

    Science.gov (United States)

    Calder, J. R.

    1983-01-01

    The Bloom Taxonomy of Educational Objectives is criticized because its distinctions between cognitive, affective, and psychomotor domains are invalid; its categories are ill-defined and do not denote homogenous types of objectives; its structural base is inconsistent; and it is debatable whether it is a true taxonomy. (IS)

  19. Change Detection Based on Persistent Scatterer Interferometry - a New Method of Monitoring Building Changes

    Science.gov (United States)

    Yang, C. H.; Kenduiywo, B. K.; Soergel, U.

    2016-06-01

    Persistent Scatterer Interferometry (PSI) is a technique to detect a network of extracted persistent scatterer (PS) points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC) points. On the other hand, incoherent change detection (ICD) relies on local comparison of multi-temporal images (e.g. image difference, image ratio) to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  20. CHANGE DETECTION BASED ON PERSISTENT SCATTERER INTERFEROMETRY – A NEW METHOD OF MONITORING BUILDING CHANGES

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2016-06-01

    Full Text Available Persistent Scatterer Interferometry (PSI is a technique to detect a network of extracted persistent scatterer (PS points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC points. On the other hand, incoherent change detection (ICD relies on local comparison of multi-temporal images (e.g. image difference, image ratio to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  1. Biology in Bloom: Implementing Bloom's Taxonomy to Enhance Student Learning in Biology

    OpenAIRE

    Crowe, Alison; Dirks, Clarissa; Wenderoth, Mary Pat

    2008-01-01

    We developed the Blooming Biology Tool (BBT), an assessment tool based on Bloom's Taxonomy, to assist science faculty in better aligning their assessments with their teaching activities and to help students enhance their study skills and metacognition. The work presented here shows how assessment tools, such as the BBT, can be used to guide and enhance teaching and student learning in a discipline-specific manner in postsecondary education. The BBT was first designed and extensively tested fo...

  2. Dealing with incomplete and variable detectability in multi-year, multi-site monitoring of ecological populations

    Science.gov (United States)

    Converse, Sarah J.; Royle, J. Andrew; Gitzen, Robert A.; Millspaugh, Joshua J.; Cooper, Andrew B.; Licht, Daniel S.

    2012-01-01

    An ecological monitoring program should be viewed as a component of a larger framework designed to advance science and/or management, rather than as a stand-alone activity. Monitoring targets (the ecological variables of interest; e.g. abundance or occurrence of a species) should be set based on the needs of that framework (Nichols and Williams 2006; e.g. Chapters 2–4). Once such monitoring targets are set, the subsequent step in monitoring design involves consideration of the field and analytical methods that will be used to measure monitoring targets with adequate accuracy and precision. Long-term monitoring programs will involve replication of measurements over time, and possibly over space; that is, one location or each of multiple locations will be monitored multiple times, producing a collection of site visits (replicates). Clearly this replication is important for addressing spatial and temporal variability in the ecological resources of interest (Chapters 7–10), but it is worth considering how this replication can further be exploited to increase the effectiveness of monitoring. In particular, defensible monitoring of the majority of animal, and to a lesser degree plant, populations and communities will generally require investigators to account for imperfect detection (Chapters 4, 18). Raw indices of population state variables, such as abundance or occupancy (sensu MacKenzie et al. 2002), are rarely defensible when detection probabilities are McKelvey and Pearson 2001, Johnson 2008), we do not attempt to resolve this debate here. Rather, we are more apt to agree with MacKenzie and Kendall (2002) that the burden of proof ought to be on the assertion that detection probabilities are constant. Furthermore, given the wide variety of field methods available for estimating detection probabilities and the inability for an investigator to know, a priori, if detection probabilities will be constant over time and space, we believe that development of monitoring

  3. Nisqually - Early Detection Rapid Response, Monitoring and Mapping of High Priority Invasive Species with Nisqually NWRC Weed Warriors 2007

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project continues a successful program of early detection and rapid response, monitoring and mapping of invasive species on Nisqually NWRC (NNWRC) by Weed...

  4. Nisqually - Early Detection Rapid Response, Monitoring and Mapping of High Priority Invasive Species with Nisqually NWRC Weed Warriors 2008

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project will continue a successful program of early detection and rapid response, monitoring and mapping of invasive species on Nisqually NWRC by Weed Warrior...

  5. Nisqually - Early Detection Rapid Response, Monitoring and Mapping of High Priority Invasives with Refuge Weed Warriors 2006

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project plan was to initiate a program for early detection and response, monitoring and mapping of invasive species on Grays Harbor NWR and continued current...

  6. Twenty-eight day Holter monitoring is poorly tolerated and insensitive for paroxysmal atrial fibrillation detection in cryptogenic stroke.

    Science.gov (United States)

    Tu, H T; Spence, S; Kalman, J M; Davis, S M

    2014-05-01

    This pilot study in a prospective cohort of 20 cryptogenic stroke patients showed that a significant proportion has paroxysmal atrial fibrillation undetected by 24-h Holter monitoring. However, longer monitoring with 28-day Holter was poorly tolerated and still insufficiently sensitive for paroxysmal atrial fibrillation detection. Further studies are urgently needed to elucidate the optimal timing, method and duration of cardiac rhythm monitoring following ischaemic stroke.

  7. Early detection and treatment of myocardial ischaemia after operation using continual ambulatory arterial pressure monitoring and ECG ST segment analysis.

    Science.gov (United States)

    Edwards, N D; Troy, G; Yeo, W; Jackson, P; Reilly, C S

    1995-10-01

    We report a case in which the use of continual ambulatory arterial pressure monitoring and ECG ST-segment analysis allowed early detection and treatment of myocardial ischaemia in the postoperative period. We believe that this case illustrates the potential value of ambulatory monitoring in the early postoperative period in high-risk patients.

  8. New idea of geomagnetic monitoring through ENA detection from the International Space Station: ENAMISS project

    Science.gov (United States)

    Milillo, Anna; De Angelis, Elisabetta; Orsini, Stefano; Rubini, Alda; Evangelista, Yuri; Mura, Alessandro; Rispoli, Rosanna; Vertolli, Nello; Carrubba, Elisa; Donati, Alessandro; Di Lellis, Andrea Maria; Plainaki, Christina; Lazzarotto, Francesco

    2016-04-01

    Remote sensing of Energetic Neutral Atoms (ENA) in the Earth's environment has been proven to be a successful technique able to provide detailed information on the ring current plasma population at energies below 100 keV. Indeed, the existing space weather databases usually include a good coverage of Sun and solar wind monitoring. The global imaging of the Earth's magnetosphere/ ionosphere is usually obtained by the high-latitudes monitoring of aurorae, ground magnetic field variations and high-latitude radio emissions. The equatorial magnetic field variations on ground, from which the geomagnetic indices like Dst, Sym-H and Asym-H are derived, include the effects of all current systems (i.e. ring current, Chapman -Ferraro current, tails currents, etc...) providing a kind of global information. Nevertheless, the specific information related to the ring current cannot be easily derived from such indices. Only occasional local plasma data are available by orbiting spacecraft. ENA detection is the only way to globally view the ring current populations. Up-to-now this technique has been used mainly from dedicated high altitude polar orbiting spacecraft, which do not allow a continuous and systematic monitoring, and a discrimination of the particle latitude distribution. The Energetic Neutral Atoms Monitor on the International space Station (ENAMISS) project intends to develop an ENA imager and install it on the ISS for continuous monitoring of the spatially distributed ring current plasma population. ISS is the ideal platform to perform continuous ENA monitoring since its particular low altitude and medium/low latitude orbit allows wide-field ENA images of various magnetospheric regions. The calibrated ENA data, the deconvolved ion distributions and ad-hoc ENA-based new geomagnetic indices will be freely distributed to the space weather community. Furthermore, new services based on plasma circulation models, spacecraft surface charging models and radiation dose models

  9. Strategies for monitoring and managing mass populations of toxic cyanobacteria in recreational waters: a multi-interdisciplinary approach.

    Science.gov (United States)

    Tyler, Andrew N; Hunter, Peter D; Carvalho, Laurence; Codd, Geoffrey A; Elliott, J Alex; Ferguson, Claire A; Hanley, Nick D; Hopkins, David W; Maberly, Stephen C; Mearns, Kathryn J; Scott, E Marion

    2009-12-21

    Mass populations of toxin-producing cyanobacteria commonly develop in fresh-, brackish- and marine waters and effective strategies for monitoring and managing cyanobacterial health risks are required to safeguard animal and human health. A multi-interdisciplinary study, including two UK freshwaters with a history of toxic cyanobacterial blooms, was undertaken to explore different approaches for the identification, monitoring and management of potentially-toxic cyanobacteria and their associated risks. The results demonstrate that (i) cyanobacterial bloom occurrence can be predicted at a local- and national-scale using process-based and statistical models; (ii) cyanobacterial concentration and distribution in waterbodies can be monitored using remote sensing, but minimum detection limits need to be evaluated; (iii) cyanotoxins may be transferred to spray-irrigated root crops; and (iv) attitudes and perceptions towards risks influence the public's preferences and willingness-to-pay for cyanobacterial health risk reductions in recreational waters.

  10. Active fire monitoring and fire danger potential detection from space: A review

    Institute of Scientific and Technical Information of China (English)

    John J. QU; Wanting WANG; Swarvanu DASGUPTA; Xianjun HAO

    2008-01-01

    Wildland fire is both one of the major natural hazards and a natural process for ecosystem persistence. Accurate assessment of fire danger potential and timely detection of active fires are critical for fire fighting and fuel management. Space-borne measurements have become the primary approaches for these efforts. Many research works have been conducted and some data pro-ducts have been generated for practical applications. This paper presents a review of the major sensors and algo-rithms for active fire monitoring and fire danger potential detection from space. Major sensors and their character-istics, physical principles of the major algorithms are sum-marized. Limitations of these algorithms and future improvements are also discussed.

  11. In-situ Monitoring and Defect Detection for Laser Metal Deposition by Using Infrared Thermography

    Science.gov (United States)

    Hassler, Ulf; Gruber, Daniel; Hentschel, Oliver; Sukowski, Frank; Grulich, Tobias; Seifert, Lars

    Aim of the presented approach is the early detection of defects (mainly material inhomogeneities like voids, delaminations, kissing bonds) occuring during the additive Laser Metal Deposition (LMD) process. Basis of the approach is the evaluation of the surface temperature gradient within the welding spot using a high speed thermographic sensor. Our contribution covers the following aspects: Estimation of the expected defect contrast by means of a simulation study Second point Experimental setup and performed experiments Achieved results on different welding parameters and mock-up defects together with the associated image processing chain First experiments showed that a set of process parameters can be monitored through the temperature signature of the welding spot. Also, the available defects have been detected down to a diameter of 0.5 mm. The presented work has been carried out within the research project 'ForNextGen' funded by the Bavarian Research Foundation and is part of the work package 6 (Non destructive testing).

  12. Detection and monitoring of hypermethylated RASSF1A in serum from patients with metastatic breast cancer

    DEFF Research Database (Denmark)

    Kristiansen, Søren; Nielsen, Dorte; Söletormos, Georg

    2016-01-01

    BACKGROUND: Circulating hypermethylated RASSF1A could be a novel and potential useful marker for monitoring patients with metastatic breast cancer. Technical obstacles include fragmentation of the circulating DNA, fluctuations in the concentration, low concentrations of circulating tumor DNA......, and different locations of methylation in the RASSF1A gene among patients. One common method for detection of hypermethylated genes is sodium bisulfite conversion of non-methylated cytosine to uracil, followed by detection with PCR. However, the method relies on full conversion of all non-methylated cytosines...... of the rare circulating tumor DNA was initially optimized. By analysis of production of PCR amplicons from HpaII- or BstUI-treated DNA isolated from 24 patients with metastatic breast cancer, we located four regions resulting in sensitivities from 63 to 83 %. When examining samples from 24 control subjects...

  13. Detection of marine aerosols with IRS P4-Ocean Colour Monitor

    Indian Academy of Sciences (India)

    Indrani Das; M Mohan; K Krishnamoorthy

    2002-12-01

    The atmospheric correction bands 7 and 8 (765nm and 865nm respectively) of the Indian Remote Sensing Satellite IRS P4-OCM (Ocean Colour Monitor) can be used for deriving aerosol optical depth (AOD) over the oceans. A retrieval algorithm has been developed which computes the AOD using band 7 data by treating the ocean surface as a dark background after removing the Rayleigh path radiance in the sensor-detected radiances. This algorithm has been used to detect marine aerosol distributions at different coastal and offshore locations around India. A comparison between OCM derived AOD and the NOAA operational AOD shows a correlation ∼0.92 while that between OCM derived AOD and the ground-based sun photometer measurements near the coast of Trivandrum shows a correlation of ∼0.90.

  14. The CMEKF Method for Sub-Sea Pipeline Monitoring and Leak Detection

    Institute of Scientific and Technical Information of China (English)

    白莉; 岳前进; 崔莉; 李洪升; 金兆玉; 王庆国

    2004-01-01

    A practical approach is discussed for sub-sea pipeline monitoring and leak detection based on the real time transient model (RTTM). The characteristic method (CM) of transient simulation is coupled with the Extended Kalman Filter(EKF) to estimate the system state where the only observed data are inlet and outlet flow rate and pressure. Because EKF has a time variant track under the non-stationary stochastic process with additive Gaussian noise, the high sensitivity of RTTM to non-stationary operating condition is reduced. A leak location recursion estimation formula is presented based on the real time observed data. The results of 27 groups of test data indicate that the procedure presented is sensitive to a wide range of detectable leak sizes ( 1.5% ~ 57% of inlet flow rate) and has a low average relative error of leak location(<5%).

  15. Comparative Analysis of Flower Volatiles from Nine Citrus at Three Blooming Stages

    Directory of Open Access Journals (Sweden)

    Muhammad Azam

    2013-11-01

    Full Text Available Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled.

  16. Association of an unusual marine mammal mortality event with Pseudo-nitzschia spp. Blooms along the southern California coastline.

    Science.gov (United States)

    de la Riva, Gretel Torres; Johnson, Christine Kreuder; Gulland, Frances M D; Langlois, Gregg W; Heyning, John E; Rowles, Teri K; Mazet, Jonna A K

    2009-01-01

    During 2002, 2,239 marine mammals stranded in southern California. This unusual marine mammal stranding event was clustered from April to June and consisted primarily of California sea lions (Zalophus californianus) and long-beaked common dolphins (Delphinus capensis) with severe neurologic signs. Intoxication with domoic acid (DA), a marine neurotoxin produced during seasonal blooms of Pseudo-nitzschia spp., was suspected. Definitively linking harmful algal blooms to large-scale marine mammal mortalities presents a substantial challenge, as does determining the geographic extent, species composition, and potential population impacts of marine mammal die-offs. For this reason, time series cross-correlation analysis was performed to test the temporal correlations of Pseudo-nitzschia blooms with strandings occurring along the southern California coastline. Temporal correlations were identified between strandings and blooms for California sea lions, long-beaked common dolphins, and short-beaked common dolphins (Delphinus delphis). Similar correlations were identified for bottlenose dolphins (Tursiops truncatus) and gray whales (Eschrichtius robustus), but small sample sizes for these species made associations more speculative. The timing of the blooms and strandings of marine mammals suggested that both inshore and offshore foraging species were affected and that marine biotoxin programs should include offshore monitoring sites. In addition, California sea lion-strandings appear to be a very sensitive indicator of DA in the marine environment, and their monitoring should be included in public health surveillance plans.

  17. Physical quality status analysis for hypertensive crowd detected in Shanghai national physique monitoring

    Directory of Open Access Journals (Sweden)

    LI He

    2014-04-01

    Full Text Available The aim of this study is to analyze the physical fitness of hypertension group for 20-69 years old hypertension crowd that were checked through Shanghai national physique monitoring in 2010,and to provide scientific basis for making exercise health promotion plans for them.Index test methods are based on “2010 China National Physique Monitoring Handbook” issued by the State Sports General Administration.Overall the detection rate of mild hypertension was 16.8%,moderate to severe hypertension was 4.5%.The excellent and good rate in the national physique monitoring was different between different groups,the rate of normotensive group was the highest,then was the mild hypertensive group,the smallest was the severe hypertensive group.With the increase of blood pressure levels,morphological indexes were increased,and the difference was significant.With the increase of blood pressure,the quiet pulse significantly increased,vital capacity and step index decreased significantly,diathesis indexes were significant difference except for back strength,females′ grip strength and men's pushups.The hypertensive group has obvious physical characteristics and obesity morphology,most of them have abdominal obesity,their performance indicators and some quality parameters are significantly lower than normotensive group.

  18. Robot Assisted Wireless Sensor Network for Monitoring and Detection of Explosives in Indoor Environment

    Directory of Open Access Journals (Sweden)

    Joshua D Freeman,

    2011-05-01

    Full Text Available In recent years, remote environment monitoring has been significantly improved with wireless sensor networking technology. This paper presents the real time streaming of an indoor environment using a wireless sensor network and a set of self-navigating robots. Mobile robots with mounted sensors will autonomously navigate through an indoor area with unknown obstacles. The robots will be able toavoid obstacles and move around the region. The robots sense the environmental parameters of the region, and send that data to the remote monitoring terminals using an underlying wireless sensornetwork. This design is applicable to networks where some of the sensors may not have sufficient range to sense data more accurately and closer monitoring is required. Effective path planning for the mobile robot is achieved by combining a map of the area, the sensor readings and the radio strength of the sensor network. Email alerts can be sent to officials if the sensed data goes above a predefined threshold level, thus successfully detecting the presence of explosives in a given area. This system streams the data in realtimeto the Internet making it possible for authorized personnel to view the status of the environment online.

  19. Wind-driven marine phytoplank blooms: Satellite observation and analysis

    Science.gov (United States)

    Tang, DanLing

    2016-07-01

    Algal bloom is defined as a rapid increase or accumulation in biomass in an aquatic system. It not only can increase the primary production but also could result in negative ecological consequence, e.g.,Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actuallythe traditional observation is only sporadic capture to the existence of algal blooms.Taking full advantage of multiple data of satellite remote sensing , this study introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; (2)Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. (3)Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. The proposed "wind-pump" mechanism integrates theoretical system combined "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. These

  20. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.

    Science.gov (United States)

    Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu

    2016-04-29

    In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.

  1. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Liansheng Liu

    2016-04-01

    Full Text Available In a complex system, condition monitoring (CM can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR. The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA Ames Research Center and have been used as Prognostics and Health Management (PHM challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.

  2. Monitoring and remote failure detection of grid-connected PV systems based on satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Drews, A.; Lorenz, E.; Betcke, J.; Heinemann, D. [Oldenburg University, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg (Germany); de Keizer, A.C.; van Sark, W.G.J.H.M. [University of Utrecht, Copernicus Institute, Department of Science, Technology, and Society, Heidelberglaan 2, 3584 CH Utrecht (Netherlands); Beyer, H.G. [University of Applied Sciences Magdeburg-Stendal (FH), Institute of Electrical Engineering, Breitscheidstr. 2, 39114 Magdeburg (Germany); Heydenreich, W.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg (Germany); Stettler, S.; Toggweiler, P. [Enecolo AG, Lindhofstr. 52, 8617 Moenchaltorf (Switzerland); Bofinger, S.; Schneider, M.; Heilscher, G. [Meteocontrol GmbH, Spicherer Strasse 48, 86157 Augsburg (Germany)

    2007-04-15

    Small grid-connected photovoltaic systems up to 5 kW{sub p} are often not monitored because advanced surveillance systems are not economical. Hence, some system failures which lead to partial energy losses stay unnoticed for a long time. Even a failure that results in a larger energy deficit can be difficult to detect by PV laymen due to the fluctuating energy yields. Within the EU project PVSAT-2, a fully automated performance check has been developed to assure maximum energy yields and to optimize system maintenance for small grid-connected PV systems. The aim is the early detection of system malfunctions and changing operating conditions to prevent energy and subsequent financial losses for the operator. The developed procedure is based on satellite-derived solar irradiance information that replaces on-site measurements. In conjunction with a simulation model the expected energy yield of a PV system is calculated. In case of the occurrence of a defined difference between the simulated and actual energy yield, an automated failure detection routine searches for the most probable failure sources and notifies the operator. This paper describes the individual components of the developed procedure - the satellite-derived irradiance, the used PV simulation model, and the principles of the automated failure detection routine. Moreover, it presents results of an 8-months test phase with 100 PV systems in three European countries. (author)

  3. Remote monitoring and security alert based on motion detection using mobile

    Science.gov (United States)

    Suganya Devi, K.; Srinivasan, P.

    2016-03-01

    Background model does not have any robust solution and constitutes one of the main problems in surveillance systems. The aim of the paper is to provide a mobile based security to a remote monitoring system through a WAP using GSM modem. It is most designed to provide durability and versatility for a wide variety of indoor and outdoor applications. It is compatible with both narrow and band networks and provides simultaneous image detection. The communicator provides remote control, event driven recording, including pre-alarm and post-alarm and image motion detection. The web cam allowing them to be mounted either to a ceiling or wall without requiring bracket, with the use of web cam. We could continuously monitoring status in the client system through the web. If any intruder arrives in the client system, server will provide an alert to the mobile (what we are set in the message that message send to the authorized person) and the client can view the image using WAP.

  4. Comprehensive bearing condition monitoring algorithm for incipient fault detection using acoustic emission

    Directory of Open Access Journals (Sweden)

    Amit R. Bhende

    2014-09-01

    Full Text Available The bearing reliability plays major role in obtaining the desired performance of any machine. A continuous condition monitoring of machine is required in certain applications where failure of machine leads to loss of production, human safety and precision. Machine faults are often linked to the bearing faults. Condition monitoring of machine involves continuous watch on the performance of bearings and predicting the faults of bearing before it cause any adversity. This paper investigates an experimental study to diagnose the fault while bearing is in operation. An acoustic emission technique is used in the experimentation. An algorithm is developed to process various types of signals generated from different bearing defects. The algorithm uses time domain analysis along with combination low frequency analysis technique such as fast Fourier transform and high frequency envelope detection. Two methods have adopted for envelope detection which are Hilbert transform and order analysis. Experimental study is carried out for deep groove ball bearing cage defect. Results show the potential effectiveness of the proposed algorithm to determine presence of fault, exact location and severity of fault.

  5. Robust real-time unusual event detection using multiple fixed-location monitors.

    Science.gov (United States)

    Adam, Amit; Rivlin, Ehud; Shimshoni, Ilan; Reinitz, Daviv

    2008-03-01

    We present a novel algorithm for detection of certain types of unusual events. The algorithm is based on multiple local monitors which collect low-level statistics. Each local monitor produces an alert if its current measurement is unusual, and these alerts are integrated to a final decision regarding the existence of an unusual event. Our algorithm satisfies a set of requirements that are critical for successful deployment of any large-scale surveillance system. In particular it requires a minimal setup (taking only a few minutes) and is fully automatic afterwards. Since it is not based on objects' tracks, it is robust and works well in crowded scenes where tracking-based algorithms are likely to fail. The algorithm is effective as soon as sufficient low-level observations representing the routine activity have been collected, which usually happens after a few minutes. Our algorithm runs in realtime. It was tested on a variety of real-life crowded scenes. A ground-truth was extracted for these scenes, with respect to which detection and false-alarm rates are reported.

  6. Deconstructing autofluorescence: non-invasive detection and monitoring of biochemistry in cells and tissues (Conference Presentation)

    Science.gov (United States)

    Goldys, Ewa M.; Gosnell, Martin E.; Anwer, Ayad G.; Cassano, Juan C.; Sue, Carolyn M.; Mahbub, Saabah B.; Pernichery, Sandeep M.; Inglis, David W.; Adhikary, Partho P.; Jazayeri, Jalal A.; Cahill, Michael A.; Saad, Sonia; Pollock, Carol; Sutton-Mcdowall, Melanie L.; Thompson, Jeremy G.

    2016-03-01

    Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous fluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from imaging of native fluorescence has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Multispectral intrinsic fluorescence imaging was applied to patient olfactory neurosphere-derived cells, cell model of a human metabolic disease MELAS (mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like syndrome). By using an endogenous source of contrast, subtle metabolic variations have been detected between living cells in their full morphological context which made it possible to distinguish healthy from diseased cells before and after therapy. Cellular maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant cell subpopulations, in particular a subpopulation with compromised mitochondrial function. The versatility of our method is further illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent.

  7. Step detection and activity recognition accuracy of seven physical activity monitors.

    Directory of Open Access Journals (Sweden)

    Fabio A Storm

    Full Text Available The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts, Up (Jawbone, One (Fitbit, ActivPAL (PAL Technologies Ltd., Nike+ Fuelband (Nike Inc., Tractivity (Kineteks Corp. and Sensewear Armband Mini (Bodymedia. Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

  8. Water management strategies against toxic Microcystis blooms in the Dutch delta.

    Science.gov (United States)

    Verspagen, Jolanda M H; Passarge, Jutta; Jöhnk, Klaus D; Visser, Petra M; Peperzak, Louis; Boers, Paul; Laanbroek, Hendrikus J; Huisman, Jef

    2006-02-01

    To prevent flooding of the Dutch delta, former estuaries have been impounded by the building of dams and sluices. Some of these water bodies, however, experience major ecological problems. One of the problem areas is the former Volkerak estuary that was turned into a freshwater lake in 1987. From the early 1990s onward, toxic Microcystis blooms dominate the phytoplankton of the lake every summer. Two management strategies have been suggested to suppress these harmful algal blooms: flushing the lake with fresh water or reintroducing saline water into the lake. This study aims at an advance assessment of these strategies through the development of a mechanistic model of the population dynamics of Microcystis. To calibrate the model, we monitored the benthic and pelagic Microcystis populations in the lake during two years. Field samples of Microcystis were incubated in the laboratory to estimate growth and mortality rates as functions of light, temperature, and salinity. Recruitment and sedimentation rates were measured in the lake, using traps, to quantify benthic-pelagic coupling of the Microcystis populations. The model predicts that flushing with fresh water will suppress Microcystis blooms when the current flushing rate is sufficiently increased. Furthermore, the inlet of saline water will suppress Microcystis blooms for salinities exceeding 14 g/L. Both management options are technically feasible. Our study illustrates that quantitative ecological knowledge can be a helpful tool guiding large-scale water management.

  9. Long term characterization of Trichodesmium erythraeum blooms in Gabès Gulf (Tunisia)

    Science.gov (United States)

    Sabeur, Hamza Ismail; Wafa, Feki-Sahnoun; Asma, Hamza; Malika, Bel Hassen

    2016-08-01

    The present paper reports on a twenty six year monitoring of the diazotrophic cyanobacteria, Trichodesmium erythraeum in the Gulf of Gabès associated with environmental parameters and meteorological variables. Trichodesmium erythraeum blooms were not recurrent all years and were observed on average 2.11 times per year over the period between 1988 and 2013. Blooms were associated with temperature exceeding 24 °C and wind speed generally less than 5 m s-1. Trichodesmium erythraeum reached very high densities fluctuating between 0.12×106 and 720×106 trichomes dm-3. The wind speed during dust events and the number of dust days per year were highly correlated to Trichodesmium abundances. Two wind regimes during dust events were identified. The South -South East direction crossing the Tunisian desert generated the most intensive blooms. High dissolved inorganic nitrogen concentrations (2-14.6 μM) and orthophosphate concentrations (0.05-2.79 μM) were observed during bloom events leading to high N/P ratio well above the Redfield ratio and fluctuating linearly as function of Trichodesmium abundance. The anomalous N/P ratio could result from Trichodesmium erythraeum biological N2 fixation and/or the contribution of atmospheric deposition.

  10. Siderophores: The special ingredient to cyanobacterial blooms

    Science.gov (United States)

    Du, Xue; Creed, Irena; Trick, Charles

    2013-04-01

    Freshwater lakes provide a number of significant ecological services including clean drinking water, habitat for aquatic biota, and economic benefits. The provision of these ecological services, as well as the health of these aquatic systems, is threatened by the excessive growth of algae, specifically, cyanobacteria. Historically, blooms have been linked to eutrophication but recent occurrences indicate that there are less dramatic changes that induce these blooms. Iron is an essential micronutrient required for specific essential metabolic pathways; however, the amount of biologically available iron in naturally occurring lake ranges from saturation to much lower than cell transport affinities. To assist in the modulation of iron availabilities, cyanobacteria in culture produce low molecular weight compounds that function in an iron binding and acquisition system; nevertheless, this has yet to be confirmed in naturally occurring lakes. This project explored the relationship of P, N and in particular, Fe, in the promotion of cyanobacteria harmful algal blooms in 30 natural freshwater lakes located in and around the Elk Island National Park, Alberta. It is hypothesized that cyanobacteria produce and utilize iron chelators called siderophores in low Fe and nitrogen (N) conditions, creating a competitive advantage over other algae in freshwater lakes. Lakes were selected to represent a range of iron availability to explore the nutrient composition of lakes that propagated cyanobacteria harmful algal blooms (cHABs) compared to lakes that did not. Lake water was analyzed for nutrients, microbial composition, siderophore concentration, and toxin concentration. Modifications were made to optimize the Czaky and Arnow tests for hydroxamate- and catecholate-type siderophores, respectively, for field conditions. Preliminary results indicate the presence of iron-binding ligands (0.11-2.34 mg/L) in freshwater lakes characterized by widely ranging Fe regimes (0.04-2.74 mg

  11. Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters

    OpenAIRE

    Miller, Melissa A.; Kudela, Raphael M.; Abdu Mekebri; Dave Crane; Oates, Stori C.; M Timothy Tinker; Michelle Staedler; Miller, Woutrina A.; Sharon Toy-Choutka; Clare Dominik; Dane Hardin; Gregg Langlois; Michael Murray; Kim Ward; Jessup, David A.

    2010-01-01

    "Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebr...

  12. MONITORING TECHNOLOGY FOR EARLY DETECTION OF INTERNAL CORROSION FOR PIPELINE INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Glenn M. Light; Sang Y. Kim; Robert L. Spinks; Hegeon Kwun; Patrick C. Porter

    2003-09-01

    Transmission gas pipelines are an important part of energy-transportation infrastructure vital to the national economy. The prevention of failures and continued safe operation of these pipelines are therefore of national interest. These lines, mostly buried, are protected and maintained by protective coating and cathodic protection systems, supplemented by periodic inspection equipped with sensors for inspection. The primary method for inspection is ''smart pigging'' with an internal inspection device that traverses the pipeline. However, some transmission lines are however not suitable for ''pigging'' operation. Because inspection of these ''unpiggable'' lines requires excavation, it is cost-prohibitive, and the development of a methodology for cost-effectively assessing the structural integrity of ''unpiggable'' lines is needed. This report describes the laboratory and field evaluation of a technology called ''magnetostrictive sensor (MsS)'' for monitoring and early detection of internal corrosion in known susceptible sections of transmission pipelines. With the MsS technology, developed by Southwest Research Institute{reg_sign} (SwRI{reg_sign}), a pulse of a relatively low frequency (typically under 100-kHz) mechanical wave (called guided wave) is launched along the pipeline and signals reflected from defects or welds are detected at the launch location in the pulse-echo mode. This technology can quickly examine a long length of piping for defects, such as corrosion wastage and cracking in circumferential direction, from a single test location, and has been in commercial use for inspection of above-ground piping in refineries and chemical plants. The MsS technology is operated primarily in torsional guided waves using a probe consisting of a thin ferromagnetic strip (typically nickel) bonded to a pipe and a number of coil-turns (typically twenty or so turns) wound

  13. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, S.A., E-mail: dewjisa@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Lee, D.L.; Croft, S. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Hertel, N.E. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Nuclear and Radiological Engineering Program, Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States); Chapman, J.A.; McElroy, R.D.; Cleveland, S. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States)

    2016-07-01

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO{sub 2}(NO{sub 3}){sub 2}) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of

  14. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    Science.gov (United States)

    Dewji, S. A.; Lee, D. L.; Croft, S.; Hertel, N. E.; Chapman, J. A.; McElroy, R. D.; Cleveland, S.

    2016-07-01

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO2(NO3)2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90 g U/L of natural uranyl nitrate are presented. A range of gamma-ray lines is

  15. Quantitative detection of Vibrio cholera toxin by real-time and dynamic cytotoxicity monitoring.

    Science.gov (United States)

    Jin, Dazhi; Luo, Yun; Zheng, Min; Li, Haijing; Zhang, Jing; Stampfl, Melinda; Xu, Xiao; Ding, Gangqiang; Zhang, Yanjun; Tang, Yi-Wei

    2013-12-01

    We report here the quantitative detection of Vibrio cholerae toxin (CT) in isolates and stool specimens by dynamic monitoring of the full course of CT-mediated cytotoxicity in a real-time cell analysis (RTCA) system. Four cell lines, including Y-1 mouse adrenal tumor cells, Chinese hamster ovary (CHO) cells, small intestine epithelial (FHs74Int) cells, and mouse adrenal gland (PC12-Adh) cells, were evaluated for their suitability for CT-induced cytotoxicity testing. Among them, the Y-1 line was demonstrated to be the most sensitive for CT-mediated cytotoxicity, with limits of detection of 7.0 pg/ml for purified CT and 0.11 ng/ml for spiked CT in pooled negative stool specimens. No CT-mediated cytotoxicity was observed for nontoxigenic V. cholerae, non-V. cholerae species, or non-V. cholerae enterotoxins. The CT-RTCA assay was further validated with 100 stool specimens consecutively collected from patients with diarrhea and 200 V. cholerae isolates recovered from patients and the environment, in comparison to a reference using three detection methods. The CT-RTCA assay had sensitivities and specificities of 97.5% and 100.0%, respectively, for V. cholerae isolates and 90.0% and 97.2% for stool specimens. For stool specimens spiked with CT concentrations ranging from 3.5 pg/ml to 1.8 ng/ml, the inoculation-to-detection time was 1.12 ± 0.38 h, and the values were inversely correlated with CT concentrations (ρ = -1; P = 0.01). The results indicate that the CT-RTCA assay with the Y-1 cell line provides a rapid and sensitive tool for the quantitative detection of CT activities in clinical specimens.

  16. Is Bloom's Taxonomy Appropriate for Computer Science?

    OpenAIRE

    Johnson, Colin G.; Fuller, Ursula

    2007-01-01

    Bloom's taxonomy attempts to provide a set of levels of cognitive engagement with material being learned. It is usually presented as a generic framework. In this paper we outline some studies which examine whether the taxonomy is appropriate for computing, and how its application in computing might differ from its application elsewhere. We place this in the context of ongoing debates concerning graduateness and attempts to benchmark the content of a computing degree.

  17. Detecting temporal change in freshwater fisheries surveys: statistical power and the important linkages between management questions and monitoring objectives

    Science.gov (United States)

    Wagner, Tyler; Irwin, Brian J.; James R. Bence,; Daniel B. Hayes,

    2016-01-01

    Monitoring to detect temporal trends in biological and habitat indices is a critical component of fisheries management. Thus, it is important that management objectives are linked to monitoring objectives. This linkage requires a definition of what constitutes a management-relevant “temporal trend.” It is also important to develop expectations for the amount of time required to detect a trend (i.e., statistical power) and for choosing an appropriate statistical model for analysis. We provide an overview of temporal trends commonly encountered in fisheries management, review published studies that evaluated statistical power of long-term trend detection, and illustrate dynamic linear models in a Bayesian context, as an additional analytical approach focused on shorter term change. We show that monitoring programs generally have low statistical power for detecting linear temporal trends and argue that often management should be focused on different definitions of trends, some of which can be better addressed by alternative analytical approaches.

  18. Automatic Detection Method of Behavior Change in Dam Monitor Instruments Cause by Earthquakes

    Directory of Open Access Journals (Sweden)

    Fernando Mucio Bando

    2016-02-01

    Full Text Available A hydroelectric power plant consists of a project of great relevance for the social and economic development of a country. However, this kind of construction demands extensive attention because the occurrence of unusual behavior on its structure may result in undesirable consequences. Seismic waves are some of the phenomena which demand attention of one in charge of a dam safety because once it happens can directly affect the structure behavior. The target of this work is to present a methodology to automatically detect which monitoring instruments have gone under any change in pattern and their measurements after the seism. The detection method proposed is based on a neuro/fuzzy/bayesian formulation which is divided in three steps. Firstly, a clustering of points in a time series is developed from a self-organizing Kohonen map. Afterwards a fuzzy set is built to transform the initial time series, with arbitrary distribution, into a new series with beta distribution probability and thus enable the detection of changing points through a Monte Carlo simulation via Markov chains. In order to demonstrate the efficiency of the proposal the methodology has been applied in time series generated by Itaipu power plant building structures measurement instruments, which showed little behavior change after the earthquake in Chile in 2010.

  19. The Contact State Monitoring for Seal End Faces Based on Acoustic Emission Detection

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2016-01-01

    Full Text Available Monitoring the contact state of seal end faces would help the early warning of the seal failure. In the acoustic emission (AE detection for mechanical seal, the main difficulty is to reduce the background noise and to classify the dispersed features. To solve these problems and achieve higher detection rates, a new approach based on genetic particle filter with autoregression (AR-GPF and hypersphere support vector machine (HSSVM is presented. First, AR model is used to build the dynamic state space (DSS of the AE signal, and GPF is used for signal filtering. Then, multiple features are extracted, and a classification model based on HSSVM is constructed for state recognition. In this approach, AR-GPF is an excellent time-domain method for noise reduction, and HSSVM has advantage on those dispersed features. Finally experimental data shows that the proposed method can effectively detect the contact state of the seal end faces and has higher accuracy rates than some other existing methods.

  20. Compressive sensing for efficient health monitoring and effective damage detection of structures

    Science.gov (United States)

    Jayawardhana, Madhuka; Zhu, Xinqun; Liyanapathirana, Ranjith; Gunawardana, Upul

    2017-02-01

    Real world Structural Health Monitoring (SHM) systems consist of sensors in the scale of hundreds, each sensor generating extremely large amounts of data, often arousing the issue of the cost associated with data transfer and storage. Sensor energy is a major component included in this cost factor, especially in Wireless Sensor Networks (WSN). Data compression is one of the techniques that is being explored to mitigate the effects of these issues. In contrast to traditional data compression techniques, Compressive Sensing (CS) - a very recent development - introduces the means of accurately reproducing a signal by acquiring much less number of samples than that defined by Nyquist's theorem. CS achieves this task by exploiting the sparsity of the signal. By the reduced amount of data samples, CS may help reduce the energy consumption and storage costs associated with SHM systems. This paper investigates CS based data acquisition in SHM, in particular, the implications of CS on damage detection and localization. CS is implemented in a simulation environment to compress structural response data from a Reinforced Concrete (RC) structure. Promising results were obtained from the compressed data reconstruction process as well as the subsequent damage identification process using the reconstructed data. A reconstruction accuracy of 99% could be achieved at a Compression Ratio (CR) of 2.48 using the experimental data. Further analysis using the reconstructed signals provided accurate damage detection and localization results using two damage detection algorithms, showing that CS has not compromised the crucial information on structural damages during the compression process.

  1. A Sensor Fault Detection Methodology applied to Piezoelectric Active Systems in Structural Health Monitoring Applications

    Science.gov (United States)

    Tibaduiza, D.; Anaya, M.; Forero, E.; Castro, R.; Pozo, F.

    2016-07-01

    Damage detection is the basis of the damage identification task in Structural Health Monitoring. A good damage detection process can ensure the adequate work of a SHM System because allows to know early information about the presence of a damage in a structure under evaluation. However this process is based on the premise that all sensors are well installed and they are working properly, however, it is not true all the time. Problems such as debonding, cuts and the use of the sensors under different environmental and operational conditions result in changes in the vibrational response and a bad functioning in the SHM system. As a contribution to evaluate the state of the sensors in a SHM system, this paper describes a methodology for sensor fault detection in a piezoelectric active system. The methodology involves the use of PCA for multivariate analysis and some damage indices as pattern recognition technique and is tested in a blade from a wind turbine where different scenarios are evaluated including sensor cuts and debonding.

  2. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection

    Science.gov (United States)

    Johnson, Alicia S.; Mehl, Benjamin T.; Martin, R. Scott

    2015-01-01

    In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells. PMID:25663849

  3. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

    KAUST Repository

    Canepa, Edward S.

    2013-09-01

    Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill- Whitham-Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data generated by multiple sensors of different types, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for a specific decision variable. We use this fact to pose the problem of detecting spoofing cyber attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offliine. A numerical implementation is performed on a cyber attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © American Institute of Mathematical Sciences.

  4. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

    KAUST Repository

    Canepa, Edward S.

    2013-01-01

    Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill-Whitham- Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for some decision variable. We use this fact to pose the problem of detecting spoofing cyber-attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offline. A numerical implementation is performed on a cyber-attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © 2013 IEEE.

  5. Structural Health Monitoring of Precast Concrete Box Girders Using Selected Vibration-Based Damage Detection Methods

    Directory of Open Access Journals (Sweden)

    Zhengjie Zhou

    2010-01-01

    Full Text Available Precast, prestressed concrete box girders are commonly used as superstructure components for short and medium span bridges. Their configuration and typical side-by-side placement make large portions of these elements inaccessible for visual inspection or the application of nondestructive testing techniques. This paper demonstrates that vibration-based damage detection (VBDD is an effective alternative for monitoring their structural health. A box girder removed from a dismantled bridge was used to evaluate the ability of five different VBDD algorithms to detect and localize low levels of spalling damage, with a focus on using a small number of sensors and only the fundamental mode of vibration. All methods were capable of detecting and localizing damage to a region within approximately 1.6 times the longitudinal spacing between as few as six uniformly distributed accelerometers. Strain gauges configured to measure curvature were also effective, but tended to be susceptible to large errors in near support damage cases. Finite element analyses demonstrated that increasing the number of sensor locations leads to a proportional increase in localization accuracy, while the use of additional modes provides little advantage and can sometimes lead to a deterioration in the performance of the VBDD techniques.

  6. Inflight Microbial Monitoring - An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    Science.gov (United States)

    Khodadad, Christina L.; Birmele, Michele N.; Hummerick, Mary E.; Roman, Monsi; Smith, David J.

    2015-01-01

    Microorganisms including potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Current microbial monitoring methods require enrichment of microorganisms and a 48-hour incubation time resulting in an increase in microbial load, detecting a limited number of unidentified microorganisms. An expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted.

  7. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method:A review

    Institute of Scientific and Technical Information of China (English)

    Shucai Li; Bin Liu; Lichao Nie; Zhengyu Liu; Mingzhen Tian; Shirui Wang; Maoxin Su; Qian Guo

    2015-01-01

    Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC) resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection;with this method, the flanking interference can be reduced and the detection dis-tance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D) induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1) available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM), (2) high-resolution detection method in holes, (3) four-dimensional (4D) monitoring technology for water inrush sources, and (4) estimation of water volume in water-bearing structures.

  8. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review

    Directory of Open Access Journals (Sweden)

    Shucai Li

    2015-08-01

    Full Text Available Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection; with this method, the flanking interference can be reduced and the detection distance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1 available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM, (2 high-resolution detection method in holes, (3 four-dimensional (4D monitoring technology for water inrush sources, and (4 estimation of water volume in water-bearing structures.

  9. Gusts detection in a horizontal wind turbine by monitoring of innovations error of an extended Kalman filter

    Science.gov (United States)

    Recalde, L. F.; Hur, S.; Leithead, W. E.

    2016-09-01

    This paper presents a novel model-based detection scheme capable of detecting and diagnosing gusts. Detection is achieved by monitoring the innovations error (i.e., the difference between the estimated and measured outputs) of an extended discrete Kalman filter. It is designed to trigger a detection/confirmation alarm in the presence of wind anomalies. Simulation results are presented to demonstrate that both operating and coherent extreme wind gusts can successfully be detected. The wind anomaly is identified in magnitude and shape through maximum likelihood ratio and goodness of fit, respectively. The detector is capable of isolating extreme wind gusts before the turbine over speeds.

  10. Improved detection of incipient anomalies via multivariate memory monitoring charts: Application to an air flow heating system

    KAUST Repository

    Harrou, Fouzi

    2016-08-11

    Detecting anomalies is important for reliable operation of several engineering systems. Multivariate statistical monitoring charts are an efficient tool for checking the quality of a process by identifying abnormalities. Principal component analysis (PCA) was shown effective in monitoring processes with highly correlated data. Traditional PCA-based methods, nevertheless, often are relatively inefficient at detecting incipient anomalies. Here, we propose a statistical approach that exploits the advantages of PCA and those of multivariate memory monitoring schemes, like the multivariate cumulative sum (MCUSUM) and multivariate exponentially weighted moving average (MEWMA) monitoring schemes to better detect incipient anomalies. Memory monitoring charts are sensitive to incipient anomalies in process mean, which significantly improve the performance of PCA method and enlarge its profitability, and to utilize these improvements in various applications. The performance of PCA-based MEWMA and MCUSUM control techniques are demonstrated and compared with traditional PCA-based monitoring methods. Using practical data gathered from a heating air-flow system, we demonstrate the greater sensitivity and efficiency of the developed method over the traditional PCA-based methods. Results indicate that the proposed techniques have potential for detecting incipient anomalies in multivariate data. © 2016 Elsevier Ltd

  11. A PCR Based Microbial Monitoring Alternative Method of Detection and Identification of Microbes Aboard ISS

    Science.gov (United States)

    Khodadad, Christina; Oubre, Cherie; Castro, Victoria; Flint, Stephanie; Ott, Mark; Roman, Monserrate; Wheeler, Ray; Melendez, Orlando

    2017-01-01

    Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS) with additional introduction of new microflora occurring with every exchange of crew or addition of equipment and supplies. These microbes are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). As this can be detrimental to astronaut health and optimal performance of ISS systems, monitoring of systems such as ECLSS to include identification of microbial contaminants could prevent adverse effects on human health and life support systems. Current monitoring on ISS is laborious and utilizes culture based methods followed by sample return to Earth for complete analysis. Future, long-distance spaceflight missions will require real-time monitoring capabilities that enable efficient and rapid assessments of the microbial environment allowing for expedited decisions and more targeted response to cope with anomalies. Polymerase chain reaction (PCR), a molecular microbial monitoring method was chosen and numerous PCR instruments investigated for their potential to perform in microgravity conditions. Using ISS as a test bed for PCR verification in microgravity will enable NASA to assess whether molecular based microbiological sensors may be components of reliable, closed-loop life support and habitation systems in spacecraft, enhancing infrastructure capabilities through increased efficiency, reliability, and time savings by enabling sample analysis on orbit. NASA selected the Water Monitoring Suite as one of the rapid spaceflight hardware demonstration activities utilizing a streamlined process to minimize the time required to fly experimental flight hardware. The RAZOR EX (BioFire Defense, Salt Lake City, UT) system was part of the water monitoring suite and is a commercial off-the-shelf (COTS) real-time PCR instrument designed for field work. The RAZOR EX was originally designed

  12. Satellite views of seasonal and inter-annual variability of phytoplankton blooms in the eastern China seas over the past 14 yr (1998–2011

    Directory of Open Access Journals (Sweden)

    D. F. Wang

    2013-01-01

    Full Text Available The eastern China seas are one of the largest marginal seas in the world, where high primary productivity and phytoplankton blooms are often observed. However, to date, little is known about the spatial and temporal variability of phytoplankton blooms in these areas due to the difficulty of the monitoring of bloom events by field measurement. In this study, 14-yr time series of satellite ocean color data from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS and the Moderate Resolution Imaging Spectroradiometer (MODIS onboard the Aqua satellite have been used to investigate the seasonal and inter-annual variability and long-term changes of phytoplankton blooms in the eastern China seas. We validated and calibrated the satellite-derive chlorophyll concentration in the eastern China seas based on extensive data sets from two large cruises. Overestimation of satellite-derive chlorophyll concentration caused by high water turbidity was found to be less than 10 μg L−1. This level can be used as a safe threshold for the identification of a phytoplankton bloom in a marginal sea with turbid waters. Annually, blooms mostly occur in the Changjiang Estuary and along the coasts of Zhejiang. The coasts of the northern Yellow Sea and Bohai Sea also have high-frequency blooms. The blooms have significant seasonal variation, with most of the blooms occurring in the spring (April–June and summer (July–September. This study revealed a doubling in bloom intensity in the Yellow Sea and Bohai Sea during the past 14 yr (1998–2011, yet surprisingly, there has been no decadal increase or decrease of bloom intensity in despite of significant inter-annual variation in the Changjiang Estuary. The time series in situ datasets show that both the nitrate and phosphate concentrations increase more than twofold from 1998 to 2005. This might be the reason for the doubling of bloom intensity in the Yellow Sea and Bohai Sea. In addition, the ENSO and PDO can affect the

  13. Self-Assembled Biosensors on a Solid Interface for Rapid Detection and Growth Monitoring of Bacteria

    CERN Document Server

    Kinnunen, Paivo; Craig, Elizabeth; Brahmasandra, Sundu; McNaughton, Brandon H

    2012-01-01

    Developing rapid methods for pathogen detection and growth monitoring at low cell and analyte concentrations is an important goal, which numerous technologies are working towards solving. Rapid biosensors have already made a dramatic impact on improving patient outcomes and with continued development, these technologies may also help limit the emergence of antimicrobial resistance and reduce the ever expanding risk of foodborne illnesses. One technology that is being developed with these goals in mind is asynchronous magnetic bead rotation (AMBR) biosensors. Self-assembled AMBR biosensors have been demonstrated at water/air and water/oil interfaces, and here, for the first time, we report on self-assembled AMBR biosensors used at a solid interface. The solid interface configuration was used to measure the growth of Escherichia coli with two distinct phenomena at low cell concentrations: firstly, the AMBR rotational period decreased and secondly, the rotational period increased after several division times. Ta...

  14. Damage detection in composite materials using PZT actuators and sensors for structural health monitoring

    Science.gov (United States)

    Spiegel, Michelle DuBose

    Structural Health Monitoring (SHM) of bridges, buildings, aircrafts, and spacecraft using a network of sensors has gained popularity over recent years. In this thesis, the use of piezoelectric actuators and sensors is described for detecting damage in a composite panel. The composite panels are fabricated using the Vacuum Assisted Resin Transfer Molding (VARTM) process. The panels are cut into small coupons (254 mm x 25.4 mm) to test various properties of the composite. A piezoelectric actuator is surface mounted on the composite coupon to generate Lamb waves while a surface mounted piezoelectric sensor measures the response. Data is collected from an undamaged composite coupon, and then the process is repeated for a damaged coupon. The existing damage is quantified by comparing the response of the damaged and undamaged composite coupons.

  15. Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Wenna Zhang

    2016-04-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system are used widely in wind farms to obtain operation and performance information about wind turbines. The paper presents a three-way model by means of parallel factor analysis (PARAFAC for wind turbine fault detection and sensor selection, and evaluates the method with SCADA data obtained from an operational farm. The main characteristic of this new approach is that it can be used to simultaneously explore measurement sample profiles and sensors profiles to avoid discarding potentially relevant information for feature extraction. With K-means clustering method, the measurement data indicating normal, fault and alarm conditions of the wind turbines can be identified, and the sensor array can be optimised for effective condition monitoring.

  16. Developing a PQ monitoring system for assessing power quality and critical areas detection

    Directory of Open Access Journals (Sweden)

    Miguel Romero

    2011-10-01

    Full Text Available This paper outlines the development of a power quality monitoring system. The system is aimed at assessing power quality and detecting critical areas throughout at distribution system. Such system integrates a hardware system and a software processing tool developed in four main stages. Power quality disturbances are registered by PQ meters and the data is transmitted through a 3G wireless network. This data is processed and filtered in an open source database. Some interesting statistical indices related to voltage sags, swells, flicker and voltage unbalance are obtained. The last stage displays the indices geo-referenced on power quality maps, allowing the identification of critical areas according to different criteria. The results can be analyzed using clustering tools to identify differentiated quality groups in a city. The proposed system is an open source tool useful to electricity utilities to analyze and manage large amount of data.

  17. A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Zhigang Sun

    2013-01-01

    Full Text Available Piezoelectric transducers have a long history of applications in nondestructive evaluation of material and structure integrity owing to their ability of transforming mechanical energy to electrical energy and vice versa. As condition based maintenance has emerged as a valuable approach to enhancing continued aircraft airworthiness while reducing the life cycle cost, its enabling structural health monitoring (SHM technologies capable of providing on-demand diagnosis of the structure without interrupting the aircraft operation are attracting increasing R&D efforts. Piezoelectric transducers play an essential role in these endeavors. This paper is set forth to review a variety of ingenious ways in which piezoelectric transducers are used in today’s SHM technologies as a means of generation and/or detection of diagnostic acoustic waves.

  18. Efficient baseline gathering and damage detection in guided wave structural health monitoring

    Science.gov (United States)

    Croxford, A. J.; Putkis, O.; Wilcox, P. D.

    2013-01-01

    Guided wave structural health monitoring (SHM) has been proposed as a technique to allow permanently attached sensors to provide information about the state of a structure. Typical approaches rely on gathering information about the baseline state of the structure and using this data with subtraction to highlight changes to the system. This relies on the baseline data accurately representing the conditions that the system will experience. In reality this is difficult to ensure and may result in either large periods out of service or poor performance. In addition the size of the baseline set can become prohibitively large. This paper describes an alternative approach that produces an efficient continuously evolving baseline. The paper considers how damage detection performance can be characterized within this framework and presents a series of metrics to do this. The result is a new way of considering the baseline problem with practical applications to the long term inspection of structures.

  19. Contribution of High Resolution Microwave and Optical Remote Sensing Observations in Detecting and Monitoring Ocean Coastal Features

    Science.gov (United States)

    Gagliardini, D. A.

    Synthetic Aperture Radar SAR satellite sensors have demonstrated their ability to observe ocean features related to dynamical processes Because of the high resolution of available SAR sensors circulation details and small-scale processes can be detected that are not observable by other sensors more frequently used for ocean research such as the NOAA AVHRR and the ORBVIEW2 SeaWiFS In contrast to these LANDSAT-TM thermal and optical channels can be used to observe sea surface temperatures surface layer ocean color upwelled radiance as well as sun glint reflected radiance patterns of surface roughness at a spatial resolution comparable to that of SAR Several examples of TM images obtained in 1997-2003 over the Argentine coastal ocean region where selected from an extensive data set These images were analyzed and compared with a series of SAR images acquired over the same region by the ERS satellites and in some cases near coincident with the TM data This time period allowed the examination of the seasonal cycles as well as interesting episodic events of different ocean processes including currents fronts upwellings algal blooms eddies internal waves and bathymetry signatures Due in situ observations are scarce over this region some of these processes have been documented for first time helping to improve our understanding of some dynamical and biological aspects Therefore it can be concluded that high resolution optical thermal and microwave data have the ability of providing consistent and complementary high-resolution

  20. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

  1. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    Science.gov (United States)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  2. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-12-15

    ''Hidden'' geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in

  3. Occlusal caries detection and quantification by DIAGNOdent and Electronic Caries Monitor: in vitro comparison.

    Science.gov (United States)

    Bamzahim, Mohammad; Shi, Xie-Qi; Angmar-Månsson, Birgit

    2002-12-01

    The Electronic Caries Monitor (ECM) and the recently introduced laser-based KaVo DIAGNOdent have been developed as clinical diagnostic aids in the detection and quantification of occlusal carious lesions. The aim of this in vitro study was to compare their reproducibility and validity. The ability of DIAGNOdent to retrieve sites of occlusal carious lesions without reference to photographs or drawings from previous assessments was also tested. The material comprised 87 premolar teeth: the occlusal surfaces were sound or exhibited non-cavity carious lesions of varying severity. All were photographed and measured by DIAGNOdent and ECM on 2 occasions, 2 weeks apart. The teeth were then sectioned into 300 microm thick slices. Two observers independently classified the sections according to the histopathology, into 5 categories, ranging from sound to dentinal caries in the inner part of the dentin. Statistical analysis comprised intra-class correlation coefficients (ICC) to test reproducibility and regression analysis of validity. Sensitivity and specificity were also calculated for detection of D3 lesions for both devices. DIAGNOdent recorded maximum readings at identical sites on both occasions in 89% of the teeth. The ICC for readings on 2 separate occasions was 0.97 for DIAGNOdent and 0.71 for ECM. The correlations with histology were r = 0.93 and 0.83, for DIAGNOdent and ECM, respectively. For detection of D3 lesions, the sensitivity and specificity were 0.8 and 1 for DIAGNOdent and 0.75 and 0.88 for ECM. In this in vitro study, DIAGNOdent was superior to ECM for occlusal caries detection.

  4. Spacecraft dynamics characterization and control system failure detection. Volume 3: Control system failure monitoring

    Science.gov (United States)

    Vanschalkwyk, Christiaan M.

    1992-01-01

    We discuss the application of Generalized Parity Relations to two experimental flexible space structures, the NASA Langley Mini-Mast and Marshall Space Flight Center ACES mast. We concentrate on the generation of residuals and make no attempt to implement the Decision Function. It should be clear from the examples that are presented whether it would be possible to detect the failure of a specific component. We derive the equations from Generalized Parity Relations. Two special cases are treated: namely, Single Sensor Parity Relations (SSPR) and Double Sensor Parity Relations (DSPR). Generalized Parity Relations for actuators are also derived. The NASA Langley Mini-Mast and the application of SSPR and DSPR to a set of displacement sensors located at the tip of the Mini-Mast are discussed. The performance of a reduced order model that includes the first five models of the mast is compared to a set of parity relations that was identified on a set of input-output data. Both time domain and frequency domain comparisons are made. The effect of the sampling period and model order on the performance of the Residual Generators are also discussed. Failure detection experiments where the sensor set consisted of two gyros and an accelerometer are presented. The effects of model order and sampling frequency are again illustrated. The detection of actuator failures is discussed. We use Generalized Parity Relations to monitor control system component failures on the ACES mast. An overview is given of the Failure Detection Filter and experimental results are discussed. Conclusions and directions for future research are given.

  5. Detection of bond failure in the anchorage zone of reinforced concrete beams via acoustic emission monitoring

    Science.gov (United States)

    Abouhussien, Ahmed A.; Hassan, Assem A. A.

    2016-07-01

    In this study, acoustic emission (AE) monitoring was utilised to identify the onset of bond failure in reinforced concrete beams. Beam anchorage specimens were designed and tested to fail in bond in the anchorage zone. The specimens included four 250 × 250 × 1500 mm beams with four variable bonded lengths (100, 200, 300, and 400 mm). Meanwhile, an additional 250 × 250 × 2440 mm beam, with 200 mm bonded length, was tested to investigate the influence of sensor location on the identification of bond damage. All beams were tested under four-point loading setup and continuously monitored using three distributed AE sensors. These attached sensors were exploited to record AE signals resulting from both cracking and bond deterioration until failure. The variations in the number of AE hits and cumulative signal strength (CSS) versus test time were evaluated to achieve early detection of crack growth and bar slippage. In addition, AE intensity analysis was performed on signal strength of collected AE signals to develop two additional parameters: historic index (H (t)) and severity (S r). The analysis of these AE parameters enabled an early detection of both first cracks (at almost the mid-span of the beam) and bar slip in either of the anchorage zones at the beams’ end before their visual observation, regardless of sensor location. The results also demonstrated a clear correlation between the damage level in terms of crack development/measured free end bar slip and AE parameters (number of hits, CSS, H(t), and S r).

  6. An Efficient Data Fingerprint Query Algorithm Based on Two-Leveled Bloom Filter

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    2013-04-01

    Full Text Available The function of the comparing fingerprints algorithm was to judge whether a new partitioned data chunk was in a storage system a decade ago.  At present, in the most de-duplication backup system the fingerprints of the big data chunks are huge and cannot be stored in the memory completely. The performance of the system is unavoidably retarded by data chunks accessing the storage system at the querying stage. Accordingly, a new query mechanism namely Two-stage Bloom Filter (TBF mechanism is proposed. Firstly, as a representation of the entirety for the first grade bloom filter, each bit of the second grade bloom filter in the TBF represents the chunks having the identical fingerprints reducing the rate of false positives. Secondly, a two-dimensional list is built corresponding to the two grade bloom filter for the absolute addresses of the data chunks with the identical fingerprints.  Finally, a new hash function class with the strong global random characteristic is set up according to the data fingerprints’ random characteristics. To reduce the comparing data greatly, TBF decreases the number of accessing disks, improves the speed of detecting the redundant data chunks, and reduces the rate of false positives which helps the improvement of the overall performance of system.

  7. Harmful algal bloom forecast system for SW Ireland. Part II: Are operational oceanographic models useful in a HAB warning system.

    Science.gov (United States)

    Cusack, Caroline; Dabrowski, Tomasz; Lyons, Kieran; Berry, Alan; Westbrook, Guy; Salas, Rafael; Duffy, Conor; Nolan, Glenn; Silke, Joe

    2016-03-01

    This study investigated the application of a three-dimensional physical hydrodynamic model in a harmful algal bloom forecast system for Bantry Bay, southwest Ireland. Modelled oceanographic conditions were studied and used to help understand observed changes in the chemical and biological patterns from the national biotoxins and phytoplankton monitoring program. The study focused on two toxic events in 2013. An upwelling event was predicted by the model prior to the appearance and population increase of potentially toxic diatoms, Pseudo-nitzschia, and associated domoic acid in shellfish. A downwelling episode was provided as a forecast in the model prior to the arrival of a Dinophysis bloom and detection of its associated biotoxins in Bay shellfish. The modelled forecast products developed included expected surface, mid-depth and bottom current pathways at the mouth of the Bay and on the adjacent shelf. The rate and direction of water volume flow at the mouth and mid-bay sections were produced by the model to examine predicted upwelling and downwelling pulses. The model also calculated the evolution of water properties (temperature, salinity and density) with depth along the Bay axis and on the adjacent continental shelf. Direct measurements of water properties at a fixed point, mid-bay, were comparable to model calculations. The operational model for southwest Ireland produces a reliable 3-day physical hydrodynamic forecast of the dominant regional physical processes that result in water exchange events between Bantry Bay and its adjacent shelf. While simulated physical hydrodynamics were provided as a 3-day forecast, the upwelling and downwelling signals from the model, closely linked to toxic HAB episodes, were evident up to 10 days prior to the contamination of shellfish in the Bay.

  8. The Role of Cyanobacteria Blooms in Cholera Epidemic in Bangladesh

    Science.gov (United States)

    Sagir Ahmed, Md.; Raknuzzaman, Md.; Akther, Hafeza; Ahmed, Sumaiya

    A study was conducted on association of Vibrio cholerae with plankton specially emphasis on cyanobacteria in relation to some physico-chemical parameters in the River Buriganga, Dhaka, from January to December 2002. Monthly abundance of phytoplankton and zooplankton varied from 457 to 14166 and from 169 to 1055 individual L-1, respectively. Monthly average of faecal coliform in water, zooplankton and phytoplankton samples were 3.99x109, 4.54x103 and 4.28x102 (CFU L-1), respectively. During epidemics, toxigenic V. cholerae 01 and 0139 were isolated from the patients as well as from the surface water. V. cholerae 01 and 0139 were also isolated from plankton samples. More over, it was observed that ctx (cholera toxic) positive in water and phytoplankton samples of the river. A bloom of Oscillatoria sp. (1.6x104 individual L-1) occurred in the upper reaches of the River Buriganga in May 2002. Methanol-water extract of bloom sample was analyzed by high performance liquid chromatography with UV detection and Mass Spectrum (MS) detected microcystin-RR. Cyanobacteria are abundant in the aquatic environment of Bangladesh and it was established that V. cholerae maintain a symbiotic relationship with these algae particularly mucilaginous cyanobacteria. During epidemics, patients symptoms included diarrhea, vomiting and hemorrhagic enteritis and in severe cases hemorrhagic diarrhea. So, question has arisen that which is responsible, microcystins or cholera for death of cholera/diarrhea patients in Bangladesh. Future research should be directed to isolate microcystins and cholera toxins from the epidemic areas to clarify the fact.

  9. Modelling bloom formation of the toxic dinoflagellates Dinophysis acuminata and Dinophysis caudata in a highly modified estuary, south eastern Australia

    Science.gov (United States)

    Ajani, Penelope; Larsson, Michaela E.; Rubio, Ana; Bush, Stephen; Brett, Steve; Farrell, Hazel

    2016-12-01

    Dinoflagellates belonging to the toxigenic genus Dinophysis are increasing in abundance in the Hawkesbury River, south-eastern Australia. This study investigates a twelve year time series of abundance and physico-chemical data to model these blooms. Four species were reported over the sampling campaign - Dinophysis acuminata, Dinophysis caudata, Dinophysis fortii and Dinophysis tripos-with D. acuminata and D. caudata being most abundant. Highest abundance of D. acuminata occurred in the austral spring (max. abundance 4500 cells l-1), whilst highest D. caudata occurred in the summer to autumn (max. 12,000 cells l-1). Generalised additive models revealed abundance of D. acuminata was significantly linked to season, thermal stratification and nutrients, whilst D. caudata was associated with nutrients, salinity and dissolved oxygen. The models' predictive capability was up to 60% for D. acuminata and 53% for D. caudata. Altering sampling strategies during blooms accompanied with in situ high resolution monitoring will further improve Dinophysis bloom prediction capability.

  10. Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events

    Science.gov (United States)

    Sison-Mangus, Marilou P.; Jiang, Sunny; Kudela, Raphael M.; Mehic, Sanjin

    2016-01-01

    Pseudo-nitzschia blooms often occur in coastal and open ocean environments, sometimes leading to the production of the neurotoxin domoic acid that can cause severe negative impacts to higher trophic levels. Increasing evidence suggests a close relationship between phytoplankton bloom and bacterial assemblages, however, the microbial composition and succession during a bloom process is unknown. Here, we investigate the bacterial assemblages before, during and after toxic and non-toxic Pseudo-nitzschia blooms to determine the patterns of bacterial succession in a natural bloom setting. Opportunistic sampling of bacterial community profiles were determined weekly at Santa Cruz Municipal Wharf by 454 pyrosequencing and analyzed together with domoic acid levels, phytoplankton community and biomass, nutrients and temperature. We asked if the bacterial communities are similar between bloom and non-bloom events and if domoic acid or the presence of toxic algal species acts as a driving force that can significantly structure phytoplankton-associated bacterial communities. We found that bacterial diversity generally increases when Pseudo-nitzschia numbers decline. Furthermore, bacterial diversity is higher when the low-DA producing P. fraudulenta dominates the algal bloom while bacterial diversity is lower when high-DA producing P. australis dominates the algal bloom, suggesting that the presence of algal toxin can structure bacterial community. We also found bloom-related succession patterns among associated bacterial groups; Gamma-proteobacteria, were dominant during low toxic P. fraudulenta blooms comprising mostly of Vibrio spp., which increased in relative abundance (6–65%) as the bloom progresses. On the other hand, Firmicutes bacteria comprising mostly of Planococcus spp. (12–86%) dominate during high toxic P. australis blooms, with the bacterial assemblage showing the same bloom-related successional patterns in three independent bloom events. Other environmental

  11. Development of novel algorithm and real-time monitoring ambulatory system using Bluetooth module for fall detection in the elderly.

    Science.gov (United States)

    Hwang, J Y; Kang, J M; Jang, Y W; Kim, H

    2004-01-01

    Novel algorithm and real-time ambulatory monitoring system for fall detection in elderly people is described. Our system is comprised of accelerometer, tilt sensor and gyroscope. For real-time monitoring, we used Bluetooth. Accelerometer measures kinetic force, tilt sensor and gyroscope estimates body posture. Also, we suggested algorithm using signals which obtained from the system attached to the chest for fall detection. To evaluate our system and algorithm, we experimented on three people aged over 26 years. The experiment of four cases such as forward fall, backward fall, side fall and sit-stand was repeated ten times and the experiment in daily life activity was performed one time to each subject. These experiments showed that our system and algorithm could distinguish between falling and daily life activity. Moreover, the accuracy of fall detection is 96.7%. Our system is especially adapted for long-time and real-time ambulatory monitoring of elderly people in emergency situation.

  12. Fully Autonomous Multiplet Event Detection: Application to Local-Distance Monitoring of Blood Falls Seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Joshua Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, Christina [Univ. of Alaska, Fairbanks, AK (United States); Pettit, Erin C. [Univ. of Alaska, Fairbanks, AK (United States)

    2015-06-18

    We apply a fully autonomous icequake detection methodology to a single day of high-sample rate (200 Hz) seismic network data recorded from the terminus of Taylor Glacier, ANT that temporally coincided with a brine release episode near Blood Falls (May 13, 2014). We demonstrate a statistically validated procedure to assemble waveforms triggered by icequakes into populations of clusters linked by intra-event waveform similarity. Our processing methodology implements a noise-adaptive power detector coupled with a complete-linkage clustering algorithm and noise-adaptive correlation detector. This detector-chain reveals a population of 20 multiplet sequences that includes ~150 icequakes and produces zero false alarms on the concurrent, diurnally variable noise. Our results are very promising for identifying changes in background seismicity associated with the presence or absence of brine release episodes. We thereby suggest that our methodology could be applied to longer time periods to establish a brine-release monitoring program for Blood Falls that is based on icequake detections.

  13. Transformation of ground vibration signal for debris-flow monitoring and detection in alarm systems.

    Science.gov (United States)

    Abancó, Clàudia; Hürlimann, Marcel; Fritschi, Bruno; Graf, Christoph; Moya, José

    2012-01-01

    Debris flows are fast mass movements formed by a mix of water and solid materials, which occur in steep torrents, and are a source of high risks for human settlements. Geophones are widely used to detect the ground vibration induced by passing debris flows. However, the recording of geophone signals usually requires storing a huge amount of data, which leads to problems in storage capacity and power consumption. This paper presents a method to transform and simplify the signals measured by geophones. The key input parameter is the ground velocity threshold, which removes the seismic noise that is not related to debris flows. A signal conditioner was developed to implement the transformation and the ground velocity threshold was set by electrical resistors. The signal conditioner was installed at various European monitoring sites to test the method. Results show that data amount and power consumption can be greatly reduced without losing much information on the main features of the debris flows. However, the outcome stresses the importance of choosing a ground vibration threshold, which must be accurately calibrated. The transformation is also suitable to detect other rapid mass movements and to distinguish among different processes, which points to a possible implementation in alarm systems.

  14. Transformation of Ground Vibration Signal for Debris-Flow Monitoring and Detection in Alarm Systems

    Directory of Open Access Journals (Sweden)

    José Moya

    2012-04-01

    Full Text Available Debris flows are fast mass movements formed by a mix of water and solid materials, which occur in steep torrents, and are a source of high risks for human settlements. Geophones are widely used to detect the ground vibration induced by passing debris flows. However, the recording of geophone signals usually requires storing a huge amount of data, which leads to problems in storage capacity and power consumption. This paper presents a method to transform and simplify the signals measured by geophones. The key input parameter is the ground velocity threshold, which removes the seismic noise that is not related to debris flows. A signal conditioner was developed to implement the transformation and the ground velocity threshold was set by electrical resistors. The signal conditioner was installed at various European monitoring sites to test the method. Results show that data amount and power consumption can be greatly reduced without losing much information on the main features of the debris flows. However, the outcome stresses the importance of choosing a ground vibration threshold, which must be accurately calibrated. The transformation is also suitable to detect other rapid mass movements and to distinguish among different processes, which points to a possible implementation in alarm systems.

  15. Junctional kyphosis: how can we detect and monitor it during growth?

    Directory of Open Access Journals (Sweden)

    Alessandra Negrini

    2016-10-01

    Full Text Available Abstract Background Despite its importance in affecting adult pain, and disability, there is a lack of universal criteria for the diagnosis and evaluation of thoraco-lumbar Junctional Kyphosis (JK and a gold standard measurement and diagnostic system does not exist. This study aims to verify the sensibility and specificity of clinical, and Formetric surface topography (FST data in identifying Junctional Kyphosis in respect to the radiographical standard references. Methods Design: This is a cross sectional study from a prospective database started in March 2003. Participants: 38 subjects. Inclusion criteria: Patients selected by age according to Risser score 1, at first visit with lateral x-rays and FST. Diagnostic test used to detect JK: FST criteria: level of thoraco-lumbar inflexion point in percentage compared to the total height of the spine. X-ray criteria: lower limit of thoracic kyphosis below T12. Statistics: sensitivity, specificity, positive (PPV and negative predictive values (NPV, ROC curve. Results FST showed a good reliability in detecting JK: with a threshold of 75 %, PPV was 100 %, NPV was 86 % and the Area Under the Curve was 83 %. Conclusion The need for a useful criteria able to characterize JK to allow diagnosis and monitoring of the deformity is still lacking, and further studies will deepen this issue.

  16. A KPI-based process monitoring and fault detection framework for large-scale processes.

    Science.gov (United States)

    Zhang, Kai; Shardt, Yuri A W; Chen, Zhiwen; Yang, Xu; Ding, Steven X; Peng, Kaixiang

    2017-02-09

    Large-scale processes, consisting of multiple interconnected subprocesses, are commonly encountered in industrial systems, whose performance needs to be determined. A common approach to this problem is to use a key performance indicator (KPI)-based approach. However, the different KPI-based approaches are not developed with a coherent and consistent framework. Thus, this paper proposes a framework for KPI-based process monitoring and fault detection (PM-FD) for large-scale industrial processes, which considers the static and dynamic relationships between process and KPI variables. For the static case, a least squares-based approach is developed that provides an explicit link with least-squares regression, which gives better performance than partial least squares. For the dynamic case, using the kernel representation of each subprocess, an instrument variable is used to reduce the dynamic case to the static case. This framework is applied to the TE benchmark process and the hot strip mill rolling process. The results show that the proposed method can detect faults better than previous methods.

  17. A global organism detection and monitoring system for non-native species

    Science.gov (United States)

    Graham, J.; Newman, G.; Jarnevich, C.; Shory, R.; Stohlgren, T.J.

    2007-01-01

    Harmful invasive non-native species are a significant threat to native species and ecosystems, and the costs associated with non-native species in the United States is estimated at over $120 Billion/year. While some local or regional databases exist for some taxonomic groups, there are no effective geographic databases designed to detect and monitor all species of non-native plants, animals, and pathogens. We developed a web-based solution called the Global Organism Detection and Monitoring (GODM) system to provide real-time data from a broad spectrum of users on the distribution and abundance of non-native species, including attributes of their habitats for predictive spatial modeling of current and potential distributions. The four major subsystems of GODM provide dynamic links between the organism data, web pages, spatial data, and modeling capabilities. The core survey database tables for recording invasive species survey data are organized into three categories: "Where, Who & When, and What." Organisms are identified with Taxonomic Serial Numbers from the Integrated Taxonomic Information System. To allow users to immediately see a map of their data combined with other user's data, a custom geographic information system (GIS) Internet solution was required. The GIS solution provides an unprecedented level of flexibility in database access, allowing users to display maps of invasive species distributions or abundances based on various criteria including taxonomic classification (i.e., phylum or division, order, class, family, genus, species, subspecies, and variety), a specific project, a range of dates, and a range of attributes (percent cover, age, height, sex, weight). This is a significant paradigm shift from "map servers" to true Internet-based GIS solutions. The remainder of the system was created with a mix of commercial products, open source software, and custom software. Custom GIS libraries were created where required for processing large datasets

  18. In Vivo Monitoring of Hemodynamic Changes during Clogging and Unclogging of Blood Supply for the Application of Clinical Shock Detection

    Science.gov (United States)

    Kanawade, Rajesh; Stelzle, Florian; Schmidt, Michael

    This paper presents a novel methodology in early detection of clinical shock by monitoring hemodynamic changes using diffuse reflectance measurement technique. Detailed prototype of the reflectance measurement system and data analysis technique of hemodynamic monitoring was carried out in our laboratory. The real time in-vivo measurements were done from the index finger. This study demonstrates preliminary results of real time monitoring of reduced/- oxyhemoglobin changes during clogging and unclogging of blood flow in the finger tip. The obtained results were verified with pulse-oximeter values, connected to the tip of the same index finger.

  19. Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore

    Science.gov (United States)

    2010-09-30

    watershed run-off and discharge of submarine ground-water can profoundly impact growth conditions of bioluminescent plankton on very short space and...changes in marine ecosystems (Kane, 2009). Gelatinous zooplankton, such as Mnemiopsis sp., feed on mesozooplankton, with copepods being their main food

  20. Nuclear Regulatory Authority low energy germanium detection system: performance for the uranium individual monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Spinella, M.R.; Krimer, M.; Rojo, A.M.; Gregori, B.N. [Autoridad Regulatoria Nuclear, Avda. del Libertador 8250, (C1429BNP) Ciudad Autonoma de Buenos Aires (Argentina); Gomez Parada, I. [Sociedad Argentina de Radioproteccion, Avda. del Libertador 8250, (C1429BNP) Ciudad Autonoma de Buenos Aires (Argentina)

    2007-07-01

    The lung counter facility of the Nuclear Regulatory Authority (ARN) is presented. A calibration was carried out using the Lawrence Livermore National Laboratory (LLNL) phantom. This phantom is provided with a pair of lungs and lymph nodes containing uranium homogeneously distributed and a set of four overlay plates covering a chest wall thickness (CWT) ranging from 1.638 to 3.871 cm. Individual organ calibration factors were acquired for {sup 235}U photo-peaks energies and for each effective chest thickness. Using these factors, a collection of theoretical fitting curves were found. A counting efficiency formulae and a curve for simultaneously active lymph nodes and lung was obtained and checked through measures. Background measurements of the chamber with and without volunteer persons were performed in order to obtain the detection limits (DL) of the system. As this task involves the knowledge of the volunteers CWTs, these magnitudes were determined through formulae selected from the literature taking into account the detection system characteristics. The deviation in the CWT assigned to an individual, generated by applying different equations, produces variations up to 33% in the estimations of the incorporated activity and DL. An analysis of the changes in efficiencies as consequences of the detectors locations and CWT was also performed. This reveals that the DL of the camera (detectors, shield and blank phantom) is between 2.7 and 6.4 Bq of {sup 235}U, which implies 4.9 and 11.5 mg lung burden of natural uranium. An estimation of the minimum detectable intake performed with the DL considering blank persons shows that a system with the characteristics described is only adequate for non-routine individual monitoring. (authors)

  1. Further Studies on the Physical and Biogeochemical Causes for Large Interannual Changes in the Patagonian Shelf Spring-Summer Phytoplankton Bloom Biomass

    Science.gov (United States)

    Signorini, Sergio R.; Garcia, Virginia M.T.; Piola, Alberto R.; Evangelista, Heitor; McClain, Charles R.; Garcia, Carlos A.E.; Mata, Mauricio M.

    2009-01-01

    A very strong and persistent phytoplankton bloom was observed by ocean color satellites during September - December 2003 along the northern Patagonian shelf. The 2003 bloom had the highest extent and chlorophyll a (Chl-a) concentrations of the entire Sea-viewing Wide Field-of-view Sensor (SeaWiFS) period (1997 to present). SeaWiFS-derived Chl-a exceeded 20 mg/cu m in November at the bloom center. The bloom was most extensive in December when it spanned more than 300 km across the shelf and nearly 900 km north-south (35degS to 43degS). The northward reach and the deep penetration on the shelf of the 2003 bloom were quite anomalous when compared with other years, which showed the bloom more confined to the Patagonian shelf break (PSB). The PSB bloom is a conspicuous austral spring-summer feature detected by ocean color satellites and its timing can be explained using the Sverdrup critical depth theory. Based on high-resolution numerical simulations, in situ and remote sensing data, we provide some suggestions for the probable mechanisms responsible for that large interannual change of biomass as seen by ocean color satellites. Potential sources of macro and micro (e.g., Fe) nutrients that sustain the high phytoplankton productivity of the Patagonian shelf waters are identified, and the most likely physical processes that maintain the nutrient balance in the region are discussed.

  2. Cyanobacteria as indicators of water quality in Campania coasts, Italy: a monitoring strategy combining remote/proximal sensing and in situ data

    Science.gov (United States)

    Teta, Roberta; Romano, Vincenza; Della Sala, Gerardo; Picchio, Stefano; De Sterlich, Carlo; Mangoni, Alfonso; Di Tullio, Giacomo; Costantino, Valeria; Lega, Massimiliano

    2017-02-01

    Cyanobacterial blooms (CBs) are generally triggered by eutrophic conditions due to anthropogenic nutrient inputs to local waters (wastewater or contaminated waters). During the bloom, some species produce toxic secondary metabolites (cyanotoxins) that are dangerous for humans and animals. Here, a multidisciplinary strategy for an early detection and constant monitoring is proposed. This strategy combines remote/proximal sensing technology with analytical/biotechnological analyses. To demonstrate the applicability of this strategy, four anthropogenically-impacted sites were selected along the Campania coast of southwestern Italy, in the so called ‘Land of Fires’. The sites were observed using satellite and aircraft images during summer, 2015. Algal community composition was determined using spectrophotometric analysis for the detection of the cyanobacterial pigment phycocyanin (PC). Complementary metagenomic analysis revealed the taxonomic presence of cyanobacteria belonging to genera associated with strong eutrophic conditions. Key elements of this strategy are the combination and integration of applying different methodological approaches such as the parallel and combined use of satellite, aerial and in-situ data, the simplified multispectral image indexing and classification for a truly efficient method in detecting early blooms of cyanobacteria. The effectiveness of the strategy has been validated also by the specific taxa of cyanobacteria found in the examined areas that confirm the assumption that cyanobacterial blooms may serve as useful bioindicators of degraded water quality in coastal ecosystems. To our knowledge this is the first time that the presence of cyanobacteria has been observed in water bodies along the Campania coast.

  3. Modelling detectability of kiore (Rattus exulans) on Aguiguan, Mariana Islands, to inform possible eradication and monitoring efforts

    Science.gov (United States)

    Adams, A.A.Y.; Stanford, J.W.; Wiewel, A.S.; Rodda, G.H.

    2011-01-01

    Estimating the detection probability of introduced organisms during the pre-monitoring phase of an eradication effort can be extremely helpful in informing eradication and post-eradication monitoring efforts, but this step is rarely taken. We used data collected during 11 nights of mark-recapture sampling on Aguiguan, Mariana Islands, to estimate introduced kiore (Rattus exulans Peale) density and detection probability, and evaluated factors affecting detectability to help inform possible eradication efforts. Modelling of 62 captures of 48 individuals resulted in a model-averaged density estimate of 55 kiore/ha. Kiore detection probability was best explained by a model allowing neophobia to diminish linearly (i.e. capture probability increased linearly) until occasion 7, with additive effects of sex and cumulative rainfall over the prior 48 hours. Detection probability increased with increasing rainfall and females were up to three times more likely than males to be trapped. In this paper, we illustrate the type of information that can be obtained by modelling mark-recapture data collected during pre-eradication monitoring and discuss the potential of using these data to inform eradication and posteradication monitoring efforts. ?? New Zealand Ecological Society.

  4. Biology in bloom: implementing Bloom's Taxonomy to enhance student learning in biology.

    Science.gov (United States)

    Crowe, Alison; Dirks, Clarissa; Wenderoth, Mary Pat

    2008-01-01

    We developed the Blooming Biology Tool (BBT), an assessment tool based on Bloom's Taxonomy, to assist science faculty in better aligning their assessments with their teaching activities and to help students enhance their study skills and metacognition. The work presented here shows how assessment tools, such as the BBT, can be used to guide and enhance teaching and student learning in a discipline-specific manner in postsecondary education. The BBT was first designed and extensively tested for a study in which we ranked almost 600 science questions from college life science exams and standardized tests. The BBT was then implemented in three different collegiate settings. Implementation of the BBT helped us to adjust our teaching to better enhance our students' current mastery of the material, design questions at higher cognitive skills levels, and assist students in studying for college-level exams and in writing study questions at higher levels of Bloom's Taxonomy. From this work we also created a suite of complementary tools that can assist biology faculty in creating classroom materials and exams at the appropriate level of Bloom's Taxonomy and students to successfully develop and answer questions that require higher-order cognitive skills.

  5. Optoacoustic detection and monitoring of blast-induced intracranial hematomas in rats

    Science.gov (United States)

    Petrov, Andrey; Wynne, Karon E.; Prough, Donald S.; Dewitt, Douglas S.; Petrov, Yuriy; Petrov, Irene Y.; Parsley, Margaret A.; Esenaliev, Rinat O.

    2014-03-01

    Patients with acute intracranial hematomas often require surgical drainage within the first four hours after traumatic brain injury (TBI) to avoid death or severe neurologic disability. CT and MRI permit rapid, noninvasive diagnosis of hematomas, but can be used only at a major health-care facility. At present, there is no device for noninvasive detection and characterization of hematomas in pre-hospital settings. We proposed to use an optoacoustic technique for rapid, noninvasive diagnosis and monitoring of hematomas, including intracranial hematomas. Unlike bulky CT and MR equipment, an optoacoustic system can be small and easily transported in an emergency vehicle. In this study we used a specially-designed blast device to inflict TBI in rats. A near-infrared OPO-based optoacoustic system developed for hematoma diagnosis and for blood oxygenation monitoring in the superior sagittal sinus (SSS) in small animals was used in the study. Optoacoustic signals recorded simultaneously from the SSS and hematomas allowed for measurements of their oxygenations. The presence of hematomas was confirmed after the experiment in gross pictures of the exposed brains. After blast the hematoma signal and oxygenation increased, while SSS oxygenation decreased due to the blastinduced TBI. The increase of the oxygenation in fresh hematomas may be explained by the leakage of blood from arteries which have higher blood pressure compared to that of veins. These results indicate that the optoacoustic technique can be used for early diagnosis of hematomas and may provide important information for improving outcomes in patients with TBI or stroke (both hemorrhagic and ischemic).

  6. Field-based detection and monitoring of uranium in contaminated groundwater using two immunosensors

    Energy Technology Data Exchange (ETDEWEB)

    Melton, S.J.; Yu, H.; Williams, K.H.; Morris, S.A.; Long, P.E.; Blake, D.A.

    2009-05-01

    Field-based monitoring of environmental contaminants has long been a need for environmental scientists. Described herein are two kinetic exclusion-based immunosensors, a field portable sensor (FPS) and an inline senor, that were deployed at the Integrated Field Research Challenge Site of the U.S. Department of Energy in Rifle, CO. Both sensors utilized a monoclonal antibody that binds to a U(VI)-dicarboxyphenanthroline complex (DCP) in a kinetic exclusion immunoassay format. These sensors were able to monitor changes of uranium in groundwater samples from {approx} 1 {micro}M to below the regulated drinking water limit of 126 nM (30 ppb). The FPS is a battery-operated sensor platform that can determine the uranium level in a single sample in 5-10 min, if the instrument has been previously calibrated with standards. The average minimum detection level (MDL) in this assay was 0.33 nM (79 ppt), and the MDL in the sample (based on a 1:200?1:400 dilution) was 66?132 nM (15.7?31.4 ppb). The inline sensor, while requiring a grounded power source, has the ability to autonomously analyze multiple samples in a single experiment. The average MDL in this assay was 0.12 nM (29 ppt), and the MDL in the samples (based on 1:200 or 1:400 dilutions) was 24?48 nM (5.7?11.4 ppb). Both sensor platforms showed an acceptable level of agreement (r{sup 2} = 0.94 and 0.76, for the inline and FPS, respectively) with conventional methods for uranium quantification.

  7. First results of an integrated monitoring concept to detect brine migration processes in freshwater aquifers

    Science.gov (United States)

    Möller, M.; Schmidt-Hattenberger, C.; Wagner, F.; Schröder, S.

    2012-04-01

    The reduction of new carbon dioxide emissions is an important contribution to realise climate change mitigation solutions. One possibility consists in the long-term storage of industrial produced greenhouse gas in deep saline aquifers. The most important research focus of the multidisciplinary integrated project BRINE is to ensure the safe storage operation. This research work refers to an area in eastern Brandenburg (Germany). However, the analysis can be applied to regions with comparable geological characteristics. The relevant reservoir horizon is located within a classic anticlinal structure, generated by salt tectonic processes. Due to the local geological site specifics, the CO2 injection could cause a pressure build-up and thus a brine migration in the reservoir layer. For this reason, an adequate monitoring system for the observation of possible brine displacement into upper freshwater aquifers is essential. For both the qualitatively and quantitatively investigation a combination of several geophysical methods is needed. The electrical resistivity tomography (ERT) is a measurement method with a comparatively high spatial resolution on small scales. Therefore it will be generally used for borehole and near subsurface investigations. The presented monitoring concept focusses on three potential pathways. Beside regional fault-zones, also formation defects in the upper aquitards and leakages around the wellbore could promote a saltwater migration. The main objective is to find an optimal combination of several electrode arrays like surface, surface-downhole and cross-borehole configurations to detect time-lapse effects of the resistivity distribution in the subsurface. By means of numerical modelling studies of different salinisation scenarios, we have tested several standard and several adapted electrode arrays. In order to further improve the results, an inversion code based on the measured resistance ratios is used. Parallel to the large-scale modelling

  8. An active learning approach to Bloom's Taxonomy.

    Science.gov (United States)

    Weigel, Fred K; Bonica, Mark

    2014-01-01

    As educators strive toward improving student learning outcomes, many find it difficult to instill their students with a deep understanding of the material the instructors share. One challenge lies in how to provide the material with a meaningful and engaging method that maximizes student understanding and synthesis. By following a simple strategy involving Active Learning across the 3 primary domains of Bloom's Taxonomy (cognitive, affective, and psychomotor), instructors can dramatically improve the quality of the lesson and help students retain and understand the information. By applying our strategy, instructors can engage their students at a deeper level and may even find themselves enjoying the process more.

  9. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with

  10. The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection

    Directory of Open Access Journals (Sweden)

    R. Fröhlich

    2013-11-01

    Full Text Available We present a new instrument for monitoring aerosol composition, the time-of-flight aerosol chemical speciation monitor (ToF-ACSM, combining precision state-of-the-art time-of-flight mass spectrometry with stability, reliability, and easy handling, which are necessities for long-term monitoring operations on the scale of months to years. Based on Aerodyne aerosol mass spectrometer (AMS technology, the ToF-ACSM provides continuous online measurements of chemical composition and mass of non-refractory submicron aerosol particles. In contrast to the larger AMS, the compact-sized and lower-priced ToF-ACSM does not feature particle sizing, similar to the widely-used quadrupole-ACSM (Q-ACSM. Compared to the Q-ACSM, the ToF-ACSM features a better mass resolution of M/ΔM = 600 and better detection limits on the order of −3 for a time resolution of 30 min. With simple upgrades these limits can be brought down by another factor of ~ 8. This allows for operation at higher time resolutions and in low concentration environments. The associated software packages (single packages for integrated operation and calibration and analysis provide a high degree of automation and remote access, minimising the need for trained personnel on site. Intercomparisons with Q-ACSM, C-ToF-AMS, nephelometer and scanning mobility particle sizer (SMPS measurements, performed during a first long-term deployment (> 10 months on the Jungfraujoch mountain ridge (3580 m a.s.l. in the Swiss Alps, agree quantitatively. Additionally, the mass resolution of the ToF-ACSM is sufficient for basic mass defect resolved peak fitting of the recorded spectra, providing a data stream not accessible to the Q-ACSM. This allows for quantification of certain hydrocarbon and oxygenated fragments (e.g. C3H7+ and C2H3O+, both occurring at m/Q = 43 Th, as well as improving inorganic/organic separation.

  11. Real-Time Detection Methods to Monitor TRU Compositions in UREX+Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean; Charlton, William; Indacochea, J Ernesto; taleyarkhan, Rusi; Pereira, Candido

    2013-03-01

    The U.S. Department of Energy has developed advanced methods for reprocessing spent nuclear fuel. The majority of this development was accomplished under the Advanced Fuel Cycle Initiative (AFCI), building on the strong legacy of process development R&D over the past 50 years. The most prominent processing method under development is named UREX+. The name refers to a family of processing methods that begin with the Uranium Extraction (UREX) process and incorporate a variety of other methods to separate uranium, selected fission products, and the transuranic (TRU) isotopes from dissolved spent nuclear fuel. It is important to consider issues such as safeguards strategies and materials control and accountability methods. Monitoring of higher actinides during aqueous separations is a critical research area. By providing on-line materials accountability for the processes, covert diversion of the materials streams becomes much more difficult. The importance of the nuclear fuel cycle continues to rise on national and international agendas. The U.S. Department of Energy is evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The objective of this consortium was to develop real time detection methods to monitor the efficacy of the UREX+ process and to safeguard the separated

  12. NRC Job Code V6060: Extended in-situ and real time monitoring. Task 4: Detection and monitoring of leaks at nuclear power plants external to structures

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, S. H. (Nuclear Engineering Division)

    2012-08-01

    In support of Task 4 of the NRC study on compliance with 10 CFR part 20.1406, minimization of contamination, Argonne National Laboratory (ANL) conducted a one-year scoping study, in concert with a parallel study performed by NRC/NRR staff, on monitoring for leaks at nuclear power plants (NPPs) external to structures. The objective of this task-4 study is to identify and assess those sensors and monitoring techniques for early detection of abnormal radioactive releases from the engineered facility structures, systems and components (SSCs) to the surrounding underground environment in existing NPPs and planned new reactors. As such, methods of interest include: (1) detection of anomalous water content of soils surrounding SSCs, (2) radionuclides contained in the leaking water, and (3) secondary signals such as temperature. ANL work scope includes mainly to (1) identify, in concert with the nuclear industry, the sensors and techniques that have most promise to detect radionuclides and/or associated chemical releases from SSCs of existing NPPs and (2) review and provide comments on the results of the NRC/NRR staff scoping study to identify candidate technologies. This report constitutes the ANL deliverable of the task-4 study. It covers a survey of sensor technologies and leak detection methods currently applied to leak monitoring at NPPs. The survey also provides a technology evaluation that identifies their strength and deficiency based on their detection speed, sensitivity, range and reliability. Emerging advanced technologies that are potentially capable of locating releases, identifying the radionuclides, and estimating their concentrations and distributions are also included in the report along with suggestions of required further research and development.

  13. New method for the detection and monitoring of subsea power cable

    Science.gov (United States)

    Held, Philipp; Schneider, Jens; Feldens, Peter; Wilken, Dennis

    2016-04-01

    Marine renewable energy farms, no matter what kind of, have in common that they need a connection with the onshore power grid. Thus, not only their offshore generation facilities could have impacts on the surrounding environment, but also associated submarine power cables. These cables have to be buried in the seabed - at least in coastal heavy shipping environments - for safety reasons. Cable laying disturbs the local seafloor and the sub-bottom. Refillment of dredged sediments are expected softer than the original material and could be washed away by currents. Therefore, buried cables have to be repeatedly monitored to ensure their burial depth. This study presents a new method for efficient cable detection. A parametric echosounder system using 15 kHz as secondary frequency was adapted to investigate the angular response of sub-bottom backscatter strength of layered mud and to introduce a new method for enhanced acoustic detection of buried targets. Adaptations to achieve both vertical (0°) and non-vertical inclination of incident sound on the seabed (1-15°, 30°, 45°, and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. A sample data set was acquired at a study site at 18 m water depth and a flat and muddy seafloor. At this site, a 0.1 m diameter power cable is buried 1-2 m below the sea floor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud was found to strongly decrease at >3±0.5° incidence and the layered mud echo pattern vanished beyond 5°. As a consequence the visual recognition of the cable echo in acoustic images improves for higher incidence angles of 15°, 30°, 45°, and 60°. Data analysis support this visual impression. The size of the cable echo pattern was found to linearly increase with incidence, whereas the signal-to-noise ratio peaks at about

  14. A quantitative study of the 6NM-64 neutron monitor by using Geant4: 1. Detection efficiency for different particles

    Energy Technology Data Exchange (ETDEWEB)

    Paschalis, P. [Nuclear and Particle Physics Section, Physics Department, National and Kapodistrian University of Athens, Zografos 15783, Athens (Greece); Mavromichalaki, H., E-mail: emavromi@phys.uoa.gr [Nuclear and Particle Physics Section, Physics Department, National and Kapodistrian University of Athens, Zografos 15783, Athens (Greece); Dorman, L.I. [Israel Cosmic Ray and Space Weather Centre and Emilio Ségre Observatory, Affiliated to Tel Aviv University, Golan Research Institute, and Israel Space Agency, Qazrin 12900 (Israel); Cosmic Ray Department of N.V. Pushkov IZMIRAN, Russian Academy of Science, Troitsk 142190, Moscow (Russian Federation)

    2013-11-21

    The neutron monitors are the ground based detectors that continuously measure the flow of the cosmic rays that reach the earth′s surface. The measurements of the neutron monitors are of great importance for the scientific community since they contribute to the study of several scientific fields, such as the solar activity and the prediction of the space weather. For this reason, most of the neutron monitors worldwide are organized in a network, in order for their measurements to be easily accessible. The correct evaluation of the measurements and their connection with the physical quantities of the cosmic rays require the knowledge of the interactions and the detection procedure that take place inside the neutron monitor. In this work a quantitative study of the 6NM-64 behavior is presented based on Monte Carlo simulations by using the well known Geant4 simulations toolkit. The study focuses on the detection efficiency of the neutron monitor, both in sections and as a whole for the different particle species, on its dependence on the incident direction of the particles and on the secondary neutrons produced inside the neutron monitor.

  15. SYSTEM FOR DETECTION AND CONTROL OF DEPOSITION IN KRAFT CHEMICAL RECOVERY BOILERS AND MONITORING GLASS FURNACES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Peter Ariessohn

    2003-04-15

    Combustion Specialists, Inc. has just completed a project designed to develop the capability to monitor and control the formation of deposits on the outside of boiler tubes inside an operating kraft recovery furnace. This project, which was carried out in the period from April 1, 2001 to January 31, 2003, was funded by the Department of Energy's Inventions and Innovations program. The primary objectives of the project included the development and demonstration of the ability to produce clear images of deposits throughout the convective sections of operating recovery boilers using newly developed infrared imaging technology, to demonstrate the automated detection and quantification of these deposits using custom designed image processing software developed as part of the project, and to demonstrate the feasibility of all technical elements required for a commercial ''smart'' sootblowing control system based on direct feedback from automated imaging of deposits in real-time. All of the individual tasks have been completed and all objectives have been substantially achieved. Imaging of deposits throughout the convective sections of several recovery boilers has been demonstrated, a design for a combined sootblower/deposit inspection probe has been developed and a detailed heat transfer analysis carried out to demonstrate the feasibility of this design, an improved infrared imager which can be sufficiently miniaturized for this application has been identified, automated deposit detection software has been developed and demonstrated, a detailed design for all the necessary communications and control interfaces has been developed, and a test has been carried out in a glass furnace to demonstrate the applicability of the infrared imaging sensor in that environment. The project was completed on time and within the initial budget. A commercial partner has been identified and further federal funding will be sought to support a project to develop a

  16. Subsurface phytoplankton blooms fuel pelagic production in the North Sea

    DEFF Research Database (Denmark)

    Richardson, Kathrine; Visser, Andre; Pedersen, Flemming

    2000-01-01

    relatively quickly from the water column and a large proportion of the material sedimenting to the bottom following the spring bloom is often comprised of intact phytoplankton cells. Thus, it is easy to argue that the spring bloom is fueling the energy demands of the benthos, but more difficult to argue...

  17. WATER BLOOM OF BLUEGREEN ALGE IN CARP FISHPOUNDS

    Directory of Open Access Journals (Sweden)

    Melita Mihaljević

    1996-03-01

    Full Text Available The massive development of bluegreen algae (Cyanophyta/Cyanobacteria, the so--called water bloom, is a frequent phenomenon in fishpond ecosystems. This study analyses water bloom development in three carp fishponds owned by a fishbreeding company at Donji Miholjac (Croatia, where one-year-old carps (Cyprinus carpio , were bred in defferent fishstock densities. Analyses of physicallychemical properties of water and phytoplankton biomass were per- formed in fortnight intervals from May till October, 1992. In all there investigated fishponds the water bloom of bluegreen algae developed, but at a different time and showing a different qualitative composition. In the fishpond with fishstock density of 250 kg/ha water bloom consisted of the species Aphanizomenon flos-aquae, and the biggest biomass (131.92 mg/I was found in August. In the fishpond with fishstock density of 437 kg/ha a water bloom consisting of species from the genues Anabaena and species Aphanizomenon flos-aquae developed at the end of July. In the fishpond with the so--called intensive breeding (fishstock density of 750 kg/ha water bloom of the species Microcystis aeruginosa developed as late as September. The beginning of water bloom development was caused by the low value (lower than 7 of the ratio between the quantities of total phosphorus and total nitrogen. However, the qualitative composition of water bloom was influenced by one-year-old carp fingerlings density.

  18. The Self According to Allan Bloom and Charles Reich.

    Science.gov (United States)

    Aspy, David N.; Aspy, Cheryl B.

    1998-01-01

    Discusses the works of Charles Reich and Allan Bloom that have helped to shape current social and political debate concerning self theory. Both Reich and Bloom were concerned with the relationship between self and environment. Argues that it is important to insure that its cultural role of self theory is clearly interpreted and applied. (MKA)

  19. The Evolution of Educational Objectives: Bloom's Taxonomy and beyond

    Science.gov (United States)

    Fallahi, Carolyn R.; LaMonaca, Frank H., Jr.

    2009-01-01

    It is crucial for teachers to communicate effectively about educational objectives to students, colleagues, and others in education. In 1956, Bloom developed a cognitive learning taxonomy to enhance communication between college examiners. The Bloom taxonomy consists of 6 hierarchical levels of learning (knowledge, comprehension, application,…

  20. Use of Bloom's Taxonomy in Developing Reading Comprehension Specifications

    Science.gov (United States)

    Luebke, Stephen; Lorie, James

    2013-01-01

    This article is a brief account of the use of Bloom's Taxonomy of Educational Objectives (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956) by staff of the Law School Admission Council in the 1990 development of redesigned specifications for the Reading Comprehension section of the Law School Admission Test. Summary item statistics for the…

  1. Annual Report for 2008 - 2009 Detection Monitoring at the Environmental Management Waste Management Facility, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Walker J.R.

    2010-03-01

    This annual Environmental Monitoring Report (EMR) presents results of environmental monitoring performed during fiscal year (FY) 2009 (October 1, 2008 - September 30, 2009) at the Environmental Management Waste Management Facility (EMWMF). The EMWMF is an operating state-of-the-art hazardous waste landfill located in Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee (Appendix A, Fig. A.1). Opened in 2002 and operated by a DOE prime contractor, Bechtel Jacobs Company LLC (BJC), the EMWMF was built specifically to accommodate disposal of acceptable solid wastes generated from Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial actions for former waste sites and buildings that have been impacted by past DOE operations on the ORR and at DOE sites off the ORR within the state of Tennessee. Environmental monitoring at the EMWMF is performed to detect and monitor the impact of facility operations on groundwater, surface water, stormwater, and air quality and to determine compliance with applicable or relevant and appropriate requirements (ARARs) specified in governing CERCLA decision documents. Annually, the EMR presents an evaluation of the groundwater, surface water, stormwater, and air monitoring data with respect to the applicable EMWMF performance standards. The purpose of the evaluation is to: (1) identify monitoring results that indicate evidence of a contaminant release from the EMWMF to groundwater, surface water, stormwater, or air, and (2) recommend appropriate changes to the associated sampling and analysis requirements, including sampling locations, methods, and frequencies; field measurements; or laboratory analytes that may be warranted in response to the monitoring data. Sect. 2 of this annual EMR provides background information relevant to environmental monitoring at the landfill, including

  2. Characteristics of Phytoplankton Community Structure During and After a Bloom of the Dinoflagellate Scrippsiella trochoidea by HPLC Pigment Analysis

    Institute of Scientific and Technical Information of China (English)

    WONG Chun-kwan; WONG Chong-kim

    2009-01-01

    A bloom of the dinoflagellate Scrippsiella trochoidea was detected for the first time in inner Tolo Harbor, Hong Kong in 2000. Water samples were collected at eight stations along a transect passing through a red tide patch for microscopic analysis of phytoplankton composition and high-performance liquid chromatography (HPLC) analysis of phytoplankton pigments. During the bloom, the density of dinoflagellates was 1.1×106 cells L-1 within the patch and 8.6×105 cells L-1 outside the patch where the phyto-plankton community was dominated by diatoms. After the bloom the S. trochoidea began to decrease in density and was replaced by diatoms as the dominating bloom-causing organisms at all stations, and the density of dinoflagellates at most stations was less than 1.0×106 cells L-1. The status of S. trochoidea as the causative species of the bloom was indicated by the presence of peridinin, the marker pigment for dinoflagellates. The shift from dinoflagellates to diatoms was marked by the decline of peridinin and the preva-lence of fucoxanthin. Phytoplankton pigment markers also revealed the presence of other minor phytoplankton assemblages such as cryptomonads and blue-green algal.

  3. Are Pyrodinium blooms in the Southeast Asian region recurring and spreading? A view at the end of the millennium.

    Science.gov (United States)

    Azanza, R V; Taylor, F J

    2001-09-01

    Pyrodinium bahamense (var. compressum) has been the only dinoflagellate species that has caused major public health and economic problems in the Southeast Asian region for more than 2 decades now. It produces saxitoxin, a suite of toxins that cause Paralytic Shellfish Poisoning (PSP). A serious toxicological problem affecting many countries of the world, mild cases of this poisoning can occur within 30 minutes while in extreme cases, death through respiratory paralysis may occur within 2-24 hrs of ingestion of intoxicated shellfish. Blooms of the organism have been reported in Malaysia, Brunei Darussalam, the Philippines and Indonesia. The ASEAN-Canada Red Tide Network has recorded 31 blooms of the organism in 26 areas since 1976 when it first occurred in Sabah, Malaysia. As of 1999, the most hard hit country has been the Philippines which has the greatest number of areas affected (18) and highest number of Paralytic Shellfish Poisoning (PSP) cases (about 1995). Malaysia has reported a total of 609 PSP cases and 44 deaths while Brunei has recorded 14 PSP cases and no fatalities. Indonesia, on the other hand has a record of 427 PSP cases and 17 deaths. Studies on ecological/environmental impacts of these blooms have not been done in the region. Estimates of economic impacts have shown that the loss could be up to USD 300,000 day-1. Most of the data and information useful for understanding Pyrodinium bloom dynamics have come from harmful/toxic algal monitoring and research that have developed to different degrees in the various countries in the region affected by the organism's bloom. Regional collaborative research and monitoring efforts can help harmonize local data sets and ensure their quality and availability for comparative analysis and modeling. Temporal patterns of the blooms at local and regional scales and possible signals and trends in the occurrence/recurrence and spread of Pyrodinium blooms could be investigated. Existing descriptive and simple

  4. RoADS: a road pavement monitoring system for anomaly detection using smart phones

    NARCIS (Netherlands)

    Seraj, Fatjon; Zwaag, van der Berend Jan; Dilo, Arta; Luarasi, Tamara; Havinga, Paul; Atzmueller, Martin; Chin, Alvin; Janssen, Frederik; Schweizer, Immanuel; Trattner, Christoph

    2016-01-01

    Monitoring the road pavement is a challenging task. Authorities spend time and finances to monitor the state and quality of the road pavement. This paper investigate road surface monitoring with smartphones equipped with GPS and inertial sensors: accelerometer and gyroscope. In this study we descri

  5. RoADS: a road pavement monitoring system for anomaly detection using smart phones

    NARCIS (Netherlands)

    Seraj, Fatjon; Zwaag, van der Berend Jan; Dilo, Arta; Luarasi, Tamara; Havinga, Paul

    2014-01-01

    Monitoring the road pavement is a challenging task. Authorities spend time and finances to monitor the state and quality of the road pavement. This paper investigate road surface monitoring with smartphones equipped with GPS and inertial sensors: accelerometer and gyroscope. In this study we describ

  6. Detection and monitoring of volatile and semivolatile pollutants in soil through different sensing strategies

    Science.gov (United States)

    De Cesare, Fabrizio; Macagnano, Antonella

    2013-04-01

    Pollutants in environments are more and more threatening the maintenance of health of habitats and their inhabitants. A proper evaluation of the impact of contaminants from several different potential sources on soil quality and health and then on organisms living therein, and the possible and sometime probable related risk of transfer of pollutants, with their toxic effects, to organisms living in different environmental compartments, through the trophic chain up to humans is strongly required by decision makers, in order to promptly take adequate actions to prevent environmental and health damages and monitor the exposure rate of individuals to toxicants. Then, a reliable detection of pollutants in environments and the monitoring of dynamics and fate of contaminants therein are of utmost importance to achieve this goal. In soil, chemical and physical techniques to detect pollutants have been well known for decades, but can often drive to both over- and underestimations of the actual bioavailable (and then toxic) fraction of contaminants, and then of the real risk for organisms, deriving from their presence therein. The use of bioindicators (both living organisms and enzyme activities somehow derived from them) can supply more reliable information about the quantification of the bioavailable fraction of soil pollutants. In the last decades, a physicochemical technique, such as SPME (solid phase microextraction) followed by GC-MS analysis, has been demonstrated to provide similar results to those obtained from some pedofaunal populations, used as bioindicators, as concerns the bioavailable pollutant quantification in soil. More recently, we have applied a sensing technology, namely electronic nose (EN), which comprises several unspecific sensors arranged in an array and that is capable of providing more qualitative than quantitative information about complex air samples, to the study of soils contaminated with semivolatile (SVOCs) pollutants, such as polycyclic

  7. Time Resolved Spectroscopy of SGR J1550-5418 Bursts Detected with Fermi/Gamma-Ray Burst Monitor

    NARCIS (Netherlands)

    Younes, G.; Kouveliotou, C.; van der Horst, A.J.; Baring, M.G.; Granot, J.; Watts, A.L.; Bhat, P.N.; Collazzi, A.; Gehrels, N.; Gorgone, N.; Göğüş, E.; Gruber, D.; Grunblatt, S.; Huppenkothen, D.; Kaneko, Y.; von Kienlin, A.; van der Klis, M.; Lin, L.; Mcenery, J.; van Putten, T.; Wijers, R.A.M.J.

    2014-01-01

    We report on a time-resolved spectroscopy of the 63 brightest bursts of SGR J1550-5418, detected with the Fermi/Gamma-ray Burst Monitor during its 2008-2009 intense bursting episode. We performed spectral analysis down to 4 ms timescales to characterize the spectral evolution of the bursts. Using a

  8. Margalef's mandala and phytoplankton bloom strategies

    Science.gov (United States)

    Wyatt, Timothy

    2014-03-01

    Margalef's mandala maps phytoplankton species into a phase space defined by turbulence (A) and nutrient concentrations (Ni); these are the hard axes. The permutations of high and low A and high and low Ni divide the space into four domains. Soft axes indicate some ecological dynamics. A main sequence shows the normal course of phytoplankton succession; the r-K axis of MacArthur and Wilson runs parallel to it. An alternative successional sequence leads to the low A-high Ni domain into which many red tide species are mapped. Astronomical and biological time are implicit. A mathematical transformation of the mandala (rotation) links it to the classical bloom models of Sverdrup (time) and Kierstead and Slobodkin (space).Both rarity and the propensity to form red tides are considered to be species characters, meaning that maximum population abundance can be a target of natural selection. Equally, both the unpredictable appearance of bloom species and their short-lived appearances may be species characters. There may be a correlation too between these features and long-lived dormant stages in the life-cycle; then the vegetative planktonic phase is the 'weak link' in the life-cycle. Red tides are thus due to species which have evolved suites of traits which result in specific demographic strategies.

  9. Phytoplankton Bloom in North Sea off Scotland

    Science.gov (United States)

    2008-01-01

    The northern and western highlands of Scotland were still winter-brown and even dusted with snow in places, but the waters of the North Sea were blooming with phytoplankton on May 8, 2008, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite passed over the region and captured this image. The tiny, plant-like organisms swirled in the waters off the country's east coast, coloring the shallow coastal waters shades of bright blue and green. Phytoplankton are tiny organisms--many are just a single cell--that use chlorophyll and other pigments to capture light for photosynthesis. Because these pigments absorb sunlight, they change the color of the light reflected from the sea surface back to the satellite. Scientists have used observations of 'ocean color' from satellites for more than 20 years to track worldwide patterns in phytoplankton blooms. Phytoplankton are important to the Earth system for a host of reasons, including their status as the base of the ocean food web. In the North Sea, they are the base of the food web that supports Scotland's commercial fisheries, including monkfish and herring. As photosynthesizers, they also play a crucial role in the carbon cycle, removing carbon dioxide from the atmosphere. Some oceanographers are concerned that rising ocean temperatures will slow phytoplankton growth rates, harming marine ecosystems and causing carbon dioxide to accumulate more rapidly in the atmosphere.

  10. RECOMMENDATION SYSTEM USING BLOOM FILTER IN MAPREDUCE

    Directory of Open Access Journals (Sweden)

    Reena Pagare

    2013-11-01

    Full Text Available Many clients like to use the Web to discover product details in the form of online reviews. The reviews are provided by other clients and specialists. Recommender systems provide an important response to the information overload problem as it presents users more practical and personalized information facilities. Collaborative filtering methods are vital component in recommender systems as they generate high-quality recommendations by influencing the likings of society of similar users. The collaborative filtering method has assumption that people having same tastes choose the same items. The conventional collaborative filtering system has drawbacks as sparse data problem & lack of scalability. A new recommender system is required to deal with the sparse data problem & produce high quality recommendations in large scale mobile environment. MapReduce is a programming model which is widely used for large-scale data analysis. The described algorithm of recommendation mechanism for mobile commerce is user based collaborative filtering using MapReduce which reduces scalability problem in conventional CF system. One of the essential operations for the data analysis is join operation. But MapReduce is not very competent to execute the join operation as it always uses all records in the datasets where only small fraction of datasets are applicable for the join operation. This problem can be reduced by applying bloomjoin algorithm. The bloom filters are constructed and used to filter out redundant intermediate records. The proposed algorithm using bloom filter will reduce the number of intermediate results and will improve the join performance.

  11. Endocultivation: metabolism during heterotopic osteoinduction in vivo--monitoring with fiber optic detection devices.

    Science.gov (United States)

    Beck-Broichsitter, Benedicta Elisabeth; Christofzik, David W; Daschner, Frank; Knöchel, Reinhard; Smeets, Ralf; Warnke, Patrick; Wiltfang, Jörg; Becker, Stephan T

    2012-10-01

    Reconstructions of facial bone defects are one of the most challenging aspects in surgical treatment of malignant diseases, large facial traumata, or congenital anomalies. High-level reconstruction techniques are often associated with an elevated morbidity by the harvest of autologous bone grafts from the patient. Tissue engineering techniques may help to solve this problem. The aim of this study was to monitor metabolic processes during cellular colonization of matrices in vivo in an established rat model for endocultivation. After implantation of computer-designed hydroxyapatite scaffolds into the latissimus dorsi muscle of six rats, 100 μg bone morphogenetic protein-2 (BMP-2) was injected twice, in week 1 and 2, directly into the center of the matrices. The development of pH value and oxygen (O₂) saturation inside the matrix was followed by fiber optic detection technique over 8 weeks and analyzed by variance analyses. Bone density measurements were performed by computed tomography as well as histological evaluations. Two weeks after implantation, oxygen supply and pH value measurements had decreased significantly. In the following weeks both parameters increased and stabilized on higher levels. This is the first study reporting a reproducible method to follow metabolic processes during heterotopic osteoinduction in vivo. It was shown that in the beginning of the study pH value and O₂ saturation decreased and it took several weeks to regain physiological levels. This is an important step to further understand the physiological process of bone induction.

  12. A Monitoring Campaign for Luhman 16AB. I. Detection of Resolved Near-Infrared Spectroscopic Variability

    CERN Document Server

    Burgasser, Adam J; Faherty, Jacqueline K; Radigan, Jacqueline; J., Amaury H M; Plavchan, Peter; Street, Rachel; Jehin, E; Delrez, L; Opitom, C

    2014-01-01

    [abbreviated] We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57-531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45-minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 micron were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of brightness and color variability in the T0.5 Luhman 16B, consistent cloud variations; and no significant variability in L7.5 Luhman 16A. We estimate a peak-to-peak amplitude of 13.5% at 1.25 micron over the full lightcurve. Using a two-spot...

  13. First Experiences of Beam Presence Detection Based on Dedicated Beam Position Monitors

    CERN Document Server

    Jalal, A; Gasior, M; Todd, B

    2011-01-01

    High intensity particle beam injection into the LHC is only permitted when a low intensity pilot beam is already circulating in the LHC. This requirement addresses some of the risks associated with high intensity injection, and is enforced by a so-called Beam Presence Flag (BPF) system which is part of the interlock chain between the LHC and its injector complex. For the 2010 LHC run, the detection of the presence of this pilot beam was implemented using the LHC Fast Beam Current Transformer (FBCT) system. However, the primary function of the FBCTs, that is reliable measurement of beam currents, did not allow the BPF system to satisfy all quality requirements of the LHC Machine Protection System (MPS). Safety requirements associated with high intensity injections triggered the development of a dedicated system, based on Beam Position Monitors (BPM). This system was meant to work first in parallel with the FBCT BPF system and eventually replace it. At the end of 2010 and in 2011, this new BP...

  14. Sequential change detection and monitoring of temporal trends in random-effects meta-analysis.

    Science.gov (United States)

    Dogo, Samson Henry; Clark, Allan; Kulinskaya, Elena

    2016-12-08

    Temporal changes in magnitude of effect sizes reported in many areas of research are a threat to the credibility of the results and conclusions of meta-analysis. Numerous sequential methods for meta-analysis have been proposed to detect changes and monitor trends in effect sizes so that meta-analysis can be updated when necessary and interpreted based on the time it was conducted. The difficulties of sequential meta-analysis under the random-effects model are caused by dependencies in increments introduced by the estimation of the heterogeneity parameter τ(2) . In this paper, we propose the use of a retrospective cumulative sum (CUSUM)-type test with bootstrap critical values. This method allows retrospective analysis of the past trajectory of cumulative effects in random-effects meta-analysis and its visualization on a chart similar to CUSUM chart. Simulation results show that the new method demonstrates good control of Type I error regardless of the number or size of the studies and the amount of heterogeneity. Application of the new method is illustrated on two examples of medical meta-analyses. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.

  15. EVALUATION OF CRITICAL FLICKER FREQUENCY IN DETECTING AND MONITORING MINIMAL HEPATIC ENCEPHALOPATHY

    Directory of Open Access Journals (Sweden)

    Vijan

    2015-07-01

    & lack of learning effect. CONCLUSIONS: CFF measurement is a simple and reliable tool for detection of MHE. It also has high degree of reproducibility & lack of learning effect on repeated testing in the same patient. It provides an objective parameter for assessment of improvement in MHE by pharmacological intervention. CFF should be used more often to diagnose and monitor MHE in patients with advance cirrhosis.

  16. Monitoring and restabilizing structures under external excitations through detection and prediction of changes in structural properties

    Science.gov (United States)

    Sebastijanovic, Nebojsa

    The primary goal of this dissertation is the development of methods for prediction and detection of damage in structures under external excitations through the use of sensors and actuators. The first example involves developing an active flutter suppression algorithm for a flat panel in flight and space vehicles using embedded piezoceramic actuators. A basic eigenvector orientation approach is used to evaluate the possibility of controlling the onset of panel flutter. Eigenvectors for two consecutive modes are usually orthogonal and the onset of flutter condition can be observed earlier as they start to lose their orthogonality. Piezoelectric layers are assumed to be bonded to the top and bottom surfaces of the panel in order to provide counter-bending moments at joints between elements. The controllers are designed to modify the stiffness of the structure and re-stabilize the system; as a result, flutter occurrence can be offset to a higher flutter speed. To illustrate the applicability and effectiveness of the developed method, several simple wide beam examples using piezoelectric layers as actuators are studied and presented. Controllers based on different control objectives are considered and the effects of control moment locations are studied. Potential applications of this basic method may be straightforwardly applied to plate and shell structures of laminated composites. The second example includes developing a method for detecting, locating, and quantifying structural damage using acceleration measurements as feedback. This method directly uses time domain structural vibration measurements and the effects of different damages are decoupled in the controller design. The effectiveness of the proposed method is evaluated with illustrative examples of a three and an eight-story model as well as a single story steel frame model with changes in joint flexibility. Finally, the progress on developing a hybrid structural health monitoring system is presented through

  17. Detection and Monitoring of E-Waste Contamination through Remote Sensing and Image Analysis

    Science.gov (United States)

    Garb, Yaakov; Friedlander, Lonia

    2015-04-01

    Electronic waste (e-waste) is one of today's fastest growing waste streams, and also one of the more problematic, as this end-of-life product contains precious metals mixed with and embedded in a variety of low value and potentially harmful plastic and other materials. This combination creates a powerful incentive for informal value chains that transport, extract from, and dispose of e-waste materials in far-ranging and unregulated ways, and especially in settings where regulation and livelihood alternatives are sparse, most notably in areas of India, China, and Africa. E-waste processing is known to release a variety of contaminants, such as heavy metals and persistent organic pollutants, including flame retardants, dioxins and furans. In several sites, where the livelihoods of entire communities are dependent on e-waste processing, the resulting contaminants have been demonstrated to enter the hydrological system and food chain and have serious health and ecological effects. In this paper we demonstrate for the first time the usefulness of multi-spectral remote sensing imagery to detect and monitor the release and possibly the dispersal of heavy metal contaminants released in e-waste processing. While similar techniques have been used for prospecting or for studying heavy metal contamination from mining and large industrial facilities, we suggest that these techniques are of particular value in detecting contamination from the more dispersed, shifting, and ad-hoc kinds of release typical of e-waste processing. Given the increased resolution and decreased price of multi-spectral imagery, such techniques may offer a remarkably cost-effective and rapidly responsive means of assessing and monitoring this kind of contamination. We will describe the geochemical and multi-spectral image-processing principles underlying our approach, and show how we have applied these to an area in which we have a detailed, multi-temporal, spatially referenced, and ground

  18. Comparison of FEA with condition monitoring for real-time damage detection of bearing using infrared thermography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yoon Jae; Ranjit, Shrestha; Kim, Won Tae [Dept. of Mechanical and Automotive Engineering, Kongju National University, Cheonan(Korea, Republic of)

    2015-06-15

    Since real-time monitoring systems, such as early fault detection, have been very important, an infrared thermography technique was proposed as a new diagnosis method. This study focused on damage detection and temperature characteristic analysis of ball bearings using the non-destructive, infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with finite element analysis (FEA) results from ANSYS. In this investigation, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally, it was confirmed that the infrared thermography technique was useful for the real-time detection of damage to bearings.

  19. Evaluating detection and monitoring tools for incipient and relictual non-native ungulate populations

    Science.gov (United States)

    Judge, Seth W.; Hess, Steve; Faford, Jonathan K.J.; Pacheco, Dexter; Leopold, Christina R.; Cole, Colleen; Deguzman, Veronica

    2016-01-01

    Hawai‘i Volcanoes National Park (HAVO) encompasses 1,308 km2 on Hawai‘i Island. The park harbors endemic plants and animals which are threatened by a variety of invasive species. Introduced ungulates have caused sharp declines of numerous endemic species and have converted ecosystems to novel grazing systems in many cases. Local ranchers and the Territorial Government of Hawai‘i had long conducted regional ungulate control even prior to the establishment of HAVO in 1916. In 1995 the park’s hunting team began a new hunt database that allowed managers to review hunt effort and effectiveness in each management unit. Target species included feral pigs (Sus scrofa), European mouflon sheep (Ovis gmelini musimon), feral goats (Capra hircus) and wild cattle (Bos taurus). Hunters removed 1,204 feral pigs from HAVO over a 19-year period (1996‒2014). A variety of methods were employed, but trapping, snaring and ground hunts with dogs accounted for the most kills. Trapping yielded the most animals per unit effort. Hunters and volunteers removed 6,657 mouflon from HAVO; 6,601 of those were from the 468 km2 Kahuku Unit. Aerial hunts yielded the most animals followed by ground hunt methods. Hunters completed eradications of goats in several management units over an 18- year period (1997‒2014) when they removed the last 239 known individuals in HAVO primarily with aerial hunts. There have also been seven cattle and five feral dogs (Canis familiaris) removed from HAVO. Establishing benchmarks and monitoring the success of on-the-ground ungulate removal efforts can improve the efficiency of protecting and restoring native forest for high-priority watersheds and native wildlife. We tested a variety of methods to detect small populations of ungulates within HAVO and the Hō‘ili Wai study area in the high-priority watershed of Ka‘ū Forest Reserve on Hawai‘i Island. We conducted ground surveys, aerial surveys and continuous camera trap monitoring in both fence

  20. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease.

    Science.gov (United States)

    Olsson, Eleonor; Winter, Christof; George, Anthony; Chen, Yilun; Howlin, Jillian; Tang, Man-Hung Eric; Dahlgren, Malin; Schulz, Ralph; Grabau, Dorthe; van Westen, Danielle; Fernö, Mårten; Ingvar, Christian; Rose, Carsten; Bendahl, Pär-Ola; Rydén, Lisa; Borg, Åke; Gruvberger-Saal, Sofia K; Jernström, Helena; Saal, Lao H

    2015-05-18

    Metastatic breast cancer is usually diagnosed after becoming symptomatic, at which point it is rarely curable. Cell-free circulating tumor DNA (ctDNA) contains tumor-specific chromosomal rearrangements that may be interrogated in blood plasma. We evaluated serial monitoring of ctDNA for earlier detection of metastasis in a retrospective study of 20 patients diagnosed with primary breast cancer and long follow-up. Using an approach combining low-coverage whole-genome sequencing of primary tumors and quantification of tumor-specific rearrangements in plasma by droplet digital PCR, we identify for the first time that ctDNA monitoring is highly accurate for postsurgical discrimination between patients with (93%) and without (100%) eventual clinically detected recurrence. ctDNA-based detection preceded clinical detection of metastasis in 86% of patients with an average lead time of 11 months (range 0-37 months), whereas patients with long-term disease-free survival had undetectable ctDNA postoperatively. ctDNA quantity was predictive of poor survival. These findings establish the rationale for larger validation studies in early breast cancer to evaluate ctDNA as a monitoring tool for early metastasis detection, therapy modification, and to aid in avoidance of overtreatment.

  1. A monitoring campaign for Luhman 16AB. I. Detection of resolved near-infrared spectroscopic variability

    Energy Technology Data Exchange (ETDEWEB)

    Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Gillon, Michaël; Jehin, E.; Delrez, L.; Opitom, C. [Institute of Astrophysics and Géophysique, Université of Liège, allée du 6 Août 17, B-4000 Liège (Belgium); Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Radigan, Jacqueline [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Triaud, Amaury H. M. J. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Plavchan, Peter [NASA Exoplanet Science Institute, California Institute of Technology, M/C 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Street, Rachel, E-mail: aburgasser@ucsd.edu [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States)

    2014-04-10

    We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57–531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45 minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 μm were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of achromatic (brightness) and chromatic (color) variability in the T0.5 Luhman 16B, consistent with variations in overall cloud opacity; and no significant variability was found in L7.5 Luhman 16A, consistent with recent resolved photometric monitoring. We estimate a peak-to-peak amplitude of 13.5% at 1.25 μm over the full light curve. Using a simple two-spot brightness temperature model for Luhman 16B, we infer an average cold covering fraction of ≈30%-55%, varying by 15%-30% over a rotation period assuming a ≈200-400 K difference between hot and cold regions. We interpret these variations as changes in the covering fraction of a high cloud deck and corresponding 'holes' which expose deeper, hotter cloud layers, although other physical interpretations are possible. A Rhines scale interpretation for the size of the variable features explains an apparent correlation between period and amplitude for Luhman 16B and the variable T dwarfs SIMP 0136+0933 and 2MASS J2139+0220, and predicts relatively fast winds (1-3 km s{sup –1}) for Luhman 16B consistent with light curve evolution on an advective time scale (1-3 rotation periods). The strong variability observed in this flux reversal brown dwarf pair

  2. A Monitoring Campaign for Luhman 16AB. I. Detection of Resolved Near-infrared Spectroscopic Variability

    Science.gov (United States)

    Burgasser, Adam J.; Gillon, Michaël; Faherty, Jacqueline K.; Radigan, Jacqueline; Triaud, Amaury H. M. J.; Plavchan, Peter; Street, Rachel; Jehin, E.; Delrez, L.; Opitom, C.

    2014-04-01

    We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57-531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45 minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 μm were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of achromatic (brightness) and chromatic (color) variability in the T0.5 Luhman 16B, consistent with variations in overall cloud opacity; and no significant variability was found in L7.5 Luhman 16A, consistent with recent resolved photometric monitoring. We estimate a peak-to-peak amplitude of 13.5% at 1.25 μm over the full light curve. Using a simple two-spot brightness temperature model for Luhman 16B, we infer an average cold covering fraction of ≈30%-55%, varying by 15%-30% over a rotation period assuming a ≈200-400 K difference between hot and cold regions. We interpret these variations as changes in the covering fraction of a high cloud deck and corresponding "holes" which expose deeper, hotter cloud layers, although other physical interpretations are possible. A Rhines scale interpretation for the size of the variable features explains an apparent correlation between period and amplitude for Luhman 16B and the variable T dwarfs SIMP 0136+0933 and 2MASS J2139+0220, and predicts relatively fast winds (1-3 km s-1) for Luhman 16B consistent with light curve evolution on an advective time scale (1-3 rotation periods). The strong variability observed in this flux reversal brown dwarf pair supports the model of

  3. Optical Algorithm for Cloud Shadow Detection Over Water

    Science.gov (United States)

    2013-02-01

    5] R. Amin, A. Gilerson, J. Zhou, B. Gross, F. Moshary, and S. Ahmed, "Im- pacts of atmospheric corrections on algal bloom detection techniques...optical algorithms to detect and classify harmful algal blooms from space. His current research interests include optical algorithm development...algorithm, remote sensing, shadow detection 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE

  4. Characterisation of transparent exopolymer particles (TEP) produced during algal bloom: A membrane treatment perspective

    KAUST Repository

    Villacorte, Loreen O.

    2013-01-01

    Algal blooms are currently a major concern of the membrane industry as it generates massive concentrations of organic matter (e.g. transparent exopolymer particles [TEP]), which can adversely affect the operation of membrane filtration systems. The goal of this study is to understand the production, composition and membrane rejection of these organic materials using different characterisation techniques. Two common species of bloom-forming freshwater and marine algae were cultivated in batch cultures for 30days and the productions of TEP and other organic matter were monitored at different growth phases. TEP production of the marine diatom, Chaetoceros affinis, produced 6-9 times more TEP than the freshwater blue-green algae, Microcystis. The organic substances produced by both algal species were dominated by biopolymeric substances such as polysaccharides (45-64%) and proteins (2-17%) while the remaining fraction comprises of low molecular weight refractory (humic-like) and/ or biogenic organic substances. MF/UF membranes mainly rejected the biopolymers but not the low molecular weight organic materials. MF membranes (0.1-0.4 lm) rejected 42-56% of biopolymers, while UF membranes (10-100 kDa) rejected 65-95% of these materials. Further analysis of rejected organic materials on the surface of the membranes revealed that polysac-charides and proteins are likely responsible for the fouling of MF/UF systems during an algal bloom situation. © 2013 Desalination Publications.

  5. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase.

    Science.gov (United States)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori

    2013-11-01

    An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268-luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF-luciferase fusion protein. By means of the automatic analyzer with ZF-luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0×10 to 1.0×10(6) copies.

  6. Harmful Algal Blooms of the West Florida Shelf and Campeche Bank: Visualization and Quantification using Remote Sensing Methods

    Science.gov (United States)

    Soto Ramos, Inia Mariel

    Harmful Algal Blooms (HABs) in the Gulf of Mexico (GOM) are natural phenomena that can have negative impacts on marine ecosystems on which human health and the economy of some Gulf States depends. Many of the HABs in the GOM are dominated by the toxic dinoflagellate Karenia brevis. Non-toxic phytoplankton taxa such as Scrippsiella sp. also form intense blooms off the Mexican coast that result in massive fish mortality and economic losses, particularly as they may lead to anoxia. The main objectives of this dissertation were to (1) evaluate and improve the techniques developed for detection of Karenia spp. blooms on the West Florida Shelf (WFS) using satellite remote sensing methods, (2) test the use of these methods for waters in the GOM, and (3) use the output of these techniques to better understand the dynamics and evolution of Karenia spp. blooms in the WFS and off Mexico. The first chapter of this dissertation examines the performance of several Karenia HABs detection techniques using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images and historical ground truth observations collected on the WFS from August 2002 to December 2011. A total of 2323 in situ samples collected by the Florida Fish and Wildlife Research Institute to test for Karenia spp. matched pixels with valid ocean color satellite observations over this period. This dataset was used to systematically optimize variables and coefficients used in five published HAB detection methods. Each technique was tested using a set of metrics that included the F-Measure (FM). Before optimization, the average FM for all techniques was 0.47. After optimization, the average FM increased to 0.59, and false positives decreased ~50%. The addition of a Fluorescence Line Height (FLH) criterion improved the performance of every method. A new practical method was developed using a combination of FLH and Remote Sensing Reflectance at 555 nm (Rrs555-FLH). The new method resulted in an FM of 0.62 and 3

  7. A posture recognition based fall detection system for monitoring an elderly person in a smart home environment.

    Science.gov (United States)

    Yu, Miao; Rhuma, Adel; Naqvi, Syed Mohsen; Wang, Liang; Chambers, Jonathon

    2012-11-01

    We propose a novel computer vision based fall detection system for monitoring an elderly person in a home care application. Background subtraction is applied to extract the foreground human body and the result is improved by using certain post-processing. Information from ellipse fitting and a projection histogram along the axes of the ellipse are used as the features for distinguishing different postures of the human. These features are then fed into a directed acyclic graph support vector machine (DAGSVM) for posture classification, the result of which is then combined with derived floor information to detect a fall. From a dataset of 15 people, we show that our fall detection system can achieve a high fall detection rate (97.08%) and a very low false detection rate (0.8%) in a simulated home environment.

  8. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki [System Instruments Co., Ltd., 776-2 Komiya-cho, Hachioji, Tokyo 192-0031 (Japan); Noda, Mamoru; Igimi, Shizunobu [Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Ikebukuro, Kazunori, E-mail: ikebu@cc.tuat.ac.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2013-11-01

    Graphical abstract: -- Highlights: •Zif268 fused to luciferase was used for E. coli O157, Salmonella and coliform detection. •Artificial zinc finger protein fused to luciferase was constructed for Norovirus detection. •An analyzer that automatically detects PCR products by zinc finger protein fused to luciferase was developed. •Target pathogens were specifically detected by the automatic analyzer with zinc finger protein fused to luciferase. -- Abstract: An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 10{sup 6} copies.

  9. Monitoring urban growth and detecting land-cover changes on the Istanbul metropolitan area.

    Science.gov (United States)

    Geymen, Abdurrahman; Baz, Ibrahim

    2008-01-01

    Istanbul is the most populated city of Turkey with a population of around 10.58 M (2000) living on around 5,750 km2. In 1980, the population was only 4.7 M and then it has been more than doubled in only two decades. The population has been increasing as a result of mass immigration. An urbanization process continues and it causes serious increases in urban areas while decreasing the amount of green areas. This rapid, uncontrolled, and illegal urbanization accompanied by insufficient infrastructure has caused degradation of forest and barren lands in the metropolitan area, especially through the last two decades. The watershed basins inside the metropolitan area and the transportation network have accelerated the land-cover changes, which have negative impacts on water quality of the basins. Monitoring urban growth and land cover change will enable better management of this complex urban area by the Greater Istanbul Metropolitan Municipality (GIMM). A temporal assessment of land-cover changes of Istanbul has been documented in this study. The study mainly focuses on the acquisition and analysis of Landsat TM and Landsat GeoCover LC satellite images reflecting the significant land-cover changes between the years of 1990 and 2005. Raster data were converted to vector data and used in Geographic Information Systems (GIS). A database was created for Istanbul metropolitan area to plan, manage, and utilize statistical attribute data covering population, water, forest, industry, and topographic position. Consequently an overlay analysis was carried out and land use/cover changes through years have been detected for the case study area. The capability of Landsat images in determining the alterations in the macro form of the city are also discussed.

  10. The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake.

    Directory of Open Access Journals (Sweden)

    Lucas J Beversdorf

    Full Text Available Toxic cyanobacterial blooms threaten freshwaters worldwide but have proven difficult to predict because the mechanisms of bloom formation and toxin production are unknown, especially on weekly time scales. Water quality management continues to focus on aggregated metrics, such as chlorophyll and total nutrients, which may not be sufficient to explain complex community changes and functions such as toxin production. For example, nitrogen (N speciation and cycling play an important role, on daily time scales, in shaping cyanobacterial communities because declining N has been shown to select for N fixers. In addition, subsequent N pulses from N(2 fixation may stimulate and sustain toxic cyanobacterial growth. Herein, we describe how rapid early summer declines in N followed by bursts of N fixation have shaped cyanobacterial communities in a eutrophic lake (Lake Mendota, Wisconsin, USA, possibly driving toxic Microcystis blooms throughout the growing season. On weekly time scales in 2010 and 2011, we monitored the cyanobacterial community in a eutrophic lake using the phycocyanin intergenic spacer (PC-IGS region to determine population dynamics. In parallel, we measured microcystin concentrations, N(2 fixation rates, and potential environmental drivers that contribute to structuring the community. In both years, cyanobacterial community change was strongly correlated with dissolved inorganic nitrogen (DIN concentrations, and Aphanizomenon and Microcystis alternated dominance throughout the pre-toxic, toxic, and post-toxic phases of the lake. Microcystin concentrations increased a few days after the first significant N(2 fixation rates were observed. Then, following large early summer N(2 fixation events, Microcystis increased and became most abundant. Maximum microcystin concentrations coincided with Microcystis dominance. In both years, DIN concentrations dropped again in late summer, and N(2 fixation rates and Aphanizomenon abundance increased

  11. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with

  12. Harmful Algal Blooms and Public Health

    Science.gov (United States)

    Grattan, Lynn M.; Holobaugh, Sailor; Morris, J. Glenn

    2015-01-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels. PMID:27616971

  13. Harmful Algal Blooms and Public Health.

    Science.gov (United States)

    Grattan, Lynn M; Holobaugh, Sailor; Morris, J Glenn

    2016-07-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels.

  14. A Ubiquitous and Low-Cost Solution for Movement Monitoring and Accident Detection Based on Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Filipe Felisberto

    2014-05-01

    Full Text Available The low average birth rate in developed countries and the increase in life expectancy have lead society to face for the first time an ageing situation. This situation associated with the World’s economic crisis (which started in 2008 forces the need of equating better and more efficient ways of providing more quality of life for the elderly. In this context, the solution presented in this work proposes to tackle the problem of monitoring the elderly in a way that is not restrictive for the life of the monitored, avoiding the need for premature nursing home admissions. To this end, the system uses the fusion of sensory data provided by a network of wireless sensors placed on the periphery of the user. Our approach was also designed with a low-cost deployment in mind, so that the target group may be as wide as possible. Regarding the detection of long-term problems, the tests conducted showed that the precision of the system in identifying and discerning body postures and body movements allows for a valid monitorization and rehabilitation of the user. Moreover, concerning the detection of accidents, while the proposed solution presented a near 100% precision at detecting normal falls, the detection of more complex falls (i.e., hampered falls will require further study.

  15. Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources?

    Science.gov (United States)

    Woutersen, Marjolijn; Belkin, Shimshon; Brouwer, Bram; van Wezel, Annemarie P; Heringa, Minne B

    2011-05-01

    Biosensors based on luminescent bacteria may be valuable tools to monitor the chemical quality and safety of surface and drinking water. In this review, an overview is presented of the recombinant strains available that harbour the bacterial luciferase genes luxCDABE, and which may be used in an online biosensor for water quality monitoring. Many bacterial strains have been described for the detection of a broad range of toxicity parameters, including DNA damage, protein damage, membrane damage, oxidative stress, organic pollutants, and heavy metals. Most lux strains have sensitivities with detection limits ranging from milligrams per litre to micrograms per litre, usually with higher sensitivities in compound-specific strains. Although the sensitivity of lux strains can be enhanced by various molecular manipulations, most reported detection thresholds are still too high to detect levels of individual contaminants as they occur nowadays in European drinking waters. However, lux strains sensing specific toxic effects have the advantage of being able to respond to mixtures of contaminants inducing the same effect, and thus could be used as a sensor for the sum effect, including the effect of compounds that are as yet not identified by chemical analysis. An evaluation of the suitability of lux strains for monitoring surface and drinking water is therefore provided.

  16. Recurrent jellyfish blooms are a consequence of global oscillations.

    Science.gov (United States)

    Condon, Robert H; Duarte, Carlos M; Pitt, Kylie A; Robinson, Kelly L; Lucas, Cathy H; Sutherland, Kelly R; Mianzan, Hermes W; Bogeberg, Molly; Purcell, Jennifer E; Decker, Mary Beth; Uye, Shin-ichi; Madin, Laurence P; Brodeur, Richard D; Haddock, Steven H D; Malej, Alenka; Parry, Gregory D; Eriksen, Elena; Quiñones, Javier; Acha, Marcelo; Harvey, Michel; Arthur, James M; Graham, William M

    2013-01-15

    A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face.

  17. How often should we monitor for reliable detection of atrial fibrillation recurrence? Efficiency considerations and implications for study design.

    Directory of Open Access Journals (Sweden)

    Efstratios I Charitos

    Full Text Available OBJECTIVE: Although atrial fibrillation (AF recurrence is unpredictable in terms of onset and duration, current intermittent rhythm monitoring (IRM diagnostic modalities are short-termed and discontinuous. The aim of the present study was to investigate the necessary IRM frequency required to reliably detect recurrence of various AF recurrence patterns. METHODS: The rhythm histories of 647 patients (mean AF burden: 12 ± 22% of monitored time; 687 patient-years with implantable continuous monitoring devices were reconstructed and analyzed. With the use of computationally intensive simulation, we evaluated the necessary IRM frequency to reliably detect AF recurrence of various AF phenotypes using IRM of various durations. RESULTS: The IRM frequency required for reliable AF detection depends on the amount and temporal aggregation of the AF recurrence (p95% sensitivity of AF recurrence required higher IRM frequencies (>12 24-hour; >6 7-day; >4 14-day; >3 30-day IRM per year; p<0.0001 than currently recommended. Lower IRM frequencies will under-detect AF recurrence and introduce significant bias in the evaluation of therapeutic interventions. More frequent but of shorter duration, IRMs (24-hour are significantly more time effective (sensitivity per monitored time than a fewer number of longer IRM durations (p<0.0001. CONCLUSIONS: Reliable AF recurrence detection requires higher IRM frequencies than currently recommended. Current IRM frequency recommendations will fail to diagnose a significant proportion of patients. Shorter duration but more frequent IRM strategies are significantly more efficient than longer IRM durations. CLINICAL TRIAL REGISTRATION URL: Unique identifier: NCT00806689.

  18. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring

    Directory of Open Access Journals (Sweden)

    Toshiyuki Nakamiya

    2013-06-01

    Full Text Available We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method” using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”. Our new method detects vehicles based on tires’ thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8% out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  19. Physical Hydrography and Algal Bloom Transport in Hong Kong Waters

    Institute of Scientific and Technical Information of China (English)

    KUANG Cui-ping; LEE Joseph H.W.

    2005-01-01

    In sub-tropical coastal waters around Hong Kong, algal blooms and red tides are usually first sighted in the Mirs Bay, in the eastern waters of Hong Kong. A calibrated three-dimensional hydrodynamic model for the Pearl River Estuary (Delft3D) has been applied to the study of the physical hydrography of Hong Kong waters and its relationship with algal bloom transport patterns in the dry and wet seasons. The general 3D hydrodynamic circulation and salinity structure in the partially-mixed estuary are presented. Extensive numerical surface drogue tracking experiments are performed for algal blooms that are initiated in the Mirs Bay under different seasonal, wind and tidal conditions. The probability of bloom impact on the Victoria Harbour and nearby urban coastal waters is estimated. The computations show that: I) In the wet season (May~August), algal blooms initiated in the Mirs Bay will move in a clockwise direction out of the bay, and be transported away from Hong Kong due to SW monsoon winds which drive the SW to NE coastal current; ii) In the dry season (November~April), algal blooms initiated in the northeast Mirs Bay will move in an anti-clockwise direction and be carried away into southern waters due to the NE to SW coastal current driven by the NE monsoon winds; the bloom typically flows past the east edge of the Victoria Harbour and nearby waters. Finally, the role of hydrodynamic transport in an important episodic event - the spring 1998 massive red tide - is quantitatively examined. It is shown that the strong NE to E wind during late March to early April, coupled with the diurnal tide at the beginning of April, significantly increased the probability of bloom transport into the Port Shelter and East Lamma Channel, resulting in the massive fish kill. The results provide a basis for risk assessment of harmful algal bloom (HAB) impact on urban coastal waters around the Victoria Habour.

  20. Satellite views of the massive algal bloom in the Persian Gulf and the Gulf of Oman during 2008-2009

    Science.gov (United States)

    Yu, Shujie; Gong, Fang; He, Xianqiang; Bai, Yan; Zhu, Qiankun; Wang, Difeng; Chen, Peng

    2016-10-01

    The Persian Gulf and the Gulf of Oman locate at the northwest of the Arabian Sea, with the total area more than 50,0000 km2. The Persian Gulf is a semi-enclosed subtropical sea with high water temperature, extremely high salinity, and an average depth of 50 meters. By the Strait of Hormuz, the Persian Gulf is connected to the Gulf of Oman which is significantly affected by the monsoonal winds and by water exchange between the Arabian Sea and the Persian Gulf. Algal blooms occurred frequently in the Persian Gulf and the Gulf of Oman, and some of them are harmful algal blooms which may lead to massive fish death and thereby serious economic loss. Due to the widely spatial coverage and temporal variation, it is difficult to monitoring the dynamic of the algal bloom based on in situ measurement. In this study, we used the remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to investigate a massive algal bloom event in the Persian Gulf and the Gulf of Oman during 2008-2009. The time series of MODIS-derived chlorophyll concentration (Chl-a) indicated that the bloom event with high Chl-a concentration ( 60 percent higher than corresponding climatological data) appeared to lasting more than 8 months from autumn of 2008 to spring of 2009. In addition, the bloom was widespread from the Persian Gulf to the Gulf of Oman and neighboring open ocean. The MODIS-derived net primary production (NPP) collected from MODIS showed the same trend with Chl-a. Multiple forces including upwelling, dust deposition was taken into account to elucidate the mechanisms for the long-lasting algal bloom. The time series chlorophyll concentration of the Persian Gulf emerges a significant seasonal pattern with maximum concentrations seen during the winter time and lowest during the summer. It also indicated slight disturbances occurred in June (May/July) and December (November/ January) in some years. The sea surface temperature and water

  1. Study on the detection of red-tide outbreaks using big satellite database

    Science.gov (United States)

    Son, Young Baek; Eun, Yoon Joo; Park, Kyongseok; Lee, Sanghwan; Lee, Ryong; Kim, Sang-Hyun; Yoo, Sinjae

    2014-11-01

    Satellite remote sensing has been successfully employed to monitor and detect the increasing incidence of harmful algal blooms (HABs) under various water conditions. In this study, to establish a comprehensive monitoring system of HAB outbreaks (particularly Cochlodinium polykrikoides blooms) in the southern coast of Korea (SCK), we tested the several proposed red-tide detection methods using SeaWiFS and MODIS ocean color data. Temporal and spatial information of red tide events from 2002 to 2013 were obtained from the National Fisheries Research and Development of Korea (NFRDI), which were matched with synchronously obtained satellite-derived ocean color data. The spectral characteristics of C. polykrikoides red tides were that increased phytoplankton absorption at 443 nm and pigment backscattering 555 nm resulted in a steeper slope between 488 and 555 nm with a hinge point at 488 (or 490) nm. On the other hand, non-red tide water, typically were presented by broader radiance spectra between the blue and green bands were associated with reduced pigment absorption and backscattering. The analysis of ocean color imageries that captured C. polykrikoides red tide blooms showed discolored waters with enhanced pigment concentrations, high chlorophyll, fluorescence, absorption at 443 nm. However, most red tide detection algorithms found a large number of false positive but only a small number of true positive areas. These proposed algorithms are not useful to distinguish true red tide water from complex non-red tide water. Our proposed method substantially reduces the false signal rate (false positive) from strong absorption at short wavelengths and provide a more reliable and robust detection of C. polykrikoides blooms in the SCK from the space.

  2. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NARCIS (Netherlands)

    Trichias, K.; Pijpers, R.J.M.; Meeuwissen, H.B.

    2014-01-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure’s life and required maintenance in a cost-efficient way. Typically,

  3. Error Sources in Deforestation Detection Using BFAST Monitor on Landsat Time Series Across Three Tropical Sites

    NARCIS (Netherlands)

    Schultz, Michael; Verbesselt, Jan; Avitabile, Valerio; Souza, Carlos; Herold, Martin

    2016-01-01

    Accurate tropic deforestation monitoring using time series requires methods which can capture gradual to abrupt changes and can account for site-specific properties of the environment and the available data. The generic time series algorithm BFAST Monitor was tested using Landsat time series at thre

  4. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Kirill V Sergueev

    Full Text Available BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3 CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  5. Monitoring and Detection Platform to Prevent Anomalous Situations in Home Care

    Science.gov (United States)

    Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F.; Corchado, Juan M.

    2014-01-01

    Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost. PMID:24905853

  6. Marine harmful algal blooms, human health and wellbeing

    DEFF Research Database (Denmark)

    Berdalet, Elisa; Fleming, Lora E.; Gowen, Richard

    2016-01-01

    Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic environments. However, some microalgal blooms can...... cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments...

  7. Detection of Legionella by quantitative-polymerase chain reaction (qPCR) for monitoring and risk assessment

    DEFF Research Database (Denmark)

    Krøjgaard, Louise H.; Krogfelt, Karen A.; Albrechtsen, Hans-Jorgen

    2011-01-01

    Background: Culture and quantitative polymerase chain reaction (qPCR) assays for the detection of Legionella were compared on samples from a residential area before and after two interventions. A total of 84 samples were collected from shower hoses and taps as first flush samples and at constant...... temperature. Samples were grouped according to the origin of the sample, a) circulation water b) water from empty apartments c) water from shower hoses. The aims were to investigate the usefulness of qPCR compared to culture for monitoring remedial actions for elimination of Legionella bacteria and as a tool...... for risk assessment. Results: In water collected from the apartments Legionella spp were detected by qPCR in the concentration range from LOQ to 9.6* 10(5)GU/L while L. pneumophila were detected in a range from LOQ to 6.8*10(5) GU/L. By culturing, the legionellae were detected in the range from below...

  8. Application of the Continuous-Discrete Extended Kalman Filter for Fault Detection in Continuous Glucose Monitors for Type 1 Diabetes

    DEFF Research Database (Denmark)

    Mahmoudi, Zeinab; Boiroux, Dimitri; Hagdrup, Morten

    2016-01-01

    The purpose of this study is the online detection of faults and anomalies of a continuous glucose monitor (CGM). We simulated a type 1 diabetes patient using the Medtronic virtual patient model. The model is a system of stochastic differential equations and includes insulin pharmacokinetics......, insulin-glucose interaction, and carbohydrate absorption. We simulated and detected two types of CGM faults, i.e., spike and drift. A fault was defined as a CGM value in any of the zones C, D, and E of the Clarke error grid analysis classification. Spike was modelled by a binomial distribution, and drift...... was modelled by a Gaussian random walk. We used a continuous-discrete extended Kalman filter for the fault detection, based on the statistical tests of the filter innovation and the 90-min prediction residuals of the sensor measurements. The spike detection had a sensitivity of 93% and a specificity of 100...

  9. A New Approach to Detection of Systematic Errors in Secondary Substation Monitoring Equipment Based on Short Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Javier Moriano

    2016-01-01

    Full Text Available In recent years, Secondary Substations (SSs are being provided with equipment that allows their full management. This is particularly useful not only for monitoring and planning purposes but also for detecting erroneous measurements, which could negatively affect the performance of the SS. On the other hand, load forecasting is extremely important since they help electricity companies to make crucial decisions regarding purchasing and generating electric power, load switching, and infrastructure development. In this regard, Short Term Load Forecasting (STLF allows the electric power load to be predicted over an interval ranging from one hour to one week. However, important issues concerning error detection by employing STLF has not been specifically addressed until now. This paper proposes a novel STLF-based approach to the detection of gain and offset errors introduced by the measurement equipment. The implemented system has been tested against real power load data provided by electricity suppliers. Different gain and offset error levels are successfully detected.

  10. Change Detection for Remote Monitoring of Underground Nuclear Testing: Comparison with Seismic and Associated Explosion Source Phenomenological Data

    DEFF Research Database (Denmark)

    Canty, M.; Jahnke, G.; Nielsen, Allan Aasbjerg

    2005-01-01

    The analysis of open-source satellite imagery is in process of establishing itself as an important tool for monitoring nuclear activities throughout the world which are relevant to disarmament treaties, like e. g. the Comprehensive Nuclear-Test-Ban Treaty (CTBT). However, the detection...... of conventional multispectral satellite platforms with moderate ground resolution (Landsat TM, ASTER) to detect changes over wide areas.We chose the Nevada Test Site (NTS), USA, for a case study because of the large amount of available ground truth information. The analysis is based on the multivariate alteration...... for the satellite image data sets in terms of explosion size and at deriving possible scaling relations between change signals and the visible explosion effects. This work has been carried out in part within the framework of the Global Monitoring for Security and Stability Network of Excellence (GMOSS) initiated...

  11. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    Science.gov (United States)

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features.

  12. Plant growth stage-specific injury and economic injury level for verde plant bug, Creontiades signatus (Hemiptera: Miridae), on cotton: effect of bloom period of infestation.

    Science.gov (United States)

    Brewer, Michael J; Anderson, Darwin J; Armstrong, J Scott

    2013-10-01

    Verde plant bugs, Creontiades signatus Distant (Hemiptera: Miridae), were released onto caged cotton, Cossypium hirsutum L., for a 1-wk period to characterize the effects of insect density and bloom period of infestation on cotton injury and yield in 2011 and 2012, Corpus Christi, TX. When plants were infested during early bloom (10-11 nodes above first white flower), a linear decline in fruit retention and boll load and a linear increase in boll injury were detected as verde plant bug infestation levels increased from an average of 0.5 to 4 bugs per plant. Lint and seed yield per plant showed a corresponding decline. Fruit retention, boll load, and yield were not affected on plants infested 1 wk later at peak bloom (8-9 nodes above first white flower), even though boll injury increased as infestation levels increased. Second-year testing verified boll injury but not yield loss, when infestations occurred at peak bloom. Incidence of cotton boll rot, known to be associated with verde plant bug feeding, was low to modest (plant bug were important contributors to yield decline, damage potential was greatest during the early bloom period of infestation, and a simple linear response best described the yield response-insect density relationship at early bloom. Confirmation that cotton after peak bloom was less prone to verde plant bug injury and an early bloom-specific economic injury level were key findings that can improve integrated pest management decision-making for dryland cotton, at least under low-rainfall growing conditions.

  13. Detection of Campylobacter bacteria in air samples for continuous real-time monitoring of Campylobacter colonization in broiler flocks.

    Science.gov (United States)

    Olsen, Katja N; Lund, Marianne; Skov, Julia; Christensen, Laurids S; Hoorfar, Jeffrey

    2009-04-01

    Improved monitoring tools are important for the control of Campylobacter bacteria in broiler production. In this study, we compare the sensitivities of detection of Campylobacter by PCR with feces, dust, and air samples during the lifetimes of broilers in two poultry houses and conclude that the sensitivity of detection of Campylobacter in air is comparable to that in other sample materials. Profiling of airborne particles in six poultry houses revealed that the aerodynamic conditions were dependent on the age of the chickens and very comparable among different poultry houses, with low proportions of particles in the 0.5- to 2-microm-diameter range and high proportions in the 2- to 5-microm-diameter range. Campylobacter could also be detected by PCR in air samples collected at the hanging stage during the slaughter process but not at the other stages tested at the slaughterhouse. The exploitation of airborne dust in poultry houses as a sample material for the detection of Campylobacter and other pathogens provides an intriguing possibility, in conjunction with new detection technologies, for allowing continuous or semicontinuous monitoring of colonization status.

  14. A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms

    Directory of Open Access Journals (Sweden)

    Nathan Torbick

    2015-09-01

    Full Text Available Lake Champlain has bays undergoing chronic cyanobacterial harmful algal blooms that pose a public health threat. Monitoring and assessment tools need to be developed to support risk decision making and to gain a thorough understanding of bloom scales and intensities. In this research application, Landsat 8 Operational Land Imager (OLI, Rapid Eye, and Proba Compact High Resolution Imaging Spectrometer (CHRIS images were obtained while a corresponding field campaign collected in situ measurements of water quality. Models including empirical band ratio regressions were applied to map chlorophylla and phycocyanin concentrations; all sensors performed well with R2 and root-mean-square error (RMSE ranging from 0.76 to 0.88 and 0.42 to 1.51, respectively. The outcomes showed spatial patterns across the lake with problematic bays having phycocyanin concentrations >25 μg/L. An alert status metric tuned to the current monitoring protocol was generated using modeled water quality to illustrate how the remote sensing tools can inform a public health monitoring system. Among the sensors utilized in this study, Landsat 8 OLI holds the most promise for providing exposure information across a wide area given the resolutions, systematic observation strategy and free cost.

  15. Development of a patch type embedded cardiac function monitoring system using dual microprocessor for arrhythmia detection in heart disease patient.

    Science.gov (United States)

    Jang, Yongwon; Noh, Hyung Wook; Lee, I B; Jung, Ji-Wook; Song, Yoonseon; Lee, Sooyeul; Kim, Seunghwan

    2012-01-01

    A patch type embedded cardiac function monitoring system was developed to detect arrhythmias such as PVC (Premature Ventricular Contraction), pause, ventricular fibrillation, and tachy/bradycardia. The overall system is composed of a main module including a dual processor and a Bluetooth telecommunication module. The dual microprocessor strategy minimizes power consumption and size, and guarantees the resources of embedded software programs. The developed software was verified with standard DB, and showed good performance.

  16. Proposed strategy for leak detection, monitoring, and mitigation (LDMM) during Hanford single-shell tank waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Iwatate, D.F., Westinghouse Hanford

    1996-07-08

    This document proposes a strategy to address issues related to leakage from single-shell tanks (SSTs) during sluicing. A set of criteria are proposed to capture the relevant issues pertaining to leak detection, monitoring, and mitigation (LDMM), and allow DOE-RL, the Contractor, Ecology, and Hanford Stakeholders to reach consensus on allowable leakage volumes (ALVs). Technical studies and findings that support the proposed strategy, and ALV criteria, are summarized and referenced. This document specifically addresses LDMM for SSTs at Hanford, Washington.

  17. Nodularia spumigena blooms and the occurrence of hepatotoxin in the Gulf of Gdańsk

    Directory of Open Access Journals (Sweden)

    Hanna Mazur

    2003-06-01

    Full Text Available Nodularia spumigena forms extensive summer blooms in the Baltic Sea. The occurrence of the blooms is determined by water temperature, light intensity and nutrient concentration; levels of nitrogen and phosphorus in particular are critical. The time of the seasonal maximum and intensity of the Nodularia bloomin the Gulf of Gdansk vary significantly from year to year. In2001 a rapid and massive proliferation of N. spumigenawas observed in late June - early July. The concentration ofnodularin in water ranged from 90 to 18135 µg dm-3and in lyophilised phytoplankton samples from 3000 to 3520µg g-1 d.w. (dry weight.Such a high concentration of toxin in the recreational watersof the Gulf of Gdansk constitutes a health risk for users ofbathing areas. In 2002, the N. spumigena bloom wasless dense, but lasted longer, with a maximum in late July- early August. In 2002 the concentration of nodularin did notexceed 12.6 µg dm-3 in water and 919 µg g-1d.w. in lyophilised phytoplankton samples. Other cyanobacterial toxins- microcystins and anatoxin-a - were also detected in the coastal waters ofthe Gulf of Gdansk.

  18. Functional deficiency of fibroblasts heterozygous for Bloom syndrome as specific manifestation of the primary defect.

    OpenAIRE

    Bartram, C.R.; Rüdiger, H W; Schmidt-Preuss, U; Passarge, E

    1981-01-01

    The effect on the rate of sister chromatid exchanges (SCEs) in Bloom syndrome fibroblasts by cocultivation with Fanconi anemia and xeroderma pigmentosum fibroblasts and with Bloom syndrome heterozygotes was studied. Cells of Fanconi anemia and xeroderma origin reduced the rate of SCEs in Bloom cells by about 45%-50%, just as control cells do. In contrast, heterozygous Bloom cells reduced the rate of SCEs by only 16%-28%. In absolute figures, Fanconi cells reduced the mean rate of SCE in Bloom...

  19. Holter monitoring to detect silent atrial fibrillation in high-risk subjects: the Perugia General Practitioner Study.

    Science.gov (United States)

    Salvatori, Valentina; Becattini, Cecilia; Laureti, Stefano; Baglioni, Gregorio; Germini, Fabrizio; Grilli, Piero; Guercini, Francesco; Filippucci, Esmeralda; Agnelli, Giancarlo

    2015-08-01

    Atrial fibrillation (AF) is diagnosed for the first time in about 5 % of patients admitted for acute ischemic stroke. Advanced aged and arterial hypertension are risk factors for AF. We evaluated the prevalence of silent AF in subjects with advanced age and systemic arterial hypertension. Subjects of both gender, aged 65 years or more with systemic arterial hypertension were randomly identified from the patient lists of the participating general practitioners in the Perugia area, in Italy. Study subjects underwent baseline 12-lead ECG and, if this did not show AF, 48-h Holter monitoring was performed. AF was known and confirmed by 12-lead ECG in 4 out of the 308 evaluated subjects (1.3 %). Baseline 12-lead ECG showed no cases of silent AF. Holter monitoring was performed in 300 subjects, mean age 70 ± 4. Twenty-six recordings were not evaluable for the presence of artifacts; therefore, 274 subjects were included in the analysis. Holter monitoring showed AF in 27 out of 274 subjects (10 %; 95 % confidence interval 6.4-13.5 %); AF was longer than 30 s in four of the subjects. In 56 additional subjects, Holter monitoring revealed excessive supraventricular ectopic activity (20 %; 95 % confidence interval 15.3-24.7 %). Holter monitoring was able to detect silent AF in about 10 % of subjects aged 65 or above with systemic arterial hypertension. The risk of stroke associated with screened silent AF should be carefully evaluated.

  20. Monitoring and Fault Detection in Photovoltaic Systems Based On Inverter Measured String I-V Curves

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas;

    2015-01-01

    Most photovoltaic (PV) string inverters have the hardware capability to measure at least part of the current-voltage (I-V) characteristic curve of the PV strings connected at the input. However, this intrinsic capability of the inverters is not used, since I-V curve measurement and monitoring......-of-system components through increased series resistance losses, or shunting of the PV modules. To achieve this, we propose and experimentally demonstrate three complementary PV system monitoring methods that make use of the I-V curve measurement capability of a commercial string inverter. The first method is suitable...... for monitoring single or independent PV strings, and is based on evaluating the ratio of certain operation points on the string I-V curve. The second method is applicable to PV systems with identical strings, and is based on monitoring and inter-comparison of string I-V curve parameters. For PV systems with non...

  1. Rotor health monitoring combining spin tests and data-driven anomaly detection methods

    Data.gov (United States)

    National Aeronautics and Space Administration — Health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon...

  2. Nonstructural carbohydrates and return bloom potential differ among cranberry cultivars

    Science.gov (United States)

    explain low fruit set and biennial bearing tendencies of cranberry (Vaccinium macrocarpon). Yet, comparisons of nonstructural carbohydrate concentrations during critical phenological stages across cultivars that differ in biennial bearing tendencies and return bloom potential are lacking, particular...

  3. Algal blooms: an emerging threat to seawater reverse osmosis desalination

    KAUST Repository

    Villacorte, Loreen O.

    2014-08-04

    Seawater reverse osmosis (SWRO) desalination technology has been rapidly growing in terms of installed capacity and global application over the last decade. An emerging threat to SWRO application is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in SWRO plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of various desalination plants to avoid irreversible fouling of downstream SWRO membranes. This article summarizes the current state of SWRO technology and the emerging threat of algal blooms to its application. It also highlights the importance of studying the algal bloom phenomena in the perspective of seawater desalination, so proper mitigation and preventive strategies can be developed in the near future. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  4. Algal blooms: a perspective from the coasts of India

    Digital Repository Service at National Institute of Oceanography (India)

    DeSilva, M.S.; Anil, A.C.; Naik, R.K.; DeCosta, P.M.

    2004 resulted in nauseating smell emanating from the coastal waters (The Hindu 2004; The Hindustan Times 2004). This bloom resulted in large–scale fish mortality and hospitalization of 200 people especially children who suffered from nausea...

  5. Lyngbya majuscula Blooms in an Enclosed Marine Environment

    Directory of Open Access Journals (Sweden)

    Chin Soon Lionel Ng

    2012-06-01

    Full Text Available Cyanobacterial blooms are a cause of concern because of their potential impacts on the marine environment. In Sentosa Cove, Singapore, Lyngbya majuscula blooms appeared regularly in the highly enclosed boat canals traversing the seafront residential development. This study investigated whether sediments resuspended by physical disturbance liberated nutrients that contribute to the blooms. Sediment resuspension events were mimicked in containers of sediment collected from the canals. Lyngbya majuscula that were incubated in containers with resuspended sediment attained greater biomass than those in filtered seawater only. Levels of iron, phosphates and nitrites in seawater with resuspended sediments were significantly higher than in those without. The results indicate that recurrent L. majuscula blooms in Sentosa Cove could be attributed to nutrient loading from sediment resuspension.

  6. High diversity of microcyst